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Abstract 27 

Cell fate is commonly studied by profiling the gene expression of single cells to infer 28 

developmental trajectories based on expression similarity, RNA velocity, or statistical 29 

mechanical properties. However, current approaches do not recover 30 

microenvironmental signals from the cellular niche that drive a differentiation 31 

trajectory. We resolve this with environment-aware trajectory inference (ENTRAIN), 32 

a computational method that integrates trajectory inference methods with ligand-33 

receptor pair gene regulatory networks to identify extracellular signals and evaluate 34 

their relative contribution towards a differentiation trajectory. The output from 35 

ENTRAIN can be superimposed on spatial data to co-localize cells and molecules in 36 

space and time to map cell fate potentials to cell-cell interactions. We validate and 37 

benchmark our approach on single-cell bone marrow and spatially resolved 38 

embryonic neurogenesis datasets to identify known and novel environmental drivers 39 

of cellular differentiation. ENTRAIN is available as a public package at 40 

https://github.com/theimagelab/entrain and can be used on both single-cell and 41 

spatially resolved datasets. 42 

 43 

Main text 44 

In multicellular organisms, cells in different organs and tissues adopt different states 45 

of cellular differentiation to allow them to perform specialized tasks. The precise 46 

coordination of cellular differentiation and function requires not only the existence of 47 

multiple distinct cellular fates but also the ability of the cells to communicate and 48 

regulate each other to maintain homeostasis and avoid disease1. The development 49 

of single-cell technologies such as single-cell RNA sequencing (scRNA-seq) has 50 

revolutionized our ability to deconvolute the myriad of heterogenous cellular 51 

transcriptional states that comprise multicellular life, even in seemingly homogenous 52 

cell lineages such as natural killer (NK) cells2. Interestingly, scRNA-seq has 53 

suggested that cells exist in a continuum of transcriptional states, whereas the 54 

traditional assignment of cell identity by the expression of cell lineage markers, such 55 

as by flow cytometry, have viewed cell fates as discrete, non-overlapping entities3. 56 

Thus, the cell state is the transcriptional output of the gene regulatory networks and 57 

may represent transient intermediate steps in the differentiation of the cell towards its 58 

developmental destination, or cell fate4, 5. Accordingly, it may also be possible to 59 
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predict the future cell fate from the current cell state and the dynamic expression of 60 

critical master regulator genes. 61 

 62 

Trajectory inference computes the pattern of change in gene expression for cells in a 63 

given dataset and arranges them in pseudo-chronological order along a 64 

developmental pathway (pseudotime) based on the similarity between their changing 65 

gene expression profiles6, 7. There are currently more than 70 published trajectory 66 

inference methods, with many more in development6. This reflects both the 67 

popularity of pseudotime for lineage tracing and also the limitations of the technique, 68 

which are dependent on the underlying assumptions, many of which are project and 69 

cell-type specific8. RNA velocity is an alternative approach that uses the relative 70 

abundance of unspliced to spliced mRNA transcripts to predict future cell states, 71 

instead of inferring them from global similarity in the transcriptomic profiles between 72 

cells9, 10. However, the modelling of RNA kinetics also makes several assumptions, 73 

such as a common rate of splicing across different genes and the sampling of 74 

multiple intermediate cell states in addition to the mature steady-state11. The RNA 75 

velocity analysis of peripheral blood mononuclear cells (PBMCs), which contain 76 

mature blood cells without the immature bone marrow precursor cells, is a good 77 

example of the potential for this approach to generate spurious cell lineage 78 

relationships11, 12. Thus, there are fundamental limits to the fidelity of dynamic 79 

inferences that can be made from single cell snapshots13. The cross-validation of cell 80 

state transitions and lineage relationships by additional orthogonal methods has 81 

therefore been strongly recommended11, 12. 82 

 83 

The development of tools for ligand-receptor (LR) network analysis of single cell data 84 

has made it possible to decipher the cell-cell communications that may also drive cell 85 

state transitions and determine cell fate1. First used to infer cellular interactions at 86 

the feto-maternal interface in the human placenta14, LR analysis has become 87 

increasingly popular with its ability to infer interactions between cells in a given 88 

dataset, even in the absence of spatial information15. Broadly, tools for LR analysis 89 

can be generalized into two categories: 1. ‘LR-only’ tools that rely solely on ligand-90 

receptor gene expression, and 2. ‘LR + Intracellular’ tools that incorporate 91 

intracellular regulons. ‘LR-only’ tools, such as CellPhoneDB16, 17, predict cell-cell 92 

interactions by considering the expression of ligand and receptor genes as a proxy 93 
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for secreted and membrane protein abundance. Tools from the ‘LR + Intracellular’ 94 

category are motivated by the possibility that a scarcely expressed LR pair may also 95 

unexpectedly regulate a considerable array of downstream genes, which would be 96 

overlooked by ‘LR-only’ tools that only consider gene expression levels. To this end, 97 

these tools exploit the large body of biological prior knowledge about gene regulatory 98 

networks and intracellular signalling pathways to prioritize LR pairs based on their 99 

downstream influence on gene regulation.  As a result, methods belonging to the ‘LR 100 

+ Intracellular’ category achieve markedly different results from methods in the ‘LR-101 

only’ category. Thus, LR analysis has potential to complement trajectory inference 102 

and RNA velocity by providing corroborating evidence for gene regulatory 103 

programmes responsible for cell state transitions. However, only two tools belong to 104 

the second category, NicheNet18 and CellCall 19, and no tools to date incorporate 105 

trajectory or velocity information with LR analysis. 106 

 107 

The introduction of spatially resolved transcriptomics has demonstrated the 108 

important role of physical location within a tissue. Specifically, different stages of 109 

differentiation within a population often correlate with microanatomical location in the 110 

tissue20. Similarly, LR interactions are limited by surface contact between interacting 111 

cells, or through diffusivity for secreted ligands21. This suggests that the spatial 112 

information of a cell, which is typically lost in traditional scRNA-seq workflows, can 113 

improve the evaluation of LR pairs that influence the differentiation trajectories of a 114 

cell. Therefore, there is a need for computational methods that incorporate spatially 115 

resolved data to better understand the environmental drivers of differentiating 116 

populations. 117 

 118 

Here, we have integrated the information provided by trajectory inference and RNA 119 

velocity with LR analysis to develop ENTRAIN, an environment-aware trajectory 120 

inference computational tool that can be used to predict the extracellular drivers of 121 

cell state transitions. ENTRAIN consists of three modules, ENTRAIN-Pseudotime, 122 

ENTRAIN-Velocity, and ENTRAIN-Spatial, which can be applied on the outputs of 123 

pseudotime-based methods, RNA velocity or paired single-cell and spatially resolved 124 

data, respectively. In turn, ENTRAIN can be applied to a wide range of datasets 125 

containing differentiating cells as well as the cell’s interacting microenvironment, 126 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.07.09.548284doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.09.548284
http://creativecommons.org/licenses/by-nc/4.0/


 5

including spatial datasets. The ENTRAIN package is available to download at 127 

https://github.com/theimagelab/entrain. 128 

 129 

METHODS 130 

Materials and Methods 131 

Assumptions and Overview 132 

ENTRAIN operates based on certain assumptions about the biological system of 133 

interest: 134 

 135 

1) Environmental control over a differentiating cell population, if present, is 136 

facilitated through LR interactions. 137 

2) The environmental influence on differentiation is operating on a time scale 138 

resolvable by either pseudotime-based or RNA velocity methods. 139 

3) The environmental regulation occurs via known regulatory pathways that are 140 

documented in gene regulatory network databases, and that the degree of 141 

regulation in this database can be quantified as the edge weight (w) between a 142 

given ligand (�) and a given gene � � �, where � denotes the set of all genes in 143 

the genome. 144 

 145 

The fundamental operating principle of ENTRAIN is that, if a specific ligand � is 146 

influencing the expression of a specific gene � in a differentiating population, this 147 

influence can be observed as a meaningful contribution of the ligand-gene regulatory 148 

network towards predicting the observed changes in the expression of �. In other 149 

words, if the edge weight w between � and �, which represents the strength of the 150 

regulatory interaction, positively correlates with the observed gene expression 151 

changes in the trajectory (or velocity), then this suggests that the ligand is actively 152 

driving the observed differentiation for that gene in the observed dataset. 153 

 154 

First, we construct differentiation trajectories either by using manifold-based 155 

trajectory inference tools7 or RNA velocity estimation with scVelo10. We then identify 156 

trajectory informative (‘TRAINing’) genes that either correlate their expression with 157 

pseudotime (for manifold-based trajectories) or exhibit high velocity likelihoods (for 158 

RNA velocity-based methods). In parallel, we identify LR pairs using NicheNet18 and 159 
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extract regulatory interactions between identified LR pairs and downstream target 160 

genes in the regulon. We then fit a random forest regression model using TRAINing 161 

gene covariances (for pseudotime) or velocity probabilities (for scVelo) as the 162 

‘response’ variable and NicheNet predicted regulatory interactions as the 163 

‘explanatory’ variable. This model estimates the proportion of trajectory dynamics (as 164 

measured by pseudotime covariance or velocity likelihood) that can be predicted by 165 

the regulatory interactions downstream of a LR pair. Ligands are scored based on 166 

their contributions to the model. 167 

 168 

Trajectory construction with Monocle  169 

Consider cells as � vectors in �|�|, where |�| is the number of genes measured by 170 

the scRNA-seq experiment and � is the number of cells. Typically, a differentiation 171 

process will take the form of an ordered sequence of cells in this high dimensional 172 

space, beginning at a root cell (or node), traversing along a series of intermediate 173 

cells with progressive changes in gene expression before ending at a terminal cell. In 174 

this ordered sequence, called pseudotime, cells that are highly similar in gene 175 

expression space will be adjacent in pseudotime. Assuming sufficient sampling of 176 

intermediate cell stages, this approach successfully identifies differentiation 177 

trajectories but cannot determine whether a trajectory is driven by its environment or 178 

is under cell-intrinsic control, motivating the use of ENTRAIN to identify 179 

environmental influences. ENTRAIN implements pseudotime analysis by using the  180 

Monocle322 workflow, which applies the SimplePPT23 tree algorithm to cells in 181 

reduced dimension space to calculate cell pseudotimes �	�, … , 	��. 182 

 183 

Selection of TRAINing genes 184 

Because trajectory pseudotime 	 is derived from underlying gene expression 185 

profiles, we hypothesized that a trajectory can sufficiently be described by several 186 

trajectory informative TRAINing genes: driver genes whose expression levels exhibit 187 

strong linear relationships with pseudotime, and presumably have a greater influence 188 

on pseudotime calculation and graph learning. Biologically, we assume that genes 189 

with strong linear relationships with pseudotime are highly significant in 190 

differentiation processes. Specifically, consider a single trajectory branch  
, 191 

consisting of an � cells by |�| genes expression matrix: 192 
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 �  ���,� � ��,|�|� � ���,� � ��,|�|

� , 193 

 where � is the number of cells in 
, � denotes a gene, and ��,� denotes the 194 

expression of gene � in cell 1. Each cell �1, … , �� has a corresponding pseudotime 195 

�	�, … , 	�, �. We aim to identify influential TRAINing genes by using gene-pseudotime 196 

covariance as a metric for evaluating gene significance in a differentiation trajectory: 197 

� � ����
, �	�, … , 	�, �� 

In each branch, genes are ranked by covariance and the lowest ranked genes 198 

(default: bottom 5%) are removed from the workflow to prevent these from 199 

confounding further analysis. The remaining genes are classified as TRAINing genes 200 

for that trajectory. 201 

We note that TRAINing genes are distinct from commonly used ‘differentially 202 

expressed genes’ in two ways: 1. TRAINing genes are not dependent on cell type 203 

annotations, and 2. TRAINing genes may not necessarily exhibit large absolute 204 

changes in expression as one traverses a cell lineage but strongly co-vary with 205 

pseudotime. It is this covariance, rather than absolute expression, that is used to 206 

define TRAINing genes. 207 

 208 

While covariance is the default metric, ENTRAIN can alternatively be configured to 209 

use correlation coefficients. 210 

 211 

Extracting regulatory information from NicheNet 212 

Expression dynamics during differentiation are likely to be a manifestation of cell-213 

intrinsic and cell-extrinsic regulatory programmes. To demarcate these two factors, 214 

the algorithm’s second step unites prior knowledge of ligand-receptor pairs and their 215 

corresponding intracellular regulatory interactions to determine potential ligands 216 

driving the observed TRAINing gene expression dynamics. 217 

 218 

Under the assumption that the microenvironmental niche has a quantifiable 219 

contribution to gene expression dynamics in differentiation, we require a database 220 

that predicts which target genes are subject to regulation by ligand-receptor pairs. 221 

ENTRAIN extracts this information from NicheNet 24, which unites traditional ligand-222 

receptor signalling to downstream transcriptional regulation. We first identified active 223 
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LR pairs amongst the trajectory cells (‘receivers’) and the remaining cells in the 224 

dataset (‘senders’), using NicheNet as prior knowledge of possible ligand-receptor 225 

interactions. With the assumption that high LR expression levels do not necessarily 226 

correlate to significance in driving differentiation trajectories, we determined LR pairs 227 

for further analysis if they fulfilled two criteria: 1. They are expressed by a sufficient 228 

proportion of cells in the dataset (default >0 counts in at least 10% of cells). 2. The 229 

corresponding receptors are expressed by a sufficient proportion of differentiating 230 

cells (default >0 counts in at least 10% of differentiating cells). Of the ligands that 231 

meet the criteria, we extracted their respective downstream target regulation scores 232 

from the NicheNet database. These are vectors representing the ability of a given 233 

ligand to regulate every human gene. Thus, each ligand is associated with a vector 234 

of length g, where g is the number of human genes in the database, and each 235 

element of the vector is a number (a “regulatory potential”) representing the strength 236 

of the regulatory relationship between the ligand and a given gene.  237 

 238 

Calculation of top environmental drivers of a trajectory 239 

Next, we assumed that some subset of the active ligands will constitute the 240 

extracellular signals influencing a trajectory. We speculated that the regulation 241 

between ligands and the trajectory could be contained in existing databases of 242 

regulatory networks interactions.  243 

 244 

To detect this, we used a supervised random forest model to fit NicheNet regulatory 245 

potentials (explanatory variable) to TRAINing gene covariances (response variable) 246 
25. Here, we consider the NicheNet matrix as an � by |�| matrix �, where � is the 247 

number of actively signalling ligands, and the covariances are represented by a |�|  248 

dimensional column vector �. Random forest attempts to fit � to �, used with 249 

hyperparameters n_trees = 500, n_features at each split = number of ligands 250 

(features) divided by 3. 251 

 252 

In principle, some columns of � (which represent the predicted change in gene 253 

expression as a result of the ligand-receptor pairing), will possess greater similarity 254 

to � than others if the ligand is responsible for the observed covariance in �. This 255 

similarity is represented as variable importance, calculated by removing one column 256 
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at a time from the matrix and calculating the loss in Gini index that results from the 257 

removal. Thus, variable importance represents the significance of a ligand in 258 

predicting observed gene expression covariance.  259 

 260 

To assess the environmental dependence of whole trajectory branches, we used % 261 

Variance Explained (%V.E.). This metric measures how well the random forest 262 

predicts the variance in �. More formally,  263 

%V.E. � 1 !  "#$%&'���  
 264 

Random forest was chosen as the primary algorithm for feature scoring owing to 265 

several advantages suited for our context. Firstly, it caters to non-linear interactions 266 

between features, such as those that might be found in regulatory interactions 267 

between ligands and their downstream target genes. Secondly, built-in methods for 268 

feature selection and scoring, based on sequential removal of features, 269 

accommodates our primary goal of scoring ligands rather than predicting gene 270 

expression. Thirdly, while a known drawback of random forests is the difficulty of 271 

interpretability, this is offset by our existing prior knowledge of gene regulatory 272 

networks that provides the insight into downstream targets. Lastly, considering the 273 

relatively low numbers of ligands and receptor genes relative to the rest of the 274 

genome, the computational complexity of random forests compared to other feature 275 

selection algorithms becomes less concerning. Moreover, our fitting is performed on 276 

the level of trajectory branches or velocity clusters, rather than individual cells, 277 

further mitigating concerns of computational complexity. 278 

 279 

Calculation of cell-wise influences 280 

Differentiating cells exhibit changes in receptor expression and regulatory wiring as 281 

they progress along a developmental process. Because of this, we hypothesized that 282 

certain stages of a developmental process will be more influenced by environmental 283 

signalling than other stages. We thus wished to produce a more granular, cell-wise 284 

measure of ligand influence that encapsulates this behaviour. To do this we 285 

calculated pseudotime-expression covariances along a rolling window of cells along 286 

pseudotime, restricted to separate branches (Supplementary Algorithm 1). We 287 

used a default window size w and step size s of 10% and 2% of the cells in the 288 
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trajectory branch, respectively. This ‘local covariance’ quantifies a gene’s expression 289 

dynamics within a rolling window of differentiating cells. To this end, we fit a second 290 

round of random forest models to each rolling window, such that every branch is now 291 

subject to an additional 50 ‘local’ model fits corresponding to 50 rolling windows 292 

along the branch. The number of local model fits is dependent on the values of s and 293 

(; 50 rolling windows is the behaviour when s and ( are assigned default values. 294 

We used regulatory potentials from the top 5 ligands as the predictor variable (a |�| x 295 

5 matrix with default parameters) and the local covariances as the response variable. 296 

For step sizes greater than 1, we linearly interpolate %V.E.	 values for cells which 297 

are skipped. 298 

 

Resultant %V.E. values denote the confidence of the NicheNet fit at each of the 50 299 

windows. Genes possessing high covariance with pseudotime are assumed to be 300 

important for trajectory determination, and we are interested in the subset of those 301 

that are under environmental control. Some of these high-covariance genes will not 302 

be under extracellular control and consequently exhibit a low %V.E. value when 303 

fitted to NicheNet. On the other hand, high covariance genes that are also under 304 

extracellular control will exhibit both high covariances and a confident fit (increased 305 

%V.E. ) to NicheNet. As a result, these window %V.E. values can be interpreted as 306 

the degree of environmental dependence across different stages of the trajectory. 307 

Ultimately, every trajectory branch is subject to one ‘branch-wide’ model fit that 308 

determines the top few ligands of interest, and 50 ‘local’ model fits that assess where 309 

their regulatory effects are most noticeable. Cells with cell-intrinsic drivers would be 310 

expected to exhibit low, negative, or widely varying %V.E. values as the model 311 

cannot accurately fit environmental regulators to the observed expression dynamics 312 

in that window, while the opposite is true for highly environmentally dependent 313 

windows. We note that the term ‘cell-wise’ is slightly misleading, as the observed 314 

expression dynamics are deduced from the covariances of many neighbouring cells 315 

in a rolling window of observations rather than a single cell.  316 

 317 

Finding ligands responsible for RNA velocity dynamics 318 

RNA velocity is a dynamical approach that calculates the time-derivative of RNA 319 

concentration for single cells, allowing for short-term predictions of cell fate in 320 
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differentiating populations. Because these dynamics are often dependent on 321 

environmental signals, we predicted that ENTRAIN could be employed to determine 322 

driver ligands responsible for observed RNA velocity vectors. Biologically, these 323 

represent ligands that may be responsible for short time scale dynamics that may not 324 

be resolvable using the pseudotime-based approach described previously.  325 

For full details of the velocity estimation, see ref. 26.   326 

 327 

In most datasets, a small minority of genes are responsible for the majority of 328 

observed velocity variance27, necessitating a way to prioritize velocity genes by their 329 

significance. The ENTRAIN-Velocity module uses scVelo to recover fit likelihoods, a 330 

measure of velocity significance 26, from which to infer ligand activity 331 

(Supplementary Figure S1).  332 

 333 

We first clustered the RNA velocity matrix into ) groups representing major axes of 334 

variance in RNA velocity vectors, by repurposing the Leiden algorithm in scanpy28. 335 

We then calculated the fit likelihoods for velocity genes, by applying the scVelo 336 

recover_dynamics26 function to each velocity cluster. For each velocity cluster )	, this 337 

process generates a vector *
 of length |�	|, where|�	| is the number of genes with 338 

calculated fit likelihoods per cluster )	. Note that the genes with calculated fit 339 

likelihoods are usually a subset of all genes because not all genes possess confident 340 

velocities. These genes (row names) constitute our TRAINing genes for this module, 341 

and the fit likelihoods (values) represent the response variable for subsequent model 342 

fit described below. 343 

 344 

To elucidate environmental influence driving the velocities, we fit the NicheNet 345 

ligand-target matrix to all genes with calculated likelihoods using a random forest 346 

regression model 25 with hyperparameters n_trees = 500, n_features at each split = 347 

number of ligands (features) divided by 3. As before, we consider the NicheNet 348 

matrix as an � by |��|  matrix �, and the velocity likelihoods for a given cluster )	 are 349 

represented by a |��|  dimensional column vector *�. Random forest attempts to fit � 350 

to *
 for all clusters ) (Supplementary Algorithm 2), under the assumption that if a 351 

ligand is truly responsible for some component of the observed velocities in a cluster, 352 

the corresponding column in � will be more similar to the velocity likelihood vector 353 
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compared to less significant ligands. Similarly to the pseudotime-based approach, 354 

we extracted mean decrease in Gini index and %V.E. scores to evaluate ligand 355 

significance. 356 

 357 

Finding ligands responsible for RNA velocity dynamics in spatially resolved 358 

datasets. 359 

The third module of ENTRAIN, called ENTRAIN-Spatial, is designed for datasets 360 

with paired scRNA-seq and Visium data. This module first calculates and clusters 361 

velocities on the scRNA-seq matrix object, as in ENTRAIN-Velocity. This is followed 362 

by transferring velocity cluster labels to the Visium dataset using the package 363 

tangram-sc29. Next, within each velocity cluster, the ENTRAIN-Spatial subsets the 364 

Visium dataset to include only those spots matching the velocity cluster label or the 365 

spots in direct adjacency.  366 

 367 

Subsequently, we select genes that are included in NicheNet’s ligand-receptor 368 

network to inform later analysis of ligand-receptor pairings. In contrast to the 369 

previous ENTRAIN-Velocity module, these genes are restricted to those that are 370 

situated in the immediate spatial vicinity of differentiating cells.  371 

Subsequent ligand-receptor pairing, random forest fitting, and scoring were 372 

performed identically as in the ENTRAIN-Velocity module.  373 

 374 

RESULTS 375 

ENTRAIN explicitly incorporates output from established trajectory tools to inform a 376 

random forest feature selection model for ligand scoring (Fig. 1A). As a proof-of-377 

concept, we validated ENTRAIN on a scRNA-seq dataset profiling the bone marrow 378 

microenvironment (BME) and its resident mesenchymal and haematopoietic lineages 379 

in mice (Fig. 1B). We evaluated the contribution of each gene towards the trajectory 380 

dynamics by calculating pseudotime using Monocle3 (Fig. 1C). We extracted the 381 

gene expression for cells along the pre-B trajectory (Fig. 1D) and derived the 382 

pseudotime-expression covariance for every gene. We assessed the biological 383 

relevance of this metric by ranking the genes by covariance and interrogating the top 384 

covarying TRAINing genes. This revealed known lineage marker genes including 385 

Vpreb1, Igll1, and Vpreb3 for pre-B cells. In parallel, we examined the 386 

microenvironmental interactions by selecting receptor and ligand genes. We then 387 
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queried the NicheNet ligand-target regulatory potential database to obtain regulatory 388 

interactions between active ligands and their corresponding regulons. ENTRAIN was 389 

then performed on the developing B cell lineages using this database as input. We 390 

calculated the model’s V.E., a measure of the proportion of TRAINing gene 391 

covariance that can be attributed to extracellular signals. The percentage of V.E. by 392 

the 71 identified active ligands was 2.6%. To identify more granular behaviour, we 393 

conducted ENTRAIN in a cell-wise manner by analysing environmental dependence 394 

in a series of 100 rolling windows along trajectory pseudotime for every branch. This 395 

analysis revealed that the previous environmental dependence was restricted to 396 

small pockets of HSCs (Fig. 1E), indicating that the local ligand influence was 397 

restricted to a subpopulation of progenitor cells that appeared relatively early in 398 

lineage commitment. ENTRAIN output shortlisted signalling ligands that are known 399 

to be involved in B cell development (Vcam1/Lama2-Itgb, Il7-Il7r; Tnfsf13b-400 

Tnfrsf13b; Il15/Il2-Il2rg) and ligands with conserved roles during cellular 401 

differentiation (Dll1-Notch1/2; Dkk2-Lrp6; Jag1-Notch1/2) (Fig. 1F). The regulatory 402 

potential was dominated by a small subset of functionally relevant target genes, 403 

particularly Ebf1, Myl4 and Cd79a. Interrogating the source of these ligands revealed 404 

that while some of the top-ranked ligands were expressed primarily by a singular cell 405 

type (Fig. 1F, coloured lines), others were expressed among heterogenous cell 406 

types (grey lines). ENTRAIN also identified a novel extracellular signal that was not 407 

previously known to be involved in B cell development (Ptdss1-Scarb1/Jmjd6) (Fig. 408 

1F). 409 

 410 

To demonstrate the versatility of ENTRAIN we developed the ENTRAIN-Velocity 411 

module to recover environmental signals responsible for the RNA velocity vector and 412 

applied it to a murine embryonic neurogenesis dataset30 (Figure 2A). The velocity 413 

matrix was recovered using scVelo and clustered with the Leiden algorithm31 to 414 

deconvolute velocity variance into major groups. The vectors formed 10 velocity 415 

clusters (VC0-9), which roughly corresponded to major cell types and transitions 416 

(Figure 2B). We analysed and ranked the joint likelihoods of the velocities in each 417 

cluster to identify the TRAINing genes for this dataset: the most rapidly up- or down-418 

regulated genes during neurogenesis (Fig. 2C). We then applied ENTRAIN to each 419 

velocity cluster to identify driver ligands responsible for the observed velocities (Fig. 420 

2D).  The analysis predicted positive V.E. scores for 5 out of 10 clusters (VC0-VC3 421 
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and VC7) corresponding to velocities exhibited by fibroblastic, radial glial, 422 

neuroblast/neuronal, and neural tube cell clusters (Fig. 2E). In these clusters, the 423 

environmental influence was attributed to ligands in the Notch pathway (Tgfb2, 424 

Bmp2, Ntf3 and Bdnf) and Wnt signaling pathway (Sema3b, Psap and Pdgfb) known 425 

to be involved in embryonic neurogenesis. More generally, we considered ligands 426 

ranked among the top 5 in each positive cluster and showed that 21 out of 25 ligands 427 

were known to be involved in embryonic neurogenesis (Supplementary Table S1), 428 

with the exceptions being the extracellular matrix proteins Npnt/Adam15 and 429 

Serpinc1. Interrogation of the NicheNet ligand-target network revealed interactions 430 

between Tgfb2-Ina/Mapt/Stmn2/Igfbpl1, Bdnf-Bcl11b, and Jag1-Ebf1 as major 431 

components of environment-driven neuronal differentiation (vcluster1 and vcluster7), 432 

as well as Jag1-Sdc2 as the largest environmental driver in mesenchymal 433 

development (vcluster2) (Fig. 2F). Fibroblasts and neuroblasts were the major cell 434 

types responsible for producing the highest 3 ranked ligands (Fig. 2F). 435 

 436 

Emerging spatial transcriptomics technologies have recently shown success in 437 

delineating the role of cell-cell communication in various cellular contexts21, 32. 438 

Building upon this, we developed the ENTRAIN-Spatial module to decode cell-cell 439 

communication signals driving RNA velocities, while concurrently considering their 440 

spatial environment. This module operates by accepting a paired dataset of spatial 441 

transcriptomics data and single-cell data. Its output comprises those ligand-receptor 442 

pairs that are both spatially co-localized and have a quantifiable influence on the 443 

observed RNA velocities. 444 

 445 

We applied ENTRAIN-Spatial to a paired dataset consisting of both 10x Chromium 446 

single-cell and 10x Visium data, which was obtained from Ratz et al.33 (Fig. 3A and 447 

Fig. 3B). We recovered the RNA velocities from the 10x Chromium data using 448 

scVelo26 and subsequently clustered the velocities into 8 major clusters (Fig. 3C). By 449 

utilizing Tangram29, we transferred the velocity cluster labels to their spatial 450 

positions. 451 

We then used ENTRAIN-Spatial to evaluate ligands located in close spatial proximity 452 

to spots associated with a specific velocity label. The scoring was performed based 453 

on each ligand's potential to instigate the observed RNA velocities. ENTRAIN-Spatial 454 

results indicated that five out of the eight major velocity clusters (vcluster0, 1, 3, 4 455 
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and 6) exhibited a detectable level of environmental influence, as quantified by the 456 

percentage of variance explained (% V.E.) (Fig. 3D). Notably, the velocity cluster 457 

corresponding to immature and mature oligodendrocytes (vcluster3) demonstrated 458 

the highest proportion of variance explained. This cluster corroborated ligands that 459 

are well-documented to be implicated in oligodendrocyte maturation, including the 460 

Wnt-family and Vgf. Notably, as opposed to ENTRAIN-Velocity, these ligands are 461 

restricted to those expressed in any spot adjacent to a spot associated with a 462 

velocity cluster. 463 

To interpret spatial patterns in driver ligand expression, ENTRAIN-Spatial facilitates 464 

the visualization of specific spots expressing the highest-ranking ligands (Fig. 3E) as 465 

well as the relative contributions of spatially adjacent cell types towards driving the 466 

observed velocities (Fig. 3F).  467 

 468 

To corroborate our findings, we benchmarked the performance of ENTRAIN to 469 

similar methods NicheNet18 and CellCall19 for single-cell RNA results, and Giotto34 470 

for spatial transcriptomics results, concentrating specifically on the top 10 ligands 471 

from each method, as well as the highest velocity confidence clusters 472 

(Supplementary Figure S2), to maintain. Despite the observed discrepancy 473 

between all these methodologies (Supplementary Fig. S3), ENTRAIN 474 

demonstrated the highest rate of literature support across the top ranked ligands 475 

when analyzing the pre-B cell, neuroblast, and oligodendrocyte lineages (Fig. 3G). 476 

 477 

These results indicate that ENTRAIN accurately recovers extracellular regulators 478 

that are not resolved by DEG-based methods. 479 

 480 

DISCUSSION 481 

ENTRAIN uses an orthogonal approach that has several advantages over other 482 

methods that are highly dependent on the accurate identification of DEGs, which in 483 

turn depend on correct and reproducible cell type clusters, labels and pair-wise 484 

comparisons. As a result, these methods cannot consider intra-cluster expression 485 

dynamics that may arise as a cell differentiates along a trajectory. In comparison, 486 

ENTRAIN can be executed on any arbitrary number of cell states linked by a 487 

trajectory or RNA velocity vectors. In turn, ENTRAIN can analyse sparse populations 488 

that are not amenable to DEG-based methods.  489 
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 490 

ENTRAIN exhibits several limitations. Firstly, ENTRAIN-Pseudotime is dependent on 491 

the quality of the topology that is learnt by the trajectory inference algorithm35. To 492 

mitigate this, the ENTRAIN-Pseudotime module allows flexible input from any 493 

trajectory method provided that each input cell is assigned a pseudotime value and a 494 

trajectory branch in the Seurat object metadata. In addition, ENTRAIN allows 495 

interactive selection of trajectory nodes for flexible analysis on a user-defined 496 

branch. Secondly, ENTRAIN-Velocity is similarly subject to the same limitations as 497 

RNA velocity. Namely, the potential for inferring spurious velocity vectors when it is 498 

applied to populations with multiple kinetic regimes or datasets containing mature 499 

cell types missing intermediate cell states12. Thirdly, the NicheNet database does not 500 

discriminate between up- or down-regulated targets, which may result in ENTRAIN 501 

detecting both inhibitors and activators of a differentiation pathway. Lastly, ENTRAIN 502 

requires whole-transcriptome based technologies to ensure accurate capture of all 503 

ligand and receptor genes. Therefore, hybridization-based technologies which detect 504 

a limited panel of  genes may not be suitable. 505 

 506 

In conclusion, we present ENTRAIN, the first tool to date that integrates trajectory 507 

and cell-cell communication methods to identify driving ligands influencing cell 508 

differentiation. Validating ENTRAIN on existing single-cell pre-B Cell, neuronal, and 509 

spatially resolved brain datasets demonstrates that ENTRAIN recovers cell-extrinsic 510 

determinants of differentiation. Comparative analysis suggests that ENTRAIN 511 

outperforms other cell-cell communication methods in deciphering intercellular 512 

signals governing differentiation, possibly owing to the leveraging of trajectory and 513 

velocity data rather than traditional differential expression. Future work may consist 514 

of extension towards capturing epigenetic contributions from methylation or 515 

chromatin accessibility data36, 37 516 

 517 
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 621 

 622 

FIGURE 1: ENTRAIN-Pseudotime analysis of pre-B cell development. 623 

(A) ENTRAIN workflow. 624 

(B) UMAP representation of 133,942 cells in mouse bone marrow environment. 625 

(C) Monocle3 trajectory overlayed on the UMAP. 626 

(D) High trajectory covariance (TRAINing) genes for the trajectory between 627 

haematopoietic progenitors and pre-B cells. 628 

(E) ENTRAIN ligand results overlayed on the B cell lineage trajectory. Cells coloured 629 

by local ligand influence. V.E: Variance Explained 630 

(F) Ligand-target gene regulatory networks (left) and circos plot (right) representing 631 

regulatory links between top ranked ligands and their downstream targets. Colour 632 

represents identity of major cell type expressing that ligand. Ligands expressed by 633 

more than one cell type are coloured grey.  634 
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 635 
FIGURE 2: ENTRAIN-Velocity analysis of neuronal development. 636 

(A) UMAP representation of mouse embryonic neurogenesis dataset at E10.5. 637 

(B) Velocity vectors overlayed on UMAP representation, cells coloured by velocity 638 

cluster membership. 639 

(C) Heatmap of high likelihood velocity genes in each velocity cluster. 640 

(D) Heatmap of ligands predicted by ENTRAIN to influence velocities in each velocity 641 

cluster. 642 

(E) Velocity vectors, V.E. scores and top 5 ligands predicted by ENTRAIN for 5 out 643 

of 10 clusters (VC0-3, VC7) overlayed on the UMAP embedding.  644 

(F) Sender expression and predicted gene targets for the top 5 ligands in each 645 

velocity cluster. Left: UMAP embedding coloured by mean expression of the top 5 646 

ligands predicted for the velocity cluster. Right: Heatmap showing NicheNet 647 

regulatory linkages between the top 5 ligands (y-axis) and their downstream target 648 

genes (x-axis).e 649 
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 650 

FIGURE 3: ENTRAIN-Spatial analysis of neuronal development at spatial 651 

resolution. 652 

(A) UMAP plot of pre-annotated Ratz et al. dataset  653 

(B) Tangram transferred labels overlayed on spatial scatter plot. 654 

(C) UMAP plot of velocity cluster labels. 655 

(D) Top 5 ligands predicted by ENTRAIN for positive V.E. clusters (Velocity Clusters 656 

0, 1, 3, 4 and 6) overlayed on velocity plot. 657 

(E) Spatial scatter plot representing average expression of top 5 ligands associated 658 

with each velocity cluster. 659 
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 23

(F) Stacked bar plot showing the proportion of cell types expressing the top 5 ligands 660 

for each velocity cluster, weighted by variance explained. 661 

(G) Bar plot showing number of ligands with literature support for their role in pre-B 662 

cell and neuronal development. 663 
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