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2 

 

ABSTRACT 28 

Background: In children, objective, quantitative tools that determine functional neurodevelopment 29 

are scarce and rarely scalable for clinical use. Direct recordings of cortical activity using routinely 30 

acquired electroencephalography (EEG) offer reliable measures of brain function. 31 

Methods: We developed and validated a measure of functional brain age (FBA) using a residual 32 

neural network-based interpretation of the paediatric EEG. In this cross-sectional study, we 33 

included 1056 children with typical development ranging in age from 1 month to 18 years. We 34 

analyzed a 10 to 15 minute segment of 18-channel EEG recorded during light sleep (N1 and N2 35 

states).  36 

Findings: The FBA obtained from EEG had a weighted mean absolute error (wMAE) of 0.85 years 37 

(95%CI: 0.69-1.02; n = 1056). A two-channel version of the FBA had a wMAE of 1.51 years 38 

(95%CI: 1.30-1.73; n = 1056) and was validated on an independent set of EEG recordings (wMAE 39 

= 2.27 years, 95%CI: 1.90-2.65; n = 723). Group-level maturational delays were also detected in 40 

a small cohort of children with Trisomy 21 (Cohen’s d = 0.36, p = 0.028). 41 

Interpretation: An FBA, based on EEG, is an accurate, practical and scalable automated tool to 42 

track brain function maturation throughout childhood with accuracy comparable to widely used 43 

physical growth charts.  44 

Funding: This research was supported by the National Health and Medical Research Council, 45 

Australia, Helsinki University Diagnostic Center Research Funds, Finnish Academy, Finnish 46 

Paediatric Foundation, and Sigrid Juselius Foundation. 47 

Keywords: paediatric, brain function, brain age, electroencephalography, machine learning, 48 

neurodevelopment 49 
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RESEARCH IN CONTEXT 51 

 52 

Evidence before this study: Tools for objectively tracking neurodevelopment in paediatric 53 

populations using direct measurement of the brain are rare. Prior to conducting this study, we 54 

explored multiple databases (Google Scholar, PubMed, Web of Science) with search strategies 55 

that combined one or more of the terms “paediatric brain development”, “brain age”, “age 56 

estimation”, “MRI measurements”, “EEG measurements”, “machine learning”, “artificial 57 

intelligence”, “advanced ageing”, “neurodevelopmental delays” and “growth charts” with no 58 

restrictions on language and dates. In screening over 500 publications, 7 studies evaluated brain 59 

age in children using MRI and only a single study investigated maturation in EEG activity across 60 

discrete age bins.   61 

Added value of this study: We formulated a measure of functional brain age (FBA) using state-of-62 

the-art machine learning (ML) algorithms trained on a large, unique database consisting of 63 

multichannel clinical EEG recorded from N1/N2 sleep (n = 1056 children; 1 month to 17 years), 64 

with typical neurodevelopment confirmed at a 4-year follow-up. The FBA showed a high 65 

correlation with age and detected group-level differences associated with conditions of 66 

neurodevelopmental delay.  67 

Implications of all the available evidence: Age is prominent within EEG recordings of N1/N2 sleep 68 

and is readily extracted using ML. Public release of the FBA estimator and the use of EEG, 69 

commonly delivered in outpatient settings, as the basis of age prediction enables clear translation 70 

of measures of ‘brain age’ to the clinic. Future work on EEG datasets across various 71 

neurodevelopmental profiles will enhance generalisability and user confidence in the clinical 72 

application of brain age.  73 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2023.07.07.548062doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.07.548062
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

INTRODUCTION 74 

 75 

Deriving brain age in relation to a person’s chronological age has become a burgeoning focus for 76 

scientists, clinicians, and education providers.1 The physiological maturation of the brain is 77 

fundamentally shaped by an interaction between an individual’s genetic traits and 78 

acquired/environmental effects.2,3 The chronological age of an individual is a particularly 79 

important benchmark in the assessment of paediatric populations, given that over 10% of children 80 

worldwide4 are affected by neurodevelopmental problems. 81 

Current predictors of brain age are built predominantly upon metrics of structural MRI 82 

morphometry such as cortical thickness, grey matter, white matter, and intracranial volumes2,3,5,6,7 83 

derived from large bio-banks of magnetic resonance imaging (MRI) scans. Across these studies, 84 

the key biomarker is defined as the difference between predicted brain age and chronological age.8 85 

Brain predicted age difference (PAD) has been associated with neurodegeneration and 86 

compromised neurological health in adults9,10 and autism spectrum disorder in children.11  87 

We propose the use of electroencephalography (EEG) as a basis of age prediction. The EEG's high 88 

temporal resolution enables the capture of subtle changes in neurophysiological function across 89 

dynamic brain states such as evoked responses, resting states and sleep providing valuable insights 90 

into typical and atypical maturation during neurodevelopment.12,13,14,15 Chromosomic and genetic 91 

alterations, such as those present in children diagnosed with Trisomy 21, Autism spectrum disorder 92 

or attention-deficit/hyperactivity disorder, affect brain function at the neuronal level.16,17,18 93 

Developing neurodevelopmental biomarkers that are associated with these cellular-level changes 94 

to brain functions could thus provide key actionable indicators that guide early intervention and 95 

personalisation of clinical care to ultimately impact long term outcomes.  96 
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Brain age predictors that track maturation, as measured by the EEG, are promising in paediatrics 97 

due to rapid functional changes that occur in concert with, or in parallel to, structural changes in 98 

the brain during childhood and adolescence19,20,21,22 unlike structural MRI which shows promise 99 

in brain age prediction but only captures spatial information. EEG (and fMRI) captures 100 

neurophysiological activity across space and time. Brain age prediction via these functional 101 

modalities is emerging23,24,25,26,27, but is currently limited to short acquisitions in controlled 102 

research settings or incomplete representation of the entire paediatric age range.2,3,6,7,8,28 103 

Establishing a “functional brain age” (FBA) in paediatric cohorts can, therefore, complement the 104 

array of behavioral assessments typically employed in clinical practice, enhancing the assessment 105 

of neurodevelopment. 106 

In this study, we charted the growth of brain function using an EEG-derived FBA. Machine 107 

learning methods applied to a large cohort of EEG recordings from children with typical 108 

development formed the basis of the FBA. We used light sleep (N1 and N2) due to the ubiquity 109 

and comparability of these neurophysiological states across childhood and tested the diagnostic 110 

potential of the FBA using a small cohort of children with atypical neurodevelopment.  111 

 112 

  113 
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METHODS 114 

Study Design 115 

The framework for predicting functional brain age (FBA) from sleep EEG is presented in Figure 116 

1. A FBA was developed using a residual neural network architecture (Res-NN). A ‘bag of 117 

features’ and Gaussian process regression (GPR) predictor of age was used to benchmark age 118 

methods. Our input for the FBA model consisted of 60 second epochs of EEG, where an FBA per 119 

recording was calculated as an average across multiple epochs extracted from a 10 or 15 minute 120 

segment. We developed the FBA on a primary training dataset (D1) which comprised 15 minutes 121 

of 18-channel EEGs from 1056 children recorded at the Helsinki University Children’s Hospital, 122 

Finland. We then validated our trained model on a dataset (D2) which comprised of 10 minutes of 123 

2-channel EEGs recorded from 723 children at Queensland Children’s Hospital, Brisbane, 124 

Australia.  125 

  126 
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127 
Figure 1 – Study design. a. EEG acquisition from routine sleep studies from 2 sites (D1 – Helsinki, n = 1056; and D2 128 

– Brisbane; n = 723). The development of a functional brain age (FBA) growth chart within a supervised learning 129 

framework. Single, 60 s EEG epochs per recording were used to form a preliminary estimate of FBA that was then 130 

averaged (median operation) across all available epochs within a 10-15 minute segment of EEG. Model evaluation 131 

(FBA) involved cross-validation procedures from the primary developmental dataset (D1) with external validation on 132 

an independently collected dataset (D2). Growth charts for D1, D2 and a combined D1+D2 dataset were computed. 133 

b. Distributions for training (D1) and validation (D2) datasets across age and the EEG channel montages of acquisition. 134 

Data consisted of 5 minute epochs of N1 sleep followed by 10 minute epochs of N2 sleep from 18 channels for D1, 135 

and 10 minute epochs of N2 sleep from 2 channels for D2. c. A trained Residual Neural Network (Res-NN) was our 136 

primary method of feature extraction for FBA prediction. Performance was benchmarked against a GPR model on a 137 

priori engineered EEG summary measures.29 d. Performance of the FBA was assessed via measures including the 138 

mean and weighted absolute error (MAE, wMAE) and predicted age differences (PAD = FBA minus chronological 139 

age). Effects of age, sex, and recording site were examined using statistical tests. The behaviour of the final trained 140 

Res-NN was explained using links between network activation, age, and engineered EEG features across sites. 141 

 142 

  143 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2023.07.07.548062doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.07.548062
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

Datasets. Our primary training dataset (referred hereto as D1) was collected from a convenience 144 

sample of EEGs collected at the Helsinki University Children’s Hospital in Helsinki, Finland.  145 

EEG was recorded using 10-20 electrode positions with an electrode on the vertex as an active 146 

reference (either Fz or Cz) using a Nicolet One EEG (Natus Medical Inc. Middleton, WI, USA). 147 

All EEG recordings were sampled at 250 Hz and the referential montage was saved in a 148 

pseudonymised EDF file format. A total of 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, 149 

C4, T4, T5, P3, Pz, P4, T6, O1, O2) were collected as part of the EEG; reference EEG electrodes 150 

were attached to the mastoid (A1/M1 and A2/M2). All children (aged between 1 month to 18 151 

years) with an EEG recorded between 2011 and 2016 were screened. EEG recordings in D1 were 152 

clinically reviewed to define normality of the record, where the montage of review was a standard 153 

longitudinal bipolar montage (double banana). The EEG record for D1 was re-reviewed by EEG 154 

technicians trained for the purpose (and approved by L.L). 155 

A total of 1056 children with typical neurodevelopment were available for analysis across the 18 156 

year age range (see Supplementary Table 1 for demographics and dataset comparisons). For D1, 157 

the reporting of sex was derived from the Finnish social security system where sex is medically 158 

defined. A 15 minute segment of EEG was extracted and saved in EDF format. The first 5 minutes 159 

of each segment consisted of N1 sleep and the remaining 10 minutes consisted of N2 sleep. The 160 

transition between N1 and N2 sleep was defined by the first occurrence of sleep spindles or K-161 

complexes30 (sleep was scored using a referential montage). These 15 minute segments may 162 

include very brief (paroxysmal) arousals31 that may typically disrupt physiological sleep in 163 

children but were not seen to corrupt the EEG due to their transient nature. Before undergoing a 164 

clinical EEG session, families were asked to wake up their child 2 to 4 hours earlier than their 165 

usual wake-up time, to ensure they would be able to fall asleep in the laboratory; however, 166 
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individual variations in sleep pressure were not measured. This early period of EEG comprising 167 

N1/N2 transitions was selected for FBA training.  168 

Our external validation dataset (referred hereto as D2) was collected from a convenience sample 169 

of polysomnography (PSG) studies from the Queensland Children’s Hospital (QCH) in Brisbane, 170 

Australia (Respiratory and Sleep Medicine Department), reviewed between 2014 and 2021. PSG 171 

was acquired via the EMBLA N7000 (Natus Neuro, Middleton, WI, USA). For D2, a total of 3 172 

channels were recorded overnight (F4, C4 and O2) as part of the PSG. EEG was recorded using 173 

10-20 electrode positions and recordings were sampled at 200 Hz or 500 Hz; reference EEG 174 

electrodes were attached to the mastoid (A1/M1 and A2/M2).  175 

Following screening of D2 data, a total of 723 children with typical neurodevelopment were 176 

available for analysis across the 18 year age range based on normal outcomes following PSG 177 

review (see Supplementary Table 1 for demographics and dataset comparisons). We also 178 

identified a cohort of children with Trisomy 21 (n = 40) in D2 whom had normal outcomes 179 

following PSG review, to examine group-wise differences in FBA. For all D2 data, the reporting 180 

of sex was obtained from the Queensland Health record, which is determined by the parent or 181 

guardian of the child at the initial referral and visit to the Public Health Service.  182 

As per D1, all sleep stages were seen and scored by a clinician according to the American Academy 183 

of Sleep Medicine (AASM) guidelines using a referential montage. For D2, we limited our EEG 184 

analysis to the first 10 minute period of N2 sleep only due to limited availability of N1 in D2 data 185 

(N1 was only present in 45/723 PSGs). The age of children across both D1 and D2 was resolved 186 

in months with Figure 2 summarising the screening flowchart for these datasets. 187 

 188 

 189 

 190 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2023.07.07.548062doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.07.548062
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

191 
Figure 2 - Screening flowchart for datasets used to train functional brain age algorithms. For D1, 1056 children with 192 

an additional 4 year clinical follow-up were included, which enabled us to identify any further neurological diagnoses 193 

that may exclude them from further analyses. A final technical check was performed to identify outliers due to 194 

significant artefacts, some of which could be removed by re-export of the EDF format. For D2, 723 children with a 195 

diagnostic label of ‘normal sleep study’ and no underlying neurodevelopmental diagnoses were included. 196 

 197 

 198 

Processing the EEG with machine learning tools 199 

 200 

Data processing. All EEG data were zero-phase filtered in both forward and reverse directions 201 

with an infinite impulse response, bandpass, 4th order Butterworth filter with a lower cutoff of 0.5 202 

Hz and an upper cutoff of 30 Hz (GPR) or 15 Hz (Res-NN). EEG data were resampled to 64 Hz 203 

and 32 Hz as inputs to the feature extraction components of the GPR and residual network 204 

regression, respectively. Residual network regression approaches employed EEG data inputs at a 205 

lower sampling rate to reduce the size of training data and maximise computational efficiency, 206 

with several qualitative tests performed to ensure that important aspects of sleep EEG were 207 

retained (e.g. delta and alpha rhythms in sleep). Our feature-based methods were examined at a 208 

higher sampling frequency and ensured that higher frequency components of the EEG were also 209 

captured across age. For D1, a bipolar montage was computed from the monopolar/referential EEG 210 
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data resulting in 18 EEG derivations/channels: Fp2-F4, F4-C4, C4-P4, P4-O2, Fp1-F3, F3-C3, C3-211 

P3, P3-O1, Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5, T5-O1, Fz-Cz, and Cz-Pz.  212 

Further, each 15 minute segment of EEG was divided into 60 s epochs for analysis. Epochs were 213 

extracted with a 30 s overlap (29 epochs per recording). We assumed that 60 s was sufficiently 214 

long to capture important EEG signal characteristics and short to reduce any effects of non-215 

stationarity in the EEG while generating a sufficiently large and diverse set for model training.  216 

For D2, a simplified bipolar derivation of the EEG; i.e., F4–C4, C4–O2 was used due to the limited 217 

availability of channels. Each 10 minute EEG recording in D2 was segmented into 60 s epochs 218 

with a 30 s overlap (19 epochs per recording) and used for training and testing. 219 

At the end of these data curation steps, we then developed a residual neural network regression 220 

(Res-NN) for age prediction.32 We also used GPR model as a benchmark.33  221 

Res-NN. EEG epochs were first resampled to 32 Hz (resampling included anti-aliasing filtering).  222 

We added variability to the residual neural network by changing the temporal filter width (FW), 223 

filter channel depth (FD) and filter number (FN) within the convolutional layers as well as 224 

increasing the network depth (ND). We used the file generate_networks_v2.m to generate 225 

networks with different configurations and architectures (see Supplementary Figure 1; code 226 

provided in our GitHub repository, details in Data sharing statement). 227 

Several parameters specific to the definition of these neural network architectures were selected 228 

during each training iteration. In general, parameters defined the filter size (temporal width and 229 

channel depth), filter number and network depth. Training options such as solver type and mini-230 

batch size were selected based on preliminary analysis (see Supplementary Figures 2 to 9), and 231 

an alternate architecture based on inception layers was also evaluated.34  232 
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GPR. This approach combined several summary measures of the EEG features to form a prediction 233 

of age. We chose GPR due to its consistent performance across various imaging modalities in 234 

estimating brain age following feature extraction due to its capability to model the underlying 235 

latent distribution and quantifying any associated uncertainty to provide probabilistic predictions 236 

from data. 2,3,35,36,37 All EEG epochs were resampled to 64 Hz (resampling included anti-aliasing 237 

filtering). We used a total of 32 features from the EEG. Of these, 7 features were general measures 238 

of EEG amplitude activity, 12 features were frequency dependent representations present within 239 

the EEG, and the remaining 13 features were further computations of information content drawn 240 

from amplitude, frequency, and entropy based transformations of the EEG signal. A descriptor of 241 

the EEG features used is listed in Supplementary Table 2 and shown in Supplementary Figure 242 

10; EEG feature extractor available in our GitHub repository, details in Data sharing statement). 243 

For both D1 and D2, the set of 32 EEG features were estimated for each available channel and 244 

then averaged across channels (with a median operation used). For training, each EEG recording 245 

was, therefore, summarised by a C-by-M-by-32 feature matrix (where C was the number of 246 

channels, M was 29 epochs per recording for D1 and 19 epochs per recording for D2, and there 247 

were 32 features per epoch). For D1, the full feature set for 1056 children thus resulted in 18 248 

channels by 29 epochs by 32 features, which were then averaged (median) across channels and 249 

epochs resulting in a 1056 by 32 feature matrix. The same procedure was applied to the reduced 250 

channel montage of D1 (i.e. 2 channel montage) and for D2 EEG data, which resulted in a 723 by 251 

32 feature matrix. Similar to the Res-NN, we expected that temporal averaging of FBA estimates 252 

per child across all available epochs. A combinatorial function (shown in Figure 1) was used to 253 

determine the final brain age estimate. This was achieved by first assuming a Gaussian prior (GP) 254 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2023.07.07.548062doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.07.548062
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

where 𝑃(𝑓 |𝑋) = GP(𝑓|𝜇, 𝐾) denotes the dependence of 𝑓 (i.e. FBA) on 𝑋 (i.e. age) across all 255 

observed data points and µ and 𝐾 represent the mean function and kernel parameters, respectively.  256 

 257 

Performance assessment, cross-validation, optimisation, and independent validation. 258 

 259 

Performance assessment: We utilised two commonly used measures to compare the predicted age 260 

to actual age and, therefore, define the accuracy of prediction: mean absolute error and root mean 261 

square error. The root mean square error (RMSE, Eq.1) between predicted age per recording and 262 

actual age was defined as 263 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑎𝑛 − 𝑏𝑛)2

∀𝑛   (Eq.1) 264 

where 𝑎𝑛 is the age of the nth EEG recording in years, 𝑏𝑛is the median predicted age across all 265 

extracted EEG epochs per recording, and N is the number of EEG recordings (1056 for D1 and 266 

723 for D2). The mean absolute error (MAE, Eq.2) was defined as: 267 

 268 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑎𝑛 − 𝑏𝑛|∀𝑛   (Eq.2) 269 

 270 

We supported these performance measures with weighted MAE. The wMAE is a variation of the 271 

MAE that normalises across the distribution of the data with respect to age; i.e., an approximation 272 

of the MAE for a cohort with uniformly distributed age. Based on the age distribution and sample 273 

sizes of our cohorts, we defined it as the average MAE across age binned averages of the MAE, 274 

specifying a bin width = 2 years, ensuring that enough samples were represented in each age bin. 275 

We also computed the relative error with respect to age, by calculating the percentage change 276 

between predicted age (FBA) and chronological age. 277 

Cross-validation, optimisation and training: We used D1 as our primary training set for 278 

developing an FBA. To evaluate the accuracy of prediction, we used 10-fold cross-validation 279 
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where the train/test split of EEG recordings was 90% for training and 10% for testing. This process 280 

was repeated 10 times so that all EEG recordings were excluded from training for at least one 281 

iteration (fold).  282 

For Res-NN, due to computational limits, initial experiments of randomly selected combinations 283 

of network architectures were used to select several model parameters based on maximum 284 

regression accuracy (minimum RMSE) on 10-fold cross-validation outputs. These parameters 285 

included training solver and mini-batch size. It was assumed that the selection of these parameters 286 

was less prone to overfitting than internal network weights from variability in architecture. 287 

Architecture parameters were selected using an internal 10-fold cross-validation (9:1 training data 288 

split). We used a small fixed grid approach and selected the parameter combination (filter width, 289 

filter depth, filter number, network depth) that minimised the RMSE. A single optimal architecture 290 

was defined by averaging internal validation RMSE across all 10 training iterations (a point of 291 

data leakage assumed to result in negligible overfitting). Remaining training hyperparameters were 292 

not optimised: initial learning rate was 0.0001 for training for initial selection and nested 293 

architecture selection, training drop factor was 0.1 every 8 epochs, maximum number of training 294 

iterations was 50, 10% of recordings within the training set were used for internal validation, and 295 

if no changes in RMSE on the validation set were detected within 6 training iterations stopped 296 

training. The squared gradient decay factor was 0.99 for the ADAM solver. Data extraction and 297 

network implementation and training was performed in MATLAB (The MathWorks Inc, Natick, 298 

Massachusetts, USA: Deep Learning Toolbox; R2020a or R2021a with GTX 1070 or 1080 299 

graphics cards, for dataset D1 and datasets D2 and D1+D2, respectively). On average, training 300 

time per fold for D1 with an 18 channel bipolar montage was 16.4 minutes; for 2-channel montages 301 

for either D1 or D2 training time per fold on average was 4 minutes. 302 
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To explore how the EEG signal was represented by the neural network, we extracted activations 303 

of network layers at several stages of the deep learning network when trained and tested on all 304 

available data (for this exploratory analysis no cross-validation was used). Here, the optimal 305 

network was composed of 63 layers, where an early layer output was taken at layer 6, the middle 306 

layer output was taken at layer 29 and the late layer output was extracted at layer 61. A Uniform 307 

Manifold Approximation and Project method (UMAP38) was used to reduce the high-dimensional 308 

network activation space into a lower dimensional 2D space (UMAP1, UMAP2), wherein the 309 

output space was coded according to age. Visualisations via UMAP allowed us to qualitatively 310 

assess how the activations of a network layer cluster with respect to age (see Figure 4b). To 311 

quantify the association between UMAP1 and UMAP2 dimensions and age, we used GPR with 312 

UMAP1 and UMAP2 as inputs to predict age (via 10-fold cross-validation). The accuracy of age 313 

prediction for each network layer was then derived. We used the same approach to track how 314 

UMAP representations of network activations were linked to individual features of the EEG 315 

(Supplementary Figure 11).  316 

For GPR, hyperparameters were selected using Bayesian optimisation within a nested cross-317 

validation and included kernel function (e.g. rational quadratic) and sigma values. Shapley values 318 

39
 were also computed to quantify each feature in terms of its contribution to the overall prediction 319 

of FBA (Figure 5c), extending on the notion of linear model predictions. 320 

Statistics 321 

Inclusion/exclusion criteria. We included EEG recordings of children who exhibited normal 322 

ranges of background activity for their age and met the criteria of being typically developing based 323 

on neurodevelopmental and/or physical outcomes, including confirmation of typical development 324 

at a four-year clinical follow up. Children with EEGs showing seizure-related or aberrant 325 
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paroxysmal discharges were excluded. Incomplete data caused by technical difficulties were also 326 

excluded. Additionally, children with diagnoses of neurological diseases (including epilepsy), 327 

sleep disorders, psychiatric disorders, brain-acting medications, presence of tumors/cancer, 328 

congenital and/or perinatal disorders, and malformations were excluded. Children with 329 

neurodevelopmental and/or neurodegenerative conditions such as Autism spectrum disorder, 330 

Duchenne Muscular dystrophy, Spina bifida, Spinal muscular atrophy, Trisomy 21 were excluded. 331 

Lastly, children with seizure activity or central sleep apnea events higher than 5 events per hour 332 

were also excluded. If multiple recordings were collected in the same children, only one time point 333 

was selected based on age distribution of the larger cohort. Therefore, each child in D1 (and D2) 334 

only had one EEG recording that was subsequently used for analysis. Lastly, EEGs with significant 335 

artefact identified via visual review and computational analysis of the data (e.g. excessively high 336 

mean amplitudes, kurtosis of amplitude envelope, and Hjorth parameters for age) were also 337 

excluded. 338 

As both datasets originated from large convenience samples, sample size calculations were not 339 

performed.  340 

FBA accuracy testing. We first evaluated the prediction accuracy of FBA between Res-NN and 341 

GPR models. The key variable used in this analysis was the residual error — also referred to as 342 

the predicted age difference, PAD (the difference in years between the FBA and chronological 343 

age). When comparing between age estimators (Res-NN, GPR) with various feature subsets and 344 

mean cohort age), we used a t-test for paired samples with absolute PAD as the input where our 345 

null hypothesis was that the absolute PAD would not be different between Res-NN and 346 

comparative estimator (as we used simulated data to evaluate an estimator based on head 347 
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circumference we use a t-test for unpaired samples). We also estimated effect size using Cohen’s 348 

D (for paired and unpaired samples as necessary). 349 

We then analyzed potential confounding effects of age and sex on PAD using multiple linear 350 

regression. Here, our multiple regression models for D1 and D2 tested potential effects of sex and 351 

age (Eq.3).  352 

𝑃𝐴𝐷 ~ 𝛽0 + 𝛽1𝑎𝑔𝑒 + 𝛽2𝑠𝑒𝑥 +  𝛽1𝑎𝑔𝑒 ∗ 𝑠𝑒𝑥 +  𝛽1𝑎𝑔𝑒2  (Eq.3) 353 

 354 

We assessed the performance of the FBA across spatial and temporal combinations of the EEG. 355 

This included examining changes in prediction accuracy for limited 2-channel FBAs based on 356 

bilateral channels of the bipolar montage. A FBA was trained and tested for each bilateral channel 357 

to examine the association between brain region and FBA accuracy. A Kruskal-Wallis test was 358 

used to determine if absolute PAD was different in groups related to training and testing location 359 

(9 bilateral groups: Fp1-F3/Fp2-F4, F3-C3/F4-C4, C3-P3/C4-P4, P3-O1/P4-O2, Fp1-F7/Fp2-F8,  360 

F7-T3/F8-T4, T3-T5/T4-T6, T5-O1/T6-O2, Fz-Cz/Cz-Pz ). As a further adversarial test, we tested 361 

variations of channel laterality and channel location in 18 channel D1 data to gauge changes in 362 

FBA accuracy with respect to the spatial location of EEG channels. Potential differences in channel 363 

laterality were assessed by swapping left hemisphere EEG channels with right hemisphere EEG 364 

channels prior to training and testing. The same procedure was used to assess differences in 365 

anteroposterior directions, where anteriorly positioned (e.g. frontal) electrodes were swapped with 366 

posteriorly positioned electrodes (i.e. parietal, occipital) prior to training and testing. We also 367 

examined the temporal variation in FBA across all available epochs, i.e., from the start to the end 368 

of the recording period to observe optimal times to evaluate FBAs during N1 to N2 transitions.   369 
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We also performed additional sleep stage-specific tests to ascertain the performance accuracy of 370 

FBAs across wake, N2, N3 and REM sleep. Using Res-NN and GPR models, we estimated FBAs 371 

for all available EEG epochs for children in D2 (based on availability of sleep states). Age 372 

prediction within N2 sleep states were found to be the most accurate within our data 373 

(Supplementary Table 3). 374 

Validation: We re-trained models using all available data in D1 and performed an out-of-sample 375 

validation on EEG data from D2. As D2 contained a limited number of recording electrodes, we 376 

used the same electrodes when training on D1 in a bipolar configuration (F4-C4 and C4-O2). 377 

Furthermore, only periods of N2 of D1 (10 minute segments) were included in the training dataset. 378 

We compared the wMAE between predicted and chronological age from the 10-fold cross-379 

validation results from D1 to D2 to determine if the accuracy of the FBA trained on D1 was 380 

preserved when applied to D2. All validation analyses performed for the Res-NN model were 381 

repeated for the GPR model (see Supplementary Figure 12 and Supplementary Figure 14).  382 

To test site differences in EEG recordings (Figure 5c), we compared the distribution of EEG 383 

feature values using Kolmogorov-Smirnov tests corrected for multiple comparisons (Bonferroni’s 384 

method). We used a small random sampling of EEG features within several age defined bins (bin 385 

width was 1 year) to minimise the effect of age on feature distribution. Here, differences between 386 

EEG features per site and across age were denoted by the number of times the null hypothesis 387 

(EEG features between sites were from the same distribution) was rejected across 1000 samplings 388 

of each bin (n = 30 samples without replacement per feature per bin). The comparisons were also 389 

encoded to delineate if the distributional difference in EEG feature resulted in values greater than 390 

expected (older appearing) or less than expected (younger appearing) when comparing D1 to D2. 391 

At an acquisition level, we also estimated the total (summed) band power of the raw EEG signal, 392 
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between 70 and 80 Hz, using Welch’s power density spectral estimate, to determine whether 393 

significant differences in the high frequency noise floor were present across sites (unpaired t-test).  394 

Growth Charts: We generated growth charts for the FBA based on a limited 2-channel EEG using 395 

a combined D1 and D2 dataset. Centiles were estimated using generalised additive models with a 396 

protocol similar to the World Health Organization, WHO 40 child growth charts for height and 397 

weight for age. Here, we used the GAMLSS package 41 in RStudio (version 1.4.1717). These 398 

centiles were optimised by a Box-Cox-power exponential distribution with a cubic spline 399 

smoothing function, with distribution GAMLSS parameters sigma set as a cubic spline fit over age 400 

(df = 3) with nu = 1 and tau = 1. PAD was adjusted by significant factors uncovered during 401 

regression analysis (Eq 3.) to ensure that the FBA values presented in the growth chart were bias-402 

free (i.e., accounting for confounding effects), as per best practices in brain age analyses 3,8,42,43. 403 

The “adjusted PAD” was used for subsequent group-based assessments alongside comparisons of 404 

centile-based values (which are inherently age-adjusted). Based on age corrected FBA values, 405 

centiles were estimated at the 3rd, 15th, 50th, 85th and 97th centiles as per WHO guidelines. 406 

We also compared the performance of our FBA chart with paediatric head circumference and 407 

height measures. Using respective reference centiles across the paediatric ranges 44,45, we 408 

generated 1000 simulated training and testing cohorts from similar distributions of age, sex and 409 

cohort size to the combined D1 and D2 dataset. Using 10-fold cross-validation, we then trained 410 

and tested a GPR model with head circumference or height as input, and evaluated the results using 411 

MAE and wMAE.  412 

Statistical tests were chosen on the basis of normality via a Lilliefors test46, where appropriate. If 413 

normality was met, group differences were examined by unpaired or paired t-tests.47 Evaluations 414 

of PAD and centiles to detect altered neurodevelopment as a ‘proof-of-concept’ were tested using 415 
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t-tests, where the null hypothesis tested was that children with Trisomy 21 will have a PAD that is 416 

not different from children with typical neurodevelopment. Where appropriate, effect sizes in our 417 

study were reported using Cohen's d. All statistical tests employed for analyses were two-sided 418 

and the level of significance was 0.05.  419 

Ethics: The human research ethics committee at QIMR Berghofer Medical Research Institute 420 

approved the study (No. P3736, P3727). For D1, the Institutional Research Review Board at 421 

Helsinki and Uusimaa Hospital district approved the study (HUS/244/2021) including waiver of 422 

consent due to the retrospective collection of data acquired as part of standard of care. Ethics 423 

approval for the use of D2 and children with Trisomy 21 was granted by Children’s Health 424 

Queensland (LNR/2021/QCHQ/73595) including waiver of consent approved under the Public 425 

Health Act 2005 (PHA 73595) to analyse the retrospective cohorts.  426 

Role of funders: Funding agencies were not involved in designing and conducting the study, 427 

collecting, managing, analyzing, or interpreting the data, preparing, reviewing, or approving the 428 

manuscript, or deciding to submit the manuscript for publication. 429 

  430 
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RESULTS  431 

 432 

Functional brain age.  433 

The FBA generated by the Res-NN was the most accurate predictor of chronological age (Figure 434 

3a-b; MAE = 0.56 years, weighted MAE = 0.85 years, R2  = 0.96 and RMSE = 0.82 years; 10 fold 435 

cross-validation on D1, n = 1056), providing relatively uniform age predictions across the age 436 

range, with a median deviation of 10% from chronological age (see Figure 4a). Our comparative 437 

benchmarking of the Res-NN against a GPR approach and physical growth measures indicated 438 

that the neural network architecture exceeded (i) the age estimation accuracy of a GPR model 439 

(Cohen’s d = 0.31, p = 4.2 x 10-23, t-statistic = 10.1, paired t-test) which had a MAE of 0.79 years 440 

(Supplementary Figure 12c, d; wMAE = 1.06 years, R2  = 0.93 and RMSE = 1.09 years; see also 441 

Supplementary Figure 12a, b for comparison to Res-NN); (ii) the highest-performing individual 442 

EEG feature predictor (5th percentile of EEG amplitude; MAE = 1.28 years, wMAE = 1.55 years, 443 

R2 = 0.82 and RMSE = 1.61 years, Cohen’s d = 0.59, p = 1.1 x 10-69, t-statistic = 19, paired t-test; 444 

Supplementary Table 2); iii) a prediction based on head circumference (estimated MAE = 1.72 445 

years, wMAE = 2.54 years, Cohen’s d = 1.04, p =2.4 x 10-143, t-statistic = 27, unpaired t-test – see 446 

Methods for details); and iv) a prediction based on the mean age (MAE = 3.50 years, wMAE = 447 

3.90 years, Cohen’s d = 1.3, p = 1.5 x 10-266, t-statistic = 40.5, paired t-test; n.b. this was performed 448 

to determine an upper bound for MAE based on the age distribution of the cohort).  449 

  450 
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 451 

452 
Figure 3 – Functional brain age estimated in children and performance in training dataset (D1, n = 1056). a. Res-453 

NN model (R2=0.96, MAE=0.56 years). The dashed line indicates an error bound of ±1.5 years. Individual EEG 454 

recordings (blue filled circles) are plotted across ages. b. The residual error (predicted age difference; PAD) represents 455 

the difference between the FBA measure and chronological age of an individual, in years.  456 

 457 

FBA model interpretability. 458 

To ascertain the presence of any bias in the data, we first examined the effects of age and sex on 459 

the FBA. The residual error between FBA and chronological age (referred to here as the predicted 460 

age difference or PAD) indicated a bias in FBA proportional to age (β = -0.036, p = 3.1 x 10-5, n 461 

= 1056, df = 1052). There were no significant differences in PAD between males and females 462 

(Cohen’s d = 0.04, p = 0.41, t-statistic = 0.83, unpaired t-test, n = 1056, df = 1054). Interactions 463 

between age and sex did not confound the relationship between PAD and age but a significant 464 

interaction with age was observed; PAD decreased with age (PAD ~ sex: β = 0.036, p = 0.61; PAD 465 

~ age*sex: β = 0.009, p = 0.43, PAD ~ age2: β =-0.011, p = 2.6 x 10-14, n = 1056, df = 1054).  466 

We observed that early layers of network activations showed distinct age related clustering (Figure 467 

1c; see also Supplementary Figure 1 for general architectures) a pattern that becomes 468 

increasingly resolved with network depth (Figure 4b). We also observed that network activations 469 

were related to a range of EEG amplitude, frequency and entropy-based features. We found that 470 

EEG features, used in our GPR predictor, were highly correlated with activations present across 471 
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early, middle and late stages of the NN architecture (median R2 = 0.50, IQR = 0.32, across all 32 472 

features), suggesting that the Res-NN architecture captures several fundamental time and 473 

frequency domain characteristics of the EEG signal that are measureable with independent 474 

summary measures within its training phases (see Supplementary Figure 8 and Supplementary 475 

Figure 9. Additionally, our GPR predictor derived from all 32 EEG features (R2 = 0.93, MAE = 476 

0.79 years, wMAE = 1.06 years), consistently outperformed GPR predictors derived from a subset 477 

of features: only amplitude features (Feature IDs 1 to 7: R2 = 0.85, MAE = 1.10 years, wMAE = 478 

1.30 years), only frequency features (Feature IDs 8 to 19: R2 = 0.90, MAE = 0.94 years, wMAE = 479 

1.20 years) and only entropy-based EEG measures (Feature IDs 20 to 32: R2 = 0.91, MAE = 0.90 480 

years, wMAE = 1.10 years). These relationships suggest that EEG features can be viewed as data 481 

surrogates that track the behaviour of neural network activations. 482 

In addition to these tests, we also observed that EEG electrode location on the scalp and the timing 483 

of an epoch during an EEG segment (i.e., with respect to transitions between N1 and N2 sleep) 484 

influenced the FBA. FBA accuracy was significantly affected by the location of training electrode 485 

(p = 1.4 x 10-31, Kruskal-Wallis test). The accuracy of a 2-channel FBA was higher for posterior 486 

channels (Figure 4c), e.g. central, occipital (average MAE = 0.73 years), whereas anterior 487 

channels (e.g. frontal) had lower accuracies (average MAE = 0.83 years). Applying the predictor 488 

to data with swapped anterior and posterior channel positions resulted in a reduced performance 489 

accuracy (MAE = 1.11 years) whereas data with left hemisphere channels swapped with right 490 

hemisphere channels did not alter overall performance accuracy (MAE = 0.56 years). Temporally, 491 

the accuracy of the FBA was highest during the transition between N1 and N2 sleep states (Figure 492 

4d; MAE = 0.61 years). Taken together, averaging FBA estimates across time and space improved 493 

overall accuracy.  494 
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495 
Figure 4 – Interpreting the EEG-based FBA. a. The mean absolute error (MAE) of the Res-NN (black circles, left 496 

axis) across 2 yearly age bins and the relative accuracy of PAD (in blue, right axis) across 2 yearly age bins. For both 497 

plots, the mean and standard error of the mean (SEM) are plotted to reflect the sample distribution within age bins. b. 498 

A lower-dimensional representation of the Res-NN network generated by UMAP on 18-channel D1 data. The network 499 

is composed of 63 layers represented by early (layer 6), middle (layer 29) and late stages (layer 61). Here, the Res-500 

NN of the EEG clusters into younger age groups (blue) and older age groups (red) throughout the training phase, 501 

wMAE was calculated using UMAP values as predictors (no cross-validation). c. The performance accuracy of the 502 

Res-NN model (MAE, years) following individual cross-validation per EEG channels. Colors are ordered by anterior 503 

to posterior channel derivations, with frontopolar (Fp, in yellow), frontotemporal (FT, in teal), central (C in light blue) 504 

and occipital channels (in dark blue). Average MAEs are shown with the standard deviation shown as error bars. d. 505 

The temporal change in MAE of epoch sequences obtained sequentially from N1 (light pink) and N2 (light purple) 506 

indicated that the lowest MAEs were observed during a transition between sleep N1 and N2 stages. The MAE is shown 507 

with error bars indicating the standard deviation.  508 
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Validation.  509 

We then validated the FBA using a secondary dataset (D2) composed of 723 children recorded at 510 

the Queensland Children’s Hospital, Australia. To homogenise datasets across the different 511 

recording configurations in D1 and D2, we re-trained D1 on a 2-channel bipolar montage (F4-C4, 512 

C4-O2) and selected only periods of N2 sleep. In applying this retrained model to the validation 513 

set (trained D1 2-channel, tested D2 2-channel), the MAE of the FBA was significantly higher 514 

(Figure 5a; MAE = 2.17 years; wMAE = 2.27 years; R2 = 0.66; and RMSE = 2.05 years, Cohen’s 515 

d = 0.8, p = 2.4 x 10-50, t-statistic = 16.6, unpaired t-test) when compared to 2-channel models 516 

trained and tested on D1 and D2 individually (Table 1 for Res-NN, Supplementary Table 4 for 517 

GPR). Notably, the validation performance still outperformed the estimated accuracy of simulated 518 

head circumference based models (wMAE = 2.54 years).  519 

The decrease in FBA performance was attributed to three key site differences: age distribution, 520 

number of EEG channels, and site-specific differences of the EEG across age. The effect of age 521 

distribution between sites (Table 1) contributed accounted for an approximate net increase of 0.24 522 

years in the MAE, when comparing MAE to wMAE from the primary training data (D1 cross-523 

validation) versus external validation data (D2 cross-validation). Similarly, a reduction in the 524 

number of EEG channels from 18 to 2 resulted in an increase of 0.37 years in the wMAE (Table 525 

1). The effectiveness of the Res-NN in capturing fundamental characteristics of the EEG signal 526 

(Figure 5b), corresponded well to age-specific differences in individual summary EEG features 527 

were observed across sites (Figure 5c and d). Approximately 38% of EEG features/age bins 528 

combinations differed significantly across age and sites with 194 out of 512 hypothesis tests 529 

meeting significance at p<0.05 following correction for multiple comparisons. Additionally, we 530 

found noteworthy distinctions in spectral estimates of the EEG recording noise floor between sites, 531 
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whereby EEG recordings in D1 exhibited a higher noise floor compared to D2 (70 to 80 Hz band 532 

power; Cohen’s d = 0.37, p = 1.7 x 10-12, t-statistic = 7.1, unpaired t-test). Training a FBA model 533 

constructed from a combined dataset D1 and D2 considerably improved overall prediction 534 

accuracy with a MAE of 1.04 years for D2 (n = 723) suggesting site specific differences were 535 

incorporated into the model. Supplementary Table 5 summarises model performances across test 536 

folds for all datasets, respectively. 537 

538 
Figure 5 - Validation of the FBA across sites. a. Differences in MAE between D1 (n = 1056) and D2: cross-validation 539 

(train and test D1 CrossVal, indicated by blue circles) versus external validation on D2 (train D1 test D2, red circles). 540 

The MAE across age is higher when testing D1’s model on D2 (n = 723). The MAE is shown with error bars indicating 541 

the standard deviation. b. Mapping EEG features onto the late layer network UMAP (layer 61) derived from 2-channel 542 

D1 data; here we show the EEG median amplitude as an exemplar. The R2 value indicates the strength of correlation 543 

between UMAP values and feature value, based on a GPR prediction. c. Differences between EEG features and site 544 

across age. EEG features (IDs 1 to 32, see also Supplementary Table 2 for feature names) were ordered by Shapley 545 

values (highest to lowest) to indicate the relative contribution of the feature to the overall model. Red and blue colors 546 

indicate significant age biases following multiple comparisons correction (Bonferroni’s method). A positive age bias 547 
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percentage (red) indicates EEG feature values being ‘older’ in D2 compared to D1 and a negative age bias percentage 548 

(blue) indicates EEG feature values being ‘younger’ in D2 compared to D1. d. Fractal dimension (feature ID 21) and 549 

relative delta power (0.5 to 2 Hz, feature ID 13) are exemplar EEG features that show site related differences (D1=blue; 550 

D2=maroon). 551 

 552 

Functional growth charts. 553 

We next combined both datasets (D1 + D2) to generate a FBA ‘growth chart’, wherein generalised 554 

additive models were applied to construct age-appropriate centiles 40,48. The resultant FBA had an 555 

MAE of 1.09 years with a wMAE of 1.51 years, an R2 of 0.88 and an RMSE of 1.41 years (Figure 556 

6a; see also Table 1). Further, FBA growth charts based on an age-stratification of infants (0 to 2 557 

years; MAE = 0.40 years) and children (2 to 18 years; MAE = 1.34 years) indicated a high degree 558 

of accuracy relative to their respective age group (Supplementary Figure 13).  559 

The practical utility of an FBA is that it enables stratification of children, by quantifying brain 560 

functions associated with a child’s diagnostic status and underlying neurodevelopmental issues. 561 

To demonstrate this, we compared typically developing children from D2 with an additional small 562 

cohort of children from the same site whom were diagnosed with Trisomy 21 (n = 40; 29/40 were 563 

recorded at less than 7 years of age). The PAD was significantly lower in children with Trisomy 564 

21, despite having normal sleep studies, than typically developing children in D2 (PAD adjusted 565 

for age effect: p = 5.3 x 10-4, t-statistic = 3.5, unpaired t-test, n = 763, df = 761; centile-based: 566 

Cohen’s d = 0.36, p = 0.028, t-statistic = 3.5, unpaired t-test, n = 763, df = 761; Figure 6b). This 567 

finding of significantly lower PAD was consistent across other combinations of cohorts: (i) 568 

typically developing children from D1 only versus children with Trisomy 21 (p = 8.7 x 10-3, t-569 

statistic = 2.6, unpaired t-test, df = 1094) and (ii) typically developing children from D1 + D2 570 

versus children with Trisomy 21 (p = 8.4 x 10-3, t-statistic = 2.6, unpaired t-test, df = 1817). No 571 

significant differences in age and sex were found in children with Trisomy 21 (p = 0.61, t-statistic 572 
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= 0.5, unpaired t-test). Supplementary Table 6 summarises all further comparisons including 573 

effect sizes and sex differences. The observations suggest that at the group level, deviant 574 

neurodevelopmental trajectories in children with Trisomy 21 translate to delayed maturation of 575 

their cortical function.  576 

Finally, we benchmarked our FBA model against conventional growth chart trajectories of head 577 

circumference and height in children.44,45 Here, the maximal variation of age for the FBA 578 

(difference between 3rd and 97th centiles) falls between head circumference and height for age for 579 

a simulated cohort with similar age and sex demographics to D1 and D2 combined (Figure 6c). 580 

This indicates that the variation in FBA, for a typically developing cohort, as per our estimated 581 

centiles, are relatively smaller for younger children in comparison to larger variations for children 582 

above 10 years of age; a trajectory that is generally observable in both charts based on 583 

anthropometric and neuroimaging measures across the lifespan.5,6,44,45 This variation is also likely 584 

attributed to the distribution of age presented in D1 + D2, where samples of adolescents only 585 

account for 20% of the combined dataset. Our FBA growth chart thus exhibits comparable age 586 

variability to that of widely-used physical growth charts. Code for converting EEG into FBA and 587 

centiles are available (details in Data sharing statement). 588 

  589 
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590 
Figure 6 – The functional brain age (FBA) growth chart derived from cross-validation of a combination of D1 and 591 

D2 datasets. a. The chart is based on the FBA derived from the Res-NN model. Translucent colored triangles represent 592 

individual EEG recordings from D1 (blue) and D2 (red) datasets. The 3rd (red), 15th (yellow), 50th (green), 85th (purple) 593 

and 97th (blue) centiles are indicated. Children with Trisomy 21 (black dots) have been plotted alongside D1 (blue) 594 

and D2 (pink) children. b. Differences in relative PAD between children with typically developing neurodevelopment 595 

and children with Trisomy 21. Significance values (p < 0.05) were determined by conducting an unpaired t-test 596 

between groups, where all data was checked for normality. Typically developing groups (n = 723; blue) and Trisomy 597 

groups (n = 40; pink) from D2 are plotted as violin plots, with the median (black line) and interquartile ranges 598 

(rectangles) shown, c. Variation in paediatric predictors of age. The variation (in years) represents the difference 599 

between the 97th and 3rd centiles across age for the FBA (in blue), head circumference (HC, in red) and height (in 600 

green). HC and Height predictors were simulated with the same age distribution as the combined D1 and D2 dataset. 601 

 602 

  603 
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Table 1 – Overall performance of FBA across datasets. The performances of the FBA, using a Res-NN 604 

model, across all training, test, and combined datasets. R2, RMSE, MAE, and wMAE are shown. CI is 605 

confidence interval, aonly N2 from D1 used, b10-fold cross-validation.  606 

 607 

Train 

# channels, 

# recordings,     

# epochs 

Test 

# channels, 

# recordings,     

# epochs 

R2  

RMSE  

(in years; 

95% CI)) 

MAE  

(in years; 95% 

CI) 

wMAE  

(in years; 

95% CI) 

D1 

19, 1056, 

30624 

D1b  

19, 1056, 

30624 0.96 

0.82  

(0.78 - 0.90) 

0.56  

(0.52 - 0.59) 

0.85  

(0.69 - 1.02) 

D1a 

2, 1056, 

20064 

D1a,b  

2, 1056, 

20064 0.93 

1.10  

(1.08 - 1.26) 

0.77  

(0.72 – 0.82) 

1.22 

(0.96 – 1.48) 

D1a 

2, 1056, 

20064 

D2 

2, 723,  

13737  0.66 

2.76  

(2.61 - 2.89) 

2.18  

(2.05 - 2.29) 

2.27  

(1.90 - 2.65) 

D2 
2, 723,  

13737 

D2b  

2, 723,  

13737 0.78 

1.53  

(1.72 - 1.91) 

1.45  

(1.37 - 1.53) 

1.66  

(1.37 - 1.96) 

D1a +D2 

2, 1779, 

33801 

D1a+D2b 

2, 1779, 

33801 0.88 

1.41  

(1.49 - 1.64) 

1.09  

(1.04 - 1.14) 

1.51  

(1.30 - 1.73) 

  608 
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DISCUSSION  609 

 610 

In infants, children and adolescents, EEG activity exhibits clear, consistent, and rapid changes with 611 

age.13,49,50,51 We formalise this knowledge using a targeted deployment of deep learning algorithms 612 

to form a prediction of EEG age (FBA) underpinned by key human operator expertise and 613 

decision-making in specific stages of the process. We achieved an accurate FBA prediction when 614 

applying deep neural networks directly to the EEG signal, relying on a summary of only brief 615 

epochs (60 seconds) within a 10 to 15 minute segment recorded during N1/N2 sleep providing 616 

similar accuracies with widely used anatomical growth charts.40,44,45 The proposed FBA 617 

demonstrated state-of-the-art age prediction accuracy, was validated in an independent cohort and 618 

detected group level maturational delays in a small cohort of young children with a defined 619 

neurodevelopmental disorder.  620 

Our FBA estimates had MAEs comparable to the highest performing MRI-based2,3,6,7,10,23 and 621 

EEG-based studies24,25,26,27,28 with reported MAEs in the literature ranging from 1.0 to 4.6 years 622 

compared to our best wMAE of 0.88 years. The accuracy of the FBA may be directly attributable 623 

to the use of residual neural network architectures over conventional multivariable age regression 624 

approaches typically used in brain age studies. While individual features have significant 625 

correlations with age (Supplementary Table 2), the combination of these features provided a 626 

superior prediction of age. Training deep neural networks improved these predictions further, 627 

although the exact mechanism of this improvement is not entirely clear. We show that deep neural 628 

networks capture well-established EEG characteristics (such as amplitude, frequency, bursting 629 

behaviour, and entropy) by comparing features to internal network layer outputs and that the 630 

representation of these latent patterns improve FBA estimates through higher-dimensional 631 

abstractions of the EEG signal. By showing that individual EEG features correlate with the outputs 632 
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of network layers, we highlight a demonstrable feature of the FBA during training. However, 633 

methods that attempt to explain the function of neural networks must be made with caution.52  634 

The present FBA measures were developed solely using large EEG datasets that are routinely 635 

collected and widely available in hospitals worldwide. Although the performance error of the FBA 636 

increases with age, the relative accuracy of the FBA is comparatively uniform across the age range. 637 

Here, additional variations to FBA accuracy were linked to the spatial and temporal organisation 638 

of the EEG. The effect of spatial organisation for instance was primarily a frontal-occipital gradient 639 

which is a well-established phenomenon in the maturing EEG within this age group.53,54 640 

Temporally, the accuracy of the FBA was maximum at the onset of N2 sleep characterised by the 641 

presence of sleep spindles which are key cortical signatures that emerge in the first few months of 642 

life and remain present in the EEG through adulthood.31 Improved EEG stability near the sleep 643 

state transition may involve capitalising on the absence of critical slowing within EEG dynamics 644 

at the beginning of these state-based transitions.55  645 

The only manual selection done prior to our computational analyses was the identification of the 646 

first sleep spindle as a sign of N2 sleep, which was necessary to harmonise vigilance states across 647 

a cohort with a wide age range. There are several reasons as to why the N2 sleep state offers a well 648 

standardised vigilance state that can be considered much more homogeneous across individuals 649 

than compared to wake or other sleep states.15 The identification of N1/N2 states, which is marked 650 

in the EEG by the emergence of increased delta, sleep spindles, vertex waves and K-complexes, 651 

particularly in N2 sleep, are well studied, reliable EEG signatures56,57 across preclinical and 652 

clinical literature. A brief period of N2 sleep is also often recorded in routine EEG studies as it is 653 

rich in EEG signatures and known to be sensitive for observing pathological phenomena, (such as 654 

epileptiform events58,59), and is also minimally contaminated by the common artefacts due to 655 
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movements. The EEG during N2 is also a well-known target for tracking neurodevelopment, with 656 

an initial increase in EEG amplitude during infancy followed by a steady decline into adolescence. 657 

Global spectral power shows a decrease in delta frequencies offset by a steady increase in relative 658 

alpha and beta band power with age (as observed in Feature IDs 13 to 17 versus age in 659 

Supplementary Figure 10), likely reflecting increasing dominance of spindle activity in EEG 660 

spectra with age.56,60,61,62  661 

An unresolved question in this work is whether an FBA measured within other diverse vigilance 662 

states (e.g. resting, task, or other sleep states) could effectively enhance the accuracy of 663 

individualised assessment. Our additional tests during sleep and wake states (Supplementary 664 

Table 3) demonstrate the applicability of an FBA in these potential contexts. Obtaining consistent 665 

awake EEG in older cooperative children is feasible, but collecting several minutes of good quality 666 

EEG signals from alert infants and toddlers is difficult. Careful consideration is essential in 667 

harmonising of spontaneous EEG data, especially given the neurophysiological and behavioural 668 

variability during childhood.63,64 To enhance the signal-to-noise ratio in comparisons between 669 

younger and older children, it becomes crucial to ensure a larger pool of available EEG data for 670 

the younger age group.64 Defining normative variability margins in typical development via large 671 

consortia EEG datasets, such as the Healthy Brain Network (>3000 children65) and comparable 672 

hospital-based clinical EEGs66, are likely to provide clues into the scope of the FBA beyond the 673 

paradigm of N2 sleep.  674 

The present study has some potential limitations. The performance of external validation was 675 

markedly lower than the overall performance of cross-validated results in each site independently. 676 

The drop-off in accuracy is due to several factors, namely: site specific differences, a lower 677 

electrode density, and inherent differences in acquisition of the EEG recordings. We showed that 678 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2023.07.07.548062doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.07.548062
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 

 

increasing the diversity of training data, by combining data from D1 and D2, mitigates this issue. 679 

However, to enhance accuracy, external validation datasets with diversity in geography, ethnicity, 680 

and socioeconomic status will improve the generalizability of the FBA. Despite the trade-off in 681 

performance accuracy, our externally validated results still outperformed measures such as head 682 

circumference simulated over the same age range.  683 

Another limitation of the study is that all children included in this study were not representative of 684 

the larger, healthy paediatric population but rather a subgroup of children clinically referred from 685 

the primary care level to a tertiary care center for diagnostic assessment. In neurotypically 686 

developing populations, it is expected that around 5% may conceal potential subclinical 687 

pathologies67 – a trait notably observed among individuals falling outside the 3rd and 97th centiles 688 

on our growth chart (Figure 6a). Estimates of FBA in such groups are clinically interesting; 689 

however, it is essential to benchmark the FBA in healthy neurotypical cohorts, including the use 690 

of longitudinal data, to ensure further clarity and confidence in applying FBA to a broader 691 

paediatric population. The progressive refinement of FBA methods in neurotypical EEGs can 692 

enhance our understanding of how FBA models should navigate the balance between aleatoric 693 

uncertainty and epistemic uncertainty encountered in large datasets.  694 

The FBA also appears to compensate for, or is indifferent to, growth spurts, hormonal and pubertal 695 

changes in both sexes, and other alterations to brain structure such as increased rates of cortical 696 

thinning in males during adolescence.68,69 This does not discount the fact that factors such as sex 697 

related differences in cortical activity exist across age, rather, that sex specific effects in the EEG 698 

were accounted for and adjusted out by the model.50 Future applications of the FBA could be used 699 

to study genuine sex-related differences in cortical maturation 50 by separating data according to 700 

biological sex at the training stage. This ability of trained models to inherently adjust for potential 701 
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confounders is a key aspect of artificial intelligence (AI) methods in medicine and means that what 702 

we know about EEG and age should be reevaluated singularly in the context of the AI outputs. 703 

Growth charts can also be calibrated for diagnosis, prognosis, and stratification; here the optimal 704 

tradeoff between cohort heterogeneity, EEG acquisition, training data size and MAE is not entirely 705 

resolved, with evidence from MRI-based studies suggesting that the clinical utility is not 706 

necessarily inversely proportional to MAE.6,70 707 

We propose the FBA as a measure that enables assessment of neurodevelopmental trajectories 708 

from infancy to adolescence. Rather than replacing or challenging existing techniques, the EEG-709 

derived FBA is perhaps best seen as a valuable complement to support current modalities of 710 

neurodevelopmental assessment, offering a tool towards personalization that both benefits the 711 

patient and healthcare practitioner alike.  While recognizing the FBA’s clinical potential, a series 712 

of targeted evaluations of the FBA within clinical populations are necessary to determine its 713 

efficacy prior to endorsing its widespread use. These extra studies are required not only to 714 

determine the clinical utility of the algorithm but to also enable other researchers and institutions 715 

to identify appropriate safeguards for decision safety and efficacy. We, therefore, publicly release 716 

the FBA prediction algorithm as an 'online' resource that facilitates the continual refinement of 717 

targeted algorithms for tracking childhood brain function and neurodevelopment.71  718 

  719 
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Supplementary Material 915 

 916 

Supplementary Table 1 – Demographics and additional comparisons of datasets analysed. The key differences 917 

between datasets is that EEG in D1 was recorded with a higher channel count as part of outpatient routine clinical 918 

EEG whereas EEG in D2 was collected as part of an overnight sleep study PSG. Outcomes in D1 were available at a 919 

4-year follow-up for children in D1 whereas children in D2 had normal sleep study outcome and were hence follow-920 

up outcomes in this group were not available. The age, including the range, median and interquartile range (IQR) are 921 

provided along with sex information (and age associated information within sexes).  922 

 D1 
Typical Development 

group (n = 1056) 

D2  
Typical Development 

group (n = 723) 

D2  
Trisomy 21 group 

(n = 40) 

Age  Range 6 weeks to 17 years 3 months to 18 years 1 year to 17 years 

 Median (years) 2.7 8.1 5.4 

 IQR (years) 6.2  5.6 4.2 

Sex  
(min, max, median) 

   

 Males 543 (6 weeks, 15.8 
years, 3 years) 

432 (3 months, 17.9 
years, 8.3 years) 

23 (1.2 years, 16.2 
years, 4.5 years) 

 Females 513 (6 weeks, 16.8 
years, 2.5 years) 

291 (4 months, 17.8 
years, 7.9 years) 

17 (1.9 years, 9.2 
years, 5.9 years) 

EEG channels available 19 2  2 

Type of clinical EEG Outpatient EEG 
performed in neurology 
clinic 

EEG as part of an 
overnight sleep study 
PSG recording 

EEG as part of an 
overnight sleep 
study PSG 
recording 

Follow-up outcomes Yes; 
neurodevelopmental 
outcomes were 
followed up 4 years 
post-EEG  

Not available for this 
group of children 

Not available for 
this group of 
children 

 923 
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 925 

 926 

 927 
 928 

Supplementary Figure 1 - The general architecture of the residual neural network used in this work. For inception 929 

networks, we used elements of the inceptionv3 network in MATLAB with a final regression layer. The scale of this 930 

pre-trained network was too large to accurately train on the dataset used in our work, so we tested architectural aspects 931 

of the network rather than the entire network. Similarly to the residual neural network we added variability by changing 932 

the temporal filter width (FW), filter channel depth (FD) and filter number (FN) within the convolutional layers. We 933 

used the file generate_networks_v2.m to generate networks with different configurations and architectures (see the 934 

GitHub page for more details). 935 
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 937 
 938 
Supplementary Figure 2 - The effect of epoch length and montage on cross-validated RMSE on a random selection 939 

of 7 network architectures. An epoch length of 60s and the bipolar montage were selected a priori. Different EEG 940 

epoch durations (30 s, 60 s, 120 s, 300 s) and EEG montages (referential, bipolar, average, current source density) 941 

were tested. The root mean square error between predicted age (FBA) and age across all testing data from a 10-fold 942 

cross-validation was used to determine the optimal selection, with a minimum RMSE indicating the optimal results.  943 

 944 

 945 

 946 
 947 
Supplementary Figure 3 - The effect of solver and mini-batch size on cross-validated RMSE on a random selection 948 

of network architectures, epoch length, and montage (n = 8 per group for solver and n = 7 per group for mini-batch 949 

size). For training the neural networks, two hyper-parameters of training were selected based on an initial run on 950 

dataset D1 (Solver Type and Mini-batch size). A random selection of network architectures were made and the 951 

network was trained and tested within a 10-fold cross-validation with the RMSE on the accumulated left-out test data 952 

used to select the hyper-parameters. The ADAM solver and a mini-batch size of 128 samples were selected. 953 

  954 
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Supplementary Note 1 - The effect of data balancing on NN results 955 

Balancing the dataset is an important component of constructing viable training datasets. In this case, the number of 956 

recording per age bin should be equal for the best general regression results; increased diversity of data (typically by 957 

adding more data) also provides an improved fit. Furthermore, the training data distribution should best represent the 958 

distribution of the larger population. We show the effect of data balancing by training 10 randomly selected network 959 

architectures with training datasets containing different levels of heterogeneity with respect to age (Supplementary 960 

Figure 4). To ensure the number of training points is equal we extract more epochs per recording as the dataset 961 

becomes more balanced by changing the overlap of epoch extraction. We select three levels of balance: balanced 962 

(uniform distribution of subjects across age) extracts at most 40 recordings from each age group (ages are grouped at 963 

yearly intervals), Unbalanced1 (more samples at early ages) extracts at most 80 recordings from each age group, and 964 

Unbalanced2 (most samples at early ages) extracts at most 160 recordings from each age group. The RMSE and 965 

weighted RMSE (an age adjusted RMSE) are calculated on all EEG recordings that were left out during the 10-fold 966 

cross-validation (an unbalanced cohort).  967 

 968 

   969 
 970 

Supplementary Figure 4 - The general effects of data balancing on cross-validated RMSE for 18-channel data (D1 971 

datasets). The left plot is the RMSE and the right plot is the wRMSE which is an RMSE averaged across age bins 972 

(yearly) rather than per EEG recording. In both cases, the increased diversity in recordings associated with unbalanced 973 

training dataset offers lower errors, although the reduction in error is smaller when considering wRMSE. 974 
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 975 
Supplementary Figure 5 - The general effects of data network architecture type (Residual vs Inception) on cross-976 

validated RMSE for 18-channel data (D1 datasets). Once general EEG parameters and network training hyper-977 

parameters were initialized, we tested two general architectures based on residual neural networks and inception based 978 

neural networks. We randomly selected 10 networks based on both architectures and computed RMSE. Based on these 979 

parameter evaluations, residual networks were selected as the most suitable candidate architecture for estimating age. 980 

 981 

 982 

Supplementary Note 2 – Testing various of network parameters (18 channel FBA for D1) 983 

We also tested parameters of filter width, filter depth, network depth and filter number within the residual network. 984 

The optimal combination was selected using the internal validation data, averaged across all folds. The latter was 985 

performed to ensure only 1 network architecture was used across fold. A fixed grid optimization search across was 986 

performed across an array of network parameters. For the 18-channel FBA based on dataset D1, this resulted in 180 987 

different network architectures (Supplementary Figure 6). The general trends are shown with an optimal combination 988 

of network parameters selected: a filter width of 9 samples (n = 45 per group), filter depth of 6 channels (n = 36 per 989 

group), network depth of 3 (n = 60 per group), and a filter number of 16 (n = 60 per group): a total of 867,601 learnable 990 

parameters. 991 
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 992 
Supplementary Figure 6 - The general effects of residual network parameters on cross-validated RMSE for 18-993 

channel data (D1 dataset). Internal single fold cross-validation averaged across all 10 training folds selected. Note 994 

that, as filter depth of 1 channel had a considerably higher RMSE than other filter depths, RMSE points associated 995 

with a 1 channel network were removed before generating the remaining boxplots for visualization purposes.  996 
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 997 
Supplementary Figure 7 - The general effects of residual network parameters on cross-validated RMSE for a 2-998 

channel FBA based on dataset D1. This resulted in 60 different network architectures. The optimal combination of 999 

network parameters selected were a filter width of 9 samples (n = 18 per group), filter depth of 2 channels (n = 30 per 1000 

group), network depth of 2 (n = 30 per group), and a filter number of 2 (n = 20 per group): a total of 906,657 learnable 1001 

parameters.  1002 
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 1003 
Supplementary Figure 8 - The general effects of residual network parameters on cross-validated RMSE for 2-channel 1004 

data (D2 dataset). This resulted in 90 different network architectures. The optimal parameters were a filter width of 9 1005 

samples (n = 18 per group), filter depth of 2 samples (n = 45), network depth of 2 (n = 30 per group), and a filter 1006 

number of 32 (n = 30 per group): a total of 906,657 learnable parameters. 1007 
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 1008 
Supplementary Figure 9 - The general effects of network parameters on cross-validated RMSE for 2-channel data 1009 

(D1 and D2 combined). This resulted in 45 different network architectures. The RMSE of an internal single fold cross-1010 

validation, average across all 10 training folds selected a filter width of 9 samples (n = 9 per group), a network depth 1011 

of 2 (n = 45 per group), network depth of 2 (n = 15 per group), and a filter number of 32 (n = 15 per group): a total of 1012 

906,657 learnable parameters. Note, we did not vary the filter depth/channel number as previous experiments on D1 1013 

and D2 alone showed that 2 channels was optimal. 1014 
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Supplementary Table 2 – Performance of individual EEG features in predicting age following Gaussian process 1016 

regression (GPR) and 10-fold cross-validation of training data (D1). Results are based on 60 second EEG epochs 1017 

acquired in the bipolar montage. Amplitude metrics (ID1 to ID7) denote the 5th, 50th (median), 95th centiles based on 1018 

the absolute value of the Hilbert transform of the EEG (amplitude envelope), along with four central moments of the 1019 

signal: mean, standard deviation, skewness and kurtosis. Frequency metrics (ID8 to ID19) summarize frequency 1020 

domain metrics based on the power spectrum density of the EEG signal, and included features such as peak frequency, 1021 

signal amplitude at this peak, along with mean frequency, bandwidth and relative spectral power in common EEG 1022 

oscillatory bands. Informational metrics (ID20 to ID32) summarized various non-linear and statistical properties of 1023 

the EEG. SNLEO stands for the smoothed non-linear energy operator.  1024 
 

GPR Shapley 

Feature ID EEG Features R2 RMSE MAE Value Rank 

1 5th percentile Amplitude Envelope  0.82 1.28 1.28 0.57 1 

2 50th percentile amplitude envelope 0.81 1.32 1.32 0.33 8 

3 95th percentile amplitude envelope 0.76 1.52 1.52 0.06 26 

4 Mean amplitude envelope 0.78 1.44 1.44 0.15 14 

5 Standard deviation amplitude envelope 0.75 1.57 1.57 0.06 25 

6 Skewness amplitude envelope 0.18 3.04 3.04 0.08 22 

7 Kurtosis amplitude envelope 0.31 2.73 2.73 0.33 7 

8 Peak Frequency (PSD) 0.08 3.32 3.32 0.08 23 

9 Power in peak frequency 0.14 3.25 3.25 0.03 29 

10 Signal amplitude of peak frequency 
component 

0.79 1.48 1.48 0.21 13 

11 Mean frequency 0.56 2.19 2.19 0.03 30 

12 Bandwidth 0.59 2.08 2.08 0.24 10 

13 Relative spectral power (delta 1, 0.5-2Hz) 0.19 3.16 3.16 0.30 9 

14 Relative spectral power (delta 2, 2-4Hz) 0.40 2.34 2.34 0.34 6 

15 Relative spectral power (theta, 4-8Hz) 0.25 2.90 2.90 0.13 17 

16 Relative spectral power (alpha, 8-12Hz) 0.60 1.97 1.97 0.04 28 

17 Relative spectral power (beta, 12-30Hz) 0.63 1.94 1.94 0.22 11 

18 Total power in all bands 0.77 1.47 1.47 0.09 21 

19 Spectral slope (decay in power spectrum) 0.58 2.08 2.08 0.22 12 

20 Sample Entropy 0.55 2.23 2.23 0.11 19 

21 Fractal Dimension (Higuchi) 0.58 2.17 2.17 0.42 4 

22 Spectral entropy 0.58 2.16 2.16 0.47 2 

23 Spectral difference 0.79 1.42 1.42 0.06 27 

24 Hjorth 1 (Activity) 0.78 1.46 1.46 0.13 16 

25 Hjorth 2 (Mobility) 0.81 1.44 1.44 0.14 15 

26 Hjorth 3 (Complexity) 0.83 1.30 1.30 0.45 3 

27 SNLEO mean 0.53 2.02 2.02 0.08 24 

28 SNLEO standard deviation 0.42 2.38 2.38 0.01 32 

29 Burst shape skewness (all bursts) 0.07 3.35 3.35 0.02 31 

30 Burst shape kurtosis (all bursts) 0.21 2.94 2.94 0.13 18 

31 Burst duration (mean) 0.69 1.79 1.79 0.37 5 

32 Burst duration (standard deviation) 0.55 2.29 2.29 0.09 20 
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 1027 

 1028 

Supplementary Figure 10 – Individual EEG features versus age (all subjects from training dataset D1). As per 1029 

Supplementary Table 1, each EEG feature and their respective ID are based on 60 epochs from the bipolar montage. 1030 

Feature types are indicated by colors, where amplitude features (reddish hue), frequency domain features (green hue) 1031 

and informational metrics (blue hue). A spline is fitted across the median values derived across 2 yearly age bins.  1032 
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 1033 

 1034 

Supplementary Figure 11 – Relating individual EEG features to the late network layer of the Res-NN model. For each 1035 

individual feature we used GPR to assess the strength of correlation between individual EEG features with network 1036 

activation layers (here the late layer, i.e., layer 61 from 2-channel EEG data from D1 is shown) to derive a predicted 1037 

feature value based on UMAP1 and UMAP2 dimensions derived from this training phase. The strength of correlation 1038 

(R2 value) indicates how individual EEG features and predicted individual EEG features are linked by UMAP 1039 

representations of the Res-NN model, following 10-fold cross-validation. The color bar indicates the relative range of 1040 

the EEG feature pertaining to its minimum and maximum values (e.g. for feature ID4, low mean amplitude versus 1041 

high mean amplitude).  1042 
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 1044 

Supplementary Figure 12– Comparative performance of FBA estimation from a GPR model with the Res-NN a. The 1045 

Res-NN model (R2=0.96, MAE=0.56 years) with error bounds of ±1.5 years and b. The residual error (PAD), in years. 1046 

c. GPR results based on a multivariable model of EEG features (R2=0.93, MAE=0.79 years). d. Residual error (PAD), 1047 

in years, for the GPR model. Individual EEG recordings (blue filled circles) are plotted across ages. 1048 
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Supplementary Table 3 – Performance of FBA across sleep stages in the validation dataset (D2). The performances 1052 

of the FBA following 10-fold cross-validation, using either a Res-NN or GPR model, in the D2 dataset. MAE, wMAE 1053 

and RMSE are shown. N.B. N1 was excluded due to inconsistent availability across ages in D2. 1054 

 Res-NN GPR 

Sleep 

stage 

# channels, 

# recordings,     

# epochs 

MAE  

(in years) 

wMAE  

(in years) 

MAE  

 

wMAE  

 

N3  2, 723, 13737 1.46 1.76 1.75 2.00 

REM 2, 714, 13339 1.55 1.98 1.68 1.89 

WAKE 2, 564, 8810  1.89 2.53 2.06 2.61 

N2 2, 723, 13737 1.46 1.73 1.25 1.34 

 1055 
Supplementary Table 4 – Overall performance of FBA across datasets. The performances of the FBA, using a GPR 1056 

model, across all training, test, and combined datasets. MAE, wMAE and RMSE are shown. CI is confidence interval, 1057 
aonly N2 from D1 used, b10-fold cross-validation.  1058 

Train 

# channels, 

# recordings,     

# epochs 

Test 

# channels, 

# recordings,     

# epochs 

R2  

RMSE  

(in years; 

95% CI)) 

MAE  

(in years; 95% 

CI) 

wMAE  

(in years; 

95% CI) 

D1 

19, 1056, 

30624 

D1b  

19, 1056, 

30624 

0.93 1.09  

(1.05 – 1.20) 

0.79 

(0.74 - 0.84) 

1.06  

(0.85 - 1.27) 

D1 

2, 1056, 

20064 

D1b  

2, 1056, 

20064 

0.91 1.24  

(1.23 - 1.40) 

0.93  

(0.88 - 0.99) 

1.27  

(0.97 – 1.57) 

D1a 

2, 1056, 

20064 

D2 

2, 723,  

13737  

0.67 2.49  

(2.34 - 2.64) 

1.94  

(1.84 – 2.06) 

2.53 

(2.16 – 2.85) 

D2 
2, 723,  

13737 

D2b  

2, 723,  

13737 

0.84 1.41  

(1.46 - 1.60) 

1.24 

(1.18 – 1.31) 

1.34 

(1.12 – 1.57) 

D1+D2 

2, 1779, 

33801 

D1+D2b 

2, 1779, 

33801 

0.90 1.43  

(1.37 – 1.49) 

1.08  

(1.03 – 1.12) 

1.29  

(1.12 – 1.47) 

 1059 
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 1061 
Supplementary Figure 13 – FBA growth charts stratified into infant and childhood age groups. a. FBA charts for 1062 

infants (0 to 2 years) and b. children and adolescents (2 to 18 years) were generated to offer a magnified view of the 1063 

FBA with respect to chronological age. In both age-stratified versions of the chart, over 95% of the data (blue dotted 1064 

points) are captured between the 3rd and 97th centiles estimated. The 3rd (red), 15th (yellow), 50th (green), 85th 1065 

(purple) and 97th (blue) centiles are indicated. 1066 

 1067 

 1068 

Supplementary Figure 14 - Summary plot of GPR model performance. a. The mean absolute error (MAE) of the GPR 1069 

(dark blue triangles, left axis) across 2 yearly age bins and the relative accuracy of PAD (in blue, right axis) across 2 1070 

yearly age bins. For both plots, the mean and standard error of the mean (SEM) are plotted to reflect the sample 1071 

distribution within age bins. b. Differences in MAE of D1 following cross-validation (D1 CrossVal) versus external 1072 

validation on D2 (D1 test on D2) for GPR. Here differences in sites are more noticeable for younger and older age 1073 

groups. c. Change in MAE across EEG channel locations, with average MAE shown and error bars indicated by 1074 

standard deviation. d. Temporal transitions in the EEG across N1 (light pink) and N2 (light purple). Similar to the 1075 

Res-NN, the lowest MAE is observed during a transition between sleep N1 and N2 stages. Error bars denote standard 1076 

deviation for each epoch. 1077 

Age (y) Age (y)

F
B

A
 (

y
)
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 1078 

Supplementary Table 5 – Performance summary across test folds for Res-NN and GPR models. Within each of the 1079 

10 test folds, the mean absolute error (MAE) is summarized for both model approaches.  1080 
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  1121 

 Res-NN GPR  

Folds MAE MAE 
 Test D1 Test D1 

1 0.61 0.72 
2 0.49 0.73 
3 0.59 0.73 
4 0.53 0.78 
5 0.59 0.75 
6 0.49 0.76 
7 0.50 0.98 
8 0.63 0.80 
9 0.59 0.86 
10 0.55 0.80 

Fold-wise Average 0.56 0.79 
 Test D2 Test D2 

1 1.69 1.20 
2 1.43 1.25 
3 1.63 1.25 
4 1.40 1.15 
5 1.43 1.34 
6 1.63 1.11 
7 1.39 1.21 
8 1.35 1.34 
9 1.32 1.20 
10 1.51 1.33 

Fold-wise Average 1.46 1.24 
 Test D1 + D2 Test D1 + D2 

1 1.15 1.07 
2 0.97 1.05 
3 1.03 0.91 
4 0.95 1.14 
5 0.96 1.21 
6 1.06 1.16 
7 0.89 1.11 
8 1.36 1.04 
9 1.00 1.13 
10 1.11 1.03 

Fold-wise Average 1.09 1.08 
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Supplementary Table 6 – Summary of group-wide associations across Res-NN/GPR methods and different cohorts. 1122 

Assessment of adjusted PAD and centiles derived from the growth chart (Figure 6) where differences between 1123 

typically developing versus Trisomy 21 (T21) subjects across varying combinations of cohorts (D1, D2 and D1 + D2) 1124 

are summarized. Effect sizes and differences in adjusted PAD between typically developing children and Trisomy 21 1125 

subjects were also examined for subgroups based on sex (i.e. D2 males versus T21 males, D2 females versus T21 1126 

females etc). Unpaired t-tests were performed with significance set at p<0.05 with the associated t-statistic reported.  1127 

  Adjusted PAD Centiles 

  Effect size 
(Cohen’s d; 

95%CI) 

Total 
p-value  

(t-statistic) 

Males 
p-value  

(t-statistic) 

Females 
p-value  

(t-statistic) 
 

p-value 
(t-statistic) 

D2 vs T21  0.56 
(0.24 – 0.88) 

0.00053* 
(3.5) 

0.02* 
(2.33) 

0.01*  
(2.56) 

0.028*  
(3.5) 

D1 vs T21 0.42 
(0.11 - 0.74) 

0.0087* 
(2.63) 

0.0012*  
(3.25) 

0.77   
(0.29) 

0.08  
(1.68) 

D1 + D2 vs T21 0.42 
(0.11 -0.73) 

0.0084* 
(2.64) 

0.0009*  
(3.34) 

0.80  
(0.26) 

0.052  
(1.92) 

D2 vs T21  0.36  
(0.06 – 0.68) 

0.023*  
(2.28) 

0.005*  
(2.82) 

0.58  
(0.56) 

0.28  
(1.08) 

D1 vs T21 0.002  
(-0.31 - 0.32) 

0.98  
(0.01) 

0.003* 
(2.96) 

0.75  
(0.32) 

0.66  
(0.44) 

D1 + D2 vs T21 0.16  
(-0.15 – 0.47) 

0.32  
(0.98) 

0.31  
(1.01) 

0.74  
(0.33) 

0.85  
(0.19) 
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