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Abstract: Whole genome sequencing has increasingly become the essential method for studying
the genetic mechanisms of antimicrobial resistance and for surveillance of drug-resistant bacterial
pathogens. The majority of bacterial genomes sequenced to date have been sequenced with Illumina
sequencing technology, owing to its high-throughput, excellent sequence accuracy, and low cost.
However, because of the short-read nature of the technology, these assemblies are fragmented into
large numbers of contigs, hindering the obtaining of full information of the genome. We develop Pasa,
a graph-based algorithm that utilizes the pangenome graph and the assembly graph information to
improve scaffolding quality. By leveraging the population information of the bacteria species, Pasa
is able to utilize the linkage information of the gene families of the species to resolve the contig
graph of the assembly. We show that our method outperforms the current state of the art in terms
of accuracy, and at the same time, is computationally efficient to be applied to a large number of
existing draft assemblies.

1. Introduction

The increasing availability of DNA sequencing technologies has profoundly transformed biomedical research 15

and in particular microbial genomics. The ability to decode the whole genomes of a large number of
bacterial isolates enables the study of the genetic mechanisms of antimicrobial resistance in drug-resistant
pathogens [1, 2], which have been rapidly emerging and are considered to be one of the main threats to
public health in the next decades. Whole genome sequencing is also an effective tool for the surveillance
of infectious diseases, and direct infection control measures in clinics [3–5]. Substantial global efforts have 20

resulted in large amounts of sequencing data for genome assemblies being generated to provide insights
into the resistant causes and effects. To date, short-read sequencing technology using Illumina platforms
remains the most common method for whole genome sequencing owing to its high throughput, sequence
accuracy, and cost-effectiveness. However, the relatively short read length cannot unambiguously resolve the
repetitive sequences that are frequently present in most genomes. As a result, most genome assemblies are 25

fragmented into large numbers of contigs and require additional information to improve their contiguity and
completeness.

Much recent research has resulted in both technological and computational methodologies to generate
better complete genome assemblies. Third-generation sequencing technologies such as Oxford Nanopore
Technology and PacBio provide long reads spanning repetitive genomic regions. These long reads can be 30

used for de novo assembling complete prokaryote genomes by long-read assemblers [6, 7], or for scaffolding
fragmented assemblies from short-read sequencing [8–10]. However, higher costs and less mature ecosystems
make long-read sequencing less attractive for large-scale sequencing projects. Long-range sequencing
technologies such as mate-pairs, Hi-C [11], 10X Genomics linked-reads [12], and optical mapping [13] capture
linkage information for inferring the distance and orientation between contigs in scaffolding assemblies. 35

These technologies however often provide low-resolution information while having specific errors and biases,
providing challenges to the computational analysis [14, 15], in addition to extra steps in data generation.

Computational approaches are also developed to utilize available public data resources as the reference to
guide the scaffolding process. The rationale is to use an available, more complete assembly of the closest-
possible genome as the backbone to place the contigs in the correct order. For de novo assembly, identifying 40

a close-related genome can be a difficult task. Even if possible, the issue of reference bias can become severe
for those that are highly structurally variable, such as in multi-drug resistance strains. To alleviate this
problem, a class of scaffolding methods that use multiple references for scaffolding have been developed.
The prominent methods suitable for microbial genomes include Ragout [16, 17] and multi-CSAR [18].

The idea of using the genome variant graph as a comprehensive but compact reference model to alleviate the 45
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bias issue of using individual references has been proposed in various applications of human genomics [19, 20]
and microbial genomics [21, 22]. This technique has shown advantages over the traditional linear reference
in e.g., alignment, variant calling and typing analyses. However, due to costly computation, the use of the
variant graph usually requires high-performance computing resources and extensive running time. Instead, a
pangenome graph at the gene level is adequate for almost all bacterial genomics analyses. It can provide the50

graph structure regarding the proximity relationships of all genes involved. A pangenome graph can be built
from a set of bacterial genome assemblies by using tools such as Roary [23], Panaroo [24] or PanTA [25].
The latter can construct the graph progressively.

Here we introduce Pasa, the first computational method that makes use of the population information of
a species to improve draft assemblies of isolates belonging to the species. Specifically, it uses the pangenome55

graph built from existing genomes to resolve the assembly graph of a newly sequenced isolate for scaffolding.
Pasa builds the former graph by using PanTA [25] on a large set of genomes and using it as the guide
to resolve the assembly graphs generated by SPades assembler [26]. We demonstrate the utility of Pasa
by applying it to scaffold the draft assemblies of bacterial isolates of species of various levels of genomics
diversification, namely, Klebsilla pneumoniae, Escherichia coli and Streptococcus pneumoniae. In all cases,60

we show that pangenome graphs are helpful in resolving the assembly graph for better scaffolding quality
compared to other multi-reference-based methods.

2. MATERIALS AND METHODS

2.1. Overview of algorithm

Figure 1: Overview of Pasa algorithm. Genes are represented by arrows and colored by the orthologous
groups. (A) Pasa takes the pangenome built from a collection of genomes from a species as input. It
then constructs the pangenome graph where nodes represent gene families and edges represent genomic
neighborhood. (B) The contig graph represents the possible connections between the contigs in the target
genome. Pasa employs information of the gene order of conserved regions in the pangenome graph to resolve
the multiple connections in the contig graph.

In assembling the target genome sequenced by a short-read technology, an assembler such as Spades [26]65

and Velvet [27] constructs a de Bruijn graph from overlapping reads, and then identifies contigs by finding
walks through the de Bruijn graph that correspond to continuous sequences. Most genomes of both eukaryotes
and prokaryotes organisms contain an abundance of repetitive sequences whose sizes are beyond the length
of the reads. In such cases, a walk going into a repetitive sequence has multiple possible paths and thus the
corresponding contig cannot be extended unambiguously, leading to the assembly being fragmented into70

multiple contigs.
Genome scaffolding involves ordering and orientating the contigs in a fragmented assembly and connecting

these contigs to improve the assembly’s completeness and contiguity. Pasa (PAngenome-based ScAffolding)
achieves this by exploiting the connectivity information obtained from the population genomes of the
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species. Figure 1 illustrates an overview of the approach of Pasa. In the first step, Pasa runs PanTA [25] on 75

the reference genomes to obtain a pangenome, which is a collection of gene clusters. Pasa then uses the
pangenome to build a pangenome graph that captures the structural variant landscape within the population.
In this pangenome graph, nodes are clusters of genes and two nodes are connected by an edge if they are
adjacent in any genome from the population (Figure 1-A). In scaffolding the assembly of a target genome
T , Pasa adds genes in contigs in T to the population pangenome graph using the add function in PanTA. 80

The pangenome graph essentially establishes the relative positions (that is, distance and orientation) of the
contigs in T . Pasa then computes the matching score for each pair of contigs in T . The matching score
measures the likelihood of two contigs being adjacent, i.e., the higher the score between two contigs the
more likely they are adjacent in the target genome. In addition, Pasa leverages the information from the
assembly graph to obtain a more reliable estimation of the matching scores. Finally, it solves the constrained 85

maximum matching problem to obtain an ordering of the contigs, which is then further refined to obtain the
final scaffolds.

Algorithm 1: Pangraph-based genome assembly

1 Input: related population genomes; target genome T
2 Build the directed pangenome graph for the population (panGraph).
3 Construct a contigs graph from the target genome (contigsGraph).
4 Align contigs in T to the population pangenome graph using PanTA.
5 Estimate the multiplicity of contigs C in T.
6 Compute pairwise matching scores between contigs in C using information from panGraph and

contigsGraph.
7 Solve the constrained maximum matching problem to obtain draft scaffolds.
8 Refine the draft scaffolds to obtain the final set of scaffolds.

2.2. Construction of the pangenome graph

Pasa builds the pangenome graph of the species from the genome assemblies of a collection of isolates. The
population genomes are annotated with Prokka [28], which generates a gff file for each genome assembly. 90

Pasa then runs PanTA on the population gff files to obtain gene clusters. Here each cluster represents
an orthologous or paralogous group of genes. PanTA groups the genes based on their sequence similarity
and outputs a list of genes for each chrosomome or plasmid in the reference genomes. Next, Pasa orients
the gene-level genomes obtained by PanTA such that the resulting ordering maximally agrees with each
other. Here the agreement is determined based on the number of common pairs of consecutive genes. The 95

orientations of the gene-level genomes are achieved by the following procedure: The algorithm starts with
the first genome, and its orientation is arbitrary. Next, Pasa finds an orientation of the second genome that
has the largest number of common pairs of consecutive genes with the first genome. Similarly, Pasa finds an
orientation of the third genome that shares the largest number of common pairs of consecutive genes with
the first two genomes, and the procedure is repeated for the remaining genomes. 100

Pasa then constructs a directed graph with weighted edges, where nodes represent clusters of genes, two
nodes are connected by an edge if they are adjacent in any genome from the population, and the edge weight
accounts for the number of times two nodes are adjacent in the oriented genomes. As a result, the edges
along the conserved regions of DNA sequences throughout evolution are expected to have substantial weights.
Lower weight edges, on the other hand, are likely to correspond to infrequent or under-represented portions 105

of the genome. Pasa keeps edges with high weights and discards those with low weights (less than 20% the
number of the reference genomes). It is worth mentioning that Roary [23] and Panaroo [24] also construct
a graphical representation of the pangenome, they however only consider a simple undirected unweighted
graph to represent the gene arrangements in the population. In contrast, Pasa employs the directed graph
with weighted edge because this graphical representation can capture the connectivity information from the 110

population genomes. The edge weights in the pangenome graph are later used to determine the optimal
order of the contigs in the target genome.

2.3. Construction of contigs overlap graph

Based on the de Bruijn assembly graph from SPAdes, Pasa builds a sequence overlap graph of all final
contigs, or the contigs graph for short throughout the scope of this article to distinguish it from the other 115

graph structures. The SPAdes assembly graph is saved in a FASTG file, namely assembly graph.fastg by
default. The sequences in this file are edges from the assembly graph, also known as preliminary contigs
before the repeat resolution. The final contigs are then constructed from the consequential repeat resolving
step, each comprising a unique path of preliminary contigs when traversing this graph (contigs.paths). By
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combining information from these two files, we construct the graph with contigs as vertices and their k-mer120

overlapping connections as edges.
Formally, Pasa builds a graph GC = {C,VC} where C = {c1, c2, . . . , cn} is the set of the final contigs

and VC is all possible k-overlap edges connecting them. From assembly graph.fastg, we have the graph
GE = {E, VE} of preliminary contig sequences E = {ei}, i = 1 . . .m and their connections VE = {(ei, ej)} for
all ei k-overlap with ej . By investigating the file contigs.paths, we know how a final contig is made from a125

path of the preliminary sequences. For example, if we have ck = (ek1 , ek2 , . . . , ekp), ch = (eh1 , eh2 , . . . , ehq )
then there is an edge (ck, ch) ∈ VC if and only if (ekp , eh1) ∈ VE . In the case when intermediate files from
SPAdes output are not given but only the final contigs (contigs.fasta), Pasa will scan for all possible
overlaps between all pairs (ci, cj) ∈ C. The scanning window for overlapping length is set to the range
[ lmin−1

2 , lmin − 1] by default, where lmin is the length of the shortest contig amongst C.130

2.4. Pangenome graph-based assembly model

Alignment of contigs in T to the pangenome graph The draft assembly of the target genome T is annotated
with prokka and is added into the pangenome graph by the add function in PanTA. When a contig is aligned
to the pangenome graph, its orientation is also chosen such that the genes’ direction in the contig and in the
pangenome graph agree the most.135

Multiplicity estimation To obtain scaffolds as accurately as possible, Pasa must first determine the multiplicity
of contigs in the target genome. Pasa uses the length and coverage information to estimate the multiplicity
of the contigs. In particular, it utilizes a simplified model from [8]. The median coverage of the five largest
contigs is the baseline. The number of copies of the remaining contigs are the ratio of its coverage and the
baseline, rounding to the nearest integer.140

Intuitively, Pasa creates k different copies for each unresolved repeat in the target genome, where k is the
estimated copy number of the repeat in the complete genome. As some repeats could already be resolved
by the NGS assembler, the corresponding synteny blocks in the target contigs will be surrounded by other
unique synteny blocks. Pasa uses this “context” information to map repeat instances in contigs to the
corresponding repeats in reference genomes. See additional details about the repeat resolution algorithm in145

the Methods section “Repeat resolution algorithm.”

Matching scores Given a collection of contigs C = {c1, c2, . . . , cn}, Pasa assigns a scoring to each pair
of contigs in C. This score function utilizes both population information in the pangenome graph and
sample-specific information in the contigs graph. The score indicates how likely the two contigs are joined
together, the higher score the more likely they are adjacent in the original genome. The score between two150

contigs ci and cj is defined as

score(ci, cj) =

{
0, if d(ci, cj) ≥ D

s(ci, cj), otherwise,
(1)

where d(ci, cj) is the shortest distance in nucleotides between the two contigs in the contigs graph and
D is a threshold parameter (D = 5000 by default). In addition, s(ci, cj) mimics the number of reference
genomes that support ci and cj to be adjacent. Specifically, s(ci, cj) is the average edge weight along a
path connecting a terminal gene in ci and a starting gene in cj in the pangenome graph, further normalized155

by the number of genes between the two genes. If there is more than one path between two genes, Pasa
takes the shortest one. The score of two contigs is high if they are close to each other in many genomes.
Pasa employs multiple genes in the contigs rather than just two end genes to obtain a more accurate score
between the two contigs.

Constrained maximum matching model Similar to [17, 18], Pasa splits each contig into a head and a tail160

node, so that finding an assembly corresponds to a weighted maximum matching in C. It should be noted
that in [17, 18] they only considered the pairwise scores between two contigs, therefore the relationship
of more than two contigs is not taken into account. If score(ci, cj) and score(cj , ck) are high, they will
probably join ci − cj − ck regardless of the relationship between ci and ck. This could be problematic if cj is
a repeat contig. As a result, Pasa exploits long-range dependency between contigs. If cj is a repeat contig165

and s(ci, ck) ≤ γ (γ is a parameter), then (ci, ck) is not considered in the matching. Pasa uses a modified
version of the greedy algorithm to find the constrained perfect matching (see Algorithm 2).

Refinement There are still certain types of contigs that cannot be considered in the model. These include
(1) un-aligned contigs, and (2) short contigs that have no gene. To include these fragments, Pasa uses the
contigs graph, which has been constructed from all input contigs. The genome traverses the graph with170

a certain unknown path. However, since initial scaffolds are now available, Pasa uses these scaffolds to
restore small or repetitive fragments. Given a contigs graph and a set of merged scaffolds from the previous
step of the algorithm, for each pair of consecutive contigs from these scaffolds, Pasa finds all possible paths
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Algorithm 2: Constrained scaffolding greedy algorithm

1 Input: List of pairwise scores L = {score(ci, cj)}, a set of repeat contigs CR, and threshold γ > 0.
2 Initialization: Solution S = ∅
3 Sort the list L from highest to lowest.
4 while |L| > 0 do
5 Take pair (cj , ck) from top of the list L.
6 if cj ∈ CR, and (ci, cj) ∈ S for some i, and s(ci, ck) ≤ γ then
7 Remove score(cj , ck) from L.
8 else if ck ∈ CR, (ck, ct) ∈ S for some t, and s(cj , ct) ≤ γ then
9 Remove score(cj , ck) from L.

10 else
11 S ← S ∪ (cj , ck)
12 Delete all pairs start with cj or end with ck from L.

13 end

14 end
15 Output: S.

connecting them in the contigs graph that do not contain contigs from the scaffold. If there exists such a
path, it inserts all the intermediate contigs along this path between the two contigs. 175

The refinement is further strengthened as follows: For each joined contig from the above refinement step,
Pasa considers all single-copy contigs in C that made the joined contig, called backbone contigs. For two
close backbone contigs in the joined contig (i.e. their distance in the joined contig is less than 2 Kbp), the
joined contig is split into two at one of the two backbone contigs if their matching score is less than a certain
threshold (3.0 by default). This refinement step is omitted in Pasa sensitive mode. 180

3. RESULTS

3.1. Evaluation on simulated data

We compared the performance of Pasa to existing state of the art reference-based scaffolders including
Multi-CSAR [18] and Ragout (v2) [17]. We excluded MEDUSA [29] from the comparison because it was
shown to perform poorly in previous benchmarks [17, 18]. We evaluated Pasa and competing methods on a 185

simulated dataset constructed from the genomes across three different bacterial species, namely Klebsilla
pneumoniae, Escherichia coli, and Streptococcus pneumoniae; these species were chosen to represent differing
levels of genomic diversity: conservative, moderate, and divergent, respectively. For each species, we
randomly chose 10 complete genomes from the NCBI Reference Sequence Database as the test genomes.
The accessions of the genomes are listed in Supplementary Table 1. We also ensured that the test isolates 190

were not included in the set of samples in the reference genomes. The customized Jupyter notebook for
downloading and preparing data is included in https://github.com/amromics/pasa.

For each test genome, we simulated Illumina sequencing reads using ART (v2.5.8) [30] with the following
configuration: paired-end sequencing, read length of 100bp, fold coverage 70 and mean fragment size of
400bp. We ran SPades assembler (v3.13.0) [26] on the simulated sequencing data to construct the draft 195

assembly for the genome. We then applied the competing methods to scaffold the draft assembly using the
information from the reference genomes of the species.

We evaluated the scaffolders using common metrics including NGA50 statistics, the aligned length, the
number of resulting contigs and the number of misassemblies. While the NG50 metrics is the length (in
Kbp) for which the collection of all contigs of that length or longer covers at least 50% of the genome, the 200

NGA50 metric is similar, but uses aligned blocks instead of contigs for the calculation. Total aligned length
is the total number of aligned bases in the scaffolds. This value is usually smaller than a value of total length
because some contigs may be unaligned or partially unaligned to the reference. In principle, NGA50, the
aligned length, and the contig number are metrics to access the contiguity of scaffolds whereas the number
of misassemblies measures the accuracy of the scaffolding. These metrics were calculated using QUAST 205

(v5.0.2) [31].
Table 3.1 and Figure 2 report the average performance of the scaffolding methods on the test genomes for

each species. We found that Pasa (s) in sensitive mode achieved the most complete assemblies, as measured
by NGA50 and the aligned length metrics. Pasa and Multi-CSAR showed similar performance in terms of
contiguity of scaffolds, which both outperformed Ragout (Table 3.1). The NGA50 metrics of Ragout were 210

consistently low across all test genomes. Ragout’s usage of synteny blocks to bridge the contigs may be one
of the causes. Because these synteny blocks are frequently short, only a small number of contigs are linked
in Ragout.
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Table 1: Average performance of the evaluated scaffolders on the simulated datasets. For each bacterial
species, NGA50, aligned length, and # contig are averaged over the 10 genomes assembled from synthetic
sequencing data . All reported numbers are rounded to the nearest integer. The length of the best corrected
scaffolds are highlighted in bold.

NGA50 (kb) aligned length (kb) # contigs

K.p. E. coli S.p. K.p. E. coli S.p. K.p. E. coli S.p.

Pasa 1,231 408 193 5,712 4,664 2,029 13 27 13

Pasa (s) 1,700 558 207 5,728 4,973 2,060 8 15 8

Ragout 257 188 158 4,222 4,061 1,968 14 12 7

Multi-CSAR 1,190 408 172 5,642 4,530 2,037 5 8 4

Multi-CSAR is compatible with both versions of Pasa in terms of contiguity metrics, it however produced
the largest number of misassemblies, generally 4-6 times higher than Pasa and Ragout (Figure 2). The215

misassembly rates of Pasa and Ragout were very low since both methods incorporate the connectivity
information in the assembly graph into the pipeline. Specifically, Ragout made fewer errors than Pasa in the
K. pneumoniae dataset but was more erroneous than both versions of Pasa in the other bacterial species.
Figure 2 shows that relocations are the most common source of mistakes, which is expected given that
all techniques employed reference genomes to bridge the contigs, and those reference genomes may have220

different gene orders than the target genome, resulting in the incorrect order of contigs in the scaffolds. Both
Multi-CSAR and Pasa made few translocations and inversions misassemblies, and the number of errors is
low (typically < 3).

As expected, Pasa in its conservative mode is less likely to produce a complete assembly than its sensitive
mode but it carries a low risk of misassembly and is appropriate for contexts where assembly accuracy225

is important. In sensitive mode, the refinement is less restricted. This mode is most likely to complete
the assembly but carries a slightly greater risk of error. It is suited to cases where completeness is more
important than accuracy. In summary, Pasa and Ragout performed similarly in terms of misassemblies,
whereas Pasa outperformed Ragout in terms of contiguity (up to 6 folds in K. pneumoniae isolates). Despite
the fact that Multi-CSAR produced fewer contigs than Pasa and performed similarly to our method in230

terms of contiguity, the misassembly rates were substantially greater, highlighting the difficulties of resolving
repeats using the reference alone.
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Figure 2: Average number of misassemblies (relocations, translocations, inversions) of Pasa and competing
methods on ten datasets across three different strains. A relocation is a misassembly event (breakpoint)
where the left flanking sequence and the right flanking sequence align overlap or away from each other on
the same chromosome of the reference genome. A translocation is a misassembly event (breakpoint) where
the flanking sequences align on different chromosomes. Inversion corresponds to a breakpoint where the
flanking sequences align on opposite strands of the same chromosome.

Pasa 6

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.07.09.548288doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.09.548288
http://creativecommons.org/licenses/by-nd/4.0/


 Pasa

 Pasa (s)

 Multi-CSAR

 Ragout

10

15

20

150 200 250 300 350

NGA50

M
is

as
se

m
bl

ie
s

S. aureus

 Pasa

 Pasa (s)

 Multi-CSAR

 Ragout
10

20

30

40

500 1000 1500

NGA50

M
is

as
se

m
bl

ie
s

K. pneumoniae

 Pasa
 Pasa (s)

 Multi-CSAR

 Ragout
2

4

6

8

10

1000 2000

NGA50

M
is

as
se

m
bl

ie
s

S. enterica

Figure 3: Performance of scaffolders on real datasets. Scatter plots shows the NGA50 metrics and the
number of misassemblies made by Pasa and competing methods on S. aureus (left), K. pneumoniae (center),
and S. enterica (right).

3.2. Evaluation on real data

Next we compared Pasa to the competing methods on real data where the genomes were sequenced using
Illumina technology. We obtained sequencing data for three isolates belonging to three species: Staphylococcus 235

aureus, Klebsilla pneumoniae and Salmonella enterica. For each isolate, we ran the competing pipelines on
the shortread sequencing data and benchmarked the results against the complete genome. The complete
genome and the sequencing data for the S. aureus isolate were obtained from the Genome Assembly Gold-
Standard Evaluation (GAGE) benchmark study [32]. The S. aureus dataset in the GAGE benchmark was
previously sequenced and finished using conventional Sanger technology, and later resequenced using Illumina 240

technology. For the other two species, we selected the complete genomes of two isolates from the RefSeq
database with Accession number GCF 003030145.1 and GCF 000439415.1, respectively. The sequencing
data of these two isolates were obtained from the SRA archive database (Run accessions: SRR9042857,
SRR9043663)

We used NGA50 metrics and the number of misassemblies as the representative metrics for contiguity 245

and accuracy. Figure 3 summarizes the performance of the scaffolding tools on real datasets. Specifically, for
the S. aureus dataset from the gold-standard database, we found that Pasa made fewer incorrect joins than
all other scaffolders while achieving the best scaffolding results in NGA50 metrics (Figure 3-left). Note that
this dataset had a low NGA50 metric due to the old sequencing technology (Illumina Genome Analyzer II,
average read length: 101 bp, reads coverage: 45). For the K. pneumoniae dataset, both Pasa and Pasa (s) 250

were significantly more accurate than Multi-CSAR; they produced genome assemblies with 10-fold and 2-fold
fewer missassemblies, respectively while still exhibiting slightly lower NGA50 metrics (Figure 3-center). It
can be seen that the NGA50 metrics and the number of misassemblies of Pasa and Ragout were consistent
with the report of K. pneumoniae in the simulation study. This indicates that our simulation strategy
captures real data well. For the S. enterica dataset, Pasa (s) outperformed the competing methods in terms 255

of NGA50 metrics. The NGA50 metrics of Pasa (s) were around 2800Kp, which were approximately four
times higher than Multi-CSAR (≈ 700Kp) and seven times higher than Ragout (≈ 400Kp). In addition, the
numbers of misassemblies of Pasa and Pasa (s) were the same, and were slightly higher than Ragout but
much lower than Multi-CSAR (Figure 3-right). In summary, the results of real datasets were consistent with
the simulated datasets. Multi-CSAR generally produced the largest number of misassemblies and Ragout 260

had the worst performance in the NGA50 metrics. In contrast, Pasa generally produced more complete
assemblies than the competing methods while maintaining a low error rate.

3.3. Scaffolding using the pangenome of a related species

When reference pangenome genomes are unavailable, a closely related species can be used as a substitute.
Scaffolding using a related reference pangenome is crucial in practice since reference genomes for some 265

species, particularly uncommon and novel bacterial species, are not always available. To show our scaffolder’s
ability to use related reference pangenomes, we applied Pasa to scaffold the genome assembly of a K.
quasipneumoniae isolate using the pangenome constructed from a population of K. pneumoniae species as
the reference. We compared the results with Multi-CSAR and Ragout. The results are shown in Figure 4.
Despite using a different reference, Pasa obtained reasonable results in terms of contiguity and accuracy. In 270

particular, the NGA50 metric of Pasa (sensitive) was twice that of Multi-CSAR and 6-7 times higher than
that of Ragout. Ragout had the lowest number of misassemblies, followed by Pasa and Pasa (sensitive).
When the target genome was assembled using the same reference as the target, the NGA50 metrics of Pasa
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Figure 4: Performance of scaffolders using the related and exact reference. Scatter plots shows the NGA50
metrics and number of misassemblies made by Pasa and competing methods on K. pneumoniae (close) and
K. quasipneumoniae (exact).

Table 2: Comparison of running times and peak memory usage on 30 synthetic data sets. Average running
times (in minutes) and memory usage (in GB) of Pasa, Multi-CSAR, and Ragout are reported on the
synthetic data sets used in this study. *Running times exclude the construction of the pangenome graph
step as it is done only once and reused for the later genome. The last row (Pasa+Pangraph) reports the
total running times and peak memory usage of Pasa and the pangenome graph construction step.

Runtime (minutes) Memory (Gb)

K.p. E. coli S.p. K.p. E. coli S.p.

Pasa 2.08 1.93 1.85 0.73 0.63 0.60

Ragout 121.23 117.15 111.54 8.66 7.38 7.28

Multi-CSAR 17.06 16.63 15.42 0.19 0.17 0.16

Pasa + Pangenome 4.38 4.12 3.98 1.35 1.31 1.26

and Multi-CSAR increased significantly (Figure 4-right). Accordingly the NGA50 metrics of Pasa and its
sensitive version were still better than that of Multi-CSAR and exceeded that of Ragout. Pasa had slightly275

more misassemblies than Ragout but less than Multi-CSAR. Overall, this shows the practical usage of our
scaffolder, even if references are not available.

3.4. Time and memory usage

We demonstrate the scalability of Pasa to large data sets. Table 2 gives the average CPU times (in minutes)
and peak memory usage (in GB) of the scaffolders on the synthetic data sets from the three bacterial species280

used in this study. Since the running time and memory usage of Pasa and its sensitive mode were similar,
we only reported the performance of Pasa. It can be shown that Pasa completed a genome in around 2
minutes, which was 8 times faster than the second fastest method, Multi-CSAR. Note that the running
time of Pasa did not include the running times of the pangenome construction steps because the reference
pangraph only needs to be built once and can then be applied to datasets of the same bacterial species.285

Nevertheless, the total running time of Pasa and the pangenome construction steps (Pasa+Pangraph) was
around 4 minutes, which was approximately four times faster than Multi-CSAR. Ragout was the slowest,
taking around 2 hours to finish a genome. Table 2 (right) shows peak memory usage for the same simulated
data sets. Multi-CSAR required the least amount of memory (< 0.2 GB), followed by Pasa (0.6− 0.8 GB)
and Pasa with the pangenome construction steps (around 1.3 GB). Ragout used substantially more memory290

(7− 9 GB) than the other methods.

4. DISCUSSION

Obtaining the complete genome assemblies is important in microbial genomics, especially in the context
of antimicrobial resistance research and surveillance. Complete genomes provide crucial information of
gene positions in the chromosomes and plasmids to elucidate the development and transmissions of drug295

resistance. Pasa offers an efficient way to readily improve the contiguity and completeness of the large
number of bacterial genomes that are sequenced by the affordable and high-throughput Illumina sequencing
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technology. Instead of relying on extra laboratory experiments that are time consuming and costly, Pasa
utilizes the connectivity information of the existing population genomes to resolve the assembly graph of the
short-read assembly. Pasa is also fast and efficient, making it suitable to scaffold the large number of short 300

read assemblies available.
The use of population information for the scaffolding problem has been exploited in several reference-based

scaffolder methods such as Multi-CSAR and Ragout. When compared with the two methods, the benefits
of using Pasa are twofold: first, it produces a more complete genome with fewer errors; second, it has the
lowest running time. The key difference between Pasa and scaffolders such as Multi-CSAR and Ragout is 305

that Pasa employs a compact graphical representation of the pangenome from the population genomes. In
addition, Pasa solves the constrained maximum matching problem, which allows modeling longer range
dependencies between contigs in the target genome. The method may further be improved by developing an
exact algorithm for the constrained maximum matching problem. In the future, it will be interesting to
investigate the performance quality of our tool Pasa using different assemblers as well. 310

Prokaryotic genomes are known for enormous intraspecific variability owing to great variation events
such as horizontal gene transfers, differential gene losses and gene duplication [33]. Pangenome analysis was
introduced as a methodology to capture the diversity of bacterial genomes [34] and has been a dispensable
tool in microbial genomics studies [35] to generate biological insight such as understanding the evolution of
bacterial species [36, 37], variant detection [38] and studying‘’ antiobiotic resistance [39]. In this work, we 315

extend the utility of the pangenome by introducing a novel method to exploring the species information to
scaffold and improve the quality of new genome assemblies.

The construction of the pan-genome graph allowed us to learn the gene order information in a population.
The conservation of gene order can thus be used to help order contigs along a chromosome by inferring their
placement based on the location within the pangenome graph of the genes found in the contigs. The target 320

genome however diverges from the population, we therefore also explored the sample-specific information
by means of the assembly graph constructed from the target genome. Exploiting the information from
both sample-specific information and population resulted in a highly efficient scaffolding method, Pasa.
We demonstrated that Pasa could improve the contiguity and accuracy of the genome scaffolding. We
observed consistent results on both real and simulated datasets for various bacterial species. Furthermore, 325

we demonstrated that Pasa does not require the reference genomes to be the same species as the target
genome by utilizing related genomes as the reference. This is especially useful when the reference genomes
are unavailable.

The vast majority of existing microbial genome assemblies are produced by short-read sequencing
technology; many more genomes are being sequenced in research laboratories, medical organizations and 330

public health agencies. Pasa is developed to meet the need of efficient bioinformatics methods to make
sense of the data. It was demonstrated to be able to improve the contiguity and accuracy of the genome
scaffolding by using the information from both the pangenome graph and the contig graph. We observed
consistent results on both real and simulated datasets for various bacterial strains. Pasa offers an accurate
and efficient method to scaffold and improve the completeness and continuity of these genomes, without the 335

need for extra laboratory experiments.

SOFTWARE AVAILABILITY
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