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Abstract

The neural circuits of reward processing and interval timing (including perception and
production) are functionally intertwined, suggesting that it might be possible for
momentary reward processing to influence subsequent timing behavior. Previous
animal and human studies have mainly focused on the effect of reward on interval
perception, whereas its impact on interval production is less clear. In this study, we
examined whether feedback, as an example of performance-contingent reward,
biases interval production. We recorded EEG from 20 participants while they engaged
in a continuous drumming task with different realistic tempos (1728 trials per
participant). Participants received color-coded feedback after each beat about whether
they were correct (on time) or incorrect (early or late). Regression-based EEG analysis
was used to unmix the rapid occurrence of a feedback response called the reward
positivity (RewP), which is traditionally observed in more slow-paced tasks. Using
linear mixed modelling, we found that RewP amplitude predicted timing behavior for
the upcoming beat. This performance-biasing effect of the RewP was interpreted as
reflecting the impact of fluctuations in dopaminergic activities on timing, and the

necessity of continuous paradigms to make such observations was highlighted.
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1. Introduction

A cortico-striatal dopaminergic system in the brain underlies reward processing (Smith
and Kieval, 2000; Schultz, 2007; Arias-Carrion et al., 2010; Haber and Knutson, 2010;
Corlett et al., 2022). Interestingly, the same dopaminergic circuits have been implied
in beat-based interval timing, where the interval is encoded relative to the beat (Rao
etal., 2001; Matell et al., 2003; Matell and Meck, 2004; Grahn, 2009; Coull et al., 2011;
Teki et al., 2012). This overlap in functional circuits for reward and timing raises the
possibility that phasic activation of reward circuits during reward processing can lead
to temporary changes in timing behavior. Such interaction may be more prominent for
sub-second than supra-second interval timing, due to more intense activation of

subcortical areas (Wiener et al., 2010; Nani et al., 2019).

Interval timing includes interval perception and interval production (lvry and Hazeltine,
1995). Past literature has predominantly focused on the effect of reward on interval
perception, while the effect of reward on interval production remains understudied.
Animal studies demonstrated that direct manipulation of phasic dopamine signaling
alters interval perception. For example, Soares et al. (2016) reported that spontaneous
fluctuations in phasic DA signaling lead to mice perceiving the same interval as
shorter, and optogenetic manipulation is sufficient for reproducing such behavioral
pattern. In humans, researchers typically studied the influence of externally
administered reward on interval perception. It was shown that intervals associated with
a monetary positive prediction error or reward were perceived as longer by human
participants (Failing and Theeuwes, 2016; Toren et al., 2020), an effect partially

attributable to attention and salience (Berridge and Robinson, 1998; Tse et al., 2010).


https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.548049; this version posted July 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

However, these studies typically manipulated reward independently of performance,
whereas in real life, reward is likely contingent on timing performance (Ariely and

Zakay, 2001; Petter et al., 2018).

Feedback is an incidence of performance-contingent reward, and positive feedback
on performance (e.g., ‘accurate’, ‘hit’ or ‘on time’) is known to elicit a reward response
in the brain 200-300 ms post-stimulus (Proudfit, 2015; Cockburn and Holroyd, 2018;
Tunison et al., 2019). While several previous studies used fMRI to study the
continuous sub-second interval production with visual feedback (e.g., Lutz et al., 2000;
Pope et al., 2005), it may be difficult to conduct a trial-by-trial fMRI analysis to capture
the transient changes in reward circuit due to constraints on temporal resolution. EEG
allows for fine-grained discrimination of such interplay at the level of milliseconds,
making it especially suitable for studying the influence of reward on sub-second timing
behavior. It has been well-established that reward, relative to non-reward, elicits a
positive deflection in the scalp-reported event-related potential (ERP) in the
frontocentral electrode sites around 250 to 350 ms after stimulus onset called the
Reward Positivity (RewP) (Holroyd and Coles, 2002; Holroyd et al., 2006, 2011; Walsh
and Anderson, 2012)'. RewP variability is likely due to variability in the reward
response rather than the non-reward response (Holroyd et al., 2008). One theory of
the RewP highlights its link to the reward prediction error in reinforcement learning
(Sutton and Barto, 2018), attributing the RewP to the influence of a phasic ventral
striatal DA signal on the anterior cingulate cortex (Holroyd and Coles, 2002; Luu et al.,
2003; Carlson et al., 2011). This outcome information is utilized by the anterior

cingulate cortex to compute a need-for-control signal, facilitating cognitive control and

! RewP is also termed Feedback-Related Negativity (FRN) or Error-Related Negativity (ERN) when
the contrast is loss minus gain (Miltner et al., 1997; Gehring, 2002; Luu et al., 2003; Proudfit, 2015).
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effort exertion (Shenhav et al., 2013; Vassena et al., 2017). Altogether, the RewP
provides a non-invasive, temporally sensitive measure of reward prediction errors on

the scalp.

In this study, we asked how reward biases sub-second interval production in a
continuous timing paradigm with EEG recording. Participants were instructed to
reproduce different drumming patterns at different tempos (fast, medium, and slow)
using two keys on a keyboard, and received color-coded feedback (early, on time, or
late) on their accuracy after each response. We hypothesized that on-time feedback
would elicit a RewP relative to early or late feedback, and examined whether the RewP
could be reliably observed in all three tempos. We then hypothesized that trial-to-trial
instantaneous fluctuations of RewP amplitude in response to on-time feedback biases
subsequent interval production, using a linear mixed model. We reported that RewP
was only stably observed in the medium and slow tempos. In the slow tempo, a larger
RewP in response to ‘on time’ feedback led to a longer produced interval on the next

trial.

2. Methods

2.1 Participants

21 participants completed the study. One participant (No. 12, female) was excluded
due to the trigger cable being partially disconnected. The remaining 20 participants
(15 female, 2 left-handed, mean age 25.85 * 4.53) had normal or corrected-to-normal
vision and had no known neurological impairments. All participants gave informed

consent and were compensated for their participation and a performance bonus. This
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study was approved by the Medical Sciences Interdivisional Research Ethics

Committee at the University of Oxford (R51132/RE002).

2.2 Experimental Task

Participants completed the drumming task along with two other unrelated tasks, the
order of which was randomized between participants. Each task took approximately
20 minutes, and the entire study took around 60 minutes. The stimuli were presented
using PsychoPy 3.6.6 (Peirce et al., 2019) on a monitor screen with size 59.9 cm
(width) x 33.7 (height). In each block of the drumming task, participants listened to a
drumming pattern for 24 beats and were asked to reproduce the pattern using the F
and J keys on the keyboard (Figure 1A). The response sequence was self-initiated
by pressing the first key, and participants were shown color-coded visual feedback for
50 ms after each subsequent key press response, indicating if their response was fast,
on time, or slow. The palette is color blind-friendly and the correspondence between
color and feedback was counterbalanced across participants. If the participant
pressed a wrong button, a red ‘X’ appeared on the screen instead for 50 ms. A
participant was ‘on time’ if the produced interval fell into the target interval plus or
minus a given margin. The margin had a starting width of 100 ms, and a staircase
procedure was used to adjust the size of this margin by steps of 10 ms, so that in every
block type, the ‘on time’ feedback type composed approximately 50% of all feedbacks.
There were three tempo conditions: fast (150 beats per minute [BPM], target interval
0.4 s) medium (100 BPM, target interval 0.6 s), and slow (60 BPM, target interval 1 s).
In each condition, there were two possible drumming patterns ‘aaba/aaba/aaba...’
(commonly referred to as ‘4/4 time’) and ‘aaabaa/aaabaa/aaabaa...’ (commonly

referred to as ‘6/8 time’). Both hands were used as starting hand to balance for


https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.548049; this version posted July 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

dominant hand effect. Each participant completed 24 blocks in total (2 patterns x 3
tempos x 2 dominant hands x 2 repetitions). Participants received a bonus for their
performance on the task. Twenty of the 21 participants completed 24 blocks (72 trials
per block, 1728 trials in total) in total. One participant (No. 1, female) completed a pilot
version of the task which included two identical repetitions of the task as performed by
other participants, and only the first 1728 trials were included in the analysis.

This drumming task is continuous in the sense that participants self-paced the
drumbeats and there was no artificial delay between events, making it relatively
naturalistic. Because the timing response immediately occurred 50 ms after the onset
of feedback stimulus, signaling the start of the next timing interval, there were no ‘trials’
in the traditional sense. Instead, we defined a ‘trial’ in this paradigm as starting with
feedback onset, followed by feedback-relayed neural responses, and until the
subsequent button response. Similarly, we defined response time (RT) as each inter-

beat interval between two drumbeats generated by key presses.

2.3 Software

Preprocessing and analysis of EEG data was conducted in MATLAB R2020a (The
MathWorks Inc., 2020), using EEGLAB (Delorme and Makeig, 2004). The results were
then analyzed in RStudio (version 4.0.2, 2020-06-22). Linear mixed models were
conducted using the R package Ime4 version 1.1-31 (Bates et al., 2014) and ImerTest
version 3.1-3 (Kuznetsova et al., 2017), and effect size estimates were acquired using
the R package effectsize version 0.8.2 (Ben-Shachar et al.,, 2020) and package

EMAtools version 0.1.4.
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2.4 Behavioral Analysis

2.4.1 Response Time and its adjustment

Response time (RT) was defined as the time to press the button after feedback onset.
RT adjustment was calculated as the difference between RT in the current trial and in
the last trial. A positive value suggests increasing RT, and a negative value suggests
decreasing RT. To analyze timing performance, we first removed trials where
participants pressed the wrong button, and excluded outliers of RT and RT adjustment
in the top and bottom 1%. We conducted a one-sample t-test comparing participants’
average response time in each tempo to the target interval and reported Cohen’s d
(Cohen, 2013). We conducted a two-way ANOVA (3 tempos x 3 feedback types) on

participants’ average RT adjustment, and reported the effect size partial eta squared

(3)-
2.4.2 Hierarchical timing and chunking

During execution of movement sequences, participants tend to group consecutive
movements together, and organize them in a hierarchical manner (Rosenbaum et al.,
1984; Verwey and Dronkert, 1996; Verwey and Eikelboom, 2003; Sternberg et al.,
2018). The chunking literature suggests that participants’ movement is more fluent
and efficient within a chunk than when they switch between chunks (Verwey and
Dronkert, 1996; Ramkumar et al., 2016). Importantly, chunking has been linked to
dopaminergic functioning in animals and humans (Tremblay et al., 2009, 2010), and
chunking may lead to phasic DA signaling as a function of the relative location of the
current beat in a chunk. In this task, participants were explicitly instructed to drum at

a specific pattern, so we used the current beat’s location in the specific pattern as a
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proxy for chunking. We analyzed the effect of chunking on RT and its adjustment, and

accounted for chunking in the linear mixed models (for details, see section 2.5.5).

2.4.3 Regression to local mean

One possible concern with our RT adjustment measure is that it could partially reflect
regression to the mean. A short RT could be followed by an apparent ‘adjustment’ in
the right direction, simply because the next response is more likely to be closer to the
mean RT (Jazayeri and Shadlen, 2010). To address this issue, we conducted a
simulation by drawing response time (1728 draws per tempo) from a Gaussian
distribution specified by the observed mean and standard deviation, and derived
apparent ‘RT adjustment’ as the difference between consecutive RT draws. If the
observed RT adjustment following different feedbacks in this task is not different from
the simulated null distribution, then we may conclude that the apparent RT adjustment
observed in the study likely arose only from regression to the mean. Moreover, if RT
adjustment is only due to regression to the mean, we should not observe any effect of
neural processing of feedback such as RewP.

Regression to the mean suggests that a larger deviation from the mean leads to larger
subsequent adjustment in the opposite direction, resulting in a negative association
between the two values. Moreover, it is likely that participants’ performance drift over
time, shifting the distribution from which the current RT is drawn. Therefore, regression
to the mean ought to be quantified relative to the local mean (e.g., the recent trials),
but not the grand mean (e.g., the mean RT in the current block or the target interval).
This deviation-from-mean parameter was quantified as the difference between the RT
on this trial and the local mean RT, which was the rolling mean averaged across the
previous 10 trials. For the first 10 trials in a block where this rolling mean cannot be

calculated, the deviation was calculated as the difference between RT and the target
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interval (0.4, 0.6, or 1 s). A positive value of this deviation variable suggests temporary
slowing on this trial compared to recent history, and a negative value suggesting
temporary speeding. We demonstrated using simulation that when apparent RT
adjustment solely arises from regression to the mean in a Gaussian distribution, this
adjustment is negatively correlated with deviation from local mean (Supplementary
Information Figure S1.3 A-B). Therefore, in the linear mixed modeling, we added
deviation from the mean as a covariate to partial out the effect of regression to the
mean on RT adjustment. Varying the time window for calculating the rolling mean, or
excluding the first trials where the rolling mean could not be calculated did not alter

the main conclusions from the linear mixed model.

2.5 EEG Analysis

2.5.1 EEG Recording

32 channel EEG was recorded at 1000 Hz with an actiCHamp Plus amplifier (Brain
Products, GmbH, Gilching, Germany) using BrainVision Recorder (Version 1.23.0001,
Brain Products, GmbH, Gilching, Germany). The EEG recording was referenced to Fz
online. 30 of the electrodes were arranged according to the international 10-20 system,

and two additional electrodes were placed on the left and right mastoids.

2.5.2 Pre-processing

The EEG was pre-processed in MATLAB R2020a (Mathworks, Natick, USA) using
EEGLAB (Delorme and Makeig, 2004). EEG data was down-sampled to 250 Hz,
filtered by a 0.1-30 Hz band pass filter and a 50 Hz notch filter, and re-referenced to
the linked mastoids. Ocular artefacts were identified and removed from the continuous

data by running an independent component analysis and then the iclabel function.

10
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2.5.3 Extraction of Regression-based Event-Related Potential

In this continuous task, each behavioral response was immediately followed by
visual feedback, and the interval timing for the next beat immediately ensued without
an inter-trial interval. Due to component overlap, this rapid design poses challenges
to the traditional event-related approach to EEG analysis. We used a regression-
based ERP (rERP) analysis method to extract waveforms from the overlapping
signals using the Unfold toolbox in MATLAB (Smith and Kutas, 2015; Ehinger and
Dimigen, 2019). We detected artifacts in the continuous EEG with a 150 pV
threshold using the basicrap function from ERPLAB toolbox with 2000 ms window
and 1000 ms step size (Lopez-Calderon and Luck, 2014). For each participant, we
constructed a design matrix consisting of stick functions spanning -1500 to 1500 ms
around the onset of visual feedback, for each feedback type and tempo, respectively.
EEG sample and design matrix rows corresponding to artefacts were removed
before solving the equation. We also conducted a traditional EEG analysis for

comparison (Supplementary Information S2).2.5.4 RewP Amplitude Quantification

To identify the scalp location of the RewP, we used the ‘collapsed localizer’ approach
(Luck and Gaspelin, 2017), combining across tempos and incorrect feedback types
(early or late) to form a single correct waveform and a single incorrect waveform for
each electrode. We located the electrode (FCz) at which the RewP amplitude
(collapsed correct minus collapsed incorrect) was maximal. RewP time window was
selected as 240-340 ms according to a previous meta-analysis (Sambrook and Goslin,
2015). RewP was calculated as the difference wave between correct and incorrect
feedback, and the amplitude is quantified as the mean amplitude in the RewP time
window. We conducted one-sample t-test comparing participants’ average amplitude

to 0 and reported Cohen’s d (Cohen, 2013). We then conducted a two-way within-

11
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subject ANOVA (3 tempos x 2 feedback contrasts) on participants’ average RewP
amplitude, reporting the partial eta-squared. The average waveform and its
topography were plotted by averaging across all participants for three tempos

respectively.

2.5.5 Trial-by-trial analysis

After confirming the existence of RewP and localizing it to the electrode FCz, we asked
the question whether the neural activity at this electrode site induced by reward (i.e.,
on time feedback) biases subsequent timing. We used the trial-by-trial EEG amplitude
during on-time trials in the RewP time window as a proxy to reward-induced
dopaminergic fluctuations, and use this amplitude to predict participants’ behavioral
adjustment in the next trial. We focused on the on-time trials for two reasons. First,
there is evidence that RewP variability depends on the reward response but not the
non-reward response (Holroyd et al., 2008; Proudfit, 2015). Second, reward feedback
in this task ought to be unconfounded by the directional behavioral adjustments we

would expect for ‘early’ and ‘late’ feedback (Sl table S1.1).

To derive the trial-by-trial RewP amplitude, we extracted a common feedback
component for each participant’s individual condition (fast, medium, slow), and
feedback type (early, late, on time), using the rERPs acquired from the regression-
based analysis above. The trial-to-trial ‘residual RewP’ was computed as the
difference between the current trial’s EEG amplitude and the predicted amplitude from
the regression model, averaged within the pre-specified RewP window (240-340 ms)
at electrode FCz (Figure 1B). As a comparison, we also derived the trial-to-trial
residual EEG from the traditional ERP approach (Supplementary Information S2).

This experiment does not contain explicit practice trials; the first three blocks were

considered as practice blocks and excluded from the analysis. We further truncated

12
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the top and bottom 1% of RT for each tempo, 1% of all RT adjustment, regression to
the mean, and residual RewP amplitude from the dataset, removing 7.0% of all trials.
For sensitivity analysis, we varied the number of blocks counted as practice blocks,
and the percentage of outliers (see Results 3.3). Before exclusion, the range of RT
was 0.001 to 25.573 seconds, the range of RT adjustment was -24.995 to 24.949
seconds, the range of deviation from the mean was -4.004 to 22.118 seconds, and the
range of trial-to-trial EEG was -76.786 to 66.371 pV; after exclusion, the range of RT
was 0.305 to 1.222 seconds, the range of RT adjustment was -0.290 to 0.283 seconds,
the range of deviation from the mean was -0.419 to 0.391 seconds, and the range of
trial-to-trial EEG was -28.593 to 28.777 pV. Linear mixed models were constructed
using tempo, feedback type, residual RewP and their interactions to predict the RT
adjustment (signed; positive value indicates slowing) on the next trial, while controlling
for chunking and regression to the mean. We focused on the slow tempo, where the
most prominent RewP was observed (Section 3.2), and on the on time feedback type,
because this is where the hypothesized fluctuations in phasic DA signaling occurs. We
constructed the following linear mixed model using the R function Imer() with random
intercept for each participant:

rt_adjustment ~ 1 + feedback * tempo * RewP + chunk_location +
deviation_from_the_mean * tempo + (1|participant)

Here, chunk location denotes the location of the current interval in the drumming
pattern. The main effect of RewP on RT adjustment following on time feedback within
each tempo was acquired by relevelling the model to different tempos and re-running
the model. Cohen’s d was reported for all linear regressions. Finally, we fit a linear

mixed model with random slopes and intercept for every participant:

13
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rt_adjustment ~ 1 + chunk_location + deviation_from_the_mean * tempo + (RewP *

tempo * feedback | participant)
We extracted the slope coefficients for each participant respectively and tested

whether they are systematically greater than 0 in a one-sample t-test.

(A)

block cue response feedback

(24 beats) (until response) (50 ms)
t |

(72 trials)
Response time

Raw
Prediction
Residual

RewP window

Figure 1 Task design and EEG data analysis. (A) The drumming task. In each block,
participants were required to produce a drumming pattern using F and J keys on the
keyboard. Each response was provided with color-coded visual feedback indicating if
it was early, on time or late. There were three tempos in the experiment: fast,
medium, and slow. (B) The calculation of trial-to-trial residual RewP. The residual
EEG was calculated by subtracting the predicted EEG amplitude from the regression
analysis from the raw EEG amplitude at each time point. A trial’s RewP was the
average amplitude of residual EEG in the RewP time window, shown as grey
rectangles in the figure.

14
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3. Result

3.1 Systematic bias in interval production

Participants were relatively accurate in reproducing the target intervals (Figure 2A-B).
One-sample t-tests on participant's average RT indicated that participants were
significantly faster than the target interval for the medium tempo (all RT below in
seconds; Mean difference = 0.570 s, SD = 0.020, t@1,19) = -6.867, p <.001, Cohen’s d
= -1.54) and the slow tempo (Mean difference = 0.933 s, SD = 0.037, tq1,19) = -7.884,
p <.001, Cohen’s d = -1.76), but not for the fast tempo (Mean difference = 0.402 s,
SD =0.014, ta,19) = 0.661, p =.516, Cohen’s d = 0.15). Consistent with the systematic
bias in RT, participants also received asymmetric proportion of ‘early’ and ‘late’
feedbacks, while the proportion of on time feedback was approximately 50% (S| Table
S1.1). Chunking was observed for both drumming patterns; participants’ RTs were
faster when they were within a chunk, than when they moved to another chunk or

switched hands (S| Figure S1.3C).

Two-way within-subject ANOVA (3 tempos x 3 feedback types) on participants’
average RT adjustment suggested that RT adjustment significantly differed by
feedback type (F(2,38 = 205.651, p <.001, n; = 0.92) and tempo (F238) = 28.213, p <
.001, n; =0.60). Importantly, the significant main effect of feedback type confirms that
participants adjusted their behavior according to feedback, speeding up upon
receiving ‘late’ feedback and slowing down upon receiving ‘early’ feedback (Figure
2C). There was also a significant interaction between feedback and tempo (Fw.76) =
21.280, p <.001, n; = 0.53). Pairwise comparisons with Bonferroni adjustment further
suggested that participants’ RT adjustment following ‘on time’ feedback was

significantly more positive (suggesting slowing) for fast tempo than slow tempo (mean
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difference = 0.025 s, t-ratio = 3.957, padjust < .001, Cohen’s d = 1.83). The biasing effect
of tempo and feedback on RT was systematic across participants, although there were

individual differences in their mean RT and RT adjustments (Figure 2D).
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Figure 2 Participants relatively accurately reproduced different drumming patterns
and adjusted their behavior following different feedbacks. (A) The distribution density
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of RT in each tempo, suggesting speeding in the medium and the slow tempo. The
dotted line and the solid line indicated the population mean and the target interval,
respectively. (B) The distribution of participants’ average RT in each tempo. Each
point represents one participant. The horizontal lines represent the target interval.
(C) The distribution of RT adjustment in each tempo. The dotted lines showed the
population mean. (C) The distribution of RT adjustment by feedback type in each
tempo.

3.2 RewP was observed only for the medium and the slow tempos

We derived rERPs for each tempo and feedback type (Figure 3A-C). The slower the
tempo, the larger the Reward Positivity observed (Figure 3D-F). In the slow tempo,
but not the medium and fast tempo, a clear frontocentral gradient of scalp RewP
amplitudes emerged that peaked at FCz (Figure 3G-l). Two-way within-subject
ANOVA (3 tempos x 2 feedback contrasts) on the mean RewP amplitude for each
participant suggested a significant main effect of tempo (F,38) = 7.560, p = .002, 775 =
0.285), but not feedback type (Fa.19) = 0.044, p = .837, n; = 0.002). There was no
interaction between tempo and feedback type (F(,3s = 0.270, p = .765, n; = 0.014).
Pairwise t-tests with Bonferroni corrections suggested that the RewP amplitude in the
slow tempo was significantly larger than in the medium tempo (Mean difference =
0.931, t1,39)= 2.474, adjusted p =.018, Cohen’s d = 0.39) and in the fast tempo (Mean
difference = 1.768, ta,39) = 3.509, adjusted p = .001, Cohen’s d = 0.55); the RewP
amplitude in the medium tempo was significantly larger than that in the fast tempo
(Mean difference = 0.837, t(1,39) = 2.043, adjusted p = 0.048, Cohen’s d = 0.32). The
95% confidence interval of the RewP amplitude in the fast tempo included zero, and

the 95% confidence interval of the amplitude from medium and slow tempo were
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greater than 0, suggesting that RewP could be reliably observed in the medium and

slow tempo (Table 1).

Table 1 Summary statistics of participants’ mean RewP amplitude for each tempo and

feedback type.
tempo Feedback mean SD 95%CI Cohen’s d
contrast lower upper
fast On time - early 0.176 2.817 -1.142 1.495 0.06
On time - late 0.289 1.656 -0.486 1.037 0.17
medium  On time - early 1.032 1.617 0.275 1.789 0.64
On time - late 1.106 1.780 0.273 1.940 0.62
slow On time - early 2.220 1.633 1.456 2.985 1.36
On time - late 1.781 2.703 0.516 3.046 0.66
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Figure 3 Reward Positivity in the fast, medium and slow tempo. (A-C) Regression-
based ERP by tempo and feedback type. The RewP time window as reported in
Sambrook and Goslin (2015), was highlighted in grey (240-340 ms). (D-F) The RewP
wave was calculated as the contrast between correct and incorrect feedback type.
RewP amplitude increased as a function of target interval. (G-H) The topography of
RewP, averaged between early and late feedback type. In the slow tempo, the peak
amplitude was located at electrode FCz.

3.3 Trial-to-trial fluctuation in RewP amplitude biases timing in peri-second range

We examined the autocorrelation of RT adjustment and RewP using linear mixed
models with random intercept for each participant. Last trial’'s RT adjustment was
negatively associated with RT adjustment on this trial, such that slowing on the last

trial predicted speeding up on this trial, and vice versa (regression coefficient B = -
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0.257,t=-61.281, p <.001, Cohen’s d = -0.749), suggesting regression to the mean.
Last trial’s RewP was not associated with this trial's RewP, B =-0.0016,t=0.316, p =
0.752, Cohen’s d = 0.004, suggesting that there are negligible baseline fluctuations in
RewP across trials.

We divided the RewP amplitudes into 10 bins with 10% of trial data in each bin, and
plotted the mean and standard error of RT adjustment for this RewP bin. Visual
inspection revealed a linear association between RewP amplitude and RT adjustment
(Figure 4A). Next, we fitted a linear mixed model using the current trial’s residual
RewP (trial EEG subtracted by average EEG waveform) to predict RT adjustment on
the next trial. The model converged successfully. Feedback type, tempo, regression
to the mean, and chunk locations significantly predicted RT adjustment. In the slow
tempo, trial-to-trial fluctuations in RewP in response to on time feedback predicted RT
adjustment on the next trial, such that larger (more positive) RewP led to a slowing of
RT compared to the last trial (B = 2.9x104, t = 4.341, p < .001); the effect size of the
biasing effect of RewP was modest, Cohen’s d = 0.053 (Figure 4B). Such timing-
biasing effect of RewP fluctuations was not observed for the fast (B = 1.2x10%4, t =
1.892, p = 0.058, Cohen’s d = 0.023) or the medium tempo (B = 0x10*%, t = -0.002, p
= 0.999, Cohen’s d < .001); RewP fluctuations did not bias timing following early or
late feedback (|t| < 1.390, p > 0.164). The effect of tempo and chunk location on RT
adjustment, and estimates of the entire model, are shown in Supplementary
Information (Table S1.1). The regression coefficient B of RewP was still significant
when not including chunk location and regression to the mean by tempos as the
covariates, B = 2.7x10%,t = 3.703, p < .001, Cohen’s d = 0.045.

To confirm that the finding that trial-to-trial RewP was not limited to the present

exclusion criterion, we conducted sensitivity analysis by varying (1) the number of
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blocks considered as practice blocks, and (2) the percentage of outliers in timing
behavior and EEG. When no block was counted as practice block, the regression
coefficient of RewP was still significant, B = 2.95x10%4, t = 4.431, p < .001, Cohen’s d
=0.051. When only the bottom and top 0.5% of RT, RT adjustment, deviation from the
mean, and RewP amplitude were excluded (inclusion rate 95.76%), the regression
coefficient was still significant, B = 2.8x10%, t = 3.742, p = .002, Cohen’s d = 0.042.

As shown in Figure 4C, when fitting both random slope and random intercept for each
participant’s RewP predicting RT adjustment, all but two participants’ slope estimates
were larger than O (min = -0.18x10%, max = 10.5x10*%, Mean = 2.5x10*%, SD = 2.6x10-
4). One-sample t-test suggests that the slopes were significantly larger than 0 (tx,19) =

4.304, p <.001, Cohen’s d = 0.96).
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Figure 4 Reward response predicted timing behavior. (A) For visualizing RT
adjustment as a function of RewP, all RewPs were divided into 10 bins of 10%. (B)
Size of RT adjustment as a function of the RewP amplitude in response to on time
feedback. Each grey point represented one participant’s data in this bin, with larger
point size indicating more trials. The grey-colored error bars shown below indicated
standard error of the subset of data represented by the grey point. The black points
and error bars represent the group-level mean and standard error within each RewP
bin. (C) The predicted values of RT adjustment in the slow tempo from the linear
mixed model. (D) Individual regression coefficients B from a linear mixed model with
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random slopes and random intercept, in the slow tempo. Each open dot represents
the value of one participant, and red line denotes the coefficient value when the
slope is fixed across participants.

Discussion

This study investigated the influence of reward processing on interval production by
looking at participants’ Reward Positivity (RewP) in response to rapid feedback while
they engaged with a continuous drumming task at different tempos. A continuous
timing paradigm was used to gather larger number of trials compared to traditional
trial-based paradigms. Trial-to-trial EEG fluctuations in the RewP time window
predicted timing adjustment on the next trial, such that a larger (more positive) RewP
amplitude relative to the mean waveform forecasted longer produced interval on the
next trial. This study demonstrated the plausibility of using a rapid paradigm to acquire
the RewP, and showed that fluctuations in the RewP are associated with variations in

interval production.

Considering previous studies that linked the RewP to a striatal reward prediction error
relayed to anterior cingulate cortex (Holroyd and Coles, 2002; Holroyd and Yeung,
2012), our findings could be interpreted as a slowing effect of reward-related phasic
DA signaling on interval production. Previous studies have reported that reward led to
the same interval being perceived longer by human participants (Failing and
Theeuwes, 2016; Toren et al.,, 2020), although one study directly manipulating
dopamine signaling in mice found the opposite effect (Soares et al., 2016). However,
caution needs to be taken in comparing results on interval perception with those on
interval production (Coull et al., 2013), although there is some evidence of shared

psychological substrates (Keele et al., 1985; Ivry and Hazeltine, 1995).
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Considering that the RewP typically occurs 250-350 ms post-feedback, it is surprising
that we did not reliably observe a RewP in the fast tempo which had a target interval
of 400 ms. One possibility is that there might be a shift in timing strategies across
different tempos. In the slower tempos, participants may rely more on a feedback-
based, discrete interval timing system, while the fast tempo may tap into a more
automatic and motoric timing system where participants rely more on sampling from
their internal interval representation (Lewis and Miall, 2003; Wiener et al., 2011; Petter
et al., 2016). Furthermore, feedback processing may interact with tempo speed; the
richer the information that the feedback stimuli contain, the smaller the observed
RewP amplitude might be (Cockburn and Holroyd, 2018). This study provided
directional incorrect feedbacks (early and late) instead of a dichotomous right-or-
wrong differentiation, which may require more feedback processing and reduce RewP
amplitude in the faster tempos. Overall, this highlights the tradeoff between continuous

timing paradigm and RewP amplitude due to a possible shift in timing strategy.

It was argued that the RewP is larger when the feedback is surprising or salient, and
that surprise leads to larger behavioral adjustment (Holroyd and Krigolson, 2007;
Talmi et al., 2013; but see: Heydari and Holroyd, 2016; Mulligan and Hajcak, 2018).
The link between RewP fluctuations and subsequent behavioral adjustment in this
study is unlikely to be confounded by surprise about the feedback. This is because the
present study used a staircase procedure to ensure that on time feedback always
consisted of 50% of trials in each block, eliminating the impact of surprise on the EEG
amplitude in response to on time feedback. The different feedback types were also
color-coded and randomized across participants to reduce the confound of perceptual
salience. This paper adds to the body of literature linking the RewP to subsequent

behavioral adjustment, which mostly focused on between-subject level associations
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across the entire study with a few exceptions (Yasuda et al., 2004; Holroyd and
Krigolson, 2007; Cavanagh et al., 2010; Arbel et al., 2013). Several studies that
conducted within-subject, trial-based analysis reported non-significant associations
between RewP amplitude and timing behavior (Castellar et al., 2010; Cockburn and
Holroyd, 2018) . Such results may not be contradictory to our findings. We estimated
that each uV increase in RewP amplitude slows down the following produced interval
by 0.29 ms, equating to a decrease of 0.029% for the 1 s target interval. Given the
modest effect size such biasing effect, one possibility is that the limited number of trials
from traditional trial-based paradigms (a few hundred trials compared to 1728 trials in

this study) may not have the power to detect such effect.

It should be noted that adjustment in timing behavior was not solely dependent on
external feedback, but also on internal error monitoring (Miltner et al., 1997; Coles et
al., 2001; Ullsperger and Von Cramon, 2003; Danielmeier and Ullsperger, 2011). The
neural substrates for internal error monitoring and external reward monitoring are
partially separable (de Bruijn et al., 2009). Participants have an internal model of timing
which they use to update their belief and modify their behavior (Petter et al., 2016
p.201, 2018). Due to the continuous and ecological property of this paradigm, the
internal model may integrate priors about both interval duration and rhythm. First,
despite trial-by-trial feedback, participants in this study exhibited a systematic
deviation from the target interval. This implies that participants have a prior that biased
their produced tempo. Future studies can test this hypothesis by, for example, asking
participants to drum with a certain pattern using visual cues without explicit instructions
about the speed, and examine whether this natural drumming tempo has an interval
below 600 ms. Second, participants’ internal models of rhythm may lead to deviation

from target interval as a function of beat location in a pattern (Repp et al., 2011). This
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study aimed at reducing the influence of internal rhythm by showing participants an
explicit drumming pattern, and varying the drumming pattern to be copied. Moreover,
the linear mixed model took into considerations where the participant currently was in

a pattern, thereby controlling for the influence of rhythm on RT adjustment.

The present study examined how fluctuations in reward processing-related neural
activity biases subsequent performance in interval production. We used a continuous
drumming paradigm and regression-based analysis to deconvolute overlapping EEG
signals. RewP was reliably observed in the slow and medium tempos (target interval
1s or 0.6 s) but diminished in the fast tempo (target interval 0.4s). We found that more
positive RewP response to on-time feedback predicts the production of longer interval
on the next trial, only in the slow tempo where RewP was the largest. The modest
effect size of this behavior-biasing effect of reward highlights the necessity of using a

continuous design that allows for more intensive data collection.

26


https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.548049; this version posted July 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Reference

Arbel Y, Goforth K, Donchin E (2013) The good, the bad, or the useful? The
examination of the relationship between the feedback-related negativity (FRN)
and long-term learning outcomes. Journal of Cognitive Neuroscience
25:1249-1260.

Arias-Carrion O, Stamelou M, Murillo-Rodriguez E, Menéndez-Gonzalez M, Péppel
E (2010) Dopaminergic reward system: a short integrative review.
International archives of medicine 3:1-6.

Ariely D, Zakay D (2001) A timely account of the role of duration in decision making.
Acta psychologica 108:187-207.

Bates D, Machler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models
using Ime4. arXiv preprint arXiv:14065823.

Ben-Shachar MS, Lidecke D, Makowski D (2020) effectsize: Estimation of effect
size indices and standardized parameters. Journal of Open Source Software
5:2815.

Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic
impact, reward learning, or incentive salience? Brain research reviews
28:309-369.

Carlson JM, Foti D, Mujica-Parodi LR, Harmon-Jones E, Hajcak G (2011) Ventral
striatal and medial prefrontal BOLD activation is correlated with reward-
related electrocortical activity: a combined ERP and fMRI study. Neuroimage
57:1608-1616.

Castellar E nunez, Kihn S, Fias W, Notebaert W (2010) Outcome expectancy and
not accuracy determines posterror slowing: ERP support. Cognitive, Affective,
& Behavioral Neuroscience 10:270-278.

Cavanagh JF, Frank MJ, Klein TJ, Allen JJ (2010) Frontal theta links prediction
errors to behavioral adaptation in reinforcement learning. Neuroimage
49:3198-3209.

Cockburn J, Holroyd CB (2018) Feedback information and the reward positivity.
International Journal of Psychophysiology 132:243-251.

Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge.

Coles MG, Scheffers MK, Holroyd CB (2001) Why is there an ERN/Ne on correct
trials? Response representations, stimulus-related components, and the
theory of error-processing. Biological psychology 56:173-189.

27


https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.548049; this version posted July 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Corlett PR, Mollick JA, Kober H (2022) Meta-analysis of human prediction error for
incentives, perception, cognition, and action. Neuropsychopharmacology
47:1339-1349.

Coull JT, Cheng R-K, Meck WH (2011) Neuroanatomical and neurochemical
substrates of timing. Neuropsychopharmacology 36:3-25.

Coull JT, Davranche K, Nazarian B, Vidal F (2013) Functional anatomy of timing
differs for production versus prediction of time intervals. Neuropsychologia
51:309-319.

Danielmeier C, Ullsperger M (2011) Post-error adjustments. Frontiers in psychology
2:233.

de Bruijn ER, de Lange FP, von Cramon DY, Ullsperger M (2009) When errors are
rewarding. Journal of Neuroscience 29:12183-12186.

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-
trial EEG dynamics including independent component analysis. Journal of
neuroscience methods 134:9-21.

Ehinger BV, Dimigen O (2019) Unfold: An integrated toolbox for overlap correction,
non-linear modeling, and regression-based EEG analysis. PeerJ 7:e7838.

Failing M, Theeuwes J (2016) Reward alters the perception of time. Cognition
148:19-26.

Gehring WJ (2002) The Medial Frontal Cortex and the Rapid Processing of Monetary
Gains and Losses. Science 295:2279-2282.

Grahn JA (2009) The role of the basal ganglia in beat perception: neuroimaging and
neuropsychological investigations. Annals of the New York Academy of
Sciences 1169:35-45.

Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human
imaging. Neuropsychopharmacology 35:4-26.

Heydari S, Holroyd CB (2016) Reward positivity: Reward prediction error or salience
prediction error? Psychophysiology 53:1185-1192.

Holroyd CB, Coles MG (2002) The neural basis of human error processing:
reinforcement learning, dopamine, and the error-related negativity.
Psychological review 109:679.

Holroyd CB, Hajcak G, Larsen JT (2006) The good, the bad and the neutral:
electrophysiological responses to feedback stimuli. Brain research 1105:93—
101.

Holroyd CB, Krigolson OE (2007) Reward prediction error signals associated with a
modified time estimation task. Psychophysiology 44:913-917.

28


https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.548049; this version posted July 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Holroyd CB, Krigolson OE, Lee S (2011) Reward positivity elicited by predictive
cues. Neuroreport 22:249-252.

Holroyd CB, Pakzad - Vaezi KL, Krigolson OE (2008) The feedback correct - related
positivity: Sensitivity of the event - related brain potential to unexpected
positive feedback. Psychophysiology 45:688—-697.

Holroyd CB, Yeung N (2012) Motivation of extended behaviors by anterior cingulate
cortex. Trends in cognitive sciences 16:122—-128.

Ivry RB, Hazeltine RE (1995) Perception and production of temporal intervals across
a range of durations: evidence for a common timing mechanism. Journal of
Experimental Psychology: Human Perception and Performance 21:3.

Jazayeri M, Shadlen MN (2010) Temporal context calibrates interval timing. Nature
neuroscience 13:1020-1026.

Kappenman ES, Luck SJ (2016) Best Practices for Event-Related Potential
Research in Clinical Populations. Biological Psychiatry: Cognitive
Neuroscience and Neuroimaging 1:110-115.

Keele SW, Pokorny RA, Corcos DM, Ivry R (1985) Do perception and motor
production share common timing mechanisms: A correlational analysis. Acta
psychologica 60:173—-191.

Kuznetsova A, Brockhoff PB, Christensen RH (2017) ImerTest package: tests in
linear mixed effects models. Journal of statistical software 82:1—26.

Lewis PA, Miall RC (2003) Brain activation patterns during measurement of sub-and
supra-second intervals. Neuropsychologia 41:1583-1592.

Lopez-Calderon J, Luck SJ (2014) ERPLAB: an open-source toolbox for the analysis
of event-related potentials. Frontiers in human neuroscience 8:213.

Luck SJ, Gaspelin N (2017) How to get statistically significant effects in any ERP
experiment (and why you shouldn’t). Psychophysiology 54:146—-157.

Lutz K, Specht K, Shah NJ, JaEncke L (2000) Tapping movements according to
regular and irregular visual timing signals investigated with fMRI. Neuroreport
11:1301-1306.

Luu P, Tucker DM, Derryberry D, Reed M, Poulsen C (2003) Electrophysiological
responses to errors and feedback in the process of action regulation.
Psychological Science 14:47-53.

Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence
detection of oscillatory processes. Cognitive brain research 21:139-170.

Matell MS, Meck WH, Nicolelis MA (2003) Interval timing and the encoding of signal
duration by ensembles of cortical and striatal neurons. Behavioral
neuroscience 117:760.

29


https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.548049; this version posted July 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Miltner WHR, Braun CH, Coles MGH (1997) Event-Related Brain Potentials
Following Incorrect Feedback in a Time-Estimation Task: Evidence for a
“Generic” Neural System for Error Detection. Journal of Cognitive
Neuroscience 9:788-798.

Mulligan EM, Hajcak G (2018) The electrocortical response to rewarding and
aversive feedback: The reward positivity does not reflect salience in simple
gambling tasks. International Journal of Psychophysiology 132:262-267.

Nani A, Manuello J, Liloia D, Duca S, Costa T, Cauda F (2019) The neural correlates
of time: a meta-analysis of neuroimaging studies. Journal of Cognitive
Neuroscience 31:1796-1826.

Peirce J, Gray JR, Simpson S, MacAskill M, Hochenberger R, Sogo H, Kastman E,
Lindelgv JK (2019) PsychoPy2: Experiments in behavior made easy.
Behavior research methods 51:195-203.

Petter EA, Gershman SJ, Meck WH (2018) Integrating models of interval timing and
reinforcement learning. Trends in cognitive sciences 22:911-922.

Petter EA, Lusk NA, Hesslow G, Meck WH (2016) Interactive roles of the cerebellum
and striatum in sub-second and supra-second timing: Support for an initiation,
continuation, adjustment, and termination (ICAT) model of temporal
processing. Neuroscience & Biobehavioral Reviews 71:739-755.

Pope P, Wing AM, Praamstra P, Miall RC (2005) Force related activations in
rhythmic sequence production. Neuroimage 27:909-918.

Proudfit GH (2015) The reward positivity: From basic research on reward to a
biomarker for depression: The reward positivity. Psychophysiol 52:449—-459.

Ramkumar P, Acuna DE, Berniker M, Grafton ST, Turner RS, Kording KP (2016)
Chunking as the result of an efficiency computation trade-off. Nature
communications 7:12176.

Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during
temporal processing. Nature neuroscience 4:317-323.

Repp BH, London J, Keller PE (2011) Perception—production relationships and
phase correction in synchronization with two-interval rhythms. Psychological
Research 75:227-242.

Rosenbaum DA, Inhoff AW, Gordon AM (1984) Choosing between movement
sequences: A hierarchical editor model. Journal of Experimental Psychology:
General 113:372.

Sambrook TD, Goslin J (2015) A neural reward prediction error revealed by a meta-
analysis of ERPs using great grand averages. Psychological bulletin 141:213.

Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev
Neurosci 30:259-288.

30


https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.548049; this version posted July 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Shenhav A, Botvinick MM, Cohen JD (2013) The expected value of control: an
integrative theory of anterior cingulate cortex function. Neuron 79:217-240.

Smith NJ, Kutas M (2015) Regression - based estimation of ERP waveforms: |. The
rERP framework. Psychophysiology 52:157-168.

Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia.
Trends in neurosciences 23:528-S33.

Soares S, Atallah BV, Paton JJ (2016) Midbrain dopamine neurons control judgment
of time. Science 354:1273-1277.

Sternberg S, Knoll RL, Turock DL (2018) Hierarchical control in the execution of
action sequences: Tests of two invariance properties. In: Attention and
performance XIllI, pp 3-55. Psychology Press.

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, Second edition.
Cambridge, Massachusetts: The MIT Press.

Talmi D, Atkinson R, El-Deredy W (2013) The feedback-related negativity signals
salience prediction errors, not reward prediction errors. Journal of
Neuroscience 33:8264—-8269.

Teki S, Grube M, Griffiths TD (2012) A unified model of time perception accounts for
duration-based and beat-based timing mechanisms. Frontiers in integrative
neuroscience 5:90.

The MathWorks Inc. (2020) MATLAB (version 9.8.0 R2020a).

Toren |, Aberg KC, Paz R (2020) Prediction errors bidirectionally bias time
perception. Nature Neuroscience 23:1198-1202.

Tremblay P-L, Bedard M-A, Langlois D, Blanchet PJ, Lemay M, Parent M (2010)
Movement chunking during sequence learning is a dopamine-dependant
process: a study conducted in Parkinson’s disease. Experimental brain
research 205:375-385.

Tremblay P-L, Bedard M-A, Levesque M, Chebli M, Parent M, Courtemanche R,
Blanchet PJ (2009) Motor sequence learning in primate: Role of the D2
receptor in movement chunking during consolidation. Behavioural brain
research 198:231-239.

Tse PU, Nobre A, Coull J (2010) Attention underlies subjective temporal expansion.
Attention and time:137-150.

Tunison E, Sylvain R, Sterr J, Hiley V, Carlson JM (2019) No money, no problem:
enhanced reward positivity in the absence of monetary reward. Frontiers in
Human Neuroscience 13:41.

Ullsperger M, Von Cramon DY (2003) Error monitoring using external feedback:
specific roles of the habenular complex, the reward system, and the cingulate

31


https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.548049; this version posted July 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

motor area revealed by functional magnetic resonance imaging. Journal of
Neuroscience 23:4308-4314.

Vassena E, Holroyd CB, Alexander WH (2017) Computational models of anterior
cingulate cortex: At the crossroads between prediction and effort. Frontiers in
neuroscience 11:316.

Verwey WB, Dronkert Y (1996) Practicing a structured continuous key-pressing task:
Motor chunking or rhythm consolidation? Journal of motor behavior 28:71-79.

Verwey WB, Eikelboom T (2003) Evidence for lasting sequence segmentation in the
discrete sequence-production task. Journal of motor behavior 35:171-181.

Walsh MM, Anderson JR (2012) Learning from experience: event-related potential
correlates of reward processing, neural adaptation, and behavioral choice.
Neuroscience & Biobehavioral Reviews 36:1870-1884.

Wiener M, Lohoff FW, Coslett HB (2011) Double dissociation of dopamine genes
and timing in humans. Journal of cognitive neuroscience 23:2811-2821.

Wiener M, Turkeltaub P, Coslett HB (2010) The image of time: a voxel-wise meta-
analysis. Neuroimage 49:1728-1740.

Yasuda A, Sato A, Miyawaki K, Kumano H, Kuboki T (2004) Error-related negativity

reflects detection of negative reward prediction error. Neuroreport 15:2561—
2565.

32


https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.548049; this version posted July 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Author Note

This research was funded by the Rhodes Scholarship for China to Yan Yan, a Natural
Sciences and Engineering Research Council of Canada (NSERC) Postdoctoral
Fellowship to Cameron D. Hassall (PDF 546078 - 2020), a Sir Henry Dale Fellowship
from the Royal Society and Wellcome (208789/Z/17/Z) to Laurence T. Hunt., and a
NARSAD Young Investigator Award from the Brain and Behavior Research
Foundation to Laurence T. Hunt. This research was supported by the NIHR Oxford
Health Biomedical Research Centre. The Wellcome Centre for Integrative
Neuroimaging was supported by core funding from Wellcome Trust (203139/Z2/16/Z).

For the purpose of Open Access, the author has applied a CC BY public copyright

license to any Author Accepted Manuscript version arising from this submission.

The authors have no conflict of interest.

Data Availability Statement

EEG dataset is available at https://openneuro.org/datasets/ds004152/versions/1.1.2.

Analysis scripts are available at https://github.com/chassall/drumtrainer.

33


https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. Methods
	2.1 Participants
	2.2 Experimental Task
	2.3 Software
	2.4 Behavioral Analysis
	2.4.1 Response Time and its adjustment
	2.4.2 Hierarchical timing and chunking
	2.4.3 Regression to local mean

	2.5 EEG Analysis
	2.5.1 EEG Recording
	2.5.2 Pre-processing
	2.5.3 Extraction of Regression-based Event-Related Potential
	In this continuous task, each behavioral response was immediately followed by visual feedback, and the interval timing for the next beat immediately ensued without an inter-trial interval. Due to component overlap, this rapid design poses challenges t...
	2.5.5 Trial-by-trial analysis


	3. Result
	3.1 Systematic bias in interval production
	3.2 RewP was observed only for the medium and the slow tempos
	3.3 Trial-to-trial fluctuation in RewP amplitude biases timing in peri-second range

	Discussion
	Reference
	Author Note
	Data Availability Statement

