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27  Abstract

28 Cell fate is commonly studied by profiling the gene expression of single cells to infer
29 developmental trajectories based on expression similarity, RNA velocity, or statistical
30 mechanical properties. However, current approaches do not recover
31 microenvironmental signals from the cellular niche that drive a differentiation
32 trajectory. We resolve this with environment-aware trajectory inference (ENTRAIN),
33 a computational method that integrates trajectory inference methods with ligand-
34  receptor pair gene regulatory networks to identify extracellular signals and evaluate
35 their relative contribution towards a differentiation trajectory. The output from
36 ENTRAIN can be superimposed on spatial data to co-localize cells and molecules in
37 space and time to map cell fate potentials to cell-cell interactions. We validate and
38 benchmark our approach on single-cell bone marrow and spatially resolved
39 embryonic neurogenesis datasets to identify known and novel environmental drivers
40 of cellular differentiation. ENTRAIN is available as a public package at
41  https://github.com/theimagelab/entrain and can be used on both single-cell and
42  spatially resolved datasets.

43

44 Main text

45 In multicellular organisms, cells in different organs and tissues adopt different states
46  of cellular differentiation to allow them to perform specialized tasks. The precise
47  coordination of cellular differentiation and function requires not only the existence of
48 multiple distinct cellular fates but also the ability of the cells to communicate and
49 regulate each other to maintain homeostasis and avoid disease’. The development
50 of single-cell technologies such as single-cell RNA sequencing (ScRNA-seq) has
51 revolutionized our ability to deconvolute the myriad of heterogenous cellular
52 transcriptional states that comprise multicellular life, even in seemingly homogenous
53 cell lineages such as natural killer (NK) cells®. Interestingly, scRNA-seq has
54  suggested that cells exist in a continuum of transcriptional states, whereas the
55 traditional assignment of cell identity by the expression of cell lineage markers, such
56 as by flow cytometry, have viewed cell fates as discrete, non-overlapping entities®.
57 Thus, the cell state is the transcriptional output of the gene regulatory networks and
58 may represent transient intermediate steps in the differentiation of the cell towards its

59 developmental destination, or cell fate* °. Accordingly, it may also be possible to
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60 predict the future cell fate from the current cell state and the dynamic expression of
61 critical master regulator genes.

62

63 Trajectory inference computes the pattern of change in gene expression for cells in a
64 given dataset and arranges them in pseudo-chronological order along a
65 developmental pathway (pseudotime) based on the similarity between their changing
66 gene expression profiles® ’. There are currently more than 70 published trajectory
67 inference methods, with many more in development®. This reflects both the
68 popularity of pseudotime for lineage tracing and also the limitations of the technique,
69 which are dependent on the underlying assumptions, many of which are project and
70 cell-type specific’®. RNA velocity is an alternative approach that uses the relative
71 abundance of unspliced to spliced mRNA transcripts to predict future cell states,
72 instead of inferring them from global similarity in the transcriptomic profiles between
73 cells® *°. However, the modelling of RNA kinetics also makes several assumptions,
74 such as a common rate of splicing across different genes and the sampling of
75 multiple intermediate cell states in addition to the mature steady-state’’. The RNA
76  velocity analysis of peripheral blood mononuclear cells (PBMCs), which contain
77 mature blood cells without the immature bone marrow precursor cells, is a good
78 example of the potential for this approach to generate spurious cell lineage
79 relationships™ *2. Thus, there are fundamental limits to the fidelity of dynamic
80 inferences that can be made from single cell snapshots®. The cross-validation of cell
81 state transitions and lineage relationships by additional orthogonal methods has
82 therefore been strongly recommended*" *2.

83

84  The development of tools for ligand-receptor (LR) network analysis of single cell data
85 has made it possible to decipher the cell-cell communications that may also drive cell
86 state transitions and determine cell fate®. First used to infer cellular interactions at
87 the feto-maternal interface in the human placenta'®, LR analysis has become
88 increasingly popular with its ability to infer interactions between cells in a given
89 dataset, even in the absence of spatial information™. Broadly, tools for LR analysis
90 can be generalized into two categories: 1. ‘LR-only’ tools that rely solely on ligand-
91 receptor gene expression, and 2. ‘LR + Intracellular tools that incorporate
92 intracellular regulons. ‘LR-only’ tools, such as CellPhoneDB ', predict cell-cell

93 interactions by considering the expression of ligand and receptor genes as a proxy
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94  for secreted and membrane protein abundance. Tools from the ‘LR + Intracellular
95 category are motivated by the possibility that a scarcely expressed LR pair may also
96 unexpectedly regulate a considerable array of downstream genes, which would be
97 overlooked by ‘LR-only’ tools that only consider gene expression levels. To this end,
98 these tools exploit the large body of biological prior knowledge about gene regulatory
99 networks and intracellular signalling pathways to prioritize LR pairs based on their
100 downstream influence on gene regulation. As a result, methods belonging to the ‘LR
101  + Intracellular’ category achieve markedly different results from methods in the ‘LR-
102 only’ category. Thus, LR analysis has potential to complement trajectory inference
103 and RNA velocity by providing corroborating evidence for gene regulatory
104  programmes responsible for cell state transitions. However, only two tools belong to
105 the second category, NicheNet*® and CellCall *°, and no tools to date incorporate
106 trajectory or velocity information with LR analysis.

107

108 The introduction of spatially resolved transcriptomics has demonstrated the
109 important role of physical location within a tissue. Specifically, different stages of
110 differentiation within a population often correlate with microanatomical location in the
111 tissue®. Similarly, LR interactions are limited by surface contact between interacting
112  cells, or through diffusivity for secreted ligands®’. This suggests that the spatial
113 information of a cell, which is typically lost in traditional scRNA-seq workflows, can
114  improve the evaluation of LR pairs that influence the differentiation trajectories of a
115 cell. Therefore, there is a need for computational methods that incorporate spatially
116 resolved data to better understand the environmental drivers of differentiating
117  populations.

118

119 Here, we have integrated the information provided by trajectory inference and RNA
120 velocity with LR analysis to develop ENTRAIN, an environment-aware trajectory
121 inference computational tool that can be used to predict the extracellular drivers of
122  cell state transitions. ENTRAIN consists of three modules, ENTRAIN-Pseudotime,
123 ENTRAIN-Velocity, and ENTRAIN-Spatial, which can be applied on the outputs of
124  pseudotime-based methods, RNA velocity or paired single-cell and spatially resolved
125 data, respectively. In turn, ENTRAIN can be applied to a wide range of datasets

126 containing differentiating cells as well as the cell's interacting microenvironment,
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127 including spatial datasets. The ENTRAIN package is available to download at
128  https://github.com/theimagelab/entrain.

129

130 METHODS

131 Materials and Methods

132 Assumptions and Overview

133 ENTRAIN operates based on certain assumptions about the biological system of
134  interest:

135

136 1) Environmental control over a differentiating cell population, if present, is
137 facilitated through LR interactions.

138 2) The environmental influence on differentiation is operating on a time scale
139 resolvable by either pseudotime-based or RNA velocity methods.

140 3) The environmental regulation occurs via known regulatory pathways that are

141 documented in gene regulatory network databases, and that the degree of
142 regulation in this database can be quantified as the edge weight (w) between a
143 given ligand (I) and a given gene g € G, where G denotes the set of all genes in
144 the genome.

145

146 The fundamental operating principle of ENTRAIN is that, if a specific ligand [ is
147 influencing the expression of a specific gene g in a differentiating population, this
148 influence can be observed as a meaningful contribution of the ligand-gene regulatory
149 network towards predicting the observed changes in the expression of g. In other
150 words, if the edge weight w between [ and g, which represents the strength of the
151 regulatory interaction, positively correlates with the observed gene expression
152 changes in the trajectory (or velocity), then this suggests that the ligand is actively
153 driving the observed differentiation for that gene in the observed dataset.

154

155 First, we construct differentiation trajectories either by using manifold-based
156 trajectory inference tools’ or RNA velocity estimation with scVelo™. We then identify
157 trajectory informative (‘TRAINIng’) genes that either correlate their expression with
158 pseudotime (for manifold-based trajectories) or exhibit high velocity likelihoods (for

159  RNA velocity-based methods). In parallel, we identify LR pairs using NicheNet*® and
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160 extract regulatory interactions between identified LR pairs and downstream target
161 genes in the regulon. We then fit a random forest regression model using TRAINing
162 gene covariances (for pseudotime) or velocity probabilities (for scVelo) as the
163 ‘response’ variable and NicheNet predicted regulatory interactions as the
164 ‘explanatory’ variable. This model estimates the proportion of trajectory dynamics (as
165 measured by pseudotime covariance or velocity likelihood) that can be predicted by
166 the regulatory interactions downstream of a LR pair. Ligands are scored based on
167 their contributions to the model.

168

169 Trajectory construction with Monocle

170  Consider cells as n vectors in R/l where |G| is the number of genes measured by
171 the scRNA-seq experiment and n is the number of cells. Typically, a differentiation
172  process will take the form of an ordered sequence of cells in this high dimensional
173 space, beginning at a root cell (or node), traversing along a series of intermediate
174  cells with progressive changes in gene expression before ending at a terminal cell. In
175 this ordered sequence, called pseudotime, cells that are highly similar in gene
176  expression space will be adjacent in pseudotime. Assuming sufficient sampling of
177 intermediate cell stages, this approach successfully identifies differentiation
178 trajectories but cannot determine whether a trajectory is driven by its environment or
179 is under cell-intrinsic control, motivating the use of ENTRAIN to identify
180 environmental influences. ENTRAIN implements pseudotime analysis by using the
181  Monocle3*? workflow, which applies the SimplePPT? tree algorithm to cells in
182 reduced dimension space to calculate cell pseudotimes (tj, ..., T)-

183

184  Selection of TRAINing genes

185 Because trajectory pseudotime 7 is derived from underlying gene expression
186 profiles, we hypothesized that a trajectory can sufficiently be described by several
187 trajectory informative TRAINing genes: driver genes whose expression levels exhibit
188 strong linear relationships with pseudotime, and presumably have a greater influence
189 on pseudotime calculation and graph learning. Biologically, we assume that genes
190 with strong linear relationships with pseudotime are highly significant in
191 differentiation processes. Specifically, consider a single trajectory branch B,

192 consisting of an n cells by |G| genes expression matrix:


https://doi.org/10.1101/2023.07.09.548284
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.09.548284; this version posted July 10, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

X1.4 " Xy)6)
193 B=| i - ]

Xna v Xngl

194  where n is the number of cells in B, A denotes a gene, and x; , denotes the

195 expression of gene 4 in cell 1. Each cell (1, ...,n) has a corresponding pseudotime

196 (13, ...,75,). We aim to identify influential TRAINing genes by using gene-pseudotime

197 covariance as a metric for evaluating gene significance in a differentiation trajectory:
C = COU(B, (15, ...,Tn,))

198 In each branch, genes are ranked by covariance and the lowest ranked genes

199 (default: bottom 5%) are removed from the workflow to prevent these from

200 confounding further analysis. The remaining genes are classified as TRAINing genes

201 for that trajectory.

202 We note that TRAINing genes are distinct from commonly used ‘differentially

203 expressed genes’ in two ways: 1. TRAINiIng genes are not dependent on cell type

204  annotations, and 2. TRAINing genes may not necessarily exhibit large absolute

205 changes in expression as one traverses a cell lineage but strongly co-vary with

206 pseudotime. It is this covariance, rather than absolute expression, that is used to

207  define TRAINing genes.

208

209  While covariance is the default metric, ENTRAIN can alternatively be configured to

210 use correlation coefficients.

211

212  Extracting regulatory information from NicheNet

213 Expression dynamics during differentiation are likely to be a manifestation of cell-

214  intrinsic and cell-extrinsic regulatory programmes. To demarcate these two factors,

215 the algorithm’s second step unites prior knowledge of ligand-receptor pairs and their

216 corresponding intracellular regulatory interactions to determine potential ligands

217  driving the observed TRAINiIng gene expression dynamics.

218

219 Under the assumption that the microenvironmental niche has a quantifiable

220 contribution to gene expression dynamics in differentiation, we require a database

221 that predicts which target genes are subject to regulation by ligand-receptor pairs.

222 ENTRAIN extracts this information from NicheNet **, which unites traditional ligand-

223  receptor signalling to downstream transcriptional regulation. We first identified active
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224 LR pairs amongst the trajectory cells (‘receivers’) and the remaining cells in the
225 dataset (‘senders’), using NicheNet as prior knowledge of possible ligand-receptor
226 interactions. With the assumption that high LR expression levels do not necessarily
227  correlate to significance in driving differentiation trajectories, we determined LR pairs
228 for further analysis if they fulfilled two criteria: 1. They are expressed by a sufficient
229  proportion of cells in the dataset (default >0 counts in at least 10% of cells). 2. The
230 corresponding receptors are expressed by a sufficient proportion of differentiating
231 cells (default >0 counts in at least 10% of differentiating cells). Of the ligands that
232 meet the criteria, we extracted their respective downstream target regulation scores
233 from the NicheNet database. These are vectors representing the ability of a given
234  ligand to regulate every human gene. Thus, each ligand is associated with a vector
235 of length g, where g is the number of human genes in the database, and each
236 element of the vector is a number (a “regulatory potential”) representing the strength
237  of the regulatory relationship between the ligand and a given gene.

238

239 Calculation of top environmental drivers of a trajectory

240 Next, we assumed that some subset of the active ligands will constitute the
241  extracellular signals influencing a trajectory. We speculated that the regulation
242  between ligands and the trajectory could be contained in existing databases of
243  regulatory networks interactions.

244

245  To detect this, we used a supervised random forest model to fit NicheNet regulatory
246  potentials (explanatory variable) to TRAINing gene covariances (response variable)
247  ®. Here, we consider the NicheNet matrix as an L by |G| matrix L, where L is the
248 number of actively signalling ligands, and the covariances are represented by a |G|
249  dimensional column vector €. Random forest attempts to fit L to €, used with
250 hyperparameters n_trees = 500, n_features at each split = number of ligands
251 (features) divided by 3.

252

253 In principle, some columns of L (which represent the predicted change in gene
254  expression as a result of the ligand-receptor pairing), will possess greater similarity
255 to C than others if the ligand is responsible for the observed covariance in €. This

256 similarity is represented as variable importance, calculated by removing one column
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257 at a time from the matrix and calculating the loss in Gini index that results from the
258 removal. Thus, variable importance represents the significance of a ligand in
259 predicting observed gene expression covariance.

260

261 To assess the environmental dependence of whole trajectory branches, we used %
262 Variance Explained (%V.E.). This metric measures how well the random forest

263 predicts the variance in €. More formally,
MSE
Var(C)

WV.E =1~

264

265 Random forest was chosen as the primary algorithm for feature scoring owing to
266 several advantages suited for our context. Firstly, it caters to non-linear interactions
267 between features, such as those that might be found in regulatory interactions
268 between ligands and their downstream target genes. Secondly, built-in methods for
269 feature selection and scoring, based on sequential removal of features,
270 accommodates our primary goal of scoring ligands rather than predicting gene
271  expression. Thirdly, while a known drawback of random forests is the difficulty of
272  interpretability, this is offset by our existing prior knowledge of gene regulatory
273 networks that provides the insight into downstream targets. Lastly, considering the
274  relatively low numbers of ligands and receptor genes relative to the rest of the
275 genome, the computational complexity of random forests compared to other feature
276  selection algorithms becomes less concerning. Moreover, our fitting is performed on
277 the level of trajectory branches or velocity clusters, rather than individual cells,
278  further mitigating concerns of computational complexity.

279

280 Calculation of cell-wise influences

281 Differentiating cells exhibit changes in receptor expression and regulatory wiring as
282 they progress along a developmental process. Because of this, we hypothesized that
283 certain stages of a developmental process will be more influenced by environmental
284  signalling than other stages. We thus wished to produce a more granular, cell-wise
285 measure of ligand influence that encapsulates this behaviour. To do this we
286 calculated pseudotime-expression covariances along a rolling window of cells along
287 pseudotime, restricted to separate branches (Supplementary Algorithm 1). We

288 used a default window size w and step size s of 10% and 2% of the cells in the
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289 trajectory branch, respectively. This ‘local covariance’ quantifies a gene’s expression
290 dynamics within a rolling window of differentiating cells. To this end, we fit a second
291 round of random forest models to each rolling window, such that every branch is now
292 subject to an additional 50 ‘local’ model fits corresponding to 50 rolling windows
293 along the branch. The number of local model fits is dependent on the values of s and
294  w; 50 rolling windows is the behaviour when s and w are assigned default values.
295 We used regulatory potentials from the top 5 ligands as the predictor variable (a |G| x
296 5 matrix with default parameters) and the local covariances as the response variable.
297 For step sizes greater than 1, we linearly interpolate %V.E.; values for cells which

298 are skipped.

299 Resultant %V.E. values denote the confidence of the NicheNet fit at each of the 50
300 windows. Genes possessing high covariance with pseudotime are assumed to be
301 important for trajectory determination, and we are interested in the subset of those
302 that are under environmental control. Some of these high-covariance genes will not
303 be under extracellular control and consequently exhibit a low %V.E. value when
304 fitted to NicheNet. On the other hand, high covariance genes that are also under
305 extracellular control will exhibit both high covariances and a confident fit (increased
306 %V.E.) to NicheNet. As a result, these window %V.E. values can be interpreted as
307 the degree of environmental dependence across different stages of the trajectory.
308 Ultimately, every trajectory branch is subject to one ‘branch-wide’ model fit that
309 determines the top few ligands of interest, and 50 ‘local’ model fits that assess where
310 their regulatory effects are most noticeable. Cells with cell-intrinsic drivers would be
311 expected to exhibit low, negative, or widely varying %V.E. values as the model
312 cannot accurately fit environmental regulators to the observed expression dynamics
313 in that window, while the opposite is true for highly environmentally dependent
314 windows. We note that the term ‘cell-wise’ is slightly misleading, as the observed
315 expression dynamics are deduced from the covariances of many neighbouring cells
316 in arolling window of observations rather than a single cell.

317

318 Finding ligands responsible for RNA velocity dynamics

319 RNA velocity is a dynamical approach that calculates the time-derivative of RNA

320 concentration for single cells, allowing for short-term predictions of cell fate in

10
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321 differentiating populations. Because these dynamics are often dependent on
322 environmental signals, we predicted that ENTRAIN could be employed to determine
323 driver ligands responsible for observed RNA velocity vectors. Biologically, these
324  represent ligands that may be responsible for short time scale dynamics that may not
325 be resolvable using the pseudotime-based approach described previously.
326  For full details of the velocity estimation, see ref. .

327

328 In most datasets, a small minority of genes are responsible for the majority of
329 observed velocity variance?’, necessitating a way to prioritize velocity genes by their
330 significance. The ENTRAIN-Velocity module uses scVelo to recover fit likelihoods, a
331 measure of velocity significance 2%, from which to infer ligand activity
332 (Supplementary Figure S1).

333

334  We first clustered the RNA velocity matrix into ¢ groups representing major axes of
335 variance in RNA velocity vectors, by repurposing the Leiden algorithm in scanpy®®.
336 We then calculated the fit likelihoods for velocity genes, by applying the scVelo
337 recover_dynamics® function to each velocity cluster. For each velocity cluster ¢;, this
338 process generates a vector £; of length |G;|, where|G;| is the number of genes with
339 calculated fit likelihoods per cluster c¢;. Note that the genes with calculated fit
340 likelihoods are usually a subset of all genes because not all genes possess confident
341 velocities. These genes (row names) constitute our TRAINing genes for this module,
342 and the fit likelihoods (values) represent the response variable for subsequent model
343 fit described below.

344

345 To elucidate environmental influence driving the velocities, we fit the NicheNet
346 ligand-target matrix to all genes with calculated likelihoods using a random forest
347 regression model ° with hyperparameters n_trees = 500, n_features at each split =
348 number of ligands (features) divided by 3. As before, we consider the NicheNet
349 matrix as an L by |G.|] matrix L, and the velocity likelihoods for a given cluster ¢; are
350 represented by a |G| dimensional column vector £.. Random forest attempts to fit L
351 to #; for all clusters ¢ (Supplementary Algorithm 2), under the assumption that if a
352 ligand is truly responsible for some component of the observed velocities in a cluster,

353 the corresponding column in L will be more similar to the velocity likelihood vector

11
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354 compared to less significant ligands. Similarly to the pseudotime-based approach,
355 we extracted mean decrease in Gini index and %V.E. scores to evaluate ligand
356 significance.

357

358 Finding ligands responsible for RNA velocity dynamics in spatially resolved
359 datasets.

360 The third module of ENTRAIN, called ENTRAIN-Spatial, is designed for datasets
361 with paired scRNA-seq and Visium data. This module first calculates and clusters
362 velocities on the scRNA-seq matrix object, as in ENTRAIN-Velocity. This is followed
363 by transferring velocity cluster labels to the Visium dataset using the package
364 tangram-sc®. Next, within each velocity cluster, the ENTRAIN-Spatial subsets the
365 Visium dataset to include only those spots matching the velocity cluster label or the
366 spots in direct adjacency.

367

368 Subsequently, we select genes that are included in NicheNet's ligand-receptor
369 network to inform later analysis of ligand-receptor pairings. In contrast to the
370 previous ENTRAIN-Velocity module, these genes are restricted to those that are
371 situated in the immediate spatial vicinity of differentiating cells.

372 Subsequent ligand-receptor pairing, random forest fitting, and scoring were
373 performed identically as in the ENTRAIN-Velocity module.

374

375 RESULTS

376 ENTRAIN explicitly incorporates output from established trajectory tools to inform a
377 random forest feature selection model for ligand scoring (Fig. 1A). As a proof-of-
378 concept, we validated ENTRAIN on a scRNA-seq dataset profiling the bone marrow
379 microenvironment (BME) and its resident mesenchymal and haematopoietic lineages
380 in mice (Fig. 1B). We evaluated the contribution of each gene towards the trajectory
381 dynamics by calculating pseudotime using Monocle3 (Fig. 1C). We extracted the
382 gene expression for cells along the pre-B trajectory (Fig. 1D) and derived the
383 pseudotime-expression covariance for every gene. We assessed the biological
384 relevance of this metric by ranking the genes by covariance and interrogating the top
385 covarying TRAINiIng genes. This revealed known lineage marker genes including
386 Vprebl, Iglll, and Vpreb3 for pre-B cells. In parallel, we examined the

387 microenvironmental interactions by selecting receptor and ligand genes. We then

12
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388 queried the NicheNet ligand-target regulatory potential database to obtain regulatory
389 interactions between active ligands and their corresponding regulons. ENTRAIN was
390 then performed on the developing B cell lineages using this database as input. We
391 calculated the model's V.E., a measure of the proportion of TRAINing gene
392 covariance that can be attributed to extracellular signals. The percentage of V.E. by
393 the 71 identified active ligands was 2.6%. To identify more granular behaviour, we
394 conducted ENTRAIN in a cell-wise manner by analysing environmental dependence
395 in a series of 100 rolling windows along trajectory pseudotime for every branch. This
396 analysis revealed that the previous environmental dependence was restricted to
397 small pockets of HSCs (Fig. 1E), indicating that the local ligand influence was
398 restricted to a subpopulation of progenitor cells that appeared relatively early in
399 lineage commitment. ENTRAIN output shortlisted signalling ligands that are known
400 to be involved in B cell development (Vcaml/Lamaz2-ltgb, II7-1I7r; Tnfsf13b-
401  Tnfrsfl3b; 115/112-112rg) and ligands with conserved roles during cellular
402  differentiation (DII1-Notch1/2; Dkk2-Lrp6; Jagl-Notchl1/2) (Fig. 1F). The regulatory
403 potential was dominated by a small subset of functionally relevant target genes,
404  particularly Ebfl, Myl4 and Cd79a. Interrogating the source of these ligands revealed
405 that while some of the top-ranked ligands were expressed primarily by a singular cell
406 type (Fig. 1F, coloured lines), others were expressed among heterogenous cell
407 types (grey lines). ENTRAIN also identified a novel extracellular signal that was not
408 previously known to be involved in B cell development (Ptdss1-Scarb1/Jmjd6) (Fig.
409 1F).

410

411 To demonstrate the versatility of ENTRAIN we developed the ENTRAIN-Velocity
412 module to recover environmental signals responsible for the RNA velocity vector and
413  applied it to a murine embryonic neurogenesis dataset® (Figure 2A). The velocity
414 matrix was recovered using scVelo and clustered with the Leiden algorithm®! to
415 deconvolute velocity variance into major groups. The vectors formed 10 velocity
416 clusters (VCO0-9), which roughly corresponded to major cell types and transitions
417 (Figure 2B). We analysed and ranked the joint likelihoods of the velocities in each
418 cluster to identify the TRAINing genes for this dataset: the most rapidly up- or down-
419 regulated genes during neurogenesis (Fig. 2C). We then applied ENTRAIN to each
420 velocity cluster to identify driver ligands responsible for the observed velocities (Fig.
421 2D). The analysis predicted positive V.E. scores for 5 out of 10 clusters (VCO-VC3
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422 and VC7) corresponding to velocities exhibited by fibroblastic, radial glial,
423 neuroblast/neuronal, and neural tube cell clusters (Fig. 2E). In these clusters, the
424 environmental influence was attributed to ligands in the Notch pathway (Tgfb2,
425 Bmp2, Ntf3 and Bdnf) and Wnt signaling pathway (Sema3b, Psap and Pdgfb) known
426  to be involved in embryonic neurogenesis. More generally, we considered ligands
427 ranked among the top 5 in each positive cluster and showed that 21 out of 25 ligands
428 were known to be involved in embryonic neurogenesis (Supplementary Table S1),
429 with the exceptions being the extracellular matrix proteins Npnt/Adaml15 and
430 Serpincl. Interrogation of the NicheNet ligand-target network revealed interactions
431 between Tgfb2-Ina/Mapt/Stmn2/Igfbpll, Bdnf-Bclllb, and Jagl-Ebfl as major
432 components of environment-driven neuronal differentiation (vclusterl and vcluster7),
433 as well as Jagl-Sdc2 as the largest environmental driver in mesenchymal
434  development (vcluster2) (Fig. 2F). Fibroblasts and neuroblasts were the major cell
435 types responsible for producing the highest 3 ranked ligands (Fig. 2F).

436

437 Emerging spatial transcriptomics technologies have recently shown success in
438 delineating the role of cell-cell communication in various cellular contexts®: 3.
439 Building upon this, we developed the ENTRAIN-Spatial module to decode cell-cell
440 communication signals driving RNA velocities, while concurrently considering their
441  spatial environment. This module operates by accepting a paired dataset of spatial
442  transcriptomics data and single-cell data. Its output comprises those ligand-receptor
443  pairs that are both spatially co-localized and have a quantifiable influence on the
444  observed RNA velocities.

445

446 We applied ENTRAIN-Spatial to a paired dataset consisting of both 10x Chromium
447  single-cell and 10x Visium data, which was obtained from Ratz et al.** (Fig. 3A and
448 Fig. 3B). We recovered the RNA velocities from the 10x Chromium data using
449  scVelo® and subsequently clustered the velocities into 8 major clusters (Fig. 3C). By
450 utilizing Tangram?®, we transferred the velocity cluster labels to their spatial
451  positions.

452  We then used ENTRAIN-Spatial to evaluate ligands located in close spatial proximity
453 to spots associated with a specific velocity label. The scoring was performed based
454  on each ligand's potential to instigate the observed RNA velocities. ENTRAIN-Spatial

455 results indicated that five out of the eight major velocity clusters (vclusterO, 1, 3, 4
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456 and 6) exhibited a detectable level of environmental influence, as quantified by the
457 percentage of variance explained (% V.E.) (Fig. 3D). Notably, the velocity cluster
458 corresponding to immature and mature oligodendrocytes (vcluster3) demonstrated
459 the highest proportion of variance explained. This cluster corroborated ligands that
460 are well-documented to be implicated in oligodendrocyte maturation, including the
461 Wnt-family and Vgf. Notably, as opposed to ENTRAIN-Velocity, these ligands are
462 restricted to those expressed in any spot adjacent to a spot associated with a
463  velocity cluster.

464  To interpret spatial patterns in driver ligand expression, ENTRAIN-Spatial facilitates
465 the visualization of specific spots expressing the highest-ranking ligands (Fig. 3E) as
466  well as the relative contributions of spatially adjacent cell types towards driving the
467  observed velocities (Fig. 3F).

468

469 To corroborate our findings, we benchmarked the performance of ENTRAIN to
470  similar methods NicheNet*® and CellCall*® for single-cell RNA results, and Giotto®*
471  for spatial transcriptomics results, concentrating specifically on the top 10 ligands
472 from each method, as well as the highest velocity confidence clusters
473 (Supplementary Figure S2), to maintain. Despite the observed discrepancy
474  between all these methodologies (Supplementary Fig. S3), ENTRAIN
475 demonstrated the highest rate of literature support across the top ranked ligands
476  when analyzing the pre-B cell, neuroblast, and oligodendrocyte lineages (Fig. 3G).
477

478 These results indicate that ENTRAIN accurately recovers extracellular regulators
479 that are not resolved by DEG-based methods.

480

481 DISCUSSION

482 ENTRAIN uses an orthogonal approach that has several advantages over other
483 methods that are highly dependent on the accurate identification of DEGs, which in
484 turn depend on correct and reproducible cell type clusters, labels and pair-wise
485 comparisons. As a result, these methods cannot consider intra-cluster expression
486 dynamics that may arise as a cell differentiates along a trajectory. In comparison,
487 ENTRAIN can be executed on any arbitrary number of cell states linked by a
488 trajectory or RNA velocity vectors. In turn, ENTRAIN can analyse sparse populations

489 that are not amenable to DEG-based methods.
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490

491 ENTRAIN exhibits several limitations. Firstly, ENTRAIN-Pseudotime is dependent on
492  the quality of the topology that is learnt by the trajectory inference algorithm®. To
493 mitigate this, the ENTRAIN-Pseudotime module allows flexible input from any
494  trajectory method provided that each input cell is assigned a pseudotime value and a
495 trajectory branch in the Seurat object metadata. In addition, ENTRAIN allows
496 interactive selection of trajectory nodes for flexible analysis on a user-defined
497 branch. Secondly, ENTRAIN-Velocity is similarly subject to the same limitations as
498 RNA velocity. Namely, the potential for inferring spurious velocity vectors when it is
499 applied to populations with multiple kinetic regimes or datasets containing mature
500 cell types missing intermediate cell states'?. Thirdly, the NicheNet database does not
501 discriminate between up- or down-regulated targets, which may result in ENTRAIN
502 detecting both inhibitors and activators of a differentiation pathway. Lastly, ENTRAIN
503 requires whole-transcriptome based technologies to ensure accurate capture of all
504 ligand and receptor genes. Therefore, hybridization-based technologies which detect
505 a limited panel of genes may not be suitable.

506

507 In conclusion, we present ENTRAIN, the first tool to date that integrates trajectory
508 and cell-cell communication methods to identify driving ligands influencing cell
509 differentiation. Validating ENTRAIN on existing single-cell pre-B Cell, neuronal, and
510 spatially resolved brain datasets demonstrates that ENTRAIN recovers cell-extrinsic
511 determinants of differentiation. Comparative analysis suggests that ENTRAIN
512 outperforms other cell-cell communication methods in deciphering intercellular
513 signals governing differentiation, possibly owing to the leveraging of trajectory and
514 velocity data rather than traditional differential expression. Future work may consist
515 of extension towards capturing epigenetic contributions from methylation or
516 chromatin accessibility data®® %’

517
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623 FIGURE 1: ENTRAIN-Pseudotime analysis of pre-B cell development.

624  (A) ENTRAIN workflow.

625 (B) UMAP representation of 133,942 cells in mouse bone marrow environment.

626 (C) Monocle3 trajectory overlayed on the UMAP.

627 (D) High trajectory covariance (TRAINing) genes for the trajectory between
628 haematopoietic progenitors and pre-B cells.

629 (E) ENTRAIN ligand results overlayed on the B cell lineage trajectory. Cells coloured
630 by local ligand influence. V.E: Variance Explained

631 (F) Ligand-target gene regulatory networks (left) and circos plot (right) representing
632 regulatory links between top ranked ligands and their downstream targets. Colour
633 represents identity of major cell type expressing that ligand. Ligands expressed by

634 more than one cell type are coloured grey.
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636 FIGURE 2: ENTRAIN-Velocity analysis of neuronal development.
637 (A) UMAP representation of mouse embryonic neurogenesis dataset at E10.5.
638 (B) Velocity vectors overlayed on UMAP representation, cells coloured by velocity
639  cluster membership.
640 (C) Heatmap of high likelihood velocity genes in each velocity cluster.
641 (D) Heatmap of ligands predicted by ENTRAIN to influence velocities in each velocity
642 cluster.
643 (E) Velocity vectors, V.E. scores and top 5 ligands predicted by ENTRAIN for 5 out
644  of 10 clusters (VCO0-3, VC7) overlayed on the UMAP embedding.
645 (F) Sender expression and predicted gene targets for the top 5 ligands in each
646 velocity cluster. Left: UMAP embedding coloured by mean expression of the top 5
647 ligands predicted for the velocity cluster. Right: Heatmap showing NicheNet
648 regulatory linkages between the top 5 ligands (y-axis) and their downstream target

649 genes (x-axis).e
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651 FIGURE 3: ENTRAIN-Spatial analysis of neuronal development at spatial
652 resolution.

653 (A) UMAP plot of pre-annotated Ratz et al. dataset

654 (B) Tangram transferred labels overlayed on spatial scatter plot.

655 (C) UMAP plot of velocity cluster labels.

656 (D) Top 5 ligands predicted by ENTRAIN for positive V.E. clusters (Velocity Clusters
657 0, 1, 3, 4 and 6) overlayed on velocity plot.

658 (E) Spatial scatter plot representing average expression of top 5 ligands associated

659 with each velocity cluster.
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660 (F) Stacked bar plot showing the proportion of cell types expressing the top 5 ligands
661 for each velocity cluster, weighted by variance explained.
662 (G)Bar plot showing number of ligands with literature support for their role in pre-B

663 cell and neuronal development.
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