

1 **Title: A growth chart of brain function from infancy to adolescence based on**
2 **electroencephalography**

4 **Authors:** Kartik K. Iyer^{1,2*}; James A. Roberts¹; Michaela Waak^{2,3}; Simon J. Vogrin⁴; Ajay
5 Kevat^{2,3}; Jasneek Chawla^{2,3}; Leena M. Haataja⁵; Leena Lauronen⁵; Sampsa Vanhatalo⁵; Nathan
6 J Stevenson^{1*}

7

8 **Affiliations:**

9 ¹ Brain Modeling Group, QIMR Berghofer Medical Research Institute; Brisbane, Australia.

10 ² Faculty of Medicine, The University of Queensland; Brisbane, Australia.

12 ³ Queensland Children's Hospital; Brisbane, Australia.

14 ⁴ St Vincent's Hospital; Melbourne, Australia.

17 ⁵ BABA Center, Paediatric Research Center, Departments of Physiology and Clinical
18 Neurophysiology, Children's Hospital, Helsinki University Hospital and University of Helsinki;
19 Helsinki, Finland.

21 *Corresponding authors. Email: Kartik.Iyer@qimrberghofer.edu.au ;
22 Nathan.Stevenson@qimrberghofer.edu.au

28 **ABSTRACT**

29 Background: In children, objective, quantitative tools that determine functional neurodevelopment
30 are scarce and rarely scalable for clinical use. Direct recordings of cortical activity using routinely
31 acquired electroencephalography (EEG) offer reliable measures of brain function.

32 Methods: We developed and validated a measure of functional brain age (FBA) using a residual
33 neural network-based interpretation of the paediatric EEG. In this cross-sectional study, we
34 included 1056 children with typical development ranging in age from 1 month to 18 years. We
35 analyzed a 10 to 15 minute segment of 18-channel EEG recorded during light sleep (N1 and N2
36 states).

37 Findings: The FBA obtained from EEG had a weighted mean absolute error (wMAE) of 0.85 years
38 (95%CI: 0.69-1.02; n = 1056). A two-channel version of the FBA had a wMAE of 1.51 years
39 (95%CI: 1.30-1.73; n = 1056) and was validated on an independent set of EEG recordings (wMAE
40 = 2.27 years, 95%CI: 1.90-2.65; n = 723). Group-level maturational delays were also detected in
41 a small cohort of children with Trisomy 21 (Cohen's $d = 0.36$, $p = 0.028$).

42 Interpretation: An FBA, based on EEG, is an accurate, practical and scalable automated tool to
43 track brain function maturation throughout childhood with accuracy comparable to widely used
44 physical growth charts.

45 Funding: This research was supported by the National Health and Medical Research Council,
46 Australia, Helsinki University Diagnostic Center Research Funds, Finnish Academy, Finnish
47 Paediatric Foundation, and Sigrid Juselius Foundation.

48 **Keywords:** paediatric, brain function, brain age, electroencephalography, machine learning,
49 neurodevelopment

51 **RESEARCH IN CONTEXT**

52

53 Evidence before this study: Tools for objectively tracking neurodevelopment in paediatric

54 populations using direct measurement of the brain are rare. Prior to conducting this study, we

55 explored multiple databases (Google Scholar, PubMed, Web of Science) with search strategies

56 that combined one or more of the terms “paediatric brain development”, “brain age”, “age

57 estimation”, “MRI measurements”, “EEG measurements”, “machine learning”, “artificial

58 intelligence”, “advanced ageing”, “neurodevelopmental delays” and “growth charts” with no

59 restrictions on language and dates. In screening over 500 publications, 7 studies evaluated brain

60 age in children using MRI and only a single study investigated maturation in EEG activity across

61 discrete age bins.

62 Added value of this study: We formulated a measure of functional brain age (FBA) using state-of-

63 the-art machine learning (ML) algorithms trained on a large, unique database consisting of

64 multichannel clinical EEG recorded from N1/N2 sleep ($n = 1056$ children; 1 month to 17 years),

65 with typical neurodevelopment confirmed at a 4-year follow-up. The FBA showed a high

66 correlation with age and detected group-level differences associated with conditions of

67 neurodevelopmental delay.

68 Implications of all the available evidence: Age is prominent within EEG recordings of N1/N2 sleep

69 and is readily extracted using ML. Public release of the FBA estimator and the use of EEG,

70 commonly delivered in outpatient settings, as the basis of age prediction enables clear translation

71 of measures of ‘brain age’ to the clinic. Future work on EEG datasets across various

72 neurodevelopmental profiles will enhance generalisability and user confidence in the clinical

73 application of brain age.

74 **INTRODUCTION**

75

76 Deriving brain age in relation to a person's chronological age has become a burgeoning focus for
77 scientists, clinicians, and education providers.¹ The physiological maturation of the brain is
78 fundamentally shaped by an interaction between an individual's genetic traits and
79 acquired/environmental effects.^{2,3} The chronological age of an individual is a particularly
80 important benchmark in the assessment of paediatric populations, given that over 10% of children
81 worldwide⁴ are affected by neurodevelopmental problems.

82 Current predictors of brain age are built predominantly upon metrics of structural MRI
83 morphometry such as cortical thickness, grey matter, white matter, and intracranial volumes^{2,3,5,6,7}
84 derived from large bio-banks of magnetic resonance imaging (MRI) scans. Across these studies,
85 the key biomarker is defined as the difference between predicted brain age and chronological age.⁸
86 Brain predicted age difference (PAD) has been associated with neurodegeneration and
87 compromised neurological health in adults^{9,10} and autism spectrum disorder in children.¹¹

88 We propose the use of electroencephalography (EEG) as a basis of age prediction. The EEG's high
89 temporal resolution enables the capture of subtle changes in neurophysiological function across
90 dynamic brain states such as evoked responses, resting states and sleep providing valuable insights
91 into typical and atypical maturation during neurodevelopment.^{12,13,14,15} Chromosomal and genetic
92 alterations, such as those present in children diagnosed with Trisomy 21, Autism spectrum disorder
93 or attention-deficit/hyperactivity disorder, affect brain function at the neuronal level.^{16,17,18}
94 Developing neurodevelopmental biomarkers that are associated with these cellular-level changes
95 to brain functions could thus provide key actionable indicators that guide early intervention and
96 personalisation of clinical care to ultimately impact long term outcomes.

97 Brain age predictors that track maturation, as measured by the EEG, are promising in paediatrics
98 due to rapid functional changes that occur in concert with, or in parallel to, structural changes in
99 the brain during childhood and adolescence^{19,20,21,22} unlike structural MRI which shows promise
100 in brain age prediction but only captures spatial information. EEG (and fMRI) captures
101 neurophysiological activity across space and time. Brain age prediction via these functional
102 modalities is emerging^{23,24,25,26,27}, but is currently limited to short acquisitions in controlled
103 research settings or incomplete representation of the entire paediatric age range.^{2,3,6,7,8,28}
104 Establishing a “functional brain age” (FBA) in paediatric cohorts can, therefore, complement the
105 array of behavioral assessments typically employed in clinical practice, enhancing the assessment
106 of neurodevelopment.

107 In this study, we charted the growth of brain function using an EEG-derived FBA. Machine
108 learning methods applied to a large cohort of EEG recordings from children with typical
109 development formed the basis of the FBA. We used light sleep (N1 and N2) due to the ubiquity
110 and comparability of these neurophysiological states across childhood and tested the diagnostic
111 potential of the FBA using a small cohort of children with atypical neurodevelopment.

112

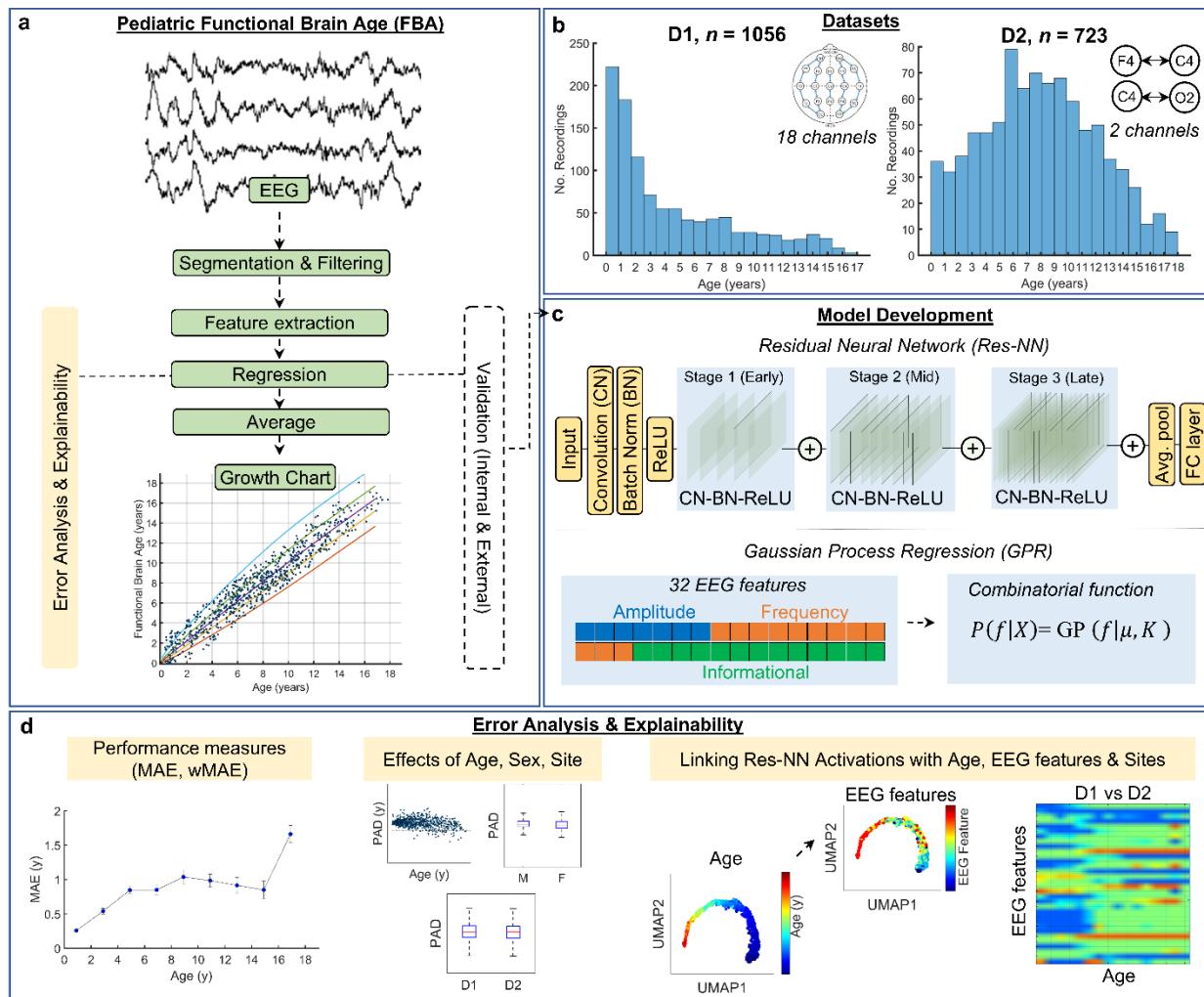
| 113

114 **METHODS**

115 ***Study Design***

116 The framework for predicting functional brain age (FBA) from sleep EEG is presented in **Figure**
117 **1**. A FBA was developed using a residual neural network architecture (Res-NN). A ‘bag of
118 features’ and Gaussian process regression (GPR) predictor of age was used to benchmark age
119 methods. Our input for the FBA model consisted of 60 second epochs of EEG, where an FBA per
120 recording was calculated as an average across multiple epochs extracted from a 10 or 15 minute
121 segment. We developed the FBA on a primary training dataset (D1) which comprised 15 minutes
122 of 18-channel EEGs from 1056 children recorded at the Helsinki University Children’s Hospital,
123 Finland. We then validated our trained model on a dataset (D2) which comprised of 10 minutes of
124 2-channel EEGs recorded from 723 children at Queensland Children’s Hospital, Brisbane,
125 Australia.

126



127
128 **Figure 1 – Study design.** **a.** EEG acquisition from routine sleep studies from 2 sites (D1 – Helsinki, n = 1056; and D2 –
129 Brisbane; n = 723). The development of a functional brain age (FBA) growth chart within a supervised learning
130 framework. Single, 60 s EEG epochs per recording were used to form a preliminary estimate of FBA that was then
131 averaged (median operation) across all available epochs within a 10-15 minute segment of EEG. Model evaluation
132 (FBA) involved cross-validation procedures from the primary developmental dataset (D1) with external validation on
133 an independently collected dataset (D2). Growth charts for D1, D2 and a combined D1+D2 dataset were computed.
134 **b.** Distributions for training (D1) and validation (D2) datasets across age and the EEG channel montages of acquisition.
135 Data consisted of 5 minute epochs of N1 sleep followed by 10 minute epochs of N2 sleep from 18 channels for D1,
136 and 10 minute epochs of N2 sleep from 2 channels for D2. **c.** A trained Residual Neural Network (Res-NN) was our
137 primary method of feature extraction for FBA prediction. Performance was benchmarked against a GPR model on *a priori*
138 engineered EEG summary measures.²⁹ **d.** Performance of the FBA was assessed via measures including the
139 mean and weighted absolute error (MAE, wMAE) and predicted age differences (PAD = FBA minus chronological
140 age). Effects of age, sex, and recording site were examined using statistical tests. The behaviour of the final trained
141 Res-NN was explained using links between network activation, age, and engineered EEG features across sites.

142

143

144 Datasets. Our primary training dataset (referred hereto as *D1*) was collected from a convenience
145 sample of EEGs collected at the Helsinki University Children's Hospital in Helsinki, Finland.

146 EEG was recorded using 10-20 electrode positions with an electrode on the vertex as an active
147 reference (either Fz or Cz) using a Nicolet One EEG (Natus Medical Inc. Middleton, WI, USA).
148 All EEG recordings were sampled at 250 Hz and the referential montage was saved in a
149 pseudonymised EDF file format. A total of 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz,
150 C4, T4, T5, P3, Pz, P4, T6, O1, O2) were collected as part of the EEG; reference EEG electrodes
151 were attached to the mastoid (A1/M1 and A2/M2). All children (aged between 1 month to 18
152 years) with an EEG recorded between 2011 and 2016 were screened. EEG recordings in D1 were
153 clinically reviewed to define normality of the record, where the montage of review was a standard
154 longitudinal bipolar montage (double banana). The EEG record for D1 was re-reviewed by EEG
155 technicians trained for the purpose (and approved by L.L).

156 A total of 1056 children with typical neurodevelopment were available for analysis across the 18
157 year age range (see **Supplementary Table 1** for demographics and dataset comparisons). For D1,
158 the reporting of sex was derived from the Finnish social security system where sex is medically
159 defined. A 15 minute segment of EEG was extracted and saved in EDF format. The first 5 minutes
160 of each segment consisted of N1 sleep and the remaining 10 minutes consisted of N2 sleep. The
161 transition between N1 and N2 sleep was defined by the first occurrence of sleep spindles or K-
162 complexes³⁰ (sleep was scored using a referential montage). These 15 minute segments may
163 include very brief (paroxysmal) arousals³¹ that may typically disrupt physiological sleep in
164 children but were not seen to corrupt the EEG due to their transient nature. Before undergoing a
165 clinical EEG session, families were asked to wake up their child 2 to 4 hours earlier than their
166 usual wake-up time, to ensure they would be able to fall asleep in the laboratory; however,

167 individual variations in sleep pressure were not measured. This early period of EEG comprising
168 N1/N2 transitions was selected for FBA training.

169 Our external validation dataset (referred hereto as *D2*) was collected from a convenience sample
170 of polysomnography (PSG) studies from the Queensland Children's Hospital (QCH) in Brisbane,
171 Australia (Respiratory and Sleep Medicine Department), reviewed between 2014 and 2021. PSG
172 was acquired via the EMBLA N7000 (Natus Neuro, Middleton, WI, USA). For D2, a total of 3
173 channels were recorded overnight (F4, C4 and O2) as part of the PSG. EEG was recorded using
174 10-20 electrode positions and recordings were sampled at 200 Hz or 500 Hz; reference EEG
175 electrodes were attached to the mastoid (A1/M1 and A2/M2).

176 Following screening of D2 data, a total of 723 children with typical neurodevelopment were
177 available for analysis across the 18 year age range based on normal outcomes following PSG
178 review (see **Supplementary Table 1** for demographics and dataset comparisons). We also
179 identified a cohort of children with Trisomy 21 ($n = 40$) in D2 whom had normal outcomes
180 following PSG review, to examine group-wise differences in FBA. For all D2 data, the reporting
181 of sex was obtained from the Queensland Health record, which is determined by the parent or
182 guardian of the child at the initial referral and visit to the Public Health Service.

183 As per D1, all sleep stages were seen and scored by a clinician according to the American Academy
184 of Sleep Medicine (AASM) guidelines using a referential montage. For D2, we limited our EEG
185 analysis to the first 10 minute period of N2 sleep only due to limited availability of N1 in D2 data
186 (N1 was only present in 45/723 PSGs). The age of children across both D1 and D2 was resolved
187 in months with **Figure 2** summarising the screening flowchart for these datasets.

188

189

190

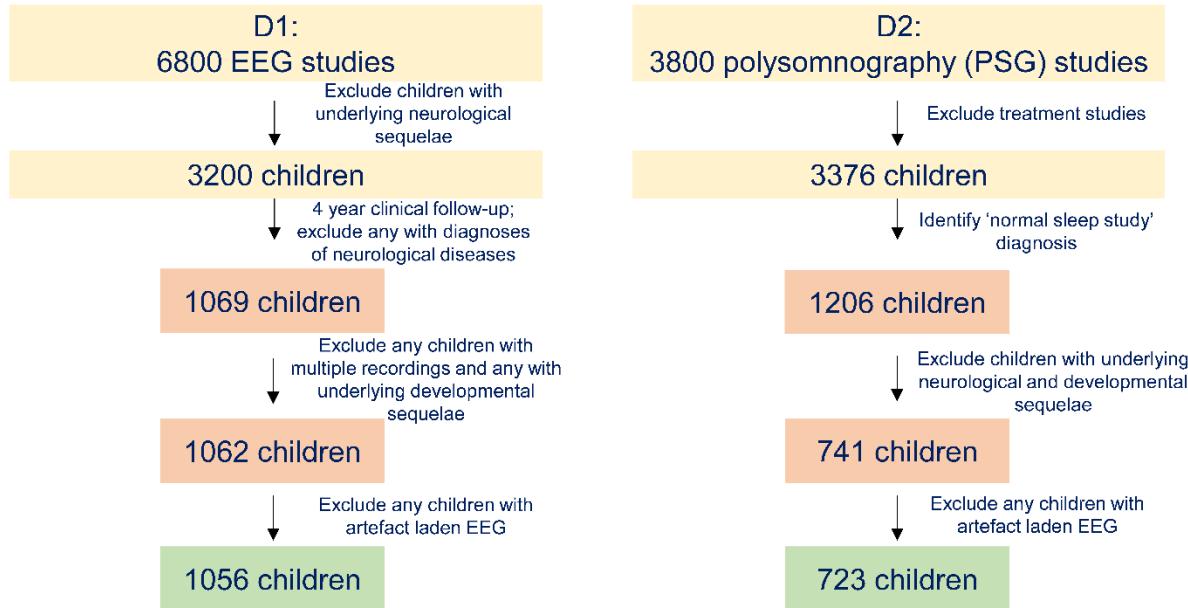


Figure 2 - Screening flowchart for datasets used to train functional brain age algorithms. For D1, 1056 children with an additional 4 year clinical follow-up were included, which enabled us to identify any further neurological diagnoses that may exclude them from further analyses. A final technical check was performed to identify outliers due to significant artefacts, some of which could be removed by re-export of the EDF format. For D2, 723 children with a diagnostic label of 'normal sleep study' and no underlying neurodevelopmental diagnoses were included.

Processing the EEG with machine learning tools

Data processing. All EEG data were zero-phase filtered in both forward and reverse directions with an infinite impulse response, bandpass, 4th order Butterworth filter with a lower cutoff of 0.5 Hz and an upper cutoff of 30 Hz (GPR) or 15 Hz (Res-NN). EEG data were resampled to 64 Hz and 32 Hz as inputs to the feature extraction components of the GPR and residual network regression, respectively. Residual network regression approaches employed EEG data inputs at a lower sampling rate to reduce the size of training data and maximise computational efficiency, with several qualitative tests performed to ensure that important aspects of sleep EEG were retained (e.g. delta and alpha rhythms in sleep). Our feature-based methods were examined at a higher sampling frequency and ensured that higher frequency components of the EEG were also captured across age. For D1, a bipolar montage was computed from the monopolar/referential EEG

211 data resulting in 18 EEG derivations/channels: Fp2-F4, F4-C4, C4-P4, P4-O2, Fp1-F3, F3-C3, C3-
212 P3, P3-O1, Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5, T5-O1, Fz-Cz, and Cz-Pz.

213 Further, each 15 minute segment of EEG was divided into 60 s epochs for analysis. Epochs were
214 extracted with a 30 s overlap (29 epochs per recording). We assumed that 60 s was sufficiently
215 long to capture important EEG signal characteristics and short to reduce any effects of non-
216 stationarity in the EEG while generating a sufficiently large and diverse set for model training.

217 For D2, a simplified bipolar derivation of the EEG; i.e., F4-C4, C4-O2 was used due to the limited
218 availability of channels. Each 10 minute EEG recording in D2 was segmented into 60 s epochs
219 with a 30 s overlap (19 epochs per recording) and used for training and testing.

220 At the end of these data curation steps, we then developed a residual neural network regression
221 (Res-NN) for age prediction.³² We also used GPR model as a benchmark.³³

222 Res-NN. EEG epochs were first resampled to 32 Hz (resampling included anti-aliasing filtering).
223 We added variability to the residual neural network by changing the temporal filter width (FW),
224 filter channel depth (FD) and filter number (FN) within the convolutional layers as well as
225 increasing the network depth (ND). We used the file *generate_networks_v2.m* to generate
226 networks with different configurations and architectures (see **Supplementary Figure 1**; code
227 provided in our GitHub repository, details in *Data sharing statement*).

228 Several parameters specific to the definition of these neural network architectures were selected
229 during each training iteration. In general, parameters defined the filter size (temporal width and
230 channel depth), filter number and network depth. Training options such as solver type and mini-
231 batch size were selected based on preliminary analysis (see **Supplementary Figures 2 to 9**), and
232 an alternate architecture based on inception layers was also evaluated.³⁴

233 **GPR**. This approach combined several summary measures of the EEG features to form a prediction
234 of age. We chose GPR due to its consistent performance across various imaging modalities in
235 estimating brain age following feature extraction due to its capability to model the underlying
236 latent distribution and quantifying any associated uncertainty to provide probabilistic predictions
237 from data.^{2,3,35,36,37} All EEG epochs were resampled to 64 Hz (resampling included anti-aliasing
238 filtering). We used a total of 32 features from the EEG. Of these, 7 features were general measures
239 of EEG amplitude activity, 12 features were frequency dependent representations present within
240 the EEG, and the remaining 13 features were further computations of information content drawn
241 from amplitude, frequency, and entropy based transformations of the EEG signal. A descriptor of
242 the EEG features used is listed in **Supplementary Table 2** and shown in **Supplementary Figure**
243 **10**; EEG feature extractor available in our GitHub repository, details in *Data sharing statement*).
244 For both D1 and D2, the set of 32 EEG features were estimated for each available channel and
245 then averaged across channels (with a median operation used). For training, each EEG recording
246 was, therefore, summarised by a C-by-M-by-32 feature matrix (where C was the number of
247 channels, M was 29 epochs per recording for D1 and 19 epochs per recording for D2, and there
248 were 32 features per epoch). For D1, the full feature set for 1056 children thus resulted in 18
249 channels by 29 epochs by 32 features, which were then averaged (median) across channels and
250 epochs resulting in a 1056 by 32 feature matrix. The same procedure was applied to the reduced
251 channel montage of D1 (i.e. 2 channel montage) and for D2 EEG data, which resulted in a 723 by
252 32 feature matrix. Similar to the Res-NN, we expected that temporal averaging of FBA estimates
253 per child across all available epochs. A combinatorial function (shown in **Figure 1**) was used to
254 determine the final brain age estimate. This was achieved by first assuming a Gaussian prior (GP)

255 where $P(f | X) = \text{GP}(f | \mu, K)$ denotes the dependence of f (i.e. FBA) on X (i.e. age) across all
256 observed data points and μ and K represent the mean function and kernel parameters, respectively.

257

258 ***Performance assessment, cross-validation, optimisation, and independent validation.***

259

260 Performance assessment: We utilised two commonly used measures to compare the predicted age
261 to actual age and, therefore, define the accuracy of prediction: mean absolute error and root mean
262 square error. The root mean square error (RMSE, Eq.1) between predicted age per recording and
263 actual age was defined as

264
$$RMSE = \sqrt{\frac{1}{N} \sum_{n=1}^N (a_n - b_n)^2} \quad (\text{Eq.1})$$

265 where a_n is the age of the n^{th} EEG recording in years, b_n is the median predicted age across all
266 extracted EEG epochs per recording, and N is the number of EEG recordings (1056 for D1 and
267 723 for D2). The mean absolute error (MAE, Eq.2) was defined as:

268

269
$$MAE = \frac{1}{N} \sum_{n=1}^N |a_n - b_n| \quad (\text{Eq.2})$$

270

271 We supported these performance measures with weighted MAE. The wMAE is a variation of the
272 MAE that normalises across the distribution of the data with respect to age; i.e., an approximation
273 of the MAE for a cohort with uniformly distributed age. Based on the age distribution and sample
274 sizes of our cohorts, we defined it as the average MAE across age binned averages of the MAE,
275 specifying a bin width = 2 years, ensuring that enough samples were represented in each age bin.
276 We also computed the relative error with respect to age, by calculating the percentage change
277 between predicted age (FBA) and chronological age.

278 Cross-validation, optimisation and training: We used D1 as our primary training set for
279 developing an FBA. To evaluate the accuracy of prediction, we used 10-fold cross-validation

280 where the train/test split of EEG recordings was 90% for training and 10% for testing. This process
281 was repeated 10 times so that all EEG recordings were excluded from training for at least one
282 iteration (fold).

283 For Res-NN, due to computational limits, initial experiments of randomly selected combinations
284 of network architectures were used to select several model parameters based on maximum
285 regression accuracy (minimum RMSE) on 10-fold cross-validation outputs. These parameters
286 included training solver and mini-batch size. It was assumed that the selection of these parameters
287 was less prone to overfitting than internal network weights from variability in architecture.
288 Architecture parameters were selected using an internal 10-fold cross-validation (9:1 training data
289 split). We used a small fixed grid approach and selected the parameter combination (filter width,
290 filter depth, filter number, network depth) that minimised the RMSE. A single optimal architecture
291 was defined by averaging internal validation RMSE across all 10 training iterations (a point of
292 data leakage assumed to result in negligible overfitting). Remaining training hyperparameters were
293 not optimised: initial learning rate was 0.0001 for training for initial selection and nested
294 architecture selection, training drop factor was 0.1 every 8 epochs, maximum number of training
295 iterations was 50, 10% of recordings within the training set were used for internal validation, and
296 if no changes in RMSE on the validation set were detected within 6 training iterations stopped
297 training. The squared gradient decay factor was 0.99 for the ADAM solver. Data extraction and
298 network implementation and training was performed in MATLAB (The MathWorks Inc, Natick,
299 Massachusetts, USA: Deep Learning Toolbox; R2020a or R2021a with GTX 1070 or 1080
300 graphics cards, for dataset D1 and datasets D2 and D1+D2, respectively). On average, training
301 time per fold for D1 with an 18 channel bipolar montage was 16.4 minutes; for 2-channel montages
302 for either D1 or D2 training time per fold on average was 4 minutes.

303 To explore how the EEG signal was represented by the neural network, we extracted activations
304 of network layers at several stages of the deep learning network when trained and tested on all
305 available data (for this exploratory analysis no cross-validation was used). Here, the optimal
306 network was composed of 63 layers, where an early layer output was taken at layer 6, the middle
307 layer output was taken at layer 29 and the late layer output was extracted at layer 61. A Uniform
308 Manifold Approximation and Project method (UMAP³⁸) was used to reduce the high-dimensional
309 network activation space into a lower dimensional 2D space (UMAP1, UMAP2), wherein the
310 output space was coded according to age. Visualisations via UMAP allowed us to qualitatively
311 assess how the activations of a network layer cluster with respect to age (see **Figure 4b**). To
312 quantify the association between UMAP1 and UMAP2 dimensions and age, we used GPR with
313 UMAP1 and UMAP2 as inputs to predict age (via 10-fold cross-validation). The accuracy of age
314 prediction for each network layer was then derived. We used the same approach to track how
315 UMAP representations of network activations were linked to individual features of the EEG
316 (**Supplementary Figure 11**).

317 For GPR, hyperparameters were selected using Bayesian optimisation within a nested cross-
318 validation and included kernel function (e.g. rational quadratic) and sigma values. Shapley values
319³⁹ were also computed to quantify each feature in terms of its contribution to the overall prediction
320 of FBA (**Figure 5c**), extending on the notion of linear model predictions.

321 **Statistics**

322 Inclusion/exclusion criteria. We included EEG recordings of children who exhibited normal
323 ranges of background activity for their age and met the criteria of being typically developing based
324 on neurodevelopmental and/or physical outcomes, including confirmation of typical development
325 at a four-year clinical follow up. Children with EEGs showing seizure-related or aberrant

326 paroxysmal discharges were excluded. Incomplete data caused by technical difficulties were also
327 excluded. Additionally, children with diagnoses of neurological diseases (including epilepsy),
328 sleep disorders, psychiatric disorders, brain-acting medications, presence of tumors/cancer,
329 congenital and/or perinatal disorders, and malformations were excluded. Children with
330 neurodevelopmental and/or neurodegenerative conditions such as Autism spectrum disorder,
331 Duchenne Muscular dystrophy, Spina bifida, Spinal muscular atrophy, Trisomy 21 were excluded.
332 Lastly, children with seizure activity or central sleep apnea events higher than 5 events per hour
333 were also excluded. If multiple recordings were collected in the same children, only one time point
334 was selected based on age distribution of the larger cohort. Therefore, each child in D1 (and D2)
335 only had one EEG recording that was subsequently used for analysis. Lastly, EEGs with significant
336 artefact identified via visual review and computational analysis of the data (e.g. excessively high
337 mean amplitudes, kurtosis of amplitude envelope, and Hjorth parameters for age) were also
338 excluded.

339 As both datasets originated from large convenience samples, sample size calculations were not
340 performed.

341 FBA accuracy testing. We first evaluated the prediction accuracy of FBA between Res-NN and
342 GPR models. The key variable used in this analysis was the residual error — also referred to as
343 the predicted age difference, PAD (the difference in years between the FBA and chronological
344 age). When comparing between age estimators (Res-NN, GPR) with various feature subsets and
345 mean cohort age), we used a t-test for paired samples with absolute PAD as the input where our
346 null hypothesis was that the absolute PAD would not be different between Res-NN and
347 comparative estimator (as we used simulated data to evaluate an estimator based on head

348 circumference we use a t-test for unpaired samples). We also estimated effect size using Cohen's
349 D (for paired and unpaired samples as necessary).

350 We then analyzed potential confounding effects of age and sex on PAD using multiple linear
351 regression. Here, our multiple regression models for D1 and D2 tested potential effects of sex and
352 age (Eq.3).

353 $PAD \sim \beta_0 + \beta_1 age + \beta_2 sex + \beta_3 age * sex + \beta_4 age^2$ (Eq.3)

354
355 We assessed the performance of the FBA across spatial and temporal combinations of the EEG.
356 This included examining changes in prediction accuracy for limited 2-channel FBAs based on
357 bilateral channels of the bipolar montage. A FBA was trained and tested for each bilateral channel
358 to examine the association between brain region and FBA accuracy. A Kruskal-Wallis test was
359 used to determine if absolute PAD was different in groups related to training and testing location
360 (9 bilateral groups: Fp1-F3/Fp2-F4, F3-C3/F4-C4, C3-P3/C4-P4, P3-O1/P4-O2, Fp1-F7/Fp2-F8,
361 F7-T3/F8-T4, T3-T5/T4-T6, T5-O1/T6-O2, Fz-Cz/Cz-Pz). As a further adversarial test, we tested
362 variations of channel laterality and channel location in 18 channel D1 data to gauge changes in
363 FBA accuracy with respect to the spatial location of EEG channels. Potential differences in channel
364 laterality were assessed by swapping left hemisphere EEG channels with right hemisphere EEG
365 channels prior to training and testing. The same procedure was used to assess differences in
366 anteroposterior directions, where anteriorly positioned (e.g. frontal) electrodes were swapped with
367 posteriorly positioned electrodes (i.e. parietal, occipital) prior to training and testing. We also
368 examined the temporal variation in FBA across all available epochs, i.e., from the start to the end
369 of the recording period to observe optimal times to evaluate FBAs during N1 to N2 transitions.

370 We also performed additional sleep stage-specific tests to ascertain the performance accuracy of
371 FBAs across wake, N2, N3 and REM sleep. Using Res-NN and GPR models, we estimated FBAs
372 for all available EEG epochs for children in D2 (based on availability of sleep states). Age
373 prediction within N2 sleep states were found to be the most accurate within our data
374 (**Supplementary Table 3**).

375 Validation: We re-trained models using all available data in D1 and performed an out-of-sample
376 validation on EEG data from D2. As D2 contained a limited number of recording electrodes, we
377 used the same electrodes when training on D1 in a bipolar configuration (F4-C4 and C4-O2).
378 Furthermore, only periods of N2 of D1 (10 minute segments) were included in the training dataset.
379 We compared the wMAE between predicted and chronological age from the 10-fold cross-
380 validation results from D1 to D2 to determine if the accuracy of the FBA trained on D1 was
381 preserved when applied to D2. All validation analyses performed for the Res-NN model were
382 repeated for the GPR model (see **Supplementary Figure 12** and **Supplementary Figure 14**).
383 To test site differences in EEG recordings (**Figure 5c**), we compared the distribution of EEG
384 feature values using Kolmogorov-Smirnov tests corrected for multiple comparisons (Bonferroni's
385 method). We used a small random sampling of EEG features within several age defined bins (bin
386 width was 1 year) to minimise the effect of age on feature distribution. Here, differences between
387 EEG features per site and across age were denoted by the number of times the null hypothesis
388 (EEG features between sites were from the same distribution) was rejected across 1000 samplings
389 of each bin ($n = 30$ samples without replacement per feature per bin). The comparisons were also
390 encoded to delineate if the distributional difference in EEG feature resulted in values greater than
391 expected (older appearing) or less than expected (younger appearing) when comparing D1 to D2.
392 At an acquisition level, we also estimated the total (summed) band power of the raw EEG signal,

393 between 70 and 80 Hz, using Welch's power density spectral estimate, to determine whether
394 significant differences in the high frequency noise floor were present across sites (unpaired t-test).

395 **Growth Charts:** We generated growth charts for the FBA based on a limited 2-channel EEG using
396 a combined D1 and D2 dataset. Centiles were estimated using generalised additive models with a
397 protocol similar to the World Health Organization, WHO ⁴⁰ child growth charts for height and
398 weight for age. Here, we used the GAMLSS package ⁴¹ in RStudio (version 1.4.1717). These
399 centiles were optimised by a Box-Cox-power exponential distribution with a cubic spline
400 smoothing function, with distribution GAMLSS parameters *sigma* set as a cubic spline fit over age
401 (df = 3) with *nu* = 1 and *tau* = 1. PAD was adjusted by significant factors uncovered during
402 regression analysis (Eq 3.) to ensure that the FBA values presented in the growth chart were bias-
403 free (i.e., accounting for confounding effects), as per best practices in brain age analyses ^{3,8,42,43}.
404 The “adjusted PAD” was used for subsequent group-based assessments alongside comparisons of
405 centile-based values (which are inherently age-adjusted). Based on age corrected FBA values,
406 centiles were estimated at the 3rd, 15th, 50th, 85th and 97th centiles as per WHO guidelines.

407 We also compared the performance of our FBA chart with paediatric head circumference and
408 height measures. Using respective reference centiles across the paediatric ranges ^{44,45}, we
409 generated 1000 simulated training and testing cohorts from similar distributions of age, sex and
410 cohort size to the combined D1 and D2 dataset. Using 10-fold cross-validation, we then trained
411 and tested a GPR model with head circumference or height as input, and evaluated the results using
412 MAE and wMAE.

413 Statistical tests were chosen on the basis of normality via a Lilliefors test⁴⁶, where appropriate. If
414 normality was met, group differences were examined by unpaired or paired t-tests.⁴⁷ Evaluations
415 of PAD and centiles to detect altered neurodevelopment as a ‘proof-of-concept’ were tested using

416 t-tests, where the null hypothesis tested was that children with Trisomy 21 will have a PAD that is
417 not different from children with typical neurodevelopment. Where appropriate, effect sizes in our
418 study were reported using Cohen's *d*. All statistical tests employed for analyses were two-sided
419 and the level of significance was 0.05.

420 Ethics: The human research ethics committee at QIMR Berghofer Medical Research Institute
421 approved the study (No. P3736, P3727). For D1, the Institutional Research Review Board at
422 Helsinki and Uusimaa Hospital district approved the study (HUS/244/2021) including waiver of
423 consent due to the retrospective collection of data acquired as part of standard of care. Ethics
424 approval for the use of D2 and children with Trisomy 21 was granted by Children's Health
425 Queensland (LNR/2021/QCHQ/73595) including waiver of consent approved under the Public
426 Health Act 2005 (PHA 73595) to analyse the retrospective cohorts.

427 Role of funders: Funding agencies were not involved in designing and conducting the study,
428 collecting, managing, analyzing, or interpreting the data, preparing, reviewing, or approving the
429 manuscript, or deciding to submit the manuscript for publication.

430

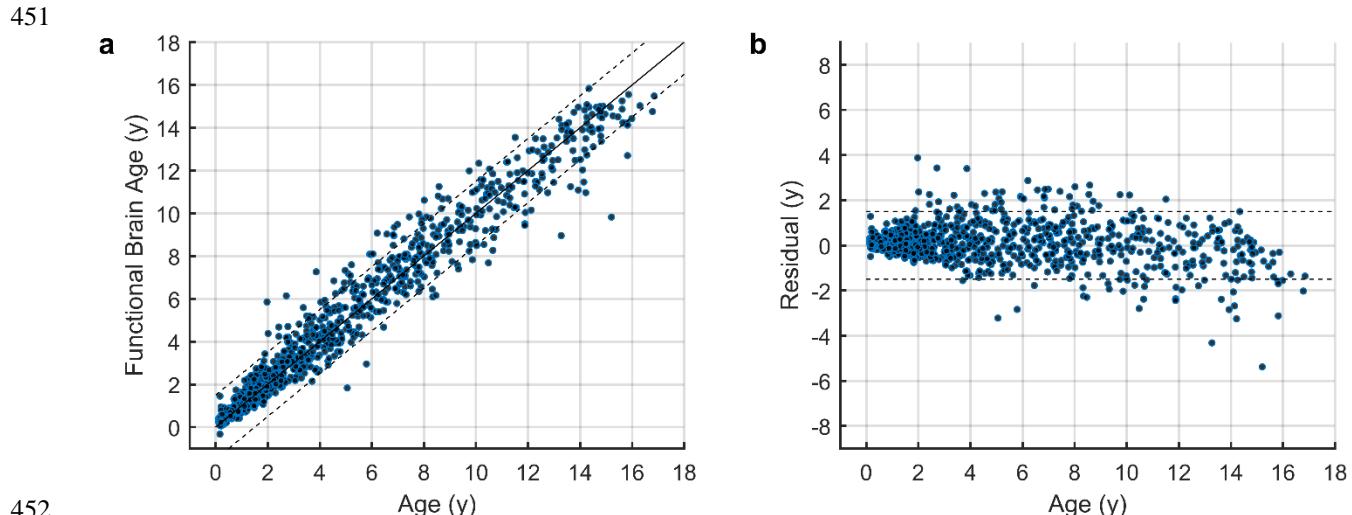
431 **RESULTS**

432

433 Functional brain age.

434 The FBA generated by the Res-NN was the most accurate predictor of chronological age (**Figure**
435 **3a-b**; MAE = 0.56 years, weighted MAE = 0.85 years, $R^2 = 0.96$ and RMSE = 0.82 years; 10 fold
436 cross-validation on D1, $n = 1056$), providing relatively uniform age predictions across the age
437 range, with a median deviation of 10% from chronological age (see **Figure 4a**). Our comparative
438 benchmarking of the Res-NN against a GPR approach and physical growth measures indicated
439 that the neural network architecture exceeded (i) the age estimation accuracy of a GPR model
440 (Cohen's $d = 0.31$, $p = 4.2 \times 10^{-23}$, t-statistic = 10.1, paired t-test) which had a MAE of 0.79 years
441 (**Supplementary Figure 12c, d**; wMAE = 1.06 years, $R^2 = 0.93$ and RMSE = 1.09 years; see also
442 **Supplementary Figure 12a, b** for comparison to Res-NN); (ii) the highest-performing individual
443 EEG feature predictor (5th percentile of EEG amplitude; MAE = 1.28 years, wMAE = 1.55 years,
444 $R^2 = 0.82$ and RMSE = 1.61 years, Cohen's $d = 0.59$, $p = 1.1 \times 10^{-69}$, t-statistic = 19, paired t-test;
445 **Supplementary Table 2**); iii) a prediction based on head circumference (estimated MAE = 1.72
446 years, wMAE = 2.54 years, Cohen's $d = 1.04$, $p = 2.4 \times 10^{-143}$, t-statistic = 27, unpaired t-test – see
447 Methods for details); and iv) a prediction based on the mean age (MAE = 3.50 years, wMAE =
448 3.90 years, Cohen's $d = 1.3$, $p = 1.5 \times 10^{-266}$, t-statistic = 40.5, paired t-test; n.b. this was performed
449 to determine an upper bound for MAE based on the age distribution of the cohort).

450



452
453 **Figure 3 – Functional brain age estimated in children and performance in training dataset (D1, n = 1056).** **a.** Res-
454 NN model ($R^2=0.96$, $MAE=0.56$ years). The dashed line indicates an error bound of ± 1.5 years. Individual EEG
455 recordings (blue filled circles) are plotted across ages. **b.** The residual error (predicted age difference; PAD) represents
456 the difference between the FBA measure and chronological age of an individual, in years.

457

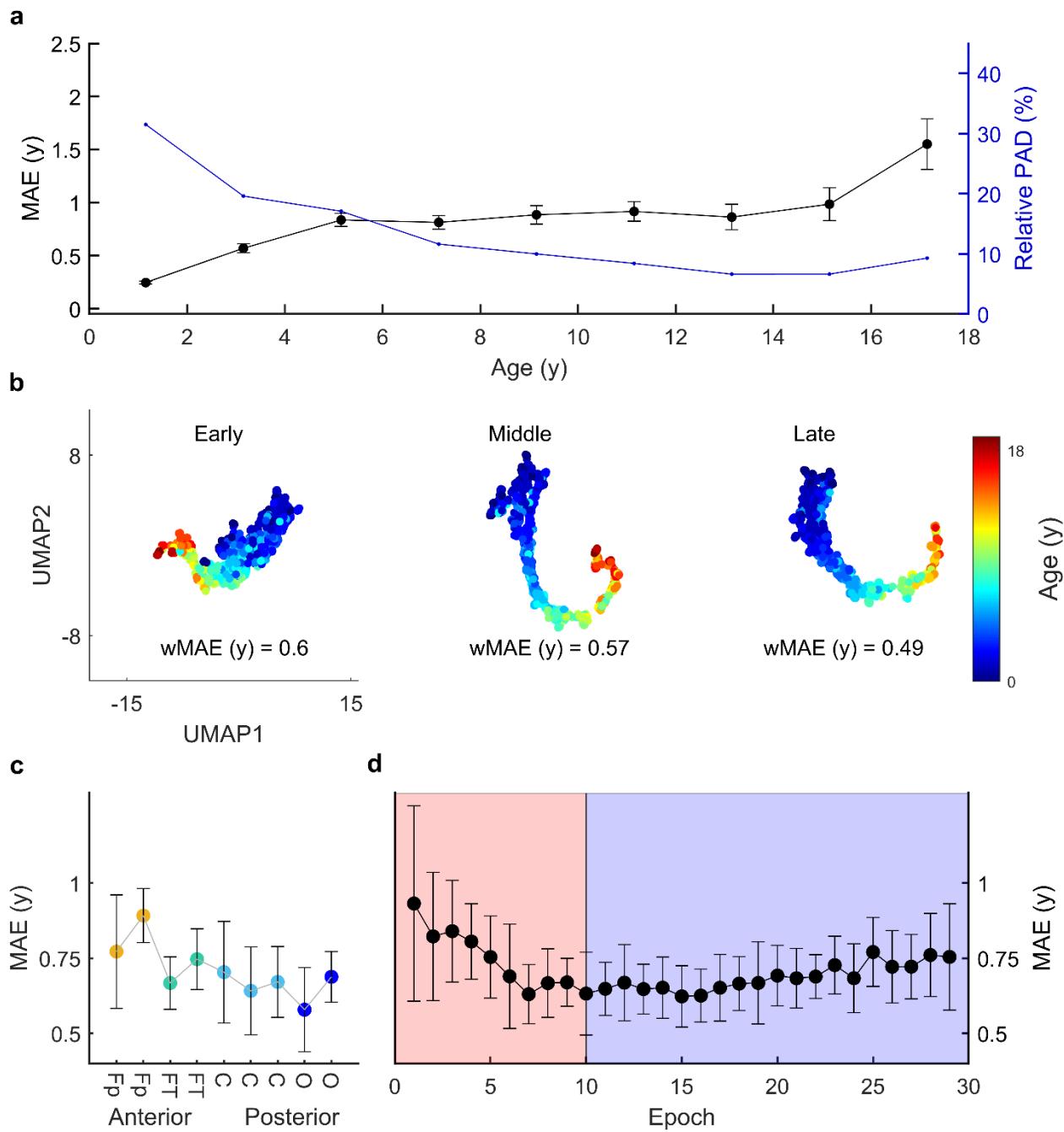
458 **FBA model interpretability.**

459 To ascertain the presence of any bias in the data, we first examined the effects of age and sex on
460 the FBA. The residual error between FBA and chronological age (referred to here as the predicted
461 age difference or PAD) indicated a bias in FBA proportional to age ($\beta = -0.036$, $p = 3.1 \times 10^{-5}$, n
462 = 1056, $df = 1052$). There were no significant differences in PAD between males and females
463 (Cohen's $d = 0.04$, $p = 0.41$, t -statistic = 0.83, unpaired t -test, $n = 1056$, $df = 1054$). Interactions
464 between age and sex did not confound the relationship between PAD and age but a significant
465 interaction with age was observed; PAD decreased with age ($PAD \sim \text{sex}$: $\beta = 0.036$, $p = 0.61$; PAD
466 $\sim \text{age}^* \text{sex}$: $\beta = 0.009$, $p = 0.43$, $PAD \sim \text{age}^2$: $\beta = -0.011$, $p = 2.6 \times 10^{-14}$, $n = 1056$, $df = 1054$).

467 We observed that early layers of network activations showed distinct age related clustering (**Figure**
468 **1c**; see also **Supplementary Figure 1** for general architectures) a pattern that becomes
469 increasingly resolved with network depth (**Figure 4b**). We also observed that network activations
470 were related to a range of EEG amplitude, frequency and entropy-based features. We found that
471 EEG features, used in our GPR predictor, were highly correlated with activations present across

472 early, middle and late stages of the NN architecture (median $R^2 = 0.50$, IQR = 0.32, across all 32
473 features), suggesting that the Res-NN architecture captures several fundamental time and
474 frequency domain characteristics of the EEG signal that are measureable with independent
475 summary measures within its training phases (see **Supplementary Figure 8** and **Supplementary**
476 **Figure 9**). Additionally, our GPR predictor derived from all 32 EEG features ($R^2 = 0.93$, MAE =
477 0.79 years, wMAE = 1.06 years), consistently outperformed GPR predictors derived from a subset
478 of features: only amplitude features (Feature IDs 1 to 7: $R^2 = 0.85$, MAE = 1.10 years, wMAE =
479 1.30 years), only frequency features (Feature IDs 8 to 19: $R^2 = 0.90$, MAE = 0.94 years, wMAE =
480 1.20 years) and only entropy-based EEG measures (Feature IDs 20 to 32: $R^2 = 0.91$, MAE = 0.90
481 years, wMAE = 1.10 years). These relationships suggest that EEG features can be viewed as data
482 surrogates that track the behaviour of neural network activations.

483 In addition to these tests, we also observed that EEG electrode location on the scalp and the timing
484 of an epoch during an EEG segment (i.e., with respect to transitions between N1 and N2 sleep)
485 influenced the FBA. FBA accuracy was significantly affected by the location of training electrode
486 ($p = 1.4 \times 10^{-31}$, Kruskal-Wallis test). The accuracy of a 2-channel FBA was higher for posterior
487 channels (**Figure 4c**), e.g. central, occipital (average MAE = 0.73 years), whereas anterior
488 channels (e.g. frontal) had lower accuracies (average MAE = 0.83 years). Applying the predictor
489 to data with swapped anterior and posterior channel positions resulted in a reduced performance
490 accuracy (MAE = 1.11 years) whereas data with left hemisphere channels swapped with right
491 hemisphere channels did not alter overall performance accuracy (MAE = 0.56 years). Temporally,
492 the accuracy of the FBA was highest during the transition between N1 and N2 sleep states (**Figure**
493 **4d**; MAE = 0.61 years). Taken together, averaging FBA estimates across time and space improved
494 overall accuracy.



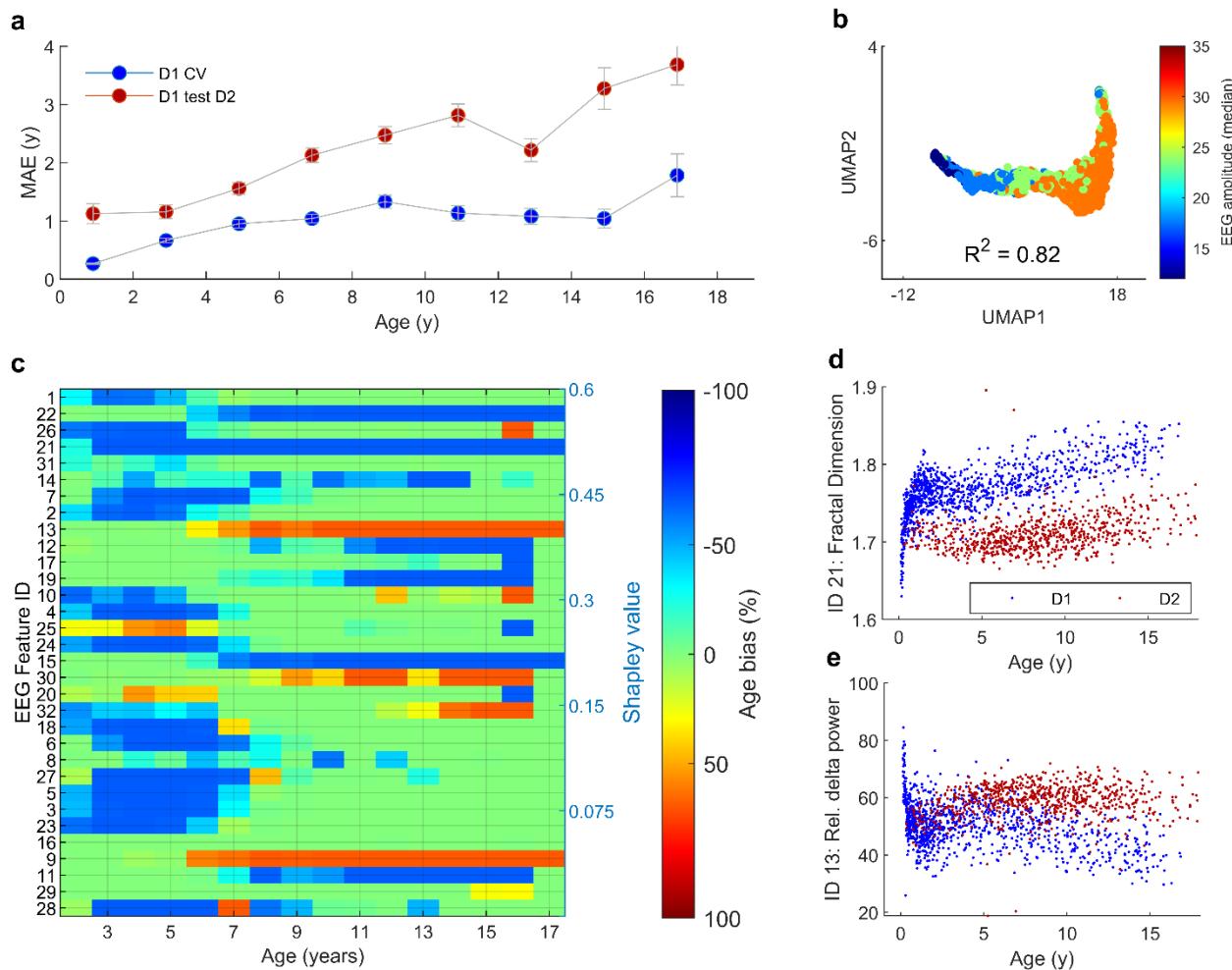
495 **Figure 4 – Interpreting the EEG-based FBA.** **a.** The mean absolute error (MAE) of the Res-NN (black circles, left axis) across 2 yearly age bins and the relative accuracy of PAD (in blue, right axis) across 2 yearly age bins. For both plots, the mean and standard error of the mean (SEM) are plotted to reflect the sample distribution within age bins. **b.** A lower-dimensional representation of the Res-NN network generated by UMAP on 18-channel D1 data. The network is composed of 63 layers represented by early (layer 6), middle (layer 29) and late stages (layer 61). Here, the Res-NN of the EEG clusters into younger age groups (blue) and older age groups (red) throughout the training phase, wMAE was calculated using UMAP values as predictors (no cross-validation). **c.** The performance accuracy of the Res-NN model (MAE, years) following individual cross-validation per EEG channels. Colors are ordered by anterior to posterior channel derivations, with frontopolar (Fp, in yellow), frontotemporal (FT, in teal), central (C in light blue) and occipital channels (in dark blue). Average MAEs are shown with the standard deviation shown as error bars. **d.** The temporal change in MAE of epoch sequences obtained sequentially from N1 (light pink) and N2 (light purple) indicated that the lowest MAEs were observed during a transition between sleep N1 and N2 stages. The MAE is shown with error bars indicating the standard deviation.

509 Validation.

510 We then validated the FBA using a secondary dataset (D2) composed of 723 children recorded at
511 the Queensland Children's Hospital, Australia. To homogenise datasets across the different
512 recording configurations in D1 and D2, we re-trained D1 on a 2-channel bipolar montage (F4-C4,
513 C4-O2) and selected only periods of N2 sleep. In applying this retrained model to the validation
514 set (trained D1 2-channel, tested D2 2-channel), the MAE of the FBA was significantly higher
515 (**Figure 5a**; MAE = 2.17 years; wMAE = 2.27 years; $R^2 = 0.66$; and RMSE = 2.05 years, Cohen's
516 $d = 0.8$, $p = 2.4 \times 10^{-50}$, t-statistic = 16.6, unpaired t-test) when compared to 2-channel models
517 trained and tested on D1 and D2 individually (**Table 1** for Res-NN, **Supplementary Table 4** for
518 GPR). Notably, the validation performance still outperformed the estimated accuracy of simulated
519 head circumference based models (wMAE = 2.54 years).

520 The decrease in FBA performance was attributed to three key site differences: age distribution,
521 number of EEG channels, and site-specific differences of the EEG across age. The effect of age
522 distribution between sites (**Table 1**) contributed accounted for an approximate net increase of 0.24
523 years in the MAE, when comparing MAE to wMAE from the primary training data (D1 cross-
524 validation) versus external validation data (D2 cross-validation). Similarly, a reduction in the
525 number of EEG channels from 18 to 2 resulted in an increase of 0.37 years in the wMAE (**Table**
526 **1**). The effectiveness of the Res-NN in capturing fundamental characteristics of the EEG signal
527 (**Figure 5b**), corresponded well to age-specific differences in individual summary EEG features
528 were observed across sites (**Figure 5c and d**). Approximately 38% of EEG features/age bins
529 combinations differed significantly across age and sites with 194 out of 512 hypothesis tests
530 meeting significance at $p < 0.05$ following correction for multiple comparisons. Additionally, we
531 found noteworthy distinctions in spectral estimates of the EEG recording noise floor between sites,

532 whereby EEG recordings in D1 exhibited a higher noise floor compared to D2 (70 to 80 Hz band
 533 power; Cohen's $d = 0.37$, $p = 1.7 \times 10^{-12}$, t-statistic = 7.1, unpaired t-test). Training a FBA model
 534 constructed from a combined dataset D1 and D2 considerably improved overall prediction
 535 accuracy with a MAE of 1.04 years for D2 ($n = 723$) suggesting site specific differences were
 536 incorporated into the model. **Supplementary Table 5** summarises model performances across test
 537 folds for all datasets, respectively.



538 **Figure 5 - Validation of the FBA across sites.** a. Differences in MAE between D1 ($n = 1056$) and D2: cross-validation
 539 (train and test D1 CrossVal, indicated by blue circles) versus external validation on D2 (train D1 test D2, red circles).
 540 The MAE across age is higher when testing D1's model on D2 ($n = 723$). The MAE is shown with error bars indicating
 541 the standard deviation. b. Mapping EEG features onto the late layer network UMAP (layer 61) derived from 2-channel
 542 D1 data; here we show the EEG median amplitude as an exemplar. The R^2 value indicates the strength of correlation
 543 between UMAP values and feature value, based on a GPR prediction. c. Differences between EEG features and site
 544 across age. EEG features (IDs 1 to 32, see also Supplementary Table 2 for feature names) were ordered by Shapley
 545 values (highest to lowest) to indicate the relative contribution of the feature to the overall model. Red and blue colors
 546 indicate significant age biases following multiple comparisons correction (Bonferroni's method). A positive age bias
 547

548 percentage (red) indicates EEG feature values being ‘older’ in D2 compared to D1 and a negative age bias percentage
549 (blue) indicates EEG feature values being ‘younger’ in D2 compared to D1. d. Fractal dimension (feature ID 21) and
550 relative delta power (0.5 to 2 Hz, feature ID 13) are exemplar EEG features that show site related differences (D1=blue;
551 D2=maroon).

552

553 *Functional growth charts.*

554 We next combined both datasets (D1 + D2) to generate a FBA ‘growth chart’, wherein generalised
555 additive models were applied to construct age-appropriate centiles ^{40,48}. The resultant FBA had an
556 MAE of 1.09 years with a wMAE of 1.51 years, an R² of 0.88 and an RMSE of 1.41 years (**Figure**
557 **6a**; see also **Table 1**). Further, FBA growth charts based on an age-stratification of infants (0 to 2
558 years; MAE = 0.40 years) and children (2 to 18 years; MAE = 1.34 years) indicated a high degree
559 of accuracy relative to their respective age group (**Supplementary Figure 13**).

560 The practical utility of an FBA is that it enables stratification of children, by quantifying brain
561 functions associated with a child’s diagnostic status and underlying neurodevelopmental issues.
562 To demonstrate this, we compared typically developing children from D2 with an additional small
563 cohort of children from the same site whom were diagnosed with Trisomy 21 ($n = 40$; 29/40 were
564 recorded at less than 7 years of age). The PAD was significantly lower in children with Trisomy
565 21, despite having normal sleep studies, than typically developing children in D2 (PAD adjusted
566 for age effect: $p = 5.3 \times 10^{-4}$, t-statistic = 3.5, unpaired t-test, $n = 763$, df = 761; centile-based:
567 Cohen’s $d = 0.36$, $p = 0.028$, t-statistic = 3.5, unpaired t-test, $n = 763$, df = 761; **Figure 6b**). This
568 finding of significantly lower PAD was consistent across other combinations of cohorts: (i)
569 typically developing children from D1 only versus children with Trisomy 21 ($p = 8.7 \times 10^{-3}$, t-
570 statistic = 2.6, unpaired t-test, df = 1094) and (ii) typically developing children from D1 + D2
571 versus children with Trisomy 21 ($p = 8.4 \times 10^{-3}$, t-statistic = 2.6, unpaired t-test, df = 1817). No
572 significant differences in age and sex were found in children with Trisomy 21 ($p = 0.61$, t-statistic

573 = 0.5, unpaired t-test). **Supplementary Table 6** summarises all further comparisons including
574 effect sizes and sex differences. The observations suggest that at the group level, deviant
575 neurodevelopmental trajectories in children with Trisomy 21 translate to delayed maturation of
576 their cortical function.

577 Finally, we benchmarked our FBA model against conventional growth chart trajectories of head
578 circumference and height in children.^{44,45} Here, the maximal variation of age for the FBA
579 (difference between 3rd and 97th centiles) falls between head circumference and height for age for
580 a simulated cohort with similar age and sex demographics to D1 and D2 combined (**Figure 6c**).
581 This indicates that the variation in FBA, for a typically developing cohort, as per our estimated
582 centiles, are relatively smaller for younger children in comparison to larger variations for children
583 above 10 years of age; a trajectory that is generally observable in both charts based on
584 anthropometric and neuroimaging measures across the lifespan.^{5,6,44,45} This variation is also likely
585 attributed to the distribution of age presented in D1 + D2, where samples of adolescents only
586 account for 20% of the combined dataset. Our FBA growth chart thus exhibits comparable age
587 variability to that of widely-used physical growth charts. Code for converting EEG into FBA and
588 centiles are available (details in *Data sharing statement*).

589

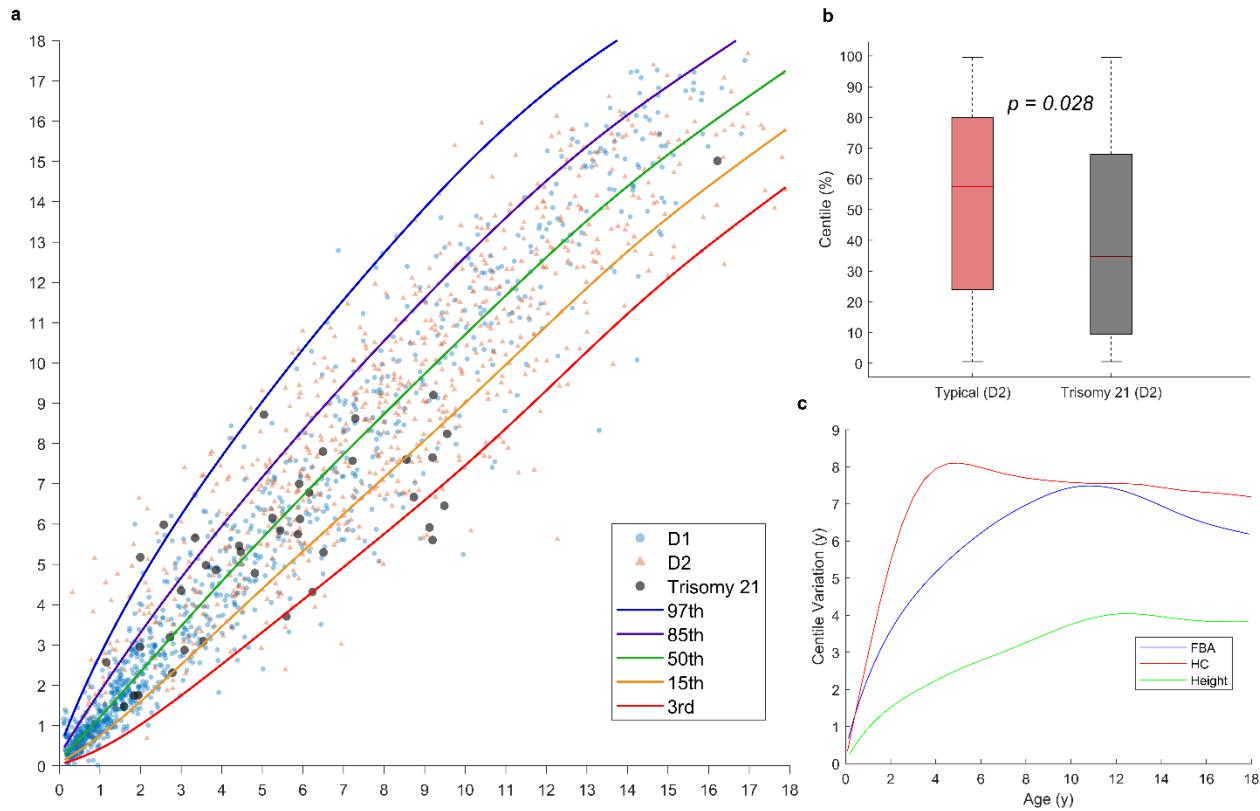


Figure 6 – The functional brain age (FBA) growth chart derived from cross-validation of a combination of D1 and D2 datasets. **a.** The chart is based on the FBA derived from the Res-NN model. Translucent colored triangles represent individual EEG recordings from D1 (blue) and D2 (red) datasets. The 3rd (red), 15th (yellow), 50th (green), 85th (purple) and 97th (blue) centiles are indicated. Children with Trisomy 21 (black dots) have been plotted alongside D1 (blue) and D2 (pink) children. **b.** Differences in relative PAD between children with typically developing neurodevelopment and children with Trisomy 21. Significance values ($p < 0.05$) were determined by conducting an unpaired t-test between groups, where all data was checked for normality. Typically developing groups ($n = 723$; blue) and Trisomy groups ($n = 40$; pink) from D2 are plotted as violin plots, with the median (black line) and interquartile ranges (rectangles) shown. **c.** Variation in paediatric predictors of age. The variation (in years) represents the difference between the 97th and 3rd centiles across age for the FBA (in blue), head circumference (HC, in red) and height (in green). HC and Height predictors were simulated with the same age distribution as the combined D1 and D2 dataset.

590
591
592
593
594
595
596
597
598
599
600
601

602

603

604 **Table 1** – Overall performance of FBA across datasets. The performances of the FBA, using a Res-NN
 605 model, across all training, test, and combined datasets. R^2 , RMSE, MAE, and wMAE are shown. CI is
 606 confidence interval, ^aonly N2 from D1 used, ^b10-fold cross-validation.

607

Train	# channels, # recordings, # epochs	Test	# channels, # recordings, # epochs	R^2	RMSE (in years; 95% CI))	MAE (in years; 95% CI)	wMAE (in years; 95% CI)
D1	19, 1056, 30624	D1 ^b	19, 1056, 30624	0.96	0.82 (0.78 - 0.90)	0.56 (0.52 - 0.59)	0.85 (0.69 - 1.02)
D1 ^a	2, 1056, 20064	D1 ^{a,b}	2, 1056, 20064	0.93	1.10 (1.08 - 1.26)	0.77 (0.72 - 0.82)	1.22 (0.96 - 1.48)
D1 ^a	2, 1056, 20064	D2	2, 723, 13737	0.66	2.76 (2.61 - 2.89)	2.18 (2.05 - 2.29)	2.27 (1.90 - 2.65)
D2	2, 723, 13737	D2 ^b	2, 723, 13737	0.78	1.53 (1.72 - 1.91)	1.45 (1.37 - 1.53)	1.66 (1.37 - 1.96)
D1 ^a +D2	2, 1779, 33801	D1 ^a +D2 ^b	2, 1779, 33801	0.88	1.41 (1.49 - 1.64)	1.09 (1.04 - 1.14)	1.51 (1.30 - 1.73)

608

609 **DISCUSSION**

610
611 In infants, children and adolescents, EEG activity exhibits clear, consistent, and rapid changes with
612 age.^{13,49,50,51} We formalise this knowledge using a targeted deployment of deep learning algorithms
613 to form a prediction of EEG age (FBA) underpinned by key human operator expertise and
614 decision-making in specific stages of the process. We achieved an accurate FBA prediction when
615 applying deep neural networks directly to the EEG signal, relying on a summary of only brief
616 epochs (60 seconds) within a 10 to 15 minute segment recorded during N1/N2 sleep providing
617 similar accuracies with widely used anatomical growth charts.^{40,44,45} The proposed FBA
618 demonstrated state-of-the-art age prediction accuracy, was validated in an independent cohort and
619 detected group level maturational delays in a small cohort of young children with a defined
620 neurodevelopmental disorder.

621 Our FBA estimates had MAEs comparable to the highest performing MRI-based^{2,3,6,7,10,23} and
622 EEG-based studies^{24,25,26,27,28} with reported MAEs in the literature ranging from 1.0 to 4.6 years
623 compared to our best wMAE of 0.88 years. The accuracy of the FBA may be directly attributable
624 to the use of residual neural network architectures over conventional multivariable age regression
625 approaches typically used in brain age studies. While individual features have significant
626 correlations with age (**Supplementary Table 2**), the combination of these features provided a
627 superior prediction of age. Training deep neural networks improved these predictions further,
628 although the exact mechanism of this improvement is not entirely clear. We show that deep neural
629 networks capture well-established EEG characteristics (such as amplitude, frequency, bursting
630 behaviour, and entropy) by comparing features to internal network layer outputs and that the
631 representation of these latent patterns improve FBA estimates through higher-dimensional
632 abstractions of the EEG signal. By showing that individual EEG features correlate with the outputs

633 of network layers, we highlight a demonstrable feature of the FBA during training. However,
634 methods that attempt to explain the function of neural networks must be made with caution.⁵²

635 The present FBA measures were developed solely using large EEG datasets that are routinely
636 collected and widely available in hospitals worldwide. Although the performance error of the FBA
637 increases with age, the relative accuracy of the FBA is comparatively uniform across the age range.
638 Here, additional variations to FBA accuracy were linked to the spatial and temporal organisation
639 of the EEG. The effect of spatial organisation for instance was primarily a frontal-occipital gradient
640 which is a well-established phenomenon in the maturing EEG within this age group.^{53,54}
641 Temporally, the accuracy of the FBA was maximum at the onset of N2 sleep characterised by the
642 presence of sleep spindles which are key cortical signatures that emerge in the first few months of
643 life and remain present in the EEG through adulthood.³¹ Improved EEG stability near the sleep
644 state transition may involve capitalising on the absence of critical slowing within EEG dynamics
645 at the beginning of these state-based transitions.⁵⁵

646 The only manual selection done prior to our computational analyses was the identification of the
647 first sleep spindle as a sign of N2 sleep, which was necessary to harmonise vigilance states across
648 a cohort with a wide age range. There are several reasons as to why the N2 sleep state offers a well
649 standardised vigilance state that can be considered much more homogeneous across individuals
650 than compared to wake or other sleep states.¹⁵ The identification of N1/N2 states, which is marked
651 in the EEG by the emergence of increased delta, sleep spindles, vertex waves and K-complexes,
652 particularly in N2 sleep, are well studied, reliable EEG signatures^{56,57} across preclinical and
653 clinical literature. A brief period of N2 sleep is also often recorded in routine EEG studies as it is
654 rich in EEG signatures and known to be sensitive for observing pathological phenomena, (such as
655 epileptiform events^{58,59}), and is also minimally contaminated by the common artefacts due to

656 movements. The EEG during N2 is also a well-known target for tracking neurodevelopment, with
657 an initial increase in EEG amplitude during infancy followed by a steady decline into adolescence.
658 Global spectral power shows a decrease in delta frequencies offset by a steady increase in relative
659 alpha and beta band power with age (as observed in Feature IDs 13 to 17 versus age in
660 **Supplementary Figure 10**), likely reflecting increasing dominance of spindle activity in EEG
661 spectra with age.^{56,60,61,62}

662 An unresolved question in this work is whether an FBA measured within other diverse vigilance
663 states (e.g. resting, task, or other sleep states) could effectively enhance the accuracy of
664 individualised assessment. Our additional tests during sleep and wake states (**Supplementary**
665 **Table 3**) demonstrate the applicability of an FBA in these potential contexts. Obtaining consistent
666 awake EEG in older cooperative children is feasible, but collecting several minutes of good quality
667 EEG signals from alert infants and toddlers is difficult. Careful consideration is essential in
668 harmonising of spontaneous EEG data, especially given the neurophysiological and behavioural
669 variability during childhood.^{63,64} To enhance the signal-to-noise ratio in comparisons between
670 younger and older children, it becomes crucial to ensure a larger pool of available EEG data for
671 the younger age group.⁶⁴ Defining normative variability margins in typical development via large
672 consortia EEG datasets, such as the Healthy Brain Network (>3000 children⁶⁵) and comparable
673 hospital-based clinical EEGs⁶⁶, are likely to provide clues into the scope of the FBA beyond the
674 paradigm of N2 sleep.

675 The present study has some potential limitations. The performance of external validation was
676 markedly lower than the overall performance of cross-validated results in each site independently.
677 The drop-off in accuracy is due to several factors, namely: site specific differences, a lower
678 electrode density, and inherent differences in acquisition of the EEG recordings. We showed that

679 increasing the diversity of training data, by combining data from D1 and D2, mitigates this issue.

680 However, to enhance accuracy, external validation datasets with diversity in geography, ethnicity,
681 and socioeconomic status will improve the generalizability of the FBA. Despite the trade-off in
682 performance accuracy, our externally validated results still outperformed measures such as head
683 circumference simulated over the same age range.

684 Another limitation of the study is that all children included in this study were not representative of
685 the larger, healthy paediatric population but rather a subgroup of children clinically referred from
686 the primary care level to a tertiary care center for diagnostic assessment. In neurotypically
687 developing populations, it is expected that around 5% may conceal potential subclinical
688 pathologies⁶⁷ – a trait notably observed among individuals falling outside the 3rd and 97th centiles
689 on our growth chart (**Figure 6a**). Estimates of FBA in such groups are clinically interesting;
690 however, it is essential to benchmark the FBA in healthy neurotypical cohorts, including the use
691 of longitudinal data, to ensure further clarity and confidence in applying FBA to a broader
692 paediatric population. The progressive refinement of FBA methods in neurotypical EEGs can
693 enhance our understanding of how FBA models should navigate the balance between aleatoric
694 uncertainty and epistemic uncertainty encountered in large datasets.

695 The FBA also appears to compensate for, or is indifferent to, growth spurts, hormonal and pubertal
696 changes in both sexes, and other alterations to brain structure such as increased rates of cortical
697 thinning in males during adolescence.^{68,69} This does not discount the fact that factors such as sex
698 related differences in cortical activity exist across age, rather, that sex specific effects in the EEG
699 were accounted for and adjusted out by the model.⁵⁰ Future applications of the FBA could be used
700 to study genuine sex-related differences in cortical maturation⁵⁰ by separating data according to
701 biological sex at the training stage. This ability of trained models to inherently adjust for potential

702 confounders is a key aspect of artificial intelligence (AI) methods in medicine and means that what
703 we know about EEG and age should be reevaluated singularly in the context of the AI outputs.
704 Growth charts can also be calibrated for diagnosis, prognosis, and stratification; here the optimal
705 tradeoff between cohort heterogeneity, EEG acquisition, training data size and MAE is not entirely
706 resolved, with evidence from MRI-based studies suggesting that the clinical utility is not
707 necessarily inversely proportional to MAE.^{6,70}

708 We propose the FBA as a measure that enables assessment of neurodevelopmental trajectories
709 from infancy to adolescence. Rather than replacing or challenging existing techniques, the EEG-
710 derived FBA is perhaps best seen as a valuable complement to support current modalities of
711 neurodevelopmental assessment, offering a tool towards personalization that both benefits the
712 patient and healthcare practitioner alike. While recognizing the FBA's clinical potential, a series
713 of targeted evaluations of the FBA within clinical populations are necessary to determine its
714 efficacy prior to endorsing its widespread use. These extra studies are required not only to
715 determine the clinical utility of the algorithm but to also enable other researchers and institutions
716 to identify appropriate safeguards for decision safety and efficacy. We, therefore, publicly release
717 the FBA prediction algorithm as an 'online' resource that facilitates the continual refinement of
718 targeted algorithms for tracking childhood brain function and neurodevelopment.⁷¹

719

720 **Contributors:**

721
722 Conceptualization: K.K.I, J.A.R, M.W, S.V, N.J.S
723 Methodology: K.K.I, M.W, L.L, S.V, N.J.S
724 Investigation: K.K.I, S.V, N.J.S
725 Visualization: K.K.I, N.J.S
726 Funding acquisition: M.W, S.V, N.J.S
727 Project administration: K.K.I, L.L, S.V, N.J.S
728 Supervision: L.L, S.V, N.J.S
729 Writing – original draft: K.K.I, J.A.R, M.W, L.L, S.V, N.J.S
730 Writing – review & editing: K.K.I, J.A.R, M.W, J.C, S.J.V, A.K, L.M.H, L.L, S.V, N.J.S
731
732 K.K.I, N.J.S, L.L, S.V accessed and verified the underlying data. All authors read and approved
733 the final version of the manuscript.

734
735 **Data sharing statement:**

736 Trained Res-NN and GPR models for age prediction are available on our GitHub repository,
737 accessible at: <https://github.com/brain-modelling-group/functional-brain-age>. Data used to train
738 and validate the FBA will be made available to researchers on reasonable request to S.V., N.J.S.
739 K.I.: data sharing is subject to a material transfer agreement, approved by the legal departments of
740 the requesting researcher and by all legal departments of the institutions that provided data and
741 ethical clearances for the study. EEG feature matrices (z-scored) and child ages for each EEG
742 recording in our training dataset (D1, 18 channel and 2 channel versions) and external validation
743 set (D2, 2 channel version) are also available in our GitHub repository. These files have been

744 pseudonymised. MATLAB and Python code for the prediction of functional brain age by Res-NN
745 based methods on 18- and 2-channel EEG are available on our GitHub repository.

746 **Declaration of interests:** J.A.R and S.V. hold a licensed patent on the burst metrics used in this
747 paper. J.A.R. declares grants received from The Margaret Pemberton Foundation and the receipt
748 of EEG equipment from Cadwell Industries. J.C. declares grants received from the following
749 funding bodies: Medical Research Fund (MRFF), National Health and Medical Research Council
750 (NHMRC), Children's Hospital Foundation Fellowship. J.C. acknowledges paid lectures for the
751 Sleep Health Foundation. K.K.I., A.K., M.W., S.J.V., L.L, L.M.H. and N.J.S declare no competing
752 interests.

753 **Acknowledgements:**

754 We acknowledge our funding partners who supported this work, including: NHMRC Grant no.
755 2002135, The HUS Children's Hospital/HUS diagnostic center research funds, Finnish Academy
756 (335788, 332017), Finnish Paediatric Foundation (Lastentautiensäätiö) and Sigrid Juselius
757 Foundation.

758 We would like to acknowledge and thank Dr Paula Sanz-Leon for technical assistance with the
759 deployment of functional brain age software provided on our GitHub repository. For Dataset 1, we
760 thank Mr Jarmo Mäki and other EEG technicians within the HUS diagnostic center in annotating
761 EEGs, as well as Mr Eero Ahtola for assisting with the preprocessing of EEG data. For Dataset 2,
762 we thank all technicians, nurses and doctors involved with data collection, overnight annotations
763 and clinical assessment of polysomnography recordings conducted at the Respiratory and Sleep
764 Medicine Department located within the Queensland Children's hospital.

765
766
767
768

769 References

- 771 1. Jylhävä J, Pedersen NL, Hägg S. Biological age predictors. *EBioMedicine* 2017; **21**: 29-36.
- 772 2. Cole JH, Marioni RE, Harris SE, Deary IJ. Brain age and other bodily 'ages': implications for
773 neuropsychiatry. *Molecular psychiatry* 2019; **24**(2): 266-81.
- 774 3. Cole JH, Ritchie SJ, Bastin ME, et al. Brain age predicts mortality. *Molecular psychiatry* 2018; **23**(5):
775 1385-92.
- 776 4. Astle DE, Holmes J, Kievit R, Gathercole SE. Annual Research Review: The transdiagnostic revolution in
777 neurodevelopmental disorders. *Journal of Child Psychology and Psychiatry* 2022; **63**(4): 397-417.
- 778 5. Bethlehem RA, Seidlitz J, White SR, et al. Brain charts for the human lifespan. *Nature* 2022; **604**(7906):
779 525-33.
- 780 6. Bashyam VM, Erus G, Doshi J, et al. MRI signatures of brain age and disease over the lifespan based on a
781 deep brain network and 14 468 individuals worldwide. *Brain* 2020; **143**(7): 2312-24.
- 782 7. Franke K, Gaser C. Ten years of BrainAGE as a neuroimaging biomarker of brain aging: What insights
783 have we gained? *Frontiers in neurology* 2019; 789.
- 784 8. Smith SM, Vidaurre D, Alfaro-Almagro F, Nichols TE, Miller KL. Estimation of brain age delta from brain
785 imaging. *Neuroimage* 2019; **200**: 528-39.
- 786 9. Shahab S, Mulsant BH, Levesque ML, et al. Brain structure, cognition, and brain age in schizophrenia,
787 bipolar disorder, and healthy controls. *Neuropsychopharmacology* 2019; **44**(5): 898-906.
- 788 10. Lee J, Burkett BJ, Min H-K, et al. Deep learning-based brain age prediction in normal aging and dementia.
789 *Nature Aging* 2022; **2**(5): 412-24.
- 790 11. Tunç B, Yankowitz LD, Parker D, et al. Deviation from normative brain development is associated with
791 symptom severity in autism spectrum disorder. *Molecular autism* 2019; **10**(1): 1-14.
- 792 12. Nelson CA, McCleery JP. Use of event-related potentials in the study of typical and atypical development.
793 *Journal of the American Academy of Child & Adolescent Psychiatry* 2008; **47**(11): 1252-61.
- 794 13. Anderson AJ, Perone S. Developmental change in the resting state electroencephalogram: Insights into
795 cognition and the brain. *Brain and cognition* 2018; **126**: 40-52.
- 796 14. Angriman M, Caravale B, Novelli L, Ferri R, Bruni O. Sleep in children with neurodevelopmental
797 disabilities. *Neuropediatrics* 2015; **46**(03): 199-210.
- 798 15. Chu CJ, Leahy J, Pathmanathan J, Kramer M, Cash SS. The maturation of cortical sleep rhythms and
799 networks over early development. *Clinical Neurophysiology* 2014; **125**(7): 1360-70.
- 800 16. MacDonald SW, Nyberg L, Bäckman L. Intra-individual variability in behavior: links to brain structure,
801 neurotransmission and neuronal activity. *Trends in neurosciences* 2006; **29**(8): 474-80.
- 802 17. Yadav SK, Bhat AA, Hashem S, et al. Genetic variations influence brain changes in patients with attention-
803 deficit hyperactivity disorder. *Translational Psychiatry* 2021; **11**(1): 349.
- 804 18. Edgin JO. Cognition in Down syndrome: a developmental cognitive neuroscience perspective. *Wiley
805 Interdisciplinary Reviews: Cognitive Science* 2013; **4**(3): 307-17.
- 806 19. Chen Y, Baram TZ. Toward understanding how early-life stress reprograms cognitive and emotional brain
807 networks. *Neuropsychopharmacology* 2016; **41**(1): 197-206.
- 808 20. Onis Md, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth
809 reference for school-aged children and adolescents. *Bulletin of the World health Organization* 2007; **85**(9): 660-7.
- 810 21. Archibald AB, Gruber JA, Brooks-Gunn J. Pubertal processes and physiological growth in adolescence.
811 *Blackwell handbook of adolescence* 2003: 24-47.
- 812 22. Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity: Human kinetics; 2004.
- 813 23. Lund MJ, Alnæs D, de Lange A-MG, Andreassen OA, Westlye LT, Kaufmann T. Brain age prediction
814 using fMRI network coupling in youths and associations with psychiatric symptoms. *NeuroImage: Clinical* 2022;
815 **33**: 102921.
- 816 24. Vandenbosch MM, van't Ent D, Boomsma DI, Anokhin AP, Smit DJ. EEG-based age-prediction models as
817 stable and heritable indicators of brain maturational level in children and adolescents. *Human brain mapping* 2019;
818 **40**(6): 1919-26.
- 819 25. Dimitriadis SI, Salis CI. Mining time-resolved functional brain graphs to an EEG-based chronnectomic
820 brain aged index (CBAI). *Frontiers in human neuroscience* 2017; **11**: 423.
- 821 26. Al Zoubi O, Ki Wong C, Kuplicki RT, et al. Predicting age from brain EEG signals—A machine learning
822 approach. *Frontiers in aging neuroscience* 2018; **10**: 184.

823 27. Engemann DA, Mellot A, Höchenberger R, et al. A reusable benchmark of brain-age prediction from
824 M/EEG resting-state signals. *NeuroImage* 2022; 119521.

825 28. Sun H, Paixao L, Oliva JT, et al. Brain age from the electroencephalogram of sleep. *Neurobiology of aging*
826 2019; **74**: 112-20.

827 29. Stevenson NJ, Oberdorfer L, Tataranno ML, et al. Automated cot-side tracking of functional brain age in
828 preterm infants. *Annals of clinical and translational neurology* 2020; **7**(6): 891-902.

829 30. Berry RB, Brooks R, Gamaldo CE, Harding SM, Marcus C, Vaughn BV. The AASM manual for the
830 scoring of sleep and associated events. *Rules, Terminology and Technical Specifications, Darien, Illinois, American*
831 *Academy of Sleep Medicine* 2012; **176**: 2012.

832 31. Grigg-Damberger M, Gozal D, Marcus CL, et al. The visual scoring of sleep and arousal in infants and
833 children. *Journal of Clinical Sleep Medicine* 2007; **3**(02): 201-40.

834 32. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE
835 conference on computer vision and pattern recognition; 2016; 2016. p. 770-8.

836 33. Rasmussen CE, Williams C. Gaussian processes for machine learning. *MIT Press Cambridge, MA* 2006;
837 **32**: 68.

838 34. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. Proceedings of the IEEE conference on
839 computer vision and pattern recognition; 2015; 2015. p. 1-9.

840 35. Ball G, Kelly CE, Beare R, Seal ML. Individual variation underlying brain age estimates in typical
841 development. *Neuroimage* 2021; **235**: 118036.

842 36. Kelly C, Ball G, Matthews LG, et al. Investigating brain structural maturation in children and adolescents
843 born very preterm using the brain age framework. *NeuroImage* 2022; **247**: 118828.

844 37. Rutherford S, Kia SM, Wolfers T, et al. The normative modeling framework for computational psychiatry.
845 *Nature Protocols* 2022: 1-24.

846 38. McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension
847 reduction. *arXiv preprint arXiv:180203426* 2018.

848 39. Winter E. The shapley value. *Handbook of game theory with economic applications* 2002; **3**: 2025-54.

849 40. Organization WH, Health WHONf. WHO child growth standards: growth velocity based on weight, length
850 and head circumference: methods and development: World Health Organization; 2009.

851 41. Stasinopoulos MD, Rigby RA, Heller GZ, Voudouris V, De Bastiani F. Flexible regression and smoothing:
852 using GAMLSS in R: CRC Press; 2017.

853 42. Beheshti I, Nugent S, Potvin O, Duchesne S. Bias-adjustment in neuroimaging-based brain age
854 frameworks: A robust scheme. *NeuroImage: Clinical* 2019; **24**: 102063.

855 43. Zhang B, Zhang S, Feng J, Zhang S. Age-level bias correction in brain age prediction. *NeuroImage: Clinical*
856 2023; **37**: 103319.

857 44. Roche AF, Mukherjee D, Guo S, Moore WM. Head circumference reference data: birth to 18 years.
858 *Pediatrics* 1987; **79**(5): 706-12.

859 45. Kuczmarski RJ. 2000 CDC Growth Charts for the United States: methods and development: Department of
860 Health and Human Services, Centers for Disease Control and Prevention. National Center for Health Statistics.
861 2002.

862 46. Lilliefors HW. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. *Journal*
863 *of the American statistical Association* 1967; **62**(318): 399-402.

864 47. Burbidge JB, Magee L, Robb AL. Alternative transformations to handle extreme values of the dependent
865 variable. *Journal of the American Statistical Association* 1988; **83**(401): 123-7.

866 48. De Onis M, Onyango AW. WHO child growth standards. *The Lancet* 2008; **371**(9608): 204.

867 49. Eisermann M, Kaminska A, Moutard M-L, Soufflet C, Plouin P. Normal EEG in childhood: from neonates
868 to adolescents. *Neurophysiologie Clinique/Clinical Neurophysiology* 2013; **43**(1): 35-65.

869 50. Clarke AR, Barry RJ, McCarthy R, Selikowitz M. Age and sex effects in the EEG: development of the
870 normal child. *Clinical neurophysiology* 2001; **112**(5): 806-14.

871 51. Kaminska A, Eisermann M, Plouin P. Child EEG (and maturation). *Handbook of clinical neurology* 2019;
872 **160**: 125-42.

873 52. Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial
874 intelligence in health care. *The Lancet Digital Health* 2021; **3**(11): e745-e50.

875 53. Novelli L, D'atri A, Marzano C, et al. Mapping changes in cortical activity during sleep in the first 4 years
876 of life. *Journal of Sleep Research* 2016; **25**(4): 381-9.

877 54. Jaramillo V, Volk C, Maric A, et al. Characterization of overnight slow-wave slope changes across
878 development in an age-, amplitude-, and region-dependent manner. *Sleep* 2020; **43**(9): zsaa038.

879 55. Zhang X, Kuehn C, Hallerberg S. Predictability of critical transitions. *Physical Review E* 2015; **92**(5):
880 052905.

881 56. De Gennaro L, Ferrara M. Sleep spindles: an overview. *Sleep medicine reviews* 2003; **7**(5): 423-40.

882 57. Lüthi A. Sleep spindles: where they come from, what they do. *The Neuroscientist* 2014; **20**(3): 243-56.

883 58. Moore JL, Carvalho DZ, St Louis EK, Bazil C. Sleep and epilepsy: a focused review of pathophysiology,
884 clinical syndromes, co-morbidities, and therapy. *Neurotherapeutics* 2021; **18**(1): 170-80.

885 59. Carpay J, De Weerd A, Schimsheimer RJ, et al. The diagnostic yield of a second EEG after partial sleep
886 deprivation: a prospective study in children with newly diagnosed seizures. *Epilepsia* 1997; **38**(5): 595-9.

887 60. Kwon H, Walsh KG, Berja ED, et al. Sleep spindles in the healthy brain from birth through 18 years. *Sleep*
888 2023; **46**(4): zsad017.

889 61. Kurth S, Ringli M, Geiger A, LeBourgeois M, Jenni OG, Huber R. Mapping of cortical activity in the first
890 two decades of life: a high-density sleep electroencephalogram study. *Journal of Neuroscience* 2010; **30**(40): 13211-
891 9.

892 62. Zhang ZY, Campbell IG, Dhayagude P, Espino HC, Feinberg I. Longitudinal analysis of sleep spindle
893 maturation from childhood through late adolescence. *Journal of Neuroscience* 2021; **41**(19): 4253-61.

894 63. Angulo-Ruiz BY, Muñoz V, Rodríguez-Martínez EI, Gómez CM. Absolute and relative variability changes
895 of the resting state brain rhythms from childhood and adolescence to young adulthood. *Neuroscience Letters* 2021;
896 **749**: 135747.

897 64. Camacho MC, Quiñones-Camacho LE, Perlman SB. Does the child brain rest?: An examination and
898 interpretation of resting cognition in developmental cognitive neuroscience. *Neuroimage* 2020; **212**: 116688.

899 65. Alexander LM, Escalera J, Ai L, et al. An open resource for transdiagnostic research in pediatric mental
900 health and learning disorders. *Scientific Data* 2017; **4**: 170181.

901 66. Zafar S, Loddenkemper, T., Lee, J. W., Cole, A., Goldenholz, D., Peters, J., Lam, A., Amorim, E., Chu, C.,
902 Cash, S., Moura Junior, V., Gupta, A., Ghanta, M., Fernandes, M., Sun, H., Jing, J., Westover, M. B. Harvard
903 Electroencephalography Database (version 2.0). *Brain Data Science Platform* 2023.

904 67. Bashyam V, Shou H, Davatzikos C. Reply: From 'loose fitting' to high-performance, uncertainty-aware
905 brain-age modelling. *Brain* 2021; **144**(3): e32-e.

906 68. Koolschijn PCM, Crone EA. Sex differences and structural brain maturation from childhood to early
907 adulthood. *Developmental cognitive neuroscience* 2013; **5**: 106-18.

908 69. Lenroot RK, Giedd JN. Sex differences in the adolescent brain. *Brain and cognition* 2010; **72**(1): 46-55.

909 70. Hahn T, Fisch L, Ernsting J, et al. From 'loose fitting' to high-performance, uncertainty-aware brain-age
910 modelling. *Brain* 2021; **144**(3): e31-e.

911 71. Zhang A, Xing L, Zou J, Wu JC. Shifting machine learning for healthcare from development to deployment
912 and from models to data. *Nature Biomedical Engineering* 2022: 1-16.

913

914

915

Supplementary Material

916

917 **Supplementary Table 1** – Demographics and additional comparisons of datasets analysed. The key differences
918 between datasets is that EEG in D1 was recorded with a higher channel count as part of outpatient routine clinical
919 EEG whereas EEG in D2 was collected as part of an overnight sleep study PSG. Outcomes in D1 were available at a
920 4-year follow-up for children in D1 whereas children in D2 had normal sleep study outcome and were hence follow-
921 up outcomes in this group were not available. The age, including the range, median and interquartile range (IQR) are
922 provided along with sex information (and age associated information within sexes).

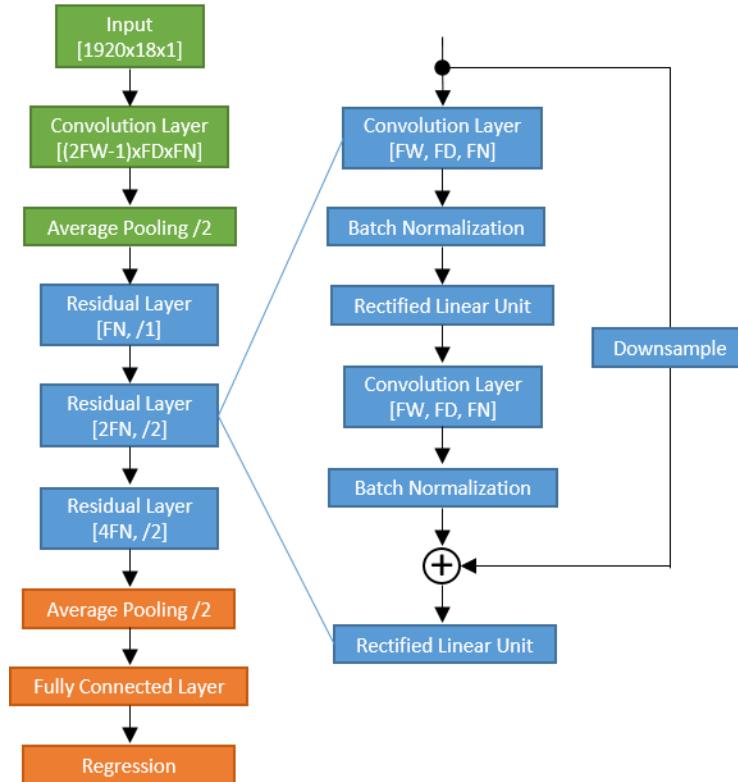
	D1 Typical Development group (n = 1056)	D2 Typical Development group (n = 723)	D2 Trisomy 21 group (n = 40)
Age Range	6 weeks to 17 years	3 months to 18 years	1 year to 17 years
Median (years)	2.7	8.1	5.4
IQR (years)	6.2	5.6	4.2
Sex (min, max, median)			
Males	543 (6 weeks, 15.8 years, 3 years)	432 (3 months, 17.9 years, 8.3 years)	23 (1.2 years, 16.2 years, 4.5 years)
Females	513 (6 weeks, 16.8 years, 2.5 years)	291 (4 months, 17.8 years, 7.9 years)	17 (1.9 years, 9.2 years, 5.9 years)
EEG channels available	19	2	2
Type of clinical EEG	Outpatient EEG performed in neurology clinic	EEG as part of an overnight sleep study PSG recording	EEG as part of an overnight sleep study PSG recording
Follow-up outcomes	Yes; neurodevelopmental outcomes were followed up 4 years post-EEG	Not available for this group of children	Not available for this group of children

923

924

925

926



927

928

929

930

931

932

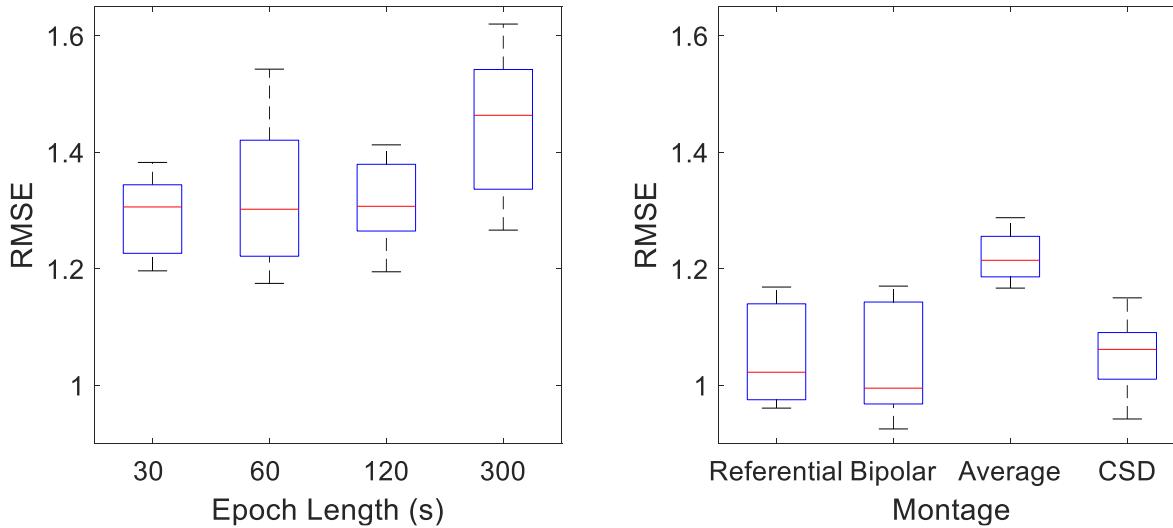
933

934

935

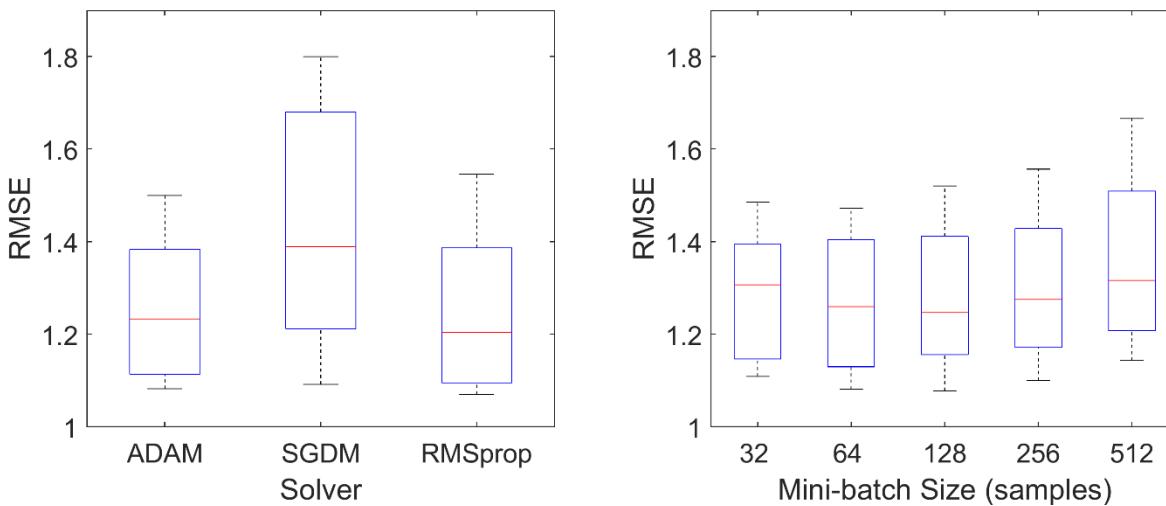
936

Supplementary Figure 1 - The general architecture of the residual neural network used in this work. For inception networks, we used elements of the inceptionv3 network in MATLAB with a final regression layer. The scale of this pre-trained network was too large to accurately train on the dataset used in our work, so we tested architectural aspects of the network rather than the entire network. Similarly to the residual neural network we added variability by changing the temporal filter width (FW), filter channel depth (FD) and filter number (FN) within the convolutional layers. We used the file generate_networks_v2.m to generate networks with different configurations and architectures (see the GitHub page for more details).



937
938
939
940
941
942
943
944
945

Supplementary Figure 2 - The effect of epoch length and montage on cross-validated RMSE on a random selection of 7 network architectures. An epoch length of 60s and the bipolar montage were selected *a priori*. Different EEG epoch durations (30 s, 60 s, 120 s, 300 s) and EEG montages (referential, bipolar, average, current source density) were tested. The root mean square error between predicted age (FBA) and age across all testing data from a 10-fold cross-validation was used to determine the optimal selection, with a minimum RMSE indicating the optimal results.



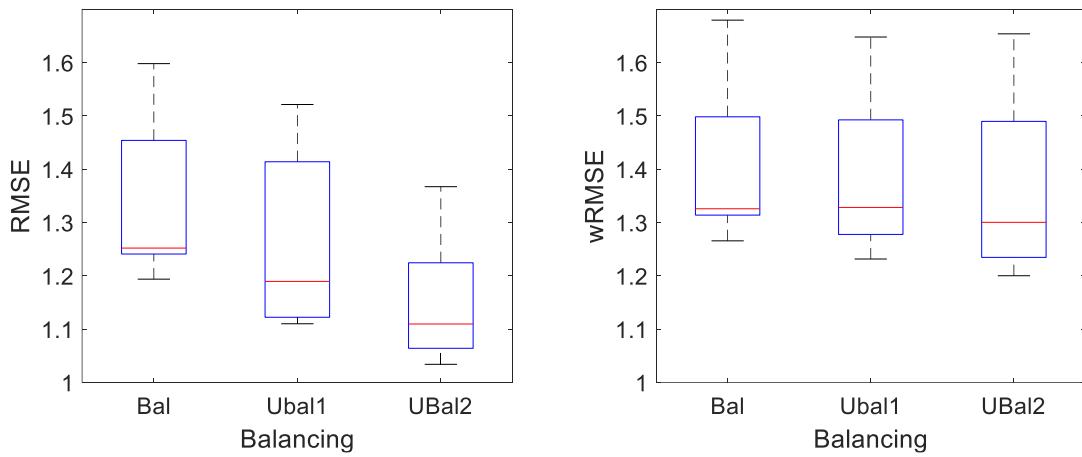
946
947
948
949
950
951
952
953
954

Supplementary Figure 3 - The effect of solver and mini-batch size on cross-validated RMSE on a random selection of network architectures, epoch length, and montage ($n = 8$ per group for solver and $n = 7$ per group for mini-batch size). For training the neural networks, two hyper-parameters of training were selected based on an initial run on dataset D1 (Solver Type and Mini-batch size). A random selection of network architectures were made and the network was trained and tested within a 10-fold cross-validation with the RMSE on the accumulated left-out test data used to select the hyper-parameters. The ADAM solver and a mini-batch size of 128 samples were selected.

955 **Supplementary Note 1 - The effect of data balancing on NN results**

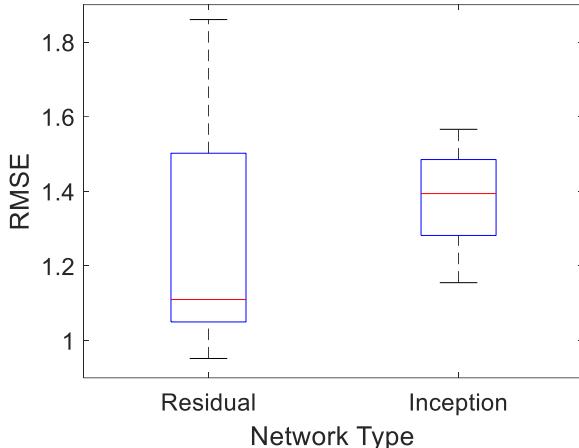
956 Balancing the dataset is an important component of constructing viable training datasets. In this case, the number of
957 recording per age bin should be equal for the best general regression results; increased diversity of data (typically by
958 adding more data) also provides an improved fit. Furthermore, the training data distribution should best represent the
959 distribution of the larger population. We show the effect of data balancing by training 10 randomly selected network
960 architectures with training datasets containing different levels of heterogeneity with respect to age (*Supplementary*
961 **Figure 4**). To ensure the number of training points is equal we extract more epochs per recording as the dataset
962 becomes more balanced by changing the overlap of epoch extraction. We select three levels of balance: balanced
963 (uniform distribution of subjects across age) extracts at most 40 recordings from each age group (ages are grouped at
964 yearly intervals), Unbalanced1 (more samples at early ages) extracts at most 80 recordings from each age group, and
965 Unbalanced2 (most samples at early ages) extracts at most 160 recordings from each age group. The RMSE and
966 weighted RMSE (an age adjusted RMSE) are calculated on all EEG recordings that were left out during the 10-fold
967 cross-validation (an unbalanced cohort).

968



969
970

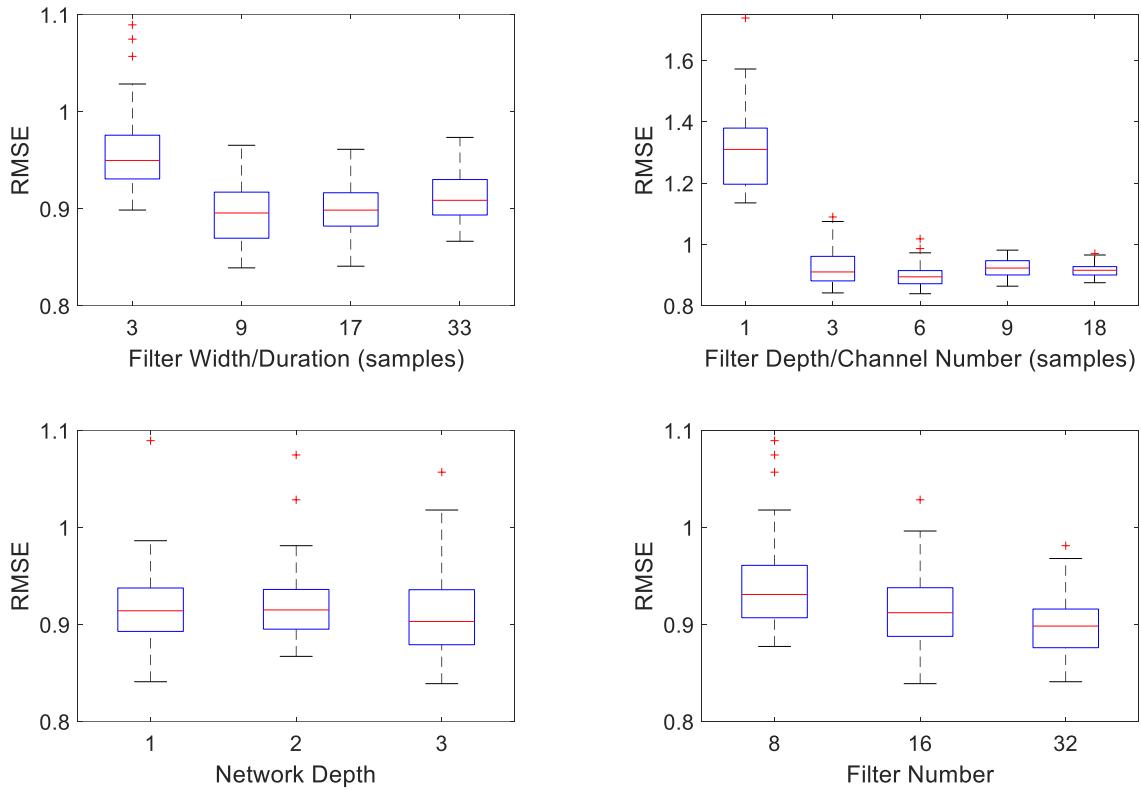
971 **Supplementary Figure 4 - The general effects of data balancing on cross-validated RMSE for 18-channel data (D1**
972 *datasets*). The left plot is the RMSE and the right plot is the wRMSE which is an RMSE averaged across age bins
973 (yearly) rather than per EEG recording. In both cases, the increased diversity in recordings associated with unbalanced
974 training dataset offers lower errors, although the reduction in error is smaller when considering wRMSE.



975
976 **Supplementary Figure 5** - The general effects of data network architecture type (Residual vs Inception) on cross-
977 validated RMSE for 18-channel data (D1 datasets). Once general EEG parameters and network training hyper-
978 parameters were initialized, we tested two general architectures based on residual neural networks and inception based
979 neural networks. We randomly selected 10 networks based on both architectures and computed RMSE. Based on these
980 parameter evaluations, residual networks were selected as the most suitable candidate architecture for estimating age.
981
982

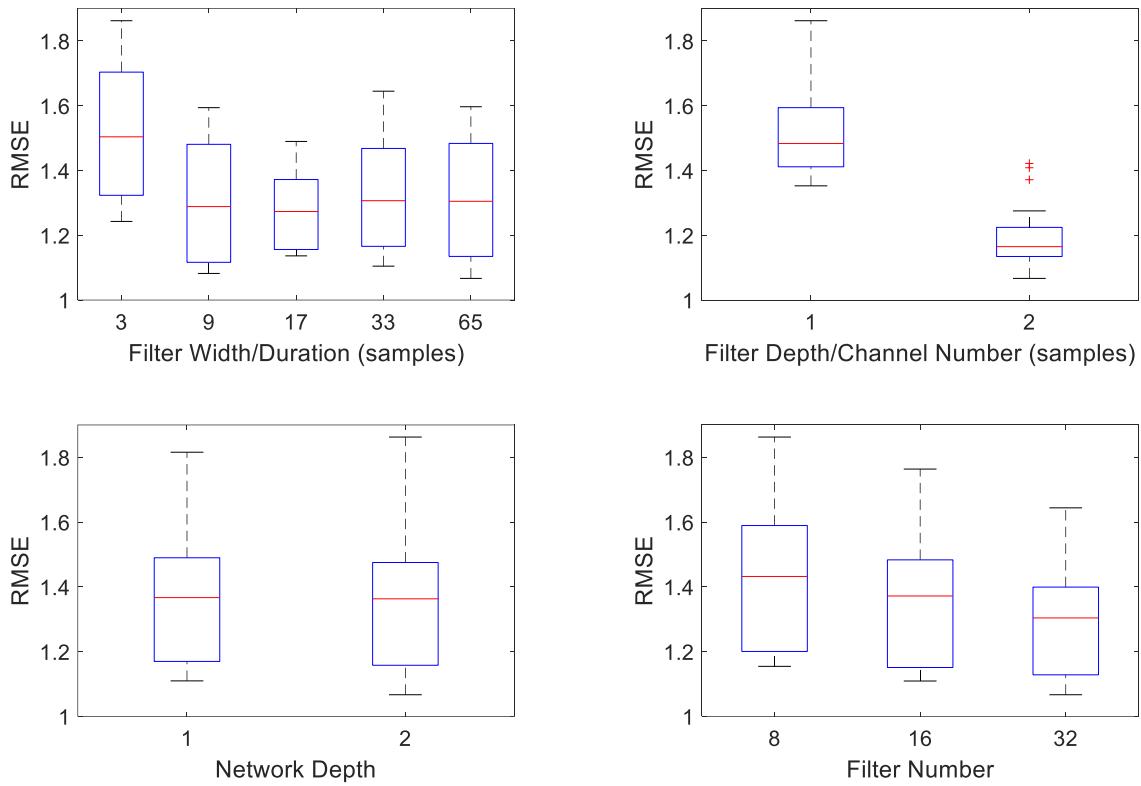
983 **Supplementary Note 2 – Testing various of network parameters (18 channel FBA for D1)**

984 We also tested parameters of filter width, filter depth, network depth and filter number within the residual network.
985 The optimal combination was selected using the internal validation data, averaged across all folds. The latter was
986 performed to ensure only 1 network architecture was used across fold. A fixed grid optimization search across was
987 performed across an array of network parameters. For the 18-channel FBA based on dataset D1, this resulted in 180
988 different network architectures (**Supplementary Figure 6**). The general trends are shown with an optimal combination
989 of network parameters selected: a filter width of 9 samples ($n = 45$ per group), filter depth of 6 channels ($n = 36$ per
990 group), network depth of 3 ($n = 60$ per group), and a filter number of 16 ($n = 60$ per group): a total of 867,601 learnable
991 parameters.

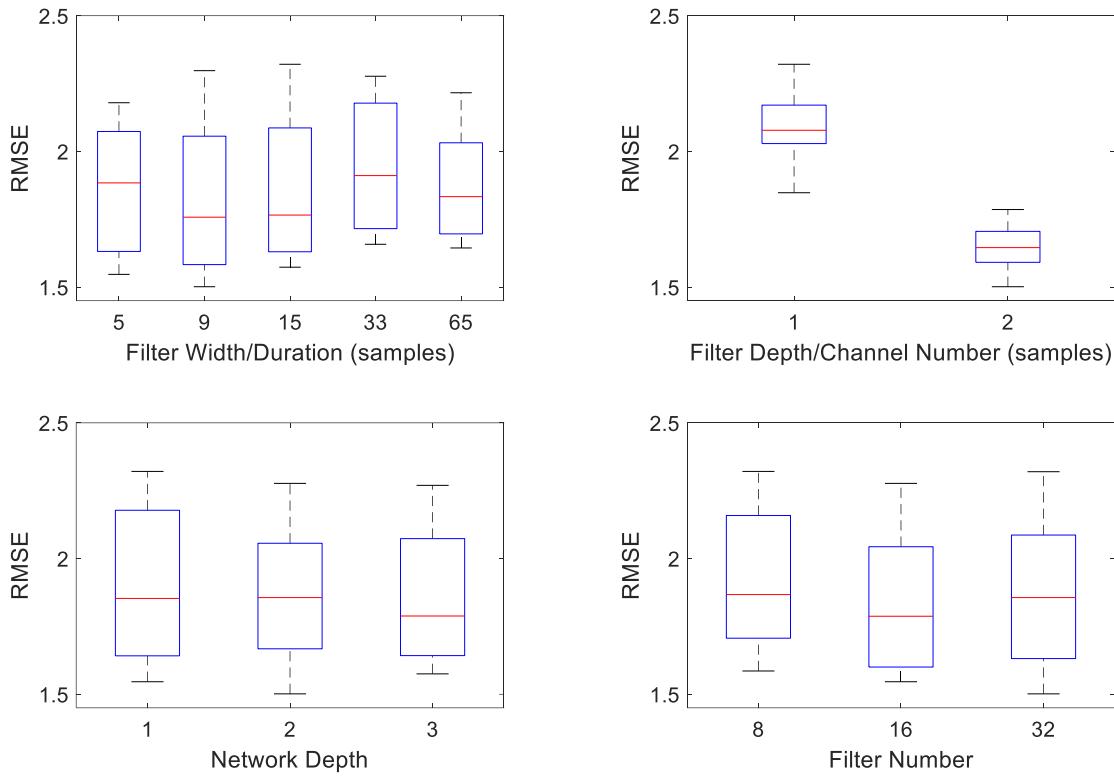


992
993
994
995
996

Supplementary Figure 6 - The general effects of residual network parameters on cross-validated RMSE for 18-channel data (D1 dataset). Internal single fold cross-validation averaged across all 10 training folds selected. Note that, as filter depth of 1 channel had a considerably higher RMSE than other filter depths, RMSE points associated with a 1 channel network were removed before generating the remaining boxplots for visualization purposes.

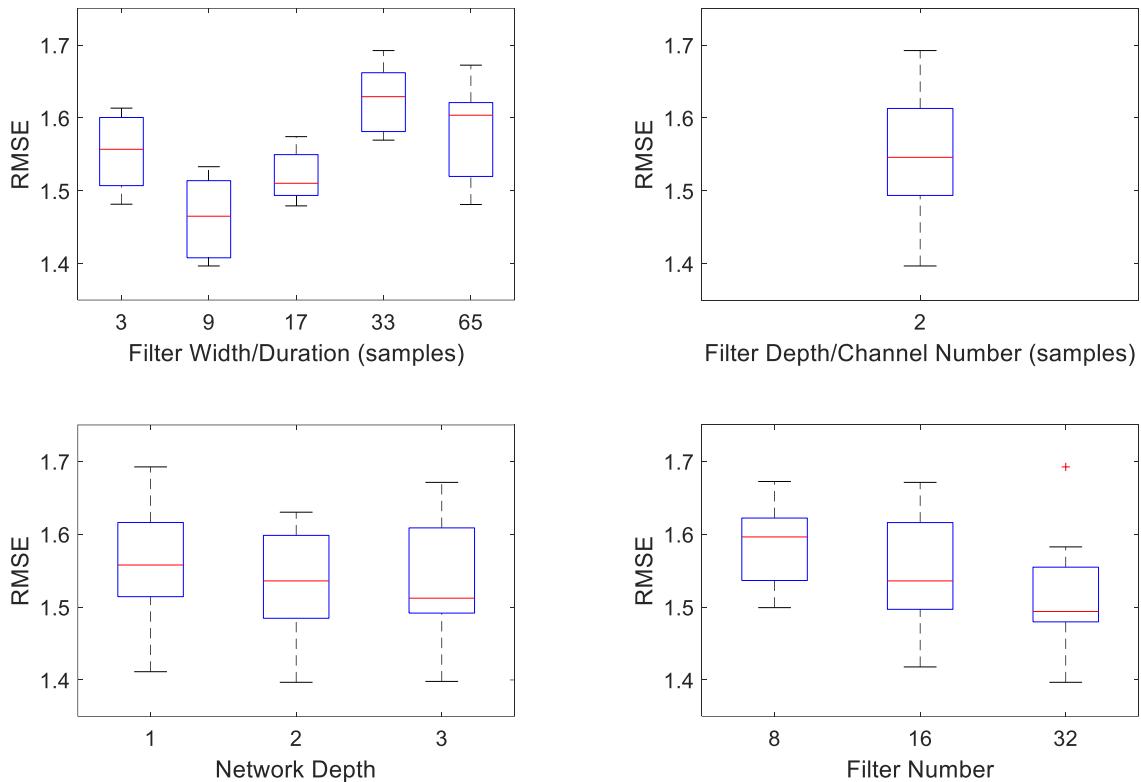


997
998 **Supplementary Figure 7** - The general effects of residual network parameters on cross-validated RMSE for a 2-
999 channel FBA based on dataset D1. This resulted in 60 different network architectures. The optimal combination of
1000 network parameters selected were a filter width of 9 samples ($n = 18$ per group), filter depth of 2 channels ($n = 30$ per
1001 group), network depth of 2 ($n = 30$ per group), and a filter number of 2 ($n = 20$ per group): a total of 906,657 learnable
1002 parameters.



1003
1004
1005
1006
1007

Supplementary Figure 8 - The general effects of residual network parameters on cross-validated RMSE for 2-channel data (D2 dataset). This resulted in 90 different network architectures. The optimal parameters were a filter width of 9 samples ($n = 18$ per group), filter depth of 2 samples ($n = 45$), network depth of 2 ($n = 30$ per group), and a filter number of 32 ($n = 30$ per group): a total of 906,657 learnable parameters.



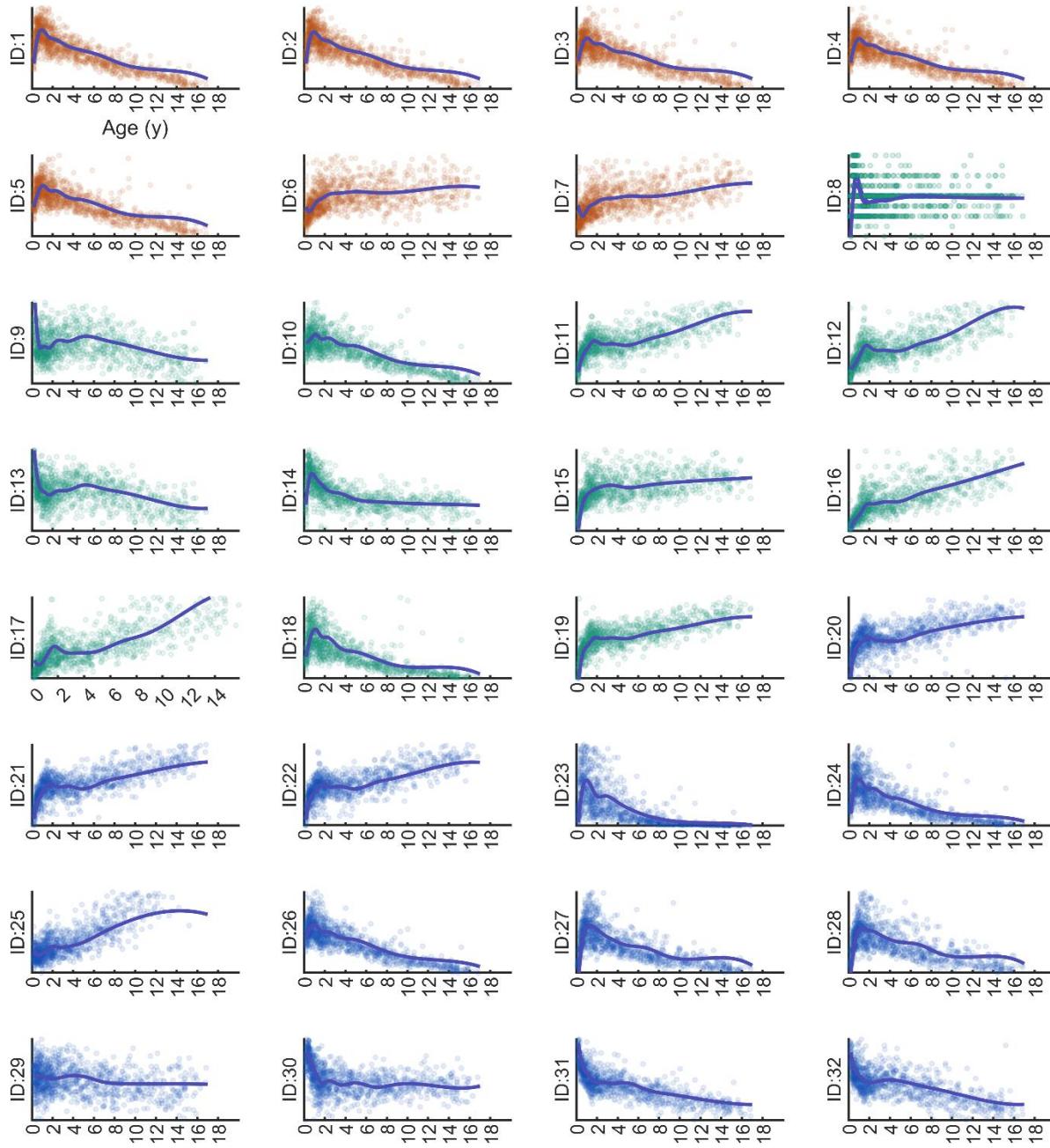
1008
1009
1010
1011
1012
1013
1014
1015

Supplementary Figure 9 - The general effects of network parameters on cross-validated RMSE for 2-channel data (D1 and D2 combined). This resulted in 45 different network architectures. The RMSE of an internal single fold cross-validation, average across all 10 training folds selected a filter width of 9 samples ($n = 9$ per group), a network depth of 2 ($n = 45$ per group), network depth of 2 ($n = 15$ per group), and a filter number of 32 ($n = 15$ per group): a total of 906,657 learnable parameters. Note, we did not vary the filter depth/channel number as previous experiments on D1 and D2 alone showed that 2 channels was optimal.

1016 **Supplementary Table 2** – Performance of individual EEG features in predicting age following Gaussian process
 1017 regression (GPR) and 10-fold cross-validation of training data (D1). Results are based on 60 second EEG epochs
 1018 acquired in the bipolar montage. Amplitude metrics (ID1 to ID7) denote the 5th, 50th (median), 95th centiles based on
 1019 the absolute value of the Hilbert transform of the EEG (amplitude envelope), along with four central moments of the
 1020 signal: mean, standard deviation, skewness and kurtosis. Frequency metrics (ID8 to ID19) summarize frequency
 1021 domain metrics based on the power spectrum density of the EEG signal, and included features such as peak frequency,
 1022 signal amplitude at this peak, along with mean frequency, bandwidth and relative spectral power in common EEG
 1023 oscillatory bands. Informational metrics (ID20 to ID32) summarized various non-linear and statistical properties of
 1024 the EEG. SNLEO stands for the smoothed non-linear energy operator.

Feature ID	EEG Features	GPR			Shapley	
		R ²	RMSE	MAE	Value	Rank
1	5th percentile Amplitude Envelope	0.82	1.28	1.28	0.57	1
2	50th percentile amplitude envelope	0.81	1.32	1.32	0.33	8
3	95th percentile amplitude envelope	0.76	1.52	1.52	0.06	26
4	Mean amplitude envelope	0.78	1.44	1.44	0.15	14
5	Standard deviation amplitude envelope	0.75	1.57	1.57	0.06	25
6	Skewness amplitude envelope	0.18	3.04	3.04	0.08	22
7	Kurtosis amplitude envelope	0.31	2.73	2.73	0.33	7
8	Peak Frequency (PSD)	0.08	3.32	3.32	0.08	23
9	Power in peak frequency	0.14	3.25	3.25	0.03	29
10	Signal amplitude of peak frequency component	0.79	1.48	1.48	0.21	13
11	Mean frequency	0.56	2.19	2.19	0.03	30
12	Bandwidth	0.59	2.08	2.08	0.24	10
13	Relative spectral power (delta 1, 0.5-2Hz)	0.19	3.16	3.16	0.30	9
14	Relative spectral power (delta 2, 2-4Hz)	0.40	2.34	2.34	0.34	6
15	Relative spectral power (theta, 4-8Hz)	0.25	2.90	2.90	0.13	17
16	Relative spectral power (alpha, 8-12Hz)	0.60	1.97	1.97	0.04	28
17	Relative spectral power (beta, 12-30Hz)	0.63	1.94	1.94	0.22	11
18	Total power in all bands	0.77	1.47	1.47	0.09	21
19	Spectral slope (decay in power spectrum)	0.58	2.08	2.08	0.22	12
20	Sample Entropy	0.55	2.23	2.23	0.11	19
21	Fractal Dimension (Higuchi)	0.58	2.17	2.17	0.42	4
22	Spectral entropy	0.58	2.16	2.16	0.47	2
23	Spectral difference	0.79	1.42	1.42	0.06	27
24	Hjorth 1 (Activity)	0.78	1.46	1.46	0.13	16
25	Hjorth 2 (Mobility)	0.81	1.44	1.44	0.14	15
26	Hjorth 3 (Complexity)	0.83	1.30	1.30	0.45	3
27	SNLEO mean	0.53	2.02	2.02	0.08	24
28	SNLEO standard deviation	0.42	2.38	2.38	0.01	32
29	Burst shape skewness (all bursts)	0.07	3.35	3.35	0.02	31
30	Burst shape kurtosis (all bursts)	0.21	2.94	2.94	0.13	18
31	Burst duration (mean)	0.69	1.79	1.79	0.37	5
32	Burst duration (standard deviation)	0.55	2.29	2.29	0.09	20

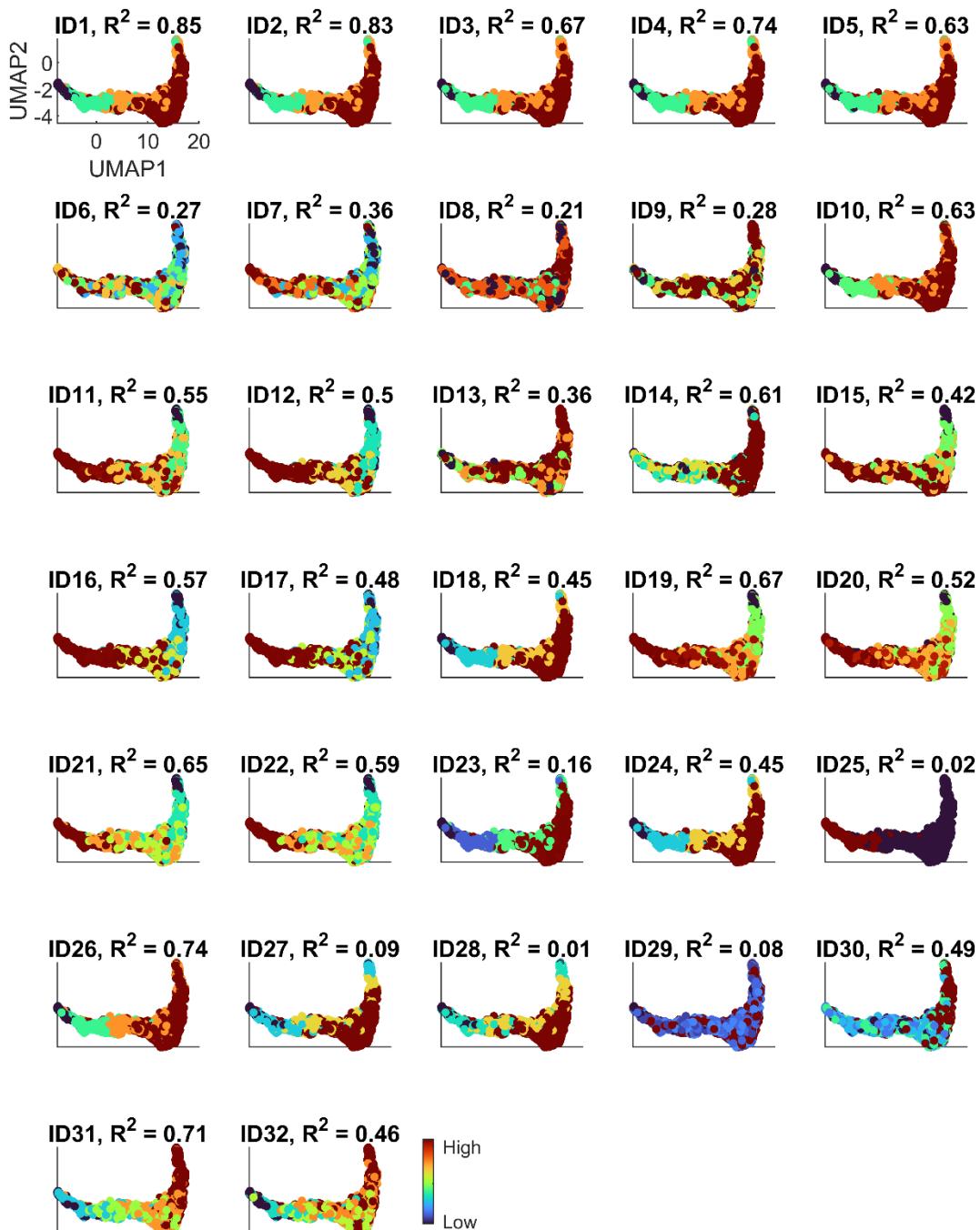
1025
 1026



1027

1028

1029 **Supplementary Figure 10 – Individual EEG features versus age (all subjects from training dataset D1).** As per
1030 Supplementary Table 1, each EEG feature and their respective ID are based on 60 epochs from the bipolar montage.
1031 Feature types are indicated by colors, where amplitude features (reddish hue), frequency domain features (green hue)
1032 and informational metrics (blue hue). A spline is fitted across the median values derived across 2 yearly age bins.

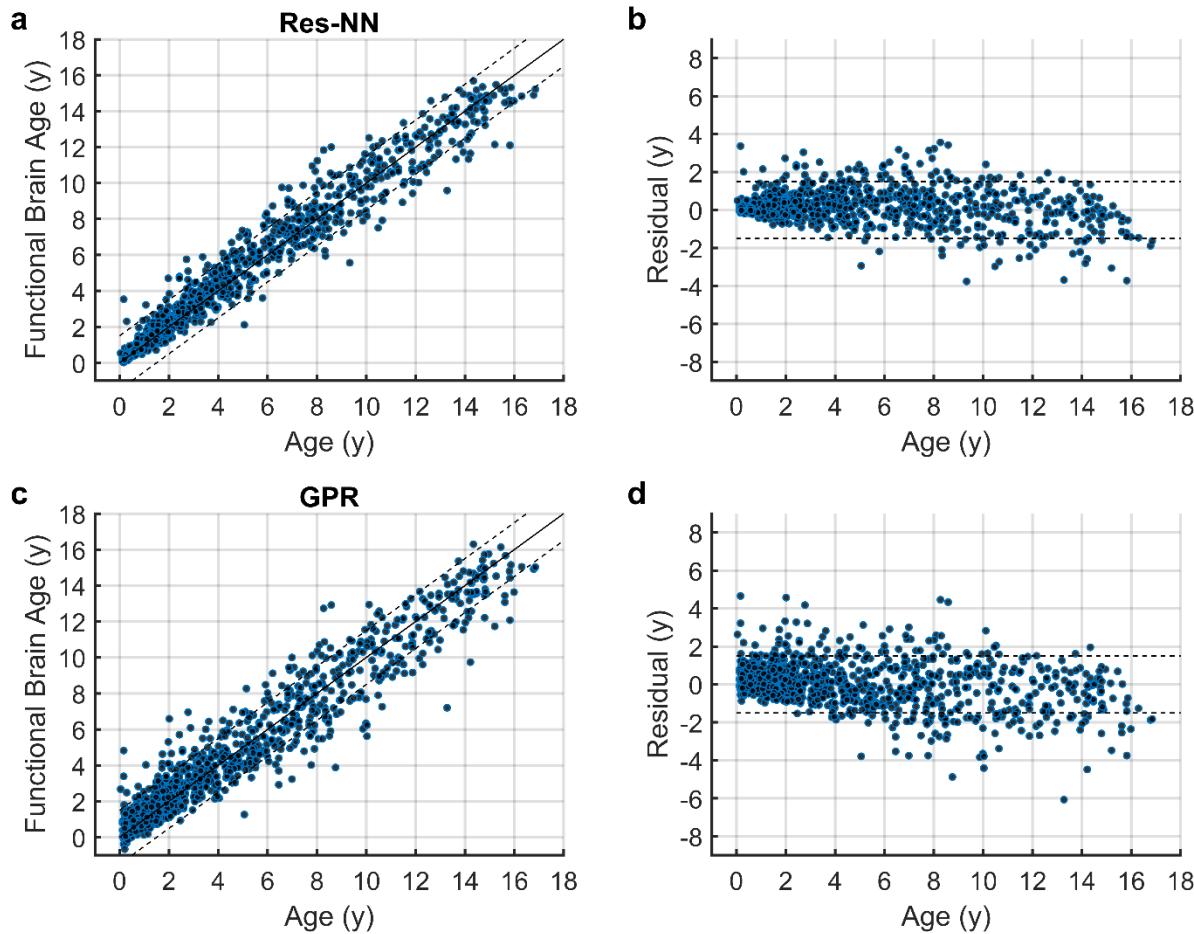


1033

1034

1035 **Supplementary Figure 11 – Relating individual EEG features to the late network layer of the Res-NN model.** For each
 1036 individual feature we used GPR to assess the strength of correlation between individual EEG features with network
 1037 activation layers (here the late layer, i.e., layer 61 from 2-channel EEG data from D1 is shown) to derive a predicted
 1038 feature value based on UMAP1 and UMAP2 dimensions derived from this training phase. The strength of correlation
 1039 (R^2 value) indicates how individual EEG features and predicted individual EEG features are linked by UMAP
 1040 representations of the Res-NN model, following 10-fold cross-validation. The color bar indicates the relative range of
 1041 the EEG feature pertaining to its minimum and maximum values (e.g. for feature ID4, low mean amplitude versus
 1042 high mean amplitude).

1043



1044

1045 **Supplementary Figure 12**—Comparative performance of FBA estimation from a GPR model with the Res-NN **a**. The
1046 Res-NN model ($R^2=0.96$, $MAE=0.56$ years) with error bounds of ± 1.5 years and **b**. The residual error (PAD), in years.
1047 **c**. GPR results based on a multivariable model of EEG features ($R^2=0.93$, $MAE=0.79$ years). **d**. Residual error (PAD),
1048 in years, for the GPR model. Individual EEG recordings (blue filled circles) are plotted across ages.
1049
1050
1051

1052 **Supplementary Table 3** – Performance of FBA across sleep stages in the validation dataset (D2). The performances
 1053 of the FBA following 10-fold cross-validation, using either a Res-NN or GPR model, in the D2 dataset. MAE, wMAE
 1054 and RMSE are shown. N.B. N1 was excluded due to inconsistent availability across ages in D2.

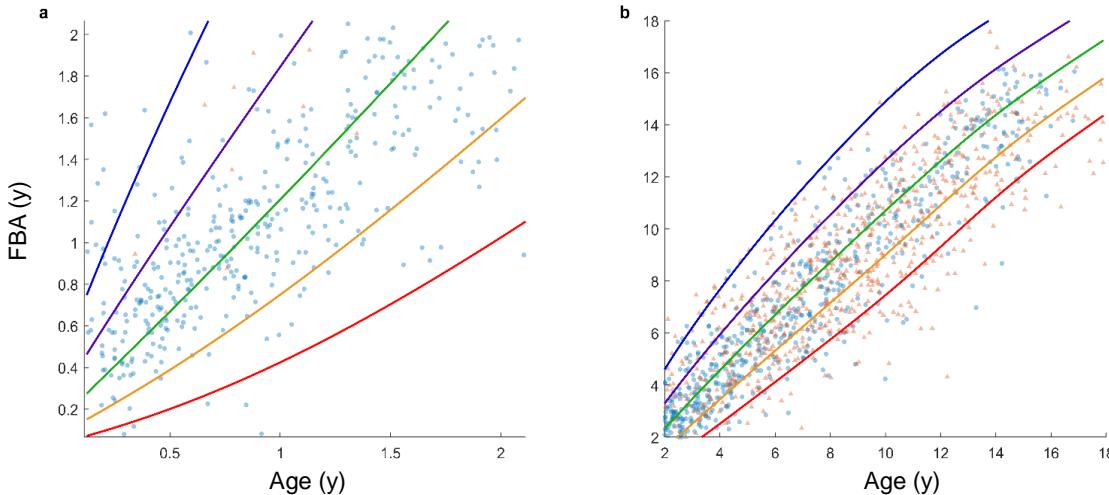
		Res-NN		GPR	
Sleep stage	# channels, # recordings, # epochs	MAE (in years)	wMAE (in years)	MAE	wMAE
N3	2, 723, 13737	1.46	1.76	1.75	2.00
REM	2, 714, 13339	1.55	1.98	1.68	1.89
WAKE	2, 564, 8810	1.89	2.53	2.06	2.61
N2	2, 723, 13737	1.46	1.73	1.25	1.34

1055
 1056 **Supplementary Table 4** – Overall performance of FBA across datasets. The performances of the FBA, using a GPR
 1057 model, across all training, test, and combined datasets. MAE, wMAE and RMSE are shown. CI is confidence interval,
 1058 ^aonly N2 from D1 used, ^b10-fold cross-validation.

Train	# channels, # recordings, # epochs	Test	# channels, # recordings, # epochs	R ²	RMSE (in years; 95% CI)	MAE (in years; 95% CI)	wMAE (in years; 95% CI)
D1	19, 1056, 30624	D1 ^b	19, 1056, 30624	0.93	1.09 (1.05 – 1.20)	0.79 (0.74 - 0.84)	1.06 (0.85 - 1.27)
D1	2, 1056, 20064	D1 ^b	2, 1056, 20064	0.91	1.24 (1.23 - 1.40)	0.93 (0.88 - 0.99)	1.27 (0.97 – 1.57)
D1 ^a	2, 1056, 20064	D2	2, 723, 13737	0.67	2.49 (2.34 - 2.64)	1.94 (1.84 – 2.06)	2.53 (2.16 – 2.85)
D2	2, 723, 13737	D2 ^b	2, 723, 13737	0.84	1.41 (1.46 - 1.60)	1.24 (1.18 – 1.31)	1.34 (1.12 – 1.57)
D1+D2	2, 1779, 33801	D1+D2 ^b	2, 1779, 33801	0.90	1.43 (1.37 – 1.49)	1.08 (1.03 – 1.12)	1.29 (1.12 – 1.47)

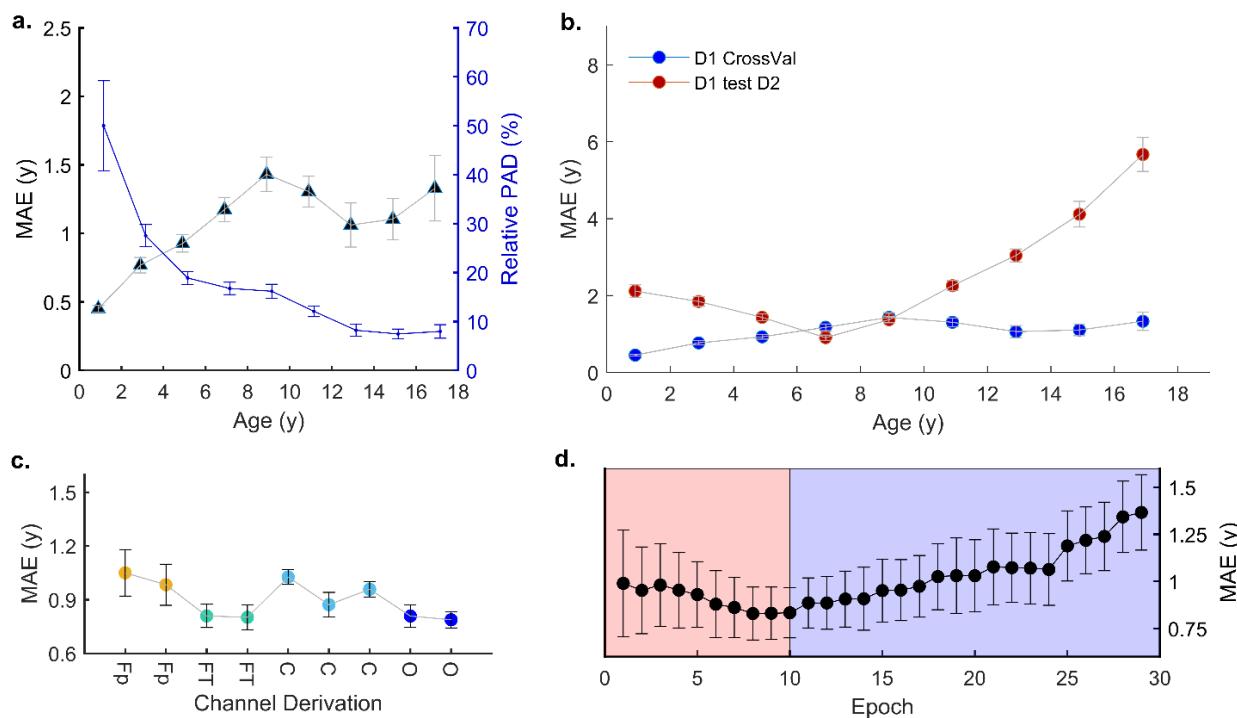
1059

1060



1061
1062
1063
1064
1065
1066
1067

Supplementary Figure 13 – FBA growth charts stratified into infant and childhood age groups. **a.** FBA charts for infants (0 to 2 years) and **b.** children and adolescents (2 to 18 years) were generated to offer a magnified view of the FBA with respect to chronological age. In both age-stratified versions of the chart, over 95% of the data (blue dotted points) are captured between the 3rd and 97th centiles estimated. The 3rd (red), 15th (yellow), 50th (green), 85th (purple) and 97th (blue) centiles are indicated.



1068

1069
1070
1071
1072
1073
1074
1075
1076
1077

Supplementary Figure 14 - Summary plot of GPR model performance. **a.** The mean absolute error (MAE) of the GPR (dark blue triangles, left axis) across 2 yearly age bins and the relative accuracy of PAD (in blue, right axis) across 2 yearly age bins. For both plots, the mean and standard error of the mean (SEM) are plotted to reflect the sample distribution within age bins. **b.** Differences in MAE of D1 following cross-validation (D1 CrossVal) versus external validation on D2 (D1 test on D2) for GPR. Here differences in sites are more noticeable for younger and older age groups. **c.** Change in MAE across EEG channel locations, with average MAE shown and error bars indicated by standard deviation. **d.** Temporal transitions in the EEG across N1 (light pink) and N2 (light purple). Similar to the Res-NN, the lowest MAE is observed during a transition between sleep N1 and N2 stages. Error bars denote standard deviation for each epoch.

1078

1079 **Supplementary Table 5 – Performance summary across test folds for Res-NN and GPR models.** Within each of the
1080 10 test folds, the mean absolute error (MAE) is summarized for both model approaches.

1081

1082	Folds	Res-NN	GPR
		MAE	MAE
		Test D1	Test D1
1084	1	0.61	0.72
1085	2	0.49	0.73
1086	3	0.59	0.73
1087	4	0.53	0.78
1088	5	0.59	0.75
1089	6	0.49	0.76
1090	7	0.50	0.98
1091	8	0.63	0.80
1092	9	0.59	0.86
1093	10	0.55	0.80
1094	Fold-wise Average	0.56	0.79
1095		Test D2	Test D2
1096	1	1.69	1.20
1097	2	1.43	1.25
1098	3	1.63	1.25
1099	4	1.40	1.15
1100	5	1.43	1.34
1101	6	1.63	1.11
1102	7	1.39	1.21
1103	8	1.35	1.34
1104	9	1.32	1.20
1105	10	1.51	1.33
1106	Fold-wise Average	1.46	1.24
1107		Test D1 + D2	Test D1 + D2
1108	1	1.15	1.07
1109	2	0.97	1.05
1110	3	1.03	0.91
1111	4	0.95	1.14
1112	5	0.96	1.21
1113	6	1.06	1.16
1114	7	0.89	1.11
1115	8	1.36	1.04
1116	9	1.00	1.13
1117	10	1.11	1.03
1118	Fold-wise Average	1.09	1.08
1119			
1120			
1121			

1122 **Supplementary Table 6 – Summary of group-wide associations across Res-NN/GPR methods and different cohorts.**
1123 Assessment of adjusted PAD and centiles derived from the growth chart (Figure 6) where differences between
1124 typically developing versus Trisomy 21 (T21) subjects across varying combinations of cohorts (D1, D2 and D1 + D2)
1125 are summarized. Effect sizes and differences in adjusted PAD between typically developing children and Trisomy 21
1126 subjects were also examined for subgroups based on sex (i.e. D2 males versus T21 males, D2 females versus T21
1127 females etc). Unpaired t-tests were performed with significance set at $p<0.05$ with the associated t-statistic reported.

	Adjusted PAD				Centiles
	Effect size (Cohen's d; 95%CI)	Total p-value (t-statistic)	Males p-value (t-statistic)	Females p-value (t-statistic)	p-value (t-statistic)
D2 vs T21	0.56 (0.24 – 0.88)	0.00053* (3.5)	0.02* (2.33)	0.01* (2.56)	0.028* (3.5)
D1 vs T21	0.42 (0.11 - 0.74)	0.0087* (2.63)	0.0012* (3.25)	0.77 (0.29)	0.08 (1.68)
D1 + D2 vs T21	0.42 (0.11 -0.73)	0.0084* (2.64)	0.0009* (3.34)	0.80 (0.26)	0.052 (1.92)
D2 vs T21	0.36 (0.06 – 0.68)	0.023* (2.28)	0.005* (2.82)	0.58 (0.56)	0.28 (1.08)
D1 vs T21	0.002 (-0.31 - 0.32)	0.98 (0.01)	0.003* (2.96)	0.75 (0.32)	0.66 (0.44)
D1 + D2 vs T21	0.16 (-0.15 – 0.47)	0.32 (0.98)	0.31 (1.01)	0.74 (0.33)	0.85 (0.19)

1128
1129
1130

1131