
 Deep FASTQ and BAM co-compression in Genozip 15

 Divon Mordechai Lan 1,* , Daniel S.T. Hughes 2 , Bastien Llamas 1,3,4,5,*

 1 Australian Centre for Ancient DNA, School of Biological Sciences, The Environment

 Institute, Faculty of Sciences, The University of Adelaide, Adelaide, SA, Australia

 2 Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA

 3 Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of

 Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia

 4 Indigenous Genomics, Telethon Kids Institute, Adelaide, SA, Australia

 5 National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian

 National University, Canberra, ACT, Australia

 * Correspondence: DL (divon.lan@adelaide.edu.au), BL (bastien.llamas@adelaide.edu.au)

 Abstract

 We introduce Genozip Deep, a method for losslessly co-compressing FASTQ and BAM files.

 Benchmarking demonstrates improvements of 75% to 96% versus the already-compressed source

 files, translating to 2.3X to 6.8X better compression than current state-of-the-art algorithms that

 compress FASTQ and BAM separately. The Deep method is independent of the underlying FASTQ

 and BAM compressors, and here we present its implementation in Genozip, an established genomic

 data compression software.

 Introduction

 The Institute of Genomic Medicine's (IGM) Bioinformatics Core, situated within the Columbia

 University Irving School of Medicine, manages a variant warehouse containing approximately

 130,000 whole-genome sequencing and whole-exome sequencing samples. This warehouse serves the

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548069doi: bioRxiv preprint

mailto:divon.lan@adelaide.edu.au
mailto:bastien.llamas@adelaide.edu.au
https://doi.org/10.1101/2023.07.07.548069
http://creativecommons.org/licenses/by-nd/4.0/

 dual purpose of gene discovery and diagnostic analysis. Given that the BAM (Binary sequence

 Alignment/Map) files used to generate the warehouse have been used as the foundation for numerous

 publications and diagnostic analyses, and continue to be reanalysed, the IGM is obliged to store these

 files in their current format for the foreseeable future. Additionally, the IGM acts as a long-term

 repository for off-machine raw sequencing data (FASTQ files) of internally and externally sequenced

 samples, which must be preserved in their original form. Currently IGM has around 5 petabytes of

 storage of which the vast majority are FASTQ files compressed with gzip and BAM/CRAM files.

 While these file types are already compressed, the rapid growth of the volume of data puts the IGM in

 dire need of improved compression methods. This situation is far from being anecdotal and is a major

 concern for many institutions and organisations that rely heavily on genome sequencing to support

 their biomedical and clinical research agendas.

 Several commercial and open source software packages have been introduced in recent years for

 compressing FASTQ files, and others for compressing BAM files, with a handful capable of

 compressing both BAM and FASTQ, but separately 1–4 . Looking for a new method to address the

 needs of IGM and other similar users of Genozip, we decided to focus on the large overlap in

 information content between a typical BAM file and the set of FASTQ files used to generate it. Here,

 we present a novel method, Deep, for co-compression of BAM and FASTQ files. Deep exploits the

 information overlap to improve compression, an approach that has not been attempted before, while

 still guaranteeing losslessness for both FASTQ and BAM data. We demonstrate that this method

 results in substantially smaller files than when compressing BAM and FASTQ files

 separately—resulting in a co-compressed file containing both the BAM and FASTQ data with a size

 that is only slightly larger than just the BAM file compressed with Genozip.

 We implemented the Deep method on top of the existing Genozip platform—an established software

 package for compressing genomic files 5–7 . We released the resulting combined system as Genozip

 version 15. The --deep command line option triggers lossless Deep co-compression of a BAM file

 with the set of one or more FASTQ files from which the BAM file originates. Genozip automatically

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548069doi: bioRxiv preprint

https://paperpile.com/c/yiaDTc/wbeK+FYoY+XTcQ+c1oY
https://paperpile.com/c/yiaDTc/UThc+aib1+Bydt
https://doi.org/10.1101/2023.07.07.548069
http://creativecommons.org/licenses/by-nd/4.0/

 manages decompression and processing of a Deep-compressed file using its standard commands,

 without further options: genounzip reconstructs the entire set of input files (BAM and FASTQ),

 while genocat allows the extraction of a single file (i.e. the BAM file or one of the FASTQ files).

 Methods

 The Deep method must be implemented on top of a compressor already capable of compressing BAM

 and FASTQ data. We have implemented it within the Genozip system, but the method described

 hereinafter is not specific to Genozip, and could be implemented in other suitable compressors. We

 shall focus our discussion on describing and analysing the Deep method (see Table S5 for source code

 information). We refer the interested reader to earlier publications 5,7 describing the methods Genozip

 utilises to compress the actual BAM and FASTQ data.

 It seems obvious that co-compression of FASTQ and BAM would be beneficial, given that read

 names, sequences and base quality score strings of related FASTQ and BAM files are expected to be

 similar. However, there are several hurdles that make directly exploiting this information redundancy

 challenging—in particular doing so fast enough and with economical enough utilisation of RAM, to

 make it useful for real-world large institutional deployments. These hurdles include: reads in the

 BAM file are often ordered differently than in the FASTQ file, since it is common practice to sort

 BAM files by genomic coordinates. Sometimes, read names differ between the FASTQ and BAM

 data—we have encountered read names changed to include the FASTQ file identifier, to include a

 unique molecular identifier, to include the sequence length, to conform with the NCBI SRA read

 name format, or to be more concise by reduction to a sequential numerical number. The base quality

 (QUAL) data may differ as well—for example if the BAM data underwent Base Quality Score

 Recalibration. The BAM file might be missing reads contained in the FASTQ data due to filtering,

 and conversely may include secondary and supplementary alignments not present in the FASTQ data.

 The nucleotide sequence (SEQ) data in the BAM file might be reverse-complemented, and the QUAL

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548069doi: bioRxiv preprint

https://paperpile.com/c/yiaDTc/UThc+Bydt
https://doi.org/10.1101/2023.07.07.548069
http://creativecommons.org/licenses/by-nd/4.0/

 data reversed, versus the FASTQ strings. SEQ and QUAL strings in the BAM file might be shorter

 than in the FASTQ file due to trimming or cropping. Finally, it is common to map multiple FASTQ

 files into a single BAM file.

 Our method consists of four modules, as follows (Figure 1).

 Module 1 is run during BAM compression: when compressing each of the BAM alignments, if the

 alignment is not a supplementary or secondary alignment, Genozip also generates a deep alignment

 entry in RAM corresponding to the alignment. The deep alignment entry consists of 32 bit hash values

 for each of the QNAME, SEQ and QUAL fields, a place field which is the location of the alignment

 in the BAM file, and a consumed flag which is reserved for use in Module 2. In case the reverse

 complement bit of the FLAG field is set, the SEQ string is reverse complemented and the QUAL

 string is reversed prior to calculating the hash values. In addition to the array of deep alignment

 entries, Module 1 also generates a deep index . The deep index is a hash table, in which each deep

 index entry contains a linked list of indices into the deep alignment entries array, of all deep alignment

 entries that are mapped to this particular deep index entry. The deep index entry to which a deep

 alignment entry is mapped, is determined by a subset of the bits of the SEQ hash value of deep

 alignment entry. The number of bits is a function of the estimated number of alignments in the BAM

 file.

 Module 2 is run during FASTQ compression, and is the most complex of the four modules: at

 initialisation, this module inspects the first few reads in the FASTQ file, calculating the hash values of

 the read name, SEQ and QUAL, and looking for matching hash values in the deep alignment entries

 which were previously stored in RAM by Module 1. Based on whether such matches exist or not, the

 module determines the Deep mode to be used, which is one of four options: SEQ + read name +

 QUAL (if all three fields tend to have a match in the BAM data), SEQ + read name, SEQ + QUAL (if

 only SEQ and either read name or QUAL fields tend to match) or none at all. Then, for each read

 being compressed, Module 2 does two things: First, it determines whether this read possibly exists in

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548069doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.07.548069
http://creativecommons.org/licenses/by-nd/4.0/

 the BAM file based on using the deep index stored by Module 1 in RAM to find a deep alignment

 entry with a matching hash value of SEQ and a matching hash value of at least one of read name and

 QUAL (depending on the Deep Mode). Second, crucially, given a set of hash value matches, Genozip

 ascertains that the data itself match as well, despite not having access to the BAM data—as we store

 only the hash values of the read name, SEQ and QUAL it in RAM, not the actual strings. If the

 Module is certain that this FASTQ read has exactly one matching alignment in the BAM file, then it

 sets the consumed flag in the deep alignment entry, and represents, in the compressed output file, the

 matching read name, SEQ and/or QUAL data as a reference to the place in the BAM file, where place

 is extracted from the deep alignment entry. This representation of the FASTQ read components as a

 reference to the BAM data, rather than compressing them explicitly, is the crux of how the Deep

 method improves compression.

 The ascertainment that the hash match indeed refers to the BAM alignment derived from the current

 FASTQ read, but not to another unrelated alignment that by chance has the same hash values, is done

 as follows: first, the entire linked list in the matching deep index entry is inspected for matching hash

 values. If more than one deep alignment entry on the linked list has matching hash values, i.e., the

 current FASTQ read maps to multiple BAM alignments, then we abandon the Deep method for this

 read, as we don’t know which of the matching BAM alignments corresponds to this FASTQ read, and

 instead fall back to Genozip’s regular method for compressing a FASTQ read. If there is a single

 match, but the consumed flag in the deep alignment entry has already been set by a prior FASTQ read,

 this indicates that multiple FASTQ reads map to a single BAM alignment. Because we use a 64 or 96

 bit value (32 bits for each of SEQ, QUAL and read name), it is extremely unlikely that two different

 FASTQ reads will map to the same BAM alignment (one of them incorrectly so). If this does happen,

 we abandon the compression and advise the user that the --deep option cannot be used with these

 files. To prevent this from happening trivially, we exclude reads with a SEQ that is a string of a single

 character (N or a base). If we had left it at that, there could still be an edge case where a FASTQ read

 could have been matched with an incorrect BAM alignment due to chance equivalence of the hash

 values. This could happen if, for example, there are two FASTQ reads that by chance have the same

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548069doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.07.548069
http://creativecommons.org/licenses/by-nd/4.0/

 hash values, where one of these reads does not have a corresponding alignment in the BAM file

 because it was filtered out, and the other read, which does have a corresponding alignment, is in a

 FASTQ file that the user omitted from the genozip command line. In this case, Genozip might

 incorrectly determine that there is a unique match between the sole read and the sole alignment with

 these hash values. To avoid this edge case, Genozip requires that all FASTQ files that contributed

 reads to the BAM data are provided as inputs. If not all FASTQ files are provided and this edge case

 does occur, Genozip will catch it during the testing phase that follows the compression, during which

 Genozip verifies that the compressed data is reconstructable losslessly.

 Module 3 is run during BAM decompression: when decompressing a non-supplementary,

 non-secondary alignment, this module compresses the SEQ, QUAL and QNAME data and stores

 them in RAM, in an array indexed by place (i.e., the sequential number of this alignment in the BAM

 file). If the alignment has the reverse complemented flag set, SEQ is stored reverse complemented and

 QUAL is stored reversed. An optimisation is conducted for storing the SEQ data: in the common case

 where the SEQ aligns to the reference genome with no insertions or deletions, and with at most a

 single mismatch, only the coordinates of the alignment in the reference genome are stored, along with

 the offset and nature of the single permitted mismatch, if there is one. The compression of the strings

 prior to storing them in RAM as well as reducing the storage of SEQ strings to a pointer to the

 reference genome results in manageable RAM usage even for very large BAM and FASTQ files.

 Module 4 is run during FASTQ decompression. When reconstructing a FASTQ read, if Module 2

 represented any of the read name, SEQ or QUAL components as a reference to a place in the BAM

 file, the information stored by Module 3 for this place and this component is used to reconstruct the

 component in the FASTQ file.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548069doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.07.548069
http://creativecommons.org/licenses/by-nd/4.0/

 Figure 1 . Module 1 is executed during the compression of a BAM (or SAM or CRAM) file, which is

 compressed first. During the compression process, a “deep alignment entry” comprised of hash values of

 QNAME, SEQ and QUAL is stored in RAM, and indexed by a value derived from SEQ. Module 2 is run during

 the compression of FASTQ data: for each read, we use the index to lookup candidate deep alignment entries

 and determine whether the read is present in the BAM data. If it is, we represent it in the compressed file as a

 reference to the matching BAM alignment rather than compressing the sequence, base quality and read name

 data explicitly. Module 3 and 4 are utilised during decompression. Module 3 runs when decompressing the

 BAM file, compressing and storing in RAM the QNAME, SEQ and QUAL information of each primary

 alignment. When the FASTQ data is decompressed, Module 4 is deployed to retrieve this information from

 RAM and reconstruct the FASTQ reads.

 Limitation for paleogenomics data compression: the Deep method will not work well if the BAM data

 contains alignments of reads generated by collapsing the original R1 and R2 reads to a single read, as

 is common in ancient DNA applications 15 , while the FASTQ file contains the original, uncollapsed,

 reads.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548069doi: bioRxiv preprint

https://paperpile.com/c/yiaDTc/PEcn
https://doi.org/10.1101/2023.07.07.548069
http://creativecommons.org/licenses/by-nd/4.0/

 Results

 We tested Genozip Deep co-compression with four different publicly available datasets representing a

 range of experiment types, sequencer technologies and aligners: 1) whole genome sequencing data 8

 sequenced on Illumina HiSeq 2000 and aligned with bwa 9 , and three datasets from the ENCODE

 portal 10 : 2) whole genome sequencing data sequenced on Oxford Nanopore MinION and aligned with

 ngmlr 11 ; 3) RNA-seq data sequenced on Pacific Biosciences Sequel II and aligned with minimap2 12 ;

 and 4) single-cell RNA-seq data sequenced on Illumina NovaSeq 6000 and aligned with STAR 13 . A

 list of the ENCODE identifiers, details of data preparation and command line options used can be

 found in Table S1. We compared compressing these datasets with the Deep method to two other

 alternative methods. The first method used cutting edge open source tools: we compressed the BAM

 data into CRAM using samtools 14 and compressed FASTQ using Spring 1,14 , selected for being the

 most widely cited FASTQ compression tool. The second method compressed the BAM and FASTQ

 data, separately, with Genozip. All tools were run in their default compression mode, with command

 line options indicating the data type when needed: --long was specified in Spring for datasets 2 and

 3 to indicate long reads and --pair was specified in Genozip (without Deep) for dataset 1 to

 indicate paired-end data. A suitable reference file was provided to Genozip and samtools.

 We observe that Genozip with Deep co-compression compressed the four datasets to 24%, 25%, 4.3%

 and 13% of their original sizes, respectively (Figure 2, Table S2). Note that the original files were

 already compressed—the BAM files are compressed internally with BGZF and all FASTQ files in

 these datasets were all in .fastq.gz (gzip) format. We further observe that Deep compression of the

 four datasets resulted in file sizes smaller than regular Genozip by a factor ranging from 1.9 to 5.7,

 and smaller than the CRAM/Spring combination by a factor ranging from 2.3 to 6.8 (Figure 2, Table

 S2).

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548069doi: bioRxiv preprint

https://paperpile.com/c/yiaDTc/ueHt
https://paperpile.com/c/yiaDTc/UNZg
https://paperpile.com/c/yiaDTc/mYS4
https://paperpile.com/c/yiaDTc/YOEy
https://paperpile.com/c/yiaDTc/gq1q
https://paperpile.com/c/yiaDTc/GSO7
https://paperpile.com/c/yiaDTc/kFL3
https://paperpile.com/c/yiaDTc/kFL3+wbeK
https://doi.org/10.1101/2023.07.07.548069
http://creativecommons.org/licenses/by-nd/4.0/

 We ran our tests on a computer with 56 cores. Genozip over-subscribes threads to available cores,

 resulting in using 64 compute threads. For a fair comparison, we set the number of threads to 64 in

 samtools and Spring as well. Genozip Deep compressed the 4 data sets in 53, 46, 0.25 and 14.4

 minutes, respectively (rounded to two significant digits), which is a bit faster than the 57, 52, 0.4 and

 14.6 minutes consumed by regular Genozip and significantly faster than the 149, 88, 1.3, 269 minutes

 consumed by the CRAM/Spring combination. More details on compression times can be found in

 Table S3. Decompression of a Genozip Deep file took 37, 36, 0.33 and 10 minutes, respectively,

 which is mostly marginally better than regular Genozip with 42, 39, 0.32 and 11 minutes, and roughly

 similar to the CRAM/Spring combination with 31, 38, 0.85 and 10 minutes. More details on

 decompression times are in Table S4.

 Genozip Deep method has a drawback related to its RAM consumption. When compressing the four

 datasets, the maximum physical RAM usage reached 115 GB, 132 GB, 9 GB, and 95 GB,

 respectively. This consumption is higher than for the other methods, with regular Genozip utilising 52

 GB, 130 GB, 8 GB, and 82 GB, and the CRAM/Spring combination using 40 GB, 87 GB, 9 GB, and

 14 GB, respectively. Further information on memory consumption can be found in Table S3,

 specifically under the "maximum resident set" category. Genozip is designed to liberally use as much

 RAM as it requires to maximise compression. However, the user may modify this default behaviour

 with the --low-memory command line option, which directs Genozip to conserve RAM even at the

 expense of the compression ratio.

 In conclusion, Genozip Deep addresses the common need for long-term archival of FASTQ and

 related BAM files with the best available compression, significantly better than other current

 best-performing solutions.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548069doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.07.548069
http://creativecommons.org/licenses/by-nd/4.0/

 Figure 2: compression comparison. Upper left: whole genome sequenced with Illumina and aligned with bwa

 (1 BAM file and 2 FASTQ.gz files). Upper right: whole genome sequenced with Oxford Nanopore Technology

 and aligned with ngmlr (1 BAM and 1 FASTQ.gz file). Bottom left: RNAseq dataset sequenced with Pacific

 Biosciences and aligned with minimap2 (1 BAM and 1 FASTQ.gz file). Bottom right: single-cell RNA-seq

 dataset, sequenced with Illumina and aligned with STAR (1 BAM file and 2 FASTQ.gz files) . In each panel, the

 leftmost bar is the original dataset and the other bars represent the three compression methods: Spring 1 (for

 FASTQ) + CRAM (for BAM); Genozip; and Genozip Deep. The bars are scaled so that 100% represents the

 total size of the original dataset. The blue sub-bars represent the relative sizes of the FASTQ data (in case of

 multiple FASTQ files, their combined size) and the red sub-bars represent the relative sizes of the BAM data.

 For Deep compression, the resulting file is the co-compression of the entire dataset and is represented in purple.

 References

 1. Chandak, S., Tatwawadi, K., Ochoa, I., Hernaez, M. & Weissman, T. SPRING: a next-generation

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548069doi: bioRxiv preprint

https://paperpile.com/c/yiaDTc/kFL3+wbeK
http://paperpile.com/b/yiaDTc/wbeK
https://doi.org/10.1101/2023.07.07.548069
http://creativecommons.org/licenses/by-nd/4.0/

 compressor for FASTQ data. Bioinformatics 35 , 2674–2676 (2019).

 2. Bonfield, J. K. CRAM 3.1: Advances in the CRAM File Format. Bioinformatics (2022)

 doi: 10.1093/bioinformatics/btac010 .

 3. Roguski, Ł. & Deorowicz, S. DSRC 2—Industry-oriented compression of FASTQ files.

 Bioinformatics 30 , 2213–2215 (2014).

 4. Dufort Y Álvarez, G. et al. ENANO: Encoder for NANOpore FASTQ files. Bioinformatics 36 ,

 4506–4507 (2020).

 5. Lan, D., Tobler, R., Souilmi, Y. & Llamas, B. Genozip - A Universal Extensible Genomic Data

 Compressor. Bioinformatics (2021) doi: 10.1093/bioinformatics/btab102 .

 6. Lan, D., Tobler, R., Souilmi, Y. & Llamas, B. genozip: a fast and efficient compression tool for

 VCF files. Bioinformatics 36 , 4091–4092 (2020).

 7. Lan, D. & Llamas, B. Genozip 14 - advances in compression of BAM and CRAM files. bioRxiv

 2022.09.12.507582 (2022) doi: 10.1101/2022.09.12.507582 .

 8. EMBL-EBI. ENA Browser. https://www.ebi.ac.uk/ena/browser/view/ERR194147 .

 9. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.

 Bioinformatics 25 , 1754–1760 (2009).

 10. Sloan, C. A. et al. ENCODE data at the ENCODE portal. Nucleic Acids Res. 44 , D726–32

 (2016).

 11. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule

 sequencing. Nat. Methods 15 , 461–468 (2018).

 12. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34 , 3094–3100

 (2018).

 13. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 , 15–21 (2013).

 14. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10 , giab008 (2021).

 15. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming,

 identification, and read merging. BMC Res. Notes 9 , 88 (2016).

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.07.548069doi: bioRxiv preprint

http://paperpile.com/b/yiaDTc/wbeK
http://paperpile.com/b/yiaDTc/FYoY
http://paperpile.com/b/yiaDTc/FYoY
http://dx.doi.org/10.1093/bioinformatics/btac010
http://paperpile.com/b/yiaDTc/FYoY
http://paperpile.com/b/yiaDTc/XTcQ
http://paperpile.com/b/yiaDTc/XTcQ
http://paperpile.com/b/yiaDTc/c1oY
http://paperpile.com/b/yiaDTc/c1oY
http://paperpile.com/b/yiaDTc/UThc
http://paperpile.com/b/yiaDTc/UThc
http://dx.doi.org/10.1093/bioinformatics/btab102
http://paperpile.com/b/yiaDTc/UThc
http://paperpile.com/b/yiaDTc/aib1
http://paperpile.com/b/yiaDTc/aib1
http://paperpile.com/b/yiaDTc/Bydt
http://paperpile.com/b/yiaDTc/Bydt
http://dx.doi.org/10.1101/2022.09.12.507582
http://paperpile.com/b/yiaDTc/Bydt
http://paperpile.com/b/yiaDTc/ueHt
https://www.ebi.ac.uk/ena/browser/view/ERR194147
http://paperpile.com/b/yiaDTc/ueHt
http://paperpile.com/b/yiaDTc/UNZg
http://paperpile.com/b/yiaDTc/UNZg
http://paperpile.com/b/yiaDTc/mYS4
http://paperpile.com/b/yiaDTc/mYS4
http://paperpile.com/b/yiaDTc/YOEy
http://paperpile.com/b/yiaDTc/YOEy
http://paperpile.com/b/yiaDTc/gq1q
http://paperpile.com/b/yiaDTc/gq1q
http://paperpile.com/b/yiaDTc/GSO7
http://paperpile.com/b/yiaDTc/kFL3
http://paperpile.com/b/yiaDTc/PEcn
http://paperpile.com/b/yiaDTc/PEcn
https://doi.org/10.1101/2023.07.07.548069
http://creativecommons.org/licenses/by-nd/4.0/

