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Abstract

We introduce Genozip Deep, a method for losslessly co-compressing FASTQ and BAM files.
Benchmarking demonstrates improvements of 75% to 96% versus the already-compressed source
files, translating to 2.3X to 6.8X better compression than current state-of-the-art algorithms that
compress FASTQ and BAM separately. The Deep method is independent of the underlying FASTQ
and BAM compressors, and here we present its implementation in Genozip, an established genomic

data compression software.

Introduction

The Institute of Genomic Medicine's (IGM) Bioinformatics Core, situated within the Columbia

University Irving School of Medicine, manages a variant warehouse containing approximately

130,000 whole-genome sequencing and whole-exome sequencing samples. This warehouse serves the
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dual purpose of gene discovery and diagnostic analysis. Given that the BAM (Binary sequence
Alignment/Map) files used to generate the warehouse have been used as the foundation for numerous
publications and diagnostic analyses, and continue to be reanalysed, the IGM is obliged to store these
files in their current format for the foreseeable future. Additionally, the IGM acts as a long-term
repository for off-machine raw sequencing data (FASTQ files) of internally and externally sequenced
samples, which must be preserved in their original form. Currently IGM has around 5 petabytes of
storage of which the vast majority are FASTQ files compressed with gzip and BAM/CRAM files.
While these file types are already compressed, the rapid growth of the volume of data puts the IGM in
dire need of improved compression methods. This situation is far from being anecdotal and is a major
concern for many institutions and organisations that rely heavily on genome sequencing to support

their biomedical and clinical research agendas.

Several commercial and open source software packages have been introduced in recent years for
compressing FASTQ files, and others for compressing BAM files, with a handful capable of
compressing both BAM and FASTQ, but separately' . Looking for a new method to address the
needs of IGM and other similar users of Genozip, we decided to focus on the large overlap in
information content between a typical BAM file and the set of FASTQ files used to generate it. Here,
we present a novel method, Deep, for co-compression of BAM and FASTQ files. Deep exploits the
information overlap to improve compression, an approach that has not been attempted before, while
still guaranteeing losslessness for both FASTQ and BAM data. We demonstrate that this method
results in substantially smaller files than when compressing BAM and FASTQ files
separately—resulting in a co-compressed file containing both the BAM and FASTQ data with a size

that is only slightly larger than just the BAM file compressed with Genozip.

We implemented the Deep method on top of the existing Genozip platform—an established software
package for compressing genomic files’”’. We released the resulting combined system as Genozip

version 15. The --deep command line option triggers lossless Deep co-compression of a BAM file

with the set of one or more FASTQ files from which the BAM file originates. Genozip automatically
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manages decompression and processing of a Deep-compressed file using its standard commands,

without further options: genounzip reconstructs the entire set of input files (BAM and FASTQ),

while genocat allows the extraction of a single file (i.e. the BAM file or one of the FASTQ files).

Methods

The Deep method must be implemented on top of a compressor already capable of compressing BAM
and FASTQ data. We have implemented it within the Genozip system, but the method described
hereinafter is not specific to Genozip, and could be implemented in other suitable compressors. We
shall focus our discussion on describing and analysing the Deep method (see Table S5 for source code
information). We refer the interested reader to earlier publications™’ describing the methods Genozip

utilises to compress the actual BAM and FASTQ data.

It seems obvious that co-compression of FASTQ and BAM would be beneficial, given that read
names, sequences and base quality score strings of related FASTQ and BAM files are expected to be
similar. However, there are several hurdles that make directly exploiting this information redundancy
challenging—in particular doing so fast enough and with economical enough utilisation of RAM, to
make it useful for real-world large institutional deployments. These hurdles include: reads in the
BAM file are often ordered differently than in the FASTQ file, since it is common practice to sort
BAM files by genomic coordinates. Sometimes, read names differ between the FASTQ and BAM
data—we have encountered read names changed to include the FASTQ file identifier, to include a
unique molecular identifier, to include the sequence length, to conform with the NCBI SRA read
name format, or to be more concise by reduction to a sequential numerical number. The base quality
(QUAL) data may differ as well—for example if the BAM data underwent Base Quality Score
Recalibration. The BAM file might be missing reads contained in the FASTQ data due to filtering,
and conversely may include secondary and supplementary alignments not present in the FASTQ data.

The nucleotide sequence (SEQ) data in the BAM file might be reverse-complemented, and the QUAL
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data reversed, versus the FASTQ strings. SEQ and QUAL strings in the BAM file might be shorter
than in the FASTQ file due to trimming or cropping. Finally, it is common to map multiple FASTQ

files into a single BAM file.

Our method consists of four modules, as follows (Figure 1).

Module 1 is run during BAM compression: when compressing each of the BAM alignments, if the
alignment is not a supplementary or secondary alignment, Genozip also generates a deep alignment
entry in RAM corresponding to the alignment. The deep alignment entry consists of 32 bit hash values
for each of the QNAME, SEQ and QUAL fields, a place field which is the location of the alignment
in the BAM file, and a consumed flag which is reserved for use in Module 2. In case the reverse
complement bit of the FLAG field is set, the SEQ string is reverse complemented and the QUAL
string is reversed prior to calculating the hash values. In addition to the array of deep alignment
entries, Module 1 also generates a deep index. The deep index is a hash table, in which each deep
index entry contains a linked list of indices into the deep alignment entries array, of all deep alignment
entries that are mapped to this particular deep index entry. The deep index entry to which a deep
alignment entry is mapped, is determined by a subset of the bits of the SEQ hash value of deep
alignment entry. The number of bits is a function of the estimated number of alignments in the BAM

file.

Module 2 is run during FASTQ compression, and is the most complex of the four modules: at
initialisation, this module inspects the first few reads in the FASTQ file, calculating the hash values of
the read name, SEQ and QUAL, and looking for matching hash values in the deep alignment entries
which were previously stored in RAM by Module 1. Based on whether such matches exist or not, the
module determines the Deep mode to be used, which is one of four options: SEQ + read name +
QUAL (if all three fields tend to have a match in the BAM data), SEQ + read name, SEQ + QUAL (if
only SEQ and either read name or QUAL fields tend to match) or none at all. Then, for each read

being compressed, Module 2 does two things: First, it determines whether this read possibly exists in
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the BAM file based on using the deep index stored by Module 1 in RAM to find a deep alignment
entry with a matching hash value of SEQ and a matching hash value of at least one of read name and
QUAL (depending on the Deep Mode). Second, crucially, given a set of hash value matches, Genozip
ascertains that the data itself match as well, despite not having access to the BAM data—as we store
only the hash values of the read name, SEQ and QUAL it in RAM, not the actual strings. If the
Module is certain that this FASTQ read has exactly one matching alignment in the BAM file, then it
sets the consumed flag in the deep alignment entry, and represents, in the compressed output file, the
matching read name, SEQ and/or QUAL data as a reference to the place in the BAM file, where place
is extracted from the deep alignment entry. This representation of the FASTQ read components as a
reference to the BAM data, rather than compressing them explicitly, is the crux of how the Deep

method improves compression.

The ascertainment that the hash match indeed refers to the BAM alignment derived from the current
FASTQ read, but not to another unrelated alignment that by chance has the same hash values, is done
as follows: first, the entire linked list in the matching deep index entry is inspected for matching hash
values. If more than one deep alignment entry on the linked list has matching hash values, i.e., the
current FASTQ read maps to multiple BAM alignments, then we abandon the Deep method for this
read, as we don’t know which of the matching BAM alignments corresponds to this FASTQ read, and
instead fall back to Genozip’s regular method for compressing a FASTQ read. If there is a single
match, but the consumed flag in the deep alignment entry has already been set by a prior FASTQ read,
this indicates that multiple FASTQ reads map to a single BAM alignment. Because we use a 64 or 96
bit value (32 bits for each of SEQ, QUAL and read name), it is extremely unlikely that two different
FASTQ reads will map to the same BAM alignment (one of them incorrectly so). If this does happen,
we abandon the compression and advise the user that the ——deep option cannot be used with these
files. To prevent this from happening trivially, we exclude reads with a SEQ that is a string of a single
character (N or a base). If we had left it at that, there could still be an edge case where a FASTQ read
could have been matched with an incorrect BAM alignment due to chance equivalence of the hash

values. This could happen if, for example, there are two FASTQ reads that by chance have the same
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hash values, where one of these reads does not have a corresponding alignment in the BAM file
because it was filtered out, and the other read, which does have a corresponding alignment, is in a

FASTAQ file that the user omitted from the genozip command line. In this case, Genozip might

incorrectly determine that there is a unique match between the sole read and the sole alignment with
these hash values. To avoid this edge case, Genozip requires that all FASTQ files that contributed
reads to the BAM data are provided as inputs. If not all FASTQ files are provided and this edge case
does occur, Genozip will catch it during the testing phase that follows the compression, during which

Genozip verifies that the compressed data is reconstructable losslessly.

Module 3 is run during BAM decompression: when decompressing a non-supplementary,
non-secondary alignment, this module compresses the SEQ, QUAL and QNAME data and stores
them in RAM, in an array indexed by place (i.e., the sequential number of this alignment in the BAM
file). If the alignment has the reverse complemented flag set, SEQ is stored reverse complemented and
QUAL is stored reversed. An optimisation is conducted for storing the SEQ data: in the common case
where the SEQ aligns to the reference genome with no insertions or deletions, and with at most a
single mismatch, only the coordinates of the alignment in the reference genome are stored, along with
the offset and nature of the single permitted mismatch, if there is one. The compression of the strings
prior to storing them in RAM as well as reducing the storage of SEQ strings to a pointer to the

reference genome results in manageable RAM usage even for very large BAM and FASTQ files.

Module 4 is run during FASTQ decompression. When reconstructing a FASTQ read, if Module 2
represented any of the read name, SEQ or QUAL components as a reference to a place in the BAM
file, the information stored by Module 3 for this place and this component is used to reconstruct the

component in the FASTQ file.
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Figure 1. Module 1 is executed during the compression of a BAM (or SAM or CRAM) file, which is
compressed first. During the compression process, a “deep alignment entry” comprised of hash values of
QNAME, SEQ and QUAL is stored in RAM, and indexed by a value derived from SEQ. Module 2 is run during
the compression of FASTQ data: for each read, we use the index to lookup candidate deep alignment entries
and determine whether the read is present in the BAM data. If it is, we represent it in the compressed file as a
reference to the matching BAM alignment rather than compressing the sequence, base quality and read name
data explicitly. Module 3 and 4 are utilised during decompression. Module 3 runs when decompressing the
BAM file, compressing and storing in RAM the QNAME, SEQ and QUAL information of each primary
alignment. When the FASTQ data is decompressed, Module 4 is deployed to retrieve this information from

RAM and reconstruct the FASTQ reads.

Limitation for paleogenomics data compression: the Deep method will not work well if the BAM data
contains alignments of reads generated by collapsing the original R1 and R2 reads to a single read, as
is common in ancient DNA applications's, while the FASTQ file contains the original, uncollapsed,

reads.
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Results

We tested Genozip Deep co-compression with four different publicly available datasets representing a
range of experiment types, sequencer technologies and aligners: 1) whole genome sequencing data®
sequenced on Illumina HiSeq 2000 and aligned with bwa’, and three datasets from the ENCODE
portal'’: 2) whole genome sequencing data sequenced on Oxford Nanopore MinION and aligned with
ngmlr'’; 3) RNA-seq data sequenced on Pacific Biosciences Sequel II and aligned with minimap2'?;
and 4) single-cell RNA-seq data sequenced on Illumina NovaSeq 6000 and aligned with STAR". A
list of the ENCODE identifiers, details of data preparation and command line options used can be
found in Table S1. We compared compressing these datasets with the Deep method to two other
alternative methods. The first method used cutting edge open source tools: we compressed the BAM
data into CRAM using samtools'* and compressed FASTQ using Spring"', selected for being the
most widely cited FASTQ compression tool. The second method compressed the BAM and FASTQ
data, separately, with Genozip. All tools were run in their default compression mode, with command
line options indicating the data type when needed: —-1ong was specified in Spring for datasets 2 and

3 to indicate long reads and --pair was specified in Genozip (without Deep) for dataset 1 to

indicate paired-end data. A suitable reference file was provided to Genozip and samtools.

We observe that Genozip with Deep co-compression compressed the four datasets to 24%, 25%, 4.3%
and 13% of their original sizes, respectively (Figure 2, Table S2). Note that the original files were
already compressed—the BAM files are compressed internally with BGZF and all FASTQ files in
these datasets were all in .fastq.gz (gzip) format. We further observe that Deep compression of the
four datasets resulted in file sizes smaller than regular Genozip by a factor ranging from 1.9 to 5.7,
and smaller than the CRAM/Spring combination by a factor ranging from 2.3 to 6.8 (Figure 2, Table

S2).
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We ran our tests on a computer with 56 cores. Genozip over-subscribes threads to available cores,
resulting in using 64 compute threads. For a fair comparison, we set the number of threads to 64 in
samtools and Spring as well. Genozip Deep compressed the 4 data sets in 53, 46, 0.25 and 14.4
minutes, respectively (rounded to two significant digits), which is a bit faster than the 57, 52, 0.4 and
14.6 minutes consumed by regular Genozip and significantly faster than the 149, 88, 1.3, 269 minutes
consumed by the CRAM/Spring combination. More details on compression times can be found in
Table S3. Decompression of a Genozip Deep file took 37, 36, 0.33 and 10 minutes, respectively,
which is mostly marginally better than regular Genozip with 42, 39, 0.32 and 11 minutes, and roughly
similar to the CRAM/Spring combination with 31, 38, 0.85 and 10 minutes. More details on

decompression times are in Table S4.

Genozip Deep method has a drawback related to its RAM consumption. When compressing the four
datasets, the maximum physical RAM usage reached 115 GB, 132 GB, 9 GB, and 95 GB,
respectively. This consumption is higher than for the other methods, with regular Genozip utilising 52
GB, 130 GB, 8 GB, and 82 GB, and the CRAM/Spring combination using 40 GB, 87 GB, 9 GB, and
14 GB, respectively. Further information on memory consumption can be found in Table S3,
specifically under the "maximum resident set" category. Genozip is designed to liberally use as much
RAM as it requires to maximise compression. However, the user may modify this default behaviour

with the —-—1ow-memory command line option, which directs Genozip to conserve RAM even at the

expense of the compression ratio.

In conclusion, Genozip Deep addresses the common need for long-term archival of FASTQ and
related BAM files with the best available compression, significantly better than other current

best-performing solutions.
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Figure 2: compression comparison. Upper left: whole genome sequenced with Illumina and aligned with bwa
(1 BAM file and 2 FASTQ.gz files). Upper right: whole genome sequenced with Oxford Nanopore Technology
and aligned with ngmlr (1 BAM and 1 FASTQ.gz file). Bottom left: RNAseq dataset sequenced with Pacific
Biosciences and aligned with minimap2 (1 BAM and 1 FASTQ.gz file). Bottom right: single-cell RNA-seq
dataset, sequenced with Illumina and aligned with STAR (1 BAM file and 2 FASTQ.gz files). In each panel, the
leftmost bar is the original dataset and the other bars represent the three compression methods: Spring' (for
FASTQ) + CRAM (for BAM); Genozip; and Genozip Deep. The bars are scaled so that 100% represents the
total size of the original dataset. The blue sub-bars represent the relative sizes of the FASTQ data (in case of
multiple FASTQ files, their combined size) and the red sub-bars represent the relative sizes of the BAM data.

For Deep compression, the resulting file is the co-compression of the entire dataset and is represented in purple.
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