

1 A conserved antigen induces respiratory Th17-mediated serotype- 2 independent protection against pneumococcal superinfection

3
4 Xue Liu^{1,2†}, Laurye Van Maele^{3†}, Laura Matarazzo³, Daphnée Soulard³, Vinicius Alves Duarte
5 da Silva³, Vincent de Bakker¹, Julien Dénéréaz¹, Florian P. Bock¹, Michael Taschner¹, Stephan
6 Gruber¹, Victor Nizet^{4,5}, Jean-Claude Sirard^{3,*}, Jan-Willem Veening^{1,4,5*}

7 ¹Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of
8 Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland

9 ²Department of Pathogen Biology, Base for International Science and Technology Cooperation:
10 Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen
11 University Health Science Center, 518060 Shenzhen, China

12 ³Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL -
13 Center for Infection and Immunity of Lille, F-59000 Lille, France

14 ⁴Department of Pediatrics, University of California San Diego, La Jolla, California, USA

15 ⁵Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
16 La Jolla, California, USA

17
18 [†]These authors contributed equally

19 *Correspondence to Jean-Claude Sirard: jean-claude.sirard@inserm.fr, tel: +33 (0)320871207,
20 Twitter handle: @JCSirard or Jan-Willem Veening: Jan-Willem.Veening@unil.ch, tel: +41 (0)21
21 6925625, Twitter handle: @JWVeening

25

Summary

26

Several vaccines targeting bacterial pathogens show reduced efficacy in the context of intercurrent viral infection indicating a new vaccinology approach is required to protect against such superinfections. To find antigens for the human pathogen *Streptococcus pneumoniae* that are effective following influenza infection, we performed CRISPRi-seq in a murine model of superinfection and identified the highly conserved *lafB* gene as virulence factor. We show that LafB is a membrane-associated, intracellular protein that catalyzes the formation of galactosyl-glucosyl-diacylglycerol, a glycolipid we show is important for cell wall homeostasis. Respiratory vaccination with recombinant LafB, in contrast to subcutaneous vaccination, was highly protective against all serotypes in a murine model. In contrast to standard pneumococcal capsule-based conjugate vaccines, protection did not require LafB-specific antibodies but was dependent on airway CD4⁺ T helper 17 cells. Healthy human individuals can elicit LafB-specific immune responses, suggesting its merit as a universal pneumococcal vaccine antigen that remains effective following influenza infection.

39

40

One-Sentence Summary: Discovery of a universal pneumococcal vaccine protective during superinfection.

42

43

Keywords: CRISPRi-seq, protein antigen, superinfection, vaccine discovery, genome-wide vaccinology

45

46

Introduction

47 *Streptococcus pneumoniae* is a leading cause of bacterial pneumonia and a major cause of death
48 and disability in young children and susceptible adults, including the elderly or
49 immunocompromised. Notoriously, *S. pneumoniae* proves particularly virulent in combination
50 with antecedent influenza A virus infection. Such secondary pneumococcal infections, or
51 superinfections, contribute significantly to excess morbidity and mortality in high-risk groups as
52 highlighted during the influenza pandemics of 1918, 1957, 1968, and 2009¹⁻⁴.

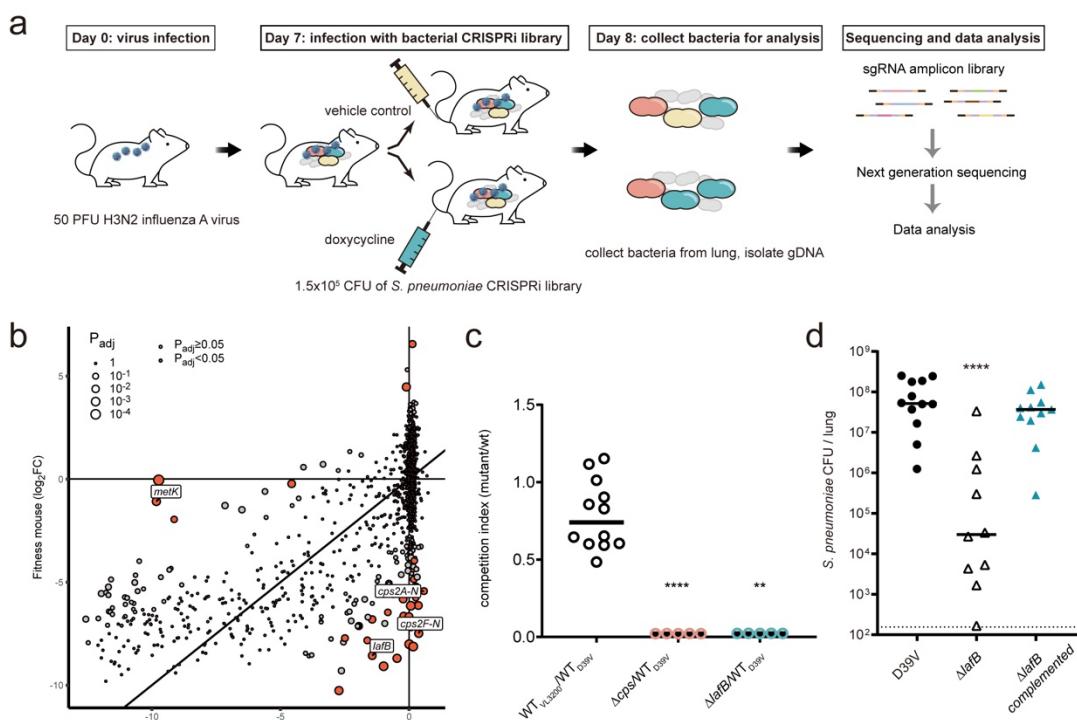
53 Currently, pneumococcal vaccines are capsule polysaccharide (CPS)-based, such as
54 Prevenar 13®, which is composed of 13 CPSs conjugated to a carrier protein together with an
55 aluminum adjuvant and Pneumovax®, the pneumococcal polysaccharide vaccine (PPSV) which
56 contains 23 CPSs⁵. Whereas both vaccines elicit CPS-specific antibodies, the conjugated vaccine
57 induces T-cell dependent immunity, which contribute to stronger antibody-mediated protection⁶.
58 While these vaccines are successful in reducing the burden of disease caused by 13-23 serotypes,
59 they do not protect against invasive pneumococcal disease (IPD) caused by non-vaccine serotypes
60 (NVT)^{7,8}. There are more than 100 known serotypes of *S. pneumoniae*⁹ and the rapid switching
61 between serotypes, serotype displacement and appearance of non-typeable clinical isolates reduces
62 the efficacy of CPS-based vaccines^{10,11}. Importantly, CPS-based vaccines provide poor protection
63 during pneumococcal superinfection following influenza in mice^{12,13}. While CPS-based vaccines
64 have shown great protection from IPD caused by serotype-matched pneumococcal strains and
65 likely also contribute to protection following influenza infection, how well they work in this
66 context is unclear from current human vaccine studies¹⁴. What is clear is that influenza infection
67 contributes to decreased pneumococcal clearance and increased lung injury even in PPSV-
68 vaccinated mice¹³. Conversely, pneumococcal colonization may also impede mucosal immune
69 responses to live attenuated influenza vaccine, including reduced IgA in the nasal cavity and
70 reduced IgG in the human lung¹⁵.

71 Thus, there is an urgent need for an efficient vaccine which can cover most virulent
72 pneumococcal strains and provide protection both against primary infection and superinfection. A
73 promising avenue for a universal, serotype-independent vaccine is in the use of immunogenic
74 conserved proteins as protective antigens^{5,16-24}. So far, efforts have been focused on surface-
75 exposed pneumococcal proteins as these might be directly recognized by opsonizing antibodies.
76 However, surface-exposed proteins typically show significant strain-to-strain sequence variability

77 because of antigenic variation²⁵⁻²⁷ rendering them prone to vaccine escape and purely protein-
78 based pneumococcal vaccines have still not made it to market. To uncover potential universal
79 antigens, an unbiased genome-wide vaccinology approach is required. Previous attempts have used
80 transposon insertion sequencing (Tn-seq) to identify pneumococcal antigens^{28,29}. While
81 successful, these approaches identified non-essential genes encoding for variable surface-exposed
82 proteins that suffer from the limitations outlined above. Here, employing CRISPR interference
83 (CRISPRi) that allows the interrogation of essential genes³⁰, we searched specifically for
84 conserved genes highly important for bacterial survival during superinfection. We show that one
85 of our hits, LafB, a highly conserved membrane-associated protein, is an essential virulence factor.
86 Importantly, recombinant LafB provides broad Th17-specific protective immunity paving the way
87 for a universal, capsule-independent, pneumococcal vaccine.

89 **Results**

90 **CRISPRi-seq identifies LafB as novel pneumococcal virulence factor for influenza** 91 **superinfection**


92 We previously built a doxycycline-inducible genome-wide CRISPRi library that targets 99% of
93 genetic elements present in the virulent serotype 2 D39V *S. pneumoniae* strain³¹. By sequencing
94 and quantifying sgRNAs in doxycycline-free or -supplemented conditions (to induce dCas9), the
95 relative fitness of each targeted feature can be determined³⁰. Using this CRISPRi-seq approach in
96 mice fed doxycycline-containing food, we confirmed pneumococcal capsule as an important
97 virulence factor during superinfection³¹. To more precisely control *in vivo* dCas9 expression,
98 doxycycline levels in serum and epithelial lining fluids (*i.e.* bronchoalveolar lavage) were
99 optimized following intraperitoneal (*i.p.*) injection in mice. A novel *ex vivo* CRISPRi-based
100 luciferase assay found as little as 4 ng/ml doxycycline repressed luciferase transcription >15-fold
101 (**Figure S1**); *i.p.* injection of 5 mg/kg of doxycycline adequately activated the pneumococcal
102 CRISPRi system in the lung.

103 Next, mice were infected intranasally (*i.n.*) with H3N2 influenza virus followed at day 7
104 by *i.n.* infection with the *S. pneumoniae* CRISPRi library. dCas9 was induced by doxycycline and
105 compared to mock (vehicle) control (**Figure 1a**). The CRISPRi-seq screen confirmed the capsule
106 operon as critical for pneumococcal survival in the host; in contrast, the *in vitro* essential gene

107 *metK* was dispensable *in vivo*³¹ (Figure 1b). To pinpoint conserved *S. pneumoniae* genes with
108 important virulence functions in the context of influenza superinfection that could be promising
109 vaccine candidates, we plotted the fitness values of each clone across *in vitro* and *in vivo*
110 conditions. This analysis identified sgRNA0370 targeting the gene *spv_0960* (*lafB*), previously
111 unnoticed in Tn-seq experiments, to be significantly underrepresented *in vivo* following
112 doxycycline induction (Figure 1b, Supplementary Table 1).

113 To validate the CRISPRi-seq screen, *lafB*-deleted and complemented mutants were
114 constructed (Figure S2a-b). Competition assays were conducted 7 days post influenza infection
115 with wild type *S. pneumoniae* paired with a *lafB* mutant or a *cps* mutant (avirulent control) in a 1:1
116 ratio. *S. pneumoniae* lacking LafB were outcompeted by wild type bacteria suggesting a major role
117 of *lafB* for replication in the host (Figure 1c). These results were confirmed in single strain
118 superinfection experiments, as *lafB* mutant bacteria had significantly reduced in lung bacterial
119 counts compared to the wild type or *lafB*-complemented strains (Figure 1d). Invasive disease,
120 assessed by splenic dissemination, was likewise attenuated in animals infected with the *lafB*
121 mutant (Figure S2c-d), indicating LafB is essential for pneumococcal virulence.

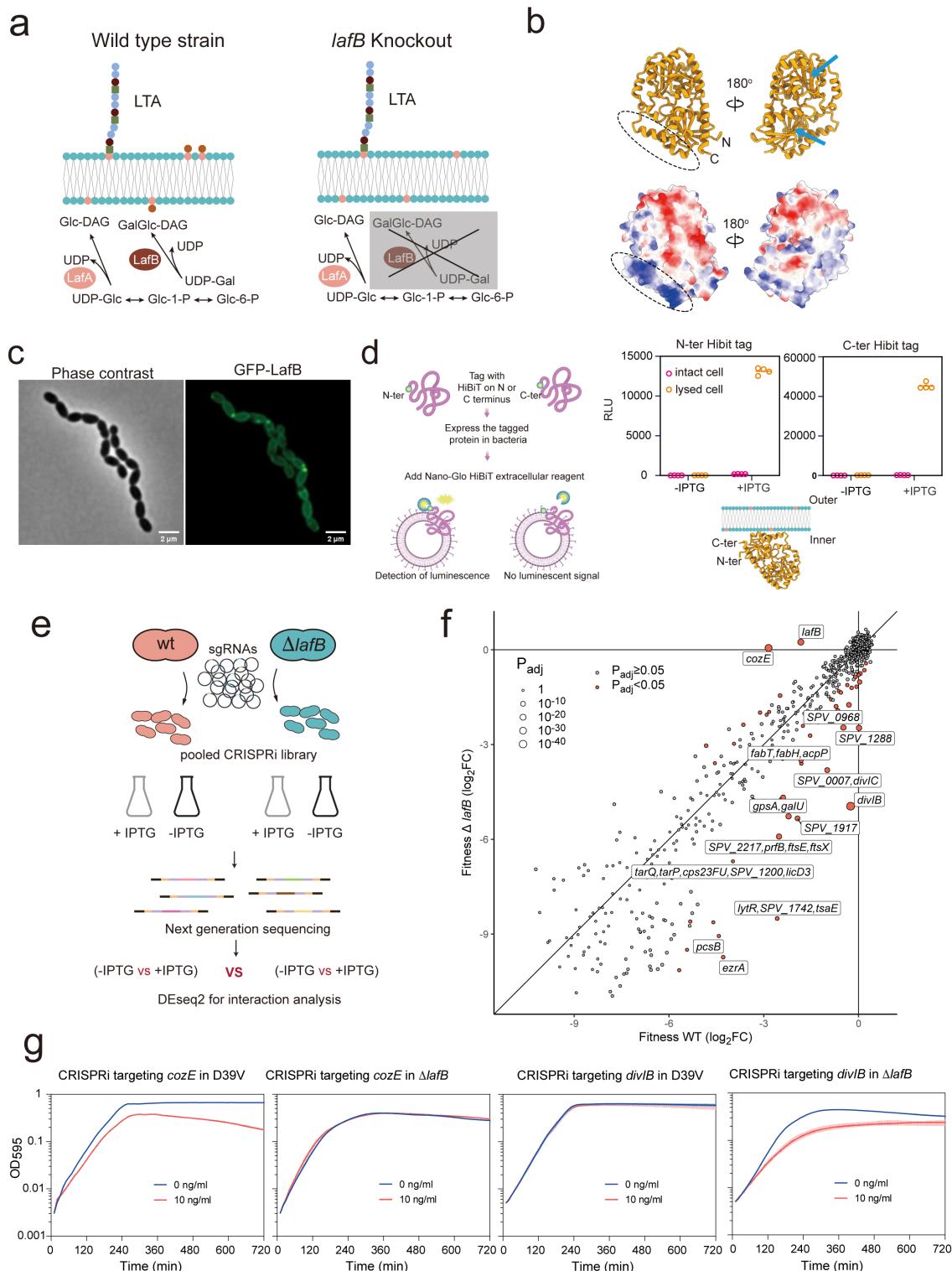
122

123

124 **Figure 1. LafB is an essential virulence determinant in pneumococcal pneumonia following influenza**
125 **infection.** (a) Workflow of the CRISPRi-seq screen using injected doxycycline. Mice were inoculated
126 intranasally with the genome-wide pneumococcal CRISPRi library. (b) CRISPRi-knockdown of the
127 capsule operon (*cps2A-N*, *cps2F-N*) and *lafB* results in reduced fitness *in vivo* (mouse) compared to *in vitro*
128 (C+Y medium). (c) Competition index of individual mutants, compared to wild type (WT) D39V. The
129 $\Delta lafB$ and Δcps mutants were outcompeted by the WT strain. Strain VL3200 is similar to WT but contains
130 an erythromycin resistance marker at a neutral locus to allow for selection. Each data point represents the
131 lung CFU count at day 8 of a single mouse infected with flu at day 0, and a ratio 1:1 of mutant and WT
132 strain at day 7. (d) Validation study of sgRNA0370 target, *lafB*. The $\Delta lafB$ mutant was attenuated in
133 establishing lung infection. Ectopic expression of *lafB* complemented the phenotype. Kruskal-Wallis
134 testing was used to compare groups.

135

136 **LafB is an intracellular membrane-associated protein involved in cell wall homeostasis.**


137 Lipoteichoic acid anchor formation protein B (LafB, 347 amino acids, 40 kDa)³² is highly
138 conserved among pneumococci (>96% amino acid identity in all sequenced pneumococci) and
139 closely related members of the *Streptococcus mitis* group (Figure S3a-b) and has been implicated
140 in the production of galactosyl-glucosyl-diacylglycerol, a glycolipid of unknown function
141 (Figure 2a)^{33,34}. Incubation of recombinant LafB with α -monoglucoyldiacylglycerol (mGlc-
142 DAG) and UDP-Galactose followed by mass spectrometry, demonstrated the production of UDP
143 (Figure S4), establishing that LafB is a diglucosyl diacylglycerol synthase, as proposed
144 previously³⁵. Additionally, *lafB*-deficient pneumococci have a slight reduced susceptibility to
145 penicillins³³, but increased susceptibility to daptomycin and acidic stress^{34,36}. Prior western blot
146 analysis found LafB co-purifies with the membrane fraction³³. However, while our structure
147 prediction using RoseTTAFold³⁷ demonstrates the Rossmann-like domain of GT-B
148 glycosyltransferases³⁸, no clear transmembrane domains were detected (Figure 2b). Overlay of
149 our predicted model of LafB to a crystalline structure of a structurally related GT-B
150 glycosyltransferase, *Mycobacterium tuberculosis* PimA (Pdb 2GEK)³⁹, showed good agreement,
151 albeit with deviations in the active site cleft, bespeaking the different substrate specificities of the
152 two proteins (Figure S3f).

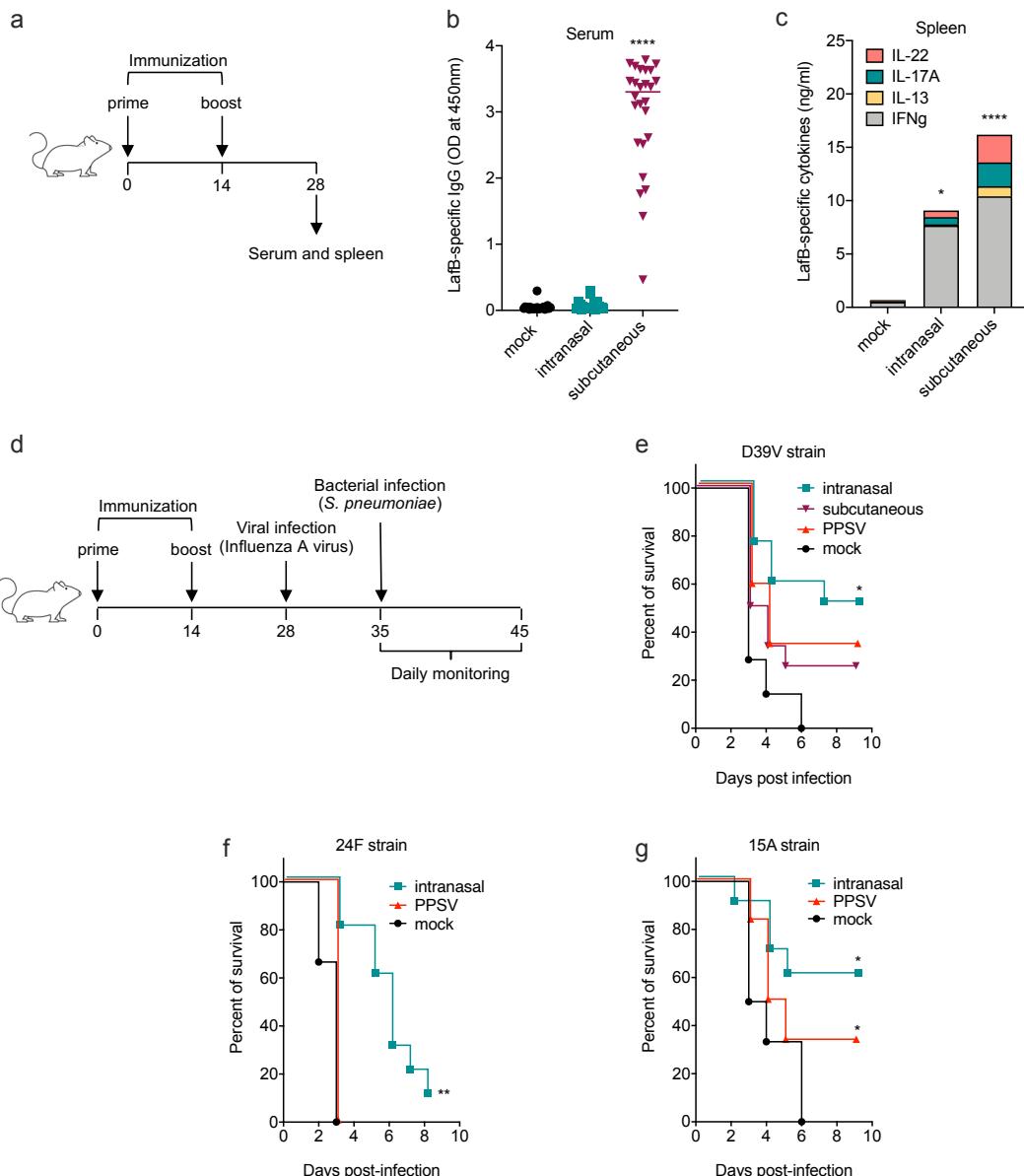
153 To pinpoint LafB cellular localization, we constructed a functional LafB-GFP fusion
154 expressed from its native locus (Fig. S3c-e) and performed fluorescence microscopy on live *S.*
155 *pneumoniae*. As shown in Figure 2c, LafB-GFP demonstrates clear membrane-associated

156 localization. Split complementation luciferase assays for topology showed that both LafB termini
157 reside in the cytoplasm (**Figure 2d**). These data support our structural model of LafB as an
158 intracellular protein that is membrane-associated via hydrophobic and charge interactions with the
159 cytoplasmic membrane.

160 To gain additional insight into *lafB* mutant virulence attenuation, we performed a genome-
161 wide synthetic lethal screen by introducing a sgRNA library containing 1499 unique sgRNAs into
162 the $\Delta lafB$ mutant background, then grew bacteria under laboratory conditions where *lafB* is not
163 essential (**Figure 2e**). As shown in **Figure 2f**, the gene encoding the division protein DivIB⁴⁰
164 becomes more essential in a *lafB* mutant background, suggesting that galactosyl-glucosyl-
165 diacylglycerol plays a role for efficient cell division. The gene *cozE* (aka *cozEa*) encoding a known
166 regulator of penicillin-binding protein Pbp1A⁴¹ becomes less essential in absence of *lafB*
167 (**Figure 2f**). This genetic interaction may reflect prior findings that *cozE* mutants have deranged
168 Pbp1A activity causing cell lysis⁴¹. Since *lafB* mutants have reduced Pbp1A levels³³, a double
169 *lafB/cozE* knockdown alleviates the *cozE* single mutant phenotype. Testing individual
170 knockdowns of *divIB* and *cozE* validated the screen (**Figure 2g**). These pleiotropic effects of *lafB*
171 deletion on membrane and cell wall physiology likely underpin the attenuation of virulence of the
172 $\Delta lafB$ mutant (**Figure 1d**).

173

174


175 **Figure 2. *LafB* is a membrane-associated galactosyl-glucosyl-diacylglycerol synthase with a**
 176 **pleiotropic role in cell division and cell wall homeostasis. (a)** *LafB* is a glycosyltransferase encoded in
 177 the same operon with another glycosyltransferase, *LafA*. *LafA* catalyzes the synthesis of glucosyl-
 178 diacylglycerol (Glc-DAG), which provides the anchor for lipoteichoic acids (LTA). *LafB* catalyzes the

179 addition of galactose onto Glc-DAG synthesizing GalGlc-DAG (**Fig. S4**). In the absence of LafB, no
180 detectable of GalGlc-DAG can be found in *S. pneumoniae*. **(b)** The predicted structure of LafB by
181 RoseTTAFold. Negative and positive electrostatic potentials are colored red and blue, respectively. The
182 two blue arrows point to the active units. No transmembrane domain was identified. **(c)** GFP was fused to
183 the N-terminus of LafB (GFP-LafB) and fluorescence microscopy analysis showed a membrane
184 localization. **(d)** HiBiT assays showed that both N- and C- termini are localized inside the cytoplasm. LafB
185 was tagged with the HiBit tag at its N- or C-terminus and placed under an IPTG-inducible promoter. Only
186 when the HiBiT is present outside the cell, it can interact with the complementary LgBiT and reconstitute
187 the luminescent NanoBiT enzyme (see Methods). Luminescence (relative light units; RLU) is recorded
188 with a microplate reader. **(e)** The workflow of CRISPRi-seq in wildtype (WT) D39V and *lafB* knockout
189 mutant ($\Delta lafB$) to identify the gene interaction network. **(f)** Comparison of fitness cost of gene depletion by
190 CRISPRi between wild type and $\Delta lafB$ mutant. The sgRNAs showing significant fitness cost between WT
191 and $\Delta lafB$ are colored in orange and their targets are labelled. **(g)** Growth curve of WT and $\Delta lafB$ mutant
192 with doxycycline inducible-CRISPRi targeting *cozE* and *divIB* confirmed the positive interaction of
193 LafB/CozE and negative interaction of LafB/DivIB. Strains were pre-cultured to mid-exponential phase,
194 diluted 1:100 in C+Y medium with (10 ng/ml) or without (0 ng/ml) doxycycline. Turbidity of the cell
195 culture is monitored by a microplate reader at 595 nm (OD595) every 10 min. Average of 3 replicates is
196 presented. Shadow showed the range of the measured OD595.

197

198 **Vaccination with LafB induces antigen-specific adaptive immune responses**

199 To establish whether LafB is a protective vaccine antigen, we cloned *S. pneumoniae* D39V *lafB*
200 and produced the protein in *E. coli* (**Figure S4a**). Recombinant LafB was formulated with alum as
201 adjuvant for subcutaneous (s.c.) immunization, or with the recombinant *Salmonella enterica*
202 serovar Typhimurium flagellin FliC_{Δ174-400} as a mucosal adjuvant⁴²⁻⁴⁴ for i.n. immunization.
203 Adaptive immune responses specific for LafB were tested in mice on day 28 after a prime-boost
204 vaccination (**Figure 3a**). A strong LafB-specific antibody response (IgG, IgM but no IgA) was
205 observed for s.c. vaccinated animals in serum and broncho-alveolar lavages (BAL), respectively
206 (**Figure 3b** and **Figure S5a-d**). In contrast, LafB-specific antibodies were weakly elicited in mice
207 vaccinated via the i.n. route. When immune cells from lung, spleen and mediastinal lymph nodes
208 (MdLN) were stimulated *ex vivo* with LafB antigen, cytokines associated with Th1 (IFN γ), Th2
209 (IL-13), and Th17 (IL-17/IL-22) were produced in response regardless the vaccination route
210 (**Figure 3c** and **Figure S5e-f**).

211

212 **Figure 3: Intranasal vaccination with LafB protects mice against pneumococcal disease in a serotype-
213 independent manner.** C57BL/6 mice (n=6-26) were immunized at days 0 and 14 with LafB via intranasal
214 (flagellin-adjuvanted) or subcutaneous (alum-adjuvanted) route, a commercial PPSV vaccine, or left
215 untreated (mock). **(a)** Vaccination and immune response timeline. **(b-c)** Immune responses at day 28. **(b)**
216 LafB-specific antibody response. Sera were collected and levels of LafB-specific IgG were determined by
217 ELISA. Plots represent values for individual mice as well as median. **(c)** LafB-specific T cell response.
218 Spleen cells were stimulated 72 h with LafB and cytokine levels in supernatant were determined by ELISA.
219 Results are expressed as median. Statistical significance (*P<0.05, **** p<0.0001) was assessed by one-
220 way ANOVA Kruskal-Wallis test with Dunn's correction compared to the mock group. **(d-g)** Analysis of
221 vaccine protective efficacy. **(d)** Vaccination and challenge timeline. Vaccinated mice were infected with

222 H3N2 influenza A virus at day 28 and were challenged at day 35 intranasally with *S. pneumoniae* strain
223 serotype 2 D39V (**e**, 5×10^4 CFU), serotype 24F (**f**, 10^3 CFU), or serotype 15A strain (**g**, 5×10^4 CFU). N=

224 (**e-g**) Protection was assessed by monitoring survival. Statistical significance (*P<0.05, **** p<0.0001)

225 was assessed by Mantel-Cox test compared to the mock group. Each group had at least 10 mice.

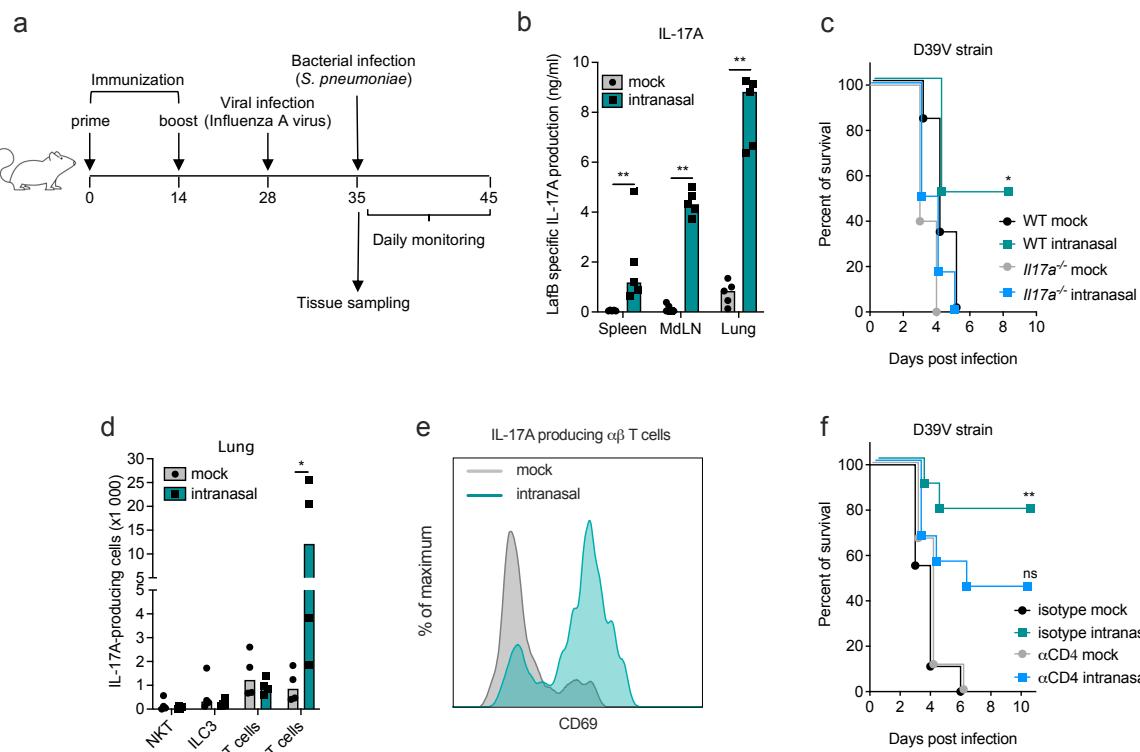
226

227 **Intranasal vaccination offers broad protection across serotypes**

228 Vaccinated animals, including PPSV-immunized animals, were infected on day 28 with H3N2
229 influenza virus and superinfected on day 35 with the *S. pneumoniae* serotype 2 strain D39V
230 (**Figure 3d**). All mice receiving mock immunization succumbed to disease after infection. Forty
231 percent of mice vaccinated with PPSV, which includes the CPS from serotype 2, were protected
232 against pneumococcal challenge (**Figure 3e**). Mice vaccinated via the i.n. route with flagellin-
233 adjuvanted LafB outperformed both subcutaneous- and PPSV-vaccinated animals, with 60%
234 mouse survival. LafB standalone i.n. vaccination was poorly effective (**Figure S5g-h**). Mice
235 immunized i.n. with the flagellin-adjuvanted irrelevant antigen ovalbumin (OVA) were not
236 protected (**Figure S5i-j**). These data demonstrate that LafB is a protective antigen against
237 pneumococcal infection when formulated with an intranasal adjuvant.

238 Western blotting showed that serum of animals vaccinated with LafB from serotype 2 strain
239 D39V recognized all tested strains representing serotypes 1, 3, 4, 5, 9V, 11A, 15A, 19F, 23A, 23F,
240 24F and 35B, corroborating the high conservation of the LafB protein sequence across
241 pneumococci (**Figure S4e**). Since the introduction of the CPS-based vaccines, NVT are becoming
242 prevalent^{7,11}, in particular serotypes 15A and 24F^{7,45,46}, which are not included in PPSV (that does
243 however contain 15B, which is poorly cross-reactive to 15A)⁴⁷. As shown in **Figure 3f-g** and
244 **Figure S6**, flagellin-adjuvanted LafB vaccination significantly protected mice against infection
245 with NVT 15A and 24F, in stark contrast to mice vaccinated with PPSV, which only offered slight
246 protection against serotype 15A. In contrast to PPSV controls, LafB-vaccinated mice completely
247 cleared pneumococcal bacteria (**Figure S6e-f**), supporting a role for LafB as a universal vaccine
248 antigen to confer sterilizing protection against pneumococcal infections.

249


250

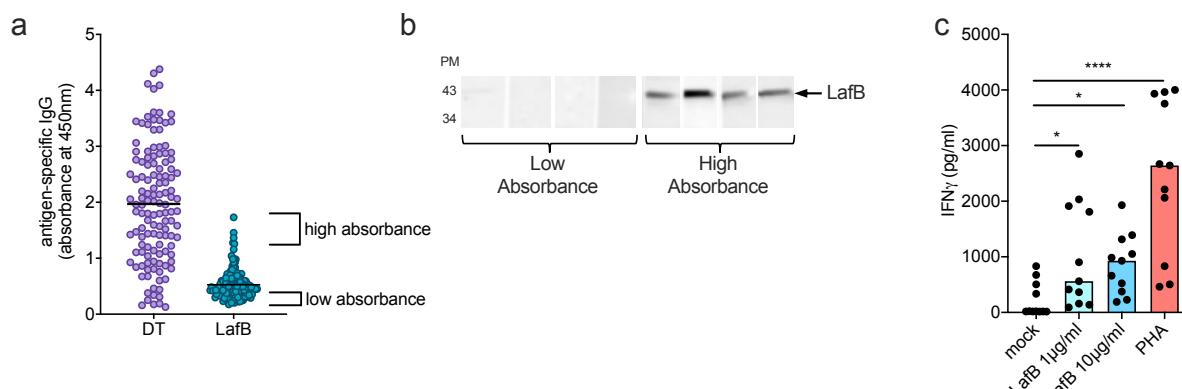
251 **Protection against pneumococcal superinfection is mediated by Th17 immunity**

252 Th17 CD4⁺ T lymphocytes that are functionally characterized by the expression of the retinoid
253 orphan receptor γ t (ROR γ t) and the production of IL-17A, are essential for mucosal protection
254 against pneumococcal nasopharyngeal colonization and infection^{48–51}. To get more insight on the
255 mechanisms of vaccine protection, mice were immunized i.n. with flagellin-adjuvanted LafB, and
256 then infected with influenza virus. Immunoprotective responses were monitored starting from day
257 35, a time when viral infection impairs the innate and cell-mediated immune responses^{52–56}
258 (**Figure 4a**). In this context, cells isolated from spleen, MdLN or lung from the i.n. vaccinated
259 animals secreted IL-17A after *ex vivo* stimulation with LafB antigen (**Figure 4b**), indicating that
260 influenza infection did not disturb the capacity of the vaccine to stimulate IL-17A. Moreover,
261 vaccination did not intrinsically alter viral replication nor the virus-induced pro-inflammatory
262 response when compared to mock or s.c. immunization, as measured by the viral RNA copy
263 number and major markers for lung inflammation (**Figure S7**). In contrast to wild type animals,
264 *Il17a*-deficient mice were not protected against superinfection by *S. pneumoniae* after the i.n.
265 vaccination (**Figure 4c**). Together, these data show that IL-17A is a major effector cytokine of
266 immunoprotective response induced by LafB i.n. vaccination.

267 Focusing on IL-17A-producing cells in the lungs (**Figure 4d–e**), we found the main cells
268 producing ROR γ t and IL-17A after i.n. vaccination and influenza virus infection were
269 conventional CD4⁺ T lymphocytes expressing TCR $\alpha\beta$, *i.e.* Th17 lymphocytes. Other innate
270 lymphocytes, such as natural killer T cells (NKT), group 3 innate lymphoid cells (ILC3) or TCR $\gamma\delta$
271 T cells known to contribute to immediate-early IL-17A responses, were moderately affected.
272 Notably, the Th17 lymphocytes were associated with increased surface expression of CD69, a
273 marker specific of tissue-resident memory (TRM) T lymphocytes in lungs⁵⁷. Finally, depletion of
274 CD4⁺ T lymphocytes was associated with reduced protection of the intranasal LafB vaccine against
275 pneumococcal disease (**Figure 4f**). Thus, an intranasal vaccine composed of LafB antigen and
276 mucosal adjuvant induced protection dependent on lung Th17 lymphocytes with TRM features.

277

278


279 **Figure 4. Protection is mediated by Th17 lymphocytes with TRM features.** C57BL/6, *Rorc(t)-Gfp^{TG}* or
280 *Il17a^{-/-}* mice (n=4-10) were immunized at days 0 and 14 with flagellin-adjuvanted LafB by intranasal route
281 or left unvaccinated (mock) and infected with H3N2 influenza A virus at day 28. At day 35, the immune
282 responses of virus-infected animals (b, d, e) were analyzed, or the animals were superinfected with *S.*
283 *pneumoniae* strain D39V (5×10^4 CFU) to monitor survival (c, f). (b) LafB-specific IL-17A secretion.
284 Spleen, MdLN and lung cells from C57BL/6 animals were collected and stimulated 72h with LafB antigen.
285 IL-17A levels in supernatant were determined by ELISA. Plots represent values for individual mice as well
286 as median. Statistical significance (**P<0.01) was assessed by Mann-Whitney test compared to the mock
287 group. (c) Vaccine protection is abolished in *Il17a^{-/-}* mice. Statistical significance (*P<0.05) was assessed
288 by Mantel-Cox test compared to the mock group. (d-e) RORgt- and IL-17A-producing lung cells in *Rorc(t)-*
289 *Gfp^{TG}* animals. (d) Analysis of Natural Killer T (NKT) cells, group 3 innate lymphoid cells (ILC3), TCR $\gamma\delta$
290 T cells, and conventional $\alpha\beta$ T lymphocytes. Plots represent values for individual mice as well as median.
291 Statistical significance (*P<0.01) was assessed by Mann-Whitney test compared to the mock group. (e)
292 Expression of CD69 marker on lung CD4 $^+$ Th17 cells. (f) Protection requires CD4 $^+$ T cells. To this end,
293 mice were treated intraperitoneally at day 34 with CD4-specific depleting antibodies or control isotype,
294 infected at day 35 with D39V and protection was assessed by monitoring survival. Statistical significance
295 (** p<0.01) was assessed by Mantel-Cox test compared to the mock group.

296

297 **Healthy human individuals develop LafB-specific immunity**

298 To examine whether LafB might be a suitable vaccine antigen for humans and antigenic in man,
299 we screened plasma from >100 healthy human adults for antigen-specific antibodies. Diphtheria
300 toxoid was used as a positive control. As shown in **Figure 5a**, healthy individuals were all strongly
301 immunoreactive to the diphtheria toxoid. In contrast, LafB-specific antibody responses were rather
302 low using ELISA. However, 10% of individuals demonstrated a stronger antibody response
303 specific for LafB. In addition, using immunoblotting, we found that strong immunoreactivity was
304 associated to LafB detection (**Figure 5b**). Finally, peripheral blood mononuclear cells (PBMC)
305 from healthy donors were isolated and stimulated with recombinant LafB or were incubated with
306 T-cell stimulant phytohemagglutinin (PHA) as a positive control (**Figure 5c**). LafB significantly
307 stimulated IFN γ secretion compared to controls. It should be noted that LafB is highly conserved
308 in pneumococci (**Fig. S3**), and to a lesser extent to other members of the *mitis* groups such as the
309 commensal *S. mitis*, meaning that the presence of LafB antibodies do not strictly indicate previous
310 pneumococcal carriage or infection. Nevertheless, these data indicate that LafB is antigenic in
311 human and a potential universal pneumococcal vaccine antigen that mobilizes lung resident
312 memory Th17 lymphocytes and protects in the context of preexisting viral infections in mice.

313

314

315 **Figure 5. Healthy human individuals have LafB-specific antibody and T cell responses. (a)** Diphtheria
316 toxoid (DT)- and LafB-specific IgG of plasma from healthy donors (n=127) were determined by ELISA.
317 Plots represent values for individual people as well as median. **(b)** Immunoblot assays of healthy individual
318 plasma specific for LafB. Plasma (n=4/group) with low and high absorbance at 450nm in ELISA were
319 analyzed by immunoblotting. Recombinant LafB was separated by SDS-PAGE and transferred to a
320 membrane before probing with plasma. **(c)** PBMC from healthy donors (n=3) were stimulated 5 days with

321 LafB or PHA or left untreated (mock). The secretion of IFNg was determined by ELISA. Plots represent
322 values for individual values and median. Statistical significance (*p<0.05, *** p<0.001) was assessed by
323 one-way ANOVA Kruskal-Wallis test with Dunn's correction compared to the medium group.

324

325 **Discussion**

326 The principal contribution of this work is the identification of a conserved intracellular membrane-
327 associated pneumococcal antigen as a vaccine candidate effective in protection even following
328 influenza virus infection. The unbiased genetic approach of antigen screening by CRISPRi in the
329 context of superinfection defined that the conserved protein LafB plays an essential role in
330 pneumococcal virulence. LafB is important for proper cell envelope homeostasis, and despite not
331 localized to the bacterial surface and directly exposed to the immune system, the protein triggers
332 vigorous antibody- and T cell-mediated immune responses. This paradigm for antigen selection
333 may open new avenues for discovery of virulence-associated vaccine candidates heretofore
334 overlooked by classical approaches. LafB protection was more effective against pneumococcal
335 challenge when used for intranasal vs. subcutaneous vaccination, but intranasal vaccination did
336 not induce significant circulating or secretory anti-LafB antibodies compared to the subcutaneous
337 route, suggesting that high titer opsonizing antibodies were not pivotal for the protection
338 phenotype. Antigen presentation by the intranasal route may mobilize specific sampling and
339 processing of antigen or unique targeting of antigen-presenting cells coordinating the stimulation
340 of T cell-mediated immunity. In contrast to surface determinants, LafB may only be exposed
341 outside of bacteria upon the production of extracellular vesicles⁵⁸, lysis or autolysis. Indeed, during
342 colonization, pneumococci establish biofilms that consist of a matrix formed from lysed bacterial
343 cells⁵⁹. A subset of healthy humans have measurable LafB-specific IgG levels in their serum,
344 indicating that LafB is also antigenic in human. Deciphering the immune cells and regulatory
345 pathways in host and bacteria involved in the respiratory immune pattern is an important question
346 for future research. In addition, it would be interesting to test whether intranasal vaccination with
347 LafB also protects in a pneumococcal pneumonia model without viral challenge.

348 Multiple lines of evidence show that Th17 lymphocytes are instrumental for protecting the
349 respiratory mucosa against pneumococcal nasopharyngeal colonization or pneumonia^{48-51,60,61}.
350 Moreover, preceding influenza virus infection may blunt subsequent IL-17 production by $\gamma\delta$ T
351 cells in response to *S. pneumoniae*⁶². Cross-protection against pneumococcal diseases after

352 recovery from a primary infection is mediated by memory Th17 cells but the antigenic
353 determinants remained to be defined⁵¹. Interestingly, memory Th17 responses induced by
354 pneumococcal infection can overcome subsequent viral-driven Th17 inhibition and provide cross-
355 protection against different serotypes during coinfection with IAV. Based on these findings, the
356 authors suggested that a vaccine that drives Th17 responses would be potentially able to mitigate
357 disease caused by coinfection⁶³. The here discovered, highly conserved LafB may constitute such
358 a prototypic cross-protective antigen. Recent studies highlighted how lung Th17 cells can
359 differentiate into TRM that can persist in tissue, promote long-term robust protection against
360 pathogens^{50,57}, and are less prone to alteration or collapse in the context of immunosuppression or
361 immunodysregulation⁵⁰. This unique capacity is noteworthy for protection of high-risk individuals
362 to pneumococcal diseases, such as the elderly, those suffering chronic disease, cancer patients, and
363 transplant recipients, all of whom may be more susceptible to viral infection. Stimulation of
364 mucosal immunity and particularly Th17 lymphocytes and TRM may explain the poorer protective
365 capacity of systemic route of immunization. Similar observations were made for COVID-19
366 vaccination in which higher antibody levels not correlate with better disease outcome, particularly
367 in older individuals⁶⁴. Our initial experiments using PBMC support LafB as an interesting antigen
368 for human vaccination, but one that will need specific adjuvants to polarize the immunity to Th17
369 and TRM and target the stimulation and response to key areas of lungs. The use of mucosal
370 adjuvants to potentiate the immune response and, particularly broadly protective lung TRM, is an
371 expanding field of research that will undoubtedly lay the foundation of a new generation of
372 vaccines against respiratory pathogens, including antimicrobial-resistant pathogens^{50,65,66}.

374 Materials and Methods

375 Detailed methods are provided in the supporting text.

377 Acknowledgments

378 We thank Dr Mara Baldry and Charlotte Costa for assistance in animal experiments, Dr Frédéric
379 Wallet from Lille Hospital for 15A and 24F clinical isolates, Dr Loic Coutte for *Il17a*^{-/-} mice, Mrs
380 Delphine Cayet for LafB-specific ELISA, and Dr Guillaume Lefebvre and Dr Julie Démaret for
381 discussion on pneumonia patients. We thank Dr. Jingwei Xu for his assistance on RoseTTAFold

382 prediction of LafB 3D structure. We also thank UNIL's Metabolomics and Genomics
383 Technologies Facility, UAR2014-US41-PLBS, BioImaging Center Lille, Flow Cytometry Core
384 Facility and PLETHA animal facility. This work was supported by an ERC consolidator grant
385 771534 and the Swiss National Science Foundation (grants 310030_192517, 310030_200792,
386 51NF40_180541 and IZSEZ0_213879 to J.W.V.; INSERM, Institut Pasteur de Lille, Université
387 de Lille, the Structure Fédérative de Recherche grant PneumoVac to L.V.M.; European Union
388 Horizon 2020 FAIR grant 847786 to J.C.S. and National Nature Science Foundation of China grant
389 82270012 to X.L.

390

391 **Author contributions**

392 Experimentation: XL, LVM, DS, LM, VADS, JD, FPB, MT. Study design and analysis: XL, LVM,
393 LM, VDB, SG, JWV. Writing – original draft: XL, LVM, JCS, JWV. Writing – review & editing:
394 XL, VN, JCS, JWV.

395

396 **Declaration of interests**

397 XL, LVM, FTB, JCS and JWV have filed patent application WO 2023/006825 on aspects of the
398 reported findings. JCS is the inventor of the patent WO2009156405 that describes the use of the
399 recombinant flagellin of this study as a mucosal adjuvant. Authors declare no other competing
400 interests.

401

402 **Data and materials availability**

403 All data are available in the main text or the supplementary materials. CRISPRi-seq data are
404 available at NCBI Sequence Read Archive (SRA) under the following accession number
405 PRJNA895037.

406

407

References

408

1. McCullers, J.A. (2014). The co-pathogenesis of influenza viruses with bacteria in the lung. *Nat. Rev. Microbiol.* *12*, 252–262. 10.1038/nrmicro3231.
2. Chertow, D.S., and Memoli, M.J. (2013). Bacterial coinfection in influenza: a grand rounds review. *JAMA* *309*, 275–282. 10.1001/jama.2012.194139.
3. Madhi, S.A., Schoub, B., and Klugman, K.P. (2008). Interaction between influenza virus and *Streptococcus pneumoniae* in severe pneumonia. *Expert Rev. Respir. Med.* *2*, 663–672. 10.1586/17476348.2.5.663.
4. Lindsay, M.I., Herrmann, E.C., Morrow, G.W., and Brown, A.L. (1970). Hong Kong influenza: clinical, microbiologic, and pathologic features in 127 cases. *JAMA* *214*, 1825–1832. 10.1001/jama.214.10.1825.
5. Scott, N.R., Mann, B., Tuomanen, E.I., and Orihuela, C.J. (2021). Multi-Valent Protein Hybrid Pneumococcal Vaccines: A Strategy for the Next Generation of Vaccines. *Vaccines* *9*, 209. 10.3390/vaccines9030209.
6. Pletz, M.W., Maus, U., Krug, N., Welte, T., and Lode, H. (2008). Pneumococcal vaccines: mechanism of action, impact on epidemiology and adaption of the species. *Int. J. Antimicrob. Agents* *32*, 199–206. 10.1016/j.ijantimicag.2008.01.021.
7. Løchen, A., Croucher, N.J., and Anderson, R.M. (2020). Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. *Sci. Rep.* *10*, 18977. 10.1038/s41598-020-75691-5.
8. Wang, L.M., Cravo Oliveira Hashiguchi, T., and Cecchini, M. (2021). Impact of vaccination on carriage of and infection by antibiotic-resistant bacteria: a systematic review and meta-analysis. *Clin. Exp. Vaccine Res.* *10*, 81–92. 10.7774/cevr.2021.10.2.81.
9. Ganaie, F., Saad, J.S., McGee, L., van Tonder, A.J., Bentley, S.D., Lo, S.W., Gladstone, R.A., Turner, P., Keenan, J.D., Breiman, R.F., et al. (2020). A New Pneumococcal Capsule Type, 10D, is the 100th Serotype and Has a Large cps Fragment from an Oral Streptococcus. *mBio* *11*. 10.1128/mBio.00937-20.
10. Scelfo, C., Menzella, F., Fontana, M., Ghidoni, G., Galeone, C., and Facciolongo, N.C. (2021). Pneumonia and Invasive Pneumococcal Diseases: The Role of Pneumococcal Conjugate Vaccine in the Era of Multi-Drug Resistance. *Vaccines* *9*. 10.3390/vaccines9050420.
11. Weinberger, D.M., Malley, R., and Lipsitch, M. (2011). Serotype replacement in disease after pneumococcal vaccination. *Lancet Lond. Engl.* *378*, 1962–1973. 10.1016/S0140-6736(10)62225-8.
12. Metzger, D.W., Furuya, Y., Salmon, S.L., Roberts, S., and Sun, K. (2015). Limited Efficacy of Antibacterial Vaccination Against Secondary Serotype 3 Pneumococcal Pneumonia Following Influenza Infection. *J. Infect. Dis.* *212*, 445–452. 10.1093/infdis/jiv066.
13. Jirru, E., Lee, S., Harris, R., Yang, J., Cho, S.J., and Stout-Delgado, H. (2020). Impact of Influenza on Pneumococcal Vaccine Effectiveness during *Streptococcus pneumoniae* Infection in Aged Murine Lung. *Vaccines* *8*, 298. 10.3390/vaccines8020298.

446 14. Smith, A.M., and Huber, V.C. (2018). The Unexpected Impact of Vaccines on Secondary Bacterial
447 Infections Following Influenza. *Viral Immunol.* *31*, 159–173. 10.1089/vim.2017.0138.

448 15. Carniel, B.F., Marcon, F., Rylance, J., German, E.L., Zaidi, S., Reiné, J., Negera, E., Nikolaou, E.,
449 Pojar, S., Solórzano, C., et al. (2021). Pneumococcal colonization impairs mucosal immune responses
450 to live attenuated influenza vaccine. *JCI Insight* *6*, e141088, 141088. 10.1172/jci.insight.141088.

451 16. Gieffing, C., Meinke, A.L., Hanner, M., Henics, T., Bui, M.D., Gelbmann, D., Lundberg, U., Senn,
452 B.M., Schunn, M., Habel, A., et al. (2008). Discovery of a novel class of highly conserved vaccine
453 antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. *J. Exp.
454 Med.* *205*, 117–131. 10.1084/jem.20071168.

455 17. Gierahn, T., and Malley, R. (2011). Vaccines and compositions against *Streptococcus pneumoniae*.
456 US20110020386A1.

457 18. Lu, Y.-J., Oliver, E., Zhang, F., Pope, C., Finn, A., and Malley, R. (2018). Screening for Th17-
458 Dependent Pneumococcal Vaccine Antigens: Comparison of Murine and Human Cellular Immune
459 Responses. *Infect. Immun.* *86*. 10.1128/IAI.00490-18.

460 19. Nabors, G.S., Braun, P.A., Herrmann, D.J., Heise, M.L., Pyle, D.J., Gravenstein, S., Schilling, M.,
461 Ferguson, L.M., Hollingshead, S.K., Briles, D.E., et al. (2000). Immunization of healthy adults with a
462 single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive
463 antibodies to heterologous PspA molecules. *Vaccine* *18*, 1743–1754. 10.1016/s0264-410x(99)00530-
464 7.

465 20. Schmid, P., Selak, S., Keller, M., Luhan, B., Magyarics, Z., Seidel, S., Schlick, P., Reinisch, C.,
466 Lingnau, K., Nagy, E., et al. (2011). Th17/Th1 biased immunity to the pneumococcal proteins PcsB,
467 StkP and PsaA in adults of different age. *Vaccine* *29*, 3982–3989. 10.1016/j.vaccine.2011.03.081.

468 21. Voß, F., Kohler, T.P., Meyer, T., Abdullah, M.R., van Opzeeland, F.J., Saleh, M., Michalik, S., van
469 Selm, S., Schmidt, F., de Jonge, M.I., et al. (2018). Intranasal Vaccination With Lipoproteins Confers
470 Protection Against Pneumococcal Colonisation. *Front. Immunol.* *9*, 2405. 10.3389/fimmu.2018.02405.

471 22. Nakahashi-Ouchida, R., Uchida, Y., Yuki, Y., Katakai, Y., Yamanoue, T., Ogawa, H., Munesue, Y.,
472 Nakano, N., Hanari, K., Miyazaki, T., et al. (2021). A nanogel-based trivalent PspA nasal vaccine
473 protects macaques from intratracheal challenge with pneumococci. *Vaccine* *39*, 3353–3364.
474 10.1016/j.vaccine.2021.04.069.

475 23. van Beek, L.F., Langereis, J.D., van den Berg van Saparoea, H.B., Gillard, J., Jong, W.S.P., van
476 Opzeeland, F.J., Mesman, R., van Niftrik, L., Joosten, I., Diavatopoulos, D.A., et al. (2021). Intranasal
477 vaccination with protein bodies elicit strong protection against *Streptococcus pneumoniae* colonization.
478 *Vaccine* *39*, 6920–6929. 10.1016/j.vaccine.2021.10.006.

479 24. Croucher, N.J., Løchen, A., and Bentley, S.D. (2018). Pneumococcal Vaccines: Host Interactions,
480 Population Dynamics, and Design Principles. *Annu. Rev. Microbiol.* *72*, 521–549. 10.1146/annurev-
481 micro-090817-062338.

482 25. Slager, J., Aprianto, R., and Veening, J.-W. (2018). Deep genome annotation of the opportunistic
483 human pathogen *Streptococcus pneumoniae* D39. *Nucleic Acids Res.* *46*, 9971–9989.
484 10.1093/nar/gky725.

485 26. Croucher, N.J., Campo, J.J., Le, T.Q., Liang, X., Bentley, S.D., Hanage, W.P., and Lipsitch, M. (2017).
486 Diverse evolutionary patterns of pneumococcal antigens identified by pangenome-wide immunological
487 screening. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E357–E366. 10.1073/pnas.1613937114.

488 27. Georgieva, M., Kagedan, L., Lu, Y.-J., Thompson, C.M., and Lipsitch, M. (2018). Antigenic Variation
489 in *Streptococcus pneumoniae* PspC Promotes Immune Escape in the Presence of Variant-Specific
490 Immunity. *mBio* **9**, e00264-18. 10.1128/mBio.00264-18.

491 28. Rowe, H.M., Karlsson, E., Echlin, H., Chang, T.-C., Wang, L., van Opijken, T., Pounds, S.B., Schultz-
492 Cherry, S., and Rosch, J.W. (2019). Bacterial Factors Required for Transmission of *Streptococcus*
493 *pneumoniae* in Mammalian Hosts. *Cell Host Microbe* **25**, 884-891.e6. 10.1016/j.chom.2019.04.012.

494 29. Zangari, T., Zafar, M.A., Lees, J.A., Abruzzo, A.R., Bee, G.C.W., and Weiser, J.N. (2021).
495 Pneumococcal capsule blocks protection by immunization with conserved surface proteins. *NPJ
496 Vaccines* **6**, 155. 10.1038/s41541-021-00413-5.

497 30. de Bakker, V., Liu, X., Bravo, A.M., and Veening, J.-W. (2022). CRISPRi-seq for genome-wide fitness
498 quantification in bacteria. *Nat. Protoc.* **17**, 252–281. 10.1038/s41596-021-00639-6.

499 31. Liu, X., Kimmey, J.M., Matarazzo, L., de Bakker, V., Van Maele, L., Sirard, J.-C., Nizet, V., and
500 Veening, J.-W. (2021). Exploration of Bacterial Bottlenecks and *Streptococcus pneumoniae*
501 Pathogenesis by CRISPRi-Seq. *Cell Host Microbe* **29**, 107-120.e6. 10.1016/j.chom.2020.10.001.

502 32. Webb, A.J., Karatsa-Dodgson, M., and Gründling, A. (2009). Two-enzyme systems for glycolipid and
503 polyglycerolphosphate lipoteichoic acid synthesis in *Listeria monocytogenes*. *Mol. Microbiol.* **74**, 299–
504 314. 10.1111/j.1365-2958.2009.06829.x.

505 33. Grebe, T., Paik, J., and Hakenbeck, R. (1997). A novel resistance mechanism against beta-lactams in
506 *Streptococcus pneumoniae* involves CpoA, a putative glycosyltransferase. *J. Bacteriol.* **179**, 3342–
507 3349. 10.1128/jb.179.10.3342-3349.1997.

508 34. Meiers, M., Volz, C., Eisel, J., Maurer, P., Henrich, B., and Hakenbeck, R. (2014). Altered lipid
509 composition in *Streptococcus pneumoniae cpoA* mutants. *BMC Microbiol.* **14**, 12. 10.1186/1471-2180-
510 14-12.

511 35. Edman, M., Berg, S., Storm, P., Wikström, M., Vikström, S., Ohman, A., and Wieslander, A. (2003).
512 Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane
513 lipids in *Acholeplasma laidlawii* and *Streptococcus pneumoniae*. *J. Biol. Chem.* **278**, 8420–8428.
514 10.1074/jbc.M211492200.

515 36. Rosconi, F., Rudmann, E., Li, J., Surujon, D., Anthony, J., Frank, M., Jones, D.S., Rock, C., Rosch,
516 J.W., Johnston, C.D., et al. (2022). A bacterial pan-genome makes gene essentiality strain-dependent
517 and evolvable. *Nat. Microbiol.* **7**, 1580–1592. 10.1038/s41564-022-01208-7.

518 37. Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G.R., Wang, J., Cong, Q.,
519 Kinch, L.N., Schaeffer, R.D., et al. (2021). Accurate prediction of protein structures and interactions
520 using a three-track neural network. *Science* **373**, 871–876. 10.1126/science.abj8754.

521 38. Chang, A., Singh, S., Phillips, G.N., and Thorson, J.S. (2011). Glycosyltransferase structural biology
522 and its role in the design of catalysts for glycosylation. *Curr. Opin. Biotechnol.* **22**, 800–808.
523 10.1016/j.copbio.2011.04.013.

524 39. Guerin, M.E., Kordulakova, J., Schaeffer, F., Svetlikova, Z., Buschiazza, A., Giganti, D., Gicquel, B.,
525 Mikusova, K., Jackson, M., and Alzari, P.M. (2007). Molecular Recognition and Interfacial Catalysis
526 by the Essential Phosphatidylinositol Mannosyltransferase PimA from Mycobacteria. *J. Biol. Chem.*
527 282, 20705–20714. 10.1074/jbc.M702087200.

528 40. Le Gouëllec, A., Roux, L., Fadda, D., Massidda, O., Vernet, T., and Zapun, A. (2008). Roles of
529 Pneumococcal DivIB in Cell Division. *J. Bacteriol.* 190, 4501–4511. 10.1128/JB.00376-08.

530 41. Fenton, A.K., El Mortaji, L., Lau, D.T.C., Rudner, D.Z., and Bernhardt, T.G. (2016). CozE is a member
531 of the MreCD complex that directs cell elongation in *Streptococcus pneumoniae*. *Nat. Microbiol.* 2,
532 16237. 10.1038/nmicrobiol.2016.237.

533 42. Biedma, M.E., Cayet, D., Tabareau, J., Rossi, A.H., Ivičak-Kocjan, K., Moreno, G., Errea, A., Soulard,
534 D., Parisi, G., Jerala, R., et al. (2019). Recombinant flagellins with deletions in domains D1, D2, and
535 D3: Characterization as novel immunoadjuvants. *Vaccine* 37, 652–663.
536 10.1016/j.vaccine.2018.12.009.

537 43. Van Maele, L., Fougeron, D., Janot, L., Didierlaurent, A., Cayet, D., Tabareau, J., Rumbo, M., Corvo-
538 Chamaillard, S., Boulenouar, S., Jeffs, S., et al. (2014). Airway structural cells regulate TLR5-mediated
539 mucosal adjuvant activity. *Mucosal Immunol.* 7, 489–500. 10.1038/mi.2013.66.

540 44. Nempont, C., Cayet, D., Rumbo, M., Bompard, C., Villeret, V., and Sirard, J.-C. (2008). Deletion of
541 Flagellin's Hypervariable Region Abrogates Antibody-Mediated Neutralization and Systemic
542 Activation of TLR5-Dependent Immunity. *J. Immunol.* 181, 2036–2043.
543 10.4049/jimmunol.181.3.2036.

544 45. Nakano, S., Fujisawa, T., Ito, Y., Chang, B., Matsumura, Y., Yamamoto, M., Suga, S., Ohnishi, M.,
545 and Nagao, M. (2019). Whole-Genome Sequencing Analysis of Multidrug-Resistant Serotype 15A
546 *Streptococcus pneumoniae* in Japan and the Emergence of a Highly Resistant Serotype 15A-ST9084
547 Clone. *Antimicrob. Agents Chemother.* 63, e02579-18. 10.1128/AAC.02579-18.

548 46. Lo, S.W., Mellor, K., Cohen, R., Alonso, A.R., Belman, S., Kumar, N., Hawkins, P.A., Gladstone,
549 R.A., von Gottberg, A., Veeraraghavan, B., et al. (2022). Emergence of a multidrug-resistant and
550 virulent *Streptococcus pneumoniae* lineage mediates serotype replacement after PCV13: an
551 international whole-genome sequencing study. *Lancet Microbe* 3, e735–e743. 10.1016/S2666-
552 5247(22)00158-6.

553 47. Hao, L., Kuttel, M.M., Ravenscroft, N., Thompson, A., Prasad, A.K., Gangolli, S., Tan, C., Cooper,
554 D., Watson, W., Liberator, P., et al. (2022). *Streptococcus pneumoniae* serotype 15B polysaccharide
555 conjugate elicits a cross-functional immune response against serotype 15C but not 15A. *Vaccine* 40,
556 4872–4880. 10.1016/j.vaccine.2022.06.041.

557 48. Zhang, Z., Clarke, T.B., and Weiser, J.N. (2009). Cellular effectors mediating Th17-dependent
558 clearance of pneumococcal colonization in mice. *J. Clin. Invest.* 119, 1899–1909. 10.1172/JCI36731.

559 49. Trzciński, K., Thompson, C.M., Srivastava, A., Bassett, A., Malley, R., and Lipsitch, M. (2008).
560 Protection against Nasopharyngeal Colonization by *Streptococcus pneumoniae* Is Mediated by
561 Antigen-Specific CD4+ T Cells. *Infect. Immun.* 76, 2678–2684. 10.1128/IAI.00141-08.

562 50. Shenoy, A.T., Wasserman, G.A., Arafa, E.I., Wooten, A.K., Smith, N.M.S., Martin, I.M.C., Jones,
563 M.R., Quinton, L.J., and Mizgerd, J.P. (2020). Lung CD4+ resident memory T cells remodel epithelial

564 responses to accelerate neutrophil recruitment during pneumonia. *Mucosal Immunol.* *13*, 334–343.
565 10.1038/s41385-019-0229-2.

566 51. Wang, Y., Jiang, B., Guo, Y., Li, W., Tian, Y., Sonnenberg, G.F., Weiser, J.N., Ni, X., and Shen, H.
567 (2017). Cross-protective mucosal immunity mediated by memory Th17 cells against *Streptococcus*
568 *pneumoniae* lung infection. *Mucosal Immunol.* *10*, 250–259. 10.1038/mi.2016.41.

569 52. Barthelemy, A., Ivanov, S., Fontaine, J., Soulard, D., Bouabe, H., Paget, C., Faveeuw, C., and Trottein,
570 F. (2017). Influenza A virus-induced release of interleukin-10 inhibits the anti-microbial activities of
571 invariant natural killer T cells during invasive pneumococcal superinfection. *Mucosal Immunol.* *10*,
572 460–469. 10.1038/mi.2016.49.

573 53. Ivanov, S., Fontaine, J., Paget, C., Macho Fernandez, E., Van Maele, L., Renneson, J., Maillet, I., Wolf,
574 N.M., Rial, A., Léger, H., et al. (2012). Key role for respiratory CD103(+) dendritic cells, IFN- γ , and
575 IL-17 in protection against *Streptococcus pneumoniae* infection in response to α -galactosylceramide.
576 *J. Infect. Dis.* *206*, 723–734. 10.1093/infdis/jis413.

577 54. Ivanov, S., Renneson, J., Fontaine, J., Barthelemy, A., Paget, C., Fernandez, E.M., Blanc, F., De Trez,
578 C., Van Maele, L., Dumoutier, L., et al. (2013). Interleukin-22 reduces lung inflammation during
579 influenza A virus infection and protects against secondary bacterial infection. *J. Virol.* *87*, 6911–6924.
580 10.1128/JVI.02943-12.

581 55. Zangari, T., Ortigoza, M.B., Lokken-Toyli, K.L., and Weiser, J.N. (2021). Type I Interferon Signaling
582 Is a Common Factor Driving *Streptococcus pneumoniae* and Influenza A Virus Shedding and
583 Transmission. *mBio* *12*, e03589-20. 10.1128/mBio.03589-20.

584 56. Sender, V., Hentrich, K., Pathak, A., Tan Qian Ler, A., Embaie, B.T., Lundström, S.L., Gaetani, M.,
585 Bergstrand, J., Nakamoto, R., Sham, L.-T., et al. (2020). Capillary leakage provides nutrients and
586 antioxidants for rapid pneumococcal proliferation in influenza-infected lower airways. *Proc. Natl.
587 Acad. Sci. U. S. A.* *117*, 31386–31397. 10.1073/pnas.2012265117.

588 57. Amezcua Vesely, M.C., Pallis, P., Bielecki, P., Low, J.S., Zhao, J., Harman, C.C.D., Kroehling, L.,
589 Jackson, R., Bailis, W., Licona-Limón, P., et al. (2019). Effector TH17 Cells Give Rise to Long-Lived
590 TRM Cells that Are Essential for an Immediate Response against Bacterial Infection. *Cell* *178*, 1176–
591 1188.e15. 10.1016/j.cell.2019.07.032.

592 58. Yerneni, S.S., Werner, S., Azambuja, J.H., Ludwig, N., Eutsey, R., Aggarwal, S.D., Lucas, P.C.,
593 Bailey, N., Whiteside, T.L., Campbell, P.G., et al. (2021). Pneumococcal Extracellular Vesicles
594 Modulate Host Immunity. *mBio* *12*, e0165721. 10.1128/mBio.01657-21.

595 59. Chao, Y., Marks, L.R., Pettigrew, M.M., and Hakansson, A.P. (2015). *Streptococcus pneumoniae*
596 biofilm formation and dispersion during colonization and disease. *Front. Cell. Infect. Microbiol.* *4*.

597 60. Kuipers, K., Jong, W.S.P., van der Gaast-de Jongh, C.E., Houben, D., van Opzeeland, F., Simonetti,
598 E., van Selm, S., de Groot, R., Koenders, M.I., Azarian, T., et al. (2017). Th17-Mediated Cross
599 Protection against Pneumococcal Carriage by Vaccination with a Variable Antigen. *Infect. Immun.* *85*,
600 e00281-17. 10.1128/IAI.00281-17.

601 61. Moffitt, K.L., Gierahn, T.M., Lu, Y., Gouveia, P., Alderson, M., Flechtner, J.B., Higgins, D.E., and
602 Malley, R. (2011). TH17-based vaccine design for prevention of *Streptococcus pneumoniae*
603 colonization. *Cell Host Microbe* *9*, 158–165. 10.1016/j.chom.2011.01.007.

604 62. Li, W., Moltedo, B., and Moran, T.M. (2012). Type I interferon induction during influenza virus
605 infection increases susceptibility to secondary *Streptococcus pneumoniae* infection by negative
606 regulation of $\gamma\delta$ T cells. *J. Virol.* *86*, 12304–12312. 10.1128/JVI.01269-12.

607 63. Li, Y., Yang, Y., Chen, D., Wang, Y., Zhang, X., Li, W., Chen, S., Wong, S.M., Shen, M., Akerley,
608 B.J., et al. (2023). Memory Th17 cell-mediated protection against lethal secondary pneumococcal
609 pneumonia following influenza infection. *mBio* *0*, e00519-23. 10.1128/mbio.00519-23.

610 64. Rydzynski Moderbacher, C., Ramirez, S.I., Dan, J.M., Grifoni, A., Hastie, K.M., Weiskopf, D.,
611 Belanger, S., Abbott, R.K., Kim, C., Choi, J., et al. (2020). Antigen-Specific Adaptive Immunity to
612 SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. *Cell* *183*, 996-
613 1012.e19. 10.1016/j.cell.2020.09.038.

614 65. Marinaik, C.B., Kingstad-Bakke, B., Lee, W., Hatta, M., Sonsalla, M., Larsen, A., Neldner, B., Gasper,
615 D.J., Kedl, R.M., Kawaoka, Y., et al. (2020). Programming Multifaceted Pulmonary T Cell Immunity
616 by Combination Adjuvants. *Cell Rep. Med.* *1*, 100095. 10.1016/j.xcrm.2020.100095.

617 66. Omokanye, A., Ong, L.C., Lebrero-Fernandez, C., Bernasconi, V., Schön, K., Strömberg, A., Bemark,
618 M., Saelens, X., Czarnecki, P., and Lycke, N. (2022). Clonotypic analysis of protective influenza
619 M2e-specific lung resident Th17 memory cells reveals extensive functional diversity. *Mucosal
620 Immunol.* *15*, 717–729. 10.1038/s41385-022-00497-9.

621
622
623 **Supplementary Materials**

624 Supplementary Text

625 Figs. S1 to S7

626 Tables S2 to S3

627 Supplementary References

628
629 **Table S1.** Genome-wide fitness values as assessed by CRISPRi-seq of *S. pneumoniae* grown in
630 C+Y vs during superinfection (separate excel file).

631 **Table S2.** Strains and plasmids used in the study.

632 **Table S3.** Primers used in the study.

633

634

635