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Abstract 

The neural circuits of reward processing and interval timing (including perception and 

production) are functionally intertwined, suggesting that it might be possible for 

momentary reward processing to influence subsequent timing behavior. Previous 

animal and human studies have mainly focused on the effect of reward on interval 

perception, whereas its impact on interval production is less clear. In this study, we 

examined whether feedback, as an example of performance-contingent reward, 

biases interval production. We recorded EEG from 20 participants while they engaged 

in a continuous drumming task with different realistic tempos (1728 trials per 

participant). Participants received color-coded feedback after each beat about whether 

they were correct (on time) or incorrect (early or late). Regression-based EEG analysis 

was used to unmix the rapid occurrence of a feedback response called the reward 

positivity (RewP), which is traditionally observed in more slow-paced tasks. Using 

linear mixed modelling, we found that RewP amplitude predicted timing behavior for 

the upcoming beat. This performance-biasing effect of the RewP was interpreted as 

reflecting the impact of fluctuations in dopaminergic activities on timing, and the 

necessity of continuous paradigms to make such observations was highlighted. 

Keywords: Timing, feedback, continuous paradigm, event-related potential (ERP), 

reward positivity (RewP) 
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1. Introduction 

A cortico-striatal dopaminergic system in the brain underlies reward processing (Smith 

and Kieval, 2000; Schultz, 2007; Arias-Carrión et al., 2010; Haber and Knutson, 2010; 

Corlett et al., 2022). Interestingly, the same dopaminergic circuits have been implied 

in beat-based interval timing, where the interval is encoded relative to the beat (Rao 

et al., 2001; Matell et al., 2003; Matell and Meck, 2004; Grahn, 2009; Coull et al., 2011; 

Teki et al., 2012). This overlap in functional circuits for reward and timing raises the 

possibility that phasic activation of reward circuits during reward processing can lead 

to temporary changes in timing behavior. Such interaction may be more prominent for 

sub-second than supra-second interval timing, due to more intense activation of 

subcortical areas (Wiener et al., 2010; Nani et al., 2019). 

Interval timing includes interval perception and interval production (Ivry and Hazeltine, 

1995). Past literature has predominantly focused on the effect of reward on interval 

perception, while the effect of reward on interval production remains understudied. 

Animal studies demonstrated that direct manipulation of phasic dopamine signaling 

alters interval perception. For example, Soares et al. (2016) reported that spontaneous 

fluctuations in phasic DA signaling lead to mice perceiving the same interval as 

shorter, and optogenetic manipulation is sufficient for reproducing such behavioral 

pattern. In humans, researchers typically studied the influence of externally 

administered reward on interval perception. It was shown that intervals associated with 

a monetary positive prediction error or reward were perceived as longer by human 

participants (Failing and Theeuwes, 2016; Toren et al., 2020), an effect partially 

attributable to attention and salience (Berridge and Robinson, 1998; Tse et al., 2010). 
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However, these studies typically manipulated reward independently of performance, 

whereas in real life, reward is likely contingent on timing performance (Ariely and 

Zakay, 2001; Petter et al., 2018). 

Feedback is an incidence of performance-contingent reward, and positive feedback 

on performance (e.g., ‘accurate’, ‘hit’ or ‘on time’) is known to elicit a reward response 

in the brain 200-300 ms post-stimulus (Proudfit, 2015; Cockburn and Holroyd, 2018; 

Tunison et al., 2019). While several previous studies used fMRI to study the 

continuous sub-second interval production with visual feedback (e.g., Lutz et al., 2000; 

Pope et al., 2005), it may be difficult to conduct a trial-by-trial fMRI analysis to capture 

the transient changes in reward circuit due to constraints on temporal resolution. EEG 

allows for fine-grained discrimination of such interplay at the level of milliseconds, 

making it especially suitable for studying the influence of reward on sub-second timing 

behavior. It has been well-established that reward, relative to non-reward, elicits a 

positive deflection in the scalp-reported event-related potential (ERP) in the 

frontocentral electrode sites around 250 to 350 ms after stimulus onset called the 

Reward Positivity (RewP) (Holroyd and Coles, 2002; Holroyd et al., 2006, 2011; Walsh 

and Anderson, 2012) 1 . RewP variability is likely due to variability in the reward 

response rather than the non-reward response (Holroyd et al., 2008). One theory of 

the RewP highlights its link to the reward prediction error in reinforcement learning 

(Sutton and Barto, 2018), attributing the RewP to the influence of a phasic ventral 

striatal DA signal on the anterior cingulate cortex (Holroyd and Coles, 2002; Luu et al., 

2003; Carlson et al., 2011). This outcome information is utilized by the anterior 

cingulate cortex to compute a need-for-control signal, facilitating cognitive control and 

 
1 RewP is also termed Feedback-Related Negativity (FRN) or Error-Related Negativity (ERN) when 

the contrast is loss minus gain (Miltner et al., 1997; Gehring, 2002; Luu et al., 2003; Proudfit, 2015). 
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effort exertion (Shenhav et al., 2013; Vassena et al., 2017). Altogether, the RewP 

provides a non-invasive, temporally sensitive measure of reward prediction errors on 

the scalp. 

In this study, we asked how reward biases sub-second interval production in a 

continuous timing paradigm with EEG recording. Participants were instructed to 

reproduce different drumming patterns at different tempos (fast, medium, and slow) 

using two keys on a keyboard, and received color-coded feedback (early, on time, or 

late) on their accuracy after each response. We hypothesized that on-time feedback 

would elicit a RewP relative to early or late feedback, and examined whether the RewP 

could be reliably observed in all three tempos. We then hypothesized that trial-to-trial 

instantaneous fluctuations of RewP amplitude in response to on-time feedback biases 

subsequent interval production, using a linear mixed model. We reported that RewP 

was only stably observed in the medium and slow tempos. In the slow tempo, a larger 

RewP in response to ‘on time’ feedback led to a longer produced interval on the next 

trial. 

2. Methods 

2.1 Participants 

21 participants completed the study. One participant (No. 12, female) was excluded 

due to the trigger cable being partially disconnected. The remaining 20 participants 

(15 female, 2 left-handed, mean age 25.85 ± 4.53) had normal or corrected-to-normal 

vision and had no known neurological impairments. All participants gave informed 

consent and were compensated for their participation and a performance bonus. This 
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study was approved by the Medical Sciences Interdivisional Research Ethics 

Committee at the University of Oxford (R51132/RE002).  

2.2 Experimental Task 

Participants completed the drumming task along with two other unrelated tasks, the 

order of which was randomized between participants. Each task took approximately 

20 minutes, and the entire study took around 60 minutes. The stimuli were presented 

using PsychoPy 3.6.6 (Peirce et al., 2019) on a monitor screen with size 59.9 cm 

(width) × 33.7 (height). In each block of the drumming task, participants listened to a 

drumming pattern for 24 beats and were asked to reproduce the pattern using the F 

and J keys on the keyboard (Figure 1A). The response sequence was self-initiated 

by pressing the first key, and participants were shown color-coded visual feedback for 

50 ms after each subsequent key press response, indicating if their response was fast, 

on time, or slow. The palette is color blind-friendly and the correspondence between 

color and feedback was counterbalanced across participants. If the participant 

pressed a wrong button, a red ‘X’ appeared on the screen instead for 50 ms. A 

participant was ‘on time’ if the produced interval fell into the target interval plus or 

minus a given margin. The margin had a starting width of 100 ms, and a staircase 

procedure was used to adjust the size of this margin by steps of 10 ms, so that in every 

block type, the ‘on time’ feedback type composed approximately 50% of all feedbacks. 

There were three tempo conditions: fast (150 beats per minute [BPM], target interval 

0.4 s) medium (100 BPM, target interval 0.6 s), and slow (60 BPM, target interval 1 s). 

In each condition, there were two possible drumming patterns ‘aaba/aaba/aaba…’ 

(commonly referred to as ‘4/4 time’) and ‘aaabaa/aaabaa/aaabaa…’ (commonly 

referred to as ‘6/8 time’). Both hands were used as starting hand to balance for 
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dominant hand effect. Each participant completed 24 blocks in total (2 patterns × 3 

tempos × 2 dominant hands × 2 repetitions). Participants received a bonus for their 

performance on the task. Twenty of the 21 participants completed 24 blocks (72 trials 

per block, 1728 trials in total) in total. One participant (No. 1, female) completed a pilot 

version of the task which included two identical repetitions of the task as performed by 

other participants, and only the first 1728 trials were included in the analysis. 

This drumming task is continuous in the sense that participants self-paced the 

drumbeats and there was no artificial delay between events, making it relatively 

naturalistic. Because the timing response immediately occurred 50 ms after the onset 

of feedback stimulus, signaling the start of the next timing interval, there were no ‘trials’ 

in the traditional sense. Instead, we defined a ‘trial’ in this paradigm as starting with 

feedback onset, followed by feedback-relayed neural responses, and until the 

subsequent button response. Similarly, we defined response time (RT) as each inter-

beat interval between two drumbeats generated by key presses. 

2.3 Software 

Preprocessing and analysis of EEG data was conducted in MATLAB R2020a (The 

MathWorks Inc., 2020), using EEGLAB (Delorme and Makeig, 2004). The results were 

then analyzed in RStudio (version 4.0.2, 2020-06-22). Linear mixed models were 

conducted using the R package lme4 version 1.1-31 (Bates et al., 2014) and lmerTest 

version 3.1-3 (Kuznetsova et al., 2017), and effect size estimates were acquired using 

the R package effectsize version 0.8.2 (Ben-Shachar et al., 2020) and package 

EMAtools version 0.1.4. 
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2.4 Behavioral Analysis 

2.4.1 Response Time and its adjustment 

Response time (RT) was defined as the time to press the button after feedback onset. 

RT adjustment was calculated as the difference between RT in the current trial and in 

the last trial. A positive value suggests increasing RT, and a negative value suggests 

decreasing RT. To analyze timing performance, we first removed trials where 

participants pressed the wrong button, and excluded outliers of RT and RT adjustment 

in the top and bottom 1%. We conducted a one-sample t-test comparing participants’ 

average response time in each tempo to the target interval and reported Cohen’s d 

(Cohen, 2013). We conducted a two-way ANOVA (3 tempos × 3 feedback types) on 

participants’ average RT adjustment, and reported the effect size partial eta squared 

(𝜂𝑝
2). 

2.4.2 Hierarchical timing and chunking  

During execution of movement sequences, participants tend to group consecutive 

movements together, and organize them in a hierarchical manner (Rosenbaum et al., 

1984; Verwey and Dronkert, 1996; Verwey and Eikelboom, 2003; Sternberg et al., 

2018). The chunking literature suggests that participants’ movement is more fluent 

and efficient within a chunk than when they switch between chunks (Verwey and 

Dronkert, 1996; Ramkumar et al., 2016). Importantly, chunking has been linked to 

dopaminergic functioning in animals and humans (Tremblay et al., 2009, 2010), and 

chunking may lead to phasic DA signaling as a function of the relative location of the 

current beat in a chunk. In this task, participants were explicitly instructed to drum at 

a specific pattern, so we used the current beat’s location in the specific pattern as a 
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proxy for chunking. We analyzed the effect of chunking on RT and its adjustment, and 

accounted for chunking in the linear mixed models (for details, see section 2.5.5). 

2.4.3 Regression to local mean 

One possible concern with our RT adjustment measure is that it could partially reflect 

regression to the mean. A short RT could be followed by an apparent ‘adjustment’ in 

the right direction, simply because the next response is more likely to be closer to the 

mean RT (Jazayeri and Shadlen, 2010). To address this issue, we conducted a 

simulation by drawing response time (1728 draws per tempo) from a Gaussian 

distribution specified by the observed mean and standard deviation, and derived 

apparent ‘RT adjustment’ as the difference between consecutive RT draws. If the 

observed RT adjustment following different feedbacks in this task is not different from 

the simulated null distribution, then we may conclude that the apparent RT adjustment 

observed in the study likely arose only from regression to the mean. Moreover, if RT 

adjustment is only due to regression to the mean, we should not observe any effect of 

neural processing of feedback such as RewP. 

Regression to the mean suggests that a larger deviation from the mean leads to larger 

subsequent adjustment in the opposite direction, resulting in a negative association 

between the two values. Moreover, it is likely that participants’ performance drift over 

time, shifting the distribution from which the current RT is drawn. Therefore, regression 

to the mean ought to be quantified relative to the local mean (e.g., the recent trials), 

but not the grand mean (e.g., the mean RT in the current block or the target interval). 

This deviation-from-mean parameter was quantified as the difference between the RT 

on this trial and the local mean RT, which was the rolling mean averaged across the 

previous 10 trials. For the first 10 trials in a block where this rolling mean cannot be 

calculated, the deviation was calculated as the difference between RT and the target 
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interval (0.4, 0.6, or 1 s). A positive value of this deviation variable suggests temporary 

slowing on this trial compared to recent history, and a negative value suggesting 

temporary speeding. We demonstrated using simulation that when apparent RT 

adjustment solely arises from regression to the mean in a Gaussian distribution, this 

adjustment is negatively correlated with deviation from local mean (Supplementary 

Information Figure S1.3 A-B). Therefore, in the linear mixed modeling, we added 

deviation from the mean as a covariate to partial out the effect of regression to the 

mean on RT adjustment. Varying the time window for calculating the rolling mean, or 

excluding the first trials where the rolling mean could not be calculated did not alter 

the main conclusions from the linear mixed model. 

2.5 EEG Analysis 

2.5.1 EEG Recording 

32 channel EEG was recorded at 1000 Hz with an actiCHamp Plus amplifier (Brain 

Products, GmbH, Gilching, Germany) using BrainVision Recorder (Version 1.23.0001, 

Brain Products, GmbH, Gilching, Germany). The EEG recording was referenced to Fz 

online. 30 of the electrodes were arranged according to the international 10-20 system, 

and two additional electrodes were placed on the left and right mastoids. 

2.5.2 Pre-processing 

The EEG was pre-processed in MATLAB R2020a (Mathworks, Natick, USA) using 

EEGLAB (Delorme and Makeig, 2004). EEG data was down-sampled to 250 Hz, 

filtered by a 0.1-30 Hz band pass filter and a 50 Hz notch filter, and re-referenced to 

the linked mastoids. Ocular artefacts were identified and removed from the continuous 

data by running an independent component analysis and then the iclabel function. 
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2.5.3 Extraction of Regression-based Event-Related Potential 

In this continuous task, each behavioral response was immediately followed by 

visual feedback, and the interval timing for the next beat immediately ensued without 

an inter-trial interval. Due to component overlap, this rapid design poses challenges 

to the traditional event-related approach to EEG analysis. We used a regression-

based ERP (rERP) analysis method to extract waveforms from the overlapping 

signals using the Unfold toolbox in MATLAB (Smith and Kutas, 2015; Ehinger and 

Dimigen, 2019). We detected artifacts in the continuous EEG with a 150 μV 

threshold using the basicrap function from ERPLAB toolbox with 2000 ms window 

and 1000 ms step size (Lopez-Calderon and Luck, 2014). For each participant, we 

constructed a design matrix consisting of stick functions spanning -1500 to 1500 ms 

around the onset of visual feedback, for each feedback type and tempo, respectively. 

EEG sample and design matrix rows corresponding to artefacts were removed 

before solving the equation. We also conducted a traditional EEG analysis for 

comparison (Supplementary Information S2).2.5.4 RewP Amplitude Quantification 

To identify the scalp location of the RewP, we used the ‘collapsed localizer’ approach 

(Luck and Gaspelin, 2017), combining across tempos and incorrect feedback types 

(early or late) to form a single correct waveform and a single incorrect waveform for 

each electrode. We located the electrode (FCz) at which the RewP amplitude 

(collapsed correct minus collapsed incorrect) was maximal. RewP time window was 

selected as 240-340 ms according to a previous meta-analysis (Sambrook and Goslin, 

2015). RewP was calculated as the difference wave between correct and incorrect 

feedback, and the amplitude is quantified as the mean amplitude in the RewP time 

window. We conducted one-sample t-test comparing participants’ average amplitude 

to 0 and reported Cohen’s d (Cohen, 2013). We then conducted a two-way within-
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subject ANOVA (3 tempos × 2 feedback contrasts) on participants’ average RewP 

amplitude, reporting the partial eta-squared. The average waveform and its 

topography were plotted by averaging across all participants for three tempos 

respectively.  

2.5.5 Trial-by-trial analysis  

After confirming the existence of RewP and localizing it to the electrode FCz, we asked 

the question whether the neural activity at this electrode site induced by reward (i.e., 

on time feedback) biases subsequent timing. We used the trial-by-trial EEG amplitude 

during on-time trials in the RewP time window as a proxy to reward-induced 

dopaminergic fluctuations, and use this amplitude to predict participants’ behavioral 

adjustment in the next trial. We focused on the on-time trials for two reasons. First, 

there is evidence that RewP variability depends on the reward response but not the 

non-reward response (Holroyd et al., 2008; Proudfit, 2015). Second, reward feedback 

in this task ought to be unconfounded by the directional behavioral adjustments we 

would expect for ‘early’ and ‘late’ feedback (SI table S1.1). 

To derive the trial-by-trial RewP amplitude, we extracted a common feedback 

component for each participant’s individual condition (fast, medium, slow), and 

feedback type (early, late, on time), using the rERPs acquired from the regression-

based analysis above. The trial-to-trial ‘residual RewP’ was computed as the 

difference between the current trial’s EEG amplitude and the predicted amplitude from 

the regression model, averaged within the pre-specified RewP window (240-340 ms) 

at electrode FCz (Figure 1B). As a comparison, we also derived the trial-to-trial 

residual EEG from the traditional ERP approach (Supplementary Information S2). 

This experiment does not contain explicit practice trials; the first three blocks were 

considered as practice blocks and excluded from the analysis. We further truncated 
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the top and bottom 1% of RT for each tempo, 1% of all RT adjustment, regression to 

the mean, and residual RewP amplitude from the dataset, removing 7.0% of all trials. 

For sensitivity analysis, we varied the number of blocks counted as practice blocks, 

and the percentage of outliers (see Results 3.3). Before exclusion, the range of RT 

was 0.001 to 25.573 seconds, the range of RT adjustment was -24.995 to 24.949 

seconds, the range of deviation from the mean was -4.004 to 22.118 seconds, and the 

range of trial-to-trial EEG was -76.786 to 66.371 μV; after exclusion, the range of RT 

was 0.305 to 1.222 seconds, the range of RT adjustment was -0.290 to 0.283 seconds, 

the range of deviation from the mean was -0.419 to 0.391 seconds, and the range of 

trial-to-trial EEG was -28.593 to 28.777 μV. Linear mixed models were constructed 

using tempo, feedback type, residual RewP and their interactions to predict the RT 

adjustment (signed; positive value indicates slowing) on the next trial, while controlling 

for chunking and regression to the mean. We focused on the slow tempo, where the 

most prominent RewP was observed (Section 3.2), and on the on time feedback type, 

because this is where the hypothesized fluctuations in phasic DA signaling occurs. We 

constructed the following linear mixed model using the R function lmer() with random 

intercept for each participant: 

rt_adjustment ~ 1 + feedback * tempo * RewP + chunk_location + 

deviation_from_the_mean * tempo + (1|participant) 

Here, chunk location denotes the location of the current interval in the drumming 

pattern. The main effect of RewP on RT adjustment following on time feedback within 

each tempo was acquired by relevelling the model to different tempos and re-running 

the model. Cohen’s d was reported for all linear regressions. Finally, we fit a linear 

mixed model with random slopes and intercept for every participant: 
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rt_adjustment ~ 1 + chunk_location + deviation_from_the_mean * tempo + (RewP * 

tempo * feedback | participant) 

We extracted the slope coefficients for each participant respectively and tested 

whether they are systematically greater than 0 in a one-sample t-test. 

 

 

Figure 1 Task design and EEG data analysis. (A) The drumming task. In each block, 

participants were required to produce a drumming pattern using F and J keys on the 

keyboard. Each response was provided with color-coded visual feedback indicating if 

it was early, on time or late. There were three tempos in the experiment: fast, 

medium, and slow. (B) The calculation of trial-to-trial residual RewP. The residual 

EEG was calculated by subtracting the predicted EEG amplitude from the regression 

analysis from the raw EEG amplitude at each time point. A trial’s RewP was the 

average amplitude of residual EEG in the RewP time window, shown as grey 

rectangles in the figure. 
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3. Result 

3.1 Systematic bias in interval production 

Participants were relatively accurate in reproducing the target intervals (Figure 2A-B). 

One-sample t-tests on participant’s average RT indicated that participants were 

significantly faster than the target interval for the medium tempo (all RT below in 

seconds; Mean difference = 0.570 s, SD = 0.020, t(1,19) = -6.867, p < .001, Cohen’s d 

= -1.54) and the slow tempo (Mean difference = 0.933 s, SD = 0.037, t(1,19) = -7.884, 

p < .001, Cohen’s d = -1.76), but not for the fast tempo (Mean difference = 0.402 s, 

SD = 0.014, t(1,19) = 0.661, p = .516, Cohen’s d = 0.15). Consistent with the systematic 

bias in RT, participants also received asymmetric proportion of ‘early’ and ‘late’ 

feedbacks, while the proportion of on time feedback was approximately 50% (SI Table 

S1.1). Chunking was observed for both drumming patterns; participants’ RTs were 

faster when they were within a chunk, than when they moved to another chunk or 

switched hands (SI Figure S1.3C). 

Two-way within-subject ANOVA (3 tempos × 3 feedback types) on participants’ 

average RT adjustment suggested that RT adjustment significantly differed by 

feedback type (F(2,38) = 205.651, p < .001, 𝜂𝑝
2 = 0.92) and tempo (F(2,38) = 28.213, p < 

.001, 𝜂𝑝
2 = 0.60). Importantly, the significant main effect of feedback type confirms that 

participants adjusted their behavior according to feedback, speeding up upon 

receiving ‘late’ feedback and slowing down upon receiving ‘early’ feedback (Figure 

2C). There was also a significant interaction between feedback and tempo (F(4,76) = 

21.280, p < .001, 𝜂𝑝
2 = 0.53). Pairwise comparisons with Bonferroni adjustment further 

suggested that participants’ RT adjustment following ‘on time’ feedback was 

significantly more positive (suggesting slowing) for fast tempo than slow tempo (mean 
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difference = 0.025 s, t-ratio = 3.957, padjust < .001, Cohen’s d = 1.83). The biasing effect 

of tempo and feedback on RT was systematic across participants, although there were 

individual differences in their mean RT and RT adjustments (Figure 2D).   

 

Figure 2 Participants relatively accurately reproduced different drumming patterns 

and adjusted their behavior following different feedbacks. (A) The distribution density 
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of RT in each tempo, suggesting speeding in the medium and the slow tempo. The 

dotted line and the solid line indicated the population mean and the target interval, 

respectively. (B) The distribution of participants’ average RT in each tempo. Each 

point represents one participant. The horizontal lines represent the target interval. 

(C) The distribution of RT adjustment in each tempo. The dotted lines showed the 

population mean. (C) The distribution of RT adjustment by feedback type in each 

tempo. 

3.2 RewP was observed only for the medium and the slow tempos 

We derived rERPs for each tempo and feedback type (Figure 3A-C). The slower the 

tempo, the larger the Reward Positivity observed (Figure 3D-F). In the slow tempo, 

but not the medium and fast tempo, a clear frontocentral gradient of scalp RewP 

amplitudes emerged that peaked at FCz (Figure 3G-I). Two-way within-subject 

ANOVA (3 tempos × 2 feedback contrasts) on the mean RewP amplitude for each 

participant suggested a significant main effect of tempo (F(2,38) = 7.560, p = .002, 𝜂𝑝
2 = 

0.285), but not feedback type (F(1,19) = 0.044, p = .837, 𝜂𝑝
2 = 0.002). There was no 

interaction between tempo and feedback type (F(2,38) = 0.270, p = .765, 𝜂𝑝
2 = 0.014). 

Pairwise t-tests with Bonferroni corrections suggested that the RewP amplitude in the 

slow tempo was significantly larger than in the medium tempo (Mean difference = 

0.931, t(1,39) = 2.474, adjusted p = .018, Cohen’s d = 0.39) and in the fast tempo (Mean 

difference = 1.768, t(1,39) = 3.509, adjusted p = .001, Cohen’s d  = 0.55); the RewP 

amplitude in the medium tempo was significantly larger than that in the fast tempo 

(Mean difference = 0.837, t(1,39) = 2.043, adjusted p = 0.048, Cohen’s d = 0.32). The 

95% confidence interval of the RewP amplitude in the fast tempo included zero, and 

the 95% confidence interval of the amplitude from medium and slow tempo were 
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greater than 0, suggesting that RewP could be reliably observed in the medium and 

slow tempo (Table 1). 

 

Table 1 Summary statistics of participants’ mean RewP amplitude for each tempo and 

feedback type. 

tempo Feedback 

contrast 

mean SD 95%CI Cohen’s d 

   lower upper  

fast On time - early 0.176 2.817 -1.142 1.495 0.06 

On time - late 0.289 1.656 -0.486 1.037 0.17 

medium On time - early 1.032 1.617 0.275 1.789 0.64 

On time - late 1.106 1.780 0.273 1.940 0.62 

slow On time - early 2.220 1.633 1.456 2.985 1.36 

On time - late 1.781 2.703 0.516 3.046 0.66 
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Figure 3 Reward Positivity in the fast, medium and slow tempo. (A-C) Regression-

based ERP by tempo and feedback type. The RewP time window as reported in 

Sambrook and Goslin (2015), was highlighted in grey (240-340 ms). (D-F) The RewP 

wave was calculated as the contrast between correct and incorrect feedback type. 

RewP amplitude increased as a function of target interval. (G-H) The topography of 

RewP, averaged between early and late feedback type. In the slow tempo, the peak 

amplitude was located at electrode FCz.  

 

3.3 Trial-to-trial fluctuation in RewP amplitude biases timing in peri-second range 

We examined the autocorrelation of RT adjustment and RewP using linear mixed 

models with random intercept for each participant. Last trial’s RT adjustment was 

negatively associated with RT adjustment on this trial, such that slowing on the last 

trial predicted speeding up on this trial, and vice versa (regression coefficient B = -
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0.257, t = -61.281, p < .001, Cohen’s d = -0.749), suggesting regression to the mean. 

Last trial’s RewP was not associated with this trial’s RewP, B = -0.0016, t = 0.316, p = 

0.752, Cohen’s d = 0.004, suggesting that there are negligible baseline fluctuations in 

RewP across trials. 

We divided the RewP amplitudes into 10 bins with 10% of trial data in each bin, and 

plotted the mean and standard error of RT adjustment for this RewP bin. Visual 

inspection revealed a linear association between RewP amplitude and RT adjustment 

(Figure 4A). Next, we fitted a linear mixed model using the current trial’s residual 

RewP (trial EEG subtracted by average EEG waveform) to predict RT adjustment on 

the next trial. The model converged successfully. Feedback type, tempo, regression 

to the mean, and chunk locations significantly predicted RT adjustment. In the slow 

tempo, trial-to-trial fluctuations in RewP in response to on time feedback predicted RT 

adjustment on the next trial, such that larger (more positive) RewP led to a slowing of 

RT compared to the last trial (B = 2.9×10-4, t = 4.341, p < .001); the effect size of the 

biasing effect of RewP was modest, Cohen’s d = 0.053 (Figure 4B). Such timing-

biasing effect of RewP fluctuations was not observed for the fast (B = 1.2×10-4, t = 

1.892, p = 0.058, Cohen’s d = 0.023) or the medium tempo (B = 0×10-4, t = -0.002, p 

= 0.999, Cohen’s d < .001); RewP fluctuations did not bias timing following early or 

late feedback (|t| < 1.390, p > 0.164). The effect of tempo and chunk location on RT 

adjustment, and estimates of the entire model, are shown in Supplementary 

Information (Table S1.1). The regression coefficient B of RewP was still significant 

when not including chunk location and regression to the mean by tempos as the 

covariates, B = 2.7×10-4, t = 3.703, p < .001, Cohen’s d = 0.045. 

To confirm that the finding that trial-to-trial RewP was not limited to the present 

exclusion criterion, we conducted sensitivity analysis by varying (1) the number of 
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blocks considered as practice blocks, and (2) the percentage of outliers in timing 

behavior and EEG. When no block was counted as practice block, the regression 

coefficient of RewP was still significant, B = 2.95×10-4, t = 4.431, p < .001, Cohen’s d 

= 0.051. When only the bottom and top 0.5% of RT, RT adjustment, deviation from the 

mean, and RewP amplitude were excluded (inclusion rate 95.76%), the regression 

coefficient was still significant, B = 2.8×10-4, t = 3.742, p = .002, Cohen’s d = 0.042. 

As shown in Figure 4C, when fitting both random slope and random intercept for each 

participant’s RewP predicting RT adjustment, all but two participants’ slope estimates 

were larger than 0 (min = -0.18×10-4, max = 10.5×10-4, Mean = 2.5×10-4, SD = 2.6×10-

4). One-sample t-test suggests that the slopes were significantly larger than 0 (t(1,19) = 

4.304, p < .001, Cohen’s d = 0.96).
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Figure 4 Reward response predicted timing behavior. (A) For visualizing RT 

adjustment as a function of RewP, all RewPs were divided into 10 bins of 10%. (B) 

Size of RT adjustment as a function of the RewP amplitude in response to on time 

feedback. Each grey point represented one participant’s data in this bin, with larger 

point size indicating more trials. The grey-colored error bars shown below indicated 

standard error of the subset of data represented by the grey point. The black points 

and error bars represent the group-level mean and standard error within each RewP 

bin. (C) The predicted values of RT adjustment in the slow tempo from the linear 

mixed model. (D) Individual regression coefficients B from a linear mixed model with 
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random slopes and random intercept, in the slow tempo. Each open dot represents 

the value of one participant, and red line denotes the coefficient value when the 

slope is fixed across participants. 

Discussion 

This study investigated the influence of reward processing on interval production by 

looking at participants’ Reward Positivity (RewP) in response to rapid feedback while 

they engaged with a continuous drumming task at different tempos. A continuous 

timing paradigm was used to gather larger number of trials compared to traditional 

trial-based paradigms. Trial-to-trial EEG fluctuations in the RewP time window 

predicted timing adjustment on the next trial, such that a larger (more positive) RewP 

amplitude relative to the mean waveform forecasted longer produced interval on the 

next trial. This study demonstrated the plausibility of using a rapid paradigm to acquire 

the RewP, and showed that fluctuations in the RewP are associated with variations in 

interval production. 

Considering previous studies that linked the RewP to a striatal reward prediction error 

relayed to anterior cingulate cortex (Holroyd and Coles, 2002; Holroyd and Yeung, 

2012), our findings could be interpreted as a slowing effect of reward-related phasic 

DA signaling on interval production. Previous studies have reported that reward led to 

the same interval being perceived longer by human participants (Failing and 

Theeuwes, 2016; Toren et al., 2020), although one study directly manipulating 

dopamine signaling in mice found the opposite effect (Soares et al., 2016). However, 

caution needs to be taken in comparing results on interval perception with those on 

interval production (Coull et al., 2013), although there is some evidence of shared 

psychological substrates (Keele et al., 1985; Ivry and Hazeltine, 1995). 
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Considering that the RewP typically occurs 250-350 ms post-feedback, it is surprising 

that we did not reliably observe a RewP in the fast tempo which had a target interval 

of 400 ms. One possibility is that there might be a shift in timing strategies across 

different tempos. In the slower tempos, participants may rely more on a feedback-

based, discrete interval timing system, while the fast tempo may tap into a more 

automatic and motoric timing system where participants rely more on sampling from 

their internal interval representation (Lewis and Miall, 2003; Wiener et al., 2011; Petter 

et al., 2016). Furthermore, feedback processing may interact with tempo speed; the 

richer the information that the feedback stimuli contain, the  smaller the observed 

RewP amplitude might be (Cockburn and Holroyd, 2018). This study provided 

directional incorrect feedbacks (early and late) instead of a dichotomous right-or-

wrong differentiation, which may require more feedback processing and reduce RewP 

amplitude in the faster tempos. Overall, this highlights the tradeoff between continuous 

timing paradigm and RewP amplitude due to a possible shift in timing strategy. 

It was argued that the RewP is larger when the feedback is surprising or salient, and 

that surprise leads to larger behavioral adjustment (Holroyd and Krigolson, 2007; 

Talmi et al., 2013; but see: Heydari and Holroyd, 2016; Mulligan and Hajcak, 2018). 

The link between RewP fluctuations and subsequent behavioral adjustment in this 

study is unlikely to be confounded by surprise about the feedback. This is because the 

present study used a staircase procedure to ensure that on time feedback always 

consisted of 50% of trials in each block, eliminating the impact of surprise on the EEG 

amplitude in response to on time feedback. The different feedback types were also 

color-coded and randomized across participants to reduce the confound of perceptual 

salience. This paper adds to the body of literature linking the RewP to subsequent 

behavioral adjustment, which mostly focused on between-subject level associations 
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across the entire study with a few exceptions (Yasuda et al., 2004; Holroyd and 

Krigolson, 2007; Cavanagh et al., 2010; Arbel et al., 2013). Several studies that 

conducted within-subject, trial-based analysis reported non-significant associations 

between RewP amplitude and timing behavior (Castellar et al., 2010; Cockburn and 

Holroyd, 2018) . Such results may not be contradictory to our findings. We estimated 

that each 𝜇𝑉 increase in RewP amplitude slows down the following produced interval 

by 0.29 ms, equating to a decrease of 0.029% for the 1 s target interval. Given the 

modest effect size such biasing effect, one possibility is that the limited number of trials 

from traditional trial-based paradigms (a few hundred trials compared to 1728 trials in 

this study) may not have the power to detect such effect. 

It should be noted that adjustment in timing behavior was not solely dependent on 

external feedback, but also on internal error monitoring (Miltner et al., 1997; Coles et 

al., 2001; Ullsperger and Von Cramon, 2003; Danielmeier and Ullsperger, 2011). The 

neural substrates for internal error monitoring and external reward monitoring are 

partially separable (de Bruijn et al., 2009). Participants have an internal model of timing 

which they use to update their belief and modify their behavior (Petter et al., 2016 

p.201, 2018). Due to the continuous and ecological property of this paradigm, the 

internal model may integrate priors about both interval duration and rhythm. First, 

despite trial-by-trial feedback, participants in this study exhibited a systematic 

deviation from the target interval. This implies that participants have a prior that biased 

their produced tempo. Future studies can test this hypothesis by, for example, asking 

participants to drum with a certain pattern using visual cues without explicit instructions 

about the speed, and examine whether this natural drumming tempo has an interval 

below 600 ms. Second, participants’ internal models of rhythm may lead to deviation 

from target interval as a function of beat location in a pattern (Repp et al., 2011). This 
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study aimed at reducing the influence of internal rhythm by showing participants an 

explicit drumming pattern, and varying the drumming pattern to be copied. Moreover, 

the linear mixed model took into considerations where the participant currently was in 

a pattern, thereby controlling for the influence of rhythm on RT adjustment. 

The present study examined how fluctuations in reward processing-related neural 

activity biases subsequent performance in interval production. We used a continuous 

drumming paradigm and regression-based analysis to deconvolute overlapping EEG 

signals. RewP was reliably observed in the slow and medium tempos (target interval 

1s or 0.6 s) but diminished in the fast tempo (target interval 0.4s). We found that more 

positive RewP response to on-time feedback predicts the production of longer interval 

on the next trial, only in the slow tempo where RewP was the largest. The modest 

effect size of this behavior-biasing effect of reward highlights the necessity of using a 

continuous design that allows for more intensive data collection.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.06.548049doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/


 27 

Reference 

Arbel Y, Goforth K, Donchin E (2013) The good, the bad, or the useful? The 
examination of the relationship between the feedback-related negativity (FRN) 
and long-term learning outcomes. Journal of Cognitive Neuroscience 
25:1249–1260. 

Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, Menéndez-González M, Pöppel 
E (2010) Dopaminergic reward system: a short integrative review. 
International archives of medicine 3:1–6. 

Ariely D, Zakay D (2001) A timely account of the role of duration in decision making. 
Acta psychologica 108:187–207. 

Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models 
using lme4. arXiv preprint arXiv:14065823. 

Ben-Shachar MS, Lüdecke D, Makowski D (2020) effectsize: Estimation of effect 
size indices and standardized parameters. Journal of Open Source Software 
5:2815. 

Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic 
impact, reward learning, or incentive salience? Brain research reviews 
28:309–369. 

Carlson JM, Foti D, Mujica-Parodi LR, Harmon-Jones E, Hajcak G (2011) Ventral 
striatal and medial prefrontal BOLD activation is correlated with reward-
related electrocortical activity: a combined ERP and fMRI study. Neuroimage 
57:1608–1616. 

Castellar E núňez, Kühn S, Fias W, Notebaert W (2010) Outcome expectancy and 
not accuracy determines posterror slowing: ERP support. Cognitive, Affective, 
& Behavioral Neuroscience 10:270–278. 

Cavanagh JF, Frank MJ, Klein TJ, Allen JJ (2010) Frontal theta links prediction 
errors to behavioral adaptation in reinforcement learning. Neuroimage 
49:3198–3209. 

Cockburn J, Holroyd CB (2018) Feedback information and the reward positivity. 
International Journal of Psychophysiology 132:243–251. 

Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge. 

Coles MG, Scheffers MK, Holroyd CB (2001) Why is there an ERN/Ne on correct 
trials? Response representations, stimulus-related components, and the 
theory of error-processing. Biological psychology 56:173–189. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.06.548049doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/


 28 

Corlett PR, Mollick JA, Kober H (2022) Meta-analysis of human prediction error for 
incentives, perception, cognition, and action. Neuropsychopharmacology 
47:1339–1349. 

Coull JT, Cheng R-K, Meck WH (2011) Neuroanatomical and neurochemical 
substrates of timing. Neuropsychopharmacology 36:3–25. 

Coull JT, Davranche K, Nazarian B, Vidal F (2013) Functional anatomy of timing 
differs for production versus prediction of time intervals. Neuropsychologia 
51:309–319. 

Danielmeier C, Ullsperger M (2011) Post-error adjustments. Frontiers in psychology 
2:233. 

de Bruijn ER, de Lange FP, von Cramon DY, Ullsperger M (2009) When errors are 
rewarding. Journal of Neuroscience 29:12183–12186. 

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-
trial EEG dynamics including independent component analysis. Journal of 
neuroscience methods 134:9–21. 

Ehinger BV, Dimigen O (2019) Unfold: An integrated toolbox for overlap correction, 
non-linear modeling, and regression-based EEG analysis. PeerJ 7:e7838. 

Failing M, Theeuwes J (2016) Reward alters the perception of time. Cognition 
148:19–26. 

Gehring WJ (2002) The Medial Frontal Cortex and the Rapid Processing of Monetary 
Gains and Losses. Science 295:2279–2282. 

Grahn JA (2009) The role of the basal ganglia in beat perception: neuroimaging and 
neuropsychological investigations. Annals of the New York Academy of 
Sciences 1169:35–45. 

Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human 
imaging. Neuropsychopharmacology 35:4–26. 

Heydari S, Holroyd CB (2016) Reward positivity: Reward prediction error or salience 
prediction error? Psychophysiology 53:1185–1192. 

Holroyd CB, Coles MG (2002) The neural basis of human error processing: 
reinforcement learning, dopamine, and the error-related negativity. 
Psychological review 109:679. 

Holroyd CB, Hajcak G, Larsen JT (2006) The good, the bad and the neutral: 
electrophysiological responses to feedback stimuli. Brain research 1105:93–
101. 

Holroyd CB, Krigolson OE (2007) Reward prediction error signals associated with a 
modified time estimation task. Psychophysiology 44:913–917. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.06.548049doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/


 29 

Holroyd CB, Krigolson OE, Lee S (2011) Reward positivity elicited by predictive 
cues. Neuroreport 22:249–252. 

Holroyd CB, Pakzad‐Vaezi KL, Krigolson OE (2008) The feedback correct‐related 

positivity: Sensitivity of the event‐related brain potential to unexpected 

positive feedback. Psychophysiology 45:688–697. 

Holroyd CB, Yeung N (2012) Motivation of extended behaviors by anterior cingulate 
cortex. Trends in cognitive sciences 16:122–128. 

Ivry RB, Hazeltine RE (1995) Perception and production of temporal intervals across 
a range of durations: evidence for a common timing mechanism. Journal of 
Experimental Psychology: Human Perception and Performance 21:3. 

Jazayeri M, Shadlen MN (2010) Temporal context calibrates interval timing. Nature 
neuroscience 13:1020–1026. 

Kappenman ES, Luck SJ (2016) Best Practices for Event-Related Potential 
Research in Clinical Populations. Biological Psychiatry: Cognitive 
Neuroscience and Neuroimaging 1:110–115. 

Keele SW, Pokorny RA, Corcos DM, Ivry R (1985) Do perception and motor 
production share common timing mechanisms: A correlational analysis. Acta 
psychologica 60:173–191. 

Kuznetsova A, Brockhoff PB, Christensen RH (2017) lmerTest package: tests in 
linear mixed effects models. Journal of statistical software 82:1–26. 

Lewis PA, Miall RC (2003) Brain activation patterns during measurement of sub-and 
supra-second intervals. Neuropsychologia 41:1583–1592. 

Lopez-Calderon J, Luck SJ (2014) ERPLAB: an open-source toolbox for the analysis 
of event-related potentials. Frontiers in human neuroscience 8:213. 

Luck SJ, Gaspelin N (2017) How to get statistically significant effects in any ERP 
experiment (and why you shouldn’t). Psychophysiology 54:146–157. 

Lutz K, Specht K, Shah NJ, JaÈncke L (2000) Tapping movements according to 
regular and irregular visual timing signals investigated with fMRI. Neuroreport 
11:1301–1306. 

Luu P, Tucker DM, Derryberry D, Reed M, Poulsen C (2003) Electrophysiological 
responses to errors and feedback in the process of action regulation. 
Psychological Science 14:47–53. 

Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence 
detection of oscillatory processes. Cognitive brain research 21:139–170. 

Matell MS, Meck WH, Nicolelis MA (2003) Interval timing and the encoding of signal 
duration by ensembles of cortical and striatal neurons. Behavioral 
neuroscience 117:760. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.06.548049doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/


 30 

Miltner WHR, Braun CH, Coles MGH (1997) Event-Related Brain Potentials 
Following Incorrect Feedback in a Time-Estimation Task: Evidence for a 
“Generic” Neural System for Error Detection. Journal of Cognitive 
Neuroscience 9:788–798. 

Mulligan EM, Hajcak G (2018) The electrocortical response to rewarding and 
aversive feedback: The reward positivity does not reflect salience in simple 
gambling tasks. International Journal of Psychophysiology 132:262–267. 

Nani A, Manuello J, Liloia D, Duca S, Costa T, Cauda F (2019) The neural correlates 
of time: a meta-analysis of neuroimaging studies. Journal of Cognitive 
Neuroscience 31:1796–1826. 

Peirce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, Kastman E, 
Lindeløv JK (2019) PsychoPy2: Experiments in behavior made easy. 
Behavior research methods 51:195–203. 

Petter EA, Gershman SJ, Meck WH (2018) Integrating models of interval timing and 
reinforcement learning. Trends in cognitive sciences 22:911–922. 

Petter EA, Lusk NA, Hesslow G, Meck WH (2016) Interactive roles of the cerebellum 
and striatum in sub-second and supra-second timing: Support for an initiation, 
continuation, adjustment, and termination (ICAT) model of temporal 
processing. Neuroscience & Biobehavioral Reviews 71:739–755. 

Pope P, Wing AM, Praamstra P, Miall RC (2005) Force related activations in 
rhythmic sequence production. Neuroimage 27:909–918. 

Proudfit GH (2015) The reward positivity: From basic research on reward to a 
biomarker for depression: The reward positivity. Psychophysiol 52:449–459. 

Ramkumar P, Acuna DE, Berniker M, Grafton ST, Turner RS, Kording KP (2016) 
Chunking as the result of an efficiency computation trade-off. Nature 
communications 7:12176. 

Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during 
temporal processing. Nature neuroscience 4:317–323. 

Repp BH, London J, Keller PE (2011) Perception–production relationships and 
phase correction in synchronization with two-interval rhythms. Psychological 
Research 75:227–242. 

Rosenbaum DA, Inhoff AW, Gordon AM (1984) Choosing between movement 
sequences: A hierarchical editor model. Journal of Experimental Psychology: 
General 113:372. 

Sambrook TD, Goslin J (2015) A neural reward prediction error revealed by a meta-
analysis of ERPs using great grand averages. Psychological bulletin 141:213. 

Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev 
Neurosci 30:259–288. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.06.548049doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/


 31 

Shenhav A, Botvinick MM, Cohen JD (2013) The expected value of control: an 
integrative theory of anterior cingulate cortex function. Neuron 79:217–240. 

Smith NJ, Kutas M (2015) Regression‐based estimation of ERP waveforms: I. The 

rERP framework. Psychophysiology 52:157–168. 

Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. 
Trends in neurosciences 23:S28–S33. 

Soares S, Atallah BV, Paton JJ (2016) Midbrain dopamine neurons control judgment 
of time. Science 354:1273–1277. 

Sternberg S, Knoll RL, Turock DL (2018) Hierarchical control in the execution of 
action sequences: Tests of two invariance properties. In: Attention and 
performance XIII, pp 3–55. Psychology Press. 

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, Second edition. 
Cambridge, Massachusetts: The MIT Press. 

Talmi D, Atkinson R, El-Deredy W (2013) The feedback-related negativity signals 
salience prediction errors, not reward prediction errors. Journal of 
Neuroscience 33:8264–8269. 

Teki S, Grube M, Griffiths TD (2012) A unified model of time perception accounts for 
duration-based and beat-based timing mechanisms. Frontiers in integrative 
neuroscience 5:90. 

The MathWorks Inc. (2020) MATLAB (version 9.8.0 R2020a). 

Toren I, Aberg KC, Paz R (2020) Prediction errors bidirectionally bias time 
perception. Nature Neuroscience 23:1198–1202. 

Tremblay P-L, Bedard M-A, Langlois D, Blanchet PJ, Lemay M, Parent M (2010) 
Movement chunking during sequence learning is a dopamine-dependant 
process: a study conducted in Parkinson’s disease. Experimental brain 
research 205:375–385. 

Tremblay P-L, Bedard M-A, Levesque M, Chebli M, Parent M, Courtemanche R, 
Blanchet PJ (2009) Motor sequence learning in primate: Role of the D2 
receptor in movement chunking during consolidation. Behavioural brain 
research 198:231–239. 

Tse PU, Nobre A, Coull J (2010) Attention underlies subjective temporal expansion. 
Attention and time:137–150. 

Tunison E, Sylvain R, Sterr J, Hiley V, Carlson JM (2019) No money, no problem: 
enhanced reward positivity in the absence of monetary reward. Frontiers in 
Human Neuroscience 13:41. 

Ullsperger M, Von Cramon DY (2003) Error monitoring using external feedback: 
specific roles of the habenular complex, the reward system, and the cingulate 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.06.548049doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/


 32 

motor area revealed by functional magnetic resonance imaging. Journal of 
Neuroscience 23:4308–4314. 

Vassena E, Holroyd CB, Alexander WH (2017) Computational models of anterior 
cingulate cortex: At the crossroads between prediction and effort. Frontiers in 
neuroscience 11:316. 

Verwey WB, Dronkert Y (1996) Practicing a structured continuous key-pressing task: 
Motor chunking or rhythm consolidation? Journal of motor behavior 28:71–79. 

Verwey WB, Eikelboom T (2003) Evidence for lasting sequence segmentation in the 
discrete sequence-production task. Journal of motor behavior 35:171–181. 

Walsh MM, Anderson JR (2012) Learning from experience: event-related potential 
correlates of reward processing, neural adaptation, and behavioral choice. 
Neuroscience & Biobehavioral Reviews 36:1870–1884. 

Wiener M, Lohoff FW, Coslett HB (2011) Double dissociation of dopamine genes 
and timing in humans. Journal of cognitive neuroscience 23:2811–2821. 

Wiener M, Turkeltaub P, Coslett HB (2010) The image of time: a voxel-wise meta-
analysis. Neuroimage 49:1728–1740. 

Yasuda A, Sato A, Miyawaki K, Kumano H, Kuboki T (2004) Error-related negativity 
reflects detection of negative reward prediction error. Neuroreport 15:2561–
2565. 

 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.06.548049doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/


 33 

Author Note  

This research was funded by the Rhodes Scholarship for China to Yan Yan, a Natural 

Sciences and Engineering Research Council of Canada (NSERC) Postdoctoral 

Fellowship to Cameron D. Hassall (PDF 546078 - 2020), a Sir Henry Dale Fellowship 

from the Royal Society and Wellcome (208789/Z/17/Z) to Laurence T. Hunt., and a 

NARSAD Young Investigator Award from the Brain and Behavior Research 

Foundation to Laurence T. Hunt. This research was supported by the NIHR Oxford 

Health Biomedical Research Centre. The Wellcome Centre for Integrative 

Neuroimaging was supported by core funding from Wellcome Trust (203139/Z/16/Z).  

For the purpose of Open Access, the author has applied a CC BY public copyright 

license to any Author Accepted Manuscript version arising from this submission.  

The authors have no conflict of interest.  

Data Availability Statement  

EEG dataset is available at https://openneuro.org/datasets/ds004152/versions/1.1.2. 

Analysis scripts are available at https://github.com/chassall/drumtrainer.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.06.548049doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.06.548049
http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. Methods
	2.1 Participants
	2.2 Experimental Task
	2.3 Software
	2.4 Behavioral Analysis
	2.4.1 Response Time and its adjustment
	2.4.2 Hierarchical timing and chunking
	2.4.3 Regression to local mean

	2.5 EEG Analysis
	2.5.1 EEG Recording
	2.5.2 Pre-processing
	2.5.3 Extraction of Regression-based Event-Related Potential
	In this continuous task, each behavioral response was immediately followed by visual feedback, and the interval timing for the next beat immediately ensued without an inter-trial interval. Due to component overlap, this rapid design poses challenges t...
	2.5.5 Trial-by-trial analysis


	3. Result
	3.1 Systematic bias in interval production
	3.2 RewP was observed only for the medium and the slow tempos
	3.3 Trial-to-trial fluctuation in RewP amplitude biases timing in peri-second range

	Discussion
	Reference
	Author Note
	Data Availability Statement

