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ABSTRACT
Background: In children, objective, quantitative tools that determine functional neurodevelopment

are scarce and rarely scalable for clinical use. Direct recordings of cortical activity using routinely

acquired electroencephalography (EEG) offer reliable measures of brain function.

Methods: We developed and validated a measure of functional brain age (FBA) using a residual
neural network-based interpretation of the paediatric EEG. In this cross-sectional study, we
included 1056 children with typical development ranging in age from 1 month to 18 years. We
analyzed a 10 to 15 minute segment of 18-channel EEG recorded during light sleep (N1 and N2

states).

Findings: The FBA obtained from EEG had a weighted mean absolute error (WMAE) of 0.85 years
(95%Cl: 0.69-1.02; n = 1056). A two-channel version of the FBA had a wWMAE of 1.51 years
(95%Cl: 1.30-1.73; n = 1056) and was validated on an independent set of EEG recordings (WMAE
= 2.27 years, 95%CI: 1.90-2.65; n = 723). Group-level maturational delays were also detected in

a small cohort of children with Trisomy 21 (Cohen’s d = 0.36, p = 0.028).

Interpretation: An FBA, based on EEG, is an accurate, practical and scalable automated tool to
track brain function maturation throughout childhood with accuracy comparable to widely used

physical growth charts.

Funding: This research was supported by the National Health and Medical Research Council,
Australia, Helsinki University Diagnostic Center Research Funds, Finnish Academy, Finnish
Paediatric Foundation, and Sigrid Juselius Foundation.
Keywords: paediatric, brain function, brain age, electroencephalography, machine learning,

neurodevelopment
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RESEARCH IN CONTEXT

Evidence before this study: Tools for objectively tracking neurodevelopment in paediatric

populations using direct measurement of the brain are rare. Prior to conducting this study, we
explored multiple databases (Google Scholar, PubMed, Web of Science) with search strategies
that combined one or more of the terms “paediatric brain development”, “brain age”, “age
estimation”, “MRI measurements”, “EEG measurements”, “machine learning”, “artificial
intelligence”, “advanced ageing”, “neurodevelopmental delays” and “growth charts” with no
restrictions on language and dates. In screening over 500 publications, 7 studies evaluated brain
age in children using MRI and only a single study investigated maturation in EEG activity across

discrete age bins.

Added value of this study: We formulated a measure of functional brain age (FBA) using state-of-

the-art machine learning (ML) algorithms trained on a large, unique database consisting of
multichannel clinical EEG recorded from N1/N2 sleep (n = 1056 children; 1 month to 17 years),
with typical neurodevelopment confirmed at a 4-year follow-up. The FBA showed a high
correlation with age and detected group-level differences associated with conditions of

neurodevelopmental delay.

Implications of all the available evidence: Age is prominent within EEG recordings of N1/N2 sleep
and is readily extracted using ML. Public release of the FBA estimator and the use of EEG,
commonly delivered in outpatient settings, as the basis of age prediction enables clear translation
of measures of ‘brain age’ to the clinic. Future work on EEG datasets across various
neurodevelopmental profiles will enhance generalisability and user confidence in the clinical

application of brain age.
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INTRODUCTION

Deriving brain age in relation to a person’s chronological age has become a burgeoning focus for
scientists, clinicians, and education providers.! The physiological maturation of the brain is
fundamentally shaped by an interaction between an individual’s genetic traits and
acquired/environmental effects.>®> The chronological age of an individual is a particularly
important benchmark in the assessment of paediatric populations, given that over 10% of children

worldwide* are affected by neurodevelopmental problems.

Current predictors of brain age are built predominantly upon metrics of structural MRI
morphometry such as cortical thickness, grey matter, white matter, and intracranial volumes?3>67
derived from large bio-banks of magnetic resonance imaging (MRI) scans. Across these studies,
the key biomarker is defined as the difference between predicted brain age and chronological age.®
Brain predicted age difference (PAD) has been associated with neurodegeneration and

compromised neurological health in adults®® and autism spectrum disorder in children.!!

We propose the use of electroencephalography (EEG) as a basis of age prediction. The EEG's high
temporal resolution enables the capture of subtle changes in neurophysiological function across
dynamic brain states such as evoked responses, resting states and sleep providing valuable insights
into typical and atypical maturation during neurodevelopment.t2131415 Chromosomic and genetic
alterations, such as those present in children diagnosed with Trisomy 21, Autism spectrum disorder
or attention-deficit/hyperactivity disorder, affect brain function at the neuronal level.1®78
Developing neurodevelopmental biomarkers that are associated with these cellular-level changes
to brain functions could thus provide key actionable indicators that guide early intervention and

personalisation of clinical care to ultimately impact long term outcomes.
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97  Brain age predictors that track maturation, as measured by the EEG, are promising in paediatrics
98  due to rapid functional changes that occur in concert with, or in parallel to, structural changes in
99  the brain during childhood and adolescence!®?%21:22 ynlike structural MRI which shows promise
100 in brain age prediction but only captures spatial information. EEG (and fMRI) captures
101 neurophysiological activity across space and time. Brain age prediction via these functional
102 modalities is emerging?>?252627 put is currently limited to short acquisitions in controlled
103 research settings or incomplete representation of the entire paediatric age range.?36.7828
104  Establishing a “functional brain age” (FBA) in paediatric cohorts can, therefore, complement the

105  array of behavioral assessments typically employed in clinical practice, enhancing the assessment

106  of neurodevelopment.

107 In this study, we charted the growth of brain function using an EEG-derived FBA. Machine
108  learning methods applied to a large cohort of EEG recordings from children with typical
109  development formed the basis of the FBA. We used light sleep (N1 and N2) due to the ubiquity
110  and comparability of these neurophysiological states across childhood and tested the diagnostic
111 potential of the FBA using a small cohort of children with atypical neurodevelopment.

112
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METHODS

Study Design

The framework for predicting functional brain age (FBA) from sleep EEG is presented in Figure
1. A FBA was developed using a residual neural network architecture (Res-NN). A ‘bag of
features’ and Gaussian process regression (GPR) predictor of age was used to benchmark age
methods. Our input for the FBA model consisted of 60 second epochs of EEG, where an FBA per
recording was calculated as an average across multiple epochs extracted from a 10 or 15 minute
segment. We developed the FBA on a primary training dataset (D1) which comprised 15 minutes
of 18-channel EEGs from 1056 children recorded at the Helsinki University Children’s Hospital,
Finland. We then validated our trained model on a dataset (D2) which comprised of 10 minutes of
2-channel EEGs recorded from 723 children at Queensland Children’s Hospital, Brisbane,

Australia.
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128 Figure 1 — Study design. a. EEG acquisition from routine sleep studies from 2 sites (D1 — Helsinki, n = 1056; and D2
129 — Brisbane; n = 723). The development of a functional brain age (FBA) growth chart within a supervised learning

130  framework. Single, 60 s EEG epochs per recording were used to form a preliminary estimate of FBA that was then
131  averaged (median operation) across all available epochs within a 10-15 minute segment of EEG. Model evaluation
132 (FBA) involved cross-validation procedures from the primary developmental dataset (D1) with external validation on
133 an independently collected dataset (D2). Growth charts for D1, D2 and a combined D1+D2 dataset were computed.
134 b. Distributions for training (D1) and validation (D2) datasets across age and the EEG channel montages of acquisition.
135 Data consisted of 5 minute epochs of N1 sleep followed by 10 minute epochs of N2 sleep from 18 channels for D1,
136 and 10 minute epochs of N2 sleep from 2 channels for D2. c. A trained Residual Neural Network (Res-NN) was our
137 primary method of feature extraction for FBA prediction. Performance was benchmarked against a GPR model on a
138 priori engineered EEG summary measures.?® d. Performance of the FBA was assessed via measures including the
139 mean and weighted absolute error (MAE, WMAE) and predicted age differences (PAD = FBA minus chronological
140  age). Effects of age, sex, and recording site were examined using statistical tests. The behaviour of the final trained
141 Res-NN was explained using links between network activation, age, and engineered EEG features across sites.

142
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144  Datasets. Our primary training dataset (referred hereto as D1) was collected from a convenience

145  sample of EEGs collected at the Helsinki University Children’s Hospital in Helsinki, Finland.

146 EEG was recorded using 10-20 electrode positions with an electrode on the vertex as an active
147 reference (either Fz or Cz) using a Nicolet One EEG (Natus Medical Inc. Middleton, W1, USA).
148 All EEG recordings were sampled at 250 Hz and the referential montage was saved in a
149  pseudonymised EDF file format. A total of 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz,
150 C4, T4, T5, P3, Pz, P4, T6, O1, O2) were collected as part of the EEG; reference EEG electrodes
151  were attached to the mastoid (A1/M1 and A2/M2). All children (aged between 1 month to 18
152 years) with an EEG recorded between 2011 and 2016 were screened. EEG recordings in D1 were
153  clinically reviewed to define normality of the record, where the montage of review was a standard
154  longitudinal bipolar montage (double banana). The EEG record for D1 was re-reviewed by EEG

155  technicians trained for the purpose (and approved by L.L).

156 A total of 1056 children with typical neurodevelopment were available for analysis across the 18
157  year age range (see Supplementary Table 1 for demographics and dataset comparisons). For D1,
158  the reporting of sex was derived from the Finnish social security system where sex is medically
159  defined. A 15 minute segment of EEG was extracted and saved in EDF format. The first 5 minutes
160  of each segment consisted of N1 sleep and the remaining 10 minutes consisted of N2 sleep. The
161  transition between N1 and N2 sleep was defined by the first occurrence of sleep spindles or K-
162 complexes® (sleep was scored using a referential montage). These 15 minute segments may
163 include very brief (paroxysmal) arousals®! that may typically disrupt physiological sleep in
164  children but were not seen to corrupt the EEG due to their transient nature. Before undergoing a
165  clinical EEG session, families were asked to wake up their child 2 to 4 hours earlier than their

166 usual wake-up time, to ensure they would be able to fall asleep in the laboratory; however,
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167  individual variations in sleep pressure were not measured. This early period of EEG comprising

168  N1/N2 transitions was selected for FBA training.

169  Our external validation dataset (referred hereto as D2) was collected from a convenience sample
170 of polysomnography (PSG) studies from the Queensland Children’s Hospital (QCH) in Brisbane,
171 Australia (Respiratory and Sleep Medicine Department), reviewed between 2014 and 2021. PSG
172 was acquired via the EMBLA N7000 (Natus Neuro, Middleton, WI, USA). For D2, a total of 3
173 channels were recorded overnight (F4, C4 and O2) as part of the PSG. EEG was recorded using
174 10-20 electrode positions and recordings were sampled at 200 Hz or 500 Hz; reference EEG
175  electrodes were attached to the mastoid (A1/M1 and A2/M2).

176 Following screening of D2 data, a total of 723 children with typical neurodevelopment were
177  available for analysis across the 18 year age range based on normal outcomes following PSG
178  review (see Supplementary Table 1 for demographics and dataset comparisons). We also
179  identified a cohort of children with Trisomy 21 (n = 40) in D2 whom had normal outcomes
180  following PSG review, to examine group-wise differences in FBA. For all D2 data, the reporting
181  of sex was obtained from the Queensland Health record, which is determined by the parent or
182  guardian of the child at the initial referral and visit to the Public Health Service.

183  Asper D1, all sleep stages were seen and scored by a clinician according to the American Academy
184  of Sleep Medicine (AASM) guidelines using a referential montage. For D2, we limited our EEG
185  analysis to the first 10 minute period of N2 sleep only due to limited availability of N1 in D2 data
186 (N1 was only present in 45/723 PSGs). The age of children across both D1 and D2 was resolved
187  in months with Figure 2 summarising the screening flowchart for these datasets.

188

189
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D1: D2:
6800 EEG studies 3800 polysomnography (PSG) studies
Exclude children with
i underlying neurological l Exclude treatment studies
sequelae
3200 children 3376 children

L 4 year clinical follow-up;
exclude any with diagnoses
of neurological diseases

1069 children 1206 children

Exclude any children with
multiple recordings and any with
underlying developmental

l Identify ‘normal sleep study’
diagnosis

Exclude children with underlying
i neurological and developmental

sequelae sequelae
1062 children 741 children
Exclude any children with Exclude any children with
artefact laden EEG artefact laden EEG

1056 children 723 children

191
192 Figure 2 - Screening flowchart for datasets used to train functional brain age algorithms. For D1, 1056 children with

193  anadditional 4 year clinical follow-up were included, which enabled us to identify any further neurological diagnoses
194 that may exclude them from further analyses. A final technical check was performed to identify outliers due to
195 significant artefacts, some of which could be removed by re-export of the EDF format. For D2, 723 children with a
196  diagnostic label of ‘normal sleep study’ and no underlying neurodevelopmental diagnoses were included.

197

198

199  Processing the EEG with machine learning tools

200

201 Data processing. All EEG data were zero-phase filtered in both forward and reverse directions

202 with an infinite impulse response, bandpass, 4™ order Butterworth filter with a lower cutoff of 0.5
203  Hz and an upper cutoff of 30 Hz (GPR) or 15 Hz (Res-NN). EEG data were resampled to 64 Hz
204 and 32 Hz as inputs to the feature extraction components of the GPR and residual network
205  regression, respectively. Residual network regression approaches employed EEG data inputs at a
206  lower sampling rate to reduce the size of training data and maximise computational efficiency,
207  with several qualitative tests performed to ensure that important aspects of sleep EEG were
208  retained (e.g. delta and alpha rhythms in sleep). Our feature-based methods were examined at a
209  higher sampling frequency and ensured that higher frequency components of the EEG were also

210  captured across age. For D1, a bipolar montage was computed from the monopolar/referential EEG

10
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211  dataresulting in 18 EEG derivations/channels: Fp2-F4, F4-C4, C4-P4, P4-02, Fpl-F3, F3-C3, C3-
212 P3,P3-01, Fp2-F8, F8-T4, T4-T6, T6-02, Fpl-F7, F7-T3, T3-T5, T5-01, Fz-Cz, and Cz-Pz.

213 Further, each 15 minute segment of EEG was divided into 60 s epochs for analysis. Epochs were
214  extracted with a 30 s overlap (29 epochs per recording). We assumed that 60 s was sufficiently
215 long to capture important EEG signal characteristics and short to reduce any effects of non-
216  stationarity in the EEG while generating a sufficiently large and diverse set for model training.
217 For D2, asimplified bipolar derivation of the EEG; i.e., F4-C4, C4-02 was used due to the limited
218  availability of channels. Each 10 minute EEG recording in D2 was segmented into 60 s epochs
219  with a 30 s overlap (19 epochs per recording) and used for training and testing.

220 At the end of these data curation steps, we then developed a residual neural network regression
221 (Res-NN) for age prediction.®?> We also used GPR model as a benchmark.

222 Res-NN. EEG epochs were first resampled to 32 Hz (resampling included anti-aliasing filtering).
223 We added variability to the residual neural network by changing the temporal filter width (FW),
224 filter channel depth (FD) and filter number (FN) within the convolutional layers as well as
225 increasing the network depth (ND). We used the file generate _networks v2.m to generate
226 networks with different configurations and architectures (see Supplementary Figure 1; code
227  provided in our GitHub repository, details in Data sharing statement).

228  Several parameters specific to the definition of these neural network architectures were selected
229  during each training iteration. In general, parameters defined the filter size (temporal width and
230  channel depth), filter number and network depth. Training options such as solver type and mini-
231  batch size were selected based on preliminary analysis (see Supplementary Figures 2 to 9), and

232 an alternate architecture based on inception layers was also evaluated.3*

11
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233 GPR. This approach combined several summary measures of the EEG features to form a prediction
234  of age. We chose GPR due to its consistent performance across various imaging modalities in
235  estimating brain age following feature extraction due to its capability to model the underlying
236 latent distribution and quantifying any associated uncertainty to provide probabilistic predictions
237 from data. 23353637 All EEG epochs were resampled to 64 Hz (resampling included anti-aliasing
238  filtering). We used a total of 32 features from the EEG. Of these, 7 features were general measures
239  of EEG amplitude activity, 12 features were frequency dependent representations present within
240  the EEG, and the remaining 13 features were further computations of information content drawn
241  from amplitude, frequency, and entropy based transformations of the EEG signal. A descriptor of
242  the EEG features used is listed in Supplementary Table 2 and shown in Supplementary Figure
243 10; EEG feature extractor available in our GitHub repository, details in Data sharing statement).

244  For both D1 and D2, the set of 32 EEG features were estimated for each available channel and
245  then averaged across channels (with a median operation used). For training, each EEG recording
246 was, therefore, summarised by a C-by-M-by-32 feature matrix (where C was the number of
247  channels, M was 29 epochs per recording for D1 and 19 epochs per recording for D2, and there
248  were 32 features per epoch). For D1, the full feature set for 1056 children thus resulted in 18
249  channels by 29 epochs by 32 features, which were then averaged (median) across channels and
250  epochs resulting in a 1056 by 32 feature matrix. The same procedure was applied to the reduced
251 channel montage of D1 (i.e. 2 channel montage) and for D2 EEG data, which resulted in a 723 by
252 32 feature matrix. Similar to the Res-NN, we expected that temporal averaging of FBA estimates
253 per child across all available epochs. A combinatorial function (shown in Figure 1) was used to

254 determine the final brain age estimate. This was achieved by first assuming a Gaussian prior (GP)

12
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255  where P(f |X) = GP(f|u, K) denotes the dependence of f (i.e. FBA) on X (i.e. age) across all
256 observed data points and pand K represent the mean function and kernel parameters, respectively.

257
258  Performance assessment, cross-validation, optimisation, and independent validation.

259
260  Performance assessment: We utilised two commonly used measures to compare the predicted age

261  to actual age and, therefore, define the accuracy of prediction: mean absolute error and root mean
262  square error. The root mean square error (RMSE, Eq.1) between predicted age per recording and

263  actual age was defined as

264 RMSE = \/% Yon(a, — b,)? (Eq.1)

265  where a,, is the age of the n" EEG recording in years, b,is the median predicted age across all
266  extracted EEG epochs per recording, and N is the number of EEG recordings (1056 for D1 and
267 723 for D2). The mean absolute error (MAE, Eq.2) was defined as:

268

269 MAE = ~Yynlay — by (Eq.2)

270

271 We supported these performance measures with weighted MAE. The wMAE is a variation of the
272 MAE that normalises across the distribution of the data with respect to age; i.e., an approximation
273 of the MAE for a cohort with uniformly distributed age. Based on the age distribution and sample
274 sizes of our cohorts, we defined it as the average MAE across age binned averages of the MAE,
275  specifying a bin width = 2 years, ensuring that enough samples were represented in each age bin.
276 We also computed the relative error with respect to age, by calculating the percentage change

277  between predicted age (FBA) and chronological age.

278  Cross-validation, optimisation and training: We used D1 as our primary training set for

279  developing an FBA. To evaluate the accuracy of prediction, we used 10-fold cross-validation
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280  where the train/test split of EEG recordings was 90% for training and 10% for testing. This process
281  was repeated 10 times so that all EEG recordings were excluded from training for at least one
282 iteration (fold).

283  For Res-NN, due to computational limits, initial experiments of randomly selected combinations
284  of network architectures were used to select several model parameters based on maximum
285  regression accuracy (minimum RMSE) on 10-fold cross-validation outputs. These parameters
286  included training solver and mini-batch size. It was assumed that the selection of these parameters
287  was less prone to overfitting than internal network weights from variability in architecture.
288  Architecture parameters were selected using an internal 10-fold cross-validation (9:1 training data
289  split). We used a small fixed grid approach and selected the parameter combination (filter width,
290 filter depth, filter number, network depth) that minimised the RMSE. A single optimal architecture
291  was defined by averaging internal validation RMSE across all 10 training iterations (a point of
292  data leakage assumed to result in negligible overfitting). Remaining training hyperparameters were
293 not optimised: initial learning rate was 0.0001 for training for initial selection and nested
294  architecture selection, training drop factor was 0.1 every 8 epochs, maximum number of training
295 iterations was 50, 10% of recordings within the training set were used for internal validation, and
296  if no changes in RMSE on the validation set were detected within 6 training iterations stopped
297  training. The squared gradient decay factor was 0.99 for the ADAM solver. Data extraction and
298  network implementation and training was performed in MATLAB (The MathWorks Inc, Natick,
299  Massachusetts, USA: Deep Learning Toolbox; R2020a or R2021a with GTX 1070 or 1080
300 graphics cards, for dataset D1 and datasets D2 and D1+D2, respectively). On average, training
301  time per fold for D1 with an 18 channel bipolar montage was 16.4 minutes; for 2-channel montages

302  for either D1 or D2 training time per fold on average was 4 minutes.
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303  To explore how the EEG signal was represented by the neural network, we extracted activations
304  of network layers at several stages of the deep learning network when trained and tested on all
305 available data (for this exploratory analysis no cross-validation was used). Here, the optimal
306  network was composed of 63 layers, where an early layer output was taken at layer 6, the middle
307  layer output was taken at layer 29 and the late layer output was extracted at layer 61. A Uniform
308 Manifold Approximation and Project method (UMAP?®) was used to reduce the high-dimensional
309  network activation space into a lower dimensional 2D space (UMAP1, UMAP2), wherein the
310  output space was coded according to age. Visualisations via UMAP allowed us to qualitatively
311  assess how the activations of a network layer cluster with respect to age (see Figure 4b). To
312 quantify the association between UMAP1 and UMAP2 dimensions and age, we used GPR with
313  UMAP1 and UMAP2 as inputs to predict age (via 10-fold cross-validation). The accuracy of age
314  prediction for each network layer was then derived. We used the same approach to track how
315 UMAP representations of network activations were linked to individual features of the EEG
316  (Supplementary Figure 11).

317  For GPR, hyperparameters were selected using Bayesian optimisation within a nested cross-
318  validation and included kernel function (e.g. rational quadratic) and sigma values. Shapley values
319 *were also computed to quantify each feature in terms of its contribution to the overall prediction

320 of FBA (Figure 5c¢), extending on the notion of linear model predictions.

321  Statistics

322 Inclusion/exclusion criteria. We included EEG recordings of children who exhibited normal

323 ranges of background activity for their age and met the criteria of being typically developing based
324 on neurodevelopmental and/or physical outcomes, including confirmation of typical development

325 at a four-year clinical follow up. Children with EEGs showing seizure-related or aberrant
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326 paroxysmal discharges were excluded. Incomplete data caused by technical difficulties were also
327 excluded. Additionally, children with diagnoses of neurological diseases (including epilepsy),
328  sleep disorders, psychiatric disorders, brain-acting medications, presence of tumors/cancer,
329  congenital and/or perinatal disorders, and malformations were excluded. Children with
330  neurodevelopmental and/or neurodegenerative conditions such as Autism spectrum disorder,
331 Duchenne Muscular dystrophy, Spina bifida, Spinal muscular atrophy, Trisomy 21 were excluded.
332 Lastly, children with seizure activity or central sleep apnea events higher than 5 events per hour
333 were also excluded. If multiple recordings were collected in the same children, only one time point
334  was selected based on age distribution of the larger cohort. Therefore, each child in D1 (and D2)
335 onlyhad one EEG recording that was subsequently used for analysis. Lastly, EEGs with significant
336 artefact identified via visual review and computational analysis of the data (e.g. excessively high
337  mean amplitudes, kurtosis of amplitude envelope, and Hjorth parameters for age) were also

338 excluded.

339  As both datasets originated from large convenience samples, sample size calculations were not
340  performed.

341  FBA accuracy testing. We first evaluated the prediction accuracy of FBA between Res-NN and

342  GPR models. The key variable used in this analysis was the residual error — also referred to as
343  the predicted age difference, PAD (the difference in years between the FBA and chronological
344  age). When comparing between age estimators (Res-NN, GPR) with various feature subsets and
345  mean cohort age), we used a t-test for paired samples with absolute PAD as the input where our
346 null hypothesis was that the absolute PAD would not be different between Res-NN and

347  comparative estimator (as we used simulated data to evaluate an estimator based on head
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348  circumference we use a t-test for unpaired samples). We also estimated effect size using Cohen’s
349 D (for paired and unpaired samples as necessary).

350  We then analyzed potential confounding effects of age and sex on PAD using multiple linear
351 regression. Here, our multiple regression models for D1 and D2 tested potential effects of sex and
352 age (Eq.3).

353 PAD ~ B, + fiage + B,sex + Piage * sex + frage? (Eq.3)

354

355  We assessed the performance of the FBA across spatial and temporal combinations of the EEG.
356 This included examining changes in prediction accuracy for limited 2-channel FBAs based on
357  Dbilateral channels of the bipolar montage. A FBA was trained and tested for each bilateral channel
358  to examine the association between brain region and FBA accuracy. A Kruskal-Wallis test was
359  used to determine if absolute PAD was different in groups related to training and testing location
360 (9 bilateral groups: Fpl-F3/Fp2-F4, F3-C3/F4-C4, C3-P3/C4-P4, P3-01/P4-02, Fpl-F7/Fp2-F8,
361 F7-T3/F8-T4, T3-T5/T4-T6, T5-01/T6-02, Fz-Cz/Cz-Pz ). As a further adversarial test, we tested
362  variations of channel laterality and channel location in 18 channel D1 data to gauge changes in
363  FBA accuracy with respect to the spatial location of EEG channels. Potential differences in channel
364 laterality were assessed by swapping left hemisphere EEG channels with right hemisphere EEG
365 channels prior to training and testing. The same procedure was used to assess differences in
366  anteroposterior directions, where anteriorly positioned (e.g. frontal) electrodes were swapped with
367  posteriorly positioned electrodes (i.e. parietal, occipital) prior to training and testing. We also
368  examined the temporal variation in FBA across all available epochs, i.e., from the start to the end

369  of the recording period to observe optimal times to evaluate FBAs during N1 to N2 transitions.
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370  We also performed additional sleep stage-specific tests to ascertain the performance accuracy of
371  FBAs across wake, N2, N3 and REM sleep. Using Res-NN and GPR models, we estimated FBAS
372 for all available EEG epochs for children in D2 (based on availability of sleep states). Age
373 prediction within N2 sleep states were found to be the most accurate within our data
374  (Supplementary Table 3).

375  Validation: We re-trained models using all available data in D1 and performed an out-of-sample
376  validation on EEG data from D2. As D2 contained a limited number of recording electrodes, we
377  used the same electrodes when training on D1 in a bipolar configuration (F4-C4 and C4-02).
378  Furthermore, only periods of N2 of D1 (10 minute segments) were included in the training dataset.
379  We compared the WMAE between predicted and chronological age from the 10-fold cross-
380  validation results from D1 to D2 to determine if the accuracy of the FBA trained on D1 was
381  preserved when applied to D2. All validation analyses performed for the Res-NN model were
382  repeated for the GPR model (see Supplementary Figure 12 and Supplementary Figure 14).
383  To test site differences in EEG recordings (Figure 5c), we compared the distribution of EEG
384  feature values using Kolmogorov-Smirnov tests corrected for multiple comparisons (Bonferroni’s
385  method). We used a small random sampling of EEG features within several age defined bins (bin
386  width was 1 year) to minimise the effect of age on feature distribution. Here, differences between
387  EEG features per site and across age were denoted by the number of times the null hypothesis
388  (EEG features between sites were from the same distribution) was rejected across 1000 samplings
389  of each bin (n = 30 samples without replacement per feature per bin). The comparisons were also
390 encoded to delineate if the distributional difference in EEG feature resulted in values greater than
391  expected (older appearing) or less than expected (younger appearing) when comparing D1 to D2.

392 At an acquisition level, we also estimated the total (summed) band power of the raw EEG signal,
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393  between 70 and 80 Hz, using Welch’s power density spectral estimate, to determine whether
394  significant differences in the high frequency noise floor were present across sites (unpaired t-test).

395  Growth Charts: We generated growth charts for the FBA based on a limited 2-channel EEG using

396 acombined D1 and D2 dataset. Centiles were estimated using generalised additive models with a
397  protocol similar to the World Health Organization, WHO “° child growth charts for height and
398 weight for age. Here, we used the GAMLSS package “* in RStudio (version 1.4.1717). These
399  centiles were optimised by a Box-Cox-power exponential distribution with a cubic spline
400  smoothing function, with distribution GAMLSS parameters sigma set as a cubic spline fit over age
401 (df = 3) with nu = 1 and tau = 1. PAD was adjusted by significant factors uncovered during
402 regression analysis (Eq 3.) to ensure that the FBA values presented in the growth chart were bias-
403 free (i.e., accounting for confounding effects), as per best practices in brain age analyses 384243,
404  The “adjusted PAD” was used for subsequent group-based assessments alongside comparisons of
405  centile-based values (which are inherently age-adjusted). Based on age corrected FBA values,
406 centiles were estimated at the 3, 15", 50", 85™ and 97" centiles as per WHO guidelines.

407 We also compared the performance of our FBA chart with paediatric head circumference and
408  height measures. Using respective reference centiles across the paediatric ranges 4%, we
409  generated 1000 simulated training and testing cohorts from similar distributions of age, sex and
410  cohort size to the combined D1 and D2 dataset. Using 10-fold cross-validation, we then trained
411 and tested a GPR model with head circumference or height as input, and evaluated the results using
412 MAE and wMAE.

413 Statistical tests were chosen on the basis of normality via a Lilliefors test*®, where appropriate. If
414 normality was met, group differences were examined by unpaired or paired t-tests.*’ Evaluations

415  of PAD and centiles to detect altered neurodevelopment as a ‘proof-of-concept’ were tested using
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416  t-tests, where the null hypothesis tested was that children with Trisomy 21 will have a PAD that is
417 not different from children with typical neurodevelopment. Where appropriate, effect sizes in our
418  study were reported using Cohen's d. All statistical tests employed for analyses were two-sided
419  and the level of significance was 0.05.

420  Ethics: The human research ethics committee at QIMR Berghofer Medical Research Institute
421 approved the study (No. P3736, P3727). For D1, the Institutional Research Review Board at
422 Helsinki and Uusimaa Hospital district approved the study (HUS/244/2021) including waiver of
423 consent due to the retrospective collection of data acquired as part of standard of care. Ethics
424  approval for the use of D2 and children with Trisomy 21 was granted by Children’s Health
425  Queensland (LNR/2021/QCHQ/73595) including waiver of consent approved under the Public

426 Health Act 2005 (PHA 73595) to analyse the retrospective cohorts.

427  Role of funders: Funding agencies were not involved in designing and conducting the study,
428  collecting, managing, analyzing, or interpreting the data, preparing, reviewing, or approving the
429  manuscript, or deciding to submit the manuscript for publication.

430
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431  RESULTS

432
433 Functional brain age.

434  The FBA generated by the Res-NN was the most accurate predictor of chronological age (Figure
435 3a-b; MAE = 0.56 years, weighted MAE = 0.85 years, R?> = 0.96 and RMSE = 0.82 years; 10 fold
436 cross-validation on D1, n = 1056), providing relatively uniform age predictions across the age
437 range, with a median deviation of 10% from chronological age (see Figure 4a). Our comparative
438  benchmarking of the Res-NN against a GPR approach and physical growth measures indicated
439  that the neural network architecture exceeded (i) the age estimation accuracy of a GPR model
440 (Cohen’sd=0.31, p=4.2 x 102, t-statistic = 10.1, paired t-test) which had a MAE of 0.79 years
441 (Supplementary Figure 12¢, d; WMAE = 1.06 years, R? = 0.93 and RMSE = 1.09 years; see also
442  Supplementary Figure 12a, b for comparison to Res-NN); (ii) the highest-performing individual
443 EEG feature predictor (5" percentile of EEG amplitude; MAE = 1.28 years, WMAE = 1.55 years,
444 R%?=0.82 and RMSE = 1.61 years, Cohen’s d = 0.59, p = 1.1 x 10", t-statistic = 19, paired t-test;
445  Supplementary Table 2); iii) a prediction based on head circumference (estimated MAE = 1.72
446 years, WMAE = 2.54 years, Cohen’s d = 1.04, p =2.4 x 10", t-statistic = 27, unpaired t-test — see
447  Methods for details); and iv) a prediction based on the mean age (MAE = 3.50 years, WMAE =
448 3.90 years, Cohen’s d = 1.3, p = 1.5 x 1026, t-statistic = 40.5, paired t-test; n.b. this was performed

449  to determine an upper bound for MAE based on the age distribution of the cohort).

450
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453 Figure 3 — Functional brain age estimated in children and performance in training dataset (D1, n = 1056). a. Res-
454 NN model (R?=0.96, MAE=0.56 years). The dashed line indicates an error bound of +1.5 years. Individual EEG
455 recordings (blue filled circles) are plotted across ages. b. The residual error (predicted age difference; PAD) represents
456 the difference between the FBA measure and chronological age of an individual, in years.

457

458  FBA model interpretability.

459  To ascertain the presence of any bias in the data, we first examined the effects of age and sex on
460  the FBA. The residual error between FBA and chronological age (referred to here as the predicted
461  age difference or PAD) indicated a bias in FBA proportional to age (5 = -0.036, p = 3.1 x 10°, n
462 = 1056, df = 1052). There were no significant differences in PAD between males and females
463  (Cohen’s d = 0.04, p = 0.41, t-statistic = 0.83, unpaired t-test, n = 1056, df = 1054). Interactions
464  between age and sex did not confound the relationship between PAD and age but a significant
465  interaction with age was observed; PAD decreased with age (PAD ~ sex: =0.036, p =0.61; PAD

466 ~age*sex: f=0.009, p = 0.43, PAD ~ age?: £ =-0.011, p = 2.6 x 104, n = 1056, df = 1054).

467  We observed that early layers of network activations showed distinct age related clustering (Figure
468  1c; see also Supplementary Figure 1 for general architectures) a pattern that becomes
469  increasingly resolved with network depth (Figure 4b). We also observed that network activations
470  were related to a range of EEG amplitude, frequency and entropy-based features. We found that
471 EEG features, used in our GPR predictor, were highly correlated with activations present across
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472 early, middle and late stages of the NN architecture (median R? = 0.50, IQR = 0.32, across all 32
473  features), suggesting that the Res-NN architecture captures several fundamental time and
474  frequency domain characteristics of the EEG signal that are measureable with independent
475  summary measures within its training phases (see Supplementary Figure 8 and Supplementary
476  Figure 9. Additionally, our GPR predictor derived from all 32 EEG features (R? = 0.93, MAE =
477 0.79 years, WMAE = 1.06 years), consistently outperformed GPR predictors derived from a subset
478 of features: only amplitude features (Feature IDs 1 to 7: R? = 0.85, MAE = 1.10 years, WMAE =
479 1.30 years), only frequency features (Feature 1Ds 8 to 19: R? = 0.90, MAE = 0.94 years, WMAE =
480  1.20 years) and only entropy-based EEG measures (Feature IDs 20 to 32: R? = 0.91, MAE = 0.90
481  years, WMAE = 1.10 years). These relationships suggest that EEG features can be viewed as data

482  surrogates that track the behaviour of neural network activations.

483  Inaddition to these tests, we also observed that EEG electrode location on the scalp and the timing
484  of an epoch during an EEG segment (i.e., with respect to transitions between N1 and N2 sleep)
485  influenced the FBA. FBA accuracy was significantly affected by the location of training electrode
486 (p = 1.4 x 1073, Kruskal-Wallis test). The accuracy of a 2-channel FBA was higher for posterior
487  channels (Figure 4c), e.g. central, occipital (average MAE = 0.73 years), whereas anterior
488  channels (e.g. frontal) had lower accuracies (average MAE = 0.83 years). Applying the predictor
489  to data with swapped anterior and posterior channel positions resulted in a reduced performance
490 accuracy (MAE = 1.11 years) whereas data with left hemisphere channels swapped with right
491 hemisphere channels did not alter overall performance accuracy (MAE = 0.56 years). Temporally,
492  the accuracy of the FBA was highest during the transition between N1 and N2 sleep states (Figure
493  4d; MAE =0.61 years). Taken together, averaging FBA estimates across time and space improved

494  overall accuracy.
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496 Figure 4 — Interpreting the EEG-based FBA. a. The mean absolute error (MAE) of the Res-NN (black circles, left
497  axis) across 2 yearly age bins and the relative accuracy of PAD (in blue, right axis) across 2 yearly age bins. For both
498 plots, the mean and standard error of the mean (SEM) are plotted to reflect the sample distribution within age bins. b.
499  Alower-dimensional representation of the Res-NN network generated by UMAP on 18-channel D1 data. The network
500 is composed of 63 layers represented by early (layer 6), middle (layer 29) and late stages (layer 61). Here, the Res-
501 NN of the EEG clusters into younger age groups (blue) and older age groups (red) throughout the training phase,
502  wMAE was calculated using UMAP values as predictors (no cross-validation). ¢. The performance accuracy of the
503 Res-NN model (MAE, years) following individual cross-validation per EEG channels. Colors are ordered by anterior
504  to posterior channel derivations, with frontopolar (Fp, in yellow), frontotemporal (FT, in teal), central (C in light bluge)
505  and occipital channels (in dark blue). Average MAEs are shown with the standard deviation shown as error bars. d.
506  The temporal change in MAE of epoch sequences obtained sequentially from N1 (light pink) and N2 (light purple)
507 indicated that the lowest MAEs were observed during a transition between sleep N1 and N2 stages. The MAE is shown
508  with error bars indicating the standard deviation.
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509  Validation.

510  We then validated the FBA using a secondary dataset (D2) composed of 723 children recorded at
511  the Queensland Children’s Hospital, Australia. To homogenise datasets across the different
512 recording configurations in D1 and D2, we re-trained D1 on a 2-channel bipolar montage (F4-C4,
513  C4-02) and selected only periods of N2 sleep. In applying this retrained model to the validation
514  set (trained D1 2-channel, tested D2 2-channel), the MAE of the FBA was significantly higher
515  (Figure 5a; MAE = 2.17 years; WMAE = 2.27 years; R? = 0.66; and RMSE = 2.05 years, Cohen’s
516 d=0.8, p=2.4x 10, t-statistic = 16.6, unpaired t-test) when compared to 2-channel models
517  trained and tested on D1 and D2 individually (Table 1 for Res-NN, Supplementary Table 4 for
518  GPR). Notably, the validation performance still outperformed the estimated accuracy of simulated

519  head circumference based models (WMAE = 2.54 years).

520  The decrease in FBA performance was attributed to three key site differences: age distribution,
521 number of EEG channels, and site-specific differences of the EEG across age. The effect of age
522 distribution between sites (Table 1) contributed accounted for an approximate net increase of 0.24
523  years in the MAE, when comparing MAE to wMAE from the primary training data (D1 cross-
524  validation) versus external validation data (D2 cross-validation). Similarly, a reduction in the
525 number of EEG channels from 18 to 2 resulted in an increase of 0.37 years in the WMAE (Table
526  1). The effectiveness of the Res-NN in capturing fundamental characteristics of the EEG signal
527 (Figure 5b), corresponded well to age-specific differences in individual summary EEG features
528  were observed across sites (Figure 5¢c and d). Approximately 38% of EEG features/age bins
529  combinations differed significantly across age and sites with 194 out of 512 hypothesis tests
530  meeting significance at p<0.05 following correction for multiple comparisons. Additionally, we

531 found noteworthy distinctions in spectral estimates of the EEG recording noise floor between sites,
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532  whereby EEG recordings in D1 exhibited a higher noise floor compared to D2 (70 to 80 Hz band
533  power; Cohen’s d = 0.37, p = 1.7 x 10", t-statistic = 7.1, unpaired t-test). Training a FBA model
534  constructed from a combined dataset D1 and D2 considerably improved overall prediction
535  accuracy with a MAE of 1.04 years for D2 (n = 723) suggesting site specific differences were
536 incorporated into the model. Supplementary Table 5 summarises model performances across test

537  folds for all datasets, respectively.

a b
ar 4 35
—&—Dicy [ b =
4| — @ DitestD2 o & 30 5
@ T
— . g
f ok ' o L g % 8
2 : . 2 g
E ey B =} L 20 %
1+ @ & e s & ¢ o o
° 6 i
e R?=0.82 15
0 Il 1 Il Il Il 1 Il Il Il
0 2 4 6 8 10 12 14 16 18 -12 18
Age (y) UMAP1
c d
-100 - 1er
ko]
v
=
Q
£
a
=
D
by
-50 [
19 b
3 E -
=% 1, 5
313 & | 10 2 e
30 a °
920 3 o =
T 5 b 3
18 2
6 2
8 150 ©
27 5
g ks
23 o
16 o
1? o
29 ! a
28t IS ‘ || i i 100 20 .
3 5 7 9 11 13 15 17 0 5 10 15
538 Age (years) Age (y)

539 Figure 5 - Validation of the FBA across sites. a. Differences in MAE between D1 (n = 1056) and D2: cross-validation
540 (train and test D1 CrossVal, indicated by blue circles) versus external validation on D2 (train D1 test D2, red circles).
541 The MAE across age is higher when testing D1°s model on D2 (n = 723). The MAE is shown with error bars indicating
542  the standard deviation. b. Mapping EEG features onto the late layer network UMAP (layer 61) derived from 2-channel
543 D1 data; here we show the EEG median amplitude as an exemplar. The R2 value indicates the strength of correlation
544  between UMAP values and feature value, based on a GPR prediction. c. Differences between EEG features and site
545  across age. EEG features (IDs 1 to 32, see also Supplementary Table 2 for feature names) were ordered by Shapley
546  values (highest to lowest) to indicate the relative contribution of the feature to the overall model. Red and blue colors
547 indicate significant age biases following multiple comparisons correction (Bonferroni’s method). A positive age bias
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548 percentage (red) indicates EEG feature values being ‘older’ in D2 compared to D1 and a negative age bias percentage
549 (blue) indicates EEG feature values being ‘younger’ in D2 compared to D1. d. Fractal dimension (feature ID 21) and
550 relative delta power (0.5 to 2 Hz, feature ID 13) are exemplar EEG features that show site related differences (D1=blue;
551 D2=maroon).

552

553  Functional growth charts.

554  We next combined both datasets (D1 + D2) to generate a FBA ‘growth chart’, wherein generalised
555  additive models were applied to construct age-appropriate centiles %48, The resultant FBA had an
556  MAE of 1.09 years with a WMAE of 1.51 years, an R?0f0.88 and an RMSE of 1.41 years (Figure
557  6a; see also Table 1). Further, FBA growth charts based on an age-stratification of infants (0 to 2
558  years; MAE = 0.40 years) and children (2 to 18 years; MAE = 1.34 years) indicated a high degree

559  of accuracy relative to their respective age group (Supplementary Figure 13).

560  The practical utility of an FBA is that it enables stratification of children, by quantifying brain
561  functions associated with a child’s diagnostic status and underlying neurodevelopmental issues.
562  To demonstrate this, we compared typically developing children from D2 with an additional small
563  cohort of children from the same site whom were diagnosed with Trisomy 21 (n = 40; 29/40 were
564  recorded at less than 7 years of age). The PAD was significantly lower in children with Trisomy
565 21, despite having normal sleep studies, than typically developing children in D2 (PAD adjusted
566  for age effect: p = 5.3 x 10, t-statistic = 3.5, unpaired t-test, n = 763, df = 761; centile-based:
567  Cohen’s d = 0.36, p = 0.028, t-statistic = 3.5, unpaired t-test, n = 763, df = 761; Figure 6b). This
568  finding of significantly lower PAD was consistent across other combinations of cohorts: (i)
569  typically developing children from D1 only versus children with Trisomy 21 (p = 8.7 x 1073, t-
570  statistic = 2.6, unpaired t-test, df = 1094) and (ii) typically developing children from D1 + D2
571 versus children with Trisomy 21 (p = 8.4 x 1073, t-statistic = 2.6, unpaired t-test, df = 1817). No

572 significant differences in age and sex were found in children with Trisomy 21 (p = 0.61, t-statistic
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573 = 0.5, unpaired t-test). Supplementary Table 6 summarises all further comparisons including
574  effect sizes and sex differences. The observations suggest that at the group level, deviant
575  neurodevelopmental trajectories in children with Trisomy 21 translate to delayed maturation of

576  their cortical function.

577  Finally, we benchmarked our FBA model against conventional growth chart trajectories of head
578 circumference and height in children.***> Here, the maximal variation of age for the FBA
579  (difference between 3™ and 97" centiles) falls between head circumference and height for age for
580  a simulated cohort with similar age and sex demographics to D1 and D2 combined (Figure 6c).
581  This indicates that the variation in FBA, for a typically developing cohort, as per our estimated
582  centiles, are relatively smaller for younger children in comparison to larger variations for children
583 above 10 years of age; a trajectory that is generally observable in both charts based on
584  anthropometric and neuroimaging measures across the lifespan.>®4445 This variation is also likely
585  attributed to the distribution of age presented in D1 + D2, where samples of adolescents only
586  account for 20% of the combined dataset. Our FBA growth chart thus exhibits comparable age
587  variability to that of widely-used physical growth charts. Code for converting EEG into FBA and

588  centiles are available (details in Data sharing statement).

589
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591 Figure 6 — The functional brain age (FBA) growth chart derived from cross-validation of a combination of D1 and
592 D2 datasets. a. The chart is based on the FBA derived from the Res-NN model. Translucent colored triangles represent
593 individual EEG recordings from D1 (blue) and D2 (red) datasets. The 3" (red), 15" (yellow), 50'" (green), 85" (purple)
594 and 97" (blue) centiles are indicated. Children with Trisomy 21 (black dots) have been plotted alongside D1 (blue)
595 and D2 (pink) children. b. Differences in relative PAD between children with typically developing neurodevelopment
596 and children with Trisomy 21. Significance values (p < 0.05) were determined by conducting an unpaired t-test
597 between groups, where all data was checked for normality. Typically developing groups (n = 723; blue) and Trisomy
598 groups (n = 40; pink) from D2 are plotted as violin plots, with the median (black line) and interquartile ranges
599 (rectangles) shown, c. Variation in paediatric predictors of age. The variation (in years) represents the difference
600  between the 97" and 3™ centiles across age for the FBA (in blue), head circumference (HC, in red) and height (in
601  green). HC and Height predictors were simulated with the same age distribution as the combined D1 and D2 dataset.
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Table 1 — Overall performance of FBA across datasets. The performances of the FBA, using a Res-NN
model, across all training, test, and combined datasets. R?2, RMSE, MAE, and wMAE are shown. Cl is
confidence interval, ®only N2 from D1 used, "10-fold cross-validation.
# channels, # channels, RMSE MAE wMAE
Train | # recordings, Test # recordings, | R? (in years; (in years; 95% (in years;
# epochs # epochs 95% CI)) Cl) 95% CI)
19, 1056, 19, 1056, 0.82 0.56 0.85
D1 D1P
30624 30624 0.96 | (0.78-0.90) (0.52 - 0.59) (0.69 - 1.02)
2, 1056, 2, 1056, 1.10 0.77 1.22
D1# D12b
20064 20064 0.93| (1.08-1.26) | (0.72-0.82) | (0.96—1.48)
2, 1056, 2,723, 2.76 2.18 2.27
D12 D2
20064 13737 0.66 | (2.61-2.89) (2.05-2.29) | (1.90-2.65)
2,723, 2,723, 1.53 1.45 1.66
D2 D2°
13737 13737 0.78 | (1.72-1.91) (1.37 - 1.53) (1.37 - 1.96)
2, 1779, 2, 1779, 141 1.09 1.51
D12+D2 D1%+D2°
33801 33801 0.88 | (1.49-1.64) (1.04 - 1.14) (1.30 - 1.73)
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609 DISCUSSION

610

611  Ininfants, children and adolescents, EEG activity exhibits clear, consistent, and rapid changes with
612  age.!3495051 We formalise this knowledge using a targeted deployment of deep learning algorithms
613 to form a prediction of EEG age (FBA) underpinned by key human operator expertise and
614  decision-making in specific stages of the process. We achieved an accurate FBA prediction when
615  applying deep neural networks directly to the EEG signal, relying on a summary of only brief
616  epochs (60 seconds) within a 10 to 15 minute segment recorded during N1/N2 sleep providing
617  similar accuracies with widely used anatomical growth charts.*®44%> The proposed FBA
618  demonstrated state-of-the-art age prediction accuracy, was validated in an independent cohort and

619  detected group level maturational delays in a small cohort of young children with a defined

620  neurodevelopmental disorder.

621  Our FBA estimates had MAEs comparable to the highest performing MRI-based?367.10.23 and
622 EEG-based studies?*?>2627.28 with reported MAES in the literature ranging from 1.0 to 4.6 years
623  compared to our best WMAE of 0.88 years. The accuracy of the FBA may be directly attributable
624  to the use of residual neural network architectures over conventional multivariable age regression
625  approaches typically used in brain age studies. While individual features have significant
626  correlations with age (Supplementary Table 2), the combination of these features provided a
627  superior prediction of age. Training deep neural networks improved these predictions further,
628  although the exact mechanism of this improvement is not entirely clear. We show that deep neural
629  networks capture well-established EEG characteristics (such as amplitude, frequency, bursting
630  behaviour, and entropy) by comparing features to internal network layer outputs and that the
631  representation of these latent patterns improve FBA estimates through higher-dimensional

632  abstractions of the EEG signal. By showing that individual EEG features correlate with the outputs
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633  of network layers, we highlight a demonstrable feature of the FBA during training. However,

634  methods that attempt to explain the function of neural networks must be made with caution.>?

635  The present FBA measures were developed solely using large EEG datasets that are routinely
636  collected and widely available in hospitals worldwide. Although the performance error of the FBA
637  increases with age, the relative accuracy of the FBA is comparatively uniform across the age range.
638  Here, additional variations to FBA accuracy were linked to the spatial and temporal organisation
639  of the EEG. The effect of spatial organisation for instance was primarily a frontal-occipital gradient
640  which is a well-established phenomenon in the maturing EEG within this age group.>*>*
641  Temporally, the accuracy of the FBA was maximum at the onset of N2 sleep characterised by the
642  presence of sleep spindles which are key cortical signatures that emerge in the first few months of
643 life and remain present in the EEG through adulthood.®* Improved EEG stability near the sleep
644  state transition may involve capitalising on the absence of critical slowing within EEG dynamics

645  at the beginning of these state-based transitions.>

646  The only manual selection done prior to our computational analyses was the identification of the
647  first sleep spindle as a sign of N2 sleep, which was necessary to harmonise vigilance states across
648  acohort with a wide age range. There are several reasons as to why the N2 sleep state offers a well
649  standardised vigilance state that can be considered much more homogeneous across individuals
650  than compared to wake or other sleep states.™ The identification of N1/N2 states, which is marked
651  in the EEG by the emergence of increased delta, sleep spindles, vertex waves and K-complexes,
652  particularly in N2 sleep, are well studied, reliable EEG signatures®®>’ across preclinical and
653  clinical literature. A brief period of N2 sleep is also often recorded in routine EEG studies as it is
654  rich in EEG signatures and known to be sensitive for observing pathological phenomena, (such as

655  epileptiform events®®*), and is also minimally contaminated by the common artefacts due to
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656  movements. The EEG during N2 is also a well-known target for tracking neurodevelopment, with
657  aninitial increase in EEG amplitude during infancy followed by a steady decline into adolescence.
658  Global spectral power shows a decrease in delta frequencies offset by a steady increase in relative
659 alpha and beta band power with age (as observed in Feature IDs 13 to 17 versus age in
660  Supplementary Figure 10), likely reflecting increasing dominance of spindle activity in EEG

661  spectra with age,>6:60.61.62

662  An unresolved question in this work is whether an FBA measured within other diverse vigilance
663  states (e.g. resting, task, or other sleep states) could effectively enhance the accuracy of
664 individualised assessment. Our additional tests during sleep and wake states (Supplementary
665  Table 3) demonstrate the applicability of an FBA in these potential contexts. Obtaining consistent
666  awake EEG in older cooperative children is feasible, but collecting several minutes of good quality
667 EEG signals from alert infants and toddlers is difficult. Careful consideration is essential in
668  harmonising of spontaneous EEG data, especially given the neurophysiological and behavioural
669  variability during childhood.®*®* To enhance the signal-to-noise ratio in comparisons between
670  younger and older children, it becomes crucial to ensure a larger pool of available EEG data for
671 the younger age group.®* Defining normative variability margins in typical development via large
672  consortia EEG datasets, such as the Healthy Brain Network (>3000 children®®) and comparable
673  hospital-based clinical EEGs®®, are likely to provide clues into the scope of the FBA beyond the

674  paradigm of N2 sleep.

675  The present study has some potential limitations. The performance of external validation was
676  markedly lower than the overall performance of cross-validated results in each site independently.
677  The drop-off in accuracy is due to several factors, namely: site specific differences, a lower

678  electrode density, and inherent differences in acquisition of the EEG recordings. We showed that
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679  increasing the diversity of training data, by combining data from D1 and D2, mitigates this issue.
680  However, to enhance accuracy, external validation datasets with diversity in geography, ethnicity,
681  and socioeconomic status will improve the generalizability of the FBA. Despite the trade-off in
682  performance accuracy, our externally validated results still outperformed measures such as head

683  circumference simulated over the same age range.

684  Another limitation of the study is that all children included in this study were not representative of
685  the larger, healthy paediatric population but rather a subgroup of children clinically referred from
686  the primary care level to a tertiary care center for diagnostic assessment. In neurotypically
687  developing populations, it is expected that around 5% may conceal potential subclinical
688  pathologies®’ — a trait notably observed among individuals falling outside the 3rd and 97th centiles
689  on our growth chart (Figure 6a). Estimates of FBA in such groups are clinically interesting;
690  however, it is essential to benchmark the FBA in healthy neurotypical cohorts, including the use
691  of longitudinal data, to ensure further clarity and confidence in applying FBA to a broader
692  paediatric population. The progressive refinement of FBA methods in neurotypical EEGs can
693  enhance our understanding of how FBA models should navigate the balance between aleatoric

694  uncertainty and epistemic uncertainty encountered in large datasets.

695  The FBA also appears to compensate for, or is indifferent to, growth spurts, hormonal and pubertal
696  changes in both sexes, and other alterations to brain structure such as increased rates of cortical
697  thinning in males during adolescence.®®% This does not discount the fact that factors such as sex
698  related differences in cortical activity exist across age, rather, that sex specific effects in the EEG
699  were accounted for and adjusted out by the model.> Future applications of the FBA could be used
700  to study genuine sex-related differences in cortical maturation %° by separating data according to

701 biological sex at the training stage. This ability of trained models to inherently adjust for potential
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702 confounders is a key aspect of artificial intelligence (Al) methods in medicine and means that what
703 we know about EEG and age should be reevaluated singularly in the context of the Al outputs.
704  Growth charts can also be calibrated for diagnosis, prognosis, and stratification; here the optimal
705  tradeoff between cohort heterogeneity, EEG acquisition, training data size and MAE is not entirely
706  resolved, with evidence from MRI-based studies suggesting that the clinical utility is not

707 necessarily inversely proportional to MAE.5"°

708  We propose the FBA as a measure that enables assessment of neurodevelopmental trajectories
709  from infancy to adolescence. Rather than replacing or challenging existing techniques, the EEG-
710  derived FBA is perhaps best seen as a valuable complement to support current modalities of
711 neurodevelopmental assessment, offering a tool towards personalization that both benefits the
712 patient and healthcare practitioner alike. While recognizing the FBA’s clinical potential, a series
713 of targeted evaluations of the FBA within clinical populations are necessary to determine its
714  efficacy prior to endorsing its widespread use. These extra studies are required not only to
715 determine the clinical utility of the algorithm but to also enable other researchers and institutions
716  to identify appropriate safeguards for decision safety and efficacy. We, therefore, publicly release
717 the FBA prediction algorithm as an ‘online’ resource that facilitates the continual refinement of

718 targeted algorithms for tracking childhood brain function and neurodevelopment.’

719
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915 Supplementary Material

916

917 Supplementary Table 1 — Demographics and additional comparisons of datasets analysed. The key differences
918 between datasets is that EEG in D1 was recorded with a higher channel count as part of outpatient routine clinical
919 EEG whereas EEG in D2 was collected as part of an overnight sleep study PSG. Outcomes in D1 were available at a
920  4-year follow-up for children in D1 whereas children in D2 had normal sleep study outcome and were hence follow-
921 up outcomes in this group were not available. The age, including the range, median and interquartile range (IQR) are
922 provided along with sex information (and age associated information within sexes).

D1 D2 D2
Typical Development Typical Development Trisomy 21 group
group (n = 1056) group (n=723) (n=40)
Age Range 6 weeks to 17 years 3 months to 18 years 1yearto 17 years
Median (years) 2.7 8.1 5.4
IQR (years) 6.2 5.6 4.2
Sex
(min, max, median)
Males 543 (6 weeks, 15.8 432 (3 months, 17.9 23 (1.2 years, 16.2
years, 3 years) years, 8.3 years) years, 4.5 years)
Females 513 (6 weeks, 16.8 291 (4 months, 17.8 17 (1.9 years, 9.2
years, 2.5 years) years, 7.9 years) years, 5.9 years)
EEG channels available 19 2 2
Type of clinical EEG Outpatient EEG EEG as part of an EEG as part of an
performed in neurology | overnight sleep study overnight sleep
clinic PSG recording study PSG
recording
Follow-up outcomes Yes; Not available for this Not available for
neurodevelopmental group of children this group of
outcomes were children
followed up 4 years
post-EEG
923
924
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925
926
Input
[1920x18x1]
Convolution Layer Convolution Layer
[(2FW-1)xFDxFN] [FW, FD, FN]
Average Pooling /2 Batch Normalization
Residual Layer Rectified Linear Unit
[FN, /1]
Convolution Layer
Residual Layer [FW, FD, FN]
[2FN, /2]
Batch Normalization
Residual Layer '
[4FN, /2] \
P
Average Pooling /2 \
h  Rectified Linear Unit
Fully Connected Layer
927
928

929 Supplementary Figure 1 - The general architecture of the residual neural network used in this work. For inception
930  networks, we used elements of the inceptionv3 network in MATLAB with a final regression layer. The scale of this
931 pre-trained network was too large to accurately train on the dataset used in our work, so we tested architectural aspects
932  ofthe network rather than the entire network. Similarly to the residual neural network we added variability by changing
933 the temporal filter width (FW), filter channel depth (FD) and filter number (FN) within the convolutional layers. We
934  used the file generate_networks_v2.m to generate networks with different configurations and architectures (see the
935 GitHub page for more details).

936
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Supplementary Figure 2 - The effect of epoch length and montage on cross-validated RMSE on a random selection
of 7 network architectures. An epoch length of 60s and the bipolar montage were selected a priori. Different EEG
epoch durations (30 s, 60 s, 120 s, 300 s) and EEG montages (referential, bipolar, average, current source density)
were tested. The root mean square error between predicted age (FBA) and age across all testing data from a 10-fold
cross-validation was used to determine the optimal selection, with a minimum RMSE indicating the optimal results.
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Supplementary Figure 3 - The effect of solver and mini-batch size on cross-validated RMSE on a random selection
of network architectures, epoch length, and montage (n = 8 per group for solver and n = 7 per group for mini-batch
size). For training the neural networks, two hyper-parameters of training were selected based on an initial run on
dataset D1 (Solver Type and Mini-batch size). A random selection of network architectures were made and the
network was trained and tested within a 10-fold cross-validation with the RMSE on the accumulated left-out test data
used to select the hyper-parameters. The ADAM solver and a mini-batch size of 128 samples were selected.
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955 Supplementary Note 1 - The effect of data balancing on NN results

956 Balancing the dataset is an important component of constructing viable training datasets. In this case, the number of
957 recording per age bin should be equal for the best general regression results; increased diversity of data (typically by
958  adding more data) also provides an improved fit. Furthermore, the training data distribution should best represent the
959 distribution of the larger population. We show the effect of data balancing by training 10 randomly selected network
960  architectures with training datasets containing different levels of heterogeneity with respect to age (Supplementary
961 Figure 4). To ensure the number of training points is equal we extract more epochs per recording as the dataset
962  becomes more balanced by changing the overlap of epoch extraction. We select three levels of balance: balanced
963 (uniform distribution of subjects across age) extracts at most 40 recordings from each age group (ages are grouped at
964  vyearly intervals), Unbalancedl (more samples at early ages) extracts at most 80 recordings from each age group, and
965 Unbalanced2 (most samples at early ages) extracts at most 160 recordings from each age group. The RMSE and
966  weighted RMSE (an age adjusted RMSE) are calculated on all EEG recordings that were left out during the 10-fold

967  cross-validation (an unbalanced cohort).

968
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971 Supplementary Figure 4 - The general effects of data balancing on cross-validated RMSE for 18-channel data (D1
972 datasets). The left plot is the RMSE and the right plot is the WRMSE which is an RMSE averaged across age bins
973 (yearly) rather than per EEG recording. In both cases, the increased diversity in recordings associated with unbalanced
974  training dataset offers lower errors, although the reduction in error is smaller when considering WRMSE.
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976 Supplementary Figure 5 - The general effects of data network architecture type (Residual vs Inception) on cross-
977  validated RMSE for 18-channel data (D1 datasets). Once general EEG parameters and network training hyper-
978 parameters were initialized, we tested two general architectures based on residual neural networks and inception based
979 neural networks. We randomly selected 10 networks based on both architectures and computed RMSE. Based on these
980  parameter evaluations, residual networks were selected as the most suitable candidate architecture for estimating age.
981

982

983 Supplementary Note 2 — Testing various of network parameters (18 channel FBA for D1)

984  We also tested parameters of filter width, filter depth, network depth and filter number within the residual network.
985 The optimal combination was selected using the internal validation data, averaged across all folds. The latter was
986  performed to ensure only 1 network architecture was used across fold. A fixed grid optimization search across was
987 performed across an array of network parameters. For the 18-channel FBA based on dataset D1, this resulted in 180
988 different network architectures (Supplementary Figure 6). The general trends are shown with an optimal combination
989 of network parameters selected: a filter width of 9 samples (n = 45 per group), filter depth of 6 channels (n = 36 per
990 group), network depth of 3 (n = 60 per group), and a filter number of 16 (n = 60 per group): a total of 867,601 learnable

991 parameters.
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992
993 Supplementary Figure 6 - The general effects of residual network parameters on cross-validated RMSE for 18-

994  channel data (D1 dataset). Internal single fold cross-validation averaged across all 10 training folds selected. Note
995  that, as filter depth of 1 channel had a considerably higher RMSE than other filter depths, RMSE points associated
996  with a 1 channel network were removed before generating the remaining boxplots for visualization purposes.
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Supplementary Figure 7 - The general effects of residual network parameters on cross-validated RMSE for a 2-
channel FBA based on dataset D1. This resulted in 60 different network architectures. The optimal combination of
network parameters selected were a filter width of 9 samples (n = 18 per group), filter depth of 2 channels (n = 30 per
group), network depth of 2 (n = 30 per group), and a filter number of 2 (n = 20 per group): a total of 906,657 learnable
parameters.
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Supplementary Figure 8 - The general effects of residual network parameters on cross-validated RMSE for 2-channel
data (D2 dataset). This resulted in 90 different network architectures. The optimal parameters were a filter width of 9
samples (n = 18 per group), filter depth of 2 samples (n = 45), network depth of 2 (n = 30 per group), and a filter
number of 32 (n = 30 per group): a total of 906,657 learnable parameters.
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Supplementary Figure 9 - The general effects of network parameters on cross-validated RMSE for 2-channel data
(D1 and D2 combined). This resulted in 45 different network architectures. The RMSE of an internal single fold cross-
validation, average across all 10 training folds selected a filter width of 9 samples (n = 9 per group), a network depth
of 2 (n = 45 per group), network depth of 2 (n = 15 per group), and a filter number of 32 (n = 15 per group): a total of
906,657 learnable parameters. Note, we did not vary the filter depth/channel humber as previous experiments on D1

and D2 alone showed that 2 channels was optimal.
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1016 Supplementary Table 2 — Performance of individual EEG features in predicting age following Gaussian process
1017 regression (GPR) and 10-fold cross-validation of training data (D1). Results are based on 60 second EEG epochs
1018  acquired in the bipolar montage. Amplitude metrics (ID1 to ID7) denote the 5™, 50t (median), 95" centiles based on
1019  the absolute value of the Hilbert transform of the EEG (amplitude envelope), along with four central moments of the
1020  signal: mean, standard deviation, skewness and kurtosis. Frequency metrics (ID8 to ID19) summarize frequency
1021 domain metrics based on the power spectrum density of the EEG signal, and included features such as peak frequency,
1022  signal amplitude at this peak, along with mean frequency, bandwidth and relative spectral power in common EEG
1023 oscillatory bands. Informational metrics (ID20 to 1D32) summarized various non-linear and statistical properties of
1024 the EEG. SNLEO stands for the smoothed non-linear energy operator.

GPR Shapley
Feature ID EEG Features R? RMSE MAE Value | Rank
1 5th percentile Amplitude Envelope 0.82 1.28 1.28 0.57 1
2 50th percentile amplitude envelope 0.81 1.32 1.32 0.33 8
3 95th percentile amplitude envelope 0.76 1.52 1.52 0.06 26
4 Mean amplitude envelope 0.78 1.44 1.44 0.15 14
5 Standard deviation amplitude envelope 0.75 1.57 1.57 0.06 25
6 Skewness amplitude envelope 0.18 3.04 3.04 0.08 22
7 Kurtosis amplitude envelope 0.31 2.73 2.73 0.33 7
8 Peak Frequency (PSD) 0.08 3.32 3.32 0.08 23
9 Power in peak frequency 0.14 3.25 3.25 0.03 29
10 Signal amplitude of peak frequency 0.79 1.48 1.48 0.21 13
component
11 Mean frequency 0.56 2.19 2.19 0.03 30
12 Bandwidth 0.59 | 2.08 2.08 0.24 10
13 Relative spectral power (delta 1, 0.5-2Hz) 0.19 3.16 3.16 0.30 9
14 Relative spectral power (delta 2, 2-4Hz) 0.40 2.34 2.34 0.34 6
15 Relative spectral power (theta, 4-8Hz) 0.25 2.90 2.90 0.13 17
16 Relative spectral power (alpha, 8-12Hz) 0.60 1.97 1.97 0.04 28
17 Relative spectral power (beta, 12-30Hz) 0.63 1.94 1.94 0.22 11
18 Total power in all bands 0.77 1.47 1.47 0.09 21
19 Spectral slope (decay in power spectrum) 0.58 2.08 2.08 0.22 12
20 Sample Entropy 0.55 2.23 2.23 0.11 19
21 Fractal Dimension (Higuchi) 0.58 2.17 2.17 0.42 4
22 Spectral entropy 0.58 2.16 2.16 0.47 2
23 Spectral difference 0.79 1.42 1.42 0.06 27
24 Hjorth 1 (Activity) 0.78 1.46 1.46 0.13 16
25 Hjorth 2 (Mobility) 0.81 | 1.44 1.44 0.14 15
26 Hjorth 3 (Complexity) 0.83 1.30 1.30 0.45 3
27 SNLEO mean 0.53 2.02 2.02 0.08 24
28 SNLEO standard deviation 0.42 2.38 2.38 0.01 32
29 Burst shape skewness (all bursts) 0.07 3.35 3.35 0.02 31
30 Burst shape kurtosis (all bursts) 0.21 2.94 2.94 0.13 18
31 Burst duration (mean) 0.69 1.79 1.79 0.37 5
32 Burst duration (standard deviation) 0.55 2.29 2.29 0.09 20
1025
1026
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1029 Supplementary Figure 10 — Individual EEG features versus age (all subjects from training dataset D1). As per
1030 Supplementary Table 1, each EEG feature and their respective ID are based on 60 epochs from the bipolar montage.
1031 Feature types are indicated by colors, where amplitude features (reddish hue), frequency domain features (green hue)
1032  and informational metrics (blue hue). A spline is fitted across the median values derived across 2 yearly age bins.
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Supplementary Figure 11 — Relating individual EEG features to the late network layer of the Res-NN model. For each
individual feature we used GPR to assess the strength of correlation between individual EEG features with network
activation layers (here the late layer, i.e., layer 61 from 2-channel EEG data from D1 is shown) to derive a predicted
feature value based on UMAP1 and UMAP2 dimensions derived from this training phase. The strength of correlation
(R? value) indicates how individual EEG features and predicted individual EEG features are linked by UMAP
representations of the Res-NN model, following 10-fold cross-validation. The color bar indicates the relative range of
the EEG feature pertaining to its minimum and maximum values (e.g. for feature 1D4, low mean amplitude versus
high mean amplitude).
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1045 Supplementary Figure 12— Comparative performance of FBA estimation from a GPR model with the Res-NN a. The
1046 Res-NN model (R?=0.96, MAE=0.56 years) with error bounds of +1.5 years and b. The residual error (PAD), in years.
1047 c. GPR results based on a multivariable model of EEG features (R?=0.93, MAE=0.79 years). d. Residual error (PAD),
1048 in years, for the GPR model. Individual EEG recordings (blue filled circles) are plotted across ages.
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1052 Supplementary Table 3 — Performance of FBA across sleep stages in the validation dataset (D2). The performances
1053 of the FBA following 10-fold cross-validation, using either a Res-NN or GPR model, in the D2 dataset. MAE, WMAE
1054  and RMSE are shown. N.B. N1 was excluded due to inconsistent availability across ages in D2.
Res-NN GPR
Sleep # channels, MAE WMAE MAE WMAE
stage # recordings, (in years) (in years)
g # epochs y y
N3 2,723, 13737 1.46 1.76 1.75 2.00
REM 2,714, 13339 1.55 1.98 1.68 1.89
WAKE 2,564, 8810 1.89 2.53 2.06 2.61
N2 2,723, 13737 1.46 1.73 1.25 1.34
1055
1056 Supplementary Table 4 — Overall performance of FBA across datasets. The performances of the FBA, using a GPR
1057 model, across all training, test, and combined datasets. MAE, wMAE and RMSE are shown. Cl is confidence interval,
1058 3only N2 from D1 used, *10-fold cross-validation.
# channels, # channels, RMSE MAE wWMAE
Train | # recordings, Test # recordings, | R? (inyears; (in years; 95% (inyears;
# epochs # epochs 95% CI)) Cl) 95% CI)
19, 1056, 19, 1056, 0.93 1.09 0.79 1.06
D1 D1b
30624 30624 (1.05-1.20) (0.74 - 0.84) (0.85-1.27)
2, 1056, 2, 1056, 0.91 1.24 0.93 1.27
D1 D1b
20064 20064 (1.23 - 1.40) (0.88 - 0.99) (0.97 - 1.57)
2, 1056, 2,723, 0.67 2.49 1.94 2.53
D12 D2
20064 13737 (2.34-2.64) (1.84 - 2.06) (2.16 — 2.85)
2,723, 2,723, 0.84 1.41 1.24 1.34
D2 D2b
13737 13737 (1.46 - 1.60) (1.18 —1.31) (1.12-1.57)
2, 1779, 2, 1779, 0.90 1.43 1.08 1.29
D1+D2 D1+D2°
33801 33801 (1.37 - 1.49) (1.03-1.12) (1.12-1.47)
1059
1060
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1062 Supplementary Figure 13 — FBA growth charts stratified into infant and childhood age groups. a. FBA charts for
1063 infants (0 to 2 years) and b. children and adolescents (2 to 18 years) were generated to offer a magnified view of the
1064  FBA with respect to chronological age. In both age-stratified versions of the chart, over 95% of the data (blue dotted
1065 points) are captured between the 3™ and 97" centiles estimated. The 3rd (red), 15th (yellow), 50th (green), 85th
1066 (purple) and 97th (blue) centiles are indicated.
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1069 Supplementary Figure 14 - Summary plot of GPR model performance. a. The mean absolute error (MAE) of the GPR
1070 (dark blue triangles, left axis) across 2 yearly age bins and the relative accuracy of PAD (in blue, right axis) across 2
1071  yearly age bins. For both plots, the mean and standard error of the mean (SEM) are plotted to reflect the sample
1072 distribution within age bins. b. Differences in MAE of D1 following cross-validation (D1 CrossVal) versus external
1073  validation on D2 (D1 test on D2) for GPR. Here differences in sites are more noticeable for younger and older age
1074  groups. c. Change in MAE across EEG channel locations, with average MAE shown and error bars indicated by
1075  standard deviation. d. Temporal transitions in the EEG across N1 (light pink) and N2 (light purple). Similar to the
1076 Res-NN, the lowest MAE is observed during a transition between sleep N1 and N2 stages. Error bars denote standard
1077 deviation for each epoch.

55


https://doi.org/10.1101/2023.07.07.548062
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.07.548062; this version posted February 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1078
1079 Supplementary Table 5 — Performance summary across test folds for Res-NN and GPR models. Within each of the
1080 10 test folds, the mean absolute error (MAE) is summarized for both model approaches.

1081
1082 Res-NN GPR
Folds MAE MAE
1083 Test D1 Test D1
1 0.61 0.72
1084 2 0.49 0.73
3 0.59 0.73
1085 4 0.53 0.78
1086 5 0.59 0.75
1087 6 0.49 0.76
1088 7 0.50 0.98
1089 8 0.63 0.80
1090 9 0.59 0.86
1091 10 0.55 0.80
1092 Fold-wise Average 0.56 0.79
Test D2 Test D2
1093 1 65 o0
1095 2 1.43 1.25
1096 3 1.63 1.25
4 1.40 1.15
1097 5 1.43 1.34
1098 6 1.63 1.11
1099 7 1.39 1.21
1100 8 1.35 1.34
1101 9 1.32 1.20
1102 10 1.51 1.33
1103 Fold-wise Average 1.46 1.24
1104 Test D1 + D2 Test D1 + D2
1105 1 1.15 1.07
1106 2 0.97 1.05
1107 3 1.03 0.91
4 0.95 1.14
ﬁgg 5 0.96 1.21
1110 6 1.06 1.16
1111 7 0.89 1.11
8 1.36 1.04
1112 9 1.00 1.13
1113 10 111 1.03
1114 Fold-wise Average 1.09 1.08
1115
1116
1117
1118
1119
1120
1121
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Supplementary Table 6 — Summary of group-wide associations across Res-NN/GPR methods and different cohorts.
Assessment of adjusted PAD and centiles derived from the growth chart (Figure 6) where differences between
typically developing versus Trisomy 21 (T21) subjects across varying combinations of cohorts (D1, D2 and D1 + D2)
are summarized. Effect sizes and differences in adjusted PAD between typically developing children and Trisomy 21
subjects were also examined for subgroups based on sex (i.e. D2 males versus T21 males, D2 females versus T21
females etc). Unpaired t-tests were performed with significance set at p<0.05 with the associated t-statistic reported.

Adjusted PAD Centiles
Effect size Total Males Females p-value
(Cohen’s d; p-value p-value p-value (t-statistic)
95%Cl) (t-statistic) (t-statistic) (t-statistic)

D2vsT21 0.56 0.00053* 0.02* 0.01* 0.028*
(0.24 —-0.88) (3.5) (2.33) (2.56) (3.5)
D1lvsT21 0.42 0.0087* 0.0012* 0.77 0.08
(0.11-0.74) (2.63) (3.25) (0.29) (1.68)
D1+D2vsT21 0.42 0.0084* 0.0009* 0.80 0.052
(0.11-0.73) (2.64) (3.34) (0.26) (1.92)
D2vsT21 0.36 0.023* 0.005* 0.58 0.28
(0.06 —0.68) (2.28) (2.82) (0.56) (1.08)
D1lvsT21 0.002 0.98 0.003* 0.75 0.66
(-0.31-0.32) (0.01) (2.96) (0.32) (0.44)
D1+D2vsT21 0.16 0.32 0.31 0.74 0.85
(-0.15-0.47) (0.98) (1.01) (0.33) (0.19)
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