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Summary

Several vaccines targeting bacterial pathogens show reduced efficacy in the context of intercurrent
viral infection indicating a new vaccinology approach is required to protect against such
superinfections. To find antigens for the human pathogen Streptococcus pneumoniae that are
effective following influenza infection, we performed CRISPRi-seq in a murine model of
superinfection and identified the highly conserved /afB gene as virulence factor. We show that
LafB is a membrane-associated, intracellular protein that catalyzes the formation of galactosyl-
glucosyl-diacylglycerol, a glycolipid we show is important for cell wall homeostasis. Respiratory
vaccination with recombinant LafB, in contrast to subcutaneous vaccination, was highly protective
against all serotypes in a murine model. In contrast to standard pneumococcal capsule-based
conjugate vaccines, protection did not require LafB-specific antibodies but was dependent on
airway CD4" T helper 17 cells. Healthy human individuals can elicit LafB-specific immune
responses, suggesting its merit as a universal pneumococcal vaccine antigen that remains effective

following influenza infection.

One-Sentence Summary: Discovery of a universal pneumococcal vaccine protective during

superinfection.

Keywords: CRISPRi-seq, protein antigen, superinfection, vaccine discovery, genome-wide

vaccinology
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Introduction

Streptococcus pneumoniae is a leading cause of bacterial pneumonia and a major cause of death
and disability in young children and susceptible adults, including the elderly or
immunocompromised. Notoriously, S. pneumoniae proves particularly virulent in combination
with antecedent influenza A virus infection. Such secondary pneumococcal infections, or
superinfections, contribute significantly to excess morbidity and mortality in high-risk groups as

highlighted during the influenza pandemics of 1918, 1957, 1968, and 2009'~*.

Currently, pneumococcal vaccines are capsule polysaccharide (CPS)-based, such as
Prevenar 13®, which is composed of 13 CPSs conjugated to a carrier protein together with an
aluminum adjuvant and Pneumovax®, the pneumococcal polysaccharide vaccine (PPSV) which
contains 23 CPSs>. Whereas both vaccines elicit CPS-specific antibodies, the conjugated vaccine
induces T-cell dependent immunity, which contribute to stronger antibody-mediated protection®.
While these vaccines are successful in reducing the burden of disease caused by 13-23 serotypes,
they do not protect against invasive pneumococcal disease (IPD) caused by non-vaccine serotypes
(NVT)”8, There are more than 100 known serotypes of S. pneumoniae® and the rapid switching
between serotypes, serotype displacement and appearance of non-typeable clinical isolates reduces
the efficacy of CPS-based vaccines!'®!!. Importantly, CPS-based vaccines provide poor protection
during pneumococcal superinfection following influenza in mice!'?!3. While CPS-based vaccines
have shown great protection from IPD caused by serotype-matched pneumococcal strains and
likely also contribute to protection following influenza infection, how well they work in this
context is unclear from current human vaccine studies'*. What is clear is that influenza infection
contributes to decreased pneumococcal clearance and increased lung injury even in PPSV-
vaccinated mice!3. Conversely, pneumococcal colonization may also impede mucosal immune
responses to live attenuated influenza vaccine, including reduced IgA in the nasal cavity and

reduced IgG in the human lung'®.

Thus, there is an urgent need for an efficient vaccine which can cover most virulent
pneumococcal strains and provide protection both against primary infection and superinfection. A
promising avenue for a universal, serotype-independent vaccine is in the use of immunogenic
conserved proteins as protective antigens>!¢24, So far, efforts have been focused on surface-
exposed pneumococcal proteins as these might be directly recognized by opsonizing antibodies.

However, surface-exposed proteins typically show significant strain-to-strain sequence variability

3
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77 because of antigenic variation?>?” rendering them prone to vaccine escape and purely protein-
78 based pneumococcal vaccines have still not made it to market. To uncover potential universal
79 antigens, an unbiased genome-wide vaccinology approach is required. Previous attempts have used
80 transposon insertion sequencing (Tn-seq) to identify pneumococcal antigens?®2°. While
81 successful, these approaches identified non-essential genes encoding for variable surface-exposed
82 proteins that suffer from the limitations outlined above. Here, employing CRISPR interference
83 (CRISPRI) that allows the interrogation of essential genes®, we searched specifically for
84 conserved genes highly important for bacterial survival during superinfection. We show that one
85 of our hits, LafB, a highly conserved membrane-associated protein, is an essential virulence factor.
86 Importantly, recombinant LafB provides broad Th17-specific protective immunity paving the way
87 for a universal, capsule-independent, pneumococcal vaccine.

88

89 Results

90 CRISPRi-seq identifies LafB as novel pneumococcal virulence factor for influenza
91 superinfection

92 We previously built a doxycycline-inducible genome-wide CRISPRI library that targets 99% of
93 genetic elements present in the virulent serotype 2 D39V S. pneumoniae strain’!. By sequencing
94 and quantifying sgRNAs in doxycycline-free or -supplemented conditions (to induce dCas9), the
95 relative fitness of each targeted feature can be determined®. Using this CRISPRi-seq approach in
96 mice fed doxycycline-containing food, we confirmed pneumococcal capsule as an important
97 virulence factor during superinfection®!. To more precisely control in vivo dCas9 expression,
98 doxycycline levels in serum and epithelial lining fluids (i.e. bronchoalveolar lavage) were
99 optimized following intraperitoneal (i.p.) injection in mice. A novel ex vivo CRISPRi-based
100 luciferase assay found as little as 4 ng/ml doxycycline repressed luciferase transcription >15-fold
101 (Figure S1); i.p. injection of 5 mg/kg of doxycycline adequately activated the pneumococcal
102 CRISPRIi system in the lung.
103 Next, mice were infected intranasally (i.n.) with H3N2 influenza virus followed at day 7
104 by i.n. infection with the S. pneumoniae CRISPRIi library. dCas9 was induced by doxycycline and
105 compared to mock (vehicle) control (Figure 1a). The CRISPRi-seq screen confirmed the capsule
106 operon as critical for pneumococcal survival in the host; in contrast, the in vitro essential gene
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107 metK was dispensable in vivo’!(Figure 1b). To pinpoint conserved S. pneumoniae genes with
108 important virulence functions in the context of influenza superinfection that could be promising
109 vaccine candidates, we plotted the fitness values of each clone across in vitro and in vivo
110 conditions. This analysis identified sgRNAO0370 targeting the gene spv_0960 (lafB), previously
111 unnoticed in Tn-seq experiments, to be significantly underrepresented in vivo following
112 doxycycline induction (Figure 1b, Supplementary Table 1).
113 To validate the CRISPRi-seq screen, lafB-deleted and complemented mutants were
114 constructed (Figure S2a-b). Competition assays were conducted 7 days post influenza infection
115 with wild type S. pneumoniae paired with a lafB mutant or a cps mutant (avirulent control) ina 1:1
116 ratio. S. pneumoniae lacking LafB were outcompeted by wild type bacteria suggesting a major role
117 of lafB for replication in the host (Figure 1c). These results were confirmed in single strain
118 superinfection experiments, as /afB mutant bacteria had significantly reduced in lung bacterial
119 counts compared to the wild type or /afB-complemented strains (Figure 1d). Invasive disease,
120 assessed by splenic dissemination, was likewise attenuated in animals infected with the /afB
121 mutant (Figure S2c¢-d), indicating LafB is essential for pneumococcal virulence.
122
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124 Figure 1. LafB is an essential virulence determinant in pneumococcal pneumonia following influenza
125 infection. (a) Workflow of the CRISPRi-seq screen using injected doxycycline. Mice were inoculated
126 intranasally with the genome-wide pneumococcal CRISPRi library. (b) CRISPRi-knockdown of the
127 capsule operon (c¢ps2A4-N, cps2F-N) and lafB results in reduced fitness in vivo (mouse) compared to in vitro
128 (C+Y medium). (¢) Competition index of individual mutants, compared to wild type (WT) D39V. The
129 AlafB and Acps mutants were outcompeted by the WT strain. Strain VL3200 is similar to WT but contains
130 an erythromycin resistance marker at a neutral locus to allow for selection. Each data point represents the
131 lung CFU count at day 8 of a single mouse infected with flu at day 0, and a ratio 1:1 of mutant and WT
132 strain at day 7. (d) Validation study of sgRNAO0370 target, /afB. The AlafB mutant was attenuated in
133 establishing lung infection. Ectopic expression of /afB complemented the phenotype. Kruskal-Wallis
134 testing was used to compare groups.

135

136 LafB is an intracellular membrane-associated protein involved in cell wall homeostasis.

137 Lipoteichoic acid anchor formation protein B (LafB, 347 amino acids, 40 kDa)*? is highly
138 conserved among pneumococci (>96% amino acid identity in all sequenced pneumococci) and
139 closely related members of the Streptococcus mitis group (Figure S3a-b) and has been implicated
140 in the production of galactosyl-glucosyl-diacylglycerol, a glycolipid of unknown function
141 (Figure 2a)**34, Incubation of recombinant LafB with a-monoglucosyldiacylglycerol (mGlc-
142 DAG) and UDP-Galactose followed by mass spectrometry, demonstrated the production of UDP
143 (Figure S4), establishing that LafB is a diglucosyl diacylglycerol synthase, as proposed
144 previously®. Additionally, lafB-deficient pneumococci have a slight reduced susceptibility to
145 penicillins®?, but increased susceptibility to daptomycin and acidic stress***°. Prior western blot
146 analysis found LafB co-purifies with the membrane fraction®>, However, while our structure
147 prediction using RoseTTAFold?” demonstrates the Rossmann-like domain of GT-B
148 glycosyltransferases®®, no clear transmembrane domains were detected (Figure 2b). Overlay of
149 our predicted model of LafB to a crystalline structure of a structurally related GT-B
150 glycosyltransferase, Mycobacterium tuberculosis PimA (Pdb 2GEK)*°, showed good agreement,
151 albeit with deviations in the active site cleft, bespeaking the different substrate specificities of the
152 two proteins (Figure S3f).

153 To pinpoint LafB cellular localization, we constructed a functional LafB-GFP fusion
154 expressed from its native locus (Fig. S3c-e) and performed fluorescence microscopy on live S.

155 pneumoniae. As shown in Figure 2¢, LafB-GFP demonstrates clear membrane-associated

6
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156 localization. Split complementation luciferase assays for topology showed that both LafB termini
157 reside in the cytoplasm (Figure 2d). These data support our structural model of LafB as an
158 intracellular protein that is membrane-associated via hydrophobic and charge interactions with the
159 cytoplasmic membrane.

160 To gain additional insight into /afB mutant virulence attenuation, we performed a genome-
161 wide synthetic lethal screen by introducing a sgRNA library containing 1499 unique sgRNAs into
162 the AlafB mutant background, then grew bacteria under laboratory conditions where /afB is not
163 essential (Figure 2e). As shown in Figure 2f, the gene encoding the division protein DivIB#’
164 becomes more essential in a /afB mutant background, suggesting that galactosyl-glucosyl-
165 diacylglycerol plays a role for efficient cell division. The gene cozE (aka cozEa) encoding a known
166 regulator of penicillin-binding protein PbplA*' becomes less essential in absence of lafB
167 (Figure 2f). This genetic interaction may reflect prior findings that cozE mutants have deranged
168 PbplA activity causing cell lysis*. Since /lafB mutants have reduced PbplA levels®’, a double
169 lafB/cozE knockdown alleviates the cozE single mutant phenotype. Testing individual
170 knockdowns of divIB and cozE validated the screen (Figure 2g). These pleiotropic effects of lafB
171 deletion on membrane and cell wall physiology likely underpin the attenuation of virulence of the
172 AlafB mutant (Figure 1d).

173
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Figure 2. LafB is a membrane-associated galactosyl-glucosyl-diacylglycerol synthase with a

pleiotropic role in cell division and cell wall homeostasis. (a) LafB is a glycosyltransferase encoded in

the same operon with another glycosyltransferase, LafA. LafA catalyzes the synthesis of glucosyl-

diacylglycerol (Glc-DAG), which provides the anchor for lipoteichoic acids (LTA). LafB catalyzes the
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179 addition of galactose onto Glc-DAG synthesizing GalGle-DAG (Fig. S4). In the absence of LafB, no
180 detectable of GalGlc-DAG can be found in S. pneumoniae. (b) The predicted structure of LafB by
181 RoseTTAFold. Negative and positive electrostatic potentials are colored red and blue, respectively. The
182 two blue arrows point to the active units. No transmembrane domain was identified. (¢) GFP was fused to
183 the N-terminus of LafB (GFP-LafB) and fluorescence microscopy analysis showed a membrane
184 localization. (d) HiBiT assays showed that both N- and C- termini are localized inside the cytoplasm. LafB
185 was tagged with the HiBit tag at its N- or C-terminus and placed under an IPTG-inducible promoter. Only
186 when the HiBiT is present outside the cell, it can interact with the complementary LgBiT and reconstitute
187 the luminescent NanoBiT enzyme (see Methods). Luminescence (relative light units; RLU) is recorded
188 with a microplate reader. (e) The workflow of CRISPRi-seq in wildtype (WT) D39V and /lafB knockout
189 mutant (AlafB) to identify the gene interaction network. (f) Comparison of fitness cost of gene depletion by
190 CRISPRi between wild type and AlafB mutant. The sgRNAs showing significant fitness cost between WT
191 and AlafB are colored in orange and their targets are labelled. (g) Growth curve of WT and AlafB mutant
192 with doxycycline inducible-CRISPRi targeting cozE and diviB confirmed the positive interaction of
193 LafB/CozE and negative interaction of LafB/DivIB. Strains were pre-cultured to mid-exponential phase,
194 diluted 1:100 in C+Y medium with (10 ng/ml) or without (0 ng/ml) doxycycline. Turbidity of the cell
195 culture is monitored by a microplate reader at 595 nm (OD595) every 10 min. Average of 3 replicates is
196 presented. Shadow showed the range of the measured OD595.

197

198 Vaccination with LafB induces antigen-specific adaptive immune responses

199 To establish whether LafB is a protective vaccine antigen, we cloned S. pneumoniae D39V lafB
200 and produced the protein in E. coli (Figure S4a). Recombinant LafB was formulated with alum as
201 adjuvant for subcutaneous (s.c.) immunization, or with the recombinant Sa/monella enterica
202 serovar Typhimurium flagellin FliCa174400 as a mucosal adjuvant**** for i.n. immunization.
203 Adaptive immune responses specific for LafB were tested in mice on day 28 after a prime-boost
204 vaccination (Figure 3a). A strong LafB-specific antibody response (IgG, IgM but no IgA) was
205 observed for s.c. vaccinated animals in serum and broncho-alveolar lavages (BAL), respectively
206 (Figure 3b and Figure S5a-d). In contrast, LafB-specific antibodies were weakly elicited in mice
207 vaccinated via the i.n. route. When immune cells from lung, spleen and mediastinal lymph nodes
208 (MdLN) were stimulated ex vivo with LafB antigen, cytokines associated with Th1 (IFNy), Th2
209 (IL-13), and Th17 (IL-17/IL-22) were produced in response regardless the vaccination route
210 (Figure 3¢ and Figure S5e-f).
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Figure 3: Intranasal vaccination with LafB protects mice against pneumococcal disease in a serotype-
independent manner. C57BL/6 mice (n=6-26) were immunized at days 0 and 14 with LafB via intranasal
(flagellin-adjuvanted) or subcutaneous (alum-adjuvanted) route, a commercial PPSV vaccine, or left
untreated (mock). (a) Vaccination and immune response timeline. (b-¢) Immune responses at day 28. (b)
LafB-specific antibody response. Sera were collected and levels of LafB-specific IgG were determined by
ELISA. Plots represent values for individual mice as well as median. (¢) LafB-specific T cell response.
Spleen cells were stimulated 72 h with LafB and cytokine levels in supernatant were determined by ELISA.
Results are expressed as median. Statistical significance (*P<0.05, **** p<0.0001) was assessed by one-
way ANOVA Kruskal-Wallis test with Dunn's correction compared to the mock group. (d-g) Analysis of

vaccine protective efficacy. (d) Vaccination and challenge timeline. Vaccinated mice were infected with

10
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222 H3N2 influenza A virus at day 28 and were challenged at day 35 intranasally with S. pneumoniae strain
223 serotype 2 D39V (e, 5x10* CFU), serotype 24F (f, 10° CFU), or serotype 15A strain (g, 5x10* CFU). N=
224 (e-g) Protection was assessed by monitoring survival. Statistical significance (*P<0.05, **** p<0.0001)
225 was assessed by Mantel-Cox test compared to the mock group. Each group had at least 10 mice.

226

227 Intranasal vaccination offers broad protection across serotypes

228 Vaccinated animals, including PPSV-immunized animals, were infected on day 28 with H3N2
229 influenza virus and superinfected on day 35 with the S. pneumoniae serotype 2 strain D39V
230 (Figure 3d). All mice receiving mock immunization succumbed to disease after infection. Forty
231 percent of mice vaccinated with PPSV, which includes the CPS from serotype 2, were protected
232 against pneumococcal challenge (Figure 3e). Mice vaccinated via the i.n. route with flagellin-
233 adjuvanted LafB outperformed both subcutaneous- and PPSV-vaccinated animals, with 60%
234 mouse survival. LafB standalone i.n. vaccination was poorly effective (Figure S5g-h). Mice
235 immunized i.n. with the flagellin-adjuvanted irrelevant antigen ovalbumin (OVA) were not
236 protected (Figure S5i-j). These data demonstrate that LafB is a protective antigen against
237 pneumococcal infection when formulated with an intranasal adjuvant.

238 Western blotting showed that serum of animals vaccinated with LafB from serotype 2 strain
239 D39V recognized all tested strains representing serotypes 1, 3,4, 5,9V, 11A, 15A, 19F, 23A, 23F,
240 24F and 35B, corroborating the high conservation of the LafB protein sequence across
241 pneumococci (Figure S4e). Since the introduction of the CPS-based vaccines, NVT are becoming
242 prevalent’!!, in particular serotypes 15A and 24F7#>4¢ which are not included in PPSV (that does
243 however contain 15B, which is poorly cross-reactive to 15A)*’. As shown in Figure 3f-g and
244 Figure S6, flagellin-adjuvanted LafB vaccination significantly protected mice against infection
245 with NVT 15A and 24F, in stark contrast to mice vaccinated with PPSV, which only offered slight
246 protection against serotype 15A. In contrast to PPSV controls, LafB-vaccinated mice completely
247 cleared pneumococcal bacteria (Figure Sée-f), supporting a role for LafB as a universal vaccine
248 antigen to confer sterilizing protection against pneumococcal infections.

249

250
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251 Protection against pneumococcal superinfection is mediated by Th17 immunity

252 Th17 CD4" T lymphocytes that are functionally characterized by the expression of the retinoid
253 orphan receptor g t (RORgt) and the production of IL-17A, are essential for mucosal protection
254 against pneumococcal nasopharyngeal colonization and infection*®->!. To get more insight on the
255 mechanisms of vaccine protection, mice were immunized i.n. with flagellin-adjuvanted LafB, and
256 then infected with influenza virus. Immunoprotective responses were monitored starting from day
257 35, a time when viral infection impairs the innate and cell-mediated immune responses>?-°
258 (Figure 4a). In this context, cells isolated from spleen, MALN or lung from the i.n. vaccinated
259 animals secreted IL-17A after ex vivo stimulation with LafB antigen (Figure 4b), indicating that
260 influenza infection did not disturb the capacity of the vaccine to stimulate IL-17A. Moreover,
261 vaccination did not intrinsically alter viral replication nor the virus-induced pro-inflammatory
262 response when compared to mock or s.c. immunization, as measured by the viral RNA copy
263 number and major markers for lung inflammation (Figure S7). In contrast to wild type animals,
264 1117a-deficient mice were not protected against superinfection by S. preumoniae after the i.n.
265 vaccination (Figure 4c¢). Together, these data show that IL-17A is a major effector cytokine of
266 immunoprotective response induced by LafB i.n. vaccination.

267 Focusing on IL-17A-producing cells in the lungs (Figure 4d-e), we found the main cells
268 producing ROR yt and IL-17A after i.n. vaccination and influenza virus infection were
269 conventional CD4" T lymphocytes expressing TCRaf, i.e. Th17 lymphocytes. Other innate
270 lymphocytes, such as natural killer T cells (NKT), group 3 innate lymphoid cells (ILC3) or TCRyd
271 T cells known to contribute to immediate-early IL-17A responses, were moderately affected.
272 Notably, the Th17 lymphocytes were associated with increased surface expression of CD69, a
273 marker specific of tissue-resident memory (TRM) T lymphocytes in lungs®’. Finally, depletion of
274 CD4" T lymphocytes was associated with reduced protection of the intranasal LafB vaccine against
275 pneumococcal disease (Figure 4f). Thus, an intranasal vaccine composed of LafB antigen and
276 mucosal adjuvant induced protection dependent on lung Th17 lymphocytes with TRM features.
277
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278
279 Figure 4. Protection is mediated by Th17 lymphocytes with TRM features. C57BL/6, Rorc(t)-Gfp™ or
280 I117a”" mice (n=4-10) were immunized at days 0 and 14 with flagellin-adjuvanted LafB by intranasal route
281 or left unvaccinated (mock) and infected with H3N2 influenza A virus at day 28. At day 35, the immune
282 responses of virus-infected animals (b, d, e) were analyzed, or the animals were superinfected with S.
283 pneumoniae strain D39V (5x10* CFU) to monitor survival (¢, f). (b) LafB-specific IL-17A secretion.
284 Spleen, MdLN and lung cells from C57BL/6 animals were collected and stimulated 72h with LafB antigen.
285 IL-17A levels in supernatant were determined by ELISA. Plots represent values for individual mice as well
286 as median. Statistical significance (**P<0.01) was assessed by Mann-Whitney test compared to the mock
287 group. (¢) Vaccine protection is abolished in //17a”" mice. Statistical significance (*P<0.05) was assessed
288 by Mantel-Cox test compared to the mock group. (d-e¢) RORgt- and IL-17A-producing lung cells in Rorc(?)-
289 Gfp"®animals. (d) Analysis of Natural Killer T (NKT) cells, group 3 innate lymphoid cells (ILC3), TCRyS
290 T cells, and conventional a3 T lymphocytes. Plots represent values for individual mice as well as median.
291 Statistical significance (*P<0.01) was assessed by Mann-Whitney test compared to the mock group. (e)
292 Expression of CD69 marker on lung CD4" Th17 cells. (f) Protection requires CD4+ T cells. To this end,
293 mice were treated intraperitoneally at day 34 with CD4-specific depleting antibodies or control isotype,
294 infected at day 35 with D39V and protection was assessed by monitoring survival. Statistical significance
295 (** p<0.01) was assessed by Mantel-Cox test compared to the mock group.
296
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297 Healthy human individuals develop LafB-specific immunity
298 To examine whether LafB might be a suitable vaccine antigen for humans and antigenic in man,
299 we screened plasma from >100 healthy human adults for antigen-specific antibodies. Diphtheria
300 toxoid was used as a positive control. As shown in Figure 5a, healthy individuals were all strongly
301 immunoreactive to the diphtheria toxoid. In contrast, LafB-specific antibody responses were rather
302 low using ELISA. However, 10% of individuals demonstrated a stronger antibody response
303 specific for LafB. In addition, using immunoblotting, we found that strong immunoreactivity was
304 associated to LafB detection (Figure 5b). Finally, peripheral blood mononuclear cells (PBMC)
305 from healthy donors were isolated and stimulated with recombinant LafB or were incubated with
306 T-cell stimulant phytohemagglutinin (PHA) as a positive control (Figure 5¢). LafB significantly
307 stimulated IFNy secretion compared to controls. It should be noted that LafB is highly conserved
308 in pneumococci (Fig. S3), and to a lesser extent to other members of the mitis groups such as the
309 commensal S. mitis, meaning that the presence of LafB antibodies do not strictly indicate previous
310 pneumococcal carriage or infection. Nevertheless, these data indicate that LafB is antigenic in
311 human and a potential universal pneumococcal vaccine antigen that mobilizes lung resident
312 memory Th17 lymphocytes and protects in the context of preexisting viral infections in mice.
313
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315 Figure 5. Healthy human individuals have LafB-specific antibody and T cell responses. (a) Diphtheria
316 toxoid (DT)- and LafB-specific IgG of plasma from healthy donors (n=127) were determined by ELISA.
317 Plots represent values for individual people as well as median. (b) Immunoblot assays of healthy individual
318 plasma specific for LafB. Plasma (n=4/group) with low and high absorbance at 450nm in ELISA were
319 analyzed by immunoblotting. Recombinant LafB was separated by SDS-PAGE and transferred to a
320 membrane before probing with plasma. (¢) PBMC from healthy donors (n=3) were stimulated 5 days with
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321 LafB or PHA or left untreated (mock). The secretion of [FNg was determined by ELISA. Plots represent
322 values for individual values and median. Statistical significance (¥*p<0.05, *** p<0.001) was assessed by
323 one-way ANOVA Kruskal-Wallis test with Dunn's correction compared to the medium group.

324

325 Discussion

326 The principal contribution of this work is the identification of a conserved intracellular membrane-
327 associated pneumococcal antigen as a vaccine candidate effective in protection even following
328 influenza virus infection. The unbiased genetic approach of antigen screening by CRISPRIi in the
329 context of superinfection defined that the conserved protein LafB plays an essential role in
330 pneumococcal virulence. LafB is important for proper cell envelope homeostasis, and despite not
331 localized to the bacterial surface and directly exposed to the immune system, the protein triggers
332 vigorous antibody- and T cell-mediated immune responses. This paradigm for antigen selection
333 may open new avenues for discovery of virulence-associated vaccine candidates heretofore
334 overlooked by classical approaches. LafB protection was more effective against pneumococcal
335 challenge when used for intranasal vs. subcutaneous vaccination, but intranasal vaccination did
336 not induce significant circulating or secretory anti-LafB antibodies compared to the subcutaneous
337 route, suggesting that high titer opsonizing antibodies were not pivotal for the protection
338 phenotype. Antigen presentation by the intranasal route may mobilize specific sampling and
339 processing of antigen or unique targeting of antigen-presenting cells coordinating the stimulation
340 of T cell-mediated immunity. In contrast to surface determinants, LafB may only be exposed
341 outside of bacteria upon the production of extracellular vesicles®, lysis or autolysis. Indeed, during
342 colonization, pneumococci establish biofilms that consist of a matrix formed from lysed bacterial
343 cells*®. A subset of healthy humans have measurable LafB-specific IgG levels in their serum,
344 indicating that LafB is also antigenic in human. Deciphering the immune cells and regulatory
345 pathways in host and bacteria involved in the respiratory immune pattern is an important question
346 for future research. In addition, it would be interesting to test whether intranasal vaccination with
347 LafB also protects in a pneumococcal pneumonia model without viral challenge.

348 Multiple lines of evidence show that Th17 lymphocytes are instrumental for protecting the
349 respiratory mucosa against pneumococcal nasopharyngeal colonization or pneumonia*®->1:60:61,
350 Moreover, preceding influenza virus infection may blunt subsequent IL-17 production by yo T
351 cells in response to S. pneumoniae®®. Cross-protection against pneumococcal diseases after
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352 recovery from a primary infection is mediated by memory Thl7 cells but the antigenic
353 determinants remained to be defined®!. Interestingly, memory Thl7 responses induced by
354 pneumococcal infection can overcome subsequent viral-driven Th17 inhibition and provide cross-
355 protection against different serotypes during coinfection with IAV. Based on these findings, the
356 authors suggested that a vaccine that drives Th17 responses would be potentially able to mitigate
357 disease caused by coinfection®®. The here discovered, highly conserved LafB may constitute such
358 a prototypic cross-protective antigen. Recent studies highlighted how lung Th17 cells can
359 differentiate into TRM that can persist in tissue, promote long-term robust protection against
360 pathogens®>7, and are less prone to alteration or collapse in the context of immunosuppression or
361 immunodysregulation®. This unique capacity is noteworthy for protection of high-risk individuals
362 to pneumococcal diseases, such as the elderly, those suffering chronic disease, cancer patients, and
363 transplant recipients, all of whom may be more susceptible to viral infection. Stimulation of
364 mucosal immunity and particularly Th17 lymphocytes and TRM may explain the poorer protective
365 capacity of systemic route of immunization. Similar observations were made for COVID-19
366 vaccination in which higher antibody levels not correlate with better disease outcome, particularly
367 in older individuals®*. Our initial experiments using PBMC support LafB as an interesting antigen
368 for human vaccination, but one that will need specific adjuvants to polarize the immunity to Th17
369 and TRM and target the stimulation and response to key areas of lungs. The use of mucosal
370 adjuvants to potentiate the immune response and, particularly broadly protective lung TRM, is an
371 expanding field of research that will undoubtedly lay the foundation of a new generation of
372 vaccines against respiratory pathogens, including antimicrobial-resistant pathogens>%-6>-:66,

373

374 Materials and Methods

375 Detailed methods are provided in the supporting text.
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