

1 **Title:**

2 **Cell-type specific optogenetic fMRI on basal forebrain
3 reveals functional network basis of behavioral
4 preference**

5

6 Yijuan Zou^{1,2,6}, Chuanjun Tong^{1,2,6}, Wanling Peng³, Yue Qiu⁴, Jiangxue Li^{1,5}, Ying
7 Xia¹, Mengchao Pei¹, Kaiwei Zhang¹, Weishuai Li¹, Min Xu^{1,*}, Zhifeng Liang^{1,2,7,*}

8

9 ¹ Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence
10 Technology, Chinese Academy of Sciences, Shanghai, 200031, China

11 ² International Center for Primate Brain Research, Center for Excellence in Brain
12 Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai,
13 201602, China

14 ³ Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine,
15 Shanghai, 200025, China

16 ⁴ Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai,
17 200032, China

18 ⁵ University of Chinese Academy of Sciences, Beijing, 100101, China

19 ⁶ These authors contributed equally

20 ⁷ Lead contact

21

22 *Correspondence should be addressed to Min Xu (mxu@ion.ac.cn) or Zhifeng Liang
23 (zliang@ion.ac.cn).

24

25

26

1 **Summary**

2 The basal forebrain (BF) is a complex structure that plays key roles in regulating
3 various brain functions. However, it remains unclear how cholinergic and non-cholinergic
4 BF neurons modulate large-scale functional networks and their relevance in intrinsic and
5 extrinsic behaviors. With optimized awake mouse optogenetic fMRI approach, we
6 revealed optogenetic stimulations of four BF neuron types evoked distinct cell-type
7 specific whole-brain BOLD activations, which could attribute to BF-originated low
8 dimensional structural networks. Additionally, optogenetic activation of VGLUT2, ChAT
9 and PV neurons in BF modulated the preference of locomotion, exploration and grooming,
10 respectively. Furthermore, we uncovered the functional network basis of the above
11 BF-modulated behavioral preference, through a decoding model linking the BF-modulated
12 BOLD activations, low dimensional structural networks, and behavioral preference. To
13 summarize, we decoded functional network basis of differential behavioral preference with
14 cell-type specific optogenetic fMRI on BF, and provided an avenue for investigating mouse
15 behaviors from a whole-brain view.

16

17

18

1 INTRODUCTION

2 The basal forebrain (BF) is a set of heterogeneous telencephalic structures on the
3 medial and ventral parts of the cerebral hemispheres^{1,2}. The basal forebrain is most
4 commonly known as a key cholinergic brain region^{1–3}. However, cholinergic neurons only
5 represent 10–20% of all BF neurons, and many more non-cholinergic neurons, including
6 glutamatergic, parvalbumin-positive (PV) and somatostatin-positive (SOM) GABAergic
7 neurons, are present in BF^{1–3}. Previous studies reported that the above four types of BF
8 neurons exhibit both complex local connectivity and long-range projections to the cortex^{3,4}.
9 Traditionally, studies of BF have focused on its cholinergic neurons and revealed its
10 involvement in a variety of brain functions, including arousal, attention, memory, learning,
11 motivation and reward both in health and disease^{5–12}. However, BF non-cholinergic
12 neurons were also found to contribute to many brain functions^{3,13–17}.

13 As the cholinergic and non-cholinergic BF neurons have divergent long-range
14 projections across mouse brain⁴, it is long speculated BF may contribute to the whole
15 brain functional network dynamics. One recent human fMRI study found global BOLD
16 signal peaks coincided with negative activations in BF, which was associated with arousal
17 fluctuations¹⁸. Another macaque fMRI study showed unilateral inactivation of BF with
18 muscimol resulted in a decrease in the amplitude of BOLD signal in ipsilateral regions,
19 which receive strong projection from BF neurons¹⁹. Both studies suggested that the
20 extensive variations in large-scale cortical activity observed through fMRI were linked to
21 BF, which was assumed to be contributed by BF cholinergic neurons. However, in those
22 two studies, direct evidence was lacking to attribute such modulation to BF cholinergic
23 system.

24 Specific modulation of the cholinergic system, combined with rodent fMRI, revealed
25 its impact on large-scale network activity^{20–22}. Chemogenetic activation of BF cholinergic
26 neurons²² or pharmacological inhibition of the cholinergic system^{20,21} in anesthetized rats,
27 both demonstrated significant decreases in functional connectivity (FC) and BOLD
28 amplitude within the default mode-like (DMN-like) network, which appears contradictory.

1 Neurophysiological studies in rats showed gamma oscillations were synchronized and of
2 high gamma power between the BF and DMN-like nodes (i.e., anterior cingulate area
3 (ACA), retrosplenial cortex (RSP)) during internally oriented behaviors, such as quiet
4 wakefulness and grooming^{23,24}. Furthermore, optogenetic activation of BF PV neurons
5 enhanced BF gamma oscillations and promoted grooming behavior²⁵, suggesting the
6 regulation of non-cholinergic neurons to DMN-like network and internally oriented
7 behavior. However, It remains unclear the relationship among the cell-type specific BF
8 modulations, large-scale functional networks and their behavioral relevance.

9 Therefore, in this study, we established a decoding model to link the BF-modulated
10 large-scale BOLD activations and corresponding behavioral preference via combining (1)
11 the cell-type specific opto-fMRI on BF VGLUT2, ChAT, PV and SOM neurons, (2) the BF
12 cell-type specific anatomical projections and (3) optogenetic free-moving behavioral test.
13 Firstly, through our systematically optimized awake mouse opto-fMRI setup, we found
14 distinct global BOLD responses evoked by the cell-type specific activations of BF neurons.
15 Then, combining the BF cell-type specific anatomical projections, we found BF-originated
16 low dimensional structural networks significantly contributed to cell-type specific
17 opto-fMRI activations. Furthermore, we revealed that activation of BF excitatory (VGLUT2
18 and ChAT) or inhibitory (PV and SOM) neurons induced externally or internally oriented
19 behavioral preference, respectively. Importantly, we developed a model to link the
20 BF-modulated BOLD activations inside the magnet and behavioral preference outside the
21 magnet, and decoded the global patterns of internally and externally oriented behaviors.
22 In conclusion, we revealed both cholinergic and non-cholinergic neurons modulated
23 global functional networks with corresponding internally and externally oriented behavioral
24 preferences, and provided a new perspective to link the BOLD activations to behavioral
25 relevance.

26
27

1 RESULTS

2 Optogenetic stimulations of BF neurons evoke distinct cell-type specific 3 BOLD activations

4 We combined Cre-dependent virus
5 (AAV2/9-hSyn-DIO-ChrimsonR-mCherry-WPRE-pA) and VGLUT2-, ChAT-, PV- and
6 SOM-Cre mice to express of ChrimsonR in glutamatergic, cholinergic, PV and SOM
7 GABAergic neurons in BF (Figure 1A and S1). To accommodate the limited space in
8 cryogenic coil, flexible PMMA optical fibers were used in combination with our previous
9 awake mouse fMRI^{26–28} to establish the awake mouse opto-fMRI setup (Figure 1A-D). The
10 biband EPI pulse sequence²⁸ was employed to achieve faster acquisition (TR = 500 ms)
11 while maintaining whole brain coverage (in-plane resolution = 150 μm^2 with 38 axial
12 slices).

13 Using our optimized awake mouse opto-fMRI setup and standardized data
14 processing protocol (Figure 1A and Figure S2)^{26–29}, we observed robust and cell-type
15 specific large-scale BOLD fMRI activations (Figure 1E-F, Figure S3-6). Considering the
16 high spatial similarities between 0.5-s duration and 2-s duration for four BF cell-types
17 (Figure S3), we chose to pool EPI runs with 0.5-s and 2-s durations together, and only
18 focused on the cell-type specific activations (Figure 1E-F). Activation of VGLUT2 neurons
19 in the BF elicited the strongest and most widespread BOLD activations throughout the
20 brain among all four cell types (Figure 1E, upper panel). Activation of ChAT neurons
21 resulted in positive activations across extensive cortical and subcortical regions, including
22 the prefrontal cortex (PFC), ACA, RSP, orbital (ORB), visual (VIS), auditory (AUD),
23 entorhinal (ENT) areas as well as a large proportion of striatum and thalamus (Figure 1E,
24 upper middle panel). In PV-Cre group, ACA showed significant positive activation
25 (Figure 1E, lower middle panel). In SOM-Cre group, significant positive activations were
26 observed in ACA, striatum and anterior thalamus (Figure 1E, lower panel). Interestingly,
27 the VGLUT2- and ChAT-Cre groups exhibited significant negative activation constrain
28 within the motor (Mot) and somatosensory (SS) areas.

1 Notably, we consistently observed positive activations in the DMN-like regions
2 (Figure 1E and Figure 2A-C). Importantly, BF PV neurons exhibited the highest specificity
3 for DMN-like activations (Figure 2D and Figure S7) rather than VGLUT2 neurons. Such a
4 phenomenon was consistent with the previous finding in rats that optogenetic stimulation
5 of BF PV neurons activated the DMN-like network and associated behaviors²⁵.

6 **BF-originated low dimensional structural networks significantly**
7 **contribute to cell-type specific opto-fMRI activations.**

8 To investigate whether the functional activation was directly governed by
9 corresponding anatomical projections from BF neurons, we adopted the previously
10 published anterograde axon tracing data⁴ and registered to our standard MRI space
11 (Figure 3A and 3B). Cholinergic BF neurons displayed widely spread projections to the
12 cortex, while the non-cholinergic neurons mainly innervated subcortical brain regions and
13 had limited projections to most parts of the cortex (Figure 3B). To evaluate the
14 structural-functional correspondence across BF cell types, we calculated the spatial
15 correlation between functional activations (Figure 1E) and anatomical outputs (Figure 3B).
16 Weak structural-functional correspondence was found for all BF cell types (Figure 3C,
17 brown arrows and Figure S8), suggesting direct anatomical projections weakly contributed
18 to opto-fMRI activation patterns. Additionally, we verified that anatomical tracing using the
19 optogenetic protein ChrimsonR-mCherry was consistent with our previously published
20 data⁴ (Figure S9), thus did not impact our results.

21 One potential contributor to the functional responses was secondary projections of
22 the regions that receive direct projections from BF neurons (Figure 4A). To examine such
23 a hypothesis, we generated the cell-type specific BF secondary projection matrix by
24 spatial weighting the voxel-wise whole-brain mesoscopic connectivity matrix^{30,31} based on
25 the BF direct projections (Figure 4B & Figure S10A-C). We found two-synaptic
26 connections, i.e., 1st × 2nd anatomical connections, showed higher spatial similarity of
27 cell-type specific opto-fMRI activations, compared to direct projections (Figure S11),
28 suggesting that the secondary projections were important contributors for BF four neuron
29 types. Moreover, we concatenated secondary projections from four types of BF neurons to

1 cover all projections originating from BF, including those from local interaction of BF cell
2 types. Then, the concatenated secondary projections were further decomposed using the
3 non-negative matrix factorization (NMF) analysis (Figure 4B & Figure S10A-C). One
4 significant advantage of NMF over other dimensionality reduction techniques is its ability
5 to ensure that all elements in the decomposed low-rank matrix are non-negative, which is
6 crucial for interpreting both NMF components and associated weights as actual network
7 activity.

8 Subsequently, we identified six low-dimensional NMF components that were
9 predominantly composed of brain stem, olfactory, DMN-like, visual, hippocampus and
10 sensorimotor network (Figure 4C & Figure S10D-E), respectively. To explore whether the
11 low-dimensional structural networks dominated the cerebral dynamics, we calculated the
12 explained variance for the BOLD activation maps based on the multivariate regression.
13 Such regression approach was applied (Figure 4D) between empirical BOLD activations
14 and 1) cell-type specific direct projection or 2) best combinations of BF originated low
15 dimensional networks or 3) the null control of BOLD activation maps, respectively. The
16 null control maps were constructed by spatially shuffling the BOLD activation maps with
17 spatial autocorrelation preserved. We observed that low-dimensional structural networks
18 exhibited significantly higher explained variance in cell-type specific opto-fMRI responses
19 compared to the direct projections and the null control (Figure 4D-E and Figure S12),
20 indicating their dominant effect of 2nd-anatomical connections on opto-evoked cerebral
21 dynamics. The scaling coefficients of NMF components were then defined as optimal
22 feature vectors, representing the engagement levels of NMF components under
23 optogenetic activation of BF neurons (Figure 4F). Therefore, these findings provide
24 evidence that BF originated low dimensional structural networks significantly contributed
25 to cell-type specific opto-fMRI activations.

1 **Optogenetic activation of VGLUT2, ChAT and PV neurons in BF
2 modulated the preference of locomotion, exploration and grooming,
3 respectively.**

4 We further investigate whether cell-type specific modulation of BF exerted an impact
5 on mouse internally and externally oriented behaviors. The behavioral test was conducted
6 in the arena under the same optogenetic stimulation paradigms as in the fMRI
7 experiments to examine the locomotion speed, quiet wakefulness, grooming and object
8 explorations (Figure 5A-C). The VGLUT2-Cre group exhibited a significantly higher
9 locomotion speed (Figure 5D), which was consistent with the wakefulness and avoidance
10 behavior-promoting effect of BF VGLUT2 neurons^{3,15,16}. The ChAT-Cre group
11 demonstrated significantly higher novel object explorations (Figure 5E), which is
12 consistent with the involvement of cholinergic systems in attention, learning, and
13 memory^{11,12}. There were no discernible differences in familiar object exploration among
14 the groups (Figure S13A). Moreover, optogenetic stimulation of BF PV neurons resulted in
15 the highest DMN-associated behavior, specifically grooming (Figure 5G), which is
16 consistent with the previous study in rats²⁵. SOM-Cre group exhibited a greater duration of
17 quiet wakefulness in comparison to other subpopulations (Figure 5F).

18 Additionally, behavioral preference modulated by BF neuron types remained
19 consistent throughout all six runs and was primarily driven by distinct cell types rather than
20 other factors such as duration and experimental runs (Figure S13B-C). Furthermore, we
21 examined whether the difference between genetically modified Cre-mice and wild-type
22 mice potentially influenced the behavioral performance (Figure S14). The highly similar
23 results of BOLD activations (Figure S14A-B) and behaviors (Figure S14C) between the
24 PV-cre control group and wild-type control group indicated that using wild-type mice with
25 the same optogenetic stimulation paradigm as the control group was less likely to
26 influence our conclusions.

27 Next, we sought to explore why the locomotion and BOLD activations appeared
28 incoherent in sensorimotor regions. We used the calcium fiber photometry to record
29 opto-evoked neuronal calcium activities in SSp-m (the negatively activated region) and

1 RSP (the positively activated region) for VGLUT2 and Control group (Figure S15A). We
2 found optogenetic activations of BF VGLUT2 neurons evoked significant elevations of
3 calcium activities in RSP and SSp-m (Figure S15B-C) compared to those in the control
4 group. We inferred that the initial rise of BOLD signals in SSp-m (Figure S4-5) and higher
5 locomotion speed (Figure 5D) in the VGLUT2 group were associated with enhanced
6 neural calcium activity. Therefore, the initial positive BOLD responses, locomotion
7 increase and calcium responses were aligned with each other in sensorimotor regions.
8 Furthermore, we speculated that the subsequent decrease of BOLD responses (Figure
9 S4-5) might relate to the arousal elevation evoked by the activation of BF VGLUT2 and
10 ChAT neurons^{18,19,32,33}.

11 **Decoding model links BF-modulated BOLD activations and internally and
12 externally oriented behavioral preference**

13 As the same optogenetic stimulation paradigm was applied in opto-fMRI and
14 behavioral test, we hypothesized that cell-type-specific activation maps and
15 behavior-related cerebral patterns share common low-dimensional (NMF) space (Figure
16 6A). Therefore, we constructed a decoding model (Figure 6B & S16) to predict the
17 behavior related global patterns, based on the feature vectors of BOLD activations (Figure
18 6C) and behavioral performance (Figure 5D-G). The model's regression coefficients were
19 identified as behavior-related feature vectors, representing predicted cerebral patterns of
20 each behavior in the NMF space (Figure 6D). The minimal deviation angle (Figure 6E, red
21 shadow) between feature vectors of BOLD activations (Figure 6C) and behaviors (Figure
22 6D) indicated the behavioral preference, e.g., the feature vector of VGLUT2 group had
23 minimal deviation angle with that of locomotion (Figure 6E), corresponding to its
24 preference on locomotion (Figure 5D). The significantly negative correlations between the
25 deviation angles and empirical behavioral results (Figure 6F) further suggested that low
26 dimensional network organization supported the behavioral preference of BF cell types.

27 Based on the behavior-related feature vectors (Figure 6D) and the spatial patterns of
28 NMF components (Figure 3C), we further predicted the cerebral responses of behaviors
29 (Figure 6B, right panel and Figure 6G). Interestingly, the predicted global pattern of

1 grooming showed opposing patterns between intrinsic networks (i.e., DMN-like network)
2 and extrinsic networks (e.g., salience network) (Figure 6G, right panel), which was
3 consistent with previous findings in rats³⁴ and human³⁵⁻³⁸. The predicted global pattern of
4 quiet wakefulness (Figure 6G, right panel) exhibited high spatial similarity to that of
5 grooming, and both of these were opposing to that of locomotion (Figure 6G, left panel).
6 Moreover, the predicted global pattern of novel exploration (Figure 6G, left panel)
7 exhibited robust positive responses in the prefrontal cortex and hippocampus, consistent
8 with previous evidence of cholinergic innervation to these regions involved in novelty
9 preference³⁹⁻⁴¹.

10 To verify the predicted spatial patterns of mouse behaviors, we first conducted the
11 awake mouse fMRI scanning with simultaneous behavioral monitoring using two
12 customized MR-compatible cameras (Figure 7A). We observed apparent grooming
13 behavior during the scanning (Figure 7B) and corresponding functional activations (Figure
14 7C). Significant positive correlation between the empirical (Figure 7C) and predicted
15 (Figure 6G) spatial maps indicated the validity of predicted global patterns of mouse
16 behaviors (Figure 7D and Figure S17).

17 We further conducted another verifying experiment with simultaneous calcium fiber
18 photometry in ACA, primary motor area (MOp), and entorhinal cortex (ENT) during
19 free-moving behaviors (Figure 7E-F). We found a notable positive correlation between the
20 predicted spatial weights and neural activities (Figure 7G) during quiet wakefulness,
21 grooming, and novel object exploration. The negative correlation during locomotion was
22 unexpected but somewhat reasonable, as the locomotion consistently elicits widespread
23 activation and can potentially confound the analysis of other behaviors⁴²⁻⁴⁵. Thus, the
24 above two verifying experiments highlighted the reliability of our decoding model and the
25 resulting predicted global patterns of mouse behaviors. Therefore, our results provided a
26 framework for behavioral research through the lens of cerebral network basis, linking the
27 BF-modulated BOLD activations to the internally and externally oriented behavioral
28 preference.

1 Moreover, we conducted additional experiments with 30-Hz optogenetic stimulation
2 on BF PV neurons as PV neuron is characterized by its fast spiking activity⁴⁶. All other
3 conditions were kept the same but with a higher frequency 30 Hz (Figure 7H). The results
4 revealed 30 Hz optogenetic stimulation elicited significant increased BOLD activations in
5 DMN-like regions (Figure 7I) as well as increased DMN-associated behaviors such as
6 grooming (Figure 7J), compared to those from 10 Hz. Importantly, activation map of 30-Hz
7 optogenetics on BF PV neurons showed higher spatial similarity to the predicted grooming
8 pattern compared to those of 10 Hz (Figure 7K), providing further support for the reliability
9 of our decoding model for linking the BOLD activation maps and mouse behaviors.

10 DISCUSSION

11 The functional roles of BF cholinergic and non-cholinergic neurons, from large-scale
12 functional networks to behaviors, remain elusive. We first demonstrated cell-type specific
13 whole-brain responses and corresponding internally and externally oriented behavioral
14 preference induced by optogenetic activation of four BF neuron types. Subsequently, we
15 developed a decoding model to link the BF-modulated BOLD activations and behavioral
16 preference based on the organization of a low-dimensional cerebral network. Ultimately,
17 we predicted the global patterns of mouse behavioral preference via our model, which
18 were verified by two different experiments, i.e., (1) awake mouse fMRI with simultaneous
19 grooming monitoring and (2) calcium fiber photometry during free-moving behavior test. In
20 summary, our results demonstrated that both cholinergic and non-cholinergic BF neurons
21 modulate cerebral functional networks and corresponding internally and externally
22 oriented behavioral preference. Our results also provided a framework for investigating
23 animal's behaviors in the whole brain view.

24 It is not trivial to acquire high-quality opto-fMRI data in mice, with many limiting
25 factors such as anesthesia, low SNR, and image artifacts caused by fiber implants. So far,
26 most previous opto-fMRI studies in rodents have been conducted under anesthesia^{47–54},
27 with only a few exceptions^{55–57}. To avoid the confounding factors of various anesthesia
28 methods^{58,59}, we established the awake opto-fMRI setup based on our extensive

1 experience in awake mouse fMRI^{26–29}. Furthermore, a multiband EPI pulse sequence was
2 employed to acquire functional images to achieve faster acquisition while maintaining
3 whole brain coverage²⁸. To take advantage of the high SNR provided by the cryogenic RF
4 (radio frequency) coil, a flexible PMMA optic fiber implant was used to accommodate the
5 limited space of the cryogenic coil (Figure 1B). Importantly, PMMA has similar magnetic
6 susceptibility to that of the brain tissue⁶⁰ thus reduced imaging artifacts caused by fiber
7 implantation (Figure 1C). In conclusion, we have optimized the setup for awake mice
8 opto-fMRI systematically to acquire high-quality opto-fMRI data.

9 With the optimized approach described above, we revealed cell-type specific
10 whole-brain responses under optogenetic activation of BF neurons. The most strong and
11 widespread BOLD responses (Figure 1E, upper panel) and corresponding highest
12 locomotion speed (Figure 5D) of BF VGLUT2 group possibly attribute to the promoting
13 wakefulness and avoidance behavior effects of BF VGLUT2 neurons^{3,14,15}. The activation
14 of the PFC, Mot, SS, AUD, and striatum (Figure 1E, upper middle panel) and
15 corresponding highest novel object exploration (Figure 5E) of the ChAT group were
16 consistent with the BF cholinergic neuron involved circuits that modulate recognition
17 memory, sensory perception and attention regulation^{39,41,61–64}. The higher quiet
18 wakefulness (Figure 5F) of SOM group may attribute to the sleep-promoting³ and
19 locomotion-inhibiting effects⁶⁵ of BF SOM neurons. Importantly, PV group showed positive
20 activation mainly within DMN-like network, resulting the highest specificity for DMN-like
21 activations of PV group than other groups (Figure 1E, lower middle panel and Figure 2D),
22 along with the corresponding highest grooming (Figure 5G). The above results were
23 consistent with previous work on BF PV neurons' modulation on DMN-like networks and
24 internally oriented behaviors²⁵. Interestingly, we consistently observed positive activations
25 in the DMN-like regions (Figure 1E and Figure 2) under the activation of all four BF neuron
26 types, indicating the complex yet robust interaction between BF and cortical DMN-like
27 network. It also supports the notion that BF may be part of a subcortical DMN
28 network^{24,25,36,66–68}. Therefore, the current study provided a more complete perspective for

1 whole-brain functional responses and corresponding behavioral preference from
2 activations of four BF neuron types.

3 We noticed that the behavioral differences among BF cell types were not drastic
4 (Figure 5). It can be potentially attribute to 4 reasons: (1) The primary function of BF is
5 to modulate brain states^{3,14,69,70}. It is not surprising that BF plays a modulatory role in
6 biasing the probability of these complex behaviors^{15,25,39,41,61–64}. Therefore, it is unlikely
7 that the activation of one BF neuron type would elicit a strong one-to-one
8 corresponding behavior; (2) The complex local connections among four BF neuron
9 types³. Consequently, optogenetic stimulation of each BF neuron type could elicit
10 responses from other BF cell types, collectively contributing to mouse behaviors; (3)
11 The long familiarization and behavioral test time. Our behavioral test paradigm was
12 not conventional in order to keep consistent with fMRI scanning paradigm and further
13 enable the subsequent linking between BOLD activations and free-moving behaviors.
14 Therefore, we had to use the long familiarization and behavioral test time, during
15 which, mice tended to become bored and entered immobile state. Such long
16 familiarization and behavioral test time could potentially reduce the behavioral impact
17 of optogenetic modulation; (4) Enhanced modulation effects on mouse behaviors may
18 be achieved by using different optogenetic frequency, particularly for PV neurons
19 (Figure 7H-K). Indeed, 30 Hz optogenetic stimulation elicited significant increased
20 BOLD activations in DMN-like regions (Figure 7I) as well as increased
21 DMN-associated behaviors such as grooming (Figure 7J), compared to those from 10
22 Hz. However, considering the comparing BF four neuron types and controlling for
23 potential artifacts arising from different optogenetic frequencies, utilizing the same
24 frequency of 10 Hz may be a reasonable compromise.

25 It is well known that the primary anatomical projections are key regulators of
26 functional dynamics. Interestingly, we found weak structural-functional correspondence
27 between BF cell-type specific anatomical projections and functional activations. Such
28 phenomenon was consistent with the finding that functional connectivity originated from
29 dopamine neurons in the ventral tegmental area⁵¹ and serotonin neurons in the dorsal

1 raphe⁴⁷ were uncoupled with corresponding dopaminergic and serotonergic neuron
2 projection density, respectively. Our results demonstrated the low dimensional structural
3 networks decomposed from BF-originated secondary projections significantly contributed
4 to the cell-type specific BOLD activations. As previous studies demonstrated that the low
5 dimensional structural networks served as the backbone of functional dynamics and
6 cognitions in human or marmoset brain^{71,72}, our finding suggested the dominating effects
7 of low dimensional structural networks on functional activations are markedly consistent
8 across species.

9 However, a framework to systematically establish the link among the cell-type specific
10 BF modulations, global structural networks, and behavioral preference is lacking. Thus,
11 our study built a decoding model to link the BF-modulated global activation patterns and
12 the behavioral preference in a low dimensional network space (Figure 6). After projecting
13 high dimensional BOLD activations into low dimensional space spanned by structural
14 networks, i.e., NMF components (Figure 4C), the dimension of resulting features, i.e.,
15 weights of NMF components (Figure 4F or 6C), were much closer to the dimension of
16 mouse behaviors. Using the low dimensional features as model inputs highly improved
17 the computational efficiency. More importantly, such a strategy enhanced the feasibility of
18 capturing discriminative features from BF-modulated BOLD activation patterns, which
19 were subsequently used to model the corresponding behavioral preference. Also, our BF
20 cell-type specific opto-fMRI, including manipulation on four neuron types instead of one²²,
21 provided more complete and informative BOLD features as the model inputs, improving
22 the robustness of our decoding model.

23 Interestingly, our modeling approach provided a general methodology to explore the
24 global patterns of behaviors. Based on the decoding model, we back-reconstructed the
25 global patterns of mouse behaviors, such as quiet wakefulness and grooming (Figure 6B,
26 right panel and 6G). Thus, the predicted global patterns offered potential “reference
27 templates”, similar to the “arousal template”³³, and could be used to infer the behavioral
28 occurrence through the spatial correlation between the template and the empirical
29 imaging data^{18,33}. Nevertheless, it is difficult to experimentally verify the predicted global

1 patterns (Figure 6G) in the MRI scanner. Thus, we further modified our awake mouse
2 fMRI setup to allow the animal's forelimbs to groom during the fMRI scanning (Figure 7B),
3 and obtained the empirical grooming evoked BOLD activations (Figure 7C). The
4 significant correlation between empirical and predicted grooming patterns (Figure 7D)
5 provided the experimental validation for our decoding model. Interestingly, the grooming
6 pattern with activations in DMN regions and de-activations in extrinsic networks (e.g.,
7 salience network) was in line with BOLD responses during internally focused cognitive
8 state in the previous human studies³⁵⁻³⁸. Together, these results suggested the reliability
9 of our modeling approach, which could be further used in inferring the global patterns of
10 behaviors in future imaging studies.

11 Previous human imaging studies³⁵⁻³⁸ revealed significant DMN activation and dorsal
12 attention network suppression under internally focused conditions. Such a phenomenon
13 was in accordance with our empirical groom activations (Figure 7C), suggesting the
14 cross-species consistency of the anti-correlated relationship between intrinsic and
15 extrinsic networks⁷³. During the external task condition, the BF and DMN were
16 deactivated together in human fMRI studies^{35,36,74}. The BF's prominent structural
17 connectivity with DMN-like cortical regions has been suggested to parallel its known
18 modulatory projections involving cholinergic, GABAergic, and glutamatergic systems⁴. In
19 our study, we revealed the highest specificity for the DMN activations with corresponding
20 grooming preference under the optogenetic activations of BF PV neurons (Figure 2 and 4).
21 Such results agreed with previous studies that projections of BF PV neurons have been
22 specifically linked to the control of DMN state transitions in rats^{25,34}. Therefore, we
23 confirmed the BF PV neurons on the DMN activity during the internally oriented behaviors.

24 An important limitation in our model was the assumption that the same optogenetic
25 stimulation paradigm induced a similar global response inside and outside the magnet.
26 Naturally, the brain state of the mouse was undoubtedly different in those two
27 environments. However, it is not unreasonable to assume that the strong cerebral
28 responses were more dominated by the optogenetic stimulations than the environment.
29 Moreover, our empirical evidence provided experimental support for the validity of our

1 modeling approach (Figure 7). Additionally, it was somewhat arbitrary or insufficient to
2 select these three regions for calcium fiber photometry to validate the reliability of
3 decoding patterns of quiet wakefulness, grooming, novel object exploration and
4 locomotion. Future investigations should include more regions to provide better validation
5 of our decoding patterns of free-moving behaviors. Another limitation was the lack of
6 recording the natural activity of cell-type specific BF neurons during various behaviors,
7 such as grooming, for better confirmation of different BF neuron types associated with
8 behavioral preferences. Furthermore, the current study only examined the cell-type
9 specific effects of BF neuron activation. Future investigations should incorporate cell-type
10 specific inhibition of BF neurons for a more complete view.

11 Last but not least, the complex interactions among BF neuron types³ were not
12 specifically considered in the current model. As demonstrated in our previous study³,
13 there are complex local connections among different cell types within BF. Given that
14 VGLUT2 neurons exhibit excitatory connections with ChAT, PV, and SOM neurons, the
15 activation map of BF VGLUT2 neurons may partly result from these local connections as it
16 resembles a combination of activation maps from the other three neural types.
17 Nevertheless, our concatenated secondary projections encompass all possible outputs
18 originating from BF four neuron types. Thus, our modelling results (Figure 4 & 6) were
19 unlikely to be affected by local interactions among BF neuron types. Further biophysical
20 modeling incorporating these local connections may be conducted in the future.

21

1 **STAR METHODS**

2 Detailed methods are provided in the online version of this paper and include
3 the following:

4 **● KEY RESOURCES TABLE**

5 **● RESOURCE AVAILABILITY**

6 Lead Contact
7 Materials Availability
8 Data and Code Availability

9 **● EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS**

10 Animals

11 **● METHOD DETAILS**

12 Stereotaxic surgeries
13 Habituation for awake mouse optogenetic fMRI (opto-fMRI)
14 Optogenetic fMRI acquisition
15 Simultaneous behavioral monitoring and fMRI acquisition
16 fMRI data processing
17 General linear model of cell-type specific optogenetic stimulations and
18 spontaneous behaviors
19 Specificity of DMN-like activations driven by BF neurons
20 Anterograde axon tracing from BF neurons
21 Voxel-wise whole-brain mesoscopic structural connectivity
22 Non-negative matrix factorization
23 Optogenetic free-moving behavioral test
24 Decoding the global patterns of mouse behaviors
25 Histology and microscopy
26 Free-moving behavioral tests with simultaneous fiber photometry
27 Optogenetics with simultaneous fiber photometry
28 Significance test using the spatial autocorrelation preserving shuffling
29 Comparing imaging artifacts of PMMA and SiO₂ fiber optic implants

30 **● QUANTIFICATION AND STATISTICAL ANALYSIS**

31 **ACKNOWLEDGMENTS**

32 The authors thank Jingjing Ye (iHuman Institute, ShanghaiTech Univ.) and Garth J.
33 Thompson (iHuman Institute, ShanghaiTech Univ.) for the help in fMRI data acquisition,

1 Ziyue Wang (CEBSIT, CAS) for the help in mouse surgery, Mouse Animal Facility of
2 CEBSIT for animal care, and the Brain Science Data Center, Chinese Academy of
3 Sciences for dataset release. This work was supported by the National Science and
4 Technology Innovation 2030 Major Program (2021ZD0202200, 2021ZD0200100 to ZL),
5 National Natural Science Foundation of China (32221003 to MX), CAS Project for Young
6 Scientists in Basic Research (YSBR-071 to MX), Lingang Laboratory & National Key
7 Laboratory of Human Factors Engineering Joint Grant (LG-TKN-202203-01 to MX), China
8 National Postdoctoral Program for Innovative Talents (BX20230383 to CT), China
9 Postdoctoral Science Foundation (2023M743616 to CT).

10

11 **AUTHOR CONTRIBUTIONS**

12 Y.Z., C.T., M.X. and Z.L. designed the study; Y.Z., C.T., Y.Q., J.L., Y.X., M.P., K.Z. and
13 W.L. collected the MRI and behavioral data; Y.Z., C.T. and Z.L. preprocessed and
14 organized the MRI and behavioral data; W.P. and M.X. collected and preprocessed the
15 anterograde tracing data; C.T., Y.Z. and Z.L. conducted the decoding modeling. Y.Z., C.T.,
16 M.X. and Z.L. wrote the original draft and revised the draft. All authors discussed and
17 approved the manuscript.

18

19 **DECLARATION OF INTERESTS**

20 The authors declare no competing interests.

21

22

1 REFERENCES

2 1. Yang, C., Thankachan, S., McCarley, R.W., and Brown, R.E. (2017). The
3 menagerie of the basal forebrain: how many (neural) species are there, what do they
4 look like, how do they behave and who talks to whom? *Current Opinion in*
5 *Neurobiology* **44**, 159–166. 10.1016/j.conb.2017.05.004.

6 2. Zaborszky, L., Csordas, A., Mosca, K., Kim, J., Gielow, M.R., Vadasz, C.,
7 and Nadasdy, Z. (2015). Neurons in the Basal Forebrain Project to the Cortex in a
8 Complex Topographic Organization that Reflects Corticocortical Connectivity Patterns:
9 An Experimental Study Based on Retrograde Tracing and 3D Reconstruction.
10 *Cerebral Cortex* **25**, 118–137. 10.1093/cercor/bht210.

11 3. Xu, M., Chung, S., Zhang, S., Zhong, P., Ma, C., Chang, W.-C., Weissbourd,
12 B., Sakai, N., Luo, L., Nishino, S., et al. (2015). Basal forebrain circuit for sleep-wake
13 control. *Nat Neurosci* **18**, 1641–1647. 10.1038/nn.4143.

14 4. Do, J.P., Xu, M., Lee, S.-H., Chang, W.-C., Zhang, S., Chung, S., Yung, T.J.,
15 Fan, J.L., Miyamichi, K., Luo, L., et al. (2016). Cell type-specific long-range
16 connections of basal forebrain circuit. *eLife* **5**, e13214. 10.7554/eLife.13214.

17 5. Ballinger, E.C., Ananth, M., Talmage, D.A., and Role, L.W. (2016). Basal
18 Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline.
19 *Neuron* **91**, 1199–1218. 10.1016/j.neuron.2016.09.006.

20 6. Geula, C., Dunlop, S.R., Ayala, I., Kawles, A.S., Flanagan, M.E., Gefen, T.,
21 and Mesulam, M. (2021). Basal forebrain cholinergic system in the dementias:
22 Vulnerability, resilience, and resistance. *J. Neurochem.* **158**, 1394–1411.
23 10.1111/jnc.15471.

24 7. Giacobini, E., Cuello, A.C., and Fisher, A. (2022). Reimagining cholinergic
25 therapy for Alzheimer's disease. *Brain* **145**, 2250–2275. 10.1093/brain/awac096.

26 8. Chaves-Coira, I., García-Magro, N., Zegarra-Valdivia, J., Torres-Alemán, I.,
27 and Núñez, Á. (2023). Cognitive Deficits in Aging Related to Changes in Basal
28 Forebrain Neuronal Activity. *Cells* **12**, 1477. 10.3390/cells12111477.

29 9. Ananth, M.R., Rajebhosale, P., Kim, R., Talmage, D.A., and Role, L.W.
30 (2023). Basal forebrain cholinergic signalling: development, connectivity and roles in
31 cognition. *Nat Rev Neurosci.* 10.1038/s41583-023-00677-x.

32 10. Grossberg, S. (2017). Acetylcholine Neuromodulation in Normal and
33 Abnormal Learning and Memory: Vigilance Control in Waking, Sleep, Autism,
34 Amnesia and Alzheimer's Disease. *Front. Neural Circuits* **11**, 82.
35 10.3389/fncir.2017.00082.

1 11. Luchicchi, A., Bloem, B., Viañez, J.N.M., Mansvelder, H.D., and Role, L.W.
2 (2014). Illuminating the role of cholinergic signaling in circuits of attention and
3 emotionally salient behaviors. *Front. Synaptic Neurosci.* 6.
4 10.3389/fnsyn.2014.00024.

5 12. Okada, K., Hashimoto, K., and Kobayashi, K. (2022). Cholinergic regulation
6 of object recognition memory. *Front. Behav. Neurosci.* 16, 996089.
7 10.3389/fnbeh.2022.996089.

8 13. Harrison, T.C., Pinto, L., Brock, J.R., and Dan, Y. (2016). Calcium Imaging of
9 Basal Forebrain Activity during Innate and Learned Behaviors. *Front. Neural Circuits*
10 10. 10.3389/fncir.2016.00036.

11 14. Peng, W., Wu, Z., Song, K., Zhang, S., Li, Y., and Xu, M. (2020). Regulation
12 of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons.
13 Science 369, eabb0556. 10.1126/science.abb0556.

14 15. McKenna, J.T., Yang, C., Bellio, T., Anderson-Chernishof, M.B., Gamble,
15 M.C., Hulverson, A., McCoy, J.G., Winston, S., Hodges, E., Katsuki, F., et al. (2021).
16 Characterization of basal forebrain glutamate neurons suggests a role in control of
17 arousal and avoidance behavior. *Brain Struct Funct* 226, 1755–1778.
18 10.1007/s00429-021-02288-7.

19 16. Swanson, J.L., Ortiz-Guzman, J., Srivastava, S., Chin, P.-S., Dooling, S.W.,
20 Hanson Moss, E., Kochukov, M.Y., Hunt, P.J., Patel, J.M., Pekarek, B.T., et al. (2022).
21 Activation of basal forebrain-to-lateral habenula circuitry drives reflexive aversion and
22 suppresses feeding behavior. *Sci Rep* 12, 22044. 10.1038/s41598-022-26306-8.

23 17. Avila, I., and Lin, S.-C. (2014). Distinct neuronal populations in the basal
24 forebrain encode motivational salience and movement. *Front. Behav. Neurosci.* 8.
25 10.3389/fnbeh.2014.00421.

26 18. Liu, X., de Zwart, J.A., Schölvink, M.L., Chang, C., Ye, F.Q., Leopold, D.A.,
27 and Duyn, J.H. (2018). Subcortical evidence for a contribution of arousal to fMRI
28 studies of brain activity. *Nat Commun* 9, 395. 10.1038/s41467-017-02815-3.

29 19. Turchi, J., Chang, C., Ye, F.Q., Russ, B.E., Yu, D.K., Cortes, C.R., Monosov,
30 I.E., Duyn, J.H., and Leopold, D.A. (2018). The Basal Forebrain Regulates Global
31 Resting-State fMRI Fluctuations. *Neuron* 97, 940-952.e4.
32 10.1016/j.neuron.2018.01.032.

33 20. Shah, D., Blockx, I., Keliris, G.A., Kara, F., Jonckers, E., Verhoye, M., and
34 Van der Linden, A. (2016). Cholinergic and serotonergic modulations differentially
35 affect large-scale functional networks in the mouse brain. *Brain Struct Funct* 221,
36 3067–3079. 10.1007/s00429-015-1087-7.

1 21. Shah, D., Blockx, I., Guns, P.-J., De Deyn, P.P., Van Dam, D., Jonckers, E.,
2 Delgado y Palacios, R., Verhoye, M., and Van der Linden, A. (2015). Acute
3 modulation of the cholinergic system in the mouse brain detected by pharmacological
4 resting-state functional MRI. *NeuroImage* 109, 151–159.
5 10.1016/j.neuroimage.2015.01.009.

6 22. Peeters, L.M., van den Berg, M., Hinz, R., Majumdar, G., Pintelon, I., and
7 Keliris, G.A. (2020). Cholinergic Modulation of the Default Mode Like Network in Rats.
8 *iScience* 23, 101455. 10.1016/j.isci.2020.101455.

9 23. Nair, J., Klaassen, A.-L., Poirot, J., Vyssotski, A., Rasch, B., and Rainer, G.
10 (2016). Gamma band directional interactions between basal forebrain and visual
11 cortex during wake and sleep states. *Journal of Physiology-Paris* 110, 19–28.
12 10.1016/j.jphysparis.2016.11.011.

13 24. Nair, J., Klaassen, A.-L., Arato, J., Vyssotski, A.L., Harvey, M., and Rainer, G.
14 (2018). Basal forebrain contributes to default mode network regulation. *Proc. Natl.*
15 *Acad. Sci. U.S.A.* 115, 1352–1357. 10.1073/pnas.1712431115.

16 25. Lozano-Montes, L., Dimanico, M., Mazloum, R., Li, W., Nair, J., Kintscher, M., Schneggenburger, R., Harvey, M., and Rainer, G. (2020). Optogenetic Stimulation of Basal Forebrain Parvalbumin Neurons Activates the Default Mode Network and Associated Behaviors. *Cell Reports* 33, 108359. 10.1016/j.celrep.2020.108359.

20 26. Chen, X., Tong, C., Han, Z., Zhang, K., Bo, B., Feng, Y., and Liang, Z. (2020).
21 Sensory evoked fMRI paradigms in awake mice. *NeuroImage* 204, 116242.
22 10.1016/j.neuroimage.2019.116242.

23 27. Han, Z., Chen, W., Chen, X., Zhang, K., Tong, C., Zhang, X., Li, C.T., and
24 Liang, Z. (2019). Awake and behaving mouse fMRI during Go/No-Go task.
25 *NeuroImage* 188, 733–742. 10.1016/j.neuroimage.2019.01.002.

26 28. Xu, W., Pei, M., Zhang, K., Tong, C., Bo, B., Feng, J., Zhang, X.-Y., and
27 Liang, Z. (2022). A systematically optimized awake mouse fMRI paradigm. Preprint at
28 Neuroscience, <https://www.biorxiv.org/content/10.1101/2022.11.16.516376v1.full>
29 <https://www.biorxiv.org/content/10.1101/2022.11.16.516376v1.full>.

30 29. Yu, Y., Qiu, Y., Li, G., Zhang, K., Bo, B., Pei, M., Ye, J., Thompson, G.J.,
31 Cang, J., Fang, F., et al. (2023). Sleep fMRI with simultaneous electrophysiology at
32 9.4 T in male mice. *Nat Commun* 14, 1651. 10.1038/s41467-023-37352-9.

33 30. Coletta, L., Pagani, M., Whitesell, J.D., Harris, J.A., Bernhardt, B., and Gozzi, A. (2020). Network structure of the mouse brain connectome with voxel resolution. *Sci. Adv.* 6, eabb7187. 10.1126/sciadv.eabb7187.

1 31. Knox, J.E., Harris, K.D., Graddis, N., Whitesell, J.D., Zeng, H., Harris, J.A.,
2 Shea-Brown, E., and Mihalas, S. (2019). High-resolution data-driven model of the
3 mouse connectome. *Network Neuroscience* 3, 217–236. 10.1162/netn_a_00066.

4 32. Goodale, S.E., Ahmed, N., Zhao, C., de Zwart, J.A., Özbay, P.S., Picchioni,
5 D., Duyn, J., Englot, D.J., Morgan, V.L., and Chang, C. (2021). fMRI-based detection
6 of alertness predicts behavioral response variability. *Elife* 10, e62376.
7 10.7554/elife.62376.

8 33. Chang, C., Leopold, D.A., Schölvinck, M.L., Mandelkow, H., Picchioni, D.,
9 Liu, X., Ye, F.Q., Turchi, J.N., and Duyn, J.H. (2016). Tracking brain arousal
10 fluctuations with fMRI. *Proc. Natl. Acad. Sci. U.S.A.* 113, 4518–4523.
11 10.1073/pnas.1520613113.

12 34. Klaassen, A.-L., Heiniger, A., Vaca Sánchez, P., Harvey, M.A., and Rainer, G.
13 (2021). Ventral pallidum regulates the default mode network, controlling transitions
14 between internally and externally guided behavior. *Proceedings of the National
15 Academy of Sciences* 118, e2103642118. 10.1073/pnas.2103642118.

16 35. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A.,
17 and Shulman, G.L. (2001). A default mode of brain function. *Proc. Natl. Acad. Sci.
18 U.S.A.* 98, 676–682. 10.1073/pnas.98.2.676.

19 36. Harrison, B.J., Davey, C.G., Savage, H.S., Jamieson, A.J., Leonards, C.A.,
20 Moffat, B.A., Glarin, R.K., and Steward, T. (2022). Dynamic subcortical modulators of
21 human default mode network function. *Cereb Cortex* 32, 4345–4355.
22 10.1093/cercor/bhab487.

23 37. Harrison, B.J., Pujol, J., López-Solà, M., Hernández-Ribas, R., Deus, J.,
24 Ortiz, H., Soriano-Mas, C., Yücel, M., Pantelis, C., and Cardoner, N. (2008).
25 Consistency and functional specialization in the default mode brain network. *Proc Natl
26 Acad Sci U S A* 105, 9781–9786. 10.1073/pnas.0711791105.

27 38. Miller, K.J., Weaver, K.E., and Ojemann, J.G. (2009). Direct
28 electrophysiological measurement of human default network areas. *Proceedings of
29 the National Academy of Sciences* 106, 12174–12177. 10.1073/pnas.0902071106.

30 39. Giovannini, M.G., Rakovska, A., Benton, R.S., Pazzaglia, M., Bianchi, L., and
31 Pepeu, G. (2001). Effects of novelty and habituation on acetylcholine, GABA, and
32 glutamate release from the frontal cortex and hippocampus of freely moving rats.
33 *Neuroscience* 106, 43–53. 10.1016/S0306-4522(01)00266-4.

34 40. Meeter, M., Murre, J. m. j., and Talamini, L. m. (2004). Mode shifting
35 between storage and recall based on novelty detection in oscillating hippocampal
36 circuits. *Hippocampus* 14, 722–741. 10.1002/hipo.10214.

1 41. Esaki, H., Izumi, S., Fukao, A., Ito, S., Nishitani, N., Deyama, S., and
2 Kaneda, K. (2021). Nicotine Enhances Object Recognition Memory via Stimulating
3 $\alpha 4\beta 2$ and $\alpha 7$ Nicotinic Acetylcholine Receptors in the Medial Prefrontal Cortex of Mice.
4 *Biological & Pharmaceutical Bulletin* 44, 1007–1013. 10.1248/bpb.b21-00314.

5 42. Vinck, M., Batista-Brito, R., Knoblich, U., and Cardin, J.A. (2015). Arousal
6 and Locomotion Make Distinct Contributions to Cortical Activity Patterns and Visual
7 Encoding. *Neuron* 86, 740–754. 10.1016/j.neuron.2015.03.028.

8 43. Saleem, A.B., Ayaz, A., Jeffery, K.J., Harris, K.D., and Carandini, M. (2013).
9 Integration of visual motion and locomotion in mouse visual cortex. *Nat Neurosci* 16,
10 1864–1869. 10.1038/nn.3567.

11 44. Musall, S., Kaufman, M.T., Juavinett, A.L., Gluf, S., and Churchland, A.K.
12 (2019). Single-trial neural dynamics are dominated by richly varied movements. *Nat
13 Neurosci* 22, 1677–1686. 10.1038/s41593-019-0502-4.

14 45. Leiras, R., Cregg, J.M., and Kiehn, O. (2022). Brainstem Circuits for
15 Locomotion. <https://doi.org/10.1146/annurev-neuro-082321-025137>.
16 10.1146/annurev-neuro-082321-025137.

17 46. Hu, H., Gan, J., and Jonas, P. (2014). Interneurons. Fast-spiking,
18 parvalbumin⁺ GABAergic interneurons: from cellular design to microcircuit function.
19 *Science* 345, 1255263. 10.1126/science.1255263.

20 47. Grandjean, J., Corcoba, A., Kahn, M.C., Upton, A.L., Deneris, E.S., Seifritz,
21 E., Helmchen, F., Mansuy, I.M., Mann, E.O., Rudin, M., et al. (2019). A brain-wide
22 functional map of the serotonergic responses to acute stress and fluoxetine. *Nat
23 Commun* 10, 350. 10.1038/s41467-018-08256-w.

24 48. Jung, W.B., Jiang, H., Lee, S., and Kim, S.-G. (2022). Dissection of
25 brain-wide resting-state and functional somatosensory circuits by fMRI with
26 optogenetic silencing. *Proc. Natl. Acad. Sci. U.S.A.* 119, e2113313119.
27 10.1073/pnas.2113313119.

28 49. Moon, H.S., Jiang, H., Vo, T.T., Jung, W.B., Vazquez, A.L., and Kim, S.-G.
29 (2021). Contribution of Excitatory and Inhibitory Neuronal Activity to BOLD fMRI.
30 *Cerebral Cortex* 31, 4053–4067. 10.1093/cercor/bhab068.

31 50. Shim, H.-J., Im, G.H., Jung, W.B., Moon, H.S., Dinh, T.N.A., Lee, J.-Y., and
32 Kim, S.-G. (2022). Protocol for mouse optogenetic fMRI at ultrahigh magnetic fields.
33 *STAR Protocols* 3, 101846. 10.1016/j.xpro.2022.101846.

34 51. Lohani, S., Poplawsky, A.J., Kim, S.-G., and Moghaddam, B. (2017).
35 Unexpected global impact of VTA dopamine neuron activation as measured by
36 opto-fMRI. *Mol Psychiatry* 22, 585–594. 10.1038/mp.2016.102.

1 52. Liang, Z., Watson, G.D.R., Alloway, K.D., Lee, G., Neuberger, T., and Zhang, N. (2015). Mapping the functional network of medial prefrontal cortex by combining optogenetics and fMRI in awake rats. *NeuroImage* 117, 114–123. 10.1016/j.neuroimage.2015.05.036.

5 53. Chan, R.W., Cron, G.O., Asaad, M., Edelman, B.J., Lee, H.J., Adesnik, H., Feinberg, D., and Lee, J.H. (2022). Distinct local and brain-wide networks are activated by optogenetic stimulation of neurons specific to each layer of motor cortex. *NeuroImage* 263, 119640. 10.1016/j.neuroimage.2022.119640.

9 54. Yu, X., He, Y., Wang, M., Merkle, H., Dodd, S.J., Silva, A.C., and Koretsky, A.P. (2016). Sensory and optogenetically driven single-vessel fMRI. *Nat Methods* 13, 337–340. 10.1038/nmeth.3765.

12 55. Desai, M., Kahn, I., Knoblich, U., Bernstein, J., Atallah, H., Yang, A., Kopell, N., Buckner, R.L., Graybiel, A.M., Moore, C.I., et al. (2011). Mapping brain networks in awake mice using combined optical neural control and fMRI. *Journal of Neurophysiology* 105, 1393–1405. 10.1152/jn.00828.2010.

16 56. Ferenczi, E.A., Zalocusky, K.A., Liston, C., Grosenick, L., Warden, M.R., Amatya, D., Katovich, K., Mehta, H., Patenaude, B., Ramakrishnan, C., et al. (2016). Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. *Science* 351, aac9698. 10.1126/science.aac9698.

20 57. Cover, C.G., Kesner, A.J., Ukani, S., Stein, E.A., Ikemoto, S., Yang, Y., and Lu, H. (2021). Whole brain dynamics during optogenetic self-stimulation of the medial prefrontal cortex in mice. *Commun Biol* 4, 66. 10.1038/s42003-020-01612-x.

23 58. Paasonen, J., Stenroos, P., Salo, R.A., Kiviniemi, V., and Gröhn, O. (2018). Functional connectivity under six anesthesia protocols and the awake condition in rat brain. *NeuroImage* 172, 9–20. 10.1016/j.neuroimage.2018.01.014.

26 59. Reimann, H.M., and Niendorf, T. (2020). The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. *Front. Syst. Neurosci.* 14, 8. 10.3389/fnsys.2020.00008.

29 60. Wapler, M.C., Leupold, J., Dragonu, I., von Elverfeld, D., Zaitsev, M., and Wallrabe, U. (2014). Magnetic properties of materials for MR engineering, micro-MR and beyond. *Journal of Magnetic Resonance* 242, 233–242. 10.1016/j.jmr.2014.02.005.

33 61. Esaki, H., Izumi, S., Fukao, A., Nishitani, N., Deyama, S., and Kaneda, K. (2021). Nicotine enhances object recognition memory through inhibition of voltage-dependent potassium 7 channels in the medial prefrontal cortex of mice. *Journal of Pharmacological Sciences* 147, 58–61. 10.1016/j.jphs.2021.05.009.

1 62. Hanson, E., Brandel-Ankrapp, K.L., and Arenkiel, B.R. (2021). Dynamic
2 Cholinergic Tone in the Basal Forebrain Reflects Reward-Seeking and Reinforcement
3 During Olfactory Behavior. *Front Cell Neurosci* 15, 635837.
4 10.3389/fncel.2021.635837.

5 63. Pinto, L., Goard, M.J., Estandian, D., Xu, M., Kwan, A.C., Lee, S.-H.,
6 Harrison, T.C., Feng, G., and Dan, Y. (2013). Fast modulation of visual perception by
7 basal forebrain cholinergic neurons. *Nat Neurosci* 16, 1857–1863. 10.1038/nn.3552.

8 64. Nelson, A., and Mooney, R. (2016). The Basal Forebrain and Motor Cortex
9 Provide Convergent yet Distinct Movement-Related Inputs to the Auditory Cortex.
10 *Neuron* 90, 635–648. 10.1016/j.neuron.2016.03.031.

11 65. Espinosa, N., Alonso, A., Morales, C., Espinosa, P., Chávez, A.E., and
12 Fuentealba, P. (2019). Basal Forebrain Gating by Somatostatin Neurons Drives
13 Prefrontal Cortical Activity. *Cerebral Cortex* 29, 42–53. 10.1093/cercor/bhx302.

14 66. Stafford, J.M., Jarrett, B.R., Miranda-Dominguez, O., Mills, B.D., Cain, N.,
15 Mihalas, S., Lahvis, G.P., Lattal, K.M., Mitchell, S.H., David, S.V., et al. (2014).
16 Large-scale topology and the default mode network in the mouse connectome. *Proc
17 Natl Acad Sci U S A* 111, 18745–18750. 10.1073/pnas.1404346111.

18 67. Alves, P.N., Foulon, C., Karolis, V., Bzdok, D., Margulies, D.S., Volle, E., and
19 Thiebaut de Schotten, M. (2019). An improved neuroanatomical model of the
20 default-mode network reconciles previous neuroimaging and neuropathological
21 findings. *Commun Biol* 2, 370. 10.1038/s42003-019-0611-3.

22 68. Li, J., Curley, W.H., Guerin, B., Dougherty, D.D., Dalca, A.V., Fischl, B., Horn,
23 A., and Edlow, B.L. (2021). Mapping the subcortical connectivity of the human default
24 mode network. *NeuroImage* 245, 118758. 10.1016/j.neuroimage.2021.118758.

25 69. Anaclet, C., Pedersen, N.P., Ferrari, L.L., Venner, A., Bass, C.E., Arrigoni, E.,
26 and Fuller, P.M. (2015). Basal forebrain control of wakefulness and cortical rhythms.
27 *Nat Commun* 6, 8744. 10.1038/ncomms9744.

28 70. McKenna, J.T., Thankachan, S., Uygun, D.S., Shukla, C., McNally, J.M.,
29 Schiffino, F.L., Cordeira, J., Katsuki, F., Zant, J.C., Gamble, M.C., et al. (2020). Basal
30 Forebrain Parvalbumin Neurons Mediate Arousal from Sleep Induced by
31 Hypercarbia or Auditory Stimuli. *Current Biology* 30, 2379-2385.e4.
32 10.1016/j.cub.2020.04.029.

33 71. Tong, C., Liu, C., Zhang, K., Bo, B., Xia, Y., Yang, H., Feng, Y., and Liang, Z.
34 (2022). Multimodal analysis demonstrating the shaping of functional gradients in the
35 marmoset brain. *Nat Commun* 13, 6584. 10.1038/s41467-022-34371-w.

1 72. Shine, J.M., Breakspear, M., Bell, P.T., Ehgoetz Martens, K.A., Shine, R.,
2 Koyejo, O., Sporns, O., and Poldrack, R.A. (2019). Human cognition involves the
3 dynamic integration of neural activity and neuromodulatory systems. *Nat Neurosci* 22,
4 289–296. 10.1038/s41593-018-0312-0.

5 73. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., and
6 Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic,
7 anticorrelated functional networks. *Proceedings of the National Academy of Sciences*
8 102, 9673–9678. 10.1073/pnas.0504136102.

9 74. Shulman, G.L., Corbetta, M., Buckner, R.L., Fiez, J.A., Miezin, F.M., Raichle,
10 M.E., and Petersen, S.E. (1997). Common Blood Flow Changes across Visual Tasks:
11 I. Increases in Subcortical Structures and Cerebellum but Not in Nonvisual Cortex. *J
12 Cogn Neurosci* 9, 624–647. 10.1162/jocn.1997.9.5.624.

13 75. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C.,
14 and Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical
15 structures: significantly improved efficiency and reliability. *Neuroimage* 31, 1116–1128.
16 10.1016/j.neuroimage.2006.01.015.

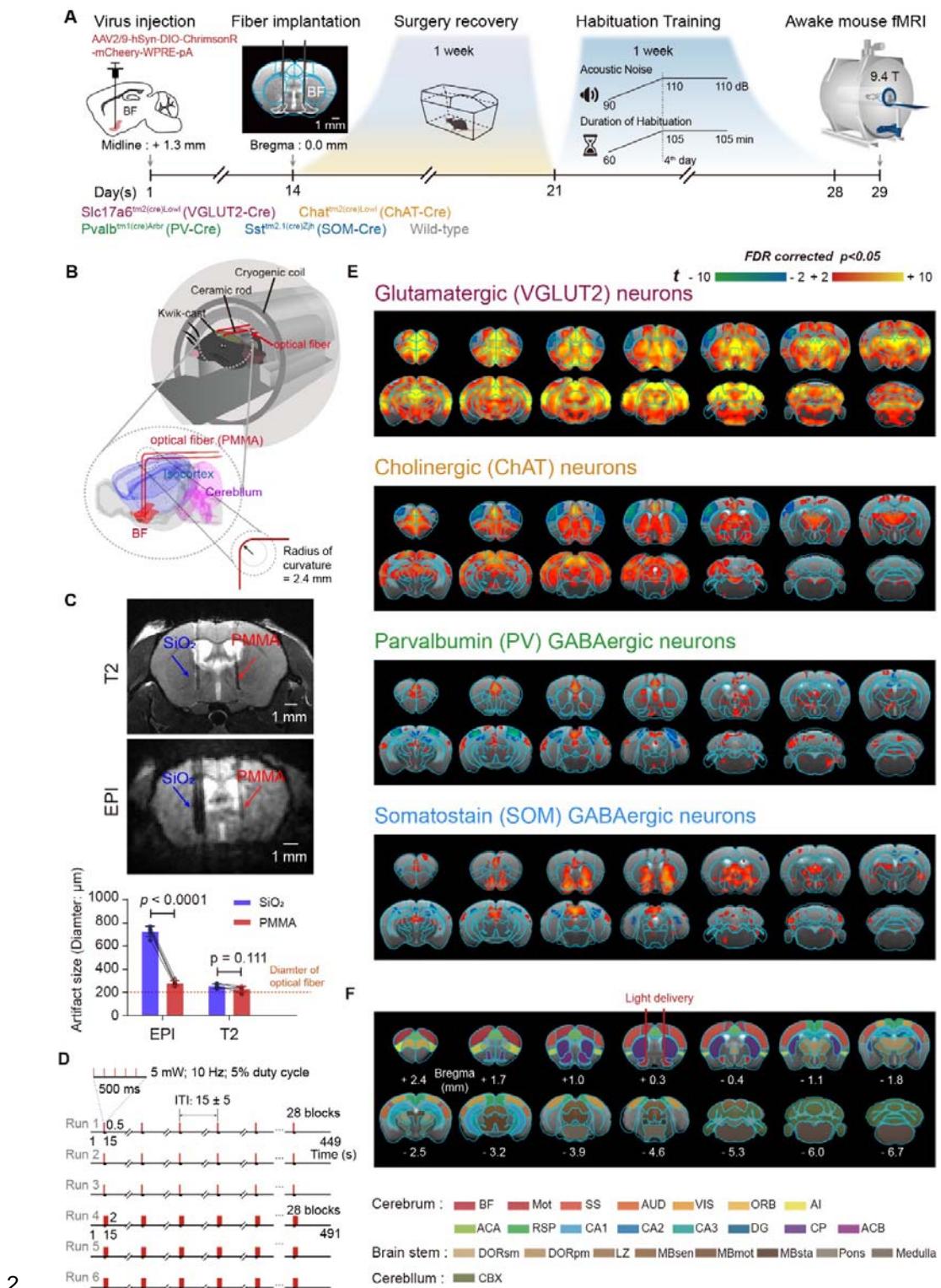
17 76. Jung, W.B., Im, G.H., Jiang, H., and Kim, S.-G. (2021). Early fMRI
18 responses to somatosensory and optogenetic stimulation reflect neural information
19 flow. *Proc. Natl. Acad. Sci. U.S.A.* 118, e2023265118. 10.1073/pnas.2023265118.

20 77. Zerbi, V., Grandjean, J., Rudin, M., and Wenderoth, N. (2015). Mapping the
21 mouse brain with rs-fMRI: An optimized pipeline for functional network identification.
22 *NeuroImage* 123, 11–21. 10.1016/j.neuroimage.2015.07.090.

23 78. Beckmann, C.F., and Smith, S.M. (2004). Probabilistic independent
24 component analysis for functional magnetic resonance imaging. *IEEE Transactions
25 on Medical Imaging* 23, 137–152. 10.1109/TMI.2003.822821.

26 79. Grandjean, J., Zerbi, V., Balsters, J.H., Wenderoth, N., and Rudin, M. (2017).
27 Structural Basis of Large-Scale Functional Connectivity in the Mouse. *J Neurosci* 37,
28 8092–8101. 10.1523/JNEUROSCI.0438-17.2017.

29 80. Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q.,
30 Lau, C., Kuan, L., Henry, A.M., et al. (2014). A mesoscale connectome of the mouse
31 brain. *Nature* 508, 207–214. 10.1038/nature13186.


32 81. Demirtaş, M., Burt, J.B., Helmer, M., Ji, J.L., Adkinson, B.D., Glasser, M.F.,
33 Van Essen, D.C., Sotiropoulos, S.N., Anticevic, A., and Murray, J.D. (2019).
34 Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural
35 Dynamics. *Neuron* 101, 1181-1194.e13. 10.1016/j.neuron.2019.01.017.

1 82. Burt, J.B., Helmer, M., Shinn, M., Anticevic, A., and Murray, J.D. (2020).
2 Generative modeling of brain maps with spatial autocorrelation. *Neuroimage* 220,
3 117038. 10.1016/j.neuroimage.2020.117038.

4 83. Markello, R.D., and Misic, B. (2021). Comparing spatial null models for brain
5 maps. *Neuroimage* 236, 118052. 10.1016/j.neuroimage.2021.118052.

6

1 Figures and Figure Legends

1 **Figure 1 | Whole brain opto-fMRI responses driven by cell-type specific**
2 **neuronal activations of the basal forebrain in awake mice.**

3 (A) Schematic setup of opto-fMRI and experimental timeline.

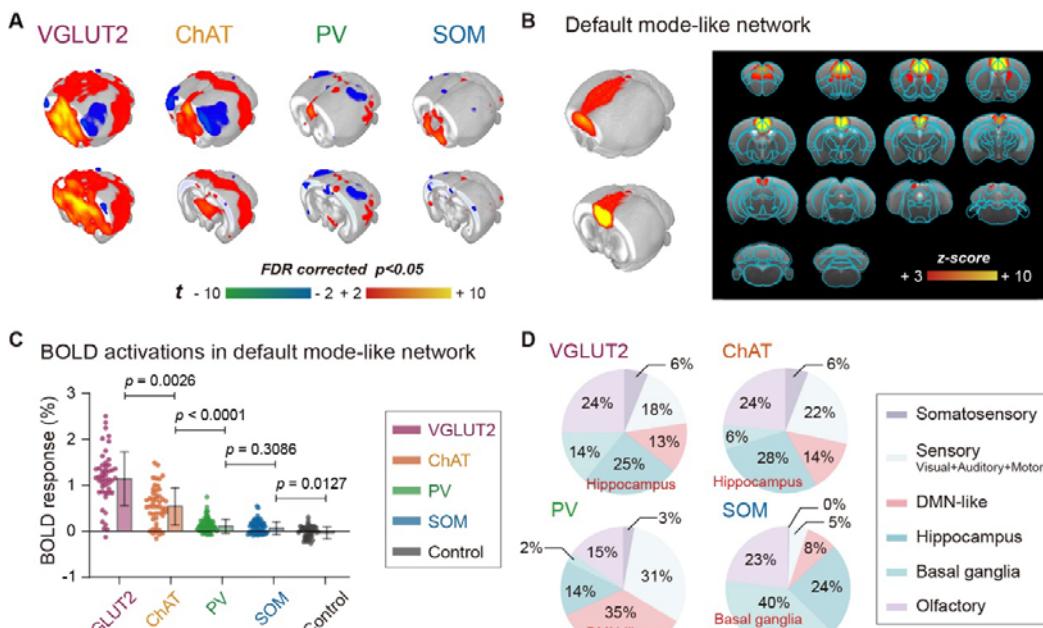
4 (B) Flexible PMMA fiber for optogenetic light delivery within cryogenic coil.

5 Light was delivered to bilateral basal forebrain (BF) via two PMMA optical
6 fibers. PMMA, polymethylmethacrylate.

7 (C) Reduced image artifact by PMMA optical fiber compared to SiO₂ fiber.

8 SiO₂, silicon dioxide. Statistical significance was determined using paired
9 t-test (two tails, N=5 animals). Error bar, the standard error of the mean.

10 (D) Optogenetic stimulation paradigm.


11 (E) BOLD responses under optogenetic stimulations of cell-type specific BF
12 neurons with FDR corrected p < 0.05.

13 (F) Region-of-interest (ROI) definitions based on CCFv3 Allen mouse brain
14 atlas. Abbreviations were listed in Supplementary Table 1.

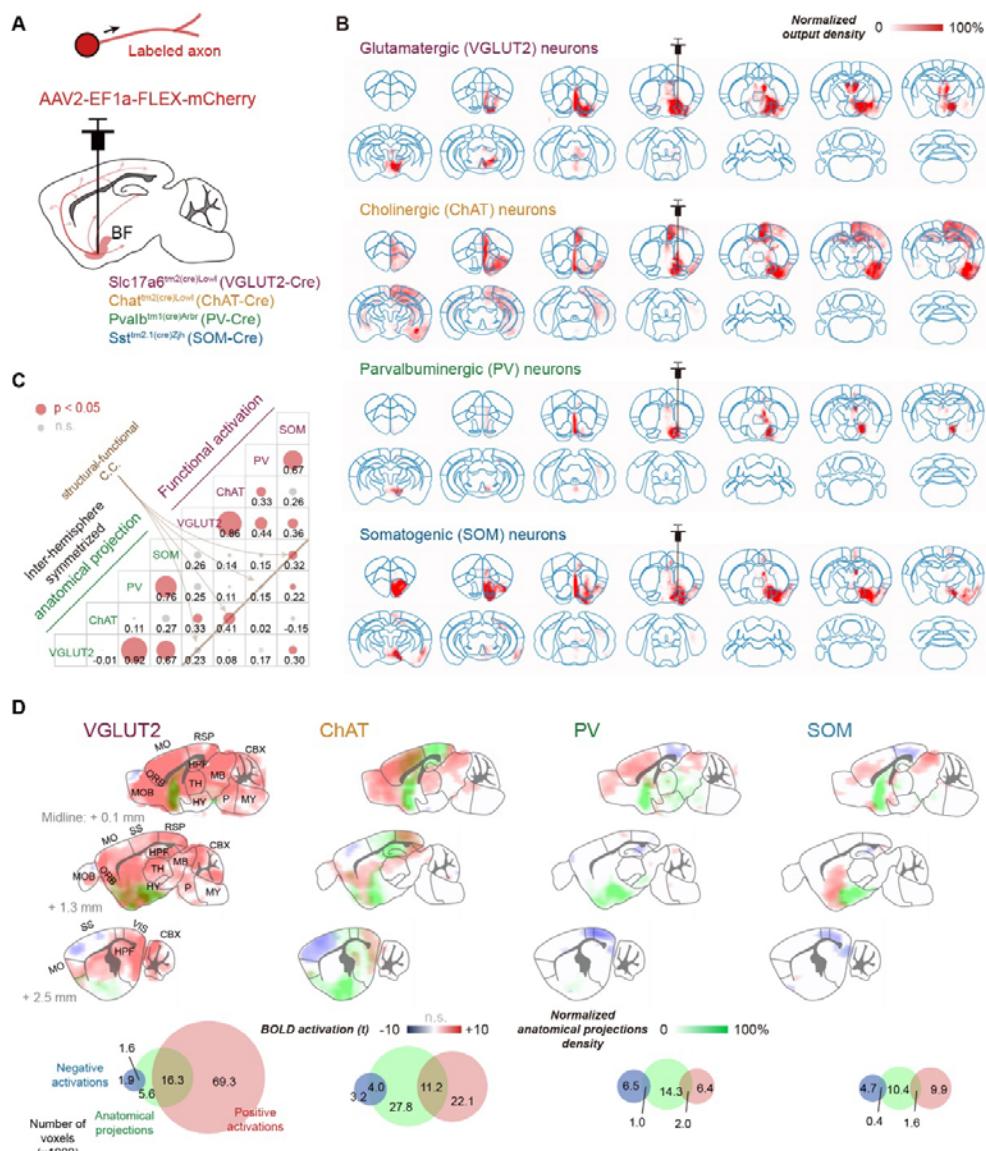
15 See also Figure S1-6 and Table S1.

16

17

Figure 2 | Consistent activations in mouse default mode-like network (DMN-like) under cell-type specific optogenetic stimulations of basal forebrain neurons.

(A) BOLD activation maps in 3D view under cell-type specific optogenetic stimulations of basal forebrain (BF) neurons. The activation maps were same as Figure 1E.


(B) DMN-like component of mouse in 3D view (left panel) and axial slice view (right panel).

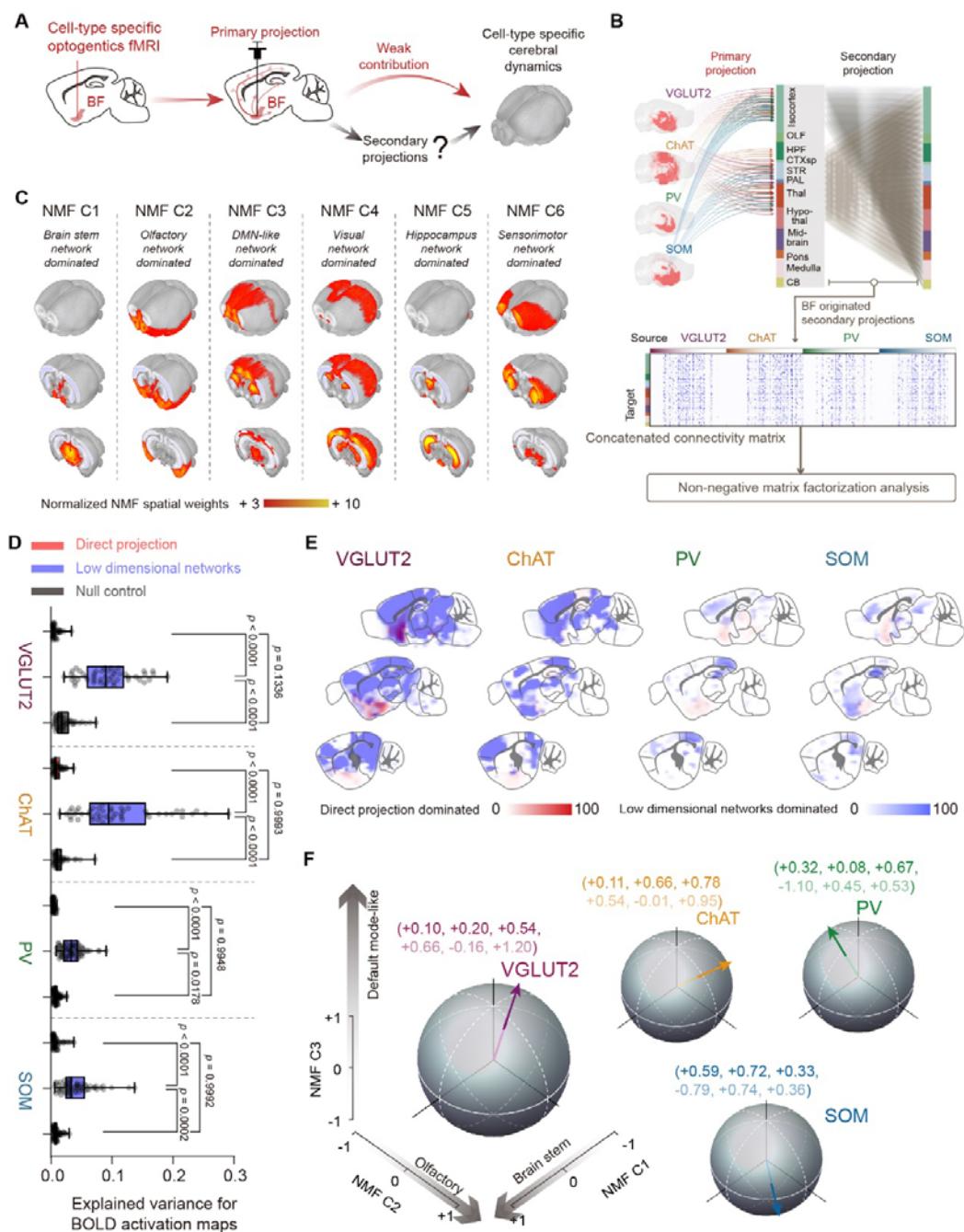
(C) Significant BOLD activations in DMN-like regions under cell-type specific manipulation on BF neurons. Statistical significance was determined using a one-way ANOVA followed by Tukey's post hoc test for group comparison. Each dot represented an individual EPI run. Error bar, the standard deviation (S.D.) of the mean.

(D) Highest specificity of DMN-like activations modulated by BF PV neurons. Pie charts showing the composition by mouse functional networks for the cell-type specific opto-fMRI responses.

See also Figure S7.

20

Figure 3 | Direct anatomical projections weakly contribute to opto-fMRI activation patterns of BF neurons.


(A) Viral injection procedure for tracing BF projections.

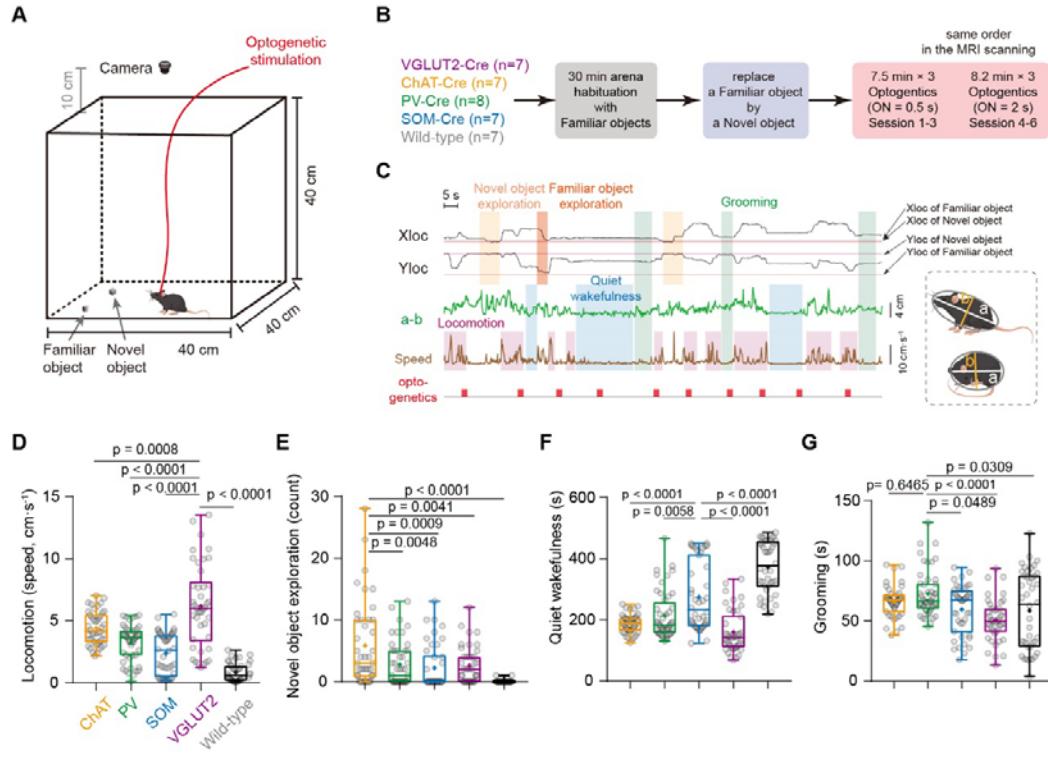
(B) Whole-brain anatomical projections from 4 BF neuron types.

(C) Weak spatial similarities (brown line) between anatomical projection and functional activation maps for four BF neuron types. The size of each circle indicates the spatial similarity (Pearson's correlation coefficients, C.C.) between the opto-fMRI activations and anatomical projection density across 213 brain regions. The parcels of these 213 brain regions were chosen based on the Allen Mouse Brain Connectivity Atlas, covering all voxels across mouse brain. No thresholds were used to select pixels.

(D) Spatial maps (upper panel) and quantitative evaluations (lower panel) of the overlay between anatomical projections and functional activations.

See also Figure S8-9.

1
2

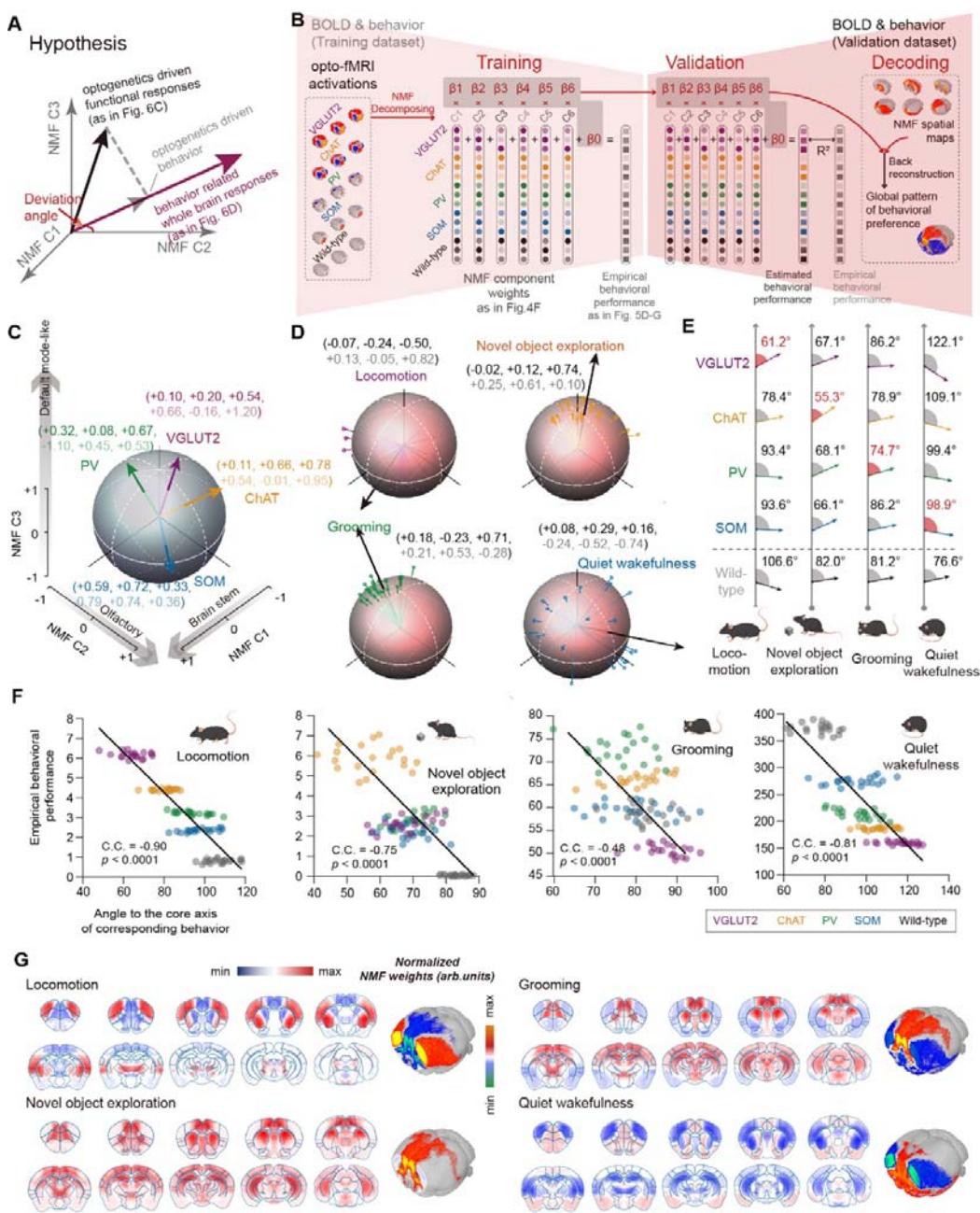

Figure 4 | BF originated low dimensional structural networks significantly contributed to cell-type specific opto-fMRI activations.

5 (A) Hypothesis of the contribution of secondary projections on cell-type specific opto-fMRI activations.

7 (B) Computational pipeline of non-negative matrix factorization (NMF) on BF originated whole-brain mesoscopic secondary projections.

9 (C) Spatial maps of three low dimensional structural networks (i.e., the first six 10 NMF components) in 3D view.

1 (D-E) Quantification (D) and spatial distributions (E) of explained variance for
2 opto-fMRI activations from the direct projections and low dimensional
3 structural networks (as in Figure 4C) respectively. Statistical significance was
4 calculated by two-tailed paired t-test. Notably, the null control was constructed
5 by spatially shuffling the BOLD activation maps. Each dot represented an
6 individual EPI run. Box, 25-75% range and median line; whisker, minimum to
7 maximum range; plus mark, the mean value.
8 (F) Cell-type specific opto-fMRI activations in six dimensional NMF space.
9 Feature vector for each BF cell type was normalized by its magnitude.
10 See also Figure S10-12.
11


Figure 5 | Optogenetic activation of VGLUT2, ChAT and PV neurons in BF modulated the preference of locomotion, exploration and grooming, respectively.

6 (A-B) Schematic of the free-moving behavioral experiments under optogenetic
7 stimulations.

8 (C) Representative behavioral traces.

9 (D-G) Behavior performances under optogenetic activations of four BF neuron
 10 types, including locomotion (D), novel object exploration (E), quiet wakefulness
 11 (F) and grooming (G). Details of multiple comparison across cell-types were
 12 list in supplementary Table 2. Each dot represented the averaged behavioral
 13 performance in each experimental session. Box, 25-75% range and median
 14 line; whisker, minimum to maximum range; plus mark, the mean value.

See also Figure S13-15 and Table S2

Figure 6 | A decoding model predicted the global patterns of opto-induced behaviors outside the magnet based on the low dimensional networks.

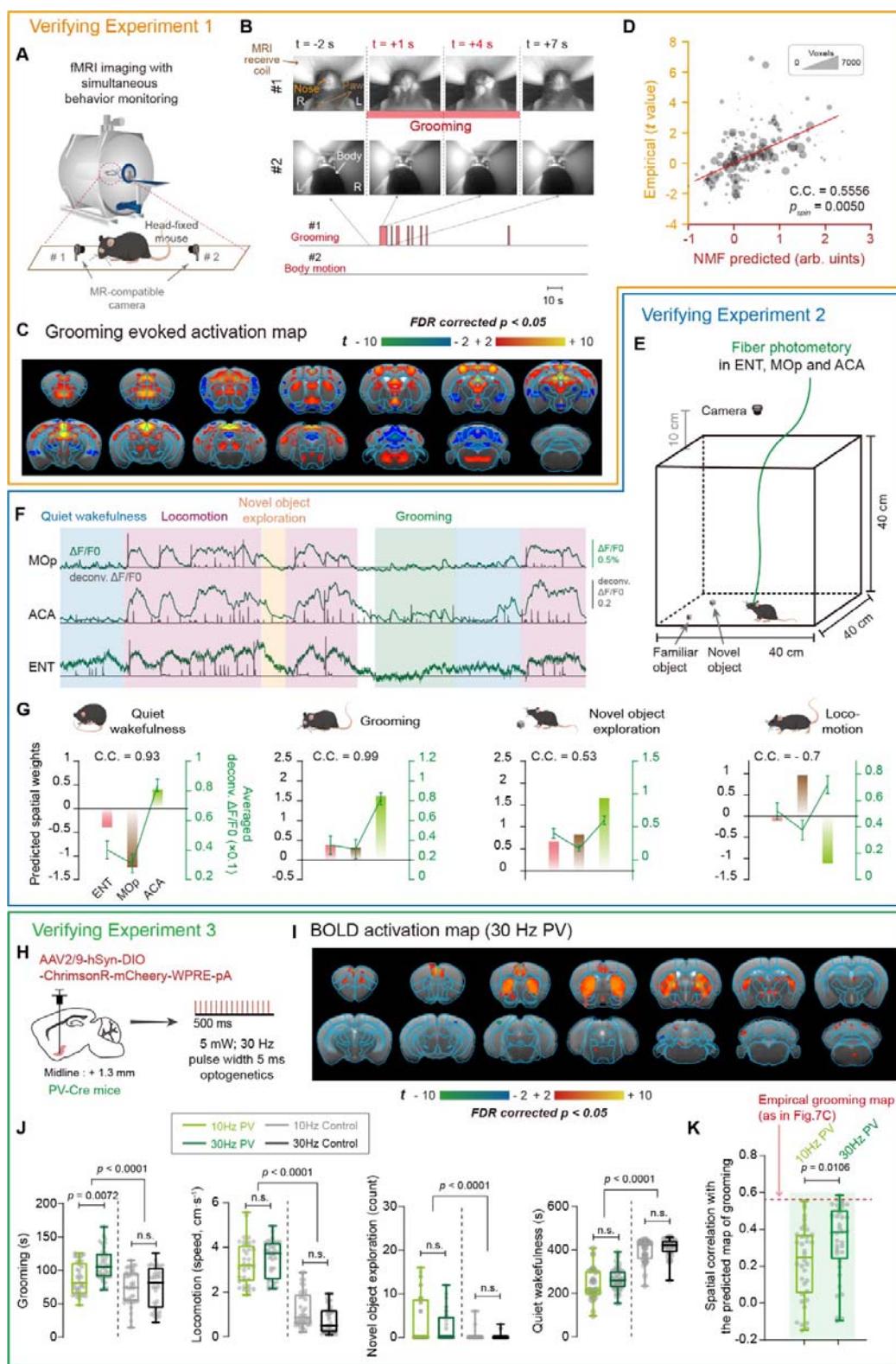
(A) Hypothesis: cell-type specific activation maps and behavior-related cerebral patterns shared common low-dimensional (NMF) space as the same optogenetic stimulation paradigm was applied in opto-fMRI and behavioral test.

(B) Schematics of decoding model to link BF modulated BOLD activations and behavioral preference. Details were shown in Figure S20.

(C-D) Feature vectors of cell-type specific BF modulations (C, as in Figure 3G)

1 and predicted behavior-related cerebral patterns (D). Colored lines and black
2 arrows, predicted and corresponding averaged feature vectors for each
3 behavior. Each colored line represented an individual decoding process (N =
4 20). We randomly chosen 3 sessions as training dataset out of 6 sessions for
5 each process and repeated this process to cover all combinations.

6 (E) Deviation angles between feature vectors in Figure 6C and Figure 6D. Red
7 shadow represented the minimal angle across cell-type specific BF
8 modulations in each behavior (wild-type excluded), indicated the most distinct
9 behavioral preference.


10 (F) Significant correlations between deviation angles and empirical behavioral
11 performance. Smaller deviation angles indicated shorter distances to the
12 behavioral feature vectors in NMF space, i.e., higher behavioral preference of
13 BF cell types. Each dot represented an individual decoding process (N = 20,
14 as in Figure 5D-G). Black line represented the best linear fit. C.C., Pearson's
15 correlation coefficients.

16 (G) Predicted cerebral responses of mouse behaviors based on the low
17 dimensional NMF space.

18 See also Figure S16.

19

20

1

2

3 **Figure 7 | Experimental validations of predicted behavior-related cerebral**
4 **responses.**

1 (A) Schematic of the fMRI experimental setup with simultaneous behavior
2 monitoring.
3 (B) Example of spontaneous grooming during awake mouse fMRI scanning.
4 (C) Empirical activation maps of mouse spontaneous grooming.
5 (D) Significant correlation between empirical and predicted activation maps of
6 mouse grooming. Each dot represented an individual brain region, scaled
7 according to the voxel number of each region. C.C., Pearson's correlation
8 coefficients. Significance test was determined using the spatial autocorrelation
9 preserving shuffling
10 (E) Schematic of the free-moving behavioral experiments with simultaneous
11 calcium fiber photometry in primary motor area (MOp), anterior cingulate area
12 (ACA) and entorhinal cortex (ENT) respectively.
13 (F) Representative calcium signals in MOp, ACA and ENT regions during
14 spontaneous behaviors.
15 (G) High correlation between the predicted responses and empirical neuronal
16 activity in MOp, ACA and ENT during quiet wakefulness, grooming and novel
17 object exploration, except for locomotion. C.C., Pearson's correlation
18 coefficients. Error bar, the standard error of the mean.
19 (H) Schematic diagram depicting fMRI scanning and behavioral test under the
20 10-Hz and 30-Hz optogenetics on BF PV neurons. All experimental conditions
21 were same as Main Figure 1 and 5.
22 (I) BOLD activations map of 30-Hz optogenetics on BF PV neurons.
23 (J) 30-Hz optogenetics on BF PV neurons evoked more grooming behavior for
24 mice than that of 10-Hz optogenetics. Statistical significance was determined
25 using the one-way ANOVA with Tukey's multiple comparison test. Each dot
26 represented an individual experimental session. Box, 25-75% range and
27 median line; whisker, minimum to maximum range.
28 (K) Activation map of 30-Hz optogenetics on BF PV neurons showed higher
29 spatial similarity to the predicted grooming pattern, compared to those of
30 10-Hz. Statistical significance was determined using the two-tailed two sample
31 t-test. Each dot represented an individual EPI run.

32 See also Figure S17.

33

1
2

3 **STAR METHODS**

4 **RESOURCE AVAILABILITY**

5 **Lead Contact**

6 Correspondence and requests for materials should be addressed to the Lead Contact,
7 Zhifeng Liang (zliang@ion.ac.cn).

8 **Materials Availability**

9 This study did not generate new unique reagents.

10 **Data and Code Availability**

11 All data reported in this paper has been deposited at Zenodo DOI:
12 <https://doi.org/10.5281/zenodo.10499624>.

13 All original code has been deposited at GitHub and is publicly available. DOI is listed
14 in the key resources table.

15 Any additional information required to reanalyze the data reported in this paper is
16 available from the lead contact upon request.

17 **EXPERIMENTAL MODEL AND STUDY PARTICIPANT**
18 **DETAILS**

19 **Animals**

20 All animal experiments were approved by the Animal Care and Use Committee of the
21 Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China. Experiments
22 were conducted with male mice at 8-10 weeks of ages, weighted 18-30 g. Number of mice
23 in each experiment was listed in below table. No statistical methods were used to
24 predetermine sample sizes but our sample size is similar to previous publications^{56,76}.

1 Wild-type mice were purchased from institute-approved vendors
2 (Shanghai Laboratory Animal Center, or LingChang Experiment Animal Co., China), and
3 ChAT-IRES-Cre, VGLUT2-IRES-Cre, PV-IRES-Cre and SOM-IRES-Cre mice (Jackson
4 stock #: 006410, 016963, 008069 and 013044 respectively) were obtained from Jackson
5 Laboratory. Mice were group-housed (5–6/cage) under a 12-h light/dark cycle (light on
6 from 7 a.m. to 7 p.m.) with food and water *ad libitum*.

7

8 Table Summary of Number of mice used in each experiment.

	ChAT-Cre	PV-Cre	SOM-Cre	VGLUT2-Cre	Wild-type
10-Hz optogenetics with fMRI scanning	8	11	10	8	7
10-Hz optogenetics with free-moving behavioral test	7	8	7	7	7
10-Hz optogenetics with fiber photometry in SSp-m & RSP	-	-	-	8	-
Verifying experiment 1: fMRI scanning with spontaneous behavioral monitoring	-	-	-	-	11
Verifying experiment 2: Fiber photometry with free-moving behavior	-	-	-	-	6
Verifying experiment 3: 30-Hz optogenetic stimulations of BF PV neurons for fMRI and behaviors	-	12	-	-	-
Comparing artifacts of PMMA and SiO ₂ optical fiber	-	-	-	-	5
Anatomical tracing of BF ChAT neurons using ChrimsonR-mCherry	4	-	-	-	-

9

10 **METHOD DETAILS**

11 **Stereotaxic surgeries**

12 All stereotaxic surgeries were conducted under isoflurane anesthesia (5% for
13 induction and 1-1.5% for maintenance), and animals were placed on a stereotaxic frame
14 with a heating pad (mouseSTAT, Kent scientific cooperation). A midline sagittal incision

1 was made along the scalp to expose the skull. Two craniotomies (~0.4 mm in diameter)
2 were made on top of bilateral BF (AP 0 mm, ML \pm 1.3 mm), targeting the intermediate
3 portion of the BF, including the horizontal limb of the diagonal band of Broca (HDB),
4 magnocellular preoptic nucleus (MCPO) and substantia innominate (SI).
5 AAV2/9-hSyn-DIO-ChrisonR-mCherry-WPRE-hGH pA (Titer: 4.76×10^{12} v.g. /mL;
6 BrainVTA Co., China) was injected into each side of BF(AP 0 mm, ML \pm 1.3 mm, DV -5.0
7 mm from dura) utilizing Nanoject III (Drummond Scientific) via a glass pipette (1 nL/s, 20
8 nL/cycle, inter-cycle interval 10 s, total 20 cycles and 0.4 μ L). After each injection, the
9 needle was slowly pulled up following a 10-min waiting period to prevent backflow. Then
10 scalp was sutured, and mouse was placed in a postoperative incubator for anesthesia
11 recovery.

12 Optical fiber and head holder implantation for awake optogenetic fMRI were
13 performed two weeks after virus injection. Head holder design and the surgical procedure
14 were modified from our previous study²⁶. The scalp over the skull was removed, and then
15 the periosteum was removed with cotton swabs dipped in 3 % hydrogen peroxide. The
16 tissue covering the skull posterior to the lambda point was also removed for firmer fixation
17 of the head post. Then, the exposed skull was cleaned by saline. After drying the surface
18 of skull, a coat of self-etch adhesive (3 M ESPE Adper Easy One) was applied followed by
19 light curing.

20 To reduce imaging artifacts caused by fiber implantation and also accommodate the
21 limited space of the cryogenic RF coil, we chose flexible fiber optic implants (200 μ m in
22 diameter; NA 0.5; Inper Co., China) made of poly-methylmethacrylate (PMMA) which has
23 similar magnetic susceptibility to the brain tissue/water⁶⁰. Two craniotomies (~0.4 mm in
24 diameter) were made on top of bilateral BF and the PMMA optic fibers were inserted into
25 bilateral BF (AP 0 mm, ML \pm 1.3 mm, DV -4.8 mm from dura). After draining the overflow of
26 liquid from the craniotomy with dust-free paper, the light curing flowable dental resin was
27 applied and cured with blue light for 20 s to fix the optic cannula to skull. After adhering the
28 skin surrounding the exposed skull with tissue adhesive, the dental resin was applied on
29 the occipital bone, and a custom-made MRI-compatible head holder was place closely on

1 the same place. Then, the flexible PMMA optic fibers were bent and fixed on the surface
2 of skull and head holder with dental resin (Figure 1B). Finally, other exposed regions of
3 the skull was covered with a thick smooth layer of dental cement. After surgery, the mice
4 were placed in a postoperative incubator for anesthesia recovery.

5 **Habituation for awake mouse optogenetic fMRI (opto-fMRI)**

6 After 1-week recovery from the fiber and head holder implantation, mice were
7 habituated for awake fMRI for seven days (Figure 1A). Mice were head-fixed on an animal
8 bed with the recorded acoustic MRI scanning noise, following a previously described
9 habituation paradigm ²⁸. The detailed schedule was listed in below table. No reward was
10 given during and after the habituation training.

11

12 Table Summary of habituation schedules for awake mouse ofMRI

	Day1	Day2	Day3	Day4	Day5	Day6	Day7
Duration of Habituation	60 min						
Acoustic Noise	-	60 dB	60 dB	90 dB	90 dB	110 dB	110 dB

13 “-” denote absence.

14 **Optogenetic fMRI acquisition**

15 All MRI data were acquired with a Bruker BioSpec scanner (9.4T/30cm, Bruker,
16 Billerica, USA, ParaVision 6). An 86 mm volume coil was used for transmission and a
17 4-channel cryogenic phased array mouse head coil (Bruker) was used for receiving. A
18 thick layer of Kwik-cast was applied smoothly over the mouse skull immediately before the
19 MRI scanning to reduce distortion caused by air. The mouse was first secured in the
20 animal bed without any anesthesia. Light delivery systems were kept outside the magnet
21 and 7 m fiber optic patch cable (200 μ m in diameter; NA 0.5; Doric Lens) were used to
22 deliver light into the bore of the scanner. Optical patch cable was attached to the
23 implanted optic fiber using a zirconia sleeve (Thorlabs). Then the mouse was placed
24 inside the MRI scanner. A T2-weighted structural image was acquired for co-registration

1 with following parameters: TR = 3400 ms, TE = 33 ms, field of view = 16 x 16 mm²,
2 matrix size = 256 x 256, slice thickness = 0.5 mm, 30 axial slices, RARE factor = 8, and
3 number of averages = 2. After field map based local shimming within the mouse brain,
4 Biband-EPI was acquired using the multiband EPI sequence ²⁸ with the following
5 parameters: TR = 500 ms, TE = 15 ms, flip angle = 38.8°, bandwidth = 300 kHz, field of
6 view = 15 x 12 mm², matrix size = 100 x 80, nominal slice thickness = 0.48 mm (slice
7 thickness 0.4 mm with a gap of 0.08 mm), 898 or 982 volumes (scan 1-3: 898 volumes
8 and scan 4-6: 982 volumes), and 38 axial slices per scan. During the Biband-EPI
9 scanning, an Arduino Uno board (<https://www.arduino.cc/>) was used to synchronize the
10 scanner trigger and the lasers for optogenetic stimulations. Red light (10 Hz, 5% duty
11 cycle) was delivered to the bilateral BF utilizing 638 nm laser (Shanghai Laser & Optics
12 Century Co., Ltd.), and the power at the fiber tip was 5 mW. The overall stimulation setup
13 was shown in Figure 1D. For each EPI run, 28 stimuli were delivered with durations of 0.5
14 s or 2 s, and a random inter-trial-interval time of 15 +/- 5 s.

15 **Simultaneous behavioral monitoring and fMRI acquisition**

16 For the awake mouse fMRI with simultaneous behavior monitoring, a similar imaging
17 protocol was used as mentioned above, with the following difference: Biband-EPI, TR =
18 750 ms, flip angle = 46.6° and 10000 volumes per scan. In addition, two custom-made
19 MR-compatible video cameras (sampling rate of 25 fps, 1080 x 980 pixels) were placed
20 inside the bore to record the spontaneous behaviors, e.g., grooming and body motion,
21 which were later used to estimate the grooming evoked BOLD activations.

22 **fMRI data processing**

23 After the image format conversion, the mouse brain was extracted manually utilizing
24 ITK-SNAP (<http://www.itksnap.org/>). All subsequent procedures were performed utilizing
25 custom scripts in MATLAB 2020a (MathWorks, Natick, MA) and SPM12
26 (<http://www.fil.ion.ucl.ac.uk/spm/>). Images of each scan were registered to the
27 scan-specific structural image utilizing rigid body transformation, and the scan-specific
28 structure image was then nonlinearly transformed to the 3D Allen Mouse Brain Common

1 Coordinate Framework, v3 (CCFv3, <http://atlas.brain-map.org/>) for group analysis. Then,
2 a light spatial smoothing (0.4 mm isotropic Gaussian kernel) was performed. Furthermore,
3 BOLD signals were regressed by “6 rp + 6 Δrp + 10 PCs” nuisance signals to minimize the
4 effects of scanner drift, motion and other non-neural physiological noises (Figure S2),
5 adopted from our previous study²⁶. “6 rp + 6 Δrp” nuisance signals represented 6 head
6 motion parameters and their 1st order first derivatives, and “10 PCs” were the first 10
7 principal components from the BOLD signals of non-brain tissue, e.g., the muscles. The
8 Pearson’s correlation coefficients between the frame-wise displacement (FD) and DVARS
9 (D referring to temporal derivative of time courses, VARS referring to RMS variance over
10 voxels) were calculated to quantitatively evaluate to what extent the motion related signal
11 was reduced by given regressors²⁹.

12 **General linear model of cell-type specific optogenetic stimulations and
13 spontaneous behaviors**

14 GLM based statistical analysis was conducted utilizing the awake mouse-specific
15 hemodynamic response function (HRF) from our previous study²⁶. Standard first level
16 analysis was done for individual EPI scans. For the awake mouse fMRI experiment with
17 optogenetic stimulations, the period of optogenetic stimulations was set as the predictors.
18 For the second level analysis, we used a flexible factorial model including cell-type
19 specific optogenetic stimulations, i.e., VGLUT2 (or ChAT, PV, SOM) v.s. Control, and
20 individual mouse (as random effect). The resulting activation maps were thresholded with
21 FDR corrected $p < 0.05$.

22 For the awake mouse fMRI experiment with simultaneous behavior monitoring, the
23 behaviors (e.g., grooming and body motion) were used as the predictors and thus the
24 remaining period was used implicitly as the baseline. A one-sample t-test was conducted
25 for second level analysis to generate the activation maps with FDR corrected $p < 0.05$.

26 **Specificity of DMN-like activations driven by BF neurons**

27 The ICA-based functional networks were adopted from a previous study⁷⁷, in which
28 they identified macro-communities to spatially encompass six macroscopic networks of

1 the mouse cerebrum. Briefly, the mouse resting state (rs-)fMRI dataset was fed into
2 MELODIC (Multivariate Exploratory Linear Optimized Decomposition of Independent
3 Components)⁷⁸ to perform within-subject spatial ICA. Using preset 30 components and
4 the ICA-FIX pre-processing pipeline, 23 out of 30 components were detected in
5 meaningful anatomical regions of the mouse brain and considered as rs-fMRI functional
6 networks. Then, hierarchical network analysis was performed based on total correlation
7 matrices of the 23 group ICA signal components and subsequently merged the group ICA
8 components into six cerebral clusters, i.e., DMN-like (Figure 2B), somatosensory, sensory,
9 hippocampus, basal ganglia and olfactory networks (Figure S7A). The proportion of
10 significantly activated voxels that overlapped with ICA-based functional networks (Figure
11 2B and Figure S7A) was calculated with opto-fMRI responses were thresholded at
12 FDR-corrected $p < 0.05$, while ICA-based functional networks were thresholded at $z > 3$.

13 Receiver operating characteristic (ROC) curves were computed to evaluate the
14 specificity of opto-fMRI activations (Figure 1E and Figure 2A) on mouse ICA-based
15 functional networks (Figure 2B and Figure S7A)⁷⁹. Briefly, functional networks and
16 opto-fMRI responses were normalized between 0 and 1, and were binarized using a
17 series of 100 thresholds to keep the 0-100% of activations, respectively. The resulting
18 binary functional networks and opto-fMRI responses were compared using the ROC
19 analysis with the corresponding functional network, i.e., DMN-like network, as the ground
20 truth. The true positive and false positive rate vectors were plotted against each other and
21 the resulting area under the curve (AUC) was used as the measurement of the specificity
22 of opto-fMRI activations on mouse functional networks. The AUC results were then
23 compared against a null distribution of the same datasets using the permutation test with
24 1000 times shuffling of the cell-type specific opto-fMRI responses.

25 **Anterograde axon tracing from BF neurons**

26 The whole-brain axonal projections data from the four BF cell types is modified from
27 our previous study⁴. Briefly, ChAT-Cre, PV-Cre, SOM-Cre or VGLUT2-Cre mice were
28 anesthetized with ~1.5% isoflurane in oxygen, 300-400 nL output tracing vector
29 (AAV2-EF1a-FLEX-mCherry, titer: $\sim 10^{12}$ gc/mL) was inject into the right BF. Two to three

1 weeks after AAV injection, mice were deeply anesthetized with isoflurane and immediately
2 perfused intracardially with PBS followed by 4% PFA. Brain was removed and post-fixed
3 in 4% PFA in PBS at 4 °C overnight, dehydrated in 30% sucrose in PBS for 48 hr,
4 embedded in Tissue Freezing Medium, cut in 30 or 50 µm coronal sections and mounted
5 with VECTASHIELD antifade mounting medium with DAPI. All sections were imaged
6 utilizing 20X/0.75 objective in a high-throughput slide scanner for further 3D
7 reconstruction and quantification. The digitized analysis was performed with a software
8 package which consists of three modules: image registration, signal detection, and
9 quantification.

10 **Voxel-wise whole-brain mesoscopic structural connectivity**

11 Whole-brain structural connectivity was obtained from the Allen Mouse Brain
12 Connectivity Atlas (<http://connectivity.brain-map.org/>), which was based on 428 viral
13 microinjection experiments in C57BL/6J male mice. Briefly, adeno-associated viral
14 anterograde tracers, containing genes encoding for enhanced green fluorescent protein,
15 were stereotactically injected at different sites in mice. After the injection, 2 weeks were
16 allowed for the protein expression before the animals were killed, the brain was extracted,
17 sectioned, imaged with two-photon microscope, reconstructed into 3D fluorescence maps,
18 and transformed into a common reference space ⁸⁰. Then, the connectome data were
19 aggregated according to a voxel-wise interpolation model ³¹, modeling the connectivity at
20 each voxel as a radial basis kernel-weighted average of the projection patterns of nearby
21 injections. Thus, a high-resolution mouse brain connectome (100 µm³) was estimated
22 according to a Voronoi diagram based on Euclidean distance between neighboring voxels
23 ³¹. The Voronoi-based resampling allowed us to spatially weight voxels with respect to
24 neighboring areas, and preserve the intrinsic architectural foundation of the connectome.
25 Finally, fiber tracts and ventricular spaces were filtered out, yielding a final weighted and
26 directed 15,314 × 15,314 matrix composed of 0.027 mm³ aggregate Voronoi voxels.
27 Notably, the structural connectivity matrix was transformed by the logarithm operation
28 similar to our previous study ⁷¹.

1 **Non-negative matrix factorization**

2 To further investigate how the BF modulated global organizations of mouse cerebral
3 functional networks, we firstly concatenated the four cell-type secondary projections from
4 BF neurons (Figure S10A-C), in which the secondary projections was adopted from
5 source-weighted whole-brain mesoscopic structural connectivity by cell-type output from
6 BF neurons, thus resulting a $15,314 \times 61,256$ connectivity matrix (Figure S10A-C).
7 Considering the bilateral optogenetic stimulations on BF neurons, we averaged the
8 connectivity strengths from ipsilateral and contralateral hemispheres for both cell-type
9 specific output from BF (Figure 4B) and whole-brain mesoscopic structural connectivity
10 matrix. Then, the non-negative matrix factorization (NMF) was performed on the resulting
11 secondary connectivity matrix ($15,314 \times 61,256$, Figure 4B). The spatial NMF components
12 ($W_{p_0 \times 15,314}$) were back-projected to whole-brain BOLD signals to reconstruct the time
13 course of each component ($S_{t \times p_0}$) for each individual EPI scan. NMF was chosen over
14 other dimensional reduction methods, e.g., PCA or ICA, because it enhances the
15 interpretability of the resulting low dimensional components. To estimate the appropriate
16 dimensionality of the NMF analysis, we calculated the mean cophenetic coefficients
17 following the NMF decomposition (a measure of the optimal number of subgroups in the
18 connectivity matrix), and found the maximum coefficient in the top 6 components (Figure
19 S10D). Thus, we chose the top 6 NMF components in all following analysis.

20 **Optogenetic free-moving behavioral test**

21 Free-moving optogenetic behavioral test was performed in a $40 \times 40 \times 40$ cm³ arena
22 (Figure 5A). To keep the behavioral testing condition similar to the MRI experiment, the
23 phase of familiarization was set to 30 min with two familiar objects in two corners of arena.
24 Then, one of the familiar objects was replaced by a novel one (different shape, texture,
25 size, and color). The same optogenetic stimulations as in MRI were then delivered to the
26 bilateral BF immediately (Figure 5B). Animal behaviors were recorded utilizing a video
27 camera (25 fps, 1080×980 pixels), which was positioned 50 cm above the center of the
28 arena floor.

1 To analyze the recorded video, a set of behaviors including (1) locomotion speed, (2)
2 quiet wakefulness, (3) grooming, (4-5) familiar and novel object explorations were
3 recorded. Object exploration was defined as the mouse's nose was < 1 cm from the object
4 and the dwell time was < 4 s. Locomotion was labelled when the speed was > 2 cm/s
5 excluded the period of object explorations. Moreover, we fitted the outline of mouse body
6 by an ellipse and used the major (a) and minor (b) axes of the ellipse to distinguish the
7 grooming and quiet wakefulness. The behavioral state of grooming was termed when the
8 mouse was in a quasi-stationary condition (speed < 2 cm/s) and the outline of mouse
9 body was sub-rounded (i.e., $a - b > 2$ cm). The remaining quasi-stationary behavior
10 (speed < 2 cm/s, $a - b < 2$ cm) was defined as the quiet wakefulness with short periods
11 (dwell time < 5 s) excluded. Durations of the five types of behaviors were scored.

12 **Decoding the global patterns of mouse behaviors**

13 A general decoding model was used to predict the cerebral responses of mouse
14 behaviors (Figure 6B & S16). As the optogenetic fMRI and free-moving behavioral tests
15 were conducted in different days, we divided the total behavior length into 6 runs for each
16 mouse, keeping temporal alignment with the order of fMRI scanning. And also, the BOLD
17 activation maps were decomposed by the NMF strategy. Then, we averaged both the
18 weights of NMF components and behavioral performances across individual mice, and
19 only considered the group-wise behaviors under optogenetic stimulations on cell-type
20 specific neurons. The resulting cell-type specific BOLD weights of NMF components
21 ($W_{5 \times 6 \times 6}$) were set as the model predictors (5 groups, 6 runs and 6 NMF components), and
22 the behavioral performances ($Y_{5 \times 6}$) were termed as the model output.

23 We randomly divided 6 runs into two groups to generate encode and decode datasets
24 respectively, and repeated 20 times for traversing all random conditions, i.e., choose 3
25 runs as encoding dataset from all 6 runs. The regularization penalty was estimated on the
26 encoding dataset utilizing marginal maximum likelihood estimation with minor
27 modifications that reduced numerical instability for large regularization parameters. To
28 avoid over fitting, ridge regression was chosen over other regularization methods (e.g.,
29 LASSO or elastic net) because a sparseness prior would isolate the best contributing

1 model variables and completely reject variables which have slightly less informative.
2 Regression coefficients (β_0 , β_1 , β_2 , β_3 , β_4 , β_5 and β_6) were termed as the
3 representative vector $[\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6]$ for each mouse behavior in NMF space, and
4 further used to construct corresponding spatial patterns $([\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6] \cdot W_{6 \times 15314})$
5 by multiplying the spatial NMF components ($W_{p_0 \times 15,314}$ and $p_0 = 6$).

6 **Histology and microscopy**

7 To verify the expression of the virus and placements of the optical fibers, mice were
8 deeply anesthetized and immediately perfused utilizing 0.1M phosphate-buffered saline
9 (PBS), followed by 4% paraformaldehyde (PFA) in PBS. The brain tissues were removed
10 and post-fixed overnight in 4% PFA. Subsequently, the brains were transferred to a 30%
11 sucrose solution at 4 °C for 48 hr. Brain samples were embedded with OCT compound
12 (NEG-50, Thermo Scientific) and cut into 50-μm sections utilizing a cryostat (HM525 NX,
13 Thermo Scientific). Brain sections were stored at -20 °C before further processing. For
14 histology examination, brain sections were washed in PBS and coverslipped with
15 mounting media containing DAPI (# F6057, Sigma). The fluorescence images were
16 captured utilizing an epifluorescence microscope (VS120, Olympus).

17 **Free-moving behavioral tests with simultaneous fiber photometry**

18 To verify the predicted behavior-related cerebral patterns, the neuronal activity of
19 primary motor area (MOP), entorhinal area (ENT) and anterior cingulate area (ACA) were
20 recorded using calcium fiber photometry during spontaneous behavior in the same arena
21 as above. AAV2/9-hSyn-GCaMP6s-WPRE-hGH pA (titer: 2.69×10^{12} v .g. /mL; BrainVTA)
22 was injected into unilateral MOP (AP +0.98 mm, ML +1.5 mm, DV -0.54 mm from dura),
23 ENT (AP -3.88 mm, ML +3.75 mm, DV -2.3 mm from dura) and ACA (AP +0.14 mm, ML
24 -0.3 mm, DV -1.07 mm from dura). Three optic fibers (200 μm in diameter; NA 0.48;
25 Newdon Co., China) were inserted into the three regions respectively, and secured with
26 the light curing flowable dental resin. Finally, the exposed skull was covered with dental
27 cement.

1 Four weeks after the surgery, the same free-moving behavioral test as above was
2 performed with simultaneous fiber photometry recording and behavioral monitoring
3 (Figure 7E). Three patch cables were connected to the three fiber implants with sleeves.
4 Three 465 nm LEDs (CLED_465, Doric Lens) were used as excitation sources. Excitation
5 power at the tip of the fiber was ~20 μ W. Three fluorescence optical mini cubes
6 (FMC5_E1(465-480)_F1(500-540), Doric Lens) and three visible femtowatt
7 photoreceivers (NPM_2151_FOA_FC, Doric Lens) were used for the fluorescence
8 detection. During recording, a software-controlled lock-in detection algorithm was
9 implemented in the TDT RZ2 system utilizing the fiber photometry 'Gizmo' of the Synapse
10 software (<https://www.tdt.com/>). The photometry signals were recorded at a sampling rate
11 of 1017 Hz.

12 To analyze the photometry data, a median filter with 10-min window length was
13 applied to the raw GCaMP6s photometry signals to capture the infra-slow baseline drift.
14 The median-filtered calcium signal was then regressed out from the raw photometry
15 signals using the least-squares regression. Then, the changes of calcium signals were
16 quantified as (F-F0)/F0, where F was fluorescence intensity at each time point and F0 was
17 calculated by mean minus double standard deviations. The calcium time series were
18 further down-sampled to 25 Hz for subsequent analysis using the MATLAB function
19 *interp1()*. Finally, the neuronal firing rate was evaluated by deconvolution of the
20 normalized calcium signals (F-F0)/F0 using the first-order auto-regressive model.

21 For behavioral state classification, the same criteria was applied to label the
22 spontaneous behavioral state of each mouse (details in the section of Optogenetic
23 free-moving behavioral test).

24 **Optogenetics with simultaneous fiber photometry**

25 To further explore why the locomotion and BOLD activations appeared incoherent in
26 sensorimotor regions, we conducted the calcium fiber photometry to record opto-evoked
27 neuronal calcium activities in SSp-m (the negatively activated region) and RSP (the
28 positively activated region) for VGLUT2 and Control group. Bilateral BF was injected with
29 AAV2/9-hSyn-DIO-ChrisonR-mCheery-WPRE-pA, and unilateral SSp-m (AP +1.0 mm,

1 ML +2.75 mm, DV -0.9 mm) and RSP (AP -3.8 mm, ML +1 mm, DV -0.5 mm) were
2 injected into AAV9-hSyn-GCaMP6m-WPRE-hGH-pA (titer: 2.69×10^{12} v.g./mL; Shanghai
3 Taitool Bioscience). The same optogenetic stimulation conditions used in MRI
4 experiments were applied to both sides of the BF. The recording and analysis of calcium
5 data followed the aforementioned protocol.

6 **Significance test using the spatial autocorrelation preserving shuffling**

7 Because profiles of predicted maps of mouse behaviors (Figure 6G) are spatially
8 auto-correlated, we adopted a procedure from previous studies to overcome this issue
9 and generate statistical significance⁸¹⁻⁸³. Briefly, we generated surrogate maps that
10 randomly varied in their particular topographies (n_L = 10000 times shuffling) but
11 preserved the general spatial autocorrelation structure (Figure S17B-C). Using null
12 distributions generated from spatial autocorrelation preserving surrogate maps, we
13 determined the significance level, i.e., p_{spin} , of spatial correlation between empirical
14 grooming map and the predicted maps of mouse behaviors (Figure 7D & S17A).

15 **Comparing imaging artifacts of PMMA and SiO₂ fiber optic implants**

16 A separate cohort of wild-type mice was utilized to compare imaging artifacts induced
17 by PMMA and SiO₂ fiber optic implants (200 μm in diameter; NA 0.48; Inper) inserted
18 unilaterally into the basal forebrain. To accommodate the limited space of the cryogenic
19 RF coil, the ceramic ferrules of SiO₂ fiber optic implants were trimmed. All other surgical
20 procedures and fMRI acquisition parameters were identical to those described above. The
21 artifact size caused by the fiber optic implant in T2 or EPI images was measured, and a
22 two-tailed paired t-test was employed to determine statistical significance.

23 **QUANTIFICATION AND STATISTICAL ANALYSIS**

24 Statistical analyses were performed based on Matlab (Mathworks, Natick, MA).
25 Statistical significance was determined by two-tailed or paired Student's t test for
26 comparisons between two groups and by ANOVA with Tukey-Kramer's test for
27 comparisons among multiple groups. Correlation between groups was tested by

- 1 Pearson's correlation. Statistical details, including p values and sample numbers, were
- 2 described in the relevant methods sections or figure legends.