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ABSTRACT 

Global climate change has severely impacted maize productivity. A holistic understanding of 

metabolic crosstalk among its organs is essential to address this issue. Thus, we reconstructed the 

first multi-organ maize genome-scale metabolic model, iZMA6517, and contextualized it with 

heat and cold stress-related transcriptomics data using the novel EXpression disTributed 

REAction flux Measurement (EXTREAM) algorithm. Furthermore, implementing metabolic 

bottleneck analysis on contextualized models revealed fundamental differences between these 

stresses. While both stresses had reducing power bottlenecks, heat stress had additional energy 

generation bottlenecks. To tie these signatures, we performed thermodynamic driving force 

analysis, revealing thermodynamics-reducing power-energy generation axis dictating the nature 

of temperature stress responses. Thus, for global food security, a temperature-tolerant maize 

ideotype can be engineered by leveraging the proposed thermodynamics-reducing power-energy 

generation axis. We experimentally inoculated maize root with a beneficial mycorrhizal fungus, 

Rhizophagus irregularis, and as a proof of concept demonstrated its potential to alleviate 

temperature stress. In summary, this study will guide the engineering effort of temperature stress-

tolerant maize ideotypes. 

Temperature stress, resulting from global climate change, can reduce maize productivity by 7-

18%1. Thus, there is a pressing need to develop high-yielding maize genotypes capable of 

withstanding temperature stress. A metabolism-centric approach can be useful to achieve that. 

Thus, an in-depth understanding of the impact of temperature on plant-wide metabolism is 

required. Such impacts include, but are not limited to, reduced photosynthesis and carbohydrate 

synthesis in leaves2, reduced starch synthesis in kernels3, upregulation of amino acid and 

downregulation of diterpenoid metabolism in root4, and lignin biosynthesis in stalks5. Although 

these studies were informative, a holistic plant-wide understanding of temperature stress 

responses, delineating the interactions between vegetative and reproductive organs at key stages 

of plant development, is still in its infancy. Moreover, the plant-wide effect of well-known 

beneficial arbuscular mycorrhizal fungi (AMF), such as Rhizophagus irregularis6, has not been 

evaluated for its potential to alleviate temperature stress on maize growth. A multi-organ 

genome-scale metabolic model (GSM) is suited to address these issues. The first multi-organ 

plant GSM was reconstructed for barley7, subsequently for barrelclover8, arabidopsis9,10, 
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soybean11, foxtail millet12, and rice13. These models were useful to characterize inter-organs 

crosstalk under various conditions. Thus, for a holistic understanding of plant-wide temperature 

stress responses of maize, we reconstructed the first multi-organ maize GSM, iZMA6517, 

integrating comprehensive root, stalk, kernel, and leaf GSMs. 

Contextualization of GSM by integrating ‘omics’ data is a crucial step to connect metabolism to 

phenotypes. There are two classes of algorithms for contextualization: valve approaches 

(assuming reactions fluxes and transcript levels are proportional) and switch approaches 

(assuming reaction are turned on/off based on transcript levels). Earlier studies discussed the 

suitability of both approaches14, showing E-flux algorithm15 (a valve approach) capturing better 

phenotypic predictions. However, E-flux algorithm can predict unrealistic phenotypes too16. 

Thereby, to improve the phenotypic prediction accuracy, there is a need to develop a novel valve 

approach which can address this limiation. To achieve this, we proposed the EXTREAM 

algorithm. Moreover, we propose a Metabolic Bottleneck Analysis (MBA) algorithm to pinpoint 

metabolic bottlenecks in iZMA6517. 

In this study, we combined iZMA6517, EXTREAM, and MBA to dissect plant-wide responses of 

temperature stress by pinpointing metabolic bottlenecks in different organs and to determine if 

responses to cold and heat share common characteristics. We found reducing power capacity had 

a pivotal role in responses to both stresses. Additionally, heat stress responses incurred energy 

generation bottlenecks. Thermodynamic driving force analysis of bottleneck pathways 

highlighted the role of thermodynamics-reducing power-energy generation axis when plants are 

subjected to temperature stress. Finally, as a proof of concept, we extended our analysis by 

integrating maize “omics” data when the plant is inoculated with the AMF R. irregularis in 

iZMA6517 and found that the inoculation can alleviate temperature stresses. Ultimately, this 

study could offer a blueprint to engineer robust abiotic stress-tolerant maize ideotypes. 

RESULTS 

Maize responses to heat and cold stress  

To decipher maize responses to temperature stress, heat and cold-stress-related transcriptomic 

data of B73 genotype were collected from the literature17. Seedlings were subjected to cold (5�C 

for 16 hours) or heat (50�C for 4 hours) stresses, compared to a control condition (24�C). All 
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plants were grown in the autoclaved field soil. While heat stress drastically affected 

transcriptional response compared to control conditions (Fig. 1A), the effect of cold stress was 

similar to control conditions (Fig. 1B), indicating a difference of plant adaptations to temperature 

stresses (Fig. 1C, D). To explore the components of temperature stresses, we performed K-means 

clustering (Fig. 1E) on both heat and cold stress data, identifying four distinct clusters followed 

by gene enrichment analyses (Supplementary Fig. 1-4). These analyses revealed that 

photosynthesis-related genes (cluster 2) were upregulated under both stress conditions. In 

addition, heat shock genes (cluster 3) were upregulated in heat stress conditions. Cluster 1 and 2 

revealed genes associated with central carbon and secondary metabolism, respectively. 

As photosynthesis is one of the core metabolic features of plants, cluster 2 was examined in 

further detail. A previous study indicated a similar high transcriptional response of 

photosynthetic genes under temperature stress18. However, photosynthetic activity of plants, as 

measured through decreased rubisco activation19, decreases under temperature stress. This 

suggests potential metabolic bottlenecks in plant tissues preventing higher photosynthetic 

activity in leaves. A contextualized multi-organ GSM of maize can identify such bottlenecks. 

There may also be bottlenecks between transcription and translation, such as mRNA degradation, 

however, that would be outside of the scope of GSM. Next, we will design a suitable algorithm 

for contextualization of GSM. 

EXTREAM algorithm 

Our previous study used the E-flux algorithm20 to accurately predict the maize root phenotype 

under nitrogen starvation based on transcriptomic data. This work involved photosynthetic 

tissues, having additional metabolic complexities compared to roots. Thereby, the efficacy of the 

E-flux algorithm was re-assessed. 

In a previous study, the maize leaf was divided into 15 cross-sections, and generated 

transcriptomics data for each of these sections21. For this study, we collected transcriptomics data 

of cross-sections 1, 5, and 15 based on the greenness of the leaf blade (less green to greener). 

These data were integrated in the leaf GSM22 using E-flux algorithm. The highest growth rates in 

maize leaves occur at the base of the leaf, where new cells are actively dividing and elongating. 

As the cells grow toward the tip, they undergo expansion and maturation, leading to a decrease in 

the growth rate. Eventually, the cells at the tip stop elongating altogether. The contextualized leaf 
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model correctly predicted higher biomass growth rate of leaf base compared to leaf tip (Fig. 1F). 

The model also predicted rate of carbon fixation correctly, however, it incorrectly predicted the 

starch distribution profile along the leaf (Fig. 1F). Thus, modification of the E-flux algorithm 

was required to fit the starch distribution profile. 

To achieve this, we proposed the EXTREAM algorithm, which equally distributed transcript 

levels for each gene based on the number of cognate biochemical reactions. Once we 

contextualized the leaf model with the EXTREAM algorithm, it predicted the correct biomass 

growth rate, carbon fixation, and starch distribution profiles along the selected leaf sections (Fig. 

1F). Thus, EXTREAM algorithm can be effective in modeling plant organs, including 

photosynthetic organs. 

 

Fig. 1. Transcriptomics data analysis and introduction to EXTREAM algorithm. A) Scatter plot of control and cold 

stress transcriptomics data. B) Scatter plot of control and heat stress transcriptomics data. C) Scatter plot of heat and 
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cold stresses transcriptomics data. D) Correlation matrix among control, heat stress, and cold stress (95% confidence 

interval, two-tail test). E) K-means clustering analysis of heat and cold stress data. F) E-flux and EXTREAM both 

predicted correct biomass production and carbon fixation for three selected cross sections of leaf, whereas only 

EXTREAM predicted the correct leaf starch content. 

Multi-organ genome-scale metabolic model of maize 

In this study, we reconstructed the first multi-organ maize GSM, iZMA6517 (Fig. 2A) for the 

B73 genotype. The model is based on the previously reconstructed root and leaf-specific 

GSMs14,22, and newly reconstructed stalk and kernel GSMs, connected via vascular tissues 

(Supplementary Data 1). 

 

Fig. 2. Overview of iZMA6517 reconstruction and contextualization. A) Individual metabolic models for root, stalk, 

kernel, and leaf. B) Connection between individual tissues via the vascular tissues. C) Comparison of reactions 

among the individual GSMs. D) Comparison of metabolites among the individual GSMs. E) Comparison of unique 

genes among the individual GSMs. F) Incorporating heat and cold stress related transcriptomics data with the 
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iZMA6517 using the EXTREAM algorithm. G) EXTREAM algorithm predicted lower biomass production in each 

organ and in the whole plant (WP) during the cold stress compared to the heat stress. 

To further refine our existing leaf model, we identified thermodynamically infeasible cycles 

(TICs) and resolved those using our previously-developed OptFill23 pipeline. For stalk and 

kernel GSMs, we assigned gene-protein-reaction (GPR) relationships to all known reactions 

based on the MaizeCyc databse24. The GPR relationships used Boolean logic to determine if 

enzymes associated with metabolic reactions are encoded by isozymes (OR relationship) or 

protein complexes (AND relationship). We next identified organ-specific reactions and the 

corresponding metabolic pathways by categorizing each gene’s expression level for each organ. 

Next, we reconstructed the stalk and kernel biomass equation based on literature (Supplementary 

Data 2). Upon completing the pathway participation in the organ-specific GSMs, we carried out 

gap-filling (Supplementary Note). 

Finally, iZMA6517 was assembled by connecting organ-specific GSMs via vascular tissues, 

namely phloem and xylem (Fig. 2B). Although phloem and xylem are distinct tissues, the 

direction of the flow of metabolites was sufficient to determine if it was present in either one of 

those. Therefore, the two tissues were combined for simplicity. These vascular tissues will 

facilitate inter-organ crosstalk by translocating metabolites from one organ to another. For 

example, sugars travel from the leaf tissue to other tissues via the vascular tissues. Similarly, 

nutrients, such as nitrate and phosphate, are uptaken by root and distributed to the other organs. 

Supplementary Data 3 has details on inter-organ transfer of metabolites. Overall, iZMA6517 

contains 6517 genes, 5228 unique reactions, and 3007 unique metabolites. Among these, 2305 

reactions (Fig. 2C), 2405 metabolites (Fig. 2D), and 6285 genes (Fig. 2E) were common across 

all organs. 

Next, to assess plant-wide impact of temperature stress, we contextualized iZMA6517 for heat 

and cold stresses using the EXTREAM algorithm (Fig. 2F). The transcriptomics data from the 

seedling were the aggregate data of root, stalk, and leaf. As kernel is a sink, like a previous study 

where it showed that there is a control of assimilates translocation from stalk to kernels25, we 

assumed the metabolism of kernel will be dictated by the aggregate behavior of root, stalk, and 

leaf . Thus, the aggregate transcriptomics data were used to contextualize the model (iZMA6517) 

comprising of root, stalk, kernel, and leaf under heat and cold stress. Previous studies showed 
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control conditions had the highest nutrient uptakes, followed by heat and cold stress26. Once 

these nutrient uptakes patterns were implemented in contextualized iZMA6517s, control and 

cold-stressed plants showed the highest and lowest biomass growth rates, respectively (both 

individual organs and whole plant) (Fig. 2G), supporting previous studies27. Indeed, by 

projecting the aggregate transcriptomics data from seedling to kernel, we were able to predict the 

correct growth rate pattern for kernel in control, heat stress, and cold stress (Fig. 2G). That 

confirms our initial assumption that, as a sink, the kernel metabolism is dictated by other organs 

like root, stalk, and leaf. Thus, the contextualized iZMA6517 were suitable for identifying 

metabolic bottlenecks of temperature stresses. 

Identification of metabolic bottlenecks 

To assess the impact of temperature stress on maize metabolism, we implemented Metabolic 

Bottleneck Analysis (MBA) to contextualized iZMA6517s. MBA expanded the flux space of 

each reaction separately and assessed its impact on the whole plant biomass growth rate. It 

revealed 180 bottleneck reactions under heat stress, of which 70% occurred in leaves, 28% in 

kernels, and 2% in roots (Fig. 3A). These reactions were distributed across purine metabolism, 

pyrimidine metabolism, fatty acid metabolism, the Calvin cycle, and glycolysis (Supplementary 

Fig. 5). Among these 180 reactions, root cytochrome b5 reductase (24%) and acyl-ACP-

hydrolase (24%) increased the plant biomass growth rate the most. Here, percentages indicate 

increase in biomass growth rate after debottlenecking a specific bottleneck reaction, compared to 

the biomass growth rate of corresponding stress condition before debottlenecking. Overall, 19 

reactions increased plant biomass growth rate by more than 10% (Supplementary Fig. 6). 

For cold stress, MBA revealed five different bottleneck reactions Two of these occurred in the 

root, and one each in other organs (Fig. 3B). Among those five reactions, similar to the heat 

stress, cytochrome b5 reductase in roots (182%) and leaves (147%) and acyl-ACP-hydrolase in 

roots (146%) increased the plant biomass growth rate the most. The stalk coniferyl-aldehyde 

dehydrogenase (32%) and the kernel phosphohexomutase (4%) were the other bottleneck 

reactions. 

As reaction thermodynamics is influenced by temperature, we applied Min/Max Driving Force 

(MDF) analysis to pathways containing bottleneck reactions, within the physiological range of 

substrate concentration (0.01 mM to 10 mM)28 to assess the impact of thermodynamics on those 
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pathways (Supplementary Note). The standard Gibbs free energy of reactions was calculated 

(Supplementary Data 4) using the group contribution method29. The root cytochrome b5 

reductase and acyl-ACP-hydrolase were common to both temperature stresses. The reaction 

catalysed by cytochrome b5 reductase is part of the fatty acid biosynthesis pathway (Fig. 3C) and 

impacted the production of 18:1-phosphoglycerate choline and linoleic acid of biomass 

components. MDF analysis indicated that, with an NAD+ concentration greater than 1.1 mM 

(cold stress) and 3.7 mM (heat stress), the fatty acid biosynthesis pathway was 

thermodynamically feasible and the cytochrome b5 reductase had the lowest driving force (Fig. 

3D). Acyl-ACP-hydrolase is involved in the fatty acid biosynthesis pathway and impacted the 

octadecanoic acid of biomass components (Supplementary Fig. 7). MDF analysis again revealed 

that the pathway was thermodynamically feasible when the NAD+ concentration was between 

0.1 to 5.7 mM, while acyl-ACP-hydrolase had the lowest driving force (Supplementary Fig. 8). 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.07.09.548275doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.09.548275
http://creativecommons.org/licenses/by-nd/4.0/


   

Fig. 3. Identification of temperature stress bottlenecks. A) Organ specific bottleneck reactions for heat stress 

(number of reactions is indicated inside the column). B) Organ specific bottleneck reactions for cold stress, (number 

of reactions is indicated inside the column). C) Cytochrome b5 reductase bottleneck in the fatty acid metabolism for 

heat and cold stress. D) Thermodynamic driving force analysis in fatty acid metabolism. E) Pyruvate-phosphate 

dikinase and malate dehydrogenase bottlenecks in the photosynthetic pathway for heat stress. F) Thermodynamic 

driving force analysis of the photosynthetic pathway. 

Coniferyl-aldehyde dehydrogenase involved in the phenylpropanoid biosynthesis pathway 

(Supplementary Fig. 9) in stalk was a cold stress-related bottleneck and impacted the production 

of ferulic acid of the stalk biomass. MDF analysis revealed that, with an NAD+ concentration 

greater than 0.3 mM, the phenylpropanoid biosynthesis pathway became thermodynamically 

infeasible, and coniferyl-aldehyde dehydrogenase had the lowest driving force (Supplementary 
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Fig. 10). Phosphohexomutase of the fructose-mannose biosynthesis pathway in the kernel was a 

cold stress bottleneck (Supplementary Fig. 11). MDF analysis showed that the fructose-mannose 

biosynthesis pathway was thermodynamically feasible only when the concentration of fructose 

6-phosphate was between 2.5 and 5 mM. In this concentration range, phosphohexomutase was 

the reaction with the lowest driving force (Supplementary Fig. 12). 

For heat stress-only metabolic bottlenecks, we focused on pyruvate-phosphate dikinase and 

malate dehydrogenase, both associated with the leaf photosynthetic pathway (Fig. 3E), and 

increased the biomass growth rate by 14% each, followed by cytochrome b5 reductase (24%) 

and acyl-ACP-hydrolase (24%). MDF showed that, with an ATP concentration below 1.8 mM, 

the photosynthetic pathway was thermodynamically infeasible (Fig. 3F). Both pyruvate-

phosphate dikinase and malate dehydrogenase were combined bottlenecks when the ATP 

concentration was between 4.7 and 5.7 mM. A similar analysis was performed by varying the 

concentration of NAD+, revealing photosynthetic pathway was thermodynamically feasible when 

its concentration was between of 0.1 to 5.7 mM. Pyruvate-phosphate dikinase and malate 

dehydrogenase were the combined bottleneck in this range of NAD+ concentration. Thus, the 

MDF analysis connected metabolic bottlenecks with thermodynamic driving forces. Other 

bottleneck reactions for heat stress are listed in Supplementary Data 5. 
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Fig. 4. Maize plant responses to  the AMF R. irregularis. A) Volcano plot of root transcriptomic data for control and 

inoculated plants. B) Volcano plot of leaf transcriptomic data for control and inoculated plants. C) Comparison 
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between root transcriptomic data for control and inoculated plants. D) Comparison between leaf transcriptomic data 

for control and symbiotic conditions. E) Root and leaf transcriptomic data integration using the iZMA6517. F) R. 

irregularis inoculation of maize root. G) Root inoculated contextualized iZMA6517 predicted the pattern of biomass 

growth rate, matched with experimental growth pattern. WP: Whole Plant. H) Picture of plants used for the study 

displaying higher biomass under inoculation conditions compared to control.  I) In the symbiotic interaction, 65% of 

bottlenecks, identified in cold stress, were alleviated. 

Parameter tuning of bottleneck enzymes 

As the relation between bottleneck reactions and thermodynamics was consistent, we explored 

different parameters of corresponding enzymes to understand the nature of the bottlenecks. For 

that, we devised a template-based algorithm, Structure Informed enzyme turnover rate�SI �
k���
, to calculate ���� (Supplementary Data 6) of two common enzymes of both stress 

conditions (cytochrome b5 reductase and acyl-ACP-hydrolase), two enzymes for the heat stress 

(malate dehydrogenase and pyruvate-phosphate dikinase), and one enzyme for cold stress 

(coniferyl-aldehyde dehydrogenase). Using predicted ���� values, we determined the relationship 

between enzyme concentration ��
 and saturation �

, (equation 12), (Supplementary Fig. 13). 

���� of an enzyme may vary depending on the compartmentalization of the enzyme (all other 

information such as ��	���
�� and ∆� are also compartment-specific). Therefore, the accuracy of 

� values largely depends on the computational framework of estimating ����. �� � ���� is based 

on experimental evidence (Supplementary Note) coming from maize or other closely related 

organisms. Thus, we expect a good accuracy of the calculated � values. For all the five enzymes, 

with lower enzyme saturations (0.1-0.2), higher ���� significantly reduced the required enzyme 

concentrations. However, once the enzyme saturation passed 0.6, the effect of different ���� 

became lower. Thus, one strategy to improve temperature stress could be to engineer bottleneck 

enzymes to maintain high saturation by improving its affinity to substrates � 


��

. 

Potential of AMF to alleviate bottlenecks: a proof of concept 

Although fine-tuning between ���� and 
 can help improve bottlenecks, it requires significant 

effort in designing synthetic biology tools. Instead, we can use AMFs, which are well known to 

alleviate different abiotic stresses in plants30. Among these AMFs, the effectiveness of maize 

inoculation with the R. irregularis is well studied6. Therefore, as a proof of concept, we 

generated maize root and leaf transcriptomic data from R. irregularis inoculated maize plants to 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.07.09.548275doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.09.548275
http://creativecommons.org/licenses/by-nd/4.0/


assess the status of bottleneck reactions. In roots, 7769 genes were differentially expressed in 

inoculated plants compared to control plants, among which 4693 were upregulated (Fig. 4A). 

Similarly, 6639 genes were differentially expressed in leaves, among which 3485 were 

upregulated (Fig. 4B). In addition, 1200 and 43 genes showed a log2 fold-change higher than 2 

in roots and leaves, respectively. Gene enrichment analysis was then performed for the root 

genes exhibiting a log2 fold-change higher than 10 (Supplementary Fig. 14). We found an 

enrichment of xylanase inhibitor protein, suggesting protection from microbial xylanase-induced 

hemicellulose degradation of maize roots by R. irregularis. A similar analysis was conducted 

with leaf genes exhibiting a log2 fold-change higher than 2 (supplementary fig. 15). We found a 

significant enrichment of pyruvate dikinase and malate dehydrogenase31. 

We plotted root transcripts for inoculated plants and non-inoculated plants and found a relatively 

low correlation of 0.55, indicating a distinct transcriptional response after inoculation (Fig. 4C). 

Alcohol dehydrogenase and pyruvate decarboxylase were significantly upregulated in the 

symbiosis. For leaves, we found a strong correlation of 0.95, indicating a similar transcriptomic 

response in the plants inoculated with R. irregularis compared to the control (Fig. 4D). 

As leaf and root tissues were most affected by the temperature stress, we used these 

transcriptomics data to reconstruct contextualized iZMA6517s for control and inoculated plants 

using EXTREAM (Fig. 4E). As these models were not constrained for kernel and stalk, it 

enabled us to find all theoretical temperature stress alleviation strategies for these two organs. 

Next, from contextualized models, we found, both whole plant biomass and organ-specific 

biomass growth rates were higher in the inoculated plants (Fig. 4F-H). Subsequently, 

implementing MBA to the symbiosis model showed that all the cold stress bottleneck reactions 

were alleviated. For heat stress, 85 out of 180 (47%) bottleneck reactions were no longer 

bottlenecks following inoculation (Fig. 4I). Moreover, 31 bottleneck reactions (18%) showed 

improvement in inoculated plants. Finally, 64 bottleneck reactions (35%) did not show 

improvement upon inoculation. However, out of those 64 reactions, 62 had a minimal (1-3%) 

impact on biomass growth rate, except for pyruvate kinase in two different pyruvate 2-O-

phosphotransferase of the leaf (8% and 7%), (Supplementary Data 7). Thus, inoculation with R. 

irregularis has the potential to alleviate temperature stress. 

Discussion 
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Climate change, causing temperature stress, is a leading cause of reduced maize production32. 

Here, we introduced iZMA6517, a multi-organ maize GSM, to better understand the maize 

metabolism under temperature stress. Fig. 5 shows the overall workflow of this study. 

 

Fig. 5. Overall workflow of this project. We reconstructed the first ever multi-organ GSM of maize, iZMA6517. We 

integrated heat and cold stress transcriptomics data with iZMA6517 with the EXTREAM. Later, we devised MBA to 
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find metabolic bottlenecks of heat and cold stress conditions. We showed that, metabolic bottlenecks on both 

conditions are guided by thermodynamic principles. We then proposed protein engineering strategies to improve 

metabolic bottlenecks. Finally, we showed that R. irregularis symbiosis with maize root can also alleviate major 

metabolic bottlenecks. 

In first-generation plant GSMs, all organ-specific reactions were combined into a single multi-

compartment model. Example of such GSMs are AraGEM33, C4GEM34, and iRS156335. 

However, these models were unable to simulate inter-organ interactions. The first multi-organ 

GSM was reconstructed for barley7, and subsequently for other plants (see Introduction). 

However, apart from a core arabidopsis GSM10, none of the multi-organ GSMs included root, 

stalk, kernel, and leaf (Supplementary Data 8). iZMA6517 is the only model thus far combining 

these four organ-specific GSMs with finer resolution (Supplementary Fig. 16), making it the 

most comprehensive multi-organ plant GSM. 

The E-flux algorithm predicted accurate root phenotype under nitrogen starvation14. However, it 

could not predict the carbohydrate profile in the leaf (Fig. 1F). We hypothesized that the solution 

space of the E-flux algorithm was overly permissive, resulting in an inaccurate carbohydrate 

profile. Thus, we further restricted the feasible solution space by equally distributing the 

transcript of each gene based on the number of reactions the gene participated in (Supplementary 

Note). The objective function was to minimize the sum of reaction fluxes compared to a 

reference condition, calculated from the transcriptomic data. A similar objective function was 

used in MOMA36. However, MOMA used wild-type flux distribution as the reference to estimate 

flux distribution after gene knockouts. In our case, the purpose of the reference condition was to 

maximize agreement between transcriptomic data and reaction flux. After these modifications, 

the new algorithm, EXTREAM, predicted the correct carbohydrate profile across leaf cross-

sections. 

After contextualizing iZMA6517 with EXTREAM, we devised MBA to find plant-wide 

metabolic bottlenecks. MBA identifies bottleneck reactions in a given metabolic network by 

expanding the flux space of each reaction to a maximum possible value individually and assess 

its impact on the biomass growth rate. Compared to the shadow price analysis, which is a 

metabolite-centric approach, MBA is a reaction-centric approach and better suited for metabolic 

engineering/bottleneck identification purpose. Under heat stress, 180 reactions were identified as 

metabolic bottlenecks, whereas only 5 metabolic bottlenecks were identified under cold stress, 
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revealing a fundamental difference between both stresses. This finding can explain the weak 

transcriptomic correlation between heat and cold stresses (Fig. 1C). MBA indicated that leaf 

tissue hosted most bottleneck reactions under heat stress (Fig. 3A), consistent with previous 

works37. For cold stress, root tissue hosted most bottleneck reactions (Fig. 3A), also confirmed 

by an earlier study38. To further understand both stresses, we analyzed heat stress bottleneck 

reactions and 17% of those (Supplementary Data 9) were associated with NAD+/NADH pair, 

suggesting a relationship between reducing power and heat stress. Additionally, 25% of the 

bottleneck reactions (Supplementary Data 10) were associated with ADP/ATP pairs. Thus, heat 

stress is driven by two major components, reducing power and energy generation. Previous 

studies independently confirmed the effect of reducing power39 and energy generation40 on heat 

stress. However, this work showed the synergistic impact of both metabolic components on heat 

stress. A similar analysis on cold stress bottleneck reactions revealed 60% of those were 

associated with NAD+/NADH (Supplementary Data 11). Surprisingly, none of the reactions 

were related to the ADP/ATP pair. Previous studies also confirmed the effect of reducing power 

on cold stress41. We performed the MDF analysis to find common features behind the interplay 

of reducing power and energy generation. The analysis found all the tested reactions can be the 

thermodynamic bottlenecks in their respective pathways, revealing a multi-faceted characteristic 

of temperature stress, geared by the thermodynamics-reducing power-energy generation axis. 

Literature evidence suggested that cytochrome b5 reductase (one of the two bottleneck enzymes 

on both stresses) of arabidopsis mutant had lower growth than the wild type42. A similar 

observation was made for acyl-ACP-hydrolase (another common bottleneck enzyme under both 

heat and cold stress) for arabidopsis43. These evidences further validate the proposed 

thermodynamics-reducing power-energy generation axis. 

Enzymes are increasingly repurposed by rational design for directed evolution. Enzyme turnover 

rate (����) and saturation �

 are common parameters for such rational design44. A previous 

work45 established a relation among enzyme concentration ��
, ����, and 
. To explore the 

relationship for bottleneck enzymes mentioned in the result section, reliable values of ���� are 

needed, based on which, � can be calculated. There is a deep learning-based algorithm46 that can 

predict ����, however, for maize, the algorithm returned ���� values, not in good agreement with 

the literature (Supplementary Fig. 17-21). Thus, we proposed a structural similarity weightage-

based algorithm (�� � ����), which predicted ���� values of enzymes, close to experimental 
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observations. With the new ���� values, we sampled the different enzyme saturation to calculate 

�. For all the tested enzymes, the effect of ���� was prevalent in the lower 
 (Supplementary 

Fig. 16). However, with the increasing 
, the effect of ���� became less. Hence, a strategy for 

rational enzyme design for alleviating temperature stress can be to implement directed evolution 

for heat/cold stress to fine-tune the relationship between  ���� � 
. 

A practical approach to alleviating abiotic stress can be to inoculate maize root with an AMF 

such as R. irregularis30,47–49. Previous work indicated that AMF inoculated C4 plant species 

exhibited better abiotic stress tolerance through improved quantum yield of PSII, thus providing 

additional electron sinks50. Thus, as a proof of concept, we generated transcriptomic data for 

control and AMF inoculated maize and reconstructed GSMs for both conditions to assess the 

status of bottleneck reactions. Inoculation GSM predicted a higher biomass growth rate for all 

tissues (Fig. 4F). Moreover, we predicted that the inoculation alleviated all cold stress and 65% 

heat stress reactions. We also calculated flux sum, a proxy for metabolite concentration, for 

NAD+ and found 49% (Supplementary Fig. 22) increase in the inoculation condition, indicating 

an additional availability of electron sink provided by the inoculation with R. irregularis, which 

can potentially help maize overcoming the temperature stress. However, R. irregularis symbiosis 

still had bottlenecks from purine, pyruvate, pyrimidine, folate, and fatty acid metabolism 

(Supplementary Data 12, Supplementary Fig. 23). Additional improvements of the plant biomass 

production can be achieved by debottlenecking these reactions. 

Overall, the first muti-organ maize GSM, iZMA6517, with the aid of EXTREAM and MBA, 

dissected the impact of temperature stress on maize. Our analysis revealed three major 

conclusions: (1) Heat and cold stresses are fundamentally different; (2) Both stresses are 

associated with reducing power, while heat stress has additional bottlenecks in energy 

generation; and (3) Inoculation with R. irregularis can be an effective way to alleviate 

temperature stress. Using these inferences, a better temperature stress-tolerant maize ideotype 

with an improved grain yield can be designed. Future work can be extended to elucidate the 

plant-wide impact of different other abiotic stresses and how abiotic stresses can be ameliorated 

with the inoculation of AMF. One such case can be to assess the plant-wide impact of R. 

irregularis under high and low nitrogen conditions. This work is currently underway with 

promising predictions from iZMA6517. 
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METHODS 

K-means clustering analysis 

K-means clustering51 algorithm was used to classify different genes into different clusters. 

Number of clusters was determined using the Elbow method. The whole K-mean clustering was 

implemented in Python, using numpy, pandas, and sklearn modules. Default setting of K-mean 

clustering, mentioned in the sklearn, was not changed in this study. Number of clusters were 

determined using the elbow method (supplementary Fig. 24) 

GSM reconstruction 

A previously published leaf genome-scale model22 was used as a scaffolding to reconstruct the 

stalk and kernel GSMs. These GSMs were later connected with the previously reconstructed 

leaf22 and root14 GSMs through vascular tissue to assemble the iZMA6517. Details can be 

accessed in the supplementary note. 

EXTREAM algorithm 

In this work, we proposed the EXTREAM, where transcript of each gene was equally divided 

based on the number of reactions the gene participated. We also changed the objective function 

which is the minimization of sum of reaction fluxes compared to a reference condition, 

calculated from the transcriptomics data. 

The formulation of EXTREAM is the following: 

��� ������ � ��,��
���
�

 

Subject to, 

� �
,���

�

� 0,  �� � �                           �1
 

��,�
�  ��  ��,���, �! � "              �2
 

��
�����  # $ ��
�����, ���           �3
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Here, ��  is the flux to be calculated for reaction ", ��,��
�� is the reference condition calculated 

from the gene-protein-reaction association for reaction ", �
,�  is the stoichiometric matrix for 

metabolite �, and reaction ", ��,�
� and ��,��� are the upped and lower bound of reaction  ", 

��
����� is the desired biomass growth rate, ��
�����,��� is the maximum possible biomass 

growth rate, and # is fraction between 0 to 1. Supplementary note provides the linear 

reformulation of EXTREAM. 

Metabolic bottleneck analysis 

To determine the metabolic bottleneck in a GSM, we proposed the following algorithm. 

&
''
''
''
( )*+  ��
�����

�,-!./0  01:
� �
���

�

��


� 0,  � � �                           �9

*�  ��  -� , !/5!�6

  �  "                �10

���,���,  ���  ���,���, !�

  �  "     �11
7
88
88
88
9

, �!� � " 

Here *�  is the lower bound reaction ��  and -�  is the upper bound of reaction �� . Both *�  and -�  

were calculated from the transcriptomics data and gene-protein-reaction association. ���,�
� is 

the expanded lower bound of the reaction !� and ���,��� is the expanded upper bound of the 

reaction !�. In this case, we set ���,�
� � �1000 ����

���.!�
 and ���,��� � 1000 ����

���.!�
. We solved 

the optimization problem by maximizing the biomass ��
����� for the new expanded flux space 

of each reaction !� in an iterative manner and then recorded the biomass growth rate. From this 

biomass growth rate collections, we can check for which !� biomass growth rate increased 

significantly. Then that !� can be considered as the metabolic bottleneck of a given metabolic 

network. 

Structure informed :"#$ prediction (SI-:"#$)  

We calculated the ���� through scrapping experimental ���� values from SABIO-RK52, structural 

modeling of enzyme through RGN253, tertiary structure collection of experimentally resolved 

enzymes, and structural similarity weightage calculation. The protocol can be accessed in the 

supplementary note along with the validation (supplementary fig. 17-21). The following 
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equation45 was used to determine the relationship between enzyme concentration ��
 and 

saturation �

: 

� � ��	���
��

����. <1 � .∆&
'(=

$ 1

          �12
 

Here, ∆� values were collected from the corresponding MDF analysis, and ��	���
�� were 

collected by solving contextualized iZMA6517 for heat and/or cold stress.  

R. irregularis symbiosis of maize root 

The maize line used in this study is B73. The fungal strain used is the highest quality of purity 

strain Rhizophagus irregularis DAOM197198 (Agronutrition, Montpellier, France). In all 

experiments, maize seeds were surface-sterilized as follows. Seeds were first incubated in 

ethanol for 5 minutes at 28°C followed by rinsing with distilled water. Then the seeds were 

incubated for 45 minutes in a 15% commercial bleach solution with 0.01% Triton x100 then 

rinsed in distilled water. They were placed on wet sterile Watman paper in Petri dishes closed 

with parafilm and incubated in the dark for 48-72h at 20°C. Germinated seeds were selected and 

then sown in the experimental setup. The experimental design and the different steps of growing 

and harvesting for RNAseq experiment, performed in the year of 2020, are indicated in 

Supplementary Fig. 25. Further details on plant growth conditions and inoculation, harvesting 

procedures, RNA extraction for RNAseq, bioinformatic analysis, and raw data cleaning can be 

accessed in the supplementary notes.  

DATA AVAILABILTY 

iZMA6517, EXTREAM, and MBA codes are available in this GitHub directory: 

https://github.com/ssbio/iZMA6517.  SI-���� codes are available in this GitHub  directory: 

https://github.com/ChowdhuryRatul/kcat_iZMA6517. RNAseq project is deposited in Gene 

Expression Omnibus (GSE235654). All steps of the experiment, from growth conditions to 

bioinformatic analyses, were detailed in CATdb: http://tools.ips2.u-psud.fr.fr/CATdb/; Project: 

NGS2021_19_Rhizophagus according to the MINSEQE. Nutrients for the plant growth can be 

accessed in Supplementary Data 13. 
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