bioRxiv preprint doi: https://doi.org/10.1101/2023.07.09.548275; this version posted July 10, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

M ulti-organ M etabolic Model of Zea mays Connects Temper ature Stress

with Ther modynamics-Reducing Power-Ener gy Generation Axis

Niaz Bahar Chowdhury®, Berengere Decouard?, Isabelle Quillere?, Martine Rigault?, Karuna
Anna Sgjeevan®, Bibek Acharya®, Ratul Chowdhury?, Bertrand Hirel*, Alia Dellagi?, Costas
Maranas’, and Rajib Saha*"

! Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United

States of America

2 Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (1JPB), 78000,

Versalles, France.

% Chemical and Biological Engineering, lowa State University, Ames, |A, United States of

America

* Centre de Versailles-Grignon, Institut National de Recherche pour I’ Agriculture, Versailles,

France.

> Chemical Engineering, The Pennsylvania State University, University Park, PA, United States

of America

" Address correspondence to Rgjib Saha, rssha2@unl.edu


https://doi.org/10.1101/2023.07.09.548275
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.09.548275; this version posted July 10, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

ABSTRACT

Global climate change has severely impacted maize productivity. A holistic understanding of
metabolic crosstalk among its organsis essential to address thisissue. Thus, we reconstructed the
first multi-organ maize genome-scale metabolic model, iZMA6517, and contextualized it with
heat and cold stress-related transcriptomics data using the novel EXpression disTributed
REAction flux Measurement (EXTREAM) algorithm. Furthermore, implementing metabolic
bottleneck analysis on contextualized models revealed fundamental differences between these
stresses. While both stresses had reducing power bottlenecks, heat stress had additional energy
generation bottlenecks. To tie these signatures, we performed thermodynamic driving force
analysis, revealing thermodynamics-reducing power-energy generation axis dictating the nature
of temperature stress responses. Thus, for global food security, a temperature-tolerant maize
ideotype can be engineered by leveraging the proposed thermodynamics-reducing power-energy
generation axis. We experimentally inoculated maize root with a beneficial mycorrhizal fungus,
Rhizophagus irregularis, and as a proof of concept demonstrated its potential to alleviate
temperature stress. In summary, this study will guide the engineering effort of temperature stress-

tolerant maize ideotypes.

Temperature stress, resulting from global climate change, can reduce maize productivity by 7-
18%". Thus, there is a pressing need to develop high-yielding maize genotypes capable of
withstanding temperature stress. A metabolism-centric approach can be useful to achieve that.
Thus, an in-depth understanding of the impact of temperature on plant-wide metabolism is
required. Such impacts include, but are not limited to, reduced photosynthesis and carbohydrate
synthesis in leaves’, reduced starch synthesis in kernels’, upregulation of amino acid and
downregulation of diterpenoid metabolism in root*, and lignin biosynthesis in stalks®. Although
these studies were informative, a holistic plant-wide understanding of temperature stress
responses, delineating the interactions between vegetative and reproductive organs at key stages
of plant development, is still in its infancy. Moreover, the plant-wide effect of well-known
beneficial arbuscular mycorrhizal fungi (AMF), such as Rhizophagus irregularis’, has not been
evaluated for its potential to aleviate temperature stress on maize growth. A multi-organ
genome-scale metabolic model (GSM) is suited to address these issues. The first multi-organ

plant GSM was reconstructed for barley’, subsequently for barrelclover®, arabidopsis™,
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soybean™, foxtail millet”?, and rice®®. These models were useful to characterize inter-organs
crosstalk under various conditions. Thus, for a holistic understanding of plant-wide temperature
stress responses of maize, we reconstructed the first multi-organ maize GSM, iZMAG6517,

integrating comprehensive root, stalk, kernel, and leaf GSMs.

Contextualization of GSM by integrating ‘omics data is a crucial step to connect metabolism to
phenotypes. There are two classes of agorithms for contextualization: valve approaches
(assuming reactions fluxes and transcript levels are proportional) and switch approaches
(assuming reaction are turned on/off based on transcript levels). Earlier studies discussed the
suitability of both approaches™, showing E-flux algorithm™ (a valve approach) capturing better
phenotypic predictions. However, E-flux algorithm can predict unrealistic phenotypes too™.
Thereby, to improve the phenotypic prediction accuracy, there is a need to develop a nove valve
approach which can address this limiation. To achieve this, we proposed the EXTREAM
algorithm. Moreover, we propose a Metabolic Bottleneck Analysis (MBA) algorithm to pinpoint
metabolic bottlenecksin iZMAB517.

In this study, we combined iZMA6517, EXTREAM, and MBA to dissect plant-wide responses of
temperature stress by pinpointing metabolic bottlenecks in different organs and to determine if
responses to cold and heat share common characteristics. We found reducing power capacity had
a pivotal role in responses to both stresses. Additionally, heat stress responses incurred energy
generation bottlenecks. Thermodynamic driving force analysis of bottleneck pathways
highlighted the role of thermodynamics-reducing power-energy generation axis when plants are
subjected to temperature stress. Finaly, as a proof of concept, we extended our analysis by
integrating maize “omics’ data when the plant is inoculated with the AMF R. irregularis in
IZMAG6517 and found that the inoculation can alleviate temperature stresses. Ultimately, this

study could offer a blueprint to engineer robust abiotic stress-tolerant maize ideotypes.
RESULTS
Maize responses to heat and cold stress

To decipher maize responses to temperature stress, heat and cold-stress-related transcriptomic
data of B73 genotype were collected from the literature®’. Seedlings were subjected to cold (5°C
for 16 hours) or heat (50°C for 4 hours) stresses, compared to a control condition (24°C). All
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plants were grown in the autoclaved field soil. While heat stress drastically affected
transcriptional response compared to control conditions (Fig. 1A), the effect of cold stress was
similar to control conditions (Fig. 1B), indicating a difference of plant adaptations to temperature
stresses (Fig. 1C, D). To explore the components of temperature stresses, we performed K-means
clustering (Fig. 1E) on both heat and cold stress data, identifying four distinct clusters followed
by gene enrichment analyses (Supplementary Fig. 1-4). These anadyses revealed that
photosynthesis-related genes (cluster 2) were upregulated under both stress conditions. In
addition, heat shock genes (cluster 3) were upregulated in heat stress conditions. Cluster 1 and 2

revealed genes associated with central carbon and secondary metabolism, respectively.

As photosynthesis is one of the core metabolic features of plants, cluster 2 was examined in
further detail. A previous study indicated a similar high transcriptional response of
photosynthetic genes under temperature stress'®, However, photosynthetic activity of plants, as
measured through decreased rubisco activation', decreases under temperature stress. This
suggests potential metabolic bottlenecks in plant tissues preventing higher photosynthetic
activity in leaves A contextualized multi-organ GSM of maize can identify such bottlenecks.
There may also be bottlenecks between transcription and trandation, such as mMRNA degradation,
however, that would be outside of the scope of GSM. Next, we will design a suitable algorithm

for contextualization of GSM.
EXTREAM algorithm

Our previous study used the E-flux algorithm?® to accurately predict the maize root phenotype
under nitrogen starvation based on transcriptomic data. This work involved photosynthetic
tissues, having additional metabolic complexities compared to roots. Thereby, the efficacy of the
E-flux algorithm was re-assessed.

In a previous study, the maize leaf was divided into 15 cross-sections, and generated
transcriptomics data for each of these sections®. For this study, we collected transcriptomics data
of cross-sections 1, 5, and 15 based on the greenness of the leaf blade (less green to greener).
These data were integrated in the lesf GSM# using E-flux algorithm. The highest growth ratesin
maize leaves occur at the base of the leaf, where new cells are actively dividing and e ongating.
Asthe cells grow toward the tip, they undergo expansion and maturation, leading to a decrease in
the growth rate. Eventually, the cells at the tip stop elongating altogether. The contextualized |eaf
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model correctly predicted higher biomass growth rate of leaf base compared to lesf tip (Fig. 1F).
The modd also predicted rate of carbon fixation correctly, however, it incorrectly predicted the
starch distribution profile along the leaf (Fig. 1F). Thus, modification of the E-flux algorithm
was required to fit the starch distribution profile.

To achieve this, we proposed the EXTREAM algorithm, which equally distributed transcript
levels for each gene based on the number of cognate biochemical reactions. Once we
contextualized the leaf model with the EXTREAM algorithm, it predicted the correct biomass
growth rate, carbon fixation, and starch distribution profiles along the selected leaf sections (Fig.
1F). Thus, EXTREAM agorithm can be effective in modeling plant organs, including
photosynthetic organs.
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Fig. 1. Transcriptomics data analysis and introduction to EXTREAM algorithm. A) Scatter plot of control and cold
stress transcriptomics data. B) Scatter plot of control and heat stress transcriptomics data. C) Scatter plot of heat and
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cold stresses transcriptomics data. D) Correlation matrix among control, heat stress, and cold stress (95% confidence
interval, two-tail test). E) K-means clustering analysis of heat and cold stress data. F) E-flux and EXTREAM both
predicted correct biomass production and carbon fixation for three selected cross sections of leaf, whereas only
EXTREAM predicted the correct leaf starch content.

M ulti-or gan genome-scale metabolic model of maize

In this study, we reconstructed the first multi-organ maize GSM, iZMA6517 (Fig. 2A) for the
B73 genotype. The model is based on the previously reconstructed root and leaf-specific
GSMs"?, and newly reconstructed stalk and kernel GSMs, connected via vascular tissues

(Supplementary Data 1).
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Fig. 2. Overview of iZMAB517 recongtruction and contextualization. A) Individual metabolic models for roct, stalk,

kernel, and leaf. B) Connection between individual tissues via the vascular tissues. C) Comparison of reactions
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among the individual GSMs. D) Comparison of metabolites among the individual GSMs. E) Comparison of unique
genes among the individual GSMs. F) Incorporating heat and cold stress related transcriptomics data with the
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iZMAB517 using the EXTREAM algorithm. G) EXTREAM algorithm predicted lower biomass production in each
organ and in the whole plant (WP) during the cold stress compared to the heat stress.

To further refine our existing leaf model, we identified thermodynamically infeasible cycles
(TICs) and resolved those using our previously-developed OptFill® pipeline. For stalk and
kernd GSMs, we assigned gene-protein-reaction (GPR) relationships to all known reactions
based on the MaizeCyc databse®. The GPR relationships used Boolean logic to determine if
enzymes associated with metabolic reactions are encoded by isozymes (OR relationship) or
protein complexes (AND relationship). We next identified organ-specific reactions and the
corresponding metabolic pathways by categorizing each gene's expression level for each organ.
Next, we reconstructed the stalk and kernel biomass equation based on literature (Supplementary
Data 2). Upon completing the pathway participation in the organ-specific GSMs, we carried out
gap-filling (Supplementary Note).

Finally, iZMAG6517 was assembled by connecting organ-specific GSMs via vascular tissues,
namely phloem and xylem (Fig. 2B). Although phloem and xylem are distinct tissues, the
direction of the flow of metabolites was sufficient to determine if it was present in either one of
those. Therefore, the two tissues were combined for simplicity. These vascular tissues will
facilitate inter-organ crosstalk by translocating metabolites from one organ to another. For
example, sugars travel from the leaf tissue to other tissues via the vascular tissues. Similarly,
nutrients, such as nitrate and phosphate, are uptaken by root and distributed to the other organs.
Supplementary Data 3 has details on inter-organ transfer of metabolites. Overall, iZMA6517
contains 6517 genes, 5228 unique reactions, and 3007 unique metabolites. Among these, 2305
reactions (Fig. 2C), 2405 metabolites (Fig. 2D), and 6285 genes (Fig. 2E) were common across

all organs.

Next, to assess plant-wide impact of temperature stress, we contextualized iZMA6517 for heat
and cold stresses using the EXTREAM algorithm (Fig. 2F). The transcriptomics data from the
seedling were the aggregate data of root, stalk, and leaf. As kernel is a sink, like a previous study
where it showed that there is a control of assimilates translocation from stalk to kernels®, we
assumed the metabolism of kernel will be dictated by the aggregate behavior of root, stalk, and
leaf . Thus, the aggregate transcriptomics data were used to contextualize the model (iIZMA6517)
comprising of root, stalk, kernel, and leaf under heat and cold stress. Previous studies showed
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control conditions had the highest nutrient uptakes, followed by heat and cold stress®®. Once
these nutrient uptakes patterns were implemented in contextualized iZMAG517s, control and
cold-stressed plants showed the highest and lowest biomass growth rates, respectively (both
individual organs and whole plant) (Fig. 2G), supporting previous studies”. Indeed, by
projecting the aggregate transcriptomics data from seedling to kernel, we were able to predict the
correct growth rate pattern for kernel in control, heat stress, and cold stress (Fig. 2G). That
confirms our initial assumption that, as a sink, the kernel metabolism is dictated by other organs
like root, stalk, and leaf. Thus, the contextualized iZMA6517 were suitable for identifying

metabolic bottlenecks of temperature stresses.
I dentification of metabolic bottlenecks

To assess the impact of temperature stress on maize metabolism, we implemented Metabolic
Bottleneck Analysis (MBA) to contextualized iZMA6517s. MBA expanded the flux space of
each reaction separately and assessed its impact on the whole plant biomass growth rate. It
revealed 180 bottleneck reactions under heat stress, of which 70% occurred in leaves, 28% in
kernels, and 2% in roots (Fig. 3A). These reactions were distributed across purine metabolism,
pyrimidine metabolism, fatty acid metabolism, the Calvin cycle, and glycolysis (Supplementary
Fig. 5). Among these 180 reactions, root cytochrome b5 reductase (24%) and acyl-ACP-
hydrolase (24%) increased the plant biomass growth rate the most. Here, percentages indicate
increase in biomass growth rate after debottlenecking a specific bottleneck reaction, compared to
the biomass growth rate of corresponding stress condition before debottlenecking. Overall, 19
reactions increased plant biomass growth rate by more than 10% (Supplementary Fig. 6).

For cold stress, MBA revedled five different bottleneck reactions Two of these occurred in the
root, and one each in other organs (Fig. 3B). Among those five reactions, similar to the heat
stress, cytochrome b5 reductase in roots (182%) and leaves (147%) and acyl-ACP-hydrolase in
roots (146%) increased the plant biomass growth rate the most. The stalk coniferyl-aldehyde
dehydrogenase (32%) and the kernel phosphohexomutase (4%) were the other bottleneck

reactions.

As reaction thermodynamics is influenced by temperature, we applied Min/Max Driving Force
(MDF) analysis to pathways containing bottleneck reactions, within the physiological range of
substrate concentration (0.01 mM to 10 mM)? to assess the impact of thermodynamics on those
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pathways (Supplementary Note). The standard Gibbs free energy of reactions was calculated
(Supplementary Data 4) using the group contribution method®. The root cytochrome b5
reductase and acyl-ACP-hydrolase were common to both temperature stresses. The reaction
catalysed by cytochrome b5 reductaseis part of the fatty acid biosynthesis pathway (Fig. 3C) and
impacted the production of 18:1-phosphoglycerate choline and linoleic acid of biomass
components. MDF analysis indicated that, with an NAD" concentration greater than 1.1 mM
(cold stress) and 3.7 mM (heat stress), the fatty acid biosynthesis pathway was
thermodynamically feasible and the cytochrome b5 reductase had the lowest driving force (Fig.
3D). Acyl-ACP-hydrolase is involved in the fatty acid biosynthesis pathway and impacted the
octadecanoic acid of biomass components (Supplementary Fig. 7). MDF analysis again revealed
that the pathway was thermodynamically feasible when the NAD" concentration was between

0.1 to 5.7 mM, while acyl-ACP-hydrolase had the lowest driving force (Supplementary Fig. 8).
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Fig. 3. Identification of temperature stress bottlenecks. A) Organ specific bottleneck reactions for heat stress
(number of reactionsis indicated inside the column). B) Organ specific bottleneck reactions for cold stress, (number
of reactions isindicated inside the column). C) Cytochrome b5 reductase bottleneck in the fatty acid metabolism for
heat and cold gress. D) Thermodynamic driving force analysis in fatty acid metabolism. E) Pyruvate-phosphate
dikinase and malate dehydrogenase bottlenecks in the photosynthetic pathway for heat stress. F) Thermodynamic
driving force analysis of the photosynthetic pathway.

Coniferyl-aldehyde dehydrogenase involved in the phenylpropanoid biosynthesis pathway
(Supplementary Fig. 9) in stalk was a cold stress-related bottleneck and impacted the production
of ferulic acid of the stalk biomass. MDF analysis revealed that, with an NAD" concentration
greater than 0.3 mM, the phenylpropanoid biosynthesis pathway became thermodynamically
infeasible, and coniferyl-aldehyde dehydrogenase had the lowest driving force (Supplementary
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Fig. 10). Phosphohexomutase of the fructose-mannose biosynthesis pathway in the kernel was a
cold stress bottleneck (Supplementary Fig. 11). MDF analysis showed that the fructose-mannose
biosynthesis pathway was thermodynamically feasible only when the concentration of fructose
6-phosphate was between 2.5 and 5 mM. In this concentration range, phosphohexomutase was

the reaction with the lowest driving force (Supplementary Fig. 12).

For heat stress-only metabolic bottlenecks, we focused on pyruvate-phosphate dikinase and
malate dehydrogenase, both associated with the leaf photosynthetic pathway (Fig. 3E), and
increased the biomass growth rate by 14% each, followed by cytochrome b5 reductase (24%)
and acyl-ACP-hydrolase (24%). MDF showed that, with an ATP concentration below 1.8 mM,
the photosynthetic pathway was thermodynamically infeasible (Fig. 3F). Both pyruvate-
phosphate dikinase and malate dehydrogenase were combined bottlenecks when the ATP
concentration was between 4.7 and 5.7 mM. A similar analysis was performed by varying the
concentration of NAD", revealing photosynthetic pathway was thermodynamically feasible when
its concentration was between of 0.1 to 5.7 mM. Pyruvate-phosphate dikinase and malate
dehydrogenase were the combined bottleneck in this range of NAD" concentration. Thus, the
MDF analysis connected metabolic bottlenecks with thermodynamic driving forces. Other

bottleneck reactions for heat stress are listed in Supplementary Data 5.
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inoculated plants. B) Volcano plot of leaf transcriptomic data for control and inoculated plants. C) Comparison
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between root transcriptomic data for control and inoculated plants. D) Comparison between leaf transcriptomic data
for control and symbiotic conditions. E) Root and leaf transcriptomic data integration using the iZMA6517. F) R.
irregularisinoculation of maize root. G) Root inoculated contextualized iZMA6517 predicted the pattern of biomass
growth rate, matched with experimental growth pattern. WP: Whole Plant. H) Picture of plants used for the study
displaying higher biomass under inoculation conditions compared to control. 1) In the symbiotic interaction, 65% of

bottlenecks, identified in cold stress, were aleviated.
Parameter tuning of bottleneck enzymes

As the relation between bottleneck reactions and thermodynamics was consistent, we explored
different parameters of corresponding enzymes to understand the nature of the bottlenecks. For
that, we devised a template-based agorithm, Structure Informed enzyme turnover rate(SI —
k.at), to calculate k... (Supplementary Data 6) of two common enzymes of both stress
conditions (cytochrome b5 reductase and acyl-ACP-hydrolase), two enzymes for the heat stress
(malate dehydrogenase and pyruvate-phosphate dikinase), and one enzyme for cold stress
(coniferyl-aldehyde dehydrogenase). Using predicted k., values, we determined the relationship
between enzyme concentration (E) and saturation (K), (equation 12), (Supplementary Fig. 13).
k.4 Of an enzyme may vary depending on the compartmentalization of the enzyme (all other
information such as v, .,.+ion @d AG are also compartment-specific). Therefore, the accuracy of
E values largely depends on the computational framework of estimating k.,:. ST — k. 1S based
on experimental evidence (Supplementary Note) coming from maize or other closely related
organisms. Thus, we expect a good accuracy of the calculated E values. For al the five enzymes,
with lower enzyme saturations (0.1-0.2), higher k., significantly reduced the required enzyme
concentrations. However, once the enzyme saturation passed 0.6, the effect of different k_,;

became lower. Thus, one strategy to improve temperature stress could be to engineer bottleneck

enzymes to maintain high saturation by improving its affinity to substrates (ki).

Potential of AMF to alleviate bottlenecks: a proof of concept

Although fine-tuning between k... and K can help improve bottlenecks, it requires significant
effort in designing synthetic biology tools. Instead, we can use AMFs, which are well known to
aleviate different abiotic stresses in plants®. Among these AMFs, the effectiveness of maize
inoculation with the R. irregularis is well studied®. Therefore, as a proof of concept, we

generated maize root and leaf transcriptomic data from R. irregularis inoculated maize plants to
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assess the status of bottleneck reactions. In roots, 7769 genes were differentially expressed in
inoculated plants compared to control plants, among which 4693 were upregulated (Fig. 4A).
Similarly, 6639 genes were differentially expressed in leaves, among which 3485 were
upregulated (Fig. 4B). In addition, 1200 and 43 genes showed a log2 fold-change higher than 2
in roots and leaves, respectively. Gene enrichment analysis was then performed for the root
genes exhibiting a log2 fold-change higher than 10 (Supplementary Fig. 14). We found an
enrichment of xylanase inhibitor protein, suggesting protection from microbial xylanase-induced
hemicellulose degradation of maize roots by R. irregularis. A similar analysis was conducted
with leaf genes exhibiting a log2 fold-change higher than 2 (supplementary fig. 15). We found a
significant enrichment of pyruvate dikinase and malate dehydrogenase™.

We plotted root transcripts for inoculated plants and non-inoculated plants and found a relatively
low-correlation of 0.55, indicating a distinct transcriptional response after inoculation (Fig. 4C).
Alcohol dehydrogenase and pyruvate decarboxylase were significantly upregulated in the
symbiosis. For leaves, we found a strong correlation of 0.95, indicating a sSimilar transcriptomic

response in the plants inoculated with R. irregularis compared to the control (Fig. 4D).

As leaf and root tissues were most affected by the temperature stress, we used these
transcriptomics data to reconstruct contextualized iZMA6517s for control and inoculated plants
using EXTREAM (Fig. 4E). As these models were not constrained for kerne and stalk, it
enabled us to find all theoretical temperature stress alleviation strategies for these two organs.
Next, from contextualized models, we found, both whole plant biomass and organ-specific
biomass growth rates were higher in the inoculated plants (Fig. 4F-H). Subsequently,
implementing MBA to the symbiosis model showed that all the cold stress bottleneck reactions
were alleviated. For heat stress, 85 out of 180 (47%) bottleneck reactions were no longer
bottlenecks following inoculation (Fig. 41). Moreover, 31 bottleneck reactions (18%) showed
improvement in inoculated plants. Finaly, 64 bottleneck reactions (35%) did not show
improvement upon inoculation. However, out of those 64 reactions, 62 had a minimal (1-3%)
impact on biomass growth rate, except for pyruvate kinase in two different pyruvate 2-O-
phosphotransferase of the leaf (8% and 7%), (Supplementary Data 7). Thus, inoculation with R.

irregularis hasthe potential to alleviate temperature stress.

Discussion
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Climate change, causing temperature stress, is a leading cause of reduced maize production®.
Here, we introduced iZMAG6517, a multi-organ maize GSM, to better understand the maize

metabolism under temperature stress. Fig. 5 shows the overall workflow of this study.
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Fig. 5. Overall workflow of this project. We reconstructed the first ever multi-organ GSM of maize, iZMA6517. We
integrated heat and cold stress transcriptomics data with iZMA6517 with the EXTREAM. Later, we devised MBA to
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find metabolic bottlenecks of heat and cold stress conditions. We showed that, metabolic bottlenecks on both
conditions are guided by thermodynamic principles. We then proposed protein engineering strategies to improve
metabolic bottlenecks. Finally, we showed that R. irregularis symbiosis with maize root can aso alleviate major
metabolic bottlenecks.

In first-generation plant GSMs, all organ-specific reactions were combined into a single multi-
compartment model. Example of such GSMs are AraGEM®, CAGEM*, and iRS1563%.
However, these models were unable to simulate inter-organ interactions. The first multi-organ
GSM was reconstructed for barley’, and subsequently for other plants (see Introduction).
However, apart from a core arabidopsis GSM™, none of the multi-organ GSMs included root,
stalk, kernel, and leaf (Supplementary Data 8). iZMAG6517 is the only model thus far combining
these four organ-specific GSMs with finer resolution (Supplementary Fig. 16), making it the

most comprehensive multi-organ plant GSM.

The E-flux algorithm predicted accurate root phenotype under nitrogen starvation. However, it
could not predict the carbohydrate profile in the leaf (Fig. 1F). We hypothesized that the solution
space of the E-flux algorithm was overly permissive, resulting in an inaccurate carbohydrate
profile. Thus, we further restricted the feasible solution space by equally distributing the
transcript of each gene based on the number of reactions the gene participated in (Supplementary
Note). The objective function was to minimize the sum of reaction fluxes compared to a
reference condition, calculated from the transcriptomic data. A similar objective function was
used in MOMA®*. However, MOMA used wild-type flux distribution as the reference to estimate
flux distribution after gene knockouts. In our case, the purpose of the reference condition was to
maximize agreement between transcriptomic data and reaction flux. After these modifications,
the new algorithm, EXTREAM, predicted the correct carbohydrate profile across leaf cross-
sections.

After contextualizingiZMAG6517 with EXTREAM, we devised MBA to find plant-wide
metabolic bottlenecks. MBA identifies bottleneck reactions in a given metabolic network by
expanding the flux space of each reaction to a maximum possible value individually and assess
its impact on the biomass growth rate. Compared to the shadow price analysis, which is a
metabolite-centric approach, MBA is a reaction-centric approach and better suited for metabolic
engineering/bottleneck identification purpose. Under heat stress, 180 reactions were identified as
metabolic bottlenecks, whereas only 5 metabolic bottlenecks were identified under cold stress,
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revealing a fundamental difference between both stresses. This finding can explain the weak
transcriptomic correlation between heat and cold stresses (Fig. 1C). MBA indicated that leaf
tissue hosted most bottleneck reactions under heat stress (Fig. 3A), consistent with previous
works®’. For cold stress, root tissue hosted most bottleneck reactions (Fig. 3A), also confirmed
by an earlier study®®. To further understand both stresses, we analyzed heat stress bottleneck
reactions and 17% of those (Supplementary Data 9) were associated with NAD+/NADH pair,
suggesting a relationship between reducing power and heat stress. Additionally, 25% of the
bottleneck reactions (Supplementary Data 10) were associated with ADP/ATP pairs. Thus, heat
stress is driven by two magor components, reducing power and energy generation. Previous
studies independently confirmed the effect of reducing power® and energy generation® on heat
stress. However, this work showed the synergistic impact of both metabolic components on heat
stress. A similar analysis on cold stress bottleneck reactions revealed 60% of those were
associated with NAD+/NADH (Supplementary Data 11). Surprisingly, none of the reactions
were related to the ADP/ATP pair. Previous studies also confirmed the effect of reducing power
on cold stress*. We performed the MDF analysis to find common features behind the interplay
of reducing power and energy generation. The analysis found all the tested reactions can be the
thermodynamic bottlenecks in their respective pathways, revealing a multi-faceted characteristic
of temperature stress, geared by the thermodynamics-reducing power-energy generation axis.
Literature evidence suggested that cytochrome b5 reductase (one of the two bottleneck enzymes
on both stresses) of arabidopsis mutant had lower growth than the wild type®. A similar
observation was made for acyl-ACP-hydrolase (another common bottleneck enzyme under both
heat and cold stress) for arabidopsis®™. These evidences further validate the proposed

thermodynamics-reducing power-energy generation axis.

Enzymes are increasingly repurposed by rational design for directed evolution. Enzyme turnover
rate (k.,;) and saturation (K) are common parameters for such rational design®. A previous
work® established a relation among enzyme concentration (E), k..., and K. To explore the
relationship for bottleneck enzymes mentioned in the result section, reliable values of k.., are
needed, based on which, E can be calculated. Thereis a deep learning-based algorithm* that can
predict k..,., however, for maize, the algorithm returned k., values, not in good agreement with
the literature (Supplementary Fig. 17-21). Thus, we proposed a structural similarity weightage-
based algorithm (ST — k_,;), which predicted k.., values of enzymes, close to experimental
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observations. With the new k... values, we sampled the different enzyme saturation to calculate
E. For al the tested enzymes, the effect of k., was prevalent in the lower K (Supplementary
Fig. 16). However, with the increasing K, the effect of k., became less. Hence, a strategy for
rational enzyme design for alleviating temperature stress can be to implement directed evolution
for heat/cold stress to fine-tune the relationship between k... — K.

A practical approach to aleviating abiotic stress can be to inoculate maize root with an AMF
such as R. irregularis®* . Previous work indicated that AMF inoculated C, plant species
exhibited better abiotic stress tolerance through improved quantum yield of PSII, thus providing
additional electron sinks™®. Thus, as a proof of concept, we generated transcriptomic data for
control and AMF inoculated maize and reconstructed GSMs for both conditions to assess the
status of bottleneck reactions. Inoculation GSM predicted a higher biomass growth rate for all
tissues (Fig. 4F). Moreover, we predicted that the inoculation aleviated all cold stress and 65%
heat stress reactions. We also calculated flux sum, a proxy for metabolite concentration, for
NAD+ and found 49% (Supplementary Fig. 22) increase in the inoculation condition, indicating
an additional availability of electron sink provided by the inoculation with R. irregularis, which
can potentially help maize overcoming the temperature stress. However, R. irregularis symbiosis
still had bottlenecks from purine, pyruvate, pyrimidine, folate, and fatty acid metabolism
(Supplementary Data 12, Supplementary Fig. 23). Additional improvements of the plant biomass

production can be achieved by debottlenecking these reactions.

Overdl, the first muti-organ maize GSM, iZMA6517, with the aid of EXTREAM and MBA,
dissected the impact of temperature stress on maize. Our analysis revealed three maor
conclusions. (1) Heat and cold stresses are fundamentally different; (2) Both stresses are
associated with reducing power, while heat stress has additional bottlenecks in energy
generation; and (3) Inoculation withR. irregulariscan be an effective way to alleviate
temperature stress. Using these inferences, a better temperature stress-tolerant maize ideotype
with an improved grain yield can be designed. Future work can be extended to elucidate the
plant-wide impact of different other abiotic stresses and how abiotic stresses can be ameliorated
with the inoculation of AMF. One such case can be to assess the plant-wide impact of R.
irregularis under high and low nitrogen conditions. This work is currently underway with
promising predictions from iZMA6517.
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METHODS
K-means clustering analysis

K-means clustering® algorithm was used to classify different genes into different clusters.
Number of clusters was determined using the Elbow method. The whole K-mean clustering was
implemented in Python, using numpy, pandas, and sklearn modules. Default setting of K-mean
clustering, mentioned in the sklearn, was not changed in this study. Number of clusters were

determined using the elbow method (supplementary Fig. 24)
GSM reconstruction

A previously published leaf genome-scale model® was used as a scaffolding to reconstruct the
stalk and kernd GSMs. These GSMs were later connected with the previously reconstructed
leaf? and root* GSMs through vascular tissue to assemble the iZMA6517. Details can be

accessed in the supplementary note.
EXTREAM algorithm

In this work, we proposed the EXTREAM, where transcript of each gene was equally divided
based on the number of reactions the gene participated. We also changed the objective function
which is the minimization of sum of reaction fluxes compared to a reference condition,

calculated from the transcriptomics data.

The formulation of EXTREAM isthefollowing:
min > ([67] = vjomics)
J
Subject to,

> Sy =0 viel )
J

vj,min < vj < vj,maxrvj € ] (2)

Ubiomass < f X vbiomass, max (3)
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Here, v; isthe flux to be calculated for reaction J, v; ,mics 1S the reference condition calculated
from the gene-protein-reaction association for reaction J, S; ; is the stoichiometric matrix for
metabolite I, and reaction J, v; j;, and v;,,4, are the upped and lower bound of reaction J,
Vpiomass 1S the desired biomass growth rate, vp;omassmax 1S the maximum possible biomass
growth rate, and f is fraction between O to 1. Supplementary note provides the linear
reformulation of EXTREAM.

Metabolic bottleneck analysis

To determine the metabolic bottleneck in a GSM, we proposed the following algorithm.

Max Ubiomass
Subject to:
m
25111’1 =0, |, vj'ey
j=1
@ <v; <b,j/{'} €] (10)
Lv] min, < v]’ < vj’,max'] € ] (11)_

Here a; is the lower bound reaction v; and b; is the upper bound of reaction v;. Both a; and b;
were calculated from the transcriptomics data and gene-protein-reaction association. v;r ,,,, 1S

the expanded lower bound of the reaction j* and v;r,,,, is the expanded upper bound of the

reaction j'. In this case, we St vy, = —1000— 0L and v = 1000 mimol - We solved

' min j',max

the optimization problem by maximizing the biomass v;;,,,,4ss fOr the new expanded flux space
of each reaction j' in an iterative manner and then recorded the biomass growth rate. From this
biomass growth rate collections, we can check for which j' biomass growth rate increased
significantly. Then that j' can be considered as the metabolic bottleneck of a given metabolic

network.
Structureinformed k., prediction (Sl-k.4;)

We calculated the k., through scrapping experimental k., values from SABIO-RK, structural
modeling of enzyme through RGN2>, tertiary structure collection of experimentally resolved
enzymes, and structural similarity weightage calculation. The protocol can be accessed in the

supplementary note along with the validation (supplementary fig. 17-21). The following
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equation® was used to determine the relationship between enzyme concentration (E) and
saturation (K):

VUreaction

AG
kcat' (1 - BRT>

Here, AG values were collected from the corresponding MDF analysis, and v,.,ction Were
collected by solving contextualized iZMA6517 for heat and/or cold stress.

E =

X

(12)

x| =

R. irregularis symbiosis of maize root

The maize line used in this study is B73. The fungal strain used is the highest quality of purity
strain Rhizophagus irregularis DAOM197198 (Agronutrition, Montpellier, France). In all
experiments, maize seeds were surface-sterilized as follows. Seeds were first incubated in
ethanol for 5 minutes at 28°C followed by rinsing with distilled water. Then the seeds were
incubated for 45 minutes in a 15% commercia bleach solution with 0.01% Triton x100 then
rinsed in distilled water. They were placed on wet sterile Watman paper in Petri dishes closed
with parafilm and incubated in the dark for 48-72h at 20°C. Germinated seeds were selected and
then sown in the experimental setup. The experimental design and the different steps of growing
and harvesting for RNAseq experiment, performed in the year of 2020, are indicated in
Supplementary Fig. 25. Further details on plant growth conditions and inoculation, harvesting
procedures, RNA extraction for RNAseq, bioinformatic analysis, and raw data cleaning can be

accessed in the supplementary notes.
DATAAVAILABILTY

iZMA6517, EXTREAM, and MBA codes are available in this GitHub directory:
https://github.com/sshio/iZMA6517. Sl-k.,, codes are available in this GitHub directory:
https://github.com/ChowdhuryRatul/kcat_ iZMA6517. RNAseq project is deposited in Gene
Expresson Omnibus (GSE235654). All steps of the experiment, from growth conditions to
bioinformatic analyses, were detailed in CATdb: http://tools.ips2.u-psud.fr.fr/CATdb/; Project:
NGS2021 19 Rhizophagus according to the MINSEQE. Nutrients for the plant growth can be
accessed in Supplementary Data 13.
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