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Abstract 

Phenotypic plasticity is a hallmark of cancer metastasis. Epithelial-mesenchymal transition (EMT) 
is an important axis of phenotypic plasticity. Raf kinase-B inhibitor protein (RKIP) and BTB and 
CNC homology 1 (BACH1) are two proteins reported to influence EMT. In breast cancer, they act 
antagonistically, but the exact nature of their roles in mediating EMT and associated other axes of 
plasticity remains unclear. Here, analysing transcriptomic data, we reveal their antagonistic trends 
in a pan-cancer manner, in terms of association with  EMT, metabolic reprogramming and immune 
evasion via PD-L1. Next, we developed and simulated a mechanism-based gene regulatory 
network that captures how RKIP and BACH1 engage in feedback loops with drivers of EMT and 
stemness. We found that RKIP and BACH1 belong to two separate “teams” of players – while 
BACH1 belonged to the one that drove pro-EMT, stem-like and therapy-resistant cell-states, RKIP 
is a member of a team that enables pro-epithelial, less stem-like and therapy-sensitive phenotypes. 
Finally, we observed that low RKIP levels and concomitant upregulated BACH1 levels associated 
with worse clinical outcomes in many cancer types. Together, our systems-level analysis indicates 
that the emergent dynamics of underlying regulatory network underlie the antagonistic patterns of 
RKIP and BACH1 with various axes of cancer cell plasticity, as well as with patient survival data.  
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Introduction 

The process of cancer metastasis is driven by phenotypic plasticity, i.e. dynamic and reversible 
adaptation of disseminating cancer cells to different microenvironments that they encounter along 
the journey. Phenotypic switching among the epithelial (E), mesenchymal (M) and hybrid E/M 
phenotypes through Epithelial to Mesenchymal Transition (EMT) and its reverse Mesenchymal to 
Epithelial Transition (MET) constitute an important axis of phenotypic plasticity during metastasis 
(Brabletz et al., 2018; Jia et al., 2019). Metabolic reprogramming is another key axis of plasticity 
and a hallmark of cancer metastasis (Celià-Terrassa and Kang, 2016). Different axes of plasticity 
– EMT/MET, metabolic switching and immune evasion – are often interconnected, thus enabling 
cancer cells to exist in distinct cell-states (Dongre et al., 2017; Jia et al., 2021; Noman et al., 2017), 
and promoting phenotypic plasticity and consequent non-genetic heterogeneity. 

Understanding the dynamics of the interconnected axes of plasticity is critical to restrict metastasis. 
For instance, EMT often leads to increased levels of PD-L1 – a transmembrane molecule leading 
to immune escape of cancer cells (Chen et al., 2014). Further, knockdown of PD-L1 could reverse 
EMT (Alsuliman et al., 2015). Similarly, EMT and tamoxifen resistance in ER+ breast cancer cells 
can drive each other (Sahoo et al., 2021). Such bidirectional connections are often mediated by 
multiple feedback loops among the molecules driving cell plasticity along these multiple axes. 
Breaking the miR-200/ZEB1 mutually inhibitory feedback loop in breast cancer cells through 
CRISPR/Cas9 can reduce cancer cell metastasis (Celià-Terrassa et al., 2018). Thus, mapping the 
different feedback loops that can govern cell plasticity is of fundamental importance. 

Recent reports have identified a mutually inhibitory feedback loop between the Raf kinase inhibitor 
protein (RKIP) and BTB and CNC homology 1 (BACH1) in regulation of EMT and metastasis in 
breast cancer (Lee et al., 2014; Wan et al., 2023). BACH1 represses RKIP transcriptionally and 
RKIP can inhibit BACH1 via microRNA let-7. RKIP is a metastasis suppressor that acts along the 
RAF1/MEK/ERK pathway to regulate cell proliferation and migration (Dong et al., 2021). Its 
exogenous expression in metastatic breast cancer cells can suppress invasion, intravasation and 
metastasis in xenograft mouse models (Dangi-Garimella et al., 2009). On the other hand, BACH1 
can promote breast cancer metastasis (Yun et al., 2011). While their antagonistic roles in breast 
cancer have been reported, it remains unclear whether this antagonism is seen in other cancers, 
and how do these molecules regulate different axes of cellular plasticity implicated in metastasis.  

Here, we first investigated whether RKIP and BACH1 show antagonistic trends across different 
cancer types using transcriptomic data from The Cancer Genome Atlas (TCGA). We found RKIP 
and BACH1 to be anti-correlated with each other in majority of the cancer types. Moreover, while 
BACH1 correlated positively with EMT and PD-L1 but negatively with oxidative phosphorylation 
and fatty acid oxidation, RKIP showed opposite trends in a pan-cancer manner. These trends were 
recapitulated in ER+ breast cancer datasets, where BACH1 also correlated negatively with ESR1 
(Estrogen Receptor), but RKIP correlated positively with it. To better understand these consistent 
patterns in transcriptomic signatures, we constructed and simulated a mechanism-based gene 
regulatory network (GRN) that incorporated the feedback loops formed among RKIP, BACH1 and 
other master regulators of cancer cell plasticity such as ZEB1, miR-200, LIN28 and let-7. Our 
analysis of GRN identified that RKIP and BACH1 belonged to two mutually repressing “teams” of 
players – one that was comprised of pro-EMT (ZEB1, LIN28, SNAIL, SLUG) players, and the other 
constituted pro-MET (miR-200, let-7, miR-145, CDH1) ones. The existence of these “teams” 
enables the BACH1-high cells to display a hybrid E/M and mesenchymal state exhibiting a stem-
like behaviour, as well as opposite trends in terms of association with patient survival across cancer 
types. Together, our results explain the emergent dynamics of underlying GRN that can underlie 
the observed antagonistic behaviour of RKIP and BACH1 in a pan-cancer manner.  
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Results  

RKIP and BACH1 display mutual antagonistic patterns across many cancer types in TCGA 

RKIP and BACH1 have been reported as mutually inhibitory players in breast cancer; while RKIP 
is anti-metastatic, BACH1 is pro-metastatic (Lee et al., 2014). To investigate whether they show 
antagonistic trends consistently across other cancers, we analysed TCGA data from 35 different 
cancer types. RKIP and BACH1 were found to be negatively correlated with each other in 31 out 
of 35 (88.57%) cancer types (Fig 1A). To understand their association with EMT, we calculated 
the ssGSEA score for each sample for the KS-Epithelial (KS-Epi) and KS-Mesenchymal (KS-Mes) 
signatures. KS-Epi signature comprises of genes that are upregulated in epithelial cells in a pan-
cancer manner, while genes in KS-Mes signatures are upregulated in mesenchymal cells (Tan et 
al., 2014). The ssGSEA score of KS-Epi signature correlated positively with RKIP levels in only 15 
cancer types and negatively with BACH1 expression in 14 cancer types, indicating a rather 
ambivalent association. On the other hand, the KS-Mes scores were negatively correlated with 
RKIP levels in 57.14% (20 out of 35) cancer types, but positively correlated with BACH1 expression 
in 88.57% (31 out of 35) of cases (Fig 1A). Further, RKIP showed a negative correlation with KS 
EMT score in 57.14% (20 out of 35) cancers but BACH1 showed positive correlation with it in 
77.14% (27 out of 35) cases. The higher the KS EMT score, the more mesenchymal the sample 
is (Chakraborty et al., 2020). Together, these results suggest that RKIP and BACH1 show 
antagonistic trends in a pan-cancer manner, with RKIP associating with an epithelial phenotype 
while BACH1 with a mesenchymal phenotype. 

During EMT, cells can also exhibit metabolic plasticity, typically leading to decreased oxidative 
phosphorylation and fatty acid oxidation but increased glycolysis (Muralidharan et al., 2022a). To 
investigate how RKIP and BACH1 expression correlates with these pathways, we calculated the 
ssGSEA scores for OXPHOS, FAO and glycolysis gene signatures in TCGA samples. OXPHOS 
ssGSEA scores correlated positively with RKIP in 88.57% (31 out of 35) of the cancer types while 
BACH1 correlated negatively in 91.14% (32 out of 35) of the cancer types (Fig 1B). Similar trends 
were observed with FAO, with RKIP correlating positively and BACH1 correlating negatively in 31 
out of 35 cancer types. On the other hand, ssGSEA scores for glycolysis signature did not show 
such strong trends – they correlated negatively with RKIP in 14 cancer types, and positively with 
BACH1 in 9 of them. Also, while FAO and OXPHOS ssGSEA scores correlated positively with 
each other, glycolysis did not show consistent negative correlations with either of them (Fig S1A). 
Overall, RKIP and BACH1 exhibited opposite patterns in terms of their association with OXPHOS 
and FAO. 

Another axis of phenotypic plasticity coupled with EMT is immune evasion. As cells undergo a 
partial or complete EMT, they display increased levels of PD-L1, an immune checkpoint molecule 
that evades attack by the immune system (Dongre et al., 2021, 2017). Thus, we probed how the 
expression levels of PD-L1 and scores for PD-L1 associated gene signature correlate with RKIP 
and BACH1. We observed that among 35 cancer types, PD-L1 expression correlated negatively 
with RKIP expression in 22 of them, and positively with BACH1 in 32 of them (Fig S1B). Similarly, 
the ssGSEA scores of PD-L1 gene signature correlated negatively with RKIP in 68.57% (24 out of 
35) but positively with BACH1 in 88.57% (31 out of 35) of the cancer types (Fig 1C). Further, cells 
undergoing EMT have been shown to be vulnerable to ferroptosis, an iron-dependent cell-death 
program (Viswanathan et al., 2017). To examine how RKIP and BACH1 associate with ferroptosis, 
we calculate the ssGSEA scores of a ferroptosis-based gene signature in cancer (Lu et al., 2021). 
Consistently, we found that RKIP associates negatively with it, but BACH1 (Fig 1D). Overall, 
BACH1 is likely associated with a more mesenchymal, glycolytic, ferroptosis-sensitive and 
immune-evasive phenotype, but RKIP tends to promote an epithelial, immune-sensitive and 
ferroptosis-insensitive cell-state dependent on OXPHOS and FAO. 
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Figure 1: Correlation of RKIP and BACH1 expression with cellular plasticity signatures in TCGA. 
Heatmaps representing Spearman’s correlation coefficient of RKIP and BACH with A) each other, KS 
Score and ssGSEA scores of KS-Epi and KS-Mes gene signatures, B) ssGSEA scores of Hallmark 
gene signatures (GS) for OXPHOS, Glycolysis and FAO, C) ssGSEA scores for PDL1 gene signature 
(GS) and D) ssGSEA scores for ferroptosis gene signature (GS). * denotes p-value < 0.05. 

 

Association of RKIP and BACH1 with EMT and tamoxifen resistance in ER+ breast cancer 

Next, we focused on breast cancer, given the earlier observations about mutually antagonistic 
roles of RKIP and BACH1 in breast cancer (Lee et al., 2019, 2014; Yesilkanal et al., 2021). We 
first analysed how RKIP and BACH1 correlate with ESR1 – gene encoding for Estrogen Receptor 
alpha (ERα). Higher levels of ERα are often associated with improved response to anti-estrogen 
therapies such as tamoxifen, and better patient survival (Burns and Korach, 2012). In TCGA breast 
cancer samples, we observed that ESR1 correlated positively with RKIP (ρ = 0.11), but negatively 
with BACH1 (ρ = − 0.29) (Fig 2A). ZEB1, an EMT-inducing transcription factor (EMT-TF), has been 
shown to hypermethylated the ERα promoter and confer tamoxifen resistance (Zhang et al., 2017). 
Thus, we evaluated association of RKIP and BACH1 with ZEB1. ZEB1 correlated significantly 
positively with BACH1 (ρ = 0.52) and negatively with RKIP (ρ = − 0.32) (Fig 2B). Similarly, BACH1 
correlated positively with another EMT-TF (SNAI2) and an EMT marker vimentin (VIM) but 
negatively with OVOL2, an MET-inducing transcription factor  (Saxena et al., 2022), showing 
opposite trends as those seen for RKIP (Fig S2A). These results indicate that BACH1 associates 
with EMT, but RKIP associates with MET in breast cancer. To investigate the associations of RKIP 
and BACH1 with metastasis, we used their respective pathway metastasis signatures (Lee et al., 
2013; Yun et al., 2011). In TCGA breast cancer samples (Fig 2C) and in other TCGA cancer types 
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(Fig S2B), ssGSEA scores of RKIP Pathway Metastasis Signature (RPMS) correlated negatively 
with RKIP, while those of BACH1 Pathway Metastasis Signature (BPMS) correlated positively with 
BACH1. Consistently, RPMS and BPMS ssGSEA scores correlated positively with one another in 
a pan-cancer manner (Fig S2B), thus endorsing the pro-metastatic role of BACH1 and anti-
metastatic role of RKIP.  

We next focused on six ER+ breast cancer datasets that we had previously analysed from the 
perspective of EMT and tamoxifen resistance driving each other in ER+ breast cancer (Sahoo et 
al., 2021): GSE6532, GSE9195, GSE17705, GSE24202, GSE43495 and GSE67916. We noticed 
resonating trends in these datasets as noted in TCGA samples: RKIP inversely correlated with 
ssGSEA scores of RPMS and ferroptosis gene signature, while BACH1 correlated positively with 
ssGSEA scores of BPMS and ferroptosis signature (Fig 2E, i-ii). Further, both RPMS and BPMS 
scores both correlate positively with those of PD-L1 signature but negatively with OXPHOS (Fig 
2E, ii-iii), reminiscent of observations of PD-L1 activity being anti-correlated with OXPHOS across 
carcinomas (Muralidharan et al., 2022b). Across these datasets, RPMS correlates positively with 
glycolysis but negatively with FAO, while BPMS shows relatively weaker trends (Fig 2E, iii). This 
analysis further strengthens the pan-cancer trends that we noticed earlier in terms of antagonistic 
association of RKIP and BACH1 with multiple axes of phenotypic plasticity. 

 

 

Figure 2: Antagonistic trends of RKIP and BACH1 with EMT & associated axes in breast cancer. 
A, B) Scatter plots showing correlations of RKIP and BACH1 with ESR1, ZEB1 in TCGA breast cancer 
samples. C, D) Same as A, B but for RKIP pathway metastasis signature (RPMS), BACH1 pathway 
metastasis signature (BPMS). E) Heatmap depicting Spearman's correlation coefficient in 6 ER +ve 
Breast cancer datasets - GSE17705, GSE24202, GSE43495, GSE6532, GSE67916, GSE9195. i) 
Correlation of RKIP and BACH1 with BPMS, RPMS; ii) Correlation with ferroptosis and PD-L1 gene 
signatures (GS). iii) correlation of BPMS and RPMS with metabolic axes - OXPHOS, FAO, glycolysis. 
In these heatmaps, ** : p-value < 0.05, * : p-value< 0.1 (Spearman’s correlation analysis). 
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Underlying gene regulatory networks reveal RKIP and BACH1 as members of mutually 
antagonistic “teams”  

To understand the mechanisms that can explain the observations about RKIP and BACH1 showing 
opposite trends with respect to metastatic propensity, we identified a minimal core underlying gene 
regulatory network (GRN) in breast cancer that incorporates the feedback loops that RKIP and 
BACH1 are involved in with key players of EMT, tamoxifen resistance and stemness, building on 
our previous efforts to connect these axes of plasticity (Pasani et al., 2021; Sahoo et al., 2021). 
This network is not meant to be exhaustive in terms of connections RKIP and BACH1 have with 
players controlling these axes of plasticity, but demonstrate a core network structure that may be 
sufficient to explain the correlation-based observations of RKIP and BACH1 noted earlier. 

Broadly speaking, this network has three core modules: EMT, tamoxifen resistance and stemness 
(Fig 3A). The EMT module comprises EMT-TFs SNAIL, SLUG and ZEB1, EMT-inhibiting micro-
RNA-200 family and E-cadherin (CDH1), a key cell-cell adhesion molecule that maintains tight 
junctions among epithelial cells (Sahoo et al., 2021). The stemness module is composed of OCT4, 
LIN28, let-7 and miR-145. LIN28 and let-7 engage in a mutually inhibitory loop, and so do miR-145 
and OCT4 (Jolly et al., 2016; Pasani et al., 2021). In tamoxifen resistance module, we include 
ERα66 and ERα36, two variants of estrogen receptor (ESR1) – ERα66 associates with tamoxifen-
sensitive cell-state, while elevated levels of ERα36 drive resistance to tamoxifen in breast cancer 
cells (Shi et al., 2009). ERα66 can suppress ERα36 levels (Zou et al., 2009) directly, while ERα36 
can inhibit ERα66 by activating ZEB1 (Sahoo et al., 2021). Other links across modules involve 
inhibition of LIN28 by miR-200 (Kong et al., 2010) and inhibition of ERα66 by miR-145 (Spizzo et 
al., 2009) as well as mutual inhibition between miR-145 and ZEB1 (Jolly et al., 2016), and that 
between SLUG and ERα66 (Sahoo et al., 2021a). RKIP and BACH1 associate with these modules 
through the following links: a) BACH1 can self-inhibit and activate SLUG (Igarashi et al., 2021), b) 
RKIP and SNAIL inhibit each other (Beach et al., 2007; Shvartsur et al., 2017), and c) BACH1 
represses RKIP directly, while RKIP inhibits BACH1 via let-7 (Lee et al., 2014).  

Before simulating the emergent dynamics of this network, we generated corresponding adjacency 
matrix. This matrix – showing only the direct links (both activation and inhibition) between different 
nodes in a network – is rather spare (Fig 3B). Because the influence of one node on another can 
also be mediated through indirect links, we derived the influence matrix for this network (Hari et 
al., 2022), up to a path length of eight edges, and performed hierarchical clustering (Fig 3C). The 
clustering revealed the presence of two “teams” such that members within a team effectively 
activated one another, while members across two teams effectively inhibited each other. One team 
consisted of players corresponding to an epithelial phenotype (let-7, miR-200, CDH1) while the 
other team comprised drivers of EMT (ZEB, SNAIL, SLUG) and stemness (LIN28, OCT4). As 
expected, ERα66 was found to be a part of the MET-promoting “team”, while ERα36 belonged to 
an EMT-driving one. Similarly, RKIP and BACH1 were found in two opposite “teams”, consistent 
with our previous TCGA analysis showing RKIP to be pro-epithelial but RKIP to be pro-EMT. 

Next, we quantified the team strength for this influence matrix and found it to be 0.37 (on a scale 
of 0 to 1). To examine whether this observation of “teams” is unique to this network, we generated 
1000 random networks by shuffling the edges among the nodes (following the randomization 
schematic; Fig 3D inset) and determined their corresponding team strength. We observed the 
team strength of the wild type (WT) network to be much greater than that of all 1000 randomly 
generated networks (Fig 3D). This observation suggests that the organization of these molecular 
players into “teams” in this network is not a co-incidence, rather a unique topological signature that 
can possibly facilitate specific couplings between cellular behaviour such as association of EMT 
with stemness and tamoxifen resistance (Jolly and Celia-Terrassa, 2019; Wang et al., 2019) and 
opposite roles of RKIP and BACH1 in EMT (Cessna et al., 2022; Igarashi et al., 2021). 
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Further, we simulated the dynamics of this GRN by representing the regulatory interactions through 
a set of coupled ordinary differential equations (ODEs) across an ensemble of kinetic parameters 
and initial conditions, using a tool called RACIPE (Huang et al., 2018). The output of RACIPE is 
the set of steady-state solutions obtained which are then z-normalized for a better comparison 
across the expression patterns. Principal component analysis (PCA) performed on RACIPE 
solutions indicated that over 60% of the variance could be captured by first 2 principal components 
(PCs) (Fig S3A) - PC1 accounted for 48.8%, while PC2 accounted for 19.5%. Colouring the PCA 
plots based on z-normalized levels of RKIP and BACH1 revealed that clusters showing higher 
BACH1 levels had lower RKIP levels and vice versa (Fig 3E). Next, we plotted the loading 
coefficients of each node in the network along the PC1 axis to understand their contributions to 
PC1 variance. We observed that genes earlier identified to be a part of the epithelial team from the 
influence matrix analysis had PC1 coefficients less than zero, while all of them in mesenchymal 
team (with SNAIL being the only exception) had these coefficients greater than zero. This analysis 
reveals that PC1 is largely able to recapitulate the members belonging to two different “teams” 
identified via influence matrix. The existence and constitution of these “teams” is further validated 
by largely bimodal distribution of all network nodes, PCA correlation circle and pairwise correlation 
matrices showcasing positive correlation among members within a team, and negative across 
“teams” (Fig S3B-C).  

 

Figure 3: Gene regulatory network underlying antagonistic roles of RKIP and BACH1 as 
members of opposite “teams”.  A) Regulatory network showing interconnections of RKIP and BACH1 
with the modules of EMT, tamoxifen resistance and stemness. B) Adjacency Matrix for the network 
shown in A. C) Influence Matrix for path length = 10 for network shown in A. D) Network randomisation 
schematic (inset) & histogram of team strength of 1000 random networks generated. The red line 
indicates the team strength of the wild-type (WT) network, i.e. shown in A. E) Scatterplots of Principal 
Component 1 (capturing 48.8% variance) and Principal Component 2 (capturing 19.5% variance) 
shaded by BACH1 and RKIP Levels. F) Bar plot showing the PC1 loading coefficients of different genes 
in the network. The bar colors show the same antagonistic team behavior of the teams identified in C. 
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Regulatory network dynamics explains the association of BACH1 with stem-like cell-state  

Next, we investigated whether this regulatory network is capable of multi-stable behaviour, i.e. 
allowing for the co-existence of multiple cell-states that can reversibly switch among themselves. 
We segregated the parameter sets generated by RACIPE based on their corresponding number 
of stable states (Fig 4A). Our analysis revealed that only 4.58% of solutions correspond to a mono-
stable state; the remaining 95.42% solutions associated with two or more co-existing cell-states, 
highlighting the underlying multistable dynamics of this GRN that can support phenotypic plasticity. 

Further, we plotted the ensemble of stable states obtained from RACIPE as a heatmap (Fig 4B). 
It showed expected clustering patterns and the dominance of two distinct states – (high LIN28, 
high OCT4, high BACH1, high ERα36, high SLUG, high ZEB, low let-7, low ERα66, low SNAIL, 
low miR-145, low miR-200, low CDH1) and (low LIN28, low OCT4, low BACH1, low ERα36, low 
SLUG, low ZEB, high let-7, high ERα66, high SNAIL, high miR-145, high miR-200, high CDH1), 
thus recapitulating the “teams” seen in influence matrix of the GRN. These two states correspond 
to a mesenchymal, stem-like, tamoxifen-resistant and epithelial, non-stem-like, tamoxifen-sensitive 
state respectively. Interestingly, higher levels of RKIP were seen in most RACIPE solutions that  
correspond to an epithelial cell-state, as well as a subpopulation of mesenchymal cell-state 
subpopulation. This observation is consistent with a lower magnitude of loading coefficient of RKIP 
in explaining PC1 variance as compared to that of BACH1 (Fig 3D). Thus, our simulations suggest 
that BACH1 associates strongly with a partial/full EMT state, relative to the association of RKIP 
with an epithelial one.  

To better elucidate the functional mapping of phenotypes from the RACIPE expression data, we 
defined an Epithelial Mesenchymal (EM) score as EM Score = (ZEB1 + SLUG − miR200 − CDH1)/ 
4. ZEB1 and SLUG are characteristic EMT markers, while miR-200 and CDH1 are those for an 
epithelial state. The higher the EM score, the more mesenchymal the corresponding cell-state is. 
A histogram of EM scores thus obtained across all RACIPE solutions indicated three distinct 
populations which can be characterized as epithelial, mesenchymal and hybrid ones (Fig 4C,i). 
Similarly, to quantify plasticity along the stemness axes, we defined a stemness (SN) score as SN 
score = (OCT4 + LIN28 − miR145 − let7)/4. Extremely high or low levels of OCT4 and LIN28 are 
associated with non-stem-like states (Jolly et al., 2014; Karwacki-Neisius et al., 2013; Niwa et al., 
2000), thus we ascribe intermediate levels of SN scores to a stem-like state, while very high or low 
levels of it to a non-stem-like state, based on the histogram (Fig 4C,ii).  

The z-normalized RACIPE solutions were then projected on a scatter plot with corresponding SN 
and EM scores as the axes. While the scatter plot showed a general positive correlation between 
EM and SN scores (ρ = 0.701), we noticed associations of all the three phenotypes along the EMT 
axis with both stem-like and non-stem-like states (Fig 4D). To better understand how RKIP and 
BACH1 levels associated with these axes, we divided the RACIPE steady state solution ensemble 
into BACH1 (+ve) and BACH1 (-ve) (and similarly for RKIP (+ve) and RKIP (-ve)) cases based on 
their corresponding z-normalized values. We observed that 63.48% of in silico cells (considering 
each steady-state solution of RACIPE as equivalent to a cell in an experimental population-level 
setting) showing a hybrid E/M phenotype were BACH1(+ve) (Fig 4E,i). Similarly, a mesenchymal 
cell was three times more likely to be BACH1(+ve)  as compared to being BACH1(-ve) (74.94% vs 
25.06% cases) (Fig 4E,i). Consistent with experimental observations of partial and/or full EMT 
phenotypes with stemness (Brown et al., 2022; Lourenco et al., 2020; Lüönd et al., 2021), we found 
a stem-like cell to be 2.3 times (69.64% vs 30.36%) more likely to be BACH1(+ve)  as compared 
to being BACH1 (-ve) (Fig 4E, ii). On the other hand, the RKIP(+ve) or RKIP(-ve) cells were not 
enriched in any subpopulation along the EMT or stemness axes. Together, we can infer that 
BACH1 associates with a hybrid E/M and/or mesenchymal stem-like phenotype. 
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Figure 4: Association of RKIP and BACH1 with EMT and stemness states. A) Pie chart depicting 
the number of parameter sets giving rise to different number of stable states. Data from 3 independent 
replicate RACIPE simulations shown as mean ± standard deviation). B) Heatmap of stable steady-state 
solutions for network shown in Fig 3A, simulated from RACIPE. Color bar represents the relative levels 
of individual genes (z-normalized and log2 expression values). C) i) Kernel Density Plot of EM Score 
(= ZEB +SLUG – miR200 – CDH1). Red dotted lines indicate the segregation of Epithelial, Hybrid and 
Mesenchymal phenotypes based on minima of the fitted Gaussians. ii) Kernel Density Plot of SN Score 
(= OCT4 +LIN28 – mir145 – let7). Red dotted lines indicate the segregation of stem-like and non-stem-
like phenotypes based on minima of the fitted Gaussians. D) Scatterplot of all RACIPE solutions, on SN 
Score vs EM Score axes. Segregation done based on thresholds identified in C i, ii. E) i) Table depicting 
the conditional probability percentage of gene expression status given the epithelial, mesenchymal or 
hybrid Phenotypes. ii) Same as i) but given the stem-like and non-stem-like categorization. BACH1 (or 
RKIP) +ve indicates z-score expression of BACH1 (or RKIP) > 0, and BACH1 –ve indicates it < 0.   

 

High BACH1 expression levels associate with worse patient survival in many cancer types 

To identify how RKIP and BACH1 expression levels impact survival outcome, we computed the 
hazard ratios for different combinations of RKIP and BACH1 (RKIP+ BACH1-, RKIP+ BACH1+, 
RKIP- BACH1-) with RKIP- BACH1+ as reference. High BACH1 expression along with low RKIP 
expression led to significantly worse overall survival when compared to high RKIP and low BACH1 
samples in three different cancers: lung adenocarcinoma (LUAD), liver hepatocellular carcinoma 
(LIHC) and pancreatic adenocarcinoma (PAAD). Similar trends were recapitulated for disease 
specific survival, disease-free survival and progression-free survival in these cancers. Conversely, 
RKIP+ BACH1+ samples had significantly better progression free survival compared to the RKIP- 
BACH1+ in LIHC, indicating that higher RKIP expression may be linked to better survival outcomes 
(Fig 5). Consistent trends are also observed in mesothelioma, breast cancer, renal clear cell 
carcinoma, uveal melanoma and thyroid carcinoma (Fig S4). These pan-cancer observations 
carried out consistently indicate that high BACH1 levels are linked to worse survival.  
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Figure 5: Forest plots showing antagonistic trends of RKIP and BACH1 with varying survival 
types across different cancers. Reference set of TCGA sample considered here is R-B+ (RKIP-
low, BACH1-high). p-values are based on log-rank test, and those with significant differences p < 
0.05, p<0.01 and p<0.001 are marked with *, **, and ***, respectively. A) Hazard Ratios (HR) for 
Overall Survival in PAAD (left), LUAD (middle) and LIHC (right). B) HR for Disease Specific 
Survival in PAAD (left), LUAD (middle) and LIHC (right). C) HR for Disease-Free Survival in in 
PAAD (left), LUAD (middle) and LIHC (right). D) HR for Progression -Free Survival in PAAD (left), 
LUAD (middle) and LIHC (right). 

 

 

Discussion 

Cellular decision-making is often governed by mutually inhibitory feedback loops, also called as a 
‘toggle switch’. Such network motifs are commonly reported in various decision-making contexts, 
such as GATA1-PU.1 toggle switch determining differentiation of a common myeloid progenitor 
into erythroid cells (GATA1 >> PU.1) or myeloid cells (PU.1 >> GATA1) (Zhou and Huang, 2011). 
Similar antagonism has been witnessed among many EMT and MET driving transcription factors 
(TFs) such that the MET-TFs (GRHL2, KLF4, OVOL2 etc.) and EMT-TFs (ZEB1, SNAIL, TWIST 
etc.) mutually repress one another (Chung et al., 2016; Roca et al., 2013; Subbalakshmi et al., 
2021). Such mutually antagonistic “teams” of players – also seen in small cell lung cancer GRN 
(Chauhan et al., 2021) – can thus contribute to cellular plasticity (Hari et al., 2022).   
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Here, we show that RKIP and BACH1 belong to two antagonistic “teams” – while RKIP belongs to 
a “team” promoting an epithelial and tamoxifen-sensitive cell-state in breast cancer, BACH1 is a 
part of “team” enabling a mesenchymal and tamoxifen-resistant phenotype. While the antagonistic 
role of RKIP and BACH1 in EMT has been well-reported, their potential involvement in tamoxifen 
resistance is only beginning to be investigated through mediators such as TANK-binding kinase 1 
(TBK1) (Liu et al., 2022; Wei et al., 2014). Consistently, their contrasting roles are emerging in the 
contexts of ferroptosis (Wenzel et al., 2017; Xie et al., 2023) and metabolic reprogramming (Lee 
et al., 2019) in specific cancer types. Particularly, activation of NRF2 – a master regulator of anti-
oxidant program in cells – stabilizes BACH1 (Lignitto et al., 2019). NRF2 activity can be enhanced 
by loss of RKIP (Al-Mulla et al., 2012), enabling another ‘toggle switch’ between RKIP and BACH1.  
NRF2 has also been reported to maintain cells in a hybrid epithelial/mesenchymal (E/M) phenotype 
(Vilchez Mercedes et al., 2022) and enhance stemness and chemoresistance (Al-Mulla et al., 
2012; Kim et al., 2018). Thus, our results about association of BACH1 with a hybrid E/M stem-like 
state unify the previous observations about role of BACH1 in controlling multiple axes of plasticity.  
 
The contrasting roles of RKIP and BACH1 in mediating stemness/dedifferentiation lends further 
credence to our model simulations. BACH1 can activate CD44 and MAPK signaling in lung cancer 
stem cells (CSCs) and stimulate lung cancer metastasis; its loss represses metastasis in xenograft 
models (Jiang et al., 2021; Wiel et al., 2019). Similarly, BACH1 represses mesendodermal 
differentiation in embryonic stem cells, maintaining stem-cell identity (Wei et al., 2019). Conversely, 
RKIP can repress NANOG in primary melanocytes, maintaining their differentiation state (Penas 
et al., 2020). Chemical induction of RKIP can degrade SOX2, inhibit tumor growth and promote 
differentiation of schwannoma into mature Schwann cells (Cho et al., 2022). These observations, 
together with the contrasting roles of RKIP and BACH1 on tumor cell migration (Davudian et al., 
2016; Zhu et al., 2018), can explain the association of higher BACH1 levels with enhanced 
metastasis and poor patient prognosis (Chen et al., 2023; Han et al., 2019; Wiel et al., 2019). Our 
results demonstrate that these trends of association of RKIP and BACH1 with clinical outcomes 
are largely consistent across cancer types as well as survival metrics (overall survival, progression-
free survival, disease-free survival), highlighting their behavior as members of two “teams” playing 
a tug-of-war – a pro-metastatic one (EMT, stem-like, drug-resistant) and an anti-metastatic one. 
 
Overall, our pan-cancer systems-level analysis reveals that RKIP and BACH1 can control multiple 
axes of plasticity (EMT, metabolic reprogramming, stemness) together in opposite directions, thus 
explaining their association with patient survival seen across cancer types. Our mechanistic model 
highlights that such “teams” of players can be an important network motif in co-ordinating changes 
along more than one axes of plasticity together, such as EMT, stemness and metabolic switching. 
Our results suggest breaking such “teams” as a possible therapeutic avenue to reduce the fitness 
of metastasizing cells, by limiting their phenotypic plasticity trajectories. 
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Materials & Methods 

 
1. Transcriptomic datasets  

We downloaded microarray data from NCBI GEO (GSE17705, GSE24202, GSE43495, GSE6532, 
GSE67916, GSE9195) using the GEOquery package on R, and mapped the probes to respective 
genes using their corresponding annotation files. We normalized gene-wise expression matrices 
on log2 base, before further analysis.  

We downloaded TCGA gene expression data of 35 different cancer types, obtained from the 
UCSCXena browser. These pre-processed datasets were available in transcripts per million (TPM) 
format and were directly used for analysis. Survival data was analysed using data from TCGA. 
Relevant cancer samples were split into two groups based on median: high PEBP1 (gene name 
for RKIP) vs low PEBP1, and high BACH1 vs low BACH1. ‘Kaplan -Meier curves for overall survival 
were plotted using the plotter on the ‘KMPlotter’ website (Nagy et al., 2021). Additionally, ‘coxph’ 
function in R package ’survival’ was employed to determine the hazard ratio (HR) and confidence 
interval (95% CI) for TCGA cohorts, and heatmaps were made using ‘ggplot2’. 

Normalized Single Sample Gene Set Enrichment Analysis (ssGSEA) scores based on specific 
input gene signatures (Table S1) were calculated for each sample using ‘GSEApy’ python package 
(Subramanian et al., 2005). For correlation analysis between any two variables, Spearman’s 
correlation coefficient has been used, using ‘spearmanr’ function from ‘SciPy’ Python library. 

2. EMT scoring metric 

KS score is a metric to quantify the extent of EMT based on expression levels of specific epithelial 
and mesenchymal markers (Tan et al., 2014). It uses 2 gene signatures: KS-Epi (genes associated 
with an epithelial phenotype), KS-Mes (genes associated with a mesenchymal phenotype). It plots 
two cumulative distribution functions (CDFs) based on expression levels of genes in KS-Epi and 
KS-Mes signatures. Distance between the 2 CDFs is calculated for each value, and the maximum 
value is taken as the statistic. The KS score values lie in the range [-1, 1].  

3. Identification of “teams” of players 

An adjacency matrix (Adj) represents the topology of a GRN in the form of a matrix. Rows represent 
the source node for a particular link, while the columns represent the target nodes. An inhibitory 
link is represented (in blue) with value -1; an activation link is represented (in red) with value 1. 
Path-length is defined as the number of consecutive links in a path that connects a source node to 
its corresponding target. In a GRN, the nodes not only influence their direct target (path length = 
1) but also other nodes indirectly (path length > 1). To take into consideration these interactions, 
we define an influence matrix that captures both the direct and indirect interactions between nodes 
in the network up to a defined path length (Hari et al., 2022). 

 𝐼𝑛𝑓𝑙	 = 	
∑ !"#$

!"#%&'
$

$%&'
$()

"%&'
 

where Adjl represents the adjacency matrix (Adj) multiplied with itself l times. Adjmax represents 
the Adj matrix with all inhibition links replaced by activation links. Adjl / Adjlmax represents the 
element-wise division of values in Adjl by values in Adjlmax.  
 

A positive value indicates activation, and a negative influence indicates inhibition. The higher the 
value in the influence matrix, the higher the influence of that specific source gene on the target. 
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Hierarchical clustering is performed on the influence matrix to identify the clusters of genes 
functioning similarly. The team Strength of each cluster TKL is given as 

𝑇#$ =
∑ 𝐼𝑛𝑓𝑙%&%∈(*,&∈(+

𝑛#$
	,				𝐾, 𝐿	 ∈ 	 {1,2} 

Team Strength of the entire network TS is given as 

  

𝑇* =
∑ |𝑇#$|#,$∈{,,-}

4 	 

4. RACIPE analysis 

Random Circuit Perturbation (RACIPE) is a tool used to simulate the dynamics of GRNs. It takes 
as input the topology of a GRN and generates an ensemble of kinetic models for the given GRN. 
Here, we simulated the network shown in Fig 3A – the input file to RACIPE is given as Table S2. 

For each kinetic model generated for the input topology file, RACIPE samples many initial 
parameters from the designated range for each parameter. The expression levels of a node in a 
GRN is determined by a set of ordinary differential equations given below. 

dX/
dt = g0,7H1(X2, X2/3

2

, n2/, λ2/) 	−	k0,X/	 

Here, X/	is concentration of gene product of gene node X/	 part of GRN and 40,
45

 is the rate of change 
of the gene expression with respect to time. g0, is basal production rate; k0, is basal degradation 
rate of gene product X/. H1 represents shifted Hills function that models the activation and inhibition 
links towards this (X/) gene node in the GRN. n2/ is Hill’s function coefficient and X2/3 is threshold 
value of the Hill equation. X2 is concentration of gene product X2, where X2 is a node either activating 
or inhibiting X/. Since our GRN had 13 nodes, i and j can take integer values between 1 and 13. 
λ2/	is fold change parameter. Throughout this study, we simulated GRNs for 10,000 parameter sets. 
RACIPE gives log2 normalized steady state gene expressions of each gene product as output. 
This output steady state gene expression data was then z-normalized and used for analysis. To 
check for bimodality in solutions obtained from RACIPE, we used Sarle’s bimodality coefficient: 

𝐵𝐶	 = 	
𝑠- 	+ 	1

𝑘	 + 	3 · (𝑛 − 1)-
(𝑛 − 2)(𝑛 − 3)

 

Here, ‘s’ is the skew of the distribution and ‘k’ is the kurtosis. BC can take values between 0 and 
1, with BC values greater than 0.55 indicating bimodal distribution of gene expression (Sahoo et 
al., 2020). SciPy library has been used to calculate kurtosis (k) and skew (s) of the distribution.  

 

Supplementary Table Legends 

Table S1 – List of gene signatures used in ssGSEA, along with their corresponding reference. 

Table S2 – List of network nodes and edges for the network in Fig 3A, given as an input topology 
file to RACIPE, along with their corresponding reference. 
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Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Correlations of RKIP and BACH1 expression with Immune Pathway signatures and Survival 
in TCGA. Heatmaps representing pairwise Spearman’s correlation coefficient of A) ssGSEA scores of 
metabolic pathway gene signatures: Glycolysis,) Fatty Acid Oxidation (FAO), Oxidative Phosphorylation 
(OXPHOS) with each other. B) ssGSEA scores of PD-L1 expression with RKIP and BACH1 C) Heatmap 
depicting Log2 normalized Hazard Ratios for RKIP and BACH1 across cancers. *: p-value < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: A) Scatter plots showing correlations of RKIP and BACH1 with SNAI2, VIM and OVOL2 in 
TCGA breast cancer data. B) Heatmap representing Spearman’s correlation coefficient of ssGSEA 
scores of RKIP Pathway Metastasis Signature (RPMS) and BACH1 Pathway Metastasis Signature 
(BPMS) with RKIP, BACH1 and each other, across various cancers. * denotes p-value < 0.05 
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Figure S3: A) Scree-plot representing percentage explained variance captured by each principal 
component from PCA performed on steady state gene expression data obtained from RACIPE. B) PCA 
Correlation Circle representing correlations of RACIPE steady state gene data along PC1 and PC2 
axes. C) i) Kernel Density Estimate plots of z-normalized expression values obtained from RACIPE 
simulation, for each node in the network (Figure 3A). Bimodality coefficients for each distribution are 
indicated as BC. ii) Pairwise correlation matrix showing Spearman correlation coefficient values of the 
corresponding pairs of genes. p-value < 10-4 for all pairwise correlations in the matrix. 
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Figure S4: Forest plots comparing overall survival (OS) for different combinations of RKIP (low, high) 
and BACH1 (low, high) in TCGA samples. p-values based on log-rank test, and those with significant 
differences p < 0.05, p<0.01 and p<0.001 are marked with *, **, and ***, respectively. A) Hazard Ratios 
(HR) for Overall Survival in MESO (left), SARC (middle) and BRCA (right). B) HR for progression Free 
Survival in UVM (left), SARC (middle) and BLCA (right). C) HR for Disease-specific Survival in SARC 
(top) and BLCA (bottom). D) HR for disease-specific Survival in LGG (top) and BRCA (bottom). E) HR 
for disease-free Survival in THCA (top) and KIRC (bottom). 
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