
 Deep FASTQ and BAM co-compression in Genozip 15 

 Divon Mordechai Lan  1,*  , Daniel S.T. Hughes  2  , Bastien  Llamas  1,3,4,5,* 

 1  Australian Centre for Ancient DNA, School of Biological  Sciences, The Environment 

 Institute, Faculty of Sciences, The University of Adelaide, Adelaide, SA, Australia 

 2  Institute for Genomic Medicine, Columbia University  Medical Center, New York, NY, USA 

 3  Centre of Excellence for Australian Biodiversity  and Heritage (CABAH), School of 

 Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia 

 4  Indigenous Genomics, Telethon Kids Institute, Adelaide,  SA, Australia 

 5  National Centre for Indigenous Genomics, John Curtin  School of Medical Research, Australian 

 National University, Canberra, ACT, Australia 

 *  Correspondence: DL (  divon.lan@adelaide.edu.au  ),  BL (  bastien.llamas@adelaide.edu.au  ) 

 Abstract 

 We introduce Genozip Deep, a method for losslessly co-compressing FASTQ and BAM files. 

 Benchmarking demonstrates improvements of 75% to 96% versus the already-compressed source 

 files, translating to 2.3X to 6.8X better compression than current state-of-the-art algorithms that 

 compress FASTQ and BAM separately. The Deep method is independent of the underlying FASTQ 

 and BAM compressors, and here we present its implementation in Genozip, an established genomic 

 data compression software. 

 Introduction 

 The Institute of Genomic Medicine's (IGM) Bioinformatics Core, situated within the Columbia 

 University Irving School of Medicine, manages a variant warehouse containing approximately 

 130,000 whole-genome sequencing and whole-exome sequencing samples. This warehouse serves the 
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 dual purpose of gene discovery and diagnostic analysis. Given that the BAM (Binary sequence 

 Alignment/Map) files used to generate the warehouse have been used as the foundation for numerous 

 publications and diagnostic analyses, and continue to be reanalysed, the IGM is obliged to store these 

 files in their current format for the foreseeable future. Additionally, the IGM acts as a long-term 

 repository for off-machine raw sequencing data (FASTQ files) of internally and externally sequenced 

 samples, which must be preserved in their original form. Currently IGM has around 5 petabytes of 

 storage of which the vast majority are FASTQ files compressed with gzip and BAM/CRAM files. 

 While these file types are already compressed, the rapid growth of the volume of data puts the IGM in 

 dire need of improved compression methods. This situation is far from being anecdotal and is a major 

 concern for many institutions and organisations that rely heavily on genome sequencing to support 

 their biomedical and clinical research agendas. 

 Several commercial and open source software packages have been introduced in recent years for 

 compressing FASTQ files, and others for compressing BAM files, with a handful capable of 

 compressing both BAM and FASTQ, but separately  1–4  .  Looking for a new method to address the 

 needs of IGM and other similar users of Genozip, we decided to focus on the  large overlap in 

 information content between a typical BAM file and the set of FASTQ files used to generate it. Here, 

 we present a novel method, Deep, for co-compression of BAM and FASTQ files. Deep exploits the 

 information overlap to improve compression, an approach that has not been attempted before, while 

 still guaranteeing losslessness for both FASTQ and BAM data. We demonstrate that this method 

 results in substantially smaller files than when compressing BAM and FASTQ files 

 separately—resulting in a co-compressed file containing both the BAM and FASTQ data with a size 

 that is only slightly larger than just the BAM file compressed with Genozip. 

 We implemented the Deep method on top of the existing Genozip platform—an established software 

 package for compressing genomic files  5–7  . We released  the resulting combined system as Genozip 

 version 15. The  --deep  command line option triggers  lossless Deep co-compression of a BAM file 

 with the set of one or more FASTQ files from which the BAM file originates. Genozip automatically 
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 manages decompression and processing of a Deep-compressed file using its standard commands, 

 without further options:  genounzip  reconstructs the  entire set of input files (BAM and FASTQ), 

 while  genocat  allows the extraction of a single file  (i.e. the BAM file or one of the FASTQ files). 

 Methods 

 The Deep method must be implemented on top of a compressor already capable of compressing BAM 

 and FASTQ data. We have implemented it within the Genozip system, but the method described 

 hereinafter is not specific to Genozip, and could be implemented in other suitable compressors. We 

 shall focus our discussion on describing and analysing the Deep method (see Table S5 for source code 

 information). We refer the interested reader to earlier publications  5,7  describing the methods Genozip 

 utilises to compress the actual BAM and FASTQ data. 

 It seems obvious that co-compression of FASTQ and BAM would be beneficial, given that read 

 names, sequences and base quality score strings of related FASTQ and BAM files are expected to be 

 similar. However, there are several hurdles that make directly exploiting this information redundancy 

 challenging—in particular doing so fast enough and with economical enough utilisation of RAM, to 

 make it useful for real-world large institutional deployments. These hurdles include: reads in the 

 BAM file are often ordered differently than in the FASTQ file, since it is common practice to sort 

 BAM files by genomic coordinates. Sometimes, read names differ between the FASTQ and BAM 

 data—we have encountered read names changed to include the FASTQ file identifier, to include a 

 unique molecular identifier, to include the sequence length, to conform with the NCBI SRA read 

 name format, or to be more concise by reduction to a sequential numerical number. The base quality 

 (QUAL) data may differ as well—for example if the BAM data underwent Base Quality Score 

 Recalibration. The BAM file might be missing reads contained in the FASTQ data due to filtering, 

 and conversely may include secondary and supplementary alignments not present in the FASTQ data. 

 The nucleotide sequence (SEQ) data in the BAM file might be reverse-complemented, and the QUAL 
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 data reversed, versus the FASTQ strings. SEQ and QUAL strings in the BAM file might be shorter 

 than in the FASTQ file due to trimming or cropping. Finally, it is common to map multiple FASTQ 

 files into a single BAM file. 

 Our method consists of four modules, as follows (Figure 1). 

 Module 1 is run during BAM compression: when compressing each of the BAM alignments, if the 

 alignment is not a supplementary or secondary alignment, Genozip also generates a  deep alignment 

 entry  in RAM corresponding to the alignment. The deep  alignment entry consists of 32 bit hash values 

 for each of the QNAME, SEQ and QUAL fields, a  place  field which is the location of the alignment 

 in the BAM file, and a  consumed  flag which is reserved  for use in Module 2. In case the  reverse 

 complement  bit of the FLAG field is set, the SEQ string  is reverse complemented and the QUAL 

 string is reversed prior to calculating the hash values. In addition to the array of deep alignment 

 entries, Module 1 also generates a  deep index  . The  deep index is a hash table, in which each deep 

 index entry contains a linked list of indices into the deep alignment entries array, of all deep alignment 

 entries that are mapped to this particular deep index entry. The deep index entry to which a deep 

 alignment entry is mapped, is determined by a subset of the bits of the  SEQ hash value  of deep 

 alignment entry. The number of bits is a function of the estimated number of alignments in the BAM 

 file. 

 Module 2 is run during FASTQ compression, and is the most complex of the four modules: at 

 initialisation, this module inspects the first few reads in the FASTQ file, calculating the hash values of 

 the read name, SEQ and QUAL, and looking for matching hash values in the deep alignment entries 

 which were previously stored in RAM by Module 1. Based on whether such matches exist or not, the 

 module determines the Deep mode to be used, which is one of four options: SEQ + read name + 

 QUAL (if all three fields tend to have a match in the BAM data), SEQ + read name, SEQ + QUAL (if 

 only SEQ and either read name or QUAL fields tend to match) or none at all. Then, for each read 

 being compressed, Module 2 does two things: First, it determines whether this read possibly exists in 
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 the BAM file based on using the  deep index  stored by Module 1 in RAM to find a  deep alignment 

 entry  with a matching hash value of SEQ and a matching  hash value of at least one of read name and 

 QUAL (depending on the Deep Mode). Second, crucially, given a set of hash value matches, Genozip 

 ascertains that the data itself match as well, despite not having access to the BAM data—as we store 

 only the hash values of the read name, SEQ and QUAL it in RAM, not the actual strings. If the 

 Module is certain that this FASTQ read has exactly one matching alignment in the BAM file, then it 

 sets the  consumed  flag in the deep alignment entry,  and represents, in the compressed output file, the 

 matching read name, SEQ and/or QUAL data as a reference to the  place  in the BAM file, where  place 

 is extracted from the deep alignment entry. This representation of the FASTQ read components as a 

 reference to the BAM data, rather than compressing them explicitly, is the crux of how the Deep 

 method improves compression. 

 The ascertainment that the hash match indeed refers to the BAM alignment derived from the current 

 FASTQ read, but not to another unrelated alignment that by chance has the same hash values, is done 

 as follows: first, the entire linked list in the matching deep index entry is inspected for matching hash 

 values. If more than one deep alignment entry on the linked list has matching hash values, i.e., the 

 current FASTQ read maps to multiple BAM alignments, then we abandon the Deep method for this 

 read, as we don’t know which of the matching BAM alignments corresponds to this FASTQ read, and 

 instead fall back to Genozip’s regular method for compressing a FASTQ read. If there is a single 

 match, but the  consumed  flag in the deep alignment  entry has already been set by a prior FASTQ read, 

 this indicates that multiple FASTQ reads map to a single BAM alignment. Because we use a 64 or 96 

 bit value (32 bits for each of SEQ, QUAL and read name), it is extremely unlikely that two different 

 FASTQ reads will map to the same BAM alignment (one of them incorrectly so). If this does happen, 

 we abandon the compression and advise the user that the  --deep  option cannot be used with these 

 files. To prevent this from happening trivially, we exclude reads with a SEQ that is a string of a single 

 character (N or a base). If we had left it at that, there could still be an edge case where a FASTQ read 

 could have been matched with an incorrect BAM alignment due to chance equivalence of the hash 

 values. This could happen if, for example, there are two FASTQ reads that by chance have the same 
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 hash values, where one of these reads does not have a corresponding alignment in the BAM file 

 because it was filtered out, and the other read, which does have a corresponding alignment, is in a 

 FASTQ file that the user omitted from the  genozip  command line. In this case, Genozip might 

 incorrectly determine that there is a unique match between the sole read and the sole alignment with 

 these hash values. To avoid this edge case, Genozip requires that all FASTQ files that contributed 

 reads to the BAM data are provided as inputs. If not all FASTQ files are provided and this edge case 

 does occur, Genozip will catch it during the testing phase that follows the compression, during which 

 Genozip verifies that the compressed data is reconstructable losslessly. 

 Module 3 is run during BAM decompression: when decompressing a non-supplementary, 

 non-secondary alignment, this module compresses the SEQ, QUAL and QNAME data and stores 

 them in RAM, in an array indexed by  place  (i.e., the  sequential number of this alignment in the BAM 

 file). If the alignment has the  reverse complemented  flag set, SEQ is stored reverse complemented and 

 QUAL is stored reversed. An optimisation is conducted for storing the SEQ data: in the common case 

 where the SEQ aligns to the reference genome with no insertions or deletions, and with at most a 

 single mismatch, only the coordinates of the alignment in the reference genome are stored, along with 

 the offset and nature of the single permitted mismatch, if there is one. The compression of the strings 

 prior to storing them in RAM as well as reducing the storage of SEQ strings to a pointer to the 

 reference genome results in manageable RAM usage even for very large BAM and FASTQ files. 

 Module 4 is run during FASTQ decompression. When reconstructing a FASTQ read, if Module 2 

 represented any of the read name, SEQ or QUAL components as a reference to a  place  in the BAM 

 file, the information stored by Module 3 for this  place  and this component is used to reconstruct the 

 component in the FASTQ file. 
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 Figure 1  . Module 1 is executed during the compression of a BAM (or SAM or CRAM) file, which is 

 compressed first. During the compression process, a “deep alignment entry” comprised of hash values of 

 QNAME, SEQ and QUAL is stored in RAM, and indexed by a value derived from SEQ. Module 2 is run during 

 the compression of FASTQ data:  for each read, we use the index to lookup candidate deep alignment entries 

 and determine whether the read is present in the BAM data. If it is, we represent it in the compressed file as a 

 reference to the matching BAM alignment rather than compressing the sequence, base quality and read name 

 data explicitly. Module 3 and 4 are utilised during decompression. Module 3 runs when decompressing the 

 BAM file, compressing and storing in RAM the QNAME, SEQ and QUAL information of each primary 

 alignment. When the FASTQ data is decompressed, Module 4 is deployed to retrieve this information from 

 RAM and reconstruct the FASTQ reads. 

 Limitation for paleogenomics data compression: the Deep method will not work well if the BAM data 

 contains alignments of reads generated by collapsing the original R1 and R2 reads to a single read, as 

 is common in ancient DNA applications  15  , while the FASTQ file contains the original, uncollapsed, 

 reads. 
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 Results 

 We tested Genozip Deep co-compression with four different publicly available datasets representing a 

 range of experiment types, sequencer technologies and aligners: 1) whole genome sequencing data  8 

 sequenced on Illumina HiSeq 2000 and aligned with bwa  9  , and three datasets from the ENCODE 

 portal  10  : 2) whole genome sequencing data  sequenced on Oxford Nanopore MinION and aligned with 

 ngmlr  11  ; 3) RNA-seq data sequenced on Pacific Biosciences Sequel II and aligned with minimap2  12  ; 

 and 4)  single-cell RNA-seq data sequenced on Illumina NovaSeq 6000 and aligned with STAR  13  . A 

 list of the ENCODE identifiers, details of data preparation and command line options used can be 

 found in Table S1. We compared compressing these datasets with the Deep method to two other 

 alternative methods. The first method used cutting edge open source tools: we compressed the BAM 

 data into CRAM using samtools  14  and compressed FASTQ  using Spring  1,14  , selected for being the 

 most widely cited FASTQ compression tool. The second method compressed the BAM and FASTQ 

 data, separately, with Genozip. All tools were run in their default compression mode, with command 

 line options indicating the data type when needed:  --long  was specified in Spring for datasets 2 and 

 3 to indicate long reads and  --pair  was specified  in Genozip (without Deep) for dataset 1 to 

 indicate paired-end data. A suitable reference file was provided to Genozip and samtools. 

 We observe that Genozip with Deep co-compression compressed the four datasets to 24%, 25%, 4.3% 

 and 13% of their original sizes, respectively (Figure 2, Table S2). Note that the original files were 

 already compressed—the BAM files are compressed internally with BGZF and all FASTQ files in 

 these datasets were all in .fastq.gz (gzip) format. We further observe that Deep compression of the 

 four datasets resulted in file sizes smaller than regular Genozip by a factor ranging from 1.9 to 5.7, 

 and smaller than the CRAM/Spring combination by a factor ranging from 2.3 to 6.8 (Figure 2, Table 

 S2). 
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 We ran our tests on a computer with 56 cores. Genozip over-subscribes threads to available cores, 

 resulting in using 64 compute threads. For a fair comparison, we set the number of threads to 64 in 

 samtools and Spring as well. Genozip Deep compressed the 4 data sets in 53, 46, 0.25 and 14.4 

 minutes, respectively (rounded to two significant digits), which is a bit faster than the 57, 52, 0.4 and 

 14.6 minutes consumed by regular Genozip and significantly faster than the 149, 88, 1.3, 269 minutes 

 consumed by the CRAM/Spring combination. More details on compression times can be found in 

 Table S3. Decompression of a Genozip Deep file took 37, 36, 0.33 and 10 minutes, respectively, 

 which is mostly marginally better than regular Genozip with 42, 39, 0.32 and 11 minutes, and roughly 

 similar to the CRAM/Spring combination with 31, 38, 0.85 and 10 minutes. More details on 

 decompression times are in Table S4. 

 Genozip Deep method has a drawback related to its RAM consumption. When compressing the four 

 datasets, the maximum physical RAM usage reached 115 GB, 132 GB, 9 GB, and 95 GB, 

 respectively. This consumption is higher than for the other methods, with regular Genozip utilising 52 

 GB, 130 GB, 8 GB, and 82 GB, and the CRAM/Spring combination using 40 GB, 87 GB, 9 GB, and 

 14 GB, respectively. Further information on memory consumption can be found in Table S3, 

 specifically under the "maximum resident set" category. Genozip is designed to liberally use as much 

 RAM as it requires to maximise compression. However, the user may modify this default behaviour 

 with the  --low-memory  command line option, which directs  Genozip to conserve RAM even at the 

 expense of the compression ratio. 

 In conclusion, Genozip Deep addresses the common need for long-term archival of FASTQ and 

 related BAM files with the best available compression, significantly better than other current 

 best-performing solutions. 
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 Figure 2: compression comparison.  Upper left: whole genome sequenced with Illumina and aligned with bwa 

 (1 BAM file and 2 FASTQ.gz files). Upper right: whole genome sequenced with Oxford Nanopore Technology 

 and aligned with ngmlr (1 BAM and 1 FASTQ.gz file). Bottom left:  RNAseq dataset sequenced with Pacific 

 Biosciences and aligned with minimap2 (1 BAM and 1 FASTQ.gz file). Bottom right: single-cell RNA-seq 

 dataset, sequenced with Illumina and aligned with STAR  (1 BAM file and 2 FASTQ.gz files)  . In each panel,  the 

 leftmost bar is the original dataset and the other bars represent the three compression methods:  Spring  1  (for 

 FASTQ) + CRAM (for BAM); Genozip; and Genozip Deep. The bars are scaled so that 100% represents the 

 total size of the original dataset. The blue sub-bars represent the relative sizes of the FASTQ data (in case of 

 multiple FASTQ files, their combined size) and the red sub-bars represent the relative sizes of the BAM data. 

 For Deep compression, the resulting file is the co-compression of the entire dataset and is represented in purple. 
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