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Developmental cell fate decisions are dynamic processes driven by the complex be-
haviour of gene regulatory networks. A challenge in studying these processes using
single-cell genomics is that the data provides only a static snapshot with no detail
of dynamics. Metabolic labelling and splicing can provide time-resolved information,
but current methods have limitations. Here, we present experimental and computa-
tional methods that overcome these limitations to allow dynamical modelling of gene
expression from single-cell data. We developed sci-FATE2, an optimised metabolic
labelling method that substantially increases data quality, and profiled approximately
45,000 embryonic stem cells differentiating into multiple neural tube identities. To re-
cover dynamics, we developed velvet, a deep learning framework that extends beyond
instantaneous velocity estimation by modelling gene expression dynamics through a
neural stochastic differential equation system within a variational autoencoder. Vel-
vet outperforms current velocity tools across quantitative benchmarks, and predicts
trajectory distributions that accurately recapitulate underlying dataset distributions
while conserving known biology. Velvet trajectory distributions capture dynamical
aspects such as decision boundaries between alternative fates and correlative gene reg-
ulatory structure. Using velvet to provide a dynamical description of in vitro neural
patterning, we highlight a process of sequential decision making and fate-specific pat-
terns of developmental signalling. Together, these experimental and computational
methods recast single-cell analyses from descriptions of observed data distributions
to models of the dynamics that generated them, providing a new framework for in-
vestigating developmental gene regulation and cell fate decisions.

INTRODUCTION

The formation of patterned, functional tissues depends
on organised cell fate determination. This is driven by
gene regulatory networks (GRNs) that interpret extra-
cellular signals to induce the correct cellular responses
[1]. Single-cell RNA sequencing studies have illustrated
the complexity of these developmental gene regulatory
networks, documenting, for example, the temporal pat-
terns of transcription factor expression in the develop-
ing nervous system [2] and defining sequences of cellu-
lar states through development [3, 4].

Progressing beyond descriptive analyses of hetero-
geneous phenotypes to modelling the underlying regu-
latory mechanisms has long been a major goal in the
single-cell field [5], but remains a difficult task. Gene
regulatory networks are complex and time-dependent,
with feedback cycles and emergent behaviours. To un-
derstand such complex processes, dynamical modelling
is required [6].

However, single-cell sequencing provides only a
static snapshot of cellular composition. Dynamics
must be inferred through pseudo-temporal ordering [7],
which collapses the tens of thousands of data points
commonly found in single-cell experiments into a sin-
gle, aggregated time series. This can provide valuable
descriptive insight [8] but lacks the resolution to cap-
ture causal relationships between genes (for example,

pseudotime information does not benefit GRN infer-
ence algorithms [9, 10]). Sufficiently capturing the
complex dynamics of developmental regulation will be
necessary to move from descriptive analyses to quanti-
tative models of causal mechanisms; an important step
for this is to capture temporal dynamics at single-cell
resolution.

Approaches that resolve time in single cells have
been developed: RNA velocity [11] infers dynamics
from the ratio of spliced and unspliced reads. This ap-
proach has been widely applied [12–16] but it is limited
by the technical constraints and confounding factors
that arise from relying on gene splicing for temporal
information [17–19].

Metabolic labelling of RNA with labels such as
thiouridine (4sU) provides a more direct, experimen-
tally controllable measurement of time [20–24]. In this
approach, 4sU incorporates into nascent RNA, and is
subsequently converted to a cytosine analogue with
iodoacetamide (IAA) treatment, allowing new RNA
to be distinguished from old based on U-to-C muta-
tions in the sequencing data. Of available methods,
only sci-FATE [20], scNT-seq [22] and the more re-
cent Well-TEMP-seq [24] provide throughput compa-
rable to commercial single-cell platforms, and only sci-
FATE can do so without the use of custom microflu-
idics or microwell devices. However, sci-FATE, based
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on combinatorial indexing, is a labour-intensive and
potentially error-prone method, and the method’s cell
treatment protocol is highly destructive, with treat-
ments include liquid nitrogen freezing, PFA, Triton-X,
hydrochloric acid and 50% DMSO. As such, initial pi-
lots of sci-FATE revealed low quality data that would
heavily restrict the method’s ability to capture com-
plex or subtle regulatory dynamics.

Alongside experimental methods, a number of com-
putational tools have been developed for inference of
gene expression ’velocity’ from either splicing or la-
belling data [11, 18, 25–30]. In particular, numerous
recent studies have applied methods from deep gen-
erative modelling [26, 29–31] to the task of velocity
inference. By applying the flexibility and power of
neural networks, deep generative modelling is particu-
larly well suited to learning hidden variables that cap-
ture the complex distributions within high dimensional
data. Similar approaches have already been successful
in single-cell genomics tasks such as multimodal inte-
gration [31], perturbation prediction [32] and data cor-
rection [33]. However, issues remain: first, recent work
has found that aspects common across velocity anal-
yses such as data smoothing, UMAP embedding and
velocity projection methods, can affect the inferred dy-
namics and lead to inconsistent inferences [17–19]. Sec-
ond, velocity inference produces estimates of instanta-
neous velocity describing deterministic cell dynamics,
which may be insufficient to accurately capture the
stochastic global dynamics of complex developmental
systems. By transforming single-cell analyses from de-
scriptions of observed data distributions into models
of the dynamics that generated them, time-resolved
methods could facilitate a deeper understanding of un-
derlying mechanisms. To achieve this, both experimen-
tal and computational challenges must be addressed.

Here we present an integrated framework of ex-
perimental and computational methods for modelling
stochastic dynamical systems of gene expression using
time-resolved single-cell RNA sequencing data. Ex-
perimentally, we developed sci-FATE2, an optimised,
semi-automated version of sci-FATE [20], providing
improvements that result in data quality and cellular
throughput comparable to commercial platforms.

Computationally, we developed velvet, a variational
autoencoder [34] to model velocity dynamics with a
lower-dimensional vector field, constraining predicted
velocities based on local neighbourhood information.
To extend our analyses beyond estimation of instan-
taneous velocities, we developed an extended model,
velvetSDE, that infers global dynamics by embedding
the learnt vector field in a neural stochastic differen-
tial equation (nSDE) system [35, 36] that is trained to
produce accurate trajectories that stay within the data
distribution.

We show through quantitative benchmarking that
velvet outperforms existing velocity tools across all
metrics, without the need for data smoothing. vel-
vetSDE’s predicted trajectory distributions map the
commitment of cells to specific fates over time, and

can faithfully conserve known trends while capturing
correlative structures between related genes that are
not observed in unrelated genes. We use our meth-
ods to study neural tube patterning, a complex se-
ries of developmental decisions that can be recapitu-
lated in vitro [37, 38]. We collect 44,713 time-resolved
transcriptomes, capturing the differentiation of mouse
ES cells to neuromesodermal progenitors (NMPs) that
transition to neural and mesodermal identities, and
the subsequent specification of neural cell types, floor
plate, motor neurons and V3 interneurons. Applying
our framework to study in vitro neural patterning de-
cisions, we describe how this process occurs as two
distinct fate decisions, and resolve differences in the
expression of Shh regulators that distinguish different
neural fates. Our analysis suggests a degree of variabil-
ity in signal interpretation and points towards possible
strategies for more precise fate manipulation in vitro.

RESULTS

Limitations of current velocity methods

RNA velocity requires that both spliced and unspliced
mRNA species can be detected for each gene. However,
splicing varies significantly across genes. Many tran-
scription factors contain no introns to be spliced. Ex-
amining datasets from several tissues from both mouse
and human [2, 11–13, 39, 40], we see a substantial
proportion of genes with minimal unspliced reads, and
this proportion increases for transcription factors and
highly variable genes (Figure 1A), such that often over
a quarter of genes retained for analysis will have less
than 1 in 20 reads being unspliced. Given that gen-
erally far fewer than 20 reads are detected per gene
per cell (for example, the mean non-zero value across
the above datasets is 2.4), this suggests that for many
genes, splicing does not provide a robust measurement
of nascent transcription at single-cell level. Moreover,
it has been suggested that the methods used to project
velocity into low-dimensional visualisations may con-
found assessment of high dimensional velocity vectors
[18, 19]. Because it is not possible to directly project
velocity vectors into commonly used embeddings such
as UMAP and t-SNE, a projection heuristic based on
nearest neighbours is used. These projections usually
appear to qualitatively capture known biology [12–16],
but they introduce a confounding factor when attempt-
ing to evaluate the quality of inferred velocities in the
original data space. However, velocities can be di-
rectly projected into PCA space, allowing a more di-
rect, heuristic-free inspection of high dimensional ve-
locities. Doing so with an example dataset (with ve-
locities inferred using scVelo) revealed substantial dif-
ferences in the predicted dynamics derived with and
without the use of neighbour based transition proba-
bilities (Figure 1B). Directly projected velocities dis-
played less plausible dynamics, pointing in directions
that are not plausible given the distribution of cells in
the dataset.
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Figure 1: Improved temporal transcriptomics with sci-FATE2. A. High proportion of genes with
more than 5% unspliced reads (top) and near-uniform random distribution of unspliced proportions across
genes (bottom) for datasets across mouse and human tissues. B. Projected velocity dynamics, indicating the
differences between neighbourhood-based and direct projections; neighbourhood-based projection in UMAP,
left; neighborhood-based projection in PCA, middle; directly-projected velocities in PCA, right. C. Schematic
of metabolic labelling protocol and simplified cell treatment protocol in sci-FATE2 compared to sci-FATE, D.
Low dimensional visualisations, providing broad view of key cell types and timepoints. Left; minimum distortion
embedding of top 5 principal components, right; three-dimensional PCA (colours corresponding to cell types).
E. Comparisons of sci-FATE and sci-FATE2; UMIs and genes per cell (left) and cell retention in chemical
conversion protocol (right). F. Comparison of labelling and splicing data; across all genes (left) and for key
genes in neural patterning (right).
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This suggests that using a neighbourhood-based
projection heuristic that alters velocity vectors by re-
moving erroneous directions that cannot be recon-
structed with the distribution of neighbouring cells po-
tentially conceals inaccuracies in the high dimensional
velocities inferred from splicing data.

sciFATE2: An optimised metabolic labelling
protocol

Observing the inconsistency of splicing data and is-
sues with subsequent velocity inference, we considered
metabolic labelling as an alternative, focussing on sci-
FATE [20], as it offered the best reported combina-
tion of cellular throughput and technical requirements.
To test this protocol, we performed a pilot (without
4sU labelling but with IAA treatment) which resulted
in low data quality, with a median of approximately
1500 unique molecular identifiers (UMIs) per cell (Fig-
ure 1E, left).

To improve data quality, we made several changes
to the protocol (Figure 1C), altering cell fixation and
storage; RNAse inhibition; PCR amplification and li-
brary concentration and automating reverse transcrip-
tion and PCR steps (along with barcoded primer ad-
dition). We also developed a simpler, less damaging
IAA chemical conversion protocol that offers minimal
impact on label detection with increases in UMIs per
cell detected (Figure S1A) and reduction in cell loss
(Figure 1E, right).

This optimised protocol provides a substantial im-
provement in data quality. With sci-FATE2, we cap-
ture around 14,000 UMIs per cell, representing nearly
5,000 genes per cell, from approximately 12,000 cells
per experiment, and measured a doublet rate of 6%
in a species-mixture experiment (Figure S1C). We ob-
serve specific detection of labelled signature in 15-20%
of reads being detected as labelled (Figure 1F, left).
By contrast, there was a nearly uniform random distri-
bution of unspliced ratio across genes (Figure 1A, 1F),
and 18.5% of genes lacked unspliced information, while
only 0.2% of genes lacked labelling (Figure 1F).

With this optimised protocol, we set out to ap-
ply sci-FATE2 to examine the dynamics of patterning
and differentiation in the developing neural tube. To
this end, we used a protocol for directly differentiat-
ing mouse ES cells into neuromesodermal progenitors
(NMPs), neural progenitors, and spinal cord neurons,
using 500nM Shh agonist (SAG) to induce the most
ventral neural tube identities (p3/V3, pMN/MN, and
floor plate)[37, 38]. We labelled cells with 500µM 4sU
for 2 hours immediately prior to fixation (having con-
firmed that this dose led to no observable changes in
transcriptional behaviour, Figure S2). Samples were
taken on day 3 to 8 of the differentiation, during the
period that NMPs and various neural cells are gener-
ated. All timepoints were prepared and sequenced to-
gether, with three full-time course replicates. A fourth
replicate was collected, interpolating timepoints be-

tween day 3 and 4 at five-hour intervals, to capture
the rapid changes during NMP differentiation. After
pre-processing, quality control and cell-type classifica-
tion, we captured 44,713 time-resolved transcriptomic
profiles that reflected the expected cell types and de-
velopmental progressions (Figure 1D).

Velvet: deep generative velocity inference

To model gene expression dynamics, we focus on a gen-
eralised idea of ’velocity’ that is not specific to splicing
dynamics. We applied a biophysical model of RNA
transcription, labelling and degradation as per previ-
ous studies [22, 25]. In this model, we can define a cell’s
velocity in terms of three observables (labelled reads,
total reads, labelling time) and one free parameter, γ,
which represents a gene-specific degradation rate.

Even with this simple framework, inferring velocity
and γ values across thousands of dimensions in gene ex-
pression space is a difficult task, and so to improve ve-
locity inference, we developed a deep generative frame-
work, velvet (Figure 2A). Motivated by the assumption
that the dynamics exist on a lower-dimensional mani-
fold within gene expression space,velvet learns a neural
vector field embedded in the latent space of a varia-
tional autoencoder, mapping from the data to a ‘latent’
space (default 50 dimensions). This vector field is used
to infer ‘latent velocities’, then total expression and ve-
locity reconstructions (projected from the model’s la-
tent space) are used to produce a reconstruction of the
‘new’ labelled expression. The loss function is defined
to minimise the difference between the real and recon-
structed total and labelled transcript datasets. The
model thus learns i) a low dimensional representation
of gene expression; ii) a vector field within this rep-
resentation that captures cellular dynamics; iii) a bio-
physical equation that relates these ’latent’ dynamics
to the labelled-total relationships observed in the data.

To improve inference further, we reasoned that with
sufficient sampling resolution, cells are expected to
move towards other cells in their local neighbourhood
— the exception being cells at a trajectory’s leading
edges that are transitioning to unobserved states. In
general, velocity analysis can be considered as a form
of interpolation, describing the transition dynamics be-
tween observed states (as opposed to trying to describe
transitions to unobserved states such as later cell types
not captured in the dataset), meaning that when a ve-
locity vector points away from all nearby cells in gene
expression space, this is more likely to be an erroneous
prediction than representative of the biology. As such,
we add to velvet’s loss function a ’neighbourhood con-
straint that penalises velocity predictions that point
away from the convex hull of a cell’s nearest neighbours
(details in methods). By constraining the directions in
which each cell’s velocity vector can point, this penalty
serves to reduce the solution space for the system’s dy-
namics, with the aim of improving the accuracy and
robustness of velocity inference.
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Figure 2: Dynamical modelling of expression dynamics with velvet & velvetSDE. A. Schematic of
velvet module structure, demonstrating latent vector field, data reconstructions and neighbourhood constraint.
B. PCA visualisation of velocity inferred from velvet, compared to dynamo (with labelling data) and scVelo
(with splicing data). C. Quantitative benchmarking comparing velvet (and the splicing version, svelvet) against
other velocity inference tools across six data subsets and three scoring metrics. D. Schematic of velvetSDE
training: A demonstrates cell with good correspondence between nSDE and Markov simulations (orange and
blue lines and histograms), B demonstrates cell with poor correspondence between nSDE and Markov, where
training will update nSDE vector field. E. Benchmarking scores of trained velvetSDE compared to original velvet
scores. F. Variance of pre- and post-training simulations across 50 latent dimensions, compared to variance of
dataset. G. Q-Q plots comparing distributions of pre-trained simulations (left) and post-trained simulations
(right) with the original dataset, compared in latent space. H. Comparison of velvetSDE stochastic trajectory
simulation pre- and post-training.
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While neighbourhood information has previously
been used in the projection of velocities for visuali-
sation (Figure 1B), the neighbourhood constraint in-
stead builds this information into the velocity infer-
ence process itself. Additionally, while it is common to
incorporate neighbourhood information by performing
‘smoothing’ (replacing each cell’s expression with the
mean expression of the local neighbourhood of cells),
this constraint is designed to use the information in
a more principled manner, explicitly based on the as-
sumption of interpolative dynamics between observed
states. Moreover, this neighbourhood constraint is a
soft penalty that does not transform data as the above
projection and smoothing methods do.

To assess whether velvet accurately captures known
dynamics, we split the data into two observed deci-
sion systems: NMPs generating either neural or meso-
dermal cells; and neural progenitor cells differentiat-
ing into floor plate (FP), V3 interneurons and motor
neurons (MNs). We inferred velocity for these decision
systems separately. We found that velvet predicted dy-
namics that closely match the biology of the system,
while other velocity tools (run with either labelling or
splicing data) produce noisier predictions that less ac-
curately described the known biology (despite using
data smoothing, unlike velvet) (Figure 2B).

To assess performance quantitatively, we split the
sci-FATE2 data into six subsets for benchmarking
(ranging in size from 7000 to 45000 cells). First,
we use cross-boundary direction correctness (CBD)
[27], which assesses whether velocities correctly predict
user-defined directionality between clusters. We addi-
tionally developed two parallel ground truths (Pseudo-
time score, PTS; CellRank score, CRS) based on the
known dynamics of each data subset, using the tra-
jectory analysis tools scFates and CellRank [41, 42].
These ground truths test the degree to which velvet
can accurately describe the coarse cell state transitions
known to occur in the data.

We compared velvet to five velocity tools [18,
25, 27, 28, 43] (four using splicing, one using la-
belling) and found velvet consistently outperformed all
other approaches across the three metrics (Figure 2C).
Moreover, velvet performed as well without any data
smoothing, a step conventionally required of velocity
analysis that can remove biological signal. We found
velvet scored closely to a positive control comparing
the similarity of PTS and CRS ground truths, suggest-
ing that the performance of velvet is achieving maxi-
mal scores for the ground truth comparisons used, in
contrast to all other velocity tool tested.

Extending the model to handle splicing data (with
‘svelvet’, details in Methods), we find that our ap-
proach still outperforms other methods across all met-
rics with splicing data. This suggests that svelvet could
be of use for existing RNA velocity datasets - however,
we note that this approach is not designed to handle
or overcome confounding factors that can be present
in the splicing dynamics of different datasets [17, 44,
45]. With splicing data, we saw lower and more vari-
able scores with splicing data than with labelling data
(Figure 2C), consistent with the idea that metabolic

labelling provides more consistent, higher quality tem-
poral information.

VelvetSDE: dynamical modelling with neural
SDEs

With velvet’s improved velocity inference, we reasoned
we may be able to use inferred dynamics to simulate
cellular trajectories for dynamical analysis of differen-
tiation. However, we found that trajectories simulated
from a system’s initial state failed to reach expected
terminal states, instead being predicted to move to ar-
eas where no data points are observed (Figure 2I).

We hypothesised that the problem was that the in-
ference process considered no long-term information.
Nothing in the framework of instantaneous velocity
estimation encodes the requirement that cells should
maintain their trajectories within the data manifold,
or that initial states should progress to reach termi-
nal states. As such, errors that are negligible within
the context of a single timestep may accumulate across
successive timesteps to produce large deviations. To
solve this, the global dynamics of the system must be
modelled, extending pointwise velocity predictions to a
system of differential equations that describe how cell
states evolve over longer timescales.

From this perspective, a developmental system
can be considered a random process described by
drift-diffusion stochastic differential equations (SDEs).
A common approach to approximate such a drift-
diffusion model with single-cell data is to draw upon
the equivalency of drift-diffusion models and random
walk operators on a graph [7, 42, 46]. Through this
approach, stochastic trajectories can be simulated as
random walks across the cell-cell similarity graph, with
transition probabilities calculated based on inferred
velocity dynamics. However, this method has draw-
backs: stochasticity arises from random jumps between
cells/states, providing a simplistic noise model that
cannot be refined or adjusted. The resulting trajec-
tories are noisy and discontinuous (Figure S6A).

Instead, we used the recently developed neural
stochastic differential equation (nSDE) framework [35,
36] to model a drift-diffusion system. In this frame-
work, the SDE is a neural network with ‘black-box’
parameters, and numerical integration of the system
is compatible with back-propagation and gradient de-
scent. In velvetSDE, the drift component is the velvet
vector field, and diffusion is represented by a random
walk of equal magnitude in all directions (i.e. scalar
diagonal Brownian motion).

To train the nSDE, we take advantage of the drift-
diffusion equivalency with Markov random walks with
the following steps (Figure 2D): i) set the noise magni-
tude of the nSDE system to approximate the noise ob-
served in Markov walk simulations, ii) generate nSDE
distributions and Markov random walk distributions
for each cell, iii) define the model’s loss function as the
Kullback-Leibler divergence of nSDE trajectory distri-
butions from Markov trajectory distributions (assum-
ing gaussian distribution across a timestep of a simu-
lation’s trajectories).
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Figure 3: Modelling the decision boundary between fates in NMPs. A. Trajectories from D3.2 NMPs,
clustered into two distinct fates: neural and mesodermal. B. Schematic demonstrating the concept of stochastic
fate simulation and mixed-fate cells. C. Latent space PCA of cells across timepoints, coloured by their predicted
fate; entirely neural (red), entirely mesodermal (blue) or a mixture of the two (yellow; decision boundary), with
pie charts representing the proportions of each group. D. Proportion of cells predicted to have a ’mixed’ fate,
as a function of time window and noise magnitude of velvetSDE model. E. Expression and predicted velocity
of neural, NMP and mesodermal markers, red box highlighting the decision boundary region. F. Schematic for
in silico perturbation (isP) test for key genes in the axes of the decision boundary G. results of isP test showing
top pro- and anti-neural hits visualised.

This training step modifies the vector field to pro-
duce on-data trajectories. However, since both Markov
and nSDE simulations are based on the same inferred
velocities, this training is not expected to significantly
alter the overall dynamics of the system. The stochas-
ticity of the nSDE framework facilitates comparisons
with Markov random walks - but after training, the
nSDE’s noise function can be adjusted freely, allowing
the effects of noise to be assessed in a manner not pos-
sible with simulations based on Markov random walks.

VelvetSDE trajectories show significant improve-
ments in staying within the data distribution (Fig-
ure 2I) without altering benchmarking scores (Figure
2E), suggesting that underlying biological dynamics
are conserved. Pre-training simulations show a high
degree of variance across latent dimensions, and poor
concordance with the latent distribution of the dataset;
but after velvetSDE training, simulations have vari-
ance that closely matches that of the dataset (Figure
2F), and distributions show strong concordance be-
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tween data and simulation (Figure 2G, Figure S3E).
These results suggests that, through the nSDE frame-
work, we can learn a dynamical model that can be used
to simulate trajectories that faithfully recreate the dis-
tributions of the underlying data.

Predicting cell fate dynamics in NMPs

To explore velvetSDE’s dynamical predictions, we first
focused on cell fate decisions in NMPs. Simulating
all D3.2 (Day 3 + 5 hours) cells (with a noise magni-
tude of 0.1, used as default unless otherwise specified),
we found resultant trajectories clustered into neural
and mesodermal fates (Figure 3A). We reasoned that
with a single-cell mapping of cell fates, we could de-
fine the ’decision boundary’ between fate-committed
regions, which could be used to analyse temporal and
genetic factors relating to cells’ potency through dif-
ferentiation. To examine the boundary between fates,
we found cells that had varying fate predictions over
multiple simulations: we generated stochastic fate dis-
tributions by simulating each cell’s trajectory 10 times
(chosen arbitrarily; changing this number affects the
can affect the size of mixed-fate population, as can
changing the model’s noise magnitude). Each cell’s
distribution could then be classified as entirely ’neu-
ral’, entirely ’mesoderm’, or a ’mixed’ distribution that
contained some neural and some mesodermal trajecto-
ries (Figure 3B). PCA visualisation of these classifica-
tions in velvetSDE’s latent space revealed distinct de-
cision boundaries separating ’mixed’ progenitors from
lineage restricted progenitors (Figure 3C). We found
this boundary, which reflects the commitment point
between these two fates, aligned with the boundary
between expression and velocity dynamics of known
markers of neural, NMP and mesodermal cell types
(Figure 3E), indicating that this mixed-fate popula-
tion reflects an intermediate region in gene expression
space across the variations in cell states and expression
dynamics in the D3.2 population.

We examined how the mixed population evolved
over time. The proportion of mixed fates decreased
monotonically until none were left by day five (Figure
3C). To examine the effect of velvetSDE’s noise on this
mixed-fate population, we repeated trajectory simula-
tion across a range of noise magnitudes and observed
that the mixed cells had largely disappeared by day 4
(Figure 3D), consistent with the observation that neu-
ral commitment TFs such as Olig2 are induced on day
4 [38].

To test further the validity of the inferred deci-
sion boundaries, we identified the transcription factors
(TFs) that had the largest effect on the boundary. For
each TF in the data, we set expression to the maximum
observed value across all mixed-fate cells, re-projected
these perturbed data points to the velvetSDE latent
space and simulated each perturbed cell’s trajectory to
observe how in silico perturbation affects the predicted
distributions of fates (Figure 3F). Ranking genes by the
magnitude of their effect, we see the highest ranked
hits for increasing or decreasing the ’neural’ propor-
tion of fates include many known TFs known to play

a role in neural or mesodermal specification (Figure
3G). Visualising the loading contribution of top hits to
the model’s latent space, we see these genes broadly
correspond to the observed dimension of the neural-
mesodermal decision (Figure S4C).

In summary, stochastic simulation of trajectory dis-
tributions delineates fate commitment points and iden-
tifies fate specifying factors. This approach provides a
highly resolved picture of cell fate decision structure
and timing, and facilitates the generation of hypothe-
ses regarding fate commitment, potency time-windows,
and potential reprogramming factors that can be sub-
sequently tested through genetic perturbation and lin-
eage tracing.

Examining gene expression dynamics in neural
cells

We next examined the trajectory distributions gener-
ated by velvetSDE, concentrating on neural cells. Clus-
tering simulations of day 4 early neural cells revealed
three distinct fates: motor neuron (MN), V3 interneu-
ron (V3), and floor plate (FP) (Figure 4A). Predicted
trajectories can be projected to gene expression space
to produce distributions of time series that exhibit the
expected median dynamics, but with considerably vari-
ation between individual trajectories (Figure 4B).

To explore the dynamical information contained in
these trajectories, we focussed on two example inter-
actions, a direct cross-repressive interaction (Olig2 and
Nkx2-2)[47] and a directly causal activation (Olig2 and
Neurog2)[38, 48]. With normalised reads alone, we see
a noisy picture: the difference between these two re-
lationships is discernible only through the degree to
which the the gene pairs are co-expressed (Figure 4C,
left). With predicted trajectories, we can provide more
detail, visualising the different dynamics observed in
different fate trajectories (Figure 4C, middle). Visual-
ising phase portrait plots (through normalisation and
Gaussian smoothing of trajectories), we can get fur-
ther insight into the different relationships, visualising
the consistent structure of sequential co-expression of
Olig2 and Neurog2 and mutual exclusivity of Olig2 and
Nkx2-2 (Figure 4C).

We next looked to test whether biological informa-
tion is conserved across the variability of predicted gene
expression time series distributions. Focusing on mo-
tor neuron trajectories, we defined a set of expected
expression orderings (for example, maximum Olig2 ex-
pression should precede maximum Neurog2 expression
[38]). We then calculated the percentage of simulated
trajectories that capture all orderings correctly. We
compared velvetSDE simulations with different noise
magnitudes to three baseline models representing con-
ventional tools of single-cell: i) a Markov random walk
model with transition matrix based on velocity dynam-
ics, ii) binning cells by pseudotime values (also based
on velocity dynamics and calculated with scVelo [43]
and choosing 10 cells per bin, and iii) pseudotime bin-
ning with 1 cell per bin. With no noise, velvetSDE
simulations almost perfectly conserve expected gene or-
derings (Figure 4D).
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Figure 4: Dynamics and structure of gene expression in neural cells. A. Simulation of early neural
cell trajectories, clustered into motor neuron (MN), V3 interneuron (V3) and floor plate (FP) fates. B. Gene
expression averages and distributions, mapped from simulated trajectories, for the three fate clusters. C.
Comparison of normalised reads data and phase portraits of normalised, gaussian trajectory distributions for
example interactions: cross-repressive (Olig2 & Nkx2-2) and directly causal (Olig2 & Neurog2). D. Scoring
trajectory distributions for the conservation of known biology, defined as a series of seven known gene orderings
(e.g. Olig2 before Neurog2) and measured by comparing the time of maximal expression across trajectories;
score represents the percentage of trajectories that perfectly capture all orderings. E. Correlation of time
dynamics analysis: top shows schematic illustrating the concept. VelvetSDE simulations for related genes in
blue box, top. Markov random walk and pseudotime binning controls shown in blue box, bottom (green and
orange respectively). VelvetSDE for unrelated genes shown in red box.

As the noise magnitude increases, scores decreases
gradually to reach a level equivalent to Markov random
walks. Pseudotime binning performed better when av-
eraging ten cells per bin, but selecting individual cells
scored poorly.

However, a unique potential of velvetSDE simula-
tions is not only to preserve biological information, but
also to capture meaningful variation across the differ-
ent simulated trajectories of a fate that would be lost
in averaged or pseudo-temporal trajectories. To ex-
plore this, we continued to use a gene’s time of maxi-
mal expression, tmax, as a metric to explore variation
across trajectories. Focussing on VelvetSDE trajecto-
ries with 0.1 magnitude noise, plotting the distribution
of tmax values for pairs of genes, we saw a high degree of
variation in the time of maximal expression for differ-
ent genes. Importantly, these distributions are highly

correlated for related gene pairs (genes known to be
involved in the temporal progression of motor neuron
differentiation, such as Olig2 and Neurog2 [2, 38]) (Fig-
ure 4E, blue box, top) while for unrelated genes (Olig2
and randomly chosen genes in the data, Cntnap4 and
Spice1), they are not (Figure 4E, red box).

We see that Markov random walks capture simi-
lar covariation - however with slightly more variabil-
ity leading to more incorrect orderings (Figure 4E,
green points; incorrect orderings appear below red dot-
ted line). With pseudotime binning, the observed co-
variation in tmax is entirely lost (Figure 4E, orange
points overlain on green points), which may result
from the loss of variability through averaging per bin
(plotting pseudotime-binned trajectories supports this
idea, Figure S6A). As a control, we compared vel-
vetSDE simulations to trajectories from a ‘technical
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noise’ model where all variation is from from differ-
ences in initial conditions and the addition of random
noise, finding that the technical noise model failed to
capture the correlative structure in expression timings,
indicating that the correlation is biologically meaning-
ful (Figure S6B).

VelvetSDE trajectory distributions appear to si-
multaneously preserve core biological information
while capturing variation between trajectories and cor-
relation between related genes. This correlative struc-
ture is lost in averaging and cannot be explained by
technical noise, suggesting that velvetSDE’s modelling
framework offers a valuable tool for studying gene reg-
ulatory dynamics.

Applying velvet to the dynamics of in vitro pat-
terning

Finally, we applied our data and framework to the
question of neural fate decisions in vitro. In our exper-
iments we observed the formation of three ventral neu-
ral tube fates — floor plate (FP), V3 interneuron (V3)
and motor neuron (MN). In vivo, these fates are ex-
posed to different concentration and duration of Sonic
Hedgehog (Shh) signalling [49]. However, in vitro, all
cells are exposed to the same concentration and timing
of Shh agonist treatment (500nM daily from day 3).
This raises the question of what dynamics drive the
formation of these distinct fates within homogeneous
condition; whether they form stochastically through
varying interpretation of signalling cues or appear se-
quentially due to prolonged exposure to Shh signalling.
We reasoned that with the increased dynamical reso-
lution of our data and modelling framework, we might
be able to provide insight into the dynamics of this
patterning decision.

We took trajectory distributions simulated from
day 4 early neural progenitors and clustered into MN,
V3 and FP fates (Figure 4A). Observing that motor
neurons arise before V3 interneurons (consistent with
previous studies [50]), we first asked whether Olig2
expression is as high in progenitors that become V3
as those that become MN, i.e. whether p3 progeni-
tors arise sequentially from Olig2+ pMN progenitors,
or in parallel but at a later timepoint. Plotting the
expression of marker genes (Irx3, early neural; Olig2,
pMN; Nkx2-2 p3; Foxa2, floor plate; Sox2, pan-neural
progenitor), indicated that Olig2 expression was de-
tectable in V3 and FP trajectories, but at a lower level
than in MN trajectories, suggesting that high levels of
Olig2 expression is associated commitment to MN fate
(Figure 5A), consistent with previous biological obser-
vations [38].

Analysing the timing of patterning decisions
through conventional single-cell analysis can be chal-
lenging because cells with different fates are difficult
to distinguish and a range of different developmen-
tal times can exist within a single collected time-
point. With VelvetSDE simulations, we can cluster
early timepoints based on their predicted downstream
fates, and we can view cross-sections of these trajecto-
ries at a particular timepoint, allowing the dynamics

of differentiation to be analysed in more detail. To
explore the timing of neural patterning decisions, we
produced clustermaps to visualise all genes of all tra-
jectories at particular timepoint cross-sections, group-
ing by fate. Initially, there is very little to distinguish
the three fates (Figure 5B, left). By an early stage (20
timesteps of 100), the gene expression profile of MN
trajectories was distinguishable from V3 and FP tra-
jectories in the clustermap, but these latter fates were
less distinct (Figure 5B, middle). Subsequently, the
three fates could be clearly distinguished (Figure 5B,
right).

Examining median trajectories plots of key genes
for the three fates indicated that many early neural
markers, such as Pax6 and Irx3, have highly consistent
expression profiles across the fates (Figure 5C, early
genes), suggesting that the exit from an ’early neu-
ral’ state is similar across the three fates. Contrary to
this synchronised pattern of early neural genes, subse-
quent neural progenitor markers show clear distinctions
between fates, starting with Olig2 and Nkx2-9 distin-
guishing MN from non-MN fates (Figure 5C, progen-
itor genes), consistent with the role of Nkx2-9 in the
specification of both FP and V3 cell types [51, 52]. Of
note, while Olig2 and Nkx2-9 appear to be the earli-
est key marker genes to separate MN from the other
fates, the earliest distinction between V3 and FP fates
appears to be the induction of Shh itself in FP (Figure
5C, Shh genes).

Additionally, we observed variation in the expres-
sion of Shh signalling regulators between the fates:
Hhip, a negative regulator of Shh [53], expression ap-
pears higher in MN trajectories and Boc, a Shh co-
receptor [53], expression is higher in FP and V3 fates
(Figure 5c, Shh genes).

A comparison of the time of maximal expression for
marker genes shows Olig2 is always expressed before
Nkx2-2 in V3 trajectories, but less consistently so for
Nkx2-9, while peak Foxa2 expression is roughly concur-
rent with Nkx2-2, consistent with the above observa-
tions (Figure 5D). Additionally, we see the expression
patterns for Olig2-Nkx2-9 and Hhip-Boc differ consid-
erably in MN trajectories and V3 trajectories.

The dynamics described by this model are consis-
tent with a two-stage decision: first MN vs. FP/V3,
followed by a V3 vs. FP decision. This is consistent
with previous findings regarding the timing of differen-
tiations and expression patterns of key genes, and also
corresponds well with recent findings that chromatin
landscape changes specifically distinguish FP and V3
cells from more dorsal neural tube domains [54].

The time delay between MN fates and V3/FP fates
could correspond to exposure to additional doses of Shh
agonist prompting cells that are still Shh-responsive
(i.e. cells that have not yet expressed sufficient Olig2
to differentiate into motor neurons) to shift from head-
ing towards a MN state to a V3/FP state. As such,
future work could explore whether changes in Shh sig-
nalling at critical timepoints (for example, around D5-
D6) could specifically bias differentiations either to-
wards or away from a MN fate.
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Figure 5: Decision dynamics in neural patterning in vitro. A. Average expression profiles for key genes
in MN trajectories (left) and V3 trajectories (right), B. Clustermaps of all genes across trajectories across three
fates at specified timepoints. Genes are clustered; trajectories are maintained in their fate clusters. C. Median
trajectory from 100 randomly sampled trajectories for early neural genes (left), progenitor markers (middle)
and Shh signalling genes (right), showing expression value for three trajectories: MN (red), V3 (green), FP
(blue). Shaded area represents the 99% confidence interval across trajectories. D. Expression timing analysis
for key genes in V3 trajectories (green) and motor neuron trajectories (red).

However, neural fate decisions do not appear to be
entirely sequential or solely down to Olig2 levels, with
Nkx2-9 and Shh regulators Boc and Hhip also showing
early differences in expression between fates. While

this observation is consistent with previous findings
recording the complex differential regulation of Shh
co-receptors such as Boc [55], it is not clear whether
variation in Shh regulators is a cause or consequence
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of Olig2 and Nkx2-9 dynamics. These findings sug-
gest that variability in signal interpretation may be in-
volved in the different fate decisions observed in vitro,
and that specific targeting of Shh regulators could pro-
vide an approach to further control the course of fate
decisions in vitro.

DISCUSSION

Here we have developed an integrated framework of
experimental and computational methods for dynam-
ical modelling of gene expression from time-resolved
transcriptomics data. While splicing and metabolic la-
belling data are both regularly used for the inference
of single-cell temporal dynamics, we found that the
signal quality of splicing data is insufficient, while the
data quality of a recently developed metabolic labelling
protocol was low. Our optimised, semi-automated pro-
tocol, sci-FATE2, provides a controllable, consistent
temporal signal with data throughput and quality com-
parable to commercial platforms. To infer dynamics
with sci-FATE2 data, we developed a velocity infer-
ence method, velvet, which builds local neighbourhood
information into the inference process of a mechanistic,
generative model, resulting in velocity predictions that
appear more accurate and score consistently higher in
benchmarking than existing methods. To reconstruct
overall system dynamics, we extended velvet using neu-
ral stochastic differential equation approaches, exploit-
ing qualities of Markovian random walks to constrain
trajectories to the data. With this, we were able to
simulate trajectories of initial cells through to termi-
nal states to produce simulations that accurately recre-
ate the distributions of the underlying data and match
known biology.

This extended approach, velvetSDE, allows new
forms of analysis: simulating stochastic fate distribu-
tions across cells allowed the prediction of decision
boundaries between fates, while trajectory distribu-
tions capture potentially informative biological varia-
tion in the temporal dynamics of gene expression. Ap-
plying the approach to the question of a cell fate spec-
ification in vitro, we were able to apply velvetSDE’s
dynamical perspective to describe the dynamics of se-
quential fate decision making and resolve fate-specific
variation in Shh regulation.

The throughput of sci-FATE2 can be increased with
additional rounds of indexing [56], while further exten-
sions of labelling (e.g., additional thio-nucleotides[57],
varying labelling durations), alongside optimisations of
the chemical conversion protocol and computational
methods for label detection could offer further improve-
ments to data quality and the temporal signal.

While velvetSDE is honed by training trajectories
alongside Markov random walks, we found that the
neural SDE framework allowed a greater control of
stochasticity: without noise, velvetSDE simulations ac-
curately preserved known biology, while the introduc-
tion of noise allows the analysis of boundaries between

fate-restricted regions of progenitor cells. Importantly,
velvetSDE’s framework opens up the possibility for fu-
ture work to learn more sophisticated and biologically-
motivated models of noise and uncertainty, allowing
analyses that robustly handle stochasticity as a mean-
ingful part of the biological systems we study.

We expect the framework of metabolic labelling and
dynamical modelling to provide greater resolution for
examining the dynamical effect of perturbations in de-
veloping systems. It also offers a natural connection be-
tween velocity-based analysis and lineage tracing meth-
ods. Future implementations could seek to extend this
approach into a unified model that handles labelling
or splicing information alongside longer-term lineage
information.

Through the integration of temporal transcrip-
tomics and mechanistic generative modelling, we can
capture high quality information on the dynamics of
expression, allowing new forms of analysis into cell
fate decisions and providing a dynamical framework
for modelling complex regulatory mechanisms in de-
velopment.

ACKNOWLEDGEMENTS

We are grateful to Fabian Fröhlich, Jake Cornwall-
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METHODS

Cell culture and differentiation

Cells were cultured and differentiated as described pre-
viously [37, 38, 54]. HM1 (Thermo scientific) ES cells
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were maintained in ES cell medium with 1,000U/ml
LIF on mouse embryonic feeder cells (mitotically inac-
tivated). These cells were dissociated in 0.05% Trypsin
(Gibco) and plated on tissue culture plates 20 minutes
two successive times to remove feeder cells. Remaining
supernatant cells were then plated on CellBind six-well
plates (Corning) pre-coated with 0.1% gelatine solu-
tion, 60,000 cells per well in 1.5ml N2B27 + 10ng/ml
bFGF. On day 2, the medium was replaced with N2B27
with 10ng/ml bFGF and 5µM CHIR99021 (Axon) for
20 hours. Subsequently and every 24 hours afterwards,
medium was replaced with N2B27 with 100nM RA
(Sigma) and 500nM SAG (Calbiochem).

Cell labelling, collection, fixation and storage

Cells were incubated in 500µM 4sU (Sigma, made into
500mM stock dissolved in DMSO) for two hours in
the appropriate medium in the dark. Collection was
then done as swiftly as possible to minimise the time
between labelling and fixation. For this, cells were
washed in PBS, dissociated in 500µl room tempera-
ture accutase for two minutes, spun at 1000g for 3 min-
utes. For fixation, cells were resuspended in 400µl PBS
+ 0.1% DEPC (Sigma) + 10mM DTT (Sigma) and
1600µl Methanol + 0.1% DEPC + 10mM DTT was
added slowly, drop-wise to cells. Cells were kept on ice,
rocking at 20rpm for 30 minutes, and were then stored
at -80◦C for up to three weeks. Note that the melting
point of methanol is -97.6◦C, and as such this fixation
protocol will not result in freeze- or thaw-associated
damage to cells. The number of wells used for a sin-
gle fixed sample was chosen such that 5-10 million cells
were fixed per sample.

sci-FATE2

Summary of main protocol changes: Noting that PFA
fixation, Triton-X and freeze-thaw cycles are all asso-
ciated with increased RNA damage or loss [58, 59], we
adopt methanol fixation and liquid-phase storage at -
80◦C. Finding that enzymatic RNAse inhibitors are in-
effective [60], we add DEPC to our fixation and wash
buffers. To eliminate manual errors and reduce time
spent with samples on ice, we automated reverse tran-
scription and PCR steps with the Mosquito HV (SPT
Labtech). To minimise over-amplification, we reduced
the number of PCR cycles from twenty to ten, and
concentrated the library with SPRI beads. To reduce
the harshness of the IAA chemical conversion step, we
removed the use of hydrochloric acid and 50% DMSO,
finding that doing so did not negatively impact the de-
tection of labelled reads or the total number of UMIs
per cell (FIGURE), and provided an increase in cellular
retention through the protocol (figure 1H)

For chemical conversion, cells were kept on ice at
all times and all spins were done at 2000rpm, 4◦C for
5 minutes. Cells were first moved from -80◦C onto ice
for 3 minutes and gently resuspended. Cells were then
spun down and resuspended in 1ml PBS + 0.1% DEPC
+ 3% v/v dissolved BSA solution (NEB) + 10mM

DTT, spun again and resuspended in 100µl PBS +
3% v/v dissolved BSA solution. To this suspension,
220µl water, then 40µl sodium phosphate buffer then
40µl 100mM IAA (Sigma, dissolved in ethanol) were
added. Cells were incubated at 50◦C for 15 minutes,
being gently resuspended every five minutes. Cells
were then added to a quenching mix of 1.5ml PBS
+ 3% v/v dissolved BSA solution and 5mM DTT to
quench the chemical conversion reactions. Cells were
spun down and resuspended in PBS at a concentration
of 1 million cells per ml. Sci-FATE2 library prepa-
ration was performed immediately. Cells were dis-
tributed 2µl per well into a LoBind 384-well plate using
Mosquito HV (SPT Labtech). 1µl of oligo-dT primer
(5’-ACGACGCTCTTCCGATCTNNNNNNNN[10-bp
well-specific barcode]TTTTTTTTTTTTTTTTTTTT-
TTTTTTTTTTVN’-3, Integrated DNA Technologies)
was added to each well with Mosquito, and plate was
heated at 55◦C for five minutes before being immedi-
ately placed on ice for two minutes. To each well, 2µl
of first-strand reaction mix (1µl SSIV buffer, 0.125µl
DTT 10mM, 0.125µl dNTPs 10mM, 0.125µl RNase
inhibitor and 0.125µl SSIV reverse transcriptase) was
added to each well with Mosquito, and the plate was
put through the following reverse transcription ther-
mal schedule: 4◦C for 2min, 10◦C for 2min, 20◦C for
2min, 30◦C for 2min, 40◦C for 2min, 50◦C for 2min
and 55◦C for 10min. Cells were then pooled manually,
mixing well to ensure cells are resuspended. To cells,
1.8µl of 1mg/ml DAPI (ThermoFisher) was added.
50 cells per well were then sorted into four 96-well
plates with 3.6µl water and 0.4 second strand synthe-
sis buffer in each well. This was done with a MoFlo
XDP, with a 100µm nozzle, gating on scatter and
DAPI to stringently remove doublets and debris. To
each well of each plate, 1µl of second strand synthe-
sis mix (0.65µl water + 0.1µl second strand synthesis
buffer + 0.25µl second strand synthesis enzyme) was
added, plate were vortexed at approximately 1000rpm
for five seconds and spun down for five seconds, and
were then incubated at 16◦C for three hours. Plates
were then stored with foil lids at -80◦C for up to a
month. Tagmentation and clean up were performed
manually, two plates at a time. For tagmentation,
plates were thawed and 5µl tagmentation mix (4.875µl
tagmentation buffer + 0.125µl Tn5 4nM) was added.
Plates were incubated at 55◦C for five minutes, before
being incubated at room temperature for five minutes
with 10µl DNA-binding buffer (Zymo) to quench the
reaction and lyse cells. For clean up, 30µl Ampure
SPRI beads (Beckmann Coulter) was added to each
well. Plates were vortexed at 1000rpm for 10 seconds
and incubated at room temperature for five minutes.
Plates were added to magnets, 42µl supernatant was
removed and each well was washed with 100µl 80%
ethanol twice. Plates removed from magnets and left
to air dry for 2-3 minutes. 10µl EB buffer was added
to each well, and plates were vortexed at 2000rpm for
one minute and spun briefly for seven seconds, before
being left to incubate at room temperature for ten
minutes. Plates were returned to magnets, and 9µl su-
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pernatant was moved to a 384-well Lobind plate. 1µl
PCR primer mix containing 10µM P5 primer (5’-AAT
GATACGGCGACCACCGAGATCTACAC[i5]ACACT-
CTTTCCCTACACGACGCTCTTCCGATCT-3’;
IDT) and 10µM P7 primer (5’-CAAGCAGAAGACGGC-
ATACGAGAT[i7]GTCTCGTGGGCTCGG-3’; IDT)
was added to each well of 384-well plate with the
Mosquito, and 10µl NEBNext PCR mix was added
manually. PCR was performed with the following pro-
gram: 2C for 5min, 98C for 30s, and 10 cycles of 98◦C
for 10s, 66◦C for 30s, 72◦C for 1min) and a final 72◦C
for 5min. The full library was then pooled for a total
volume of around 7ml. This library was distributed
into 8 samples of 850µl. For each, an Ampure SPRI
clean up was performed with 0.9X beads, eluting each
sample in 100µl. These eluted samples were collected
into two 400µl samples. To these samples, double size
selection was then performed: 200µl SPRI beads were
added, incubated for ten minutes and then added to a
magnet. 600µl of supernatant was moved to new tubes,
where 160µl fresh beads were added to sample. After
5 minutes of incubation, samples were again added to
magnet, and washed twice with 1ml 80% ethanol. The
two samples were each eluted in 30µl for 60µl total
library product. The final library product was quanti-
fied using Qubit and BioAnalyzer. For pilots, libraries
were sequenced on NovaSeq SP with 700m reads per
sample, configuration: 130-10-10-18. For experiments,
libraries were sequenced two samples at a time on No-
vaSeq S1, total approximately 900m reads per sample
( 75,000 raw reads per cell) configuration 130-10-10-
18. Complete sci-FATE2 protocol will be available at
protocols.io.

Tn5 production and transposase assembly

Tn5 was produced as per [54, 61], to make 10µM stock
solution. This stock was diluted to 4µM with dilution
buffer (50 mM Tris, 100mM NaCl, 0.1 mM EDTA, 1
mM DTT and 50% glycerol), and transposase assembly
was performed as per (Martin et al. 2022).

Species mixture experiment

Mouse HM1 ES cells were cultured as per [37, 38, 54]
in ES cell medium with 1,000U/ml LIF on feeder cells
and human H9 cells in StemFlex on a laminin coat-
ing. Both were fixed in methanol + 0.1% DEPC as
per above and stored at -80C. Cells were moved to ice
for three minutes, then spun down at 2000rpm and
4◦C for 5 minutes. Cells were resuspended in 1ml PBS
+ 0.1% DEPC + 3% v/v BSA, spun down again as
before and resuspended in PBS at 1 million cells/ml.
Mouse and human cells were then mixed in equal pro-
portions and combinatorial indexing library prepara-
tion was performed as above.

Cell loss quantification

Day 4 differentiation cells were collected and fixed in
methanol as above. The modified chemical conversion

protocol was carried out as described above, the origi-
nal chemical conversion protocol was carried out as per
[20]. Note that for this comparison, methanol fixed
cells were used for both protocol, while the original
protocol used cells fixed in 4% PFA. This was done to
prevent differences in fixation from confounding differ-
ences in chemical conversion steps — however we and
others have observed similar low yield of cells with orig-
inal protocol and PFA-fixed cells [20]. For both, cells
were initially counted and diluted to 5 million cells,
and the number of cells remaining was estimated after
all steps completed.

sci-FATE pilot

The initial pilot of sci-FATE was performed with in
vitro differentiating ES cells (day 4 of protocol), ex-
actly as described in [20], with the following changes:
i) no 4sU labelling was performed, ii) we ran 19 PCR
cycles, iii) to concentrate the library, we collected 8
x 800µl aliquots of library, and performed two rounds
of Ampure bead concentration (0.7X then 0.8X) for a
final library volume of 100µl.

RNA-seq and RT-qPCR

For both bulk RNA-seq and RT-qPCR, samples were
collected and RNA isolated with a Qiagen RNeasy
kit. For RNA-seq, samples were normalised to 375ng
and library prep was performed with Kapa mRNA
Hyperprep with polyA capture beads (KK8421). Li-
braries were sequenced using NovaSeq6000 with 25
million reads per sample. For RT-qPCR, 1µg of RNA
was reverse transcribed using Super-Script III first
strand synthesis kit (Invitrogen) with random hex-
amers. PowerUp SYBR Green Master Mix (Ther-
moFisher) was used to perform qPCR with tenfold di-
luted cDNA, using Actin as a control.

Martin et al protocol

For sci-RNA-seq2 comparisons, in vitro differentiating
ES cells (day 4 of protocol) were fixed in methanol
as described above. For library preparation, cells were
washed once in 1ml PBS + 0.1% DEPC (where?) + 3%
v/v BSA (NEB) then diluted to 1 million cells per ml
in PBS and immediately submitted for library prepa-
ration. We performed combinatorial indexing protocol
as above. For Martin et al 2022 protocol [60], after
second-strand synthesis, we added 1µl Qiagen protease
per well and incubated for 30 minutes at 37C, then 20
minutes at 75C. We then performed tagmentation as
above, before adding a quenching mix of 0.375µl BSA
(NEB), 0.375µl 1% SDS and 2.25µ water to each well,
incubating at 55C for 15 minutes. We then added 4µl
5% Tween-20 to each well, proceeding to PCR with
the addition of 2µl primers and 20µl NEBNext PCR
mix. For the sample shown, we ran 16 PCR cycles, col-
lected 3µl per well, performed a 0.8X volume Ampure
bead clean and isolated 200-600bp DNA by running
the library through a 1% agarose gel and gel extrac-
tion (Qiagen), as performed in Martin et al 2022. In
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parallel, we ran an additional sample which we puri-
fied through a round of 0.8X Ampure bead cleaning
followed by purification through a size-selection DNA
column (Zymo) - we did not observe major differences
in the data quality through this second approach.

Raw data processing and label detection

Raw data processing and label detection was performed
with the dynast package [22] and the GRCm39 refer-
ence genome. To estimate SNPs (and background con-
version rate for estimation), dynast was run in ’control’
mode, with a sci-RNA-seq2 sample from all time points
of the differentiation mixed together, collected without
4sU labelling or chemical conversion. We found little
benefit to using dynast’s consensus calling feature, so
did not use it for analysis. We found that label rate
estimation provided poor results, and so used dynast’s
’count’ method instead (see supplementary note 1).

Quality control and cell type classification

Basic processing was performed with ScanPy[62].To re-
move low quality cells, we set thresholds at the tenth
and ninetieth percentiles for number of genes and UMIs
observed per cell, and removed data that fell below
or above these thresholds, respectively. This corre-
sponded to an acceptable range of approximately 4000-
25000 UMIs/cell and 2000-7000 genes per cell. We re-
moved cells with less than tenth percentile labelling
rate (approx. 10% labeled) and more than ninetieth
percentile mitochondrial percentage of reads (approx.
5%). We used scrublet [63] to remove doublets with
a doublet score threshold of 0.3. To handle batch ef-
fects, highly variable gene selection was stratified by
replicate: 3000 highly variable genes were selected per
replicate (excluding replicate 4 as an incomplete repli-
cate), and only genes selected across all three repli-
cates were retained (generally around 2000 genes). We
found this successfully removed an evident batch ef-
fect between replicate 1 and replicates 2 and 3. For
cell type classification, we adopted an ensemble ap-
proach: we clustered cells with the Leiden algorithm
with high resolution (1.6), producing many more clus-
ters than expected cell types (32 clusters, 9 expected
cell types). We performed differential expression (us-
ing ScanPy) between clusters, scored cells based on key
marker genes of expected cell types, and performed a
basic classification based on binarised expression com-
parison to a knowledge table of marker genes, as per
[2, 12]. For each cluster, we visualised the cluster
in UMAP and MDE embeddings, visualised the key-
gene scores, the marker-based classification distribu-
tions and the top differentially expressed genes, and
based on all analyses together, clusters were assigned
to one of 10 groups: NMP, early neural, neural, pMN,
MN, p3, V3, floor plate or other.

Analysis of RNA velocity

For analysis of RNA velocity, we used scVelo to ac-
cess RNA velocity datasets from human bone marrow,

mouse dentate gyrus, mouse pancreas, and additionally
accessed RNA velocity data from human and mouse
neural tube[2, 11–13, 39, 40]. For visualisation of pan-
creas velocity data, we ran scVelo on default parame-
ters, projecting velocities either using scVelo’s projec-
tion method, or by calculating directly projected ve-
locity as:

VprojX = (X + V )projX −XprojX

Where projX represents the application of log1P trans-
formation followed by projection to PCA embedding of
X.

Comparison and quantitative benchmarking

To visualise velvet inference, we split the data into
two: neural (early neural, neural, pMN, p3, floor plate,
MN and V3) and NMP (NMP, mesoderm, early neu-
ral, neural and pMN from D3.2 to D5). Velvet was
trained on default settings for both. As comparison,
dynamo and scVelo were run on labelling and splic-
ing data of the same systems respectively with default
settings. For all three, visualisation was performed by
predicting high dimensional velocities and directly pro-
jecting these velocities to PCA space.

For quantitative benchmarking, we split the dataset
into six subsets: i) pMN/MN/FP, (approx. 10,000
cells) ii) p3/V3 (7,000 cells) iii) mesoderm (10,000
cells) iv) NMP system (18,000 cells) v) neural system
(20,000 cells) vi) whole dataset (45,000 cells). These
subsets were chosen to capture different resolutions of
dynamics, from linear trajectories to systemic multi-
furcations. For each subset, scFates[41] was used to
construct a pseudotime skeleton based on known bio-
logical trajectories. The parameters used for scFates
were manually tweaked to ensure faithful recapitula-
tion of known biological dynamics. With this skele-
ton, two methods were used to create a ground truth:
i) PTS: each cell was mapped to the closest position
on the skeleton, and velocity was set as the displace-
ment between that position and the subsequent posi-
tion, ii) CRS: a pseudotime value for every cell was
determined using sciFate’s pseudotime function, and
this was passed to CellRank’s PseudotimeKernel[42],
which was used to calculate a transition matrix which
was then projected to PCA. For subset (vi) (whole
dataset), an accurate pseudotime could be computed,
but the underlying trajectory skeleton was not deemed
to be reliable enough, so this dataset was not used for
PTS assessment. Both ground truth velocities existed
in 50D PCA space, and all tested velocities were also
projected to 50D PCA space for comparison through
cosine similarity. This projection was done directly, not
using a nearest-neighbour projection heuristic. A third
metric was used, cross-boundary direction (CBD), as
done previously, using the implementation from [27].
With this method, data was clustered with Leiden algo-
rithm, and directionality between specific clusters was
defined. The agreement between inferred velocities and
these directionalities was assessed by cosine similarity.
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All comparison tools were run on default settings.
Where a tool failed or crashed on a particular subset,
it was assigned a score of zero (this only occured with
velovi and smoothened data, occuring in 5/6 datasets
in that instance).

Velvet and svelvet velocity models

Velvet inference from metabolic labelling starts from
the two equations:

dN

dt
= α− γN (1)

dX

dt
= α− γX (2)

These represent the time derivatives for labelled (N)
and total (X) reads, respectively, based on transcrip-
tion (α) and degradation rates (γ). This framework
assumes that the transcription rate for labelled and
unlabelled reads is the same, for more details see sup-
plementary note 1. Since we can assume no initial con-
ditions, we can solve the labelled derivative equation to
give:

N =
α

γ
(1− e−γt) (3)

This can be rearranged to give an equation for tran-
scription rate:

α =
Nγ

1− e−γt
(4)

Inserting this into the equation for total velocity, we
get our key equation:

dx

dt
=

γn

(1− e−γt)
− γx (5)

This defines velocity in terms of three observables (new
reads, n; total reads, x; labelling time, t) and one la-
tent parameter, the degradation rate, γ. Unlike RNA
velocity, there is no need to infer splicing parameters,
initial conditions or gene-specific latent times, resulting
in a simpler modelling framework. This equation can
be rearranged to provide a prediction of labelled/new
reads based on predicted total expression and velocity:

N =
1− e−γt

γ
(
dX

dt
+ γX) (6)

This equation is built into the loss function of velvet.
For svelvet, we start with a similar framework:

dU

dt
= α− βU (7)

dX

dt
= α− γX (8)

We assume β = 1 as per previous work. At steady-state
(when dU

dt = dX
dt = 0), these equations can be equated

to give γ = Uss

Xss
, providing a velocity definition:

dX

dt
= U − γX (9)

Which, as with velvet, is reframed to predict unspliced
reads from predicted total expression and velocity.
This is distinct from most previous velocity approaches
which model unspliced-spliced ratio. This is done to
bound γ between zero and one, with the aim of im-
proving stability in the face of highly variable unspliced
proportions across genes (Figure 1A).

To train either velvet or svelvet, we input new and
total datasets, along with precomputed neighborhood
indices for the neighbourhood constraint. Optionally,
we can include a precomputed transition matrix calcu-
lated based only on distances (as per [64]), to balance
cell similarity with velocity direction when producing
the velocity projection as part of the neighbourhood
constraint - following ideas developed in [11, 43] (how-
ever, initial exploration found that doing so had little
effect on results).

The above framework is built into a variational au-
toencoder (VAE) framework [34]. Briefly, the VAE is
composed of two neural networks, an encoder and a
decoder. The encoder maps the input data to a lower-
dimensional ’latent’ space. This mapping is probabilis-
tic, meaning that the encoder learns to map to mean
and variance parameters of latent variables, assumed to
be independent Gaussians, and a latent representation
of the data is sampled from these learned Gaussian dis-
tributions. The decoder reconstructs the original data
from this sampled latent representation. The training
involves optimizing the parameters of the encoder and
decoder networks through a variant of stochastic gra-
dient descent, where the objective is to minimize the
reconstruction loss (the difference between the input
and the reconstructed data) and a regularization term,
the Kullback-Leibler (KL) divergence, that forces the
learned distribution to be close to a standard normal
distribution. This dual-objective function effectively
results in a balance between data fidelity and statisti-
cal regularization.

In velvet, the latent representation of the data is
passed through a latent vector field (a third neural
network) that produces velocity predictions. These la-
tent velocities are also projected through the decoder
to produce reconstructed high dimensional velocities,
which along with the data reconstruction and equa-
tion 6, is used to create a reconstruction of new (or la-
belled) reads. Thus an additional term is added to the
loss function, comparing the original to reconstructed
labelled read dataset (for this, we calculate log-mean-
squared error). The neighbourhood constrain forms an
additional component of the loss function.

The model is trained in two steps: first, the VAE
and the vector field are trained together, then the VAE
parameters are frozen and the vector field is trained
with the neighborhood constraint. By default, the first
stage is performed for 200 epochs and the second for
a further 800. We use the entire dataset as one batch,
and use a learning rate of 0.001, and the AdamW op-
timiser with weight decay of 0.001. By default, we use
50 latent dimensions, a linear decoder, and perform the
neighborhood constraint in latent space.

To initially approximate γ with labelling data, we
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start with the assumption that steady-state dynamics
are observed, where N = kXss and Xss = α

γ , where k
is a proportional value representing the proportion of
total that is labelled at steady state. Plugging these
into equation 4 and rearranging for γ gives us:

γ =
− ln(1− k)

t
(10)

Thus, we perform extreme-value regression of new and
total reads as per previous studies [25, 43], and calcu-
late γ from the estimated slope from these regressions,
k.

For splicing data, we cannot define an equivalent
of equation 4 without initial conditions or splicing pa-
rameters, so we use a more simplistic approximation of
γ, performing unspliced-total extreme-value regression,
and setting γ = k.

Neighbourhood constraint

To create projections of predicted velocities, we im-
plemented a neighborhood based projection method as
described previously [43], but instead of projecting into
a new embedding, we use the method to ’project’ into
the same space, thus allowing comparison between the
original velocities and projections that are constrained
by the distribution of local neighbour cells. The projec-
tion method in brief: we calculate the cosine similarity
between a cell’s velocity vector and the displacement
between the cell and all its nearest neighbours (default
100 neighbours). We apply a softmax transformation
to convert these scores to transition probabilities (ap-
plying a kernel width parameter σ2, default 0.1). We
then calculate the velocity vector’s expected displace-
ment with respect to the cell’s transition matrix, ad-
justing for non-uniform data density as per [43].

We compare the neighbourhood-based expected
displacement with the original velocity vector with a
cosine embedding loss (1 − cos(V, Vproj)) where cos is
cosine similarity. This component of the loss is com-
bined with the vector field loss comparing observed
and reconstructed labelled data, in the second phase of
training. The two only differ when the projection fails
to accurately reconstruct the original vector, which will
occur when predicted velocity vector points away from
neighbours. In which case, the neighbourhood con-
straint will encourage predictions to point towards lo-
cal neighbourhoods. Cell neighbour indices are pre-
computed before training, and neighbourhood projec-
tion is performed in a broadcasted fashion, allowing a
computationally efficient implementation of the neigh-
bourhood constraint.

VelvetSDE dynamical model

To train velvetSDE, we embed the trained velvet vector
field as the drift component of a neural stochastic dif-
ferential equation system[35, 36] of the following form:

dX

dt
= µ(X, t)dt+ σ(X, t) ◦ dWt (11)

Where µ(X, t) is a neural vector field, σ(X, t) is a noise
function and Wt represents a Weiner process of Brow-
nian motion. To reduce memory usage, adjoint-mode
gradient computation is used. The SDE is constructed
as a Stratonovich integral solved using the midpoint
method. This is done as Stratonovich integrals have
lower computational cost for adjoint methods than Ito
integrals [35]. For this study, σ(X, t) = k, where k is a
user-defined scalar.

In parallel, we define a Markov process model from
the learnt vector field: we calculate a transition matrix,
π, from each cell i to its neighbours:

πij =
exp(

cos(xj−xi,vi)
σ2∑

j exp(
cos(xj−xi,vi)

σ2 )
(12)

As per the transition matrix calculation for neighbour-
hood constraints. We can define a Markov process ran-
dom walk as:

Wi+1 ←Multinomial(1, πWi) (13)

In words: The next state is chosen as a sample from
a multinomial distribution with a probability vector
equal to the current state’s transition probabilities, de-
fined by π. We thus iteratively define random paths
through the data manifold determined by the velocity-
guided transition matrix. We can optionally define ter-
minal states (where Wi+1 = Wi) and can produce a
cubic spline of the Markov path so that the number of
timesteps can equal that of nSDE simulations, without
requiring that the same number of Markov steps and
nSDE steps are taken.

To train velvetSDE, for each cell in a batch, we sim-
ulate n trajectories with the nSDE model (XSDE) and
n trajectories with the Markov process random walk
(XMRW ). Each cell’s loss is defined as the average of
the Kullback-Leibler divergence of the SDE simulation
from the Markov random walk, stratified by timestep:

L(XSDE , XMRW ) =
∑
i

DKL(XSDE
t=i ||XMRW

t=i ) (14)

In words, for each timestep, this is the Kullback-Leibler
divergence of that timestep’s distribution of nSDE
points from that timestep’s distribution of Markov sim-
ulations, assuming both distributions to follow a Gaus-
sian distribution. This measures how far from the
Markov simulation the nSDE simulation has moved.
For training, we set the noise magnitude of the nSDE
to roughly equate the noise magnitude of the Markov
random walk, in this study, a noise magnitude of 0.2
is used for this. We train for 250 epochs, running 200
cells per epoch and 50 simulations per cell (each, for
nSDE and Markov random walk), with same learning
rate and optimiser as above.

Decision boundary analysis

To cluster trajectories, we performed k-means cluster-
ing on trajectories, reshaped to be (n, t×d) where n is
the number of trajectories, t is the number of timesteps
and d is the number of latent dimensions. To define de-
cision boundaries, we simulate each cell’s trajectory ten
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times, cluster all trajectories, and define ’mixed-fate’
cells within a decision boundary as any cell with tra-
jectories belonging to multiple clusters. To investigate
the role of noise in the temporal evolution of decision
boundaries, we performed neighbourhood smoothing of
timepoints to create a continuous scale of time, binned
cells into time windows, and performed the above de-
cision boundary analysis for each time window across
multiple levels of noise magnitude in velvetSDE’s dif-
fusion component. Time smoothing was performed
to accommodate the uneven distribution of timepoints
(D3.2, D3.4, D3.6, D3.8, D4 and D5), and analysis pro-
vides a proof of principle, though the specific timings
may be biased by this uneven sampling. For in silico
perturbation, we took ’mixed-fate’ cells, and set each
TF’s expression value in turn to the maximal observed
value for that TF, we then projected these perturbed
data to the velvetSDE latent space, and simulated each
cell’s trajectory. We classified trajectories by assigning
each trajectory to the trajectory cluster (i.e. neural
or mesoderm) that it is on average closest to. To de-
termine negative log p-values, we performed binomial
tests, where k=observed number of neural trajectories,
n=number of simulated trajectories and p=observed
wildtype probability of neural trajectories from mixed-
fate cells. Note that we tested in silico ’knock-outs’
as well as ’over-expressions’ i.e. setting gene expres-
sion to zero, and found the expected inverse results (as
expected) however trends were less clear, possibly due
to the confounding factor of drop-out being modelled
in Velvet’s zero-inflated negative binomial fitting. In
other words, zero expression is caused by lack of ex-
pression and by dropout; maximal expression is only
caused by maximal expression.

Gene expression analysis

To produce gene expression distributions from trajec-
tories, we project them through the model’s decoder to
gene expression space, taking the decoded mean value
as the expression level. To produce orbital phase por-
traits, we scaled the distribution of values each gene be-
tween 0 and 1 and performed Gaussian kernel smooth-
ing with σ = 5. To produce trajectories to analyse,
we simulated all D4 cell trajectories. All trajectories
were done for 100 steps. For Markov random walks,
we simulated 50 steps with a transition matrix con-
structed using 10 nearest neighbours. We used cu-
bic splines to interpolate 50 steps into 100 timepoints.
For pseudotime binning, we subsetted cells early neu-
ral, neural pMN and MN cells from day 4 and day 5.
We calculated velocity pseudotime using scVelo, and
sorted cells into 100 bins based on pseudotime score.
For each simulation, cells were randomly chosen from
each bin and trajectories constructed as the path across
pseudotime bins. To score trajectories on conserva-
tion of expected gene orderings, we used seven order-
ings: Sox2 → Olig2, Irx3 → Olig2, Pax6 → Olig2,
Olig2 → Neurog2, Neurog2 → Mnx1, Neurod4 →
Isl1, and Mnx1→ Tubb3. To assess ordering, we com-
pared the argmax of each gene being compared for a

given trajectory. If a trajectory contained all orderings
correct, it scored 1, otherwise 0, and the score reported
is the mean across all trajectories for a given method.

Neural patterning analysis

Trajectories were averaged by taking the median of
each timestep across clustered trajectory distributions.
To assess the temporal progress of fate probabilities,
trajectories for cells at each timepoint were simulated,
and simulations were compared to average trajectories
constructed from D4. Dynamic time warping was used
in this distance measurement to account for the vari-
able start point of trajectories across timepoints.

Computational resources for analysis

All analysis was run on a cluster, accessing a single
GPU core from NVIDIA V100 GPU node and 8 CPU
cores, with 120Gb of memory. In this configuration, for
approx. 20,000 cells, velvet trains within five minutes,
velvetSDE within one minute.

Code and data availability

All code for raw data processing and label detec-
tion with dynast is available at: https://github.

com/rorymaizels/sciFATE2_processing. All code
for computational analysis is available at: https://

github.com/rorymaizels/Maizels2023aa. The deep
learning framework, available as the software package,
velvet, can be installed from: https://github.com/

rorymaizels/velvet. Raw data and processed data
can be accessed with the GEO accession: GSE236520.
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SUPPLEMENTARY MATERIALS

Supplementary Note 1

Previous work has found that 4sU incorporation rate
is roughly 1 in 40 uridines [23], implying that a signif-
icant proportion of nascent reads would not possess a
detectable 4sU label within the sequenced read. This
has previously been resolved with a Bayesian approach
[22, 65] to estimate the experimental T-to-C conversion
rate and infer the new-total ratio for each gene in each
cell with a binomial mixture model. This Bayesian ap-
proach is implemented in dynast with two modes: ’πg
mode’, which implements the original approach to infer
a parameter for each gene in each cell, or αmode, which
instead infers a cell-wise correction value by which the
number of labelled reads is adjusted across all genes for
a cell. The motivation for the α mode is to make the
problem more tractable for the sparse, noisy data of
single-cell sequencing. We found that dynast’s πg im-
plementation failed even basic tests (such as displaying
a positive correlation between new and total reads),
and so we progressed with α mode instead. With

this method, we observed an increase in the propor-
tion of reads labelled as new from 20% to 40%, con-
sistent with the expectation that as many as half of
new reads would not contain a detectable label (Figure
S4A). However, visualising new vs. old reads for esti-
mation and counting methods for a given gene (Olig2,
for example, in Figure S4B) showed a large increase
in the number of cells predicted to possess only ’new’
reads, and the proportion of cells that possess both
new and old reads (and thus, contain useful dynamical
information) is consistently reduced with the estima-
tion method versus counting (example shown for Olig2,
Figure S4C). We also found that across all genes, with
estimation there was a consistent positive correlation
between the total number of reads detected in a cell and
the label rate detected in a cell, which was absent when
using the counting method. We found that steady-
state degradation rate approximations from counting
data gave a half-life distribution closer to the experi-
mentally measured half life distribution of mRNAs in
mES cells, when compared to degradation rates in-
ferred from estimated labelling. Finally, testing the
dynamical information with estimation vs. counting
with velvet and dynamo, we found that using estimated
label rates substantially worsened velocity predictions
(Figure S4F).

Based on these findings, we chose not to use the
Bayesian estimation method for our analysis, finding
that inference of dynamics generally performs well.
Our velocity model is defined in terms of observed ’new’
and ’total’ reads, along with a degradation parame-
ter that is itself initially estimated from the observed
’new’ reads. As such, velocity is defined relative to the
observed ’new’, and the effect may be only that the
magnitude of velocity vectors may be underestimated.

Moreover, our results are not consistent with the
observation that as many as half of nascent reads
may be undetectably labelled, and it may be that
recorded 4sU incorporation rates are underestimations:
these figures come from studies that look at incorpora-
tion rates in bulk RNA[66](which would include many
species such as rRNA with considerably longer half
lives than mRNA) or with below-saturation levels of
labelling[67] (e.g. 100µM) for labelling periods of only
1-3 median mRNA half lives (12-24 hours). As a result,
4sU may not have fully saturated the transcriptome in
these studies, leading to an underestimation of incor-
poration rate. More work on the measurement and
Bayesian inference of 4sU incorporation will be needed
to explicate this matter.
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Supplementary Figure 1: Data Processing and Quality Control A. Comparison of UMis per cell and
label rate for different chemical conversion protocols, B. Comparison of UMIs and genes per cell for the combi-
natorial indexing protocol used in this study compared to the protocol in Martin et al. 2022. Protocols were
run in a single experiment, sequenced together and demultiplexed afterwards. C. Species mixture experiment
measurement of doublet rate. D. Comparison of detected ’labelled’ reads with dynast, with and without 4sU +
IAA. E. UMIs per cell distributions and cells per condition, shown for timepoints and replicates. F. Proportion
of 177 key neural tube development markers [2] that have less than 5% unspliced reads in human and mouse.
G Distribution of principal of data, split by replicate, shown for gene selection without (left) and with (right)
stratifying selection by replicate, emphasising the batch effect observed in and removed from component 4.
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Supplementary Figure 2: 4sU Labelling QC.A. RT-qPCR of key genes with and without 2 hour 500µM
4sU labelling before collection. B. RNA-seq of samples with and without 2 hours of varying concentrations of
4sU labelling before collection on day 4 and 8 of differentiation. C. Summary of RNA-seq results for 500µM
4sU for two hours, across two replicates.
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Supplementary Figure 3: Velocity inference.A. Change in gamma parameter through training for labelling
and splicing data. B. Comparison of quantitative benchmarking scores for velvet with and without modelling
components, NC: neighbourhood constraint, ∆γ: learnable degradation parameter. C. Benchmark ground truth
construction overview; a pseudotime skeleton was constructed with scFates (top left); cells were mapped to this
skeleton and velocities set to closest point’s displacement to next point for pseudotime score (PTS; top right);
pseudotime values were constructed with scFates (bottom left) and CellRank PseudotimeKernel was used to
construct an alternative velocity ground truth for CellRank score (CRS) (bottom right). D. Comparison of
distribution of gamma values inferred from splicing and labelling data, compared to experimentally measured
values in ES cells from [68] E. Across latent dimensions, the distribution of data mean minus simulation mean
for pre- and post-training velvetSDE simulations.
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Supplementary Figure 4: NMP fate prediction. A. Expression of key markers on D3, prior to RA
addition. B. Expression of key markers across cells predicted to have neural, mixed or mesoderm fates, for
D3.2 cells. C. Gene loading of top in silico perturbation hits in PCA of latent space (with linear decoder, gene
loading vectors can be visualised similarly to PCA).
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Supplementary Figure 5: Estimated vs. counted labelled reads with dynast. A. Proportion of
reads classified as ’new’ (or ’labelled’) with counting or estimating methods. B. Scatter of new and old reads
across cells for Olig2, comparing estimating (left) and counting (right) methods, C. Across genes, comparing
the proportion of cells that contain both new and old reads together for counting and estimating methods,
D. Distribution of correlations between label rate and total counts across genes for estimating (orange) and
counting (blue) methods. E. Distribution of predicted gammas using counted (orange) and estimated (blue)
methods, compared to experimentally measured distribution in mES cells, F. Velocity dynamics for Dynamo
with counting, G. Velvet with estimating data. H. Dynamo with estimating data.
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Supplementary Figure 6: Neural system dynamics. A. Latent space PCA visualisation of trajectories
used for gene ordering scoring. B. Comparison of expression timings for velvetSDE simulations (noise = 0.1)
and technical noise model. C Streamplot of Predicted fate probabilities across timepoints. D. Coexpression
of Hhip and Olig2 in motor neuron trajectories visualised. E. Expression profile of Shh signalling genes in
cells of different predicted fates. F. Median expression profile for Shh and Gli proteins across trajectories. G.
Normalised distances between median trajectories of each fate.
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Supplementary Figure 7: In vitro neural differentiation protocol. Schematic outlining in vitro protocol
with collection points and 4sU labelling regime.
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