

1 **Proximal termination generates a transcriptional state that determines the**
2 **rate of establishment of Polycomb silencing**

3

4 Govind Menon^{1,†}, Eduardo Mateo-Bonmatí^{2,5,†}, Svenja Reeck², Robert Maple², Zhe Wu³, Robert
5 Ietswaart⁴, Caroline Dean^{2,*}, Martin Howard^{1,*}

6

7 ¹Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park NR4
8 7UH, UK

9 ²Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park NR4
10 7UH, UK

11 ³Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education
12 Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences,
13 Southern University of Science and Technology, Shenzhen, China

14 ⁴Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115,
15 USA

16 ⁵Current address: Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid
17 (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, 28223
18 Pozuelo de Alarcón, Madrid, Spain

19

20 [†]These authors contributed equally to this work

21

22 ^{*}Co-corresponding authors: caroline.dean@jic.ac.uk, martin.howard@jic.ac.uk

23

24 **Abstract**

25 Chromatin-mediated transcriptional silencing by Polycomb Repressive Complex 2 (PRC2) is critical
26 for gene regulation in development and environmental responses. However, the mechanism and
27 timescales controlling de novo establishment of PRC2 silencing are unclear. Here, we investigate
28 PRC2 silencing at *Arabidopsis FLOWERING LOCUS C* (*FLC*), known to involve co-transcriptional
29 RNA processing, histone demethylation activity, and PRC2 function; but so far not mechanistically
30 connected. We develop and then test a computational model that describes how proximal
31 polyadenylation/termination mediated by the RNA binding protein FCA induces H3K4me1 removal
32 by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA Pol II processivity
33 and thus enhance early termination, thereby repressing productive transcription. The model predicts
34 that this transcription-coupled repression controls the level of transcriptional antagonism to Polycomb
35 action. Thus, the effectiveness of this repression dictates the timescale for establishment of Polycomb

36 H3K27me3 silencing. Experimental validation of these model predictions allowed us to
37 mechanistically connect co-transcriptional processing to setting the level of productive transcription at
38 the locus, which then determines the rate of the ON to OFF switch to PRC2 silencing.

39

40 **Introduction**

41 Transcriptional regulation is often mediated by chromatin states that are key to developmental
42 changes and environmental responses in many organisms. These chromatin states are characterised by
43 histone modifications, and trans-factors that recognise these modifications, which together influence
44 the level of productive transcription. Such chromatin states can be heritable across DNA replication
45 and mitosis, with controlled switching of key developmental loci between active and silenced states
46 underpinning the changes in gene expression programs that drive differentiation.

47

48 Polycomb Repressive Complex 2 (PRC2) mediated H3K27me3 is a system that generates such
49 heritable and switchable chromatin states. The mechanisms enabling inheritance in this case include
50 read-write reinforcement of existing histone modifications and antagonism between transcriptional
51 activity and silencing modifications (Berry et al., 2017; Dodd et al., 2007; Holoch et al., 2021). Such
52 mechanisms can generate bistability producing all or nothing (ON or OFF) transcriptional states
53 (Berry et al., 2017; Pease et al., 2021). Each gene copy can be stably maintained in either an ON or
54 OFF state even in dividing cells and copies can be independently switched between states. Such
55 switching has been achieved through experimental perturbations in various studies (Holoch et al.,
56 2021), but there are few examples where the mechanisms that enable the set-up and switching of these
57 states are studied in natural developmental contexts.

58

59 One such example is PRC2-mediated regulation at the *Arabidopsis* floral repressor gene
60 *FLOWERING LOCUS C* (*FLC*) (Menon et al., 2021). The winter cold-induced epigenetic silencing is
61 an ON/OFF cell-autonomous, stochastic switching of individual *FLC* copies into a Polycomb silenced
62 state (Fig. 1A) (Angel et al., 2011; Berry et al., 2015; Csorba et al., 2014; Lökvist and Howard,
63 2021; Menon et al., 2021). In this process, the silencing histone modification H3K27me3 is first
64 nucleated (deposited at a specific intragenic site) during the cold, followed by spreading of
65 H3K27me3 across the locus through a cell-cycle dependent mechanism during growth after cold
66 (Yang et al., 2017). Establishment of Polycomb silencing requires specific Polycomb accessory
67 proteins and chromatin remodelers, some specific to the nucleation or spreading phases.

68

69 In rapid-cycling *Arabidopsis* accessions *FLC* silencing is constitutive, occurring early in
70 development. This silencing requires the RNA binding protein FCA, which interacts with Cleavage
71 and Polyadenylation Specificity Factor (CPF) machinery (Simpson et al., 2003). FCA promotes
72 proximal termination of *FLC* sense transcription in the developing embryo (Schon et al., 2021), and of

73 *FLC* antisense transcription in the seedling (Liu et al., 2010). *FLC* silencing also requires FLD (Liu et
74 al., 2007), a plant homologue of the conserved mammalian histone K4 demethylase LSD1
75 (Martignago et al., 2019). The role of FCA and other co-transcriptional regulators in this mode of
76 *FLC* silencing, and the observed FCA interactions with termination and 3' processing factors,
77 suggests a transcription-coupled mechanism that links to Polycomb silencing. Indeed, the
78 accompanying paper identifies a role for the CPF phosphatase module, a key regulator of RNA Pol II
79 termination, in this mode of *FLC* silencing (Mateo-Bonmatí et al., 2023). This mechanism thus has
80 the potential to provide a window into the link between transcription-coupled repression and
81 Polycomb silencing.

82

83 Transcription-coupled mechanisms have been implicated in the establishment of heterochromatin in
84 many organisms, through 3' processing and non-coding RNA. A recent study indicates a wide-
85 ranging role for 3' processing in heterochromatin establishment in *S. pombe* (Shimada et al., 2021).
86 For example, Clr4-mediated heterochromatin assembly by the RNAi-independent pathway involves
87 non-canonical polyadenylation and 3' processing factors (Chalamcharla et al., 2015; Tucker et al.,
88 2016; Vo et al., 2019). Transcription termination at non-canonical sites mediated by the conserved
89 cleavage and polyadenylation factor (CPF) and the RNA-binding protein Mmi1 have been shown to
90 be necessary for Clr4-driven assembly of facultative heterochromatin at meiotic and environmental
91 response genes. Another RNA binding protein, Seb1, has been shown to promote heterochromatin
92 formation, through a mechanism linked to termination of noncoding transcription (Marina et al., 2013;
93 Wittmann et al., 2017). For PRC2-mediated silencing, early termination has been suggested to reduce
94 nascent RNA inhibition of PRC2, by limiting the physical length of the transcript produced (Kaneko
95 et al., 2014). Nevertheless, the exact mechanisms linking co-transcriptional processing to chromatin
96 regulation are still poorly understood.

97

98 Exploiting an allelic series of *fca* mutations, we recently showed that the FCA-mediated mechanism
99 can generate a graded regulation of *FLC* expression (Antoniou-Kourounioti et al., 2023). Thus, *FLC*
100 can be regulated both in a graded manner (or *analogue* regulation) or by an ON/OFF mode of
101 regulation (or *digital* regulation) as in the cold-induced silencing (Fig. 1A). The intermediate *fca-3*
102 allele revealed that FCA-mediated analogue regulation precedes an ON/OFF developmental switch at
103 *FLC* (Fig. 1B)(Antoniou-Kourounioti et al., 2023). Thus, the study highlighted the switch from
104 analogue to digital regulation but did not mechanistically address HOW that switch occurred. In this
105 study, we therefore asked: How can co-transcriptional processing mediated by FCA and the linked
106 function of the chromatin modifier FLD achieve the observed *analogue* mode/graded manner of *FLC*
107 regulation? Does the observed ON to OFF switch involve PRC2? If so, what is the mechanistic link
108 between this analogue transcription-coupled mode of regulation and a Polycomb ON/OFF *digital*
109 mode of regulation? Specifically, how is an FCA/FLD mediated *repressed* state (with enhanced early

110 termination of transcription enabling graded regulation of the amount of full length transcript
111 produced) linked to a PRC2 mediated *silenced* state (OFF state with a low frequency of transcription
112 initiation)?

113

114 Using mathematical modelling combined with molecular approaches, we dissect the interactions
115 between co-transcriptional processing and chromatin regulation that underpin how transcription-
116 coupled repression can lead to Polycomb-mediated silencing of *FLC*. Specifically, the model
117 describes sense and antisense transcription, alternative transcriptional termination, the dynamics of
118 activating (H3K4me1) and silencing (H3K27me) modifications, and the interactions between these
119 components (Fig. 1C). Importantly, the complexity of these feedbacks could not be interpreted
120 without the use of modelling approaches. We first showed that the model can successfully generate
121 intermediate transcriptional outputs at non-Polycomb silenced *FLC* copies (analogue/graded
122 regulation), while also allowing Polycomb nucleation to occur slowly over time (ON/OFF switch).
123 We then used the model to qualitatively predict changes in activating H3K4me1 and silencing
124 H3K27me3 modifications at *FLC* over time, and experimentally validated these predictions by
125 measuring changes in these modifications over a developmental time-course, showing further that the
126 model can be quantitatively fit to capture these changes. Further validation was provided by
127 measuring timecourse changes in *FLC* expression, where the model parameter fit obtained from
128 histone modification changes also achieves a satisfactory quantitative match with no additional
129 changes. The separate roles of the co-transcriptional repression and Polycomb silencing as predicted
130 by the model are further validated by examining a mutant of a Polycomb methyltransferase. The
131 model clearly elaborates how FCA/FLD-mediated transcription-coupled repression, induced by co-
132 transcriptional processing steps as described in the accompanying paper (Mateo-Bonmatí, 2023), can
133 influence the timing of the digital switch to Polycomb silencing. The combination of molecular
134 genetics and the theoretical modelling described here provide a quantitative description of how co-
135 transcriptional processing can quantitatively set transcriptional states that determine rates of
136 Polycomb silencing, a mechanism that is likely to be generally relevant in many organisms.

137

138 **Results**

139 **Molecular framework governing the *FLC* transcription-coupled chromatin repression pathway**

140 The RNA binding protein FCA promotes proximal polyadenylation/termination at many targets in the
141 Arabidopsis genome (Sonmez et al., 2011). FCA is known to directly interact *in vivo* with FY, a CPF
142 component needed for silencing homologous to yeast Pfs2 and mammalian WDR33 (Simpson et al.,
143 2003). FCA also indirectly interacts with other cleavage and polyadenylation specificity factors (Fang
144 et al., 2019), as well as the 3' processing factors CstF64 and CstF77 (Liu et al., 2010). FCA-mediated
145 silencing also requires the involvement of CDKC2, a component of the transcription elongation factor

146 P-TEFb (Wang et al., 2014), as well as the core spliceosome component PRP8 (Marquardt et al.,
147 2014), suggesting it is the process of transcription, co-transcriptional processing, and proximal
148 termination, rather than just the transcripts themselves, that drive silencing. FCA is proposed to
149 recognize any situation where RNA Pol II has stalled and transcription termination is required to clear
150 a ‘tangle’ in the chromatin (Baxter et al., 2021; Xu et al., 2021).

151

152 *FLC* silencing mediated by FCA requires the protein FLD, a homologue of the mammalian H3K4/K9
153 demethylase LSD1 (Liu et al., 2007). FLD is thought to demethylate H3K4me1 in *Arabidopsis*
154 (Inagaki et al., 2021; Martignago et al., 2019). FLD has been shown to associate *in vivo* with the SET
155 domain protein SDG26, which interacts with FY, indicating a physical link between processing of
156 antisense transcripts and chromatin remodelling (Fang et al., 2020). FLD also physically associates in
157 *vivo* with LD, a TFII-S domain containing protein and homolog of the CPF phosphatase subunit,
158 PNUTS in human and Ref2 in yeast. This strong association of chromatin modifiers such as FLD with
159 RNA Pol II regulators shown in the accompanying paper, identifies a mechanism where FCA-
160 mediated proximal cleavage and polyadenylation triggers FLD-mediated removal of H3K4me1
161 (Mateo-Bonmatí, 2023). The *Arabidopsis* H3K36 methyltransferase SDG8 is known to recognise
162 H3K4me1, so H3K4me1 removal might be expected to affect H3K36 methylation. *FLC* upregulation
163 in an *fca* mutant is rescued in an *sdg8 fca* double mutant (Fang et al., 2020), indicating that
164 H3K36me3 may be essential to set up an active transcriptional state at *FLC*. This is consistent with
165 our previous ChIP-qPCR data at *FLC*, showing high levels of H3K4me1 and H3K36me3 at the locus
166 in a high transcriptional state and low levels of both these modifications in a low transcriptional state
167 (Fang et al., 2020). Recent evidence from *Saccharomyces cerevisiae*, shows that H3K36me3 is
168 required for the recruitment of splicing factors and effective co-transcriptional splicing (Leung et al.,
169 2019). Based on this evidence, FLD-mediated removal of H3K4me1 may cause reduced H3K36
170 methylation, thus inhibiting co-transcriptional splicing, consequently reducing Pol II processivity and
171 promoting further early transcription termination. The FLD mechanism would thus form a feedback
172 loop where early termination enhances itself through H3K4me1 removal. The above molecular
173 mechanisms and possible feedback interaction are summarised in the schematic shown in Fig. 1C.

174

175 **FCA promotes premature termination of both sense and antisense transcription at *FLC***

176 The *FLC* sense proximal transcripts are detectable in young embryos (Schon et al., 2021) but less so
177 in vegetative tissue, likely due to rapid nascent RNA turnover. In contrast, the *FLC* antisense RNAs
178 transcribed from the 3' end of *FLC* (collectively called *COOLAIR*), which are alternatively
179 polyadenylated (PA) at a proximal PA site within the *FLC* gene or a distal PA site in the vicinity of
180 the *FLC* promoter (Liu et al., 2010; Swiezewski et al., 2009), are both readily detectable. The
181 mechanism underlying the differential turnover of proximally polyadenylated transcripts is currently
182 unknown, but differential fates of coding and non-coding transcripts are not uncommon (Nojima and

183 Proudfoot, 2022). To assess the relative roles of FCA-mediated premature termination of
184 sense/antisense transcripts in silencing, we compared repression of a wild-type *FLC* transgene (*FLC-*
185 *15*), with that of an *FLC* transgene where the antisense promoter has been replaced (*TEX 1.0*) altering
186 the type and quantity of antisense transcript production (Csorba et al., 2014; Marquardt et al., 2014;
187 Wang et al., 2014). We performed the comparison in two genetic backgrounds: one with the
188 endogenous FCA carrying a null mutation (*fca-9* mutant in *Col-0*), thus having no functional FCA,
189 and the other with the same mutant of the endogenous FCA, but carrying a transgenic 35S::FCA
190 construct (Liu et al., 2007), giving FCA overexpression. We made two observations (Fig. 2A): (i) the
191 wild-type *FLC* transgene is significantly repressed by FCA overexpression (as previously reported
192 (Liu et al., 2007)); (ii) this FCA dependent repression of the wild-type *FLC* transgene is significantly
193 attenuated ~10 fold in *TEX 1.0*, but repression is not lost completely. Thus, the antisense transcription
194 mechanism only partially accounts for *FLC* repression; a fact supported by a CRISPR deletion of the
195 antisense promoter at the endogenous *FLC* locus causing a small *FLC* upregulation (Zhao et al.,
196 2021). To further explore the importance of FCA-mediated proximal termination we analysed
197 production of sense polyadenylated *FLC* transcripts by Quant-seq (Moll et al., 2014) in the *fca* allelic
198 series (Antoniou-Kourounioti et al., 2023; Koornneef et al., 1991). Three genotypes give different
199 levels of *FLC* expression at the whole plant level: the wild-type *Ler*, with low *FLC* expression, the
200 *fca-1* mutant, with high *FLC* expression, and the *fca-3* mutant, with intermediate *FLC* expression.
201 Proximally polyadenylated transcripts for the *FLC* transcript were detected for all genotypes analysed
202 at sites close to those reported in embryos (Fig. 2B) (Schon et al., 2021). Altogether these data
203 support a model whereby FCA-mediated proximal termination of both sense and antisense
204 transcription contributes to repression of *FLC* transcription.

205 Computational model of *FLC* chromatin silencing through alternative termination

206 The silenced state of *FLC* is associated with H3K27me3 coverage of the whole locus (Wu et al.,
207 2016). Genetic analysis also shows that the plant Polycomb methyltransferase CURLY LEAF (CLF)
208 is essential for FCA-mediated silencing of *FLC* (Fang et al., 2020). However, despite the detailed
209 molecular data on 3' processing-mediated silencing described above, and in the accompanying paper
210 (Mateo-Bonmatí, 2023), how the various elements linked to Polycomb silencing was unknown, due in
211 part to the complex feedbacks involved. To bridge this gap, we therefore constructed a computational
212 model based on the above features (Fig. 3A), using our prior knowledge of Polycomb dynamics
213 known to generate digital ON/OFF memory states. We then used this model to dissect the underlying
214 mechanism of the transition elucidating how digital silencing might be integrated into FCA-mediated
215 3' processing. Important features of the new model are described below:

216

217 The model includes both activating (H3K4me1) and repressive (H3K27me3) modifications at each
218 histone across the *FLC* locus, assumed mutually exclusive on the same H3 tail, consistent with the

219 reported mutual exclusivity of these modifications (Shema et al., 2016). The model also incorporates
220 sense and antisense transcription at the locus. Importantly, the model assumes distinct roles for the
221 two kinds of modifications in transcription regulation: H3K4me1 is assumed to affect RNA Pol II
222 processivity rather than transcription initiation/transition to elongation. Higher overall coverage of
223 H3K4me1 across the locus therefore promotes distal termination of transcription by reducing the
224 probability of early termination. H3K4me1 modifications are added co-transcriptionally, allowing
225 distal termination to feedback onto further H3K4me1 addition. Conversely, proximal termination of
226 both sense and antisense transcription leads to removal of H3K4me1, in line with the potential
227 function of FLD as a demethylase, allowing feedback onto further proximal termination. Higher
228 H3K27me3 coverage, rather than affecting processivity, is assumed to decrease the frequency of both
229 sense and antisense transcription events (representing either transcription initiation or transition to
230 productive elongation). The model describes constitutive deposition of H3K27me by Polycomb in the
231 *FLC* nucleation region. H3K27me spreads to the rest of the locus through interactions with the
232 nucleation region, through read-write feedback interactions. An experimentally determined gene loop
233 mediating an interaction between the 5' and 3' ends of *FLC* is also incorporated in the model. Finally,
234 in line with experimental evidence from mammalian systems and previously developed models for
235 Polycomb, the model assumes that productive transcription promotes removal of H3K27me through
236 both histone exchange and co-transcriptional demethylation, thereby implementing antagonism
237 between transcription and Polycomb silencing. These aspects are integrated into a fully stochastic
238 spatiotemporal simulation of the *FLC* locus, where transcription events (sense and antisense) and
239 histone modification levels (H3K4me1 and H3K27me0/1/2/3) are simulation outputs. Full details of
240 the model can be found in the Methods and Supplementary Information.

241 **FCA and FLD mediate a transcription-coupled repression mechanism that is sufficient to
242 generate analogue regulation**

243 Our previous analysis of the *fca* allelic series highlighted that differences in overall expression
244 between genotypes appeared to have two components – a digital ON/OFF mode where we observed
245 clear differences in the number of *FLC* OFF cells, and an analogue mode, with quantitatively different
246 levels of *FLC* in the ON cells (Fig. 1B). Intermediate expression was associated with a slower switch
247 off over time into the digital OFF state. Importantly, we also observed similar behaviour of *FLC*
248 expression in single cells for a different intermediate mutant of *FCA*, called *fca-4* (Fig. S5C and
249 (Antoniou-Kourounioti et al., 2023)), showing effects are not allele-specific, but related to the
250 regulatory function of FCA at *FLC*. Overall, this demonstrates that FCA quantitatively modulates
251 transcription and influences the timing of the switch into the digital OFF state.

252
253 We first tried to see if the model could capture the quantitative variation in *FLC* expression (analogue
254 mode) in the absence of the Polycomb module (see model schematic in Fig. 3A). To represent the

255 difference in FCA function between the three genotypes, we used a single parameter controlling the
256 probability of FCA mediated proximal termination of transcription. We then simulated the model with
257 different values for this parameter representing different levels of functionality of the FCA protein.
258 We set the parameter to its highest value for *Ler*, an intermediate value for *fca-3*, and lowest for *fca-1*
259 (Fig. 3B). With these parameter settings we found that the model, with just transcription-coupled
260 repression (Fig. 3A) was able to recapitulate the analogue mode of regulation, with the simulations
261 showing the lowest frequency of productive transcription events for *Ler*, highest for *fca-1*, and
262 intermediate for *fca-3* (Fig. 3C). Consistent with the relationship between productive transcription and
263 H3K4me1 in the model, the levels of this modification were also predicted to be lowest in *Ler*,
264 intermediate in *fca-3* and highest in *fca-1* (Fig. 3C). While the model simulation output shown in Fig.
265 3 is qualitatively consistent with our previous observations, note that the specific model parameter
266 values used here are chosen to obtain a quantitative fit for the full model to experimentally measured
267 histone modification levels as we explain below.

268 **Model predicts differences in the rate of Polycomb silencing establishment in the different
269 genotypes**

270 With the analogue module constrained in this way, we simulated the full model, including the
271 Polycomb digital switching module (Fig. 3A). Importantly, this model recapitulated the
272 experimentally observed reduction in *FLC* transcriptional output (Fig. 3D), as well as the digital
273 switch to stable silencing (one-way switch) over time (Fig. 3E) observed using *FLC*-Venus imaging
274 in root meristematic cells (Antoniou-Kourounioti et al., 2023). For *Ler*, where productive
275 transcription is lowest, the model predicted a rapid switch to the digital OFF/Polycomb silenced state
276 (Fig. 3E, Fig. S4B(i)). For *fca-3*, the model predicted a slow switch to the digital OFF state, while
277 even slower switching is predicted for *fca-1* (Fig. 3E, Fig. S4B(i)). In all cases, the switching was
278 predicted to be one-way, with the Polycomb silenced state being highly stable.

279

280 Thus, the combined model of transcription-coupled repression and Polycomb silencing predicts that
281 the level of productive transcriptional activity set by FCA/co-transcriptional silencing/FLD (analogue
282 module) determines the level of transcriptional antagonism to H3K27me3. The level of transcriptional
283 antagonism in turn dictates the rate of establishment of the Polycomb silenced state.

284 **Model predictions are consistent with observed chromatin changes over time**

285 We next used the combined model to predict population levels of H3K4me1 and H3K27me3 at *FLC*
286 in the three genotypes, predicting low H3K4me1 and high H3K27me3 levels in *Ler*, intermediate
287 levels of both modifications in *fca-3*, and high H3K4me1 and low H3K27me3 in *fca-1*. Starting from
288 an active chromatin state with full H3K4me1 coverage, the model also predicted a progressive
289 reduction in H3K4me1 over time in all genotypes, with a low steady state level quickly attained in

290 *Ler*, and a slower reduction in *fca-3* and *fca-1*, with *fca-1* being the slowest (see red bars in Fig. 4D).
291 In all genotypes, this reduction is combined with an accumulation of H3K27me3 as more loci switch
292 to the Polycomb silenced state (see red bars in Fig. 4C).

293

294 To validate these predictions, we performed a time course measurement of silencing H3K27me3 and
295 the activating modifications H3K4me1 and H3K36me3 over the *FLC* locus by chromatin
296 immunoprecipitation followed by quantitative PCR (ChIP-qPCR), examining their levels in seedlings
297 at 7, 14 and 21 days after sowing. For each genotype and timepoint, we use the Polycomb silenced
298 *STM* locus as the positive control for H3K27me3 and the actively expressed *ACT7* locus as the
299 positive control for H3K4me1 (conversely *STM* and *ACT7* function as negative controls for the
300 activating modifications and H3K27me3 respectively). See Fig. S4C(ii,iii,iv) for a comparison of the
301 levels measured at *FLC* and these control loci at the 7 day timepoint. Consistent with model
302 predictions, at all timepoints we see that *fca-3* shows intermediate levels of H3K4me1 and
303 H3K27me3, as compared to *fca-1* and *Ler*, with primers across the *FLC* locus showing a consistent
304 trend (Fig. 4A,B). This trend is reinforced by a statistical comparison between the three genotypes of
305 the averaged H3K27me3 and H3K4me1 levels across the locus (Fig. S4A (i,ii)).

306

307 For validating the model using the timecourse ChIP data we tried to fit the model (adjusting
308 parameters for the transcription-coupled repression mechanism) so that it captures the observed
309 trends. The fitted parameters are indicated in the supplementary tables (Tables 1-4). We note that a
310 direct quantitative comparison between the model predictions and the ChIP-qPCR data is difficult
311 because the simplest model would assume that the switching dynamics happens at all loci, while the
312 ChIP-qPCR analysis uses whole seedling tissue, including tissue where the switching may be
313 inhibited by other means. To account for this possibility in the model, when comparing the model
314 predictions to the ChIP-seq data, we include a subpopulation of ‘active’ *FLC* copies with full
315 H3K4me1 coverage and no H3K27me3 coverage, to compute a corrected model predicted level of
316 both modifications. The changes in histone modifications over time are then qualitatively consistent
317 with the model (Fig. 4C,D). Experimental H3K27me3 levels rise in *fca-3* and *fca-1* (the increase is
318 statistically significant in *fca-3* between 14 and 21 days, though narrowly not for *fca-1*: p=0.048, sig.
319 threshold=0.0253 (Holm-Sidak corrected), Fig. S4A(iii)). H3K4me1 levels fall in *fca-3* and *fca-1* over
320 time (statistically significant for both *fca-3* and *fca-1* between 14 and 21 days, Fig S4A(iv)) as more
321 loci switch to the digital OFF state. In *Ler*, H3K4me1 shows essentially no change over the
322 experimental timepoints, while the H3K27me3 also does not show a statistically significant change on
323 average across the locus (Fig. S4A(iii, iv)). The lack of significant change in experimentally measured
324 H3K27me3 and H3K4me1 in *Ler* are consistent with steady state levels having been reached by the 7-
325 day timepoint. The model predicts faster dynamics of H3K4me1 removal (through more frequent
326 proximal termination), and faster establishment of H3K27me3 in *Ler*, so a rapid approach to steady

327 state is consistent. The activating H3K36me3 also shows a similar pattern, with *fca-3* exhibiting
328 intermediate levels, and the overall levels decreasing over time (Fig. S4B(iii)).

329

330 Overall, the combined model of transcription-coupled repression – mediated by proximal termination
331 of transcription, and Polycomb silencing, successfully predicts both the relative levels of the
332 modifications between genotypes and how these change over time.

333

334 **Model predicts relative differences in proximal termination between genotypes**

335 To validate the model predicted *FCA* dependent differences in proximal termination, we compared
336 these predictions to our Quant-seq data (data shown in Fig. 2B). We compared the predicted ratio of
337 proximal to distal termination events to the measured PA reads. To compute this ratio for the Quant-
338 seq data, we defined a Proximal termination cluster covering a range of termination sites close to the
339 5' end of the gene. Our definition of the proximal termination cluster is based on the proximal
340 termination of *FLC* sense transcripts we have previously reported (Schon et al., 2021). The genomic
341 coordinates are provided in a supplementary text file: *FLC_termination_clusters.txt*. A quantitative fit
342 of these ratios is not attempted here, as we do not know turnover rates of the different transcripts.
343 However, the predicted trends in the differences in the ratio of proximal to distal polyadenylation of
344 sense transcripts between the *FCA* mutants and the parental genotype qualitatively matched the trend
345 for the measured ratios of *FLC* sense transcription in our Quant-seq dataset (Fig. 4E,F; Fig. S4C(i),
346 see Fig. S4D for individual replicates).

347

348 **Disrupting a Polycomb methyltransferase compromises the one-way switch to a Polycomb OFF 349 state but does not disrupt FCA mediated regulation**

350 The model predicts that the transcription coupled repression mechanism is sufficient to generate the
351 analogue repression and that this repression controls the antagonism of transcription to Polycomb,
352 thus enabling the switch to Polycomb digital silencing. We tested these predictions using a Polycomb
353 mutant – a loss of function mutant of *CLF*. This methyltransferase is known to be required for
354 spreading of H3K27me3 from Polycomb nucleation peaks at many *Arabidopsis* targets (Shu et al.,
355 2019), and specifically at *FLC*, both in developmental (Shu et al., 2019) and cold induced silencing
356 contexts (Yang et al., 2017). This mutant is not expected to completely disrupt the ON/OFF silencing
357 mode, as H3K27me3 nucleation alone, which still occurs in *clf*, gives a metastable Polycomb silenced
358 state (Yang et al., 2017). However, only after the H3K27me3 spreads across the whole locus is the
359 Polycomb silenced state fully stable in rapidly dividing cells (Yang et al., 2017). Thus, the
360 maintenance of the OFF state is expected to be compromised in *clf* (Fig. 5A, B). Therefore, in a *clf*
361 mutant background, the model makes two predictions: (i) that the continued slow reduction in overall
362 *FLC* expression seen in *Ler*, *fca-3*, and *fca-1*, i.e., an overall reduction in the number of actively
363 transcribed *FLC* copies – which is a consequence of a fully stable Polycomb digital switch – will be

364 missing in a *clf* mutant background, due to leakage out of the metastable Polycomb OFF state (Fig.
365 5A,B); (ii) that the analogue differences generated by *fca* mutants will persist, since the FCA
366 mediated repression can function independently of H3K27me3.

367

368 To validate this prediction, we measured *FLC* expression (measuring spliced and unspliced *FLC*
369 transcripts by qPCR) at the whole plant level, over the same developmental time course in five
370 different genotypes (Fig. 5C shows unspliced *FLC*; Fig. S5A shows spliced *FLC*): in the parental *Ler*,
371 *clf-2* (Goodrich et al., 1997), *fca-3*, the *fca-3 clf-2* double mutant, and *fca-1*. We compared these data
372 to predicted *FLC* sense transcriptional activity from simulations of the full model for *Ler*, *fca-3* and
373 *fca-1*, as well as for *Ler* and *fca-3* with the PRC2 read-write feedback parameters changed to capture
374 a *clf* mutant. We did not attempt to fit to absolute levels of *FLC* transcripts here, since the measured
375 levels also depend on RNA stability, which we do not measure experimentally or include in our
376 model. Therefore, we compare changes relative to the measured levels at the first (10 day) timepoint.
377 We saw that, as predicted by the model, the slow reduction in expression is compromised in the *clf-2*
378 and *fca-3 clf-2* mutants (Fig. 5C, Fig. S5A) – neither of these mutants exhibits a statistically
379 significant *reduction* in *FLC* expression over the timecourse. We note that *clf-2* exhibits an increase
380 at the 14 day timepoint, (statistically significant only for unspliced *FLC*) that the model cannot
381 capture.

382

383 Also consistent with predictions for the *clf* mutants, we observe that the analogue differences
384 associated with FCA are maintained, i.e., the expression level in the *clf-2* mutant is clearly lower than
385 in *fca-3* at all timepoints (Fig. S5B), indicating that the FCA mediated transcription coupled
386 repression is the main factor underlying analogue differences. We also compared the model predicted
387 changes in *FLC* transcriptional output (i.e., frequency of distally terminated sense transcription
388 events) for *Ler*, *fca-3*, and *fca-1* to the above data (Fig. 5C, Fig. S5A). Consistent with previous data
389 (Antoniou-Kourounioti et al., 2023), and the observed chromatin changes (Fig. 4), all three genotypes
390 *Ler*, *fca-3*, and *fca-1* exhibit statistically significant changes in *FLC* expression over the time course
391 (both spliced and unspliced *FLC*). The relative changes predicted by the model are overall
392 quantitatively consistent with the measured changes in both unspliced (Fig. 5C) and spliced *FLC* (Fig.
393 S5A) (note that the model predictions are identical for spliced and unspliced – the model does not
394 distinguish between the two). We note that in some cases, between 10 days and 14 days, the model
395 predicted changes are larger than the measured changes, notably, for unspliced *FLC* in *Ler* (Fig. 5C)
396 and spliced *FLC* in *fca-3* and *fca-1* (Fig. S5A). However, since the model was only parametrised to fit
397 the ChIP time course data (Fig. 4), the overall satisfactory quantitative fit observed for *FLC*
398 expression with the same parameter values provides further support for the validity of the model.

399

400 In addition to *FLC* expression at the whole plant level, we also conducted time course imaging of
401 Venus tagged *FLC* in the roots in the *clf* mutants (Fig. 5D), following the same approach used to
402 analyse the *fca* alleles in (Antoniou-Kourounioti et al., 2023). Again, as predicted, *clf-2* showed clear
403 differences to the *Ler* genotype, with ON cells being visible at all three timepoints. This is consistent
404 with *FLC* switching both ON to OFF and OFF to ON as described above, and the observed lack of
405 reduction in *FLC* expression at the whole plant level (Fig. 5C). We note that both *clf-2* and *fca-3 clf-2*
406 exhibited large variability between roots, with some roots showing essentially no *FLC* ON cells (Fig.
407 S5C). This is possibly due to the widespread misregulation of growth and developmental genes
408 resulting from the compromised Polycomb silencing in this mutant. Nevertheless, consistent with the
409 model predictions, we see that the slow Polycomb digital switch to OFF is disrupted in *fca-3 clf-2*:
410 when comparing roots exhibiting ON cells in the double mutant to *fca-3* roots, the double mutant
411 overall shows more ON cells at later timepoints.

412

413 The model also predicts a similar, high ratio of proximal to distal termination in the *clf* mutant and the
414 *Ler* genotype (Fig. 4E), even though overall transcription is lower in *Ler*. This is because the
415 FCA/FLD mediated transcription coupled mechanism is not disrupted in the *clf* mutant model, so that
416 the promotion of proximal termination by this mechanism, and the resulting feedback, remain intact.
417 We measured the ratio of proximal to distal termination of the *FLC* sense transcript in the *clf* mutant,
418 using our strand-specific Quant-seq data (Fig. S4C (i)). Consistent with the model prediction, it
419 exhibits a similar ratio to the *Ler* genotype (Fig. 4F).

420

421 As further validation of the model, we then compared the predicted H3K27me3 levels at the locus in a
422 *clf* mutant to experimentally measured levels. The lack of stability of the nucleated state in the model
423 means that it predicts an H3K27me3 peak, but at significantly lower levels relative to a spread state.
424 The incorporation of the *FLC* gene loop in the model, as outlined above, causes the model to generate
425 a second peak in the *FLC* 3' region, in the region that interacts strongly with the nucleation region.
426 Consistent with these predictions, we find that the ChIP profile of H3K27me3 in *clf-2* exhibits two
427 peaks, at significantly lower levels relative to the spread state in *Ler* (Fig. 5E). Our results also
428 aligned well with previously published genome-wide H3K27me3 data for a *clf* mutant in a Col-0
429 background (Shu et al., 2019). Overall, predictions from the model for *clf* mutants match well with
430 our experimental data.

431 **The repressor FLD is co-transcriptionally targeted to *FLC* but requires FCA mediated
432 proximal termination for its repressive function**

433 We next investigated the mechanism of FLD functionality in the co-transcriptional repression
434 mechanism. In apparent contradiction to its role as a repressor, in previously reported data, FLD
435 occupancy was found to be significantly higher in a high transcriptional state of *FLC*, relative to a

436 Polycomb silenced low transcriptional state. Specifically, high FLD levels were assayed by ChIP-seq
437 of a transgenic *fld-4; 3xFLAG-FLD* in the *ColFRI* background, where the *FLC* activator FRIGIDA
438 sets up a high transcriptional state (Inagaki et al., 2021). In contrast, in a *Col-0* background, where
439 FRI is not functional, *FLC* is Polycomb silenced and FLD shows low enrichment.

440

441 The model allows us to explain this counter-intuitive behaviour of FLD. Since FLD function is
442 coupled to transcription and termination in the model, FLD targeting must be co-transcriptional,
443 consistent with the molecular and genetic analysis in the accompanying paper (Mateo-Bonmatí,
444 2023). FLD levels at the locus must therefore be low in a Polycomb silenced state, where transcription
445 events are infrequent. Such co-transcriptional FLD targeting is consistent with the genome-wide
446 correlation between FLD enrichment and transcription as measured by Pol II ChIP and transcript
447 amounts in (Inagaki et al., 2021). Furthermore, by capturing the digital switch off in *Ler* and *fca-3*,
448 the model predicts that FLD enrichment would reduce over time in these genotypes. In essence, FLD
449 is only needed transiently to generate a lowly-transcribed state capable of nucleating Polycomb
450 silencing, as transcription antagonises Polycomb. Following Polycomb nucleation and spreading of
451 H3K27me3, FLD recruitment to the locus is reduced due to the lack of transcription.

452

453 The experimental validation of the model assumption of FLD targeting coupled to transcription
454 termination, is presented in the accompanying paper (Mateo-Bonmatí, 2023), where we elucidate the
455 links between the FLD complex (Fang et al., 2019) and CPF components. By ChIP-qPCR analysis of
456 FLD enrichment at *FLC*, comparing high transcription states induced by two very different genetic
457 backgrounds (*fca-9* and *FRI*) with a Polycomb silenced state (*Col-0*), we show that high FLD
458 enrichment at *FLC* accompanies high transcription, irrespective of FCA function. Our model also
459 supports the scenario proposed by Inagaki et al., (2021) in which FLD downregulates histone
460 H3K4me1 around termination sites in regions with convergent overlapping transcription genome-
461 wide in *Arabidopsis*.

462

463 We also tested whether FLD enrichment would change over time, as expected from the model
464 predicted switch to the Polycomb silenced state. We measured 3xFLAG-FLD enrichment by ChIP-
465 qPCR over a time course in a *Col-0* background (as high-expressing *fca-9* and FRI are not expected to
466 exhibit a digital switch OFF). Consistent with model predictions, we observed a reduction over time
467 in FLD enrichment across *FLC* (Fig. 6B), mirroring the reduction in *FLC* transcription levels over
468 time also observed in *Col-0* by qPCR (Fig. 6A). Levels at the initial 7-day timepoint were high and
469 declined to very low levels (almost background) by 21 days. Consistently, both 7-day and 14-day
470 average FLD levels across the locus showed statistically significant differences to the control sample,
471 while the 21-day levels did not (Fig. S6).

472

473 Together, these observations are consistent with co-transcriptional FLD targeting to the *FLC* locus,
474 with its repressive activity dependent on FCA-mediated proximal polyadenylation of sense and
475 antisense transcription. In genotypes such as *fca-9*, where FCA is non-functional, or in the presence of
476 the transcriptional activator FRIGIDA, which antagonises proximal PA by FCA (Schon et al., 2021),
477 FLD continues to be co-transcriptionally targeted, but fails to carry out its repressive function. This
478 highlights an important aspect relating genome-wide localisation of a regulator to its function: factors
479 that are found to localise at active transcription sites may not just be transcriptional activators. As is
480 the case for FLD, such factors could be essential components for shutting down transcription in
481 specific developmental contexts.

482

483 **FCA mediated transcription-coupled repression potentially controls many Polycomb targets**

484 We next analysed our genome-wide Quant-seq data to examine whether the FCA-mediated
485 transcription coupled mechanism could be applicable to a wider range of targets beyond *FLC*, and
486 whether this mechanism is also linked to Polycomb silencing at other targets. We first analysed
487 differential upregulation in *fca-1* (null) relative to *Ler*, which showed that 130 targets were
488 significantly upregulated in *fca-1*. Of these 130 targets, 107 were upregulated to an intermediate level
489 in *fca-3* (without however showing statistically significant upregulation in *fca-3*, probably because of
490 the intermediate nature of this genotype), hence behaving similar to *FLC* (Fig. 6C). We then
491 examined whether these 107 targets were also Polycomb targets. We used published ChIP-seq data
492 for the Arabidopsis PRC2 methyltransferases CLF and SWN (Shu et al., 2019) in the Col-0 genotype,
493 and generated a metagene plot for CLF and SWN enrichment across the 107 targets, comparing it to
494 the whole genome metaplot for CLF and SWN enrichment. This showed a clear higher enrichment of
495 these Polycomb components at these 107 putative FCA targets, particularly close to the Transcription
496 Start Site (TSS), compared to the genome-wide average (Fig. 6D).

497

498 In order to examine whether FCA and FLD function overlap in general, we used genome-wide Quant-
499 seq data in the null mutant genotypes *fca-9* and *fld-4* and the corresponding parental genotype Col-0,
500 to carry out a similar analysis. We found that 91 genes were significantly upregulated in *fca-9*
501 compared to the parental genotype, Col-0. We first examined whether these targets overlap with those
502 observed in *fca-1*. Our data shows extensive differential gene expression between the Col-0 and *Ler*
503 parental genotypes (not shown), and these differences are reflected in the respective mutants in these
504 backgrounds. It is therefore not surprising that we find a relatively small overlap of 10 targets
505 between the *fca-1* upregulated set and the *fca-9* upregulated set, even though these are both null
506 mutants of *FCA*.

507

508 Analysis of *fld-4* relative to Col-0 showed a larger number of upregulated targets (193), consistent
509 with the proposed wider role for FLD in coordinating convergent transcription genome-wide (Inagaki

510 et al., 2021). We found that 48 targets were significantly upregulated in both *fca-9* and *fld-4*,
511 indicating that these factors may be working together at a number of genes. As above, we compared
512 metagene plots of CLF and SWN enrichment across these 48 targets, as well as for the *fca-9* and *fld-4*
513 singly upregulated subsets, in a whole genome metagene plot for CLF and SWN enrichment. For the
514 *fca-9* upregulated genes, we saw slightly higher enrichment of SWN but not of CLF around the TSS
515 compared to the genome-wide average (Fig. 6E). Interestingly, for the *fld-4* upregulated subset, we
516 observe lower enrichment of both SWN and CLF compared to the genome-wide average (Fig. 6E).
517 This is consistent with the co-transcriptional targeting of FLD, but where the majority of the targets
518 do not couple to Polycomb. However, the metagene plot for the 48 overlapping targets compared to
519 the genome wide-average shows a further increase in SWN enrichment (and a smaller increase for
520 CLF) around the TSS than seen for the *fca-9* upregulated targets alone (Fig. 6E). This suggests that
521 FLD function may be linked to silencing by PRC2 in specific contexts, where FLD action is
522 facilitated by FCA mediated proximal polyadenylation.

523

524 Together, these analyses indicate that FCA/FLD mediated transcription-coupled repression may be
525 working at a broad range of targets, and that at these targets, as at *FLC*, this repression works in
526 concert with the Polycomb system. We also note that multiple genes of general interest are present in
527 the *fca-1* and *fca-9/fld-4* upregulated lists, including: a Trithorax homologue (ATX1) implicated in
528 development and multiple stress responses, genes such as GRP5 (Mangeon et al., 2010) and GASA9
529 (Yang et al., 2008) showing highly cell type specific expression, and several stress inducible genes
530 (see Supplementary Table S2 for gene names of selected targets), all features that are consistent with
531 Polycomb regulation.

532

533 **Discussion**

534 How co-transcriptional processing mechanistically influences transcriptional output, and how this is
535 linked to epigenetically stable Polycomb silencing is still not understood in any system. We have
536 exploited the *Arabidopsis FLC* system to investigate these questions. We had shown that a
537 transcription-coupled repression mechanism; specifically involving proximal transcription
538 polyadenylation/termination mediated by the RNA-binding protein FCA interacting with 3'
539 processing machinery, can generate graded (analogue) transcriptional output. We had also shown that
540 this mechanism was coupled to histone demethylase (FLD) activity. In the accompanying paper
541 (Mateo-Bonmatí, 2023), we showed that APRF1, a structural component of a CPF-like phosphatase
542 complex, directly links transcription termination with the FLD histone demethylase activity to alter
543 the local chromatin environment. But how FLD activity can affect proximal termination, how this
544 mechanism can generate analogue transcriptional output, and how this transcription-coupled
545 repression links to a digital ON to OFF switch to PRC2 silencing remained obscure.

546

547 We built on our previous using the computational model described here, and used it to reveal how the
548 level of productive transcriptional activity set by the transcription-coupled mechanism (FCA/FLD)
549 determines the level of transcriptional antagonism to Polycomb silencing. The different levels of
550 transcriptional activity set by the transcription coupled repression can dictate the timescale for
551 establishment of Polycomb silencing (Fig. 7). We validated the model by a variety of means,
552 including gene expression, histone modification and FLC-Venus imaging time courses in the wild-
553 type and in cases disrupted via a Polycomb mutation. Our model also resolves the apparent
554 contradiction between the observed FLD targeting to a transcriptionally active *FLC* locus, and its role
555 as a repressor: FLD's co-transcriptional recruitment, needed to lower transcriptional activity to pave
556 the way for Polycomb silencing, is eliminated once full Polycomb silencing is achieved. Hence,
557 factors localising at activated genes can in some instances be paradoxically essential for shutting
558 down transcription.

559

560 A key methodology to dissect the underlying mechanism was the construction of a computational
561 model. The model was used as a tool to predict the levels of dynamically changing transcriptional and
562 histone modification levels and to gain intuition about the underlying mechanisms. We chose to keep
563 the model simple and interpretable but the model was still able to reproduce all the statistically
564 significant trends in the data.

565

566 The transcriptional antagonism to Polycomb silencing, a fundamental aspect of the silencing
567 mechanism, is also important in the mammalian and *Drosophila* contexts (Klose et al., 2013), (Holoch
568 et al., 2021). In the plant context, this antagonism sets the timescale for the slow switch into the
569 digital Polycomb silenced state, in an interlinked three-way association between chromatin,
570 transcription and co-transcriptional processing (Graphical Abstract). Importantly, our model predicts
571 slow/inefficient establishment of Polycomb silencing in the *fca-1* mutant. As a result, if silencing can
572 be established in *fca-1* (independently of FCA), for example mediated by cold-specific PRC2
573 accessories in the case of cold-induced silencing, we predict that both silenced and active states can
574 each be stably maintained. Hence, our conceptual framework also explains why cold-induced
575 Polycomb silencing can be maintained in *fca* (or *fld*) mutants. The model predicts that these proteins
576 are needed only for Polycomb silencing establishment during development, but not for its
577 maintenance. In future work, it would be very interesting to specifically test this prediction by
578 removing FCA and/or FLD at a later developmental stage after silencing is established.

579

580 The putative H3K4 demethylase FLD is known to be a key component of the FCA mediated
581 transcription-coupled repression mechanism, indicating an important role for removal of H3K4me
582 associated with and downstream of proximal termination. A key mechanistic feature of the model is

583 the existence of a link also in the opposite direction: H3K4me1 levels influencing the processivity of
584 RNA Pol II – with low H3K4me1 levels reducing processivity. Thus, the model contains a positive
585 feedback loop (mutual inhibition) between proximal termination and H3K4me1. While chromatin
586 modifications have been mechanistically linked to co-transcriptional splicing (Leung et al., 2019),
587 links to Pol II processivity are only beginning to be explored, as seen from recent findings on Pol II
588 regulation by the Integrator complex in mammalian systems (Stein et al., 2022; Wang et al., 2023).
589 These links could also involve an effect on Pol II speed which can influence termination (Cortazar et
590 al., 2019).

591

592 Our model also explains how the *FLC* transcriptional activator FRIGIDA can set up an active
593 transcriptional state, preventing Polycomb silencing by functioning as an anti-terminator. Anti-
594 termination factors that prevent the use of early termination sites have been implicated in tuning
595 transcriptional output from eukaryotic polymerases (Gregersen et al., 2019). In the case of *FLC*, the
596 transcriptional activator FRIGIDA has recently been shown to function at least partly by antagonising
597 FCA mediated proximal cleavage and polyadenylation of *FLC* sense transcription at specific stages of
598 embryo development (Schon et al., 2021). The presence of active FRIGIDA promotes distal
599 polyadenylation and prevents *FLC* silencing, further supporting the view that FCA mediated proximal
600 termination is essential for repression. Interestingly, FRIGIDA expression outside of a specific
601 developmental stage fails to activate *FLC* expression (Schon et al., 2021): this reinforces the view that
602 once Polycomb epigenetic silencing has been established, reactivating transcription is difficult, with
603 simple upregulation of an activator being insufficient to overcome robust digital silencing. The model
604 predicts that the locus is bistable in the absence of proximal-termination mediated repression, so that
605 both active and Polycomb silenced states can be stably maintained (Fig. S4B(ii)). This is consistent
606 with the FCA mediated mechanism not having a role in maintaining the Polycomb silenced state, as
607 evidenced by the stable maintenance of cold-induced Polycomb silencing at *FLC* in both *fca* mutants
608 and genotypes with active FRIGIDA.

609

610 Overall, we have revealed the mechanism of co-transcriptional silencing at *FLC*, an essential
611 precursor for slow switching into the Polycomb silenced state. These features are included in an
612 animation to help explain these molecular feedbacks, and how this mechanism can lead to expression
613 of *FLC* in one of two stable expression states (supplementary file: Movie_1.mp4). It is particularly
614 intriguing that many elements of this pathway, such as FLD and FCA, are conserved
615 transcriptional/splicing regulators, that likely have functions at many more targets. Their core role in
616 an integrated sense/anti-sense transcriptional circuitry likely singles out *FLC* as being acutely
617 sensitive to their action. Indeed, our analysis of genome-wide Quant-seq data and overlap with ChIP-
618 seq data for Polycomb components indicates that this transcription-coupled mechanism targets many
619 genes and potentially works in concert with Polycomb at these targets. We therefore anticipate these

620 mechanisms will have even broader relevance, with additional examples of such mechanisms
621 emerging over time (Chen et al., 2023). Further investigating the links between co-transcriptional
622 mechanisms and Polycomb silencing will therefore be an important focus for future research.

623 **Methods**

624 **Plant materials**

626 All the plants were homozygous for the indicated genotype. Seeds were surface sterilized in 40 % v/v
627 commercial bleach for 10 min and rinsed 4 times with sterile distilled water. Seeds were then sown on
628 standard half-strength Murashige and Skoog (MS) medium (0.22% MS, 8% plant agar) media plates
629 and kept at 4°C in darkness for 3 days before being transferred to long day photoperiod conditions (16
630 h of light, 8 h dark).

631

632 **Plant growth (Imaging)**

633 Seeds were surface-sterilized with 5% (v/v) sodium hypochlorite for 5 min, rinsed with sterile water
634 4x for 1 min and stratified at 4°C for 2 days in water and in the dark. Seeds were plated on MES
635 buffered Murashige and Skoog (GM-MS) media, pH 5.8, containing respective antibiotics and grown
636 on vertically oriented petri plates for 7 days in long-day conditions (16 h light/8 h dark, 22/20°C).

637

638 **Imaging**

639 Time course imaging of FLC-Venus protein levels in the epidermis of *Ler*, *fca* allelic mutants, the *clf*-
640 2 mutant as well as the *fca-3 clf-2* mutant, was performed using a Leica confocal Stellaris 8
641 microscope with a 20x multi-immersion objective (0.75 NA). Root tips (2 cm) were cut off and
642 immersed in 1.5 µg/mL Propidium Iodide (PI, Sigma–Aldrich, P4864) in 1x PBS before being imaged
643 immediately. The OPSL 514 laser was used at 5% power with 514 nm excitation for FLC-Venus and
644 PI. In photon counting mode, Venus was detected between 518-550 nm with the HyD SMD2 detector,
645 PI was detected between ~600-650 nm. Images were acquired with a laser speed of 400 Hz, line
646 accumulation of 6 (pixel dwell time of 2.43 µs), a Z-step size of 0.95 µm and a pinhole size of 1 AU.
647 The same settings were used at all imaging time points to allow direct comparison between genotypes
648 and time points. The representative images were projected using a single middle slice from the PI
649 channel to show the cell outline, and 10 slices of FLC-Venus channel were maximum intensity
650 projected. In standard image presentation, the dynamic range of the FLC-Venus channel was pushed
651 from 0-255 to 2-11, in enhanced image presentation, the dynamic ranged was pushed from 2-7. In
652 Supplementary Figure S5C, the dynamic range of FLC-Venus channel was enhanced from 0-255 to 2-
653 20 for all images.

654

655 **RNA extraction and RT-qPCR**

656 Total RNA was extracted as previously described (Box et al. 2011). Genomic DNA was digested with
657 TURBO DNA-free (Ambion Turbo Dnase kit AM1907) according to manufacturer's guidelines,
658 before reverse transcription (RT) was performed. The RT reactions were performed with SuperScript
659 IV reverse transcriptase (ThermoFisher, 18090010) following the manufacturer's instructions using
660 gene-specific primers. Primers are listed in Supplemental Table S1. For RNA sequencing
661 experiments, RNA was further purified with the Qiagen Rneasy miniprep kit (74106).

662

663 **RNA sequencing**

664 Library preparation and sequencing was performed by Lexogen GmbH. RNA integrity was assessed
665 on a Fragment Analyzer System using the DNF-471 RNA Kit (15 nt) (Agilent). Sequencing-ready
666 libraries were generated from 100ng of input RNA using a QuantSeq 3' mRNA-Seq Library Prep Kit
667 REV for Illumina (015UG009V0271) following standard procedures. Indexed libraries were assessed
668 for quality on a Fragment Analyzer device (Agilent), using the HS-DNA assay and quantified using a
669 Qubit dsDNA HS assay (Thermo Fisher). A sequencing-ready pool of indexed libraries were
670 sequenced on an Illumina NextSeq 2000 with a 100-cycle cartridge using the Custom Sequencing
671 Primer (CSP) at Lexogen GmbH.

672

673 **Bioinformatics analysis**

674 Data analysis of RNAseq data was performed by Lexogen GmbH using their standard
675 pipeline. Read Quality was assessed by FastQC and trimmed for quality and adapter content
676 with cutadapt version 1.18 (Martin, 2011). Clean reads were mapped to the Arabidopsis
677 reference genome (TAIR10) with STAR version 2.6.1a (Dobin et al., 2013). Raw reads have
678 been deposited on Short Read Archive (SRA) under the reference PRJNA980626, and
679 PRJNA1076161. To calculate proximal to distal count ratios, read ends were counted for
680 each identified polyA cluster ((Schon et al., 2021), FLC_polyA_cluster_coords.txt). Proximal
681 polyadenylation clusters are defined as termination sites within the first Exon and Intron of
682 *FLC* while distal clusters are in close proximity to the canonical polyadenylation site. For
683 each biological sample, ratios were calculated from the summed proximal and distal cluster
684 counts (FLC_termination_clusters.txt).

685

686 **ChIP timecourse for histone modifications**

687 2.5 g of 7-, 14-, or 21-day-old seedlings were crosslinked in 1% formaldehyde and grinded to fine
688 powder. Nuclei were extracted using Honda buffer as described previously in Sun et al. 2013. In all
689 histone ChIP reactions, sonication, immunoprecipitation, DNA recovery and purification were
690 performed as previously described in Wu et al. 2016. The antibodies used were anti-H3 (ab176842),
691 anti-H3K27me3 (Merck 07-449 and ab192985), anti-H3K36me3 (ab9050), anti-H3K4me1 (ab8895).

692 All ChIP data were quantified by qPCR with primers listed in Table S1. Values were normalized to
693 H3 and internal control to either STM or ACT7.

694

695 **H3K27me3 ChIP in *clf* mutant**

696 2.0 g of 14-day-old seedlings were crosslinked in 1% formaldehyde and grinded to fine powder.
697 Nuclei were extracted using Honda buffer as described previously in Sun et al. 2013. In all histone
698 ChIP reactions, sonication, immunoprecipitation, DNA recovery and purification were performed as
699 previously described in Wu et al. 2016. The antibodies used were anti-H3 (ab176842), and anti-
700 H3K27me3 (ab192985). All ChIP data were quantified by qPCR with primers listed in Table S1.
701 Values were normalized to H3 and internal control *STM*.

702

703

704

705 **FLD ChIP**

706 2.5 g seedlings were crosslinked in 0.685 mg/mL of EGS [ethylene glycol bis(succinimidyl
707 succinate)] and 1% formaldehyde and grinded to fine powder. Nuclei were extracted using Honda
708 buffer as described for histone ChIP. Nuclei pellets were resuspended in 600 µl of RIPA buffer (1%
709 NP-40, 0.5% Sodium Deoxycholate, 0.1 % SDS in PBS) and sonicated 5 times for 5 min (30s ON/
710 30s OFF) at high mode in a Bioruptor Pico (Diagenode). IP were performed overnight at 4°C using
711 1.5 mg of pre-coated epoxy Epoxy Dynabeads (M-270) with 1.5 µl of anti-FLAG (Sigma, F1804) per
712 reaction. Beads were then washed for 5 min twice with Low Salt Buffer (150 mM NaCl, 0.1% SDS,
713 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl), twice with Hight Salt Buffer (500 mM NaCl,
714 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl), and twice with TE buffer (1 mM
715 EDTA, 10 mM Tris-HCl). DNA recovery and purifications were performed as for Histone ChIP.
716 Results in Fig. 6B were normalized to IGN5.

717

718 **Computational model**

719 For a detailed description of the computational model, its assumptions, implementation, and analysis
720 of simulation output, see Supplementary Information. Additional experimental considerations for
721 modelling are also presented in the Supplementary Information.

722

723 **Acknowledgements**

724 The authors would like to thank members of the Dean and Howard labs for thoughtful inputs and
725 Shuqin Chen for excellent technical assistance. This work was funded by European Research Council
726 Advanced Grant (EPISWITCH, 833254), Wellcome Trust (210654/Z/18/Z), and a Royal Society
727 Professorship (RP\R1\180002) to CD, and BBSRC Institute Strategic Programmes (BB/J004588/1
728 and BB/P013511/1) and EPSRC/BBSRC Physics of Life grant (EP/T00214X/1) to MH and CD.

729 Eduardo Mateo-Bonmatí would like to thank grant RYC2021-030895-I, funded by MCIN/AEI and by
730 European Union NextGenerationEU/PRTR. Svenja Reeck was funded by the HORIZON EUROPE
731 Marie Skłodowska-Curie Actions PEP-NET (Predictive Epigenetics: Fusing Theory and Experiment)
732 grant 813282.

733

734 **Figure Captions**

735

736 **Figure 1:** (A) Schematic showing two possible modes of regulating population level expression –
737 Analogue and Digital. (B) Schematic of combined digital and analogue regulation observed
738 experimentally in *fca* mutants. (C) Schematic showing the transcription coupled repression
739 mechanism at *FLC*. Activating H3K4me1 can be added during productive transcription (green dashed
740 arrow). The repression mechanism consists of proximal polyadenylation and termination of sense and
741 antisense transcription mediated by the RNA binding protein FCA, which then enables removal of
742 transcriptionally activating H3K4me1 across the locus by the putative histone demethylase FLD. The
743 removal of H3K4me1 can inhibit co-transcriptional processing by preventing the addition of
744 H3K36me3, and consequently promotes further proximal termination. Thus, a feedback loop
745 (highlighted by the black dashed arrows) is formed, where the occurrence of proximal termination
746 promotes further proximal termination. Also shown is a schematic of the Polycomb silenced state at
747 *FLC*, but how this is linked to transcription-coupled repression has been unclear. Supplementary file:
748 Movie_1 contains an animation summarising the processes and interactions shown here.

749

750 **Figure 2:** (A) qPCR data for *FLC* expression, showing repression of a transgenic wild-type *FLC*
751 construct (*FLC-15* indicated by WT *FLC*) in an FCA overexpression genotype (35S::*FCA* indicated
752 by *FCA* OE), in 14 day old seedlings, and the attenuation of this repression for an *FLC* transgenic
753 construct where antisense transcription is disrupted (*TEX1*). All genotypes shown are in an *fca-9*
754 (*FCA* null mutant) background. Error bars represent mean +/- s.e.m. p-values are shown for a
755 statistical comparison of the mean values using the Student's t-test. (B) Quantseq data for 7-day old
756 seedlings (7 days after sowing), showing quantification of polyadenylated transcripts mapped to the
757 *FLC* locus in the parental Landsberg (*Ler*) genotype and the *fca* mutants. Individual replicates are
758 shown in Fig. S4D.

759

760 **Figure 3:** (A) Schematic of the combined mathematical model incorporating the transcription-
761 coupled repression mechanism and PRC2 mediated silencing. The schematic highlights the key
762 processes and interactions captured by the mathematical model. For the transcription coupled
763 repression mechanism (as depicted in Fig. 1C) this includes sense and antisense transcription, co-
764 transcriptional addition of H3K4me1 (green dashed arrows), FCA mediated proximal termination of
765 transcription, FLD mediated removal of H3K4me1, and the promotion of proximal termination by

766 low H3K4me1 coverage. Feedback is again highlighted by black dashed lines. For PRC2 silencing the
767 model includes H3K27 methylation, PRC2 mediated read-write maintenance of these modifications,
768 and mutual antagonism between H3K27me3 and transcription. **(B)** FCA effectiveness parameter
769 values for the three genotypes. **(C)** Top panel: Model predicted frequency of distal transcription
770 events (steady state average over 1000 simulated loci) in an ON state, for the model of the
771 transcription-coupled repression mechanism shown in (A) but without the Polycomb silencing
772 module. Each simulated locus was started in an active state with full H3K4me1 coverage and allowed
773 to equilibrate over a duration of 5 cell cycles. Averaging was performed over the duration of the
774 following 10 cell cycles. Bottom panel: Model predicted fractional coverage of H3K4me1 in an ON
775 state from the above simulations. **(D)** Predicted transcriptional changes (quantified by frequency of
776 transcription events) over time obtained by simulating the combined model shown in (A). Frequencies
777 of the different transcription events are averaged over 1000 simulated copies of the *FLC* locus, all
778 started in an active state with full H3K4me1 coverage. **(E)** Predicted changes in the fraction of ON
779 copies in the *fca* mutants, computed from simulations of 1000 copies over 30 cell cycles, started in a
780 full H3K4me1 covered ON state. Fractions are shown at the starting timepoint (0), and at the end of 7,
781 14, and 21 days from the start. See Supplementary Information for the definition of ON and OFF
782 states used in this analysis.

783

784 **Figure 4: (A,B)** ChIP-qPCR time course measurements of H3K27me3 (A), and H3K4me1 (B) across
785 the *FLC* locus in the parental *Ler* genotype and *fca* mutants. H3K27me3 levels are shown normalised
786 to H3 and to control locus *STM*. H3K4me1 levels are shown normalised to H3 and to the control locus
787 *ACT7*. Each dot represents an amplicon. Error bars in (A) represent mean +/- s.e.m. (n = 5 biological
788 replicates only for *Ler* at 7 days and n=3 biological replicates in all other cases). Error bars in (B)
789 represent mean +/- s.e.m. (n = 5 biological replicates for *Ler*, *fca-3*, and *fca-1* at 7 days and n=3
790 biological replicates in all other cases). **(C,D)** Experimental validation of model predictions. Vertical
791 red bars indicate model predicted level. All model predicted histone modification levels are averaged
792 over the locus and averaged over 1000 simulated copies of the locus started in an active state with full
793 H3K4me1 coverage. Horizontal black bars indicate median of the biological replicates. **(C)**
794 Comparison of model predicted H3K27me3 levels and changes over time in the different genotypes,
795 with the measured levels shown in (A), averaged across 15 primers covering the *FLC* locus. **(D)**
796 Similar comparison of model predicted H3K4me1 levels with the experimental data shown in (B).
797 **(E,F)** Model predicted (E) and measured (Quantseq) (F) ratios of proximal to distal termination for
798 *FLC* sense transcription, in the parental *Ler* genotype, *fca* mutants and a *clf* mutant. Measured ratios
799 were computed using the Quantseq data for 7 day old seedlings shown in Fig. 2B and Fig. S4C(i).
800 Error bars in (F) represent mean +/- s.e.m. (n = 3 biological replicates). The genomic coordinates used
801 to define the proximal and distal termination clusters are shown in the supplementary file
802 *FLC_polyA_cluster_coords.txt*. The read counts within these clusters for the different genotypes are

803 provided in the supplementary file FLC_termination_clusters.txt. Model predicted ratios are
804 normalised to the predicted ratio for *Ler*. Model predicted ratios were computed at the 7 day
805 timepoint (averaged over the last 0.25 days leading up to this timepoint) for all four genotypes
806 (average over 1000 simulated copies started in an active state with full H3K4me1 coverage). The
807 model qualitatively captures the relative changes in the proximal to distal ratio between mutants. Note
808 that absolute predictions of the ratios would require estimates of lifetimes for the proximal and distal
809 polyadenylated forms in each mutant.

810

811 **Figure 4 – Supplementary 4A:** Statistical comparisons of average ChIP-qPCR measured H3K27me3
812 (i,iii) and H3K4me1 (ii,iv) levels across the locus, between genotypes (i, ii) and between timepoints
813 (iii,iv). In all cases the data points show the measured modification level averaged across 15 primers
814 covering the *FLC* locus (full modification profiles shown in Fig. 4A,B). Horizontal bars indicate
815 mean of replicates. Statistical comparisons for the experimental data were carried out using the
816 Student's t-test and corrected for multiple comparisons using the Holm-Sidak approach (*, **, ***
817 indicate significance thresholds of 0.05, 0.01, and 0.001 respectively).

818

819 **Figure 4 – Supplementary 4B:** (i) Histograms showing probability distribution of switch OFF times
820 for an individual locus, for *Ler*, *fca-3*, and *fca-1*. Histograms are generated by simulating 1000 copies,
821 started in a full H3K4me1 covered ON state, and simulated over 60 cell cycles. (ii) Model predicts
822 that the locus is in a bistable regime in the absence of the proximal termination mechanism (proximal
823 termination probability set to residual value – see model description in Supplementary Information
824 and parameter definitions/values in Supplementary Table 3), with both ON state and OFF state stably
825 maintained across several cell cycles. Plots show fraction of ON copies (left column) and H3K27me3
826 fractional coverage (right column) for 100 simulated loci started in an ON state (full H3K4me1
827 coverage) (top row) or started in an OFF state (full H3K27me3 coverage) (bottom row). Fractions are
828 shown at the starting timepoint (0), and at the end of 5, 10, and 20 cell cycles from the start. During
829 steady state maintenance of the OFF state, the cell cycle-averaged H3K27me3 stabilises at an
830 intermediate level due to the periodic dilution by DNA replication and subsequent slow accumulation.
831 (iii) ChIP-qPCR time course measurements of H3K36me3 across the *FLC* locus in the parental *Ler*
832 genotype and the *fca* mutants. Each dot represents an amplicon. Error bars represent mean +/- s.e.m.
833 (n = 3 biological replicates). H3K36me3 levels are shown normalised to H3 and to the control locus
834 *ACT7*.

835

836 **Figure 4 – Supplementary 4C:** (i) Quantseq data for 7-day old seedlings (7 days after sowing),
837 showing quantification of polyadenylated transcripts mapped to the *FLC* locus in the parental
838 Landsberg (*Ler*) genotype, the *fca* mutants (*Ler* and *fca* mutants data same as shown in Fig. 2B), and
839 the PRC2 methyltransferase mutant *clf-2*. (ii) ChIP-qPCR measured H3K27me3 levels (normalised to
840 H3) shown for the three *fca* genotypes at *FLC* as well as at the designated positive (+) and negative
841 control loci (-) for this modification. (iii) ChIP-qPCR measured H3K4me1 levels (normalised to H3)
842 shown for the three *fca* genotypes at *FLC* as well as at the designated positive (+) and negative control
843 loci (-) for this modification. (iv) ChIP-qPCR measured H3K36me3 levels (normalised to H3) shown
844 for the three *fca* genotypes at *FLC* as well as at the designated positive (+) and negative control loci (-)
845) for this modification.

846 **Figure 4 – Supplementary 4D:** Individual replicates for Quantseq data shown in Fig. S4C.

847

848

849 **Figure 5: (A)** Schematic showing the rationale for examining the *clf* mutant. Transition from a
850 Polycomb nucleated state to a spread state is prevented in a *clf* mutant. The lack of stability of a
851 nucleated state allows switching back to a digital ON state. Green circles: active modifications
852 (H3K4me1); red circles: repressive modifications (H3K27me3). **(B)** Consequently, the reduction over
853 time in the number of ON cells observed in the parental *Ler* genotype is expected to be disrupted in
854 the *clf* mutant. **(C)** Comparison of model predicted changes in *FLC* transcription, with whole seedling
855 *FLC* unspliced transcript levels measured by qPCR in the *fca* genotypes (*Ler*, *fca-3*, *fca-1*) and the *clf*
856 mutants (*clf-2* and *fca-3 clf-2* double mutant). Experimental data is normalised to measured levels for
857 *UBQ10*. Statistical comparisons for the experimental data were carried out using the Student's t-test
858 and corrected for multiple comparisons using the Holm-Sidak approach (*, **, *** indicate
859 significance thresholds of 0.05, 0.01, and 0.001 respectively). Model predictions correspond to the
860 predicted frequency of *FLC* sense distal transcription events at the corresponding timepoints,
861 averaged over 1000 simulated loci. Simulations for *Ler*, *fca-3*, *fca-1* are identical to those used to
862 predict changes in histone modification levels (Fig. 4). Simulations for the *clf* mutants (*clf-2*, *fca-3 clf-2*)
863 use changed parameter values for reactions involving H3K27me3 addition by PRC2 – see
864 Supplementary Information and Supplementary Table 2. For comparison of relative changes, both
865 model predictions and data are normalised to the level at 10 days. **(D)** FLC-Venus time-course
866 imaging in the different genetic backgrounds. Representative confocal images of FLC-Venus signal at
867 three timepoints in the epidermis of the root meristem of the parental genotype *Ler*, the single mutants
868 *clf-2*, and *fca-3*, and the double mutant *fca-3 clf-2*. Grey shows the cell wall dye propidium iodide;
869 FLC-Venus intensity is indicated by colour maps for standard and enhanced images, respectively. The
870 same settings were used for imaging of all time points. The same image presentation is used for
871 standard and enhanced images. Brightness and contrast of FLC-Venus signal were increased to

872 generate the enhanced images (Note different scale on colour maps). Yellow boxes in *clf-2* highlight
873 ON cell files at DAS7/14. Scale bar, 50 μ m. DAS stands for days after sowing. (E) The model can
874 capture the differences between *Ler* and *clf-2*, in the spatial profile of H3K27me3 across the *FLC*
875 locus. Top panel: model predicted profiles of H3K27me3 coverage (see Supplementary Information
876 for detailed description of simulation). Model predicted profile is steady-state average over 100
877 simulated loci, started in an active chromatin state with full H3K4me1 and equilibrated over a time
878 duration of 10 cell cycles. Bottom panel: H3K27me3 profiles measured by ChIP-qPCR in 14-day old
879 seedlings. Error bars represent mean +/- s.e.m. (n = 3 biological replicates). Each dot represents an
880 amplicon.

881
882 **Figure 5 – Supplementary 5A: Changes in Spliced *FLC* transcript level.** Comparison of model
883 predicted changes in *FLC* transcription, with whole seedling *FLC* spliced transcript levels measured
884 by qPCR in the *fca* genotypes (*Ler*, *fca-3*, *fca-1*) and the *clf* mutants (*clf-2* and *fca-3 clf-2* double
885 mutant). Experimental data is shown normalised to measured levels for *UBQ10*. Statistical
886 comparisons for the experimental data were carried out using the Student's t-test and corrected for
887 multiple comparisons using the Holm-Sidak approach (*, **, *** indicate significance thresholds of
888 0.05, 0.01, and 0.001 respectively). Model predictions correspond to the predicted frequency of *FLC*
889 sense distal transcription events at the corresponding timepoints, averaged over 1000 simulated loci.
890 Simulations for *Ler*, *fca-3*, *fca-1* are identical to those used to predict changes in histone modification
891 levels (Fig. 4). Simulations for the *clf* mutants (*clf-2* and *fca-3 clf-2*) use changed parameter values for
892 reactions involving H3K27me3 addition by PRC2 – see Supplementary Information and
893 Supplementary Table 2. For comparison of relative changes, both model predictions and data are
894 normalised to the level at 10 days.

895
896 **Figure 5 – Supplementary 5B: (i) *FLC* unspliced transcript levels in whole seedlings measured by**
897 **qPCR. (ii) *FLC* spliced transcript levels in whole seedlings measured by qPCR.** Data is shown
898 **normalised to the measured levels for *UBQ10*.**

899
900 **Figure 5 - Supplementary 5C: FLC-Venus time course replicates with additional genotypes**
901 Additional representative images of FLC-Venus signal in *Ler*, *clf-2*, *fca-3*, *fca-3 clf-2* as well as an
902 additional intermediate allele *fca-4* and the strong allele *fca-1* at three time points. FLC-Venus
903 intensity is indicated by colour map; grey shows the cell wall. Scale bar, 50 μ m. DAS stands for
904 days after sowing.

905
906 **Figure 6: (A)** Changes over time in spliced *FLC* expression in Col-0 seedlings, measured by time-
907 course qPCR. Error bars represent mean +/- s.e.m. (n = 3 biological replicates). Data is shown
908 normalised to the measured levels for *UBQ10* and *PP2A*. **(B)** Changes over time in FLD targeting to

909 the *FLC* locus, measured by time-course ChIP-qPCR quantification of 3xFLAG-FLD in seedlings
910 (Col-0 background) (normalized to IGN5). Error bars represent mean +/- s.e.m. (n = 3 biological
911 replicates). **(C)** Heatmap generated from analysing genome wide Quant-seq data, showing changes in
912 transcriptional output at the 107 targets that are significantly upregulated in *fca-1* and also show
913 intermediate (but not necessarily statistically significant) upregulation in *fca-3*. **(D)** Metagene plots
914 showing enrichment of the PRC2 methyltransferases SWN and CLF at the 107 targets (Differentially
915 Expressed Genes, DEGs) shown in (C), compared to their enrichment genome-wide. **(E)** Metagene
916 plots comparing SWN and CLF enrichment at *fca-9* upregulated, *fld-4* upregulated, and overlapping
917 DEGs, with their genome-wide enrichment.

918

919 **Figure S6:** Statistical analysis of changes over time in 3xFLAG-FLD enrichment across the locus.
920 Data points indicate average measured level over 16 primers covering the *FLC* locus (full dataset
921 shown in Fig. 6B). Horizontal bar indicates mean over replicates. Statistical comparisons for the
922 experimental data were carried out using the Student's t-test and corrected for multiple comparisons
923 using the Holm-Sidak approach (*, indicates a significance threshold of 0.05).

924

925 **Figure 7:** Schematic showing how analogue and digital regulation can combine in the context of
926 Polycomb mediated silencing. The differences in thickness of the red arrows indicate the different
927 rates of switching to the Polycomb silenced OFF state.

928

929 **Graphical Abstract:** Schematic showing the general interplay between transcriptional activity,
930 chromatin state, and co-transcriptional processing that controls the transcriptional state, and the
931 specific aspects of this interplay that regulate transcription at the *FLC* locus.

932

933 **References**

934 Angel, A., Song, J., Dean, C., and Howard, M. (2011). A Polycomb-based switch underlying
935 quantitative epigenetic memory. *Nature* **476**, 105-108.
936 Antoniou-Kourounioti, R.L., Meschichi, A., Reeck, S., Berry, S., Menon, G., Zhao, Y.,
937 Fozard, J., Holmes, T., Zhao, L., Wang, H., *et al.* (2023). Integrating analog and digital
938 modes of gene expression at *Arabidopsis FLC*. *eLife* **12**.
939 Baxter, C.L., Švikić, S., Sale, J.E., Dean, C., and Costa, S. (2021). The intersection of
940 DNA replication with antisense 3' RNA processing in *Arabidopsis FLC* chromatin
941 silencing. *Proceedings of the National Academy of Sciences* **118**, e2107483118.
942 Berry, S., Dean, C., and Howard, M. (2017). Slow Chromatin Dynamics Allow Polycomb
943 Target Genes to Filter Fluctuations in Transcription Factor Activity. *Cell Syst* **4**, 445-
944 457 e448.
945 Berry, S., Hartley, M., Olsson, T.S., Dean, C., and Howard, M. (2015). Local chromatin
946 environment of a Polycomb target gene instructs its own epigenetic inheritance. *eLife*
947 **4**, e07205.
948 Chalamcharla, V.R., Folco, H.D., Dhakshnamoorthy, J., and Grewal, S.I. (2015). Conserved
949 factor Dhp1/Rat1/Xrn2 triggers premature transcription termination and nucleates

heterochromatin to promote gene silencing. *Proceedings of the National Academy of Sciences* **112**, 15548-15555.

Chen, W., Zhu, T., Shi, Y., Chen, Y., Li, W.J., Chan, R.J., Chen, D., Zhang, W., Yuan, Y.A., Wang, X., *et al.* (2023). An antisense intragenic lncRNA SEAIRa mediates transcriptional and epigenetic repression of SERRATE in *Arabidopsis*. *Proceedings of the National Academy of Sciences* **120**, e2216062120.

Cortazar, M.A., Sheridan, R.M., Erickson, B., Fong, N., Glover-Cutter, K., Brannan, K., and Bentley, D.L. (2019). Control of RNA Pol II speed by PNUTS-PP1 and Spt5 dephosphorylation facilitates termination by a “sitting duck torpedo” mechanism. *Molecular cell* **76**, 896-908.e894.

Csorba, T., Questa, J.I., Sun, Q., and Dean, C. (2014). Antisense *COOLAIR* mediates the coordinated switching of chromatin states at *FLC* during vernalization. *Proc Natl Acad Sci U S A* **111**, 16160-16165.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21.

Dodd, I.B., Micheelsen, M.A., Sneppen, K., and Thon, G. (2007). Theoretical analysis of epigenetic cell memory by nucleosome modification. *Cell* **129**, 813-822.

Fang, X., Wang, L., Ishikawa, R., Li, Y., Fiedler, M., Liu, F., Calder, G., Rowan, B., Weigel, D., Li, P., *et al.* (2019). *Arabidopsis* FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. *Nature* **569**, 265-269.

Fang, X., Wu, Z., Raitskin, O., Webb, K., Voigt, P., Lu, T., Howard, M., and Dean, C. (2020). The 3' processing of antisense RNAs physically links to chromatin-based transcriptional control. *Proc Natl Acad Sci U S A* **117**, 15316-15321.

Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M., and Coupland, G. (1997). A Polycomb-group gene regulates homeotic gene expression in *Arabidopsis*. *Nature* **386**, 44-51.

Gregersen, L.H., Mitter, R., Ugalde, A.P., Nojima, T., Proudfoot, N.J., Agami, R., Stewart, A., and Svejstrup, J.Q. (2019). SCAF4 and SCAF8, mRNA Anti-Terminator Proteins. *Cell* **177**, 1797-1813.e1718.

Holoch, D., Wassef, M., Lövkvist, C., Zielinski, D., Aflaki, S., Lombard, B., Héry, T., Loew, D., Howard, M., and Margueron, R. (2021). A cis-acting mechanism mediates transcriptional memory at Polycomb target genes in mammals. *Nature Genetics* **53**, 1686-1697.

Inagaki, S., Takahashi, M., Takashima, K., Oya, S., and Kakutani, T. (2021). Chromatin-based mechanisms to coordinate convergent overlapping transcription. *Nat Plants* **7**, 295-302.

Kaneko, S., Son, J., Bonasio, R., Shen, S.S., and Reinberg, D. (2014). Nascent RNA interaction keeps PRC2 activity poised and in check. *Genes Dev* **28**, 1983-1988.

Klose, R.J., Cooper, S., Farcas, A.M., Blackledge, N.P., and Brockdorff, N. (2013). Chromatin Sampling—An Emerging Perspective on Targeting Polycomb Repressor Proteins. *PLOS Genetics* **9**, e1003717.

Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in *Arabidopsis thaliana*. *Mol Gen Genet* **229**, 57-66.

Leung, C.S., Douglass, S.M., Morselli, M., Obusan, M.B., Pavlyukov, M.S., Pellegrini, M., and Johnson, T.L. (2019). H3K36 Methylation and the Chromodomain Protein Eaf3 Are Required for Proper Cotranscriptional Spliceosome Assembly. *Cell Reports* **27**, 3760-3769.e3764.

998 Liu, F., Marquardt, S., Lister, C., Swiezewski, S., and Dean, C. (2010). Targeted 3'
999 Processing of Antisense Transcripts Triggers *Arabidopsis FLC* Chromatin Silencing.
1000 *Science* 327, 94-97.

1001 Liu, F., Quesada, V., Crevillén, P., Bäurle, I., Swiezewski, S., and Dean, C. (2007). The
1002 *Arabidopsis* RNA-Binding Protein FCA Requires a Lysine-Specific Demethylase 1
1003 Homolog to Downregulate FLC. *Molecular Cell* 28, 398-407.

1004 Lökvist, C., and Howard, M. (2021). Using computational modelling to reveal mechanisms
1005 of epigenetic Polycomb control. *Biochemical Society Transactions* 49, 71-77.

1006 Mangeon, A., Magioli, C., Tarre, E., Cardeal, V., Araujo, C., Falkenbach, E., Rocha, C.A.,
1007 Rangel-Lima, C., and Sachetto-Martins, G. (2010). The tissue expression pattern of the
1008 AtGRP5 regulatory region is controlled by a combination of positive and negative
1009 elements. *Plant Cell Rep* 29, 461-471.

1010 Marina, D.B., Shankar, S., Natarajan, P., Finn, K.J., and Madhani, H.D. (2013). A conserved
1011 ncRNA-binding protein recruits silencing factors to heterochromatin through an RNAi-
1012 independent mechanism. *Genes & Development* 27, 1851-1856.

1013 Marquardt, S., Raitskin, O., Wu, Z., Liu, F., Sun, Q., and Dean, C. (2014). Functional
1014 consequences of splicing of the antisense transcript COOLAIR on FLC transcription.
1015 *Mol Cell* 54, 156-165.

1016 Martignago, D., Bernardini, B., Polticelli, F., Salvi, D., Cona, A., Angelini, R., and
1017 Tavladoraki, P. (2019). The Four FAD-Dependent Histone Demethylases of
1018 *Arabidopsis* Are Differently Involved in the Control of Flowering Time. *Frontiers in
1019 Plant Science* 10.

1020 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
1021 reads. *2011* 17, 3.

1022 Mateo-Bonmatí, E., Xiaofeng, F., Robert, M., Marc, F., Lori, A.P., and Caroline, A.D.
1023 (2023). The CPSF phosphatase module links transcription termination to chromatin
1024 silencing. *bioRxiv*, <https://doi.org/10.1101/2023.07.06.547976>.

1025 Menon, G., Schulten, A., Dean, C., and Howard, M. (2021). Digital paradigm for Polycomb
1026 epigenetic switching and memory. *Current Opinion in Plant Biology* 61, 102012.

1027 Moll, P., Ante, M., Seitz, A., and Reda, T. (2014). QuantSeq 3' mRNA sequencing for RNA
1028 quantification. *Nature Methods* 11, i-iii.

1029 Nojima, T., and Proudfoot, N.J. (2022). Mechanisms of lncRNA biogenesis as revealed by
1030 nascent transcriptomics. *Nature Reviews Molecular Cell Biology* 23, 389-406.

1031 Pease, N.A., Nguyen, P.H.B., Woodworth, M.A., Ng, K.K.H., Irwin, B., Vaughan, J.C., and
1032 Kueh, H.Y. (2021). Tunable, division-independent control of gene activation timing by
1033 a polycomb switch. *Cell Rep* 34, 108888.

1034 Schon, M., Baxter, C., Xu, C., Enugutti, B., Nodine, M.D., and Dean, C. (2021). Antagonistic
1035 activities of cotranscriptional regulators within an early developmental window set FLC
1036 expression level. *Proc Natl Acad Sci U S A* 118.

1037 Shema, E., Jones, D., Shores, N., Donohue, L., Ram, O., and Bernstein, B.E. (2016). Single-
1038 molecule decoding of combinatorially modified nucleosomes. *Science* 352, 717-721.

1039 Shimada, Y., Carl, S.H., Skribbe, M., Flury, V., Kuzdere, T., Kempf, G., and Bühler, M.
1040 (2021). An enhancer screen identifies new suppressors of small-RNA-mediated
1041 epigenetic gene silencing. *PLOS Genetics* 17, e1009645.

1042 Shu, J., Chen, C., Thapa, R.K., Bian, S., Nguyen, V., Yu, K., Yuan, Z.-C., Liu, J., Kohalmi,
1043 S.E., Li, C., *et al.* (2019). Genome-wide occupancy of histone H3K27
1044 methyltransferases CURLY LEAF and SWINGER in *Arabidopsis* seedlings. *Plant
1045 Direct* 3, e00100.

1046 Simpson, G.G., Dijkwel, P.P., Quesada, V., Henderson, I., and Dean, C. (2003). FY Is an
1047 RNA 3' End-Processing Factor that Interacts with FCA to Control the Arabidopsis
1048 Floral Transition. *Cell* 113, 777-787.

1049 Sonmez, C., Bäurle, I., Magusin, A., Dreos, R., Laubinger, S., Weigel, D., and Dean, C.
1050 (2011). RNA 3' processing functions of *Arabidopsis* FCA and FPA limit intergenic
1051 transcription. *Proceedings of the National Academy of Sciences* 108, 8508-8513.

1052 Stein, C.B., Field, A.R., Mimoso, C.A., Zhao, C., Huang, K.L., Wagner, E.J., and Adelman,
1053 K. (2022). Integrator endonuclease drives promoter-proximal termination at all RNA
1054 polymerase II-transcribed loci. *Mol Cell* 82, 4232-4245 e4211.

1055 Swiezewski, S., Liu, F., Magusin, A., and Dean, C. (2009). Cold-induced silencing by long
1056 antisense transcripts of an *Arabidopsis* Polycomb target. *Nature* 462, 799-802.

1057 Tucker, J.F., Ohle, C., Schermann, G., Bendrin, K., Zhang, W., Fischer, T., and Zhang, K.
1058 (2016). A Novel Epigenetic Silencing Pathway Involving the Highly Conserved 5'-3'
1059 Exoribonuclease Dhp1/Rat1/Xrn2 in *Schizosaccharomyces pombe*. *PLOS Genetics* 12,
1060 e1005873.

1061 Vo, T.V., Dhakshnamoorthy, J., Larkin, M., Zofall, M., Thillainadesan, G., Balachandran, V.,
1062 Holla, S., Wheeler, D., and Grewal, S.I.S. (2019). CPF Recruitment to Non-canonical
1063 Transcription Termination Sites Triggers Heterochromatin Assembly and Gene
1064 Silencing. *Cell Reports* 28, 267-281.e265.

1065 Wang, H., Fan, Z., Shliaha, P.V., Miele, M., Hendrickson, R.C., Jiang, X., and Helin, K.
1066 (2023). H3K4me3 regulates RNA polymerase II promoter-proximal pause-release.
1067 *Nature* 615, 339-348.

1068 Wang, Z.W., Wu, Z., Raitskin, O., Sun, Q., and Dean, C. (2014). Antisense-mediated FLC
1069 transcriptional repression requires the P-TEFb transcription elongation factor. *Proc Natl
1070 Acad Sci U S A* 111, 7468-7473.

1071 Wittmann, S., Renner, M., Watts, B.R., Adams, O., Huseyin, M., Baejen, C., El Omari, K.,
1072 Kilchert, C., Heo, D.-H., Kecman, T., *et al.* (2017). The conserved protein Seb1 drives
1073 transcription termination by binding RNA polymerase II and nascent RNA. *Nature
1074 Communications* 8, 14861.

1075 Wu, Z., Ietswaart, R., Liu, F., Yang, H., Howard, M., and Dean, C. (2016). Quantitative
1076 regulation of *FLC* via coordinated transcriptional initiation and elongation. *Proc Natl
1077 Acad Sci U S A* 113, 218-223.

1078 Xu, C., Wu, Z., Duan, H.C., Fang, X., Jia, G., and Dean, C. (2021). R-loop resolution
1079 promotes co-transcriptional chromatin silencing. *Nat Commun* 12, 1790.

1080 Yang, H., Berry, S., Olsson, T.S.G., Hartley, M., Howard, M., and Dean, C. (2017). Distinct
1081 phases of Polycomb silencing to hold epigenetic memory of cold in *Arabidopsis*.
1082 *Science* 357, 1142-1145.

1083 Yang, Y., Costa, A., Leonhardt, N., Siegel, R.S., and Schroeder, J.I. (2008). Isolation of a
1084 strong *Arabidopsis* guard cell promoter and its potential as a research tool. *Plant
1085 Methods* 4, 6.

1086 Zhao, Y., Zhu, P., Hepworth, J., Bloomer, R., Antoniou-Kourounioti, R.L., Doughty, J.,
1087 Heckmann, A., Xu, C., Yang, H., and Dean, C. (2021). Natural temperature fluctuations
1088 promote *COOLAIR* regulation of *FLC*. *Genes Dev* 35, 888-898.

1089

1 **Supplementary Information**

2 **Proximal termination generates a transcriptional state that determines**
3 **the rate of establishment of Polycomb silencing**

4 Govind Menon¹, Eduardo Mateo-Bonmatí^{2,5}, Svenja Reeck², Robert Maple², Zhe Wu³, Robert
5 Ietswaart⁴, Caroline Dean², Martin Howard¹

6

7 ¹Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park NR4
8 7UH, UK

9 ²Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park NR4
10 7UH, UK

11 ³Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education
12 Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences,
13 Southern University of Science and Technology, Shenzhen, China

14 ⁴Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115,
15 USA

16 ⁵Current address: Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid
17 (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, 28223
18 Pozuelo de Alarcón, Madrid, Spain

19

20 **Computational Model**

21 We built a stochastic model describing the dynamics of the activating and repressive histone
22 modifications of interest, across a single *FLC* locus. The model also describes transcription events at
23 the locus – sense and antisense – as well as alternative polyadenylation during these transcription
24 events.

25

26 **Model features:**

27 **Activating and repressive histone modifications**

28 The mathematical model describes the modification state of each H3 histone at the *FLC*
29 locus, with the whole locus represented by an array of 30 nucleosomes, consistent with the
30 approximately 6 kilobases extent of the locus (nucleosomal DNA + linker DNA spans
31 approximately 200 bp). The modifications described are: (1) H3K4me1, an activating
32 modification associated with gene bodies in *Arabidopsis*, and known to exhibit significant
33 differences between active and silenced states of *FLC*; (2) the Polycomb-mediated repressive
34 modification H3K27me3 as well as possible H3K27me2, H3K27me1 and me0 states. The
35 model assumes mutual exclusivity of K4me and K27me on the same H3 tail in line with
36 experimentally observed mutual exclusivity in mESCs (Shema et al., 2016; Voigt et al., 2012)
37 (Kim et al., 2013; Schmitges et al., 2011). Evidence from mammalian and yeast studies
38 indicate that H3K27me and H3K4me are added non-processively (McCabe et al., 2012;
39 Soares et al., 2017). Therefore, the model assumes stepwise addition of these modifications.

40

41 **Sense and Antisense transcription**

42 The model describes sense and antisense transcription events at the locus. The frequency of
43 these events (assumed to represent transcription initiation or transition to elongation) is
44 determined by the coverage of repressive H3K27me3 across the locus. This is consistent with
45 Polycomb (PRC1) binding to H3K27me3 and controlling accessibility to gene regulatory
46 elements by mediating compaction (Blackledge and Klose, 2021), as well as other potential
47 H3K27me3-mediated mechanisms, such as inhibition of RNA Pol II release from the
48 Transcription Start Site (TSS) (Zhang et al., 2020), thus preventing transitions into an actively
49 transcribing Pol II state (Brookes et al., 2012). Our data indicates that both sense and
50 antisense transcription at *FLC* are silenced by Polycomb – both types of transcripts are
51 present at higher levels in the absence of Polycomb silencing, as observed in genotypes
52 containing the *FLC* activator FRIGIDA, and in loss of function mutants of FCA and FLD.
53

54 **Co-transcriptional addition of activating modifications**

55 Activating modification such as H3K4me and H3K36me in many contexts and across
56 organisms are known to be added co-transcriptionally (Chan et al., 2022). The association of
57 the H3K4 methyltransferase complex with elongating RNA Pol II and the addition of this
58 modification during transcriptional elongation has been demonstrated in *S. cerevisiae* (Soares
59 et al., 2017). In the case of Arabidopsis H3K4me1, a genome wide analysis of the localization
60 patterns of H3K4me1, of RNA Pol II, and of the different H3K4 methyltransferases, indicates
61 that the co-transcriptional addition of H3K4me1 over the gene body is mediated mainly by
62 the methyltransferase ATXR7 (Oya et al., 2022). Consistent with this role, an *ATXR7* mutant
63 has been shown to partially suppress *FLC* activation by the activator FRIGIDA (Tamada et
64 al., 2009).

65 **Alternative polyadenylation mediated by coverage of activating modifications**

66 The model assumes that higher overall coverage of H3K4me1 across the locus promotes
67 distal termination of transcription. This assumption is in line with a potential feedback
68 mechanism where H3K4me1 enables binding of the H3K36me3 methyltransferase (SDG8)
69 and consequent H3K36me3-mediated assembly of splicing factors (Leung et al., 2019) which
70 facilitate co-transcriptional processing. Such a role for H3K4 methylation is also consistent
71 with evidence in yeast (Soares et al., 2017) and mammalian cells (Wang et al., 2023),
72 indicating a role in facilitating productive transcriptional elongation.
73

74 **Proximal termination mediated removal of activating modifications**

75 The model assumes proximal termination of both sense and antisense mediates removal of
76 H3K4me1. This is in line with the potential function of FLD as a demethylase (Inagaki et al.,
77 2021), and the fact that genetically, FLD relies on FCA-mediated proximal termination of
78

79 antisense (Liu et al., 2007). The removal of H3K4me1 resulting from proximal PA is assumed
80 to take place uniformly across the whole locus, as the data we currently have does not allow
81 us to observe the spatial details of this process.

82

83 **Polycomb nucleation and spreading**

84 The model describes nucleation of H3K27me by Polycomb in the *FLC* nucleation region,
85 where Polycomb silencing is known to be nucleated during cold-induced chromatin silencing
86 of *FLC*. Subsequent H3K27me3 spreading across the locus in this context is known to depend
87 on the plant PRC2 methyltransferase CLF and on an active cell cycle, while nucleation does
88 not depend on either. Experimental evidence from a genome-wide ChIP-seq study showing
89 H3K27me3 patterns in a *clf* mutant (Shu et al., 2019) indicates that a similar mechanism is
90 involved in the early developmental silencing of *FLC* – the *clf* mutant shows a clear
91 H3K27me3 peak in the *FLC* nucleation region, while spreading is compromised. Consistent
92 with this, in the wild-type, H3K27me3 is assumed to spread to the rest of the locus through
93 interactions with the nucleation region, through read-write feedback interactions. The
94 spreading is assumed to rely on an active cell cycle – in the model, this is achieved by having
95 the interactions with the nucleation region stronger in S/G2 phases.

96

97 **Looping interactions mediating Polycomb activity**

98 Experimental evidence indicates the existence of a gene loop mediating an interaction
99 between the 5' and 3' ends of *FLC* (Crevillen et al., 2013; Li et al., 2018), with the level of
100 interaction potentially depending the transcriptional state of the locus (Li et al., 2018).
101 Significantly, this looping interaction is present in the silenced *FLC* state in the reference
102 genotype Col-0, and consistently, a secondary peak of H3K27me3 is observed in published
103 ChIP-seq data in *clf* (Shu et al., 2019). Therefore, we capture this interaction in the model by
104 allowing for stronger interactions with the nucleation region for a designated “looping region”
105 within the gene body.

106

107 **Productive transcription antagonises H3K27me**

108 Experimental evidence from mammalian systems indicates that productive transcription can
109 promote removal of H3K27me through histone exchange. In addition, the H3K27me
110 demethylases have been shown to physically interact with and co-localise on chromatin with
111 elongating RNA Pol II, in *Drosophila* (Smith et al., 2008) and more specifically at the *FLC*
112 locus (Yang et al., 2016). Both features have been captured in previous models of Polycomb
113 silencing (Berry et al., 2017), and they are also incorporated in the current model. These
114 features allow the rate of H3K27me turnover across the locus to be determined by the
115 frequency of transcription events. Our model also incorporates alternative PA of both sense

116 and antisense transcription, allowing proximal PA and termination of RNA Pol II. The model
117 assumes that only distal PA and termination (i.e., productive transcription events) can remove
118 H3K27me through the above mechanisms.

119

120 **Mutual exclusivity of sense and antisense at the same locus**

121 We previously found that distal antisense transcription and sense *FLC* transcription are
122 mutually exclusive at individual *FLC* loci (Rosa et al., 2016). Consistent with this mutual
123 exclusivity, we have observed an anticorrelation between the levels of distal antisense
124 transcripts and sense transcripts in multiple contexts, including different chromatin states of
125 the *FLC* locus (Ietswaart et al., 2017; Zhao et al., 2021). While this evidence demonstrates a
126 mutual exclusivity between full length (distal) sense and antisense transcription events, we
127 currently do not have data to determine whether the mutual exclusivity applies to proximally
128 terminated transcription events. However, for simplicity, the model assumes mutual
129 exclusivity for both types of transcription events. This is realised by having a refractory
130 period after a sense (antisense) transcription event, during which antisense (sense) initiation is
131 not allowed to occur. The model assumes equal refractory periods for sense and antisense
132 transcription, as well as for distal and proximal termination.

133

134 **Inheritance of modified histones during DNA replication**

135 In line with recent evidence indicating that only H3-H4 tetramers carrying repressive
136 modifications are reliably inherited across DNA replication (Escobar et al., 2021), the model
137 assumes that H3 pairs corresponding to an individual nucleosome are inherited with
138 probability half to a daughter strand, only if at least one of the H3 carries K27 methylation.

139

140 **Additional considerations for the model**

141 **Absence of a role for the *Ler Mutator*-like transposable element at *FLC***

142 The *FLC* allele in the *Ler* accession is known to contain a *Mutator*-like transposable element (TE) in
143 intron 1 that causes lower expression from this allele relative to *FLC* alleles in other accessions
144 (Michaels et al., 2003). This lower expression results from RNAi-mediated chromatin silencing of the
145 TE element (Liu et al., 2004). However, experimental evidence indicates that the intermediate *FLC*
146 expression levels in *fca* mutants are unlikely to be mediated by the TE. The TE has been shown to act
147 *in cis* (Michaels et al., 2003), as expression of an *FLC* allele from the Columbia-0 (Col-0) accession is
148 unaffected in F1 plants generated by a *Ler* to Col-0 cross, while the *Ler FLC* allele expression is
149 attenuated by the TE. In our case, the intermediate expression in *fca* mutants could be observed for
150 both the endogenous *FLC* (*Ler FLC* containing TE) and the transgenic Venus tagged *FLC* (Col-0
151 *FLC* sequence), arguing against a role for the *cis*-acting TE mechanism in generating intermediate
152 transcription states.

153

154 **Role for H3K36me3**

155 The above model only considers the histone modifications H3K4me1 and H3K27me, and does not
156 explicitly consider H3K36me3. As discussed in the text, the *Arabidopsis* H3K36 methyltransferase
157 SDG8 is known to recognise H3K4me1, thus mechanistically linking the two modifications.
158 Combined with the H3K36me3 requirement for effective co-transcriptional splicing and recruitment
159 of splicing factors as reported in *S. cerevisiae* (Leung et al., 2019) this suggests a mechanism where
160 FLD-mediated removal of H3K4me1 may cause reduced H3K36 methylation, which in turn promotes
161 further early transcription termination by disrupting co-transcriptional splicing. For simplicity, the
162 model omits the H3K36me3 step and assumes that H3K4me1 implicitly mediates this effect on
163 termination.

164

165 **Direct physical interaction between transcription-coupled repression and Polycomb**

166 FCA has been reported to interact directly with the *Arabidopsis* PRC2 methyltransferase CLF *in vivo*
167 (Tian et al., 2019). However, we have found no evidence of this interaction in our FCA
168 immunoprecipitation followed by mass spectrometry (IP-MS) data or other published CLF IP-MS
169 data (Fang et al., 2019; Liang et al., 2015), and hence this interaction is not further considered in our
170 model or other analyses.

171

172 **Model implementation**

173 **Locus description:** The whole locus represented by an array of 30 nucleosomes (60 H3 histones),
174 consistent with the approximately 6 kilobase extent of the locus (nucleosomal DNA + linker DNA
175 spans approximately 200 bp).

176

177 **Mutually exclusive H3 modifications:** Each H3 histone can be in one of five modification mutually
178 exclusive states: {-1,0,1,2,3} representing H3K4me1, H3 unmodified on K4 and K27, H3K27me1,
179 me2, and me3 respectively. This means addition of K27me can take place only in the absence of
180 H3K4me1 and vice versa. All transitions are assumed to be non-processive: only transitions involving
181 addition/removal of a single methyl group are allowed. The modification state of the locus is
182 representing by an array S representing the modification states of the 60 histones. Each entry S_i can
183 take the values {-1,0,1,2,3}. The array S is used to store the current state of all 60 histones over the
184 course of the simulation. Note that we do not describe H3K36me3 in the model, as the evidence
185 indicates it is downstream of H3K4me1, as described above and in the main text.

186

187 **Alternative termination of transcription:** Each transcription event (sense or antisense) has a
188 probability of being proximally terminated. This probability is determined by both the current
189 H3K4me1 fractional coverage (whole locus) and the FCA effectiveness parameter, as follows:

$$P(\text{Proximal}) = \delta_{\text{Proximal}} + (p_0 + p_{FCA})(1 - P_{K4me1})(1 - \delta_{\text{Proximal}} - \mu_{\text{Distal}}).$$

190 The probability of distal termination is given by:

191 $P(\text{Distal}) = 1 - P(\text{Proximal}).$

192 Here p_{FCA} represents FCA effectiveness parameter and p_0 captures possible FCA independent
193 proximal termination. $(p_0 + p_{FCA})$ is constrained to be less than or equal to 1. P_{K4me1} represents
194 the fractional coverage of H3K4me1, δ_{Proximal} is a residual proximal termination probability (some
195 proximal termination occurs even when $P_{K4me1} = 1$), and μ_{Distal} is a residual probability for distal
196 termination (some distal termination occurs even when $p_{FCA} = 1$ or $P_{K4me1} = 0$).

197

198 **Transcriptional antagonism of Polycomb:** (1) Histone exchange: during each distally terminated
199 transcription event, iterating over the histones (entries of array S), for each histone, we generate a
200 pseudo-random number from a uniform distribution (0,1) and set both entries corresponding to the
201 current nucleosome to 0 if the generated number is less than $p_{ex}/2$ (see Supplementary Table). (2)
202 Co-transcriptional Demethylation: During each distally terminated transcription event, iterating over
203 the entries of array S, for each histone, we generate a pseudo-random number from a uniform
204 distribution (0,1) and reduce the methylation state by one if the current state is {1, 2, or 3} AND the
205 generated number is less than p_{dem} (see Supplementary Table).

206

207 **Transcription mediated effects on H3K4 methylation:** (1) Co-transcriptional addition of
208 H3K4me1: Each unmodified H3 histone has a fixed probability p_{K4me}^{Transc} , of being methylated during a
209 productive (distally terminated) transcription event (not in case of proximal termination). (2) H3K4
210 demethylation by FLD: Each H3 histone carrying H3K4me1 has a fixed probability p_{dem}^{FLD} of losing
211 this modification during a proximally terminated transcription event.

212

213 **H3K4me1 dynamics:** The background turnover rate (independent of proximal termination and FLD)
214 of H3K4me1 is set so that overall turnover rates of H3K27me3 and H3K4me1 are in the ratio
215 3.128/0.959, as measured in HeLa cells by a SILAC technique in (Zee et al., 2010). The H3K4
216 methylation propensities (background and transcription mediated) are chosen to be significantly
217 higher than the K27me3 propensities, consistent with faster H3K4 methylation seen in time course
218 evidence from mammalian systems.

219

220 **H3K27me3 dynamics:** Values for methylation rate constants are mostly chosen as in (Berry et al.,
221 2017). The overall rate β alone is adjusted from its value in (Berry et al., 2017) to allow for a changed
222 interaction paradigm – instead of just nearest neighbour interactions, the current model allows long
223 ranged interactions between nucleosomes across the whole locus, with any nucleosome being able to

224 interact with any other within the locus at some rate (see below). To account for nucleation, spreading
 225 and the looping interaction, the nucleosome array representing the whole locus is divided into three
 226 subsets: nucleation region (NR, nucleosomes 1 to 3, i.e., histones 1 to 6), looping region (LR,
 227 nucleosomes 20 to 22, i.e., histones 39 to 44), and body region (Body, remaining nucleosomes). The
 228 choice of nucleosomes 19 to 21 for the looping region is consistent with the observed secondary
 229 nucleation peak observed around 4kb downstream of the *FLC* TSS in published data for the *clf* mutant
 230 (Shu et al., 2019).

231

232 The methylation propensities at each histone i are computed as:

$$r_i^{\text{me}} = \beta \left(\delta_{S_i,0} (\gamma_{\text{me}0-1} + k_{\text{me}0-1} E_i) + \delta_{S_i,1} (\gamma_{\text{me}1-2} + k_{\text{me}1-2} E_i) + \delta_{S_i,2} (\gamma_{\text{me}2-3} + k_{\text{me}2-3} E_i) \right)$$

233 where E_i represents the PRC2 read-write feedback contribution.

234

235 For nucleation region histones, the PRC2 read-write feedback mediated contribution to the H3K27
 236 methylation propensity is computed as:

$$E_i = \xi_{NR}^{NR} \sum_{j \in NR} \left(\rho_{\text{me}2} \delta_{S_j,2} + \delta_{S_j,3} \right) + \xi_{LR}^{NR} \sum_{j \in LR} \left(\rho_{\text{me}2} \delta_{S_j,2} + \delta_{S_j,3} \right) + \xi_{Body}^{NR} \sum_{j \in Body} \left(\rho_{\text{me}2} \delta_{S_j,2} + \delta_{S_j,3} \right),$$

237

238 where $\rho_{\text{me}2}$ is the relative activation of PRC2 by H3K27me2 as compared to H3K27me3. For the
 239 looping region histones, the PRC2 read-write feedback mediated contribution to the H3K27
 240 methylation propensity is computed as:

$$E_i = \xi_{NR}^{LR} \sum_{j \in NR} \left(\rho_{\text{me}2} \delta_{S_j,2} + \delta_{S_j,3} \right) + \xi_{LR}^{LR} \sum_{j \in LR} \left(\rho_{\text{me}2} \delta_{S_j,2} + \delta_{S_j,3} \right) + \xi_{Body}^{LR} \sum_{j \in Body} \left(\rho_{\text{me}2} \delta_{S_j,2} + \delta_{S_j,3} \right).$$

241 For the remaining gene body histones, the PRC2 read-write feedback mediated contribution to the
 242 H3K27 methylation propensity is computed as:

$$E_i = \xi_{NR}^{Body} \sum_{j \in NR} \left(\rho_{\text{me}2} \delta_{S_j,2} + \delta_{S_j,3} \right) + \xi_{LR}^{Body} \sum_{j \in LR} \left(\rho_{\text{me}2} \delta_{S_j,2} + \delta_{S_j,3} \right) + \xi_{Body}^{Body} \sum_{j \in Body} \left(\rho_{\text{me}2} \delta_{S_j,2} + \delta_{S_j,3} \right).$$

243 Here the parameters ξ are chosen so that interactions between nucleosomes within the nucleation and
 244 looping region histones produce the highest contribution to feedback methylation, followed by the
 245 contribution of NR and LR nucleosomes to methylation of other gene body nucleosomes. This is
 246 consistent with the PRC2 enzymatic machinery localising mainly to the nucleation region. Also
 247 consistent with this, we assume lower contributions from gene body histones to the methylation of NR
 248 and LR nucleosomes, and the lowest contribution from interactions between gene body histones.

249 Hence, we set the above parameters as follows:

250 $\xi_{NR}^{NR} = \xi_{LR}^{NR} = \xi_{NR}^{LR} = \xi_{LR}^{LR} > \xi_{NR}^{Body} = \xi_{LR}^{Body} > \xi_{Body}^{NR} = \xi_{Body}^{LR} > \xi_{Body}^{Body}$.

251 Following (Berry et al., 2017), a background “noisy” removal of H3K27 methylation is also included
252 in the model, represented by the rate constant γ_{dem} .

253

254 **Dependence on an active cell cycle:** To implement the dependence of H3K27me3 spreading on an
255 active cell cycle (as observed experimentally in (Yang et al., 2017)), the total cell cycle duration is
256 divided into two parts: G1 and S/G2/M, with replication of the locus occurring at the midpoint of
257 S/G2/M. The duration of G1 is assumed to be approximately half the total duration of the cell-cycle.
258 The four parameters corresponding to interactions between the NR/LR and the body region (ξ_{NR}^{Body} ,
259 ξ_{LR}^{Body} , ξ_{Body}^{NR} , ξ_{Body}^{LR}) are reduced by a factor of 10 during the part of the cell cycle corresponding to
260 G1 phase.

261

262 **H3K27me3 spreading mutant:** For simulating the H3K27me3 spreading mutant (*clf-2*), we lower
263 the read-write feedback contributions from the NR and LR nucleosomes to methylation of gene body
264 nucleosomes (i.e., lower ξ_{NR}^{Body} and ξ_{LR}^{Body}), as well as the contribution from the gene body
265 nucleosomes to methylation of the NR and LR nucleosomes (i.e., lower ξ_{Body}^{NR} and ξ_{Body}^{LR}). Since the
266 loss of one of the PRC2 methyltransferases may also be expected to partially affect H3K27me3
267 addition within the nucleation region itself, we also slightly reduce the feedback contributions
268 between nucleosomes inside the NR and LR regions (i.e., lower ξ_{NR}^{NR} , ξ_{LR}^{NR} , ξ_{NR}^{LR} , ξ_{LR}^{LR}). These
269 parameter values are specified in supplementary Table 2.

270

271 **De novo addition of H3K27me3:** In addition to the differences in PRC2 feedback mediated
272 contributions, the nucleation region (first three nucleosomes) is assumed to have a significantly higher
273 *de novo* contribution to the H3K27 methylation propensity (γ_{me} parameters), consistent with evidence
274 for *de novo* PRC2 targeting to this region during early developmental silencing of *FLC* (Shu et al.,
275 2019).

276 **H3K27me3 fractional coverage measure:** Our previous studies of *FLC* silencing indicate that
277 nucleation region H3K27me3 alone can significantly repress transcription, with the body region
278 H3K27me3 making a relatively smaller additional contribution to silencing. This finding is different
279 to the assumptions of Berry et al., where both H3K27me2 and H3K27me3 could repress.
280 Furthermore, nucleation of H3K27me3 in the cold is sufficient to switch the locus to a digitally OFF
281 state, as seen by FLC Venus imaging in the roots (Lovkvist et al., 2021). Potentially different
282 contributions of the nucleation and looping region H3K27me3 versus the body region H3K27me3 to
283 the transcriptional silencing are captured by allowing a higher contribution from these NR and LR
284 nucleosomes when computing the overall fractional coverage of H3K27me3:

$$P_{K27me3} = \eta P_{K27me3}^{NR+LR} + (1 - \eta) P_{K27me3}^{Body}$$

285

286 Here P_{K27me3}^{NR+LR} and P_{K27me3}^{Body} represent fractional coverage of H3K27me3 in the nucleation
287 region/looping region and the rest of the locus, respectively, and $0 < \eta < 1$. The overall fractional
288 coverage, P_{K27me3} computed above, is then used to determine the transcription propensity (see
289 below).

290

291 **Polycomb silencing of transcription:** H3K27me3 coverage across the locus is assumed to determine
292 the “transcription initiation” frequency. This frequency is assumed to be a piecewise linear function of
293 H3K27me3 coverage with a saturation threshold (similar to the model in (Berry et al., 2017)). Note
294 that this frequency can also represent the transition of initiated Pol II into the elongating phase.
295 Nucleation region and looping region contributions to the fractional coverage are assumed to be
296 higher than the rest of the locus (see above). H3K27me3 coverage also has the same effect on sense
297 and antisense initiation frequency.

$$f = \alpha(f_{max} - \frac{P_{K27me3}}{P_T}(f_{max} - f_{min})) \text{ for } P_{K27me3} < P_T$$

299 and

$$f = \alpha f_{min} \text{ for } P_{K27me3} \geq P_T$$

301 We also allow for a slightly higher transcription frequency in the H3K27me3 nucleated state
302 compared to a fully H3K27me3 spread state. This is consistent with our previous datasets, where *FLC*
303 transcriptional output is observed to reduce further during the post-cold transition to a spread state
304 following nucleation. To enable this behaviour, we set $\eta < P_T$ so that the full silencing threshold is
305 not reached even with full coverage of H3K27me3 in the nucleation and looping regions (i.e., even
306 with $P_{K27me3}^{NR+LR} = 1$).

307

308 Published evidence based on sequencing of nascent RNA as well as our own qPCR data (Wu et al.,
309 2016) indicates lower frequency of antisense transcription compared to sense transcription. This
310 difference between sense and antisense transcription is captured by using different values of α for
311 sense and antisense initiation frequency. Note that H3K4me1 does not affect the initiation frequency.

312

313 **Histone inheritance during DNA replication:** For each individual simulation, the DNA replication
314 times are fixed deterministically, assuming a cell cycle duration of 22h (Rahni and Birnbaum, 2019).
315 At each DNA replication timepoint, the Gillespie Stochastic Simulation Algorithm (SSA) is
316 interrupted. We then iterate over the entries of the array S , where for each nucleosome at the locus
317 carrying at least one H3K27me, its modification state is set to 0, i.e., the pair of entries corresponding
318 to the nucleosome is set to 0, with a probability of 0.5. We assume here random inheritance of intact

319 H3-H4 nucleosomes, with equal probability to each daughter strand. For each nucleosome, this is
 320 done by generating a pseudo-random number from a uniform distribution (0,1) and setting the
 321 corresponding histone modification states to 0 if the generated number is less than 0.5. In contrast, for
 322 each nucleosome carrying no H3K27me, the modification state is always set to zero, i.e., no
 323 inheritance of nucleosomes carrying only H3K4me1.

324

Table 1: Model parameter values: H3K27me

Parameter	Description	Value used in model	Details
N	Number of histones	60	Approximately 6kb size of the <i>FLC</i> locus
k_{me}	PRC2-mediated methylation rate (histone $^{-1}$ s $^{-1}$)	$8 \cdot 10^{-6}$	Parameter value fitted to genome-wide H3K27me3 dynamics in Berry et al., 2017
$k_{\text{me0-1}}$	PRC2-feedback mediated methylation rate (me0 to me1) (histone $^{-1}$ s $^{-1}$)	$9k_{\text{me}}$	Following the model in Berry et al., 2017
$k_{\text{me1-2}}$	PRC2-feedback mediated methylation rate (me1 to me2) (histone $^{-1}$ s $^{-1}$)	$6k_{\text{me}}$	Following the model in Berry et al., 2017
$k_{\text{me2-3}}$	PRC2-feedback mediated methylation rate (me2 to me3) (histone $^{-1}$ s $^{-1}$)	k_{me}	Following the model in Berry et al., 2017
$\gamma_{\text{me2-3}}$	Noisy methylation rate (me2 to me3) (histone $^{-1}$ s $^{-1}$)	$k_{\text{me}}/20$	Following the model in Berry et al., 2017
$\gamma_{\text{me1-2}}$	Noisy methylation rate (me1 to me2) (histone $^{-1}$ s $^{-1}$)	$k_{\text{me1-2}}/20$	Following the model in Berry et al., 2017
$\gamma_{\text{me0-1}}$	Noisy methylation rate (me0 to me1) (histone $^{-1}$ s $^{-1}$)	$k_{\text{me0-1}}/20$	Following the model in Berry et al., 2017
$\gamma_{\text{me2-3}}^{\text{NR}}$	De novo methylation rate (me2 to me3) in Nucleation region (histone $^{-1}$ s $^{-1}$)	$0.35 \gamma_{\text{me2-3}}$	Fitted in this study
$\gamma_{\text{me1-2}}^{\text{NR}}$	De novo methylation rate (me1 to me2) in Nucleation region	$0.35 \gamma_{\text{me1-2}}$	Fitted in this study

	(histone ⁻¹ s ⁻¹)		
γ_{me0-1}^{NR}	De novo methylation rate (me0 to me1) in Nucleation region (histone ⁻¹ s ⁻¹)	0.35 γ_{me0-1}	Fitted in this study
β	Relative local PRC2-activity	0.7	Fitted in this study
ρ_{me2}	Relative activation of PRC2 by H3K27me2	0.1	Following the model in Berry et al., 2017
γ_{dem}	Noisy demethylation rate of H3K27 (histone ⁻¹ s ⁻¹)	$8.8 \cdot 10^{-7}$	Fitted in this study

325

Table 2: Model parameter values: Nucleosome interaction parameters for PRC2 read-write feedback

$\xi_{NR}^{NR} = \xi_{LR}^{NR} = \xi_{NR}^{LR} = \xi_{LR}^{LR}$	Interactions within nucleation and looping regions	1 (<i>Ler, fca-3, fca-1</i>), 0.8 (<i>clf-2, fca-3 clf-2</i>)	Fitted in this study
$\xi_{NR}^{Body} = \xi_{LR}^{Body}$	Nucleation and looping region contributions to methylation of gene body nucleosomes	0.5 (<i>Ler, fca-3, fca-1</i>) 0.05 (<i>clf-2, fca-3 clf-2</i>)	Fitted in this study
$\xi_{Body}^{NR} = \xi_{Body}^{LR}$	Gene body contributions to methylation of nucleation and looping region nucleosomes	0.2 (<i>Ler, fca-3, fca-1</i>) 0.12 (<i>clf-2, fca-3 clf-2</i>)	Fitted in this study
ξ_{Body}^{Body}	Interactions within gene body region	0.01	Fitted in this study

326

327

Table 3: Model parameter values: Transcription and PA site choice

α_{sense}	Trans-acting gene activation for sense transcription	1	Fixed to 1 for <i>FLC</i> sense transcription
$\alpha_{antisense}$	Trans-acting gene activation for antisense transcription	0.2	Set to a lower value relative to α_{sense} , consistent with lower frequency of antisense transcription compared to sense transcription under pre-cold warm conditions (Rosa et al., 2016)
f_{min}	Minimum transcription initiation	$f_{max}/60$	Fitted in this study

	rate (s^{-1})		
f_{max}	Maximum transcription initiation rate at <i>FLC</i> (s^{-1})	$0.58 \cdot 10^{-3}$	<i>FLC</i> sense transcription initiation frequency computed using the same approach as Ietswaart et al., 2017, but using single cell mRNA counts and <i>FLC</i> mRNA half-life measured for <i>fca-1</i> in Antoniou-Kourounioti et al., 2023
P_T	H3K27me3 coverage threshold for full silencing of transcription	1/3	Following the model in Berry et al., 2017
$\delta_{Proximal}$	Residual probability of proximal termination	0.05	Fixed in this study
μ_{Distal}	Residual probability of Distal termination	0.05	Fixed in this study
p_0	Parameter representing FCA independent proximal termination	0.8	Fitted in this study
p_{FCA}	Parameter representing FCA-mediated proximal termination	0.2 (<i>Ler</i> , <i>clf-2</i>), 0.15 (<i>fca-3</i>), 0 (<i>fca-1</i>)	Fitted in this study
η	Weight parameter for relative contribution of NR+LR H3K27me3 to transcriptional silencing	0.25	Fitted in this study

328

Table 4: Model parameter values: Transcription effects on modifications

p_{dem}	Demethylation probability of H3K27me (histone $^{-1}$ distal transcription $^{-1}$)	0.1	Fitted in this study
p_{ex}	Histone exchange probability (histone $^{-1}$ distal transcription $^{-1}$)	$1 \cdot 10^{-3}$	Following the model in Berry et al., 2017
p_{dem}^{FLD}	Demethylation probability of H3K4me1 (histone $^{-1}$ proximal transcription $^{-1}$)	0.5	Fitted in this study
p_{K4me}^{Transc}	Methylation probability for unmodified H3K4 during a distally terminated transcription event	$100 \frac{k_{me}}{f_{max}}$	Computed as 100 times the PRC2-mediated methylation rate k_{me} (histone $^{-1}$ s^{-1}), then normalised by transcription frequency (s^{-1}) to obtain

			probability per histone per transcription event.
--	--	--	--

329

330

331 **Simulations**

332 Model simulations were carried out using the Gillespie exact SSA (Gillespie, 1977). Simulations were
333 coded in C++ and compiled using Clang/LLVM (version 14.0.0). The Mersenne Twister 19937
334 algorithm (Matsumoto and Nishimura, 1998), implemented in the GNU Scientific Library (GSL
335 version 2.7), was used to generate pseudorandom numbers for the Gillespie SSA. The simulation code
336 can be accessed at:

337 https://github.com/gm1613/FLC_transcription_coupled_repression_model.git

338

339 **Initial conditions**

340 In all cases – both for the analog module in isolation and the full model, the initial state was set to full
341 coverage of H3K4me1.

342

343 **Analysis of simulation output**

344 Average levels of fractional coverage of histone modifications and average frequency of different
345 transcription events and termination site usage (sense distal, antisense distal, sense proximal,
346 antisense proximal) were computed by averaging over 500 individual trajectories. Individual
347 trajectories were started at random (uniformly distributed) times in the cell cycle to avoid having all
348 trajectories synchronised. To quantify switching to the digital OFF state (which in the model can
349 correspond either to a Polycomb nucleated state or a spread state), we have to define what qualifies as
350 an OFF state. In our analysis we classify an OFF state as any state for which:

$$P_{K27me3} > \chi P_T$$

351 where the parameter χ is chosen so that $\chi P_T < \eta$, and all the other parameters/quantities are as
352 defined above. This condition on χ ensures that an H3K27me3 build-up in the nucleation region (even
353 if this modification is absent across the rest of the locus), can be sufficient to qualify as a digitally
354 OFF state. In all simulation results shown, χ is set to 0.25.

355

356 **Comparing simulation output to experimental data**

357 **Comparison to timecourse ChIP-qPCR data:** In Fig. 4 we compare the model predicted levels of
358 H3K27me3 and H3K4me1 to the normalised levels measured by ChIP-qPCR (averaged over primers
359 across the locus). The model predicted levels consist of an average over multiple simulated copies
360 (1000 copies in all cases). While the model only describes a set of *FLC* copies in dividing cells, the
361 ChIP-qPCR measurement is performed on whole-seedling tissue. Therefore, we compare a model
362 predicted population average to the experimental data. Note that we expect there to be heterogeneity

363 in the modification levels between tissues, and differences in the dynamics between dividing and non-
364 dividing cells. We have previously addressed these differences at *FLC* in detail using a population
365 level Ordinary Differential Equation model of *FLC* copies switching between different states (Questa
366 et al., 2020). However, capturing these aspects is beyond the scope of the current study. We therefore
367 make a simpler assumption: that at all timepoints and across genotypes, there exist two
368 subpopulations of *FLC* copies (at the whole plant level) in addition to the population of copies
369 represented in the model. We assume that one of these subpopulations consists entirely of active *FLC*
370 copies (with high H3K4me1 coverage) with no possibility of PRC2 silencing, and the other
371 subpopulation consists of PRC2 silenced copies (with high H3K27me3 coverage), with no possibility
372 of switching to an active state. We assume that these copies form a fixed fraction of the total *FLC*
373 copies, fixed across timepoints and across genotypes (hence independent of FCA). Note that these
374 subpopulations must also consist of dividing cells in order for their fractions to be maintained
375 constant over time. We do not explicitly simulate these subpopulations. Instead, we account for their
376 contribution to the averaged histone modification levels. The contribution from each copy in the
377 active subpopulation to H3K4me1 is assumed to be the same as the average steady state level at non-
378 Polycomb silenced copies in the *fca-1* (null mutant) model, and with no contribution to the
379 H3K27me3 level. Similarly, the contribution from each copy in the silenced subpopulation to
380 H3K27me3 is assumed to be the same as the average level at PRC2 silenced copies predicted by the
381 *Ler* model (these levels are similar in the *Ler*, *fca-3*, and *fca-1* models). We assume that these
382 silenced copies make no contribution to the H3K4me1 level. The sizes of these two subpopulations
383 relative to the population of copies represented by the model form two model parameters that we
384 change to fit the data. The fits presented in Fig. 4C,D assume that the active subpopulation is 0.2
385 times the size of the modelled population, while the silenced subpopulation is 0.1 times the size of the
386 modelled population.

387

388 **Comparison to ChIP profile across *FLC* :** In Fig. 5E, we compare the model predicted H3K27me3
389 profiles at *FLC* in the *Ler* parental genotype and the Polycomb spreading mutant *clf-2* to the ChIP-
390 qPCR measured profiles in these genotypes. Note that the model predicted profile is an average across
391 multiple simulated copies (1000 copies). To do this we used an approach developed in (Wu et al.,
392 2016) for comparing model predicted Pol II profiles to those measured by ChIP. In our case, this
393 method generates a predicted H3K27me3 ChIP profile by combining the fully spatially resolved
394 model predicted profile with the resolution limiting effects arising from the sonication generated
395 fragment size distribution inherent in ChIP based measurements. Mathematically, this method
396 involves a convolution of the full model predicted profile with the probability distribution of fragment
397 sizes generated during the ChIP experiment. Here we use the same fragment size distribution
398 estimated in (Wu et al., 2016). The code used to carry out this analysis is also provided at:

399 https://github.com/gm1613/FLC_transcription_coupled_repression_model.git

400

401

402 **Comparison of predicted *FLC* shutdown:** In Fig. 5C and Fig. S5A, we compare the model
403 predicted *FLC* transcriptional shutdown over time to changes in *FLC* unspliced (Fig. 5C) and *FLC*
404 spliced (Fig. S5A) RNA levels, measured by qPCR at the whole plant level. The model predicted *FLC*
405 transcriptional output is computed as the average frequency of *FLC* sense distal transcription events
406 (transcription events per hour). This frequency is computed by averaging sense distal transcription
407 events over a 6hr time window (an approximation based on our estimate of ~6hr *FLC* mRNA half-
408 life) leading to the respective sampling timepoints (to match the experiments, we choose 10 day, 14
409 day, and 21 day timepoints). We note that the model is not designed to capture absolute RNA levels in
410 the different genotypes, since this may depend on differences in their stability, as well as
411 heterogeneity between tissue types which are not described in the model. What the model is intended
412 to capture, is the quantitative trends, including differences between genotypes and changes over time,
413 i.e. a reduction over time in some genotypes which may be disrupted in others. A whole-plant level
414 measurement of *FLC* RNA is an appropriate quantity for capturing these types of differences, and we
415 therefore use these measurements for comparison to the model predictions. Since the model does not
416 capture absolute RNA levels, for comparison of experimental timecourse data to model predictions,
417 we consider changes (i.e., fold changes) relative to the first timepoint (10 days).

418

419

Supplemental Table S1. Primer sets used in this work.

Purpose	Oligonucleotide name	Oligonucleotide sequences (5' → 3')	
		Forward primer (F)	Reverse primer (R)
Genotyping	clf-2	AGAGAAGCTCAAACAAGCC ATCGA	TTAACCCGGACCCGCATT GTTTCGG
	LB_clf-2	GTCGGCGTGC GGCTGGCGG CG	
RT	FLC spliced		TTTGTCCAGCAGGTGACAT C
	FLC unspliced		CTTTGTAATCAAAGGTGGA GAGC
qPCR	UBC		TTGTGCCATTGAATTGAAC CC
	FLC spliced	AGCCAAGAAGACCGAACTC A	TTTGTCCAGCAGGTGACAT C
	FLC unspliced	CGCAATTTCATAGCCCTT G	CTTTGTAATCAAAGGTGGA GAGC
	UBC	CTGCGACTCAGGGAATCTT CTAA	TTGTGCCATTGAATTGAAC CC

ChIP	FLC_-2285	ATCCAGAAAAGGGCAAGGA G	CGAATCGATTGGGTGAATG
	FLC_-1788	GGATTGATGTGGGGCACTA T	AGTCATGGTAGGGCATGT G
	FLC_-1555	TGGAGGGAAACAACCTAATG C	TCATTGGACCAAACCAAAC C
	FLC_-321	ACTATGTAGGCACGACTTT GGTAAC	TGCAGAAAGAACCTCCACT CTAC
	FLC_5	GCCCGACGAAGAAAAAGTA G	TCCTCAGGTTGGTTCAA G
	FLC_246	CGACAAGTCACCTTCTCCA AA	AGGGGAACAAATGAAAAC C
	FLC_473	GGCGGATCTCTTGTGTT C	CTTCTTCACGACATTGTT TTCC
	FLC_741	CGTGCTCGATGTTGTTGAG T	TCCCGTAAGTGCATTGCAT A
	FLC_1212	CCTTTGCTGTACATAAAC TGGTC	CCAAACTTCTTGATCCTTT TTACC
	FLC_1613	TTGACAATCCACAAACCTCA ATC	TCAATTTCCTAGAGGCACC AA
	FLC_2094	AGCCTTTAGAACGTGGAA CC	TCTTCCATAGAAGGAAGCG ACT
	FLC_2523	AGTTTGGCTTCCTCATACT TATGG	CAATGAACCTTGAGGACAA GG
	FLC_3276	GGGGCTGCGTTACATT A	GTGATAGCGCTGGCTTG T
	FLC_3699	TGAAATGTTACGAATACTA GCGTGT	GGATCAAAACTACTAGCTA ACCCTG
	FLC_4406	AGAACAAACCGTGCTGCTT T	TGTGTGCAAGCTCGTTAAG C
	FLC_5090	CCGGTTGTTGGACATAACT AGG	CCAAACCCAGACTTAACCA GAC
ChIP	FLC_5599	TGGTTGTTATTTGGTGGTG TG	ATCTCCATCTCAGCTTCTG CTC
(continua tion)	FLC_5715	CCTGCTGGACAAATCTCCG A	GGATTTGATTCAACCGC CGA
	FLC_6013	CGTGTGAGAATTGCATCGA G	AAAAACGCGCAGAGAGAGA G
	FLC_6189	TCCTAAACGCGTATGGTTG G	CCTTCATGGATGACGGAAC T
	FLC_6480	TCCAGACGCCATTGTCATT A	AGAGTGCATTAAACACTG ACGA
	FLC_6810	TTGTAAAGTCCGATGGAGA CG	ACTCGGCGAGAAAGTTGT G

FLC_7091	CATCGCTGTGTTATGCGTT	GGCAAGTGTGCGAGTAAAC
	T	A
STM (for H3K27me3 normalization)	GCCCCATCATGACATCACAT	GGGAACTACTTTGTTGGTG
	C	GTG
ACT_+122 (for H3K36me3 normalization)	CGTTTCGCTTCCTTAGTG	AGCGAACGGATCTAGAGAC
	TTAGCT	TCACCTTG
ACT+939 (for H3K4me1 normalization)	TGCCCCGAGAGCAGTGTTC	TGGACTGAGCTTCATCACC
	C	AACG
IGN5 (for FLD normalization)	CCCTTAAGCGGACATGGTT	AATGTCGGCCAATCTTCTT
		G

420
421

AT3G47470	LHCA4
AT3G54890	LHCA1
AT2G43970	LARP6B
AT1G22690	GASA9
AT3G25600	CML15
AT1G76100	PETE1
AT4G17970	ALMT2
AT2G33340	MAC3B
AT5G24290	MEB2
AT2G15880	LRX10
AT2G30980	GSK3 like kinase
AT4G15910	DI21
AT4G29190	OZF2
AT2G05520	GRP3
AT5G09400	KUP7
AT2G41090	CML10
AT1G64780	AMT12
AT1G66240	ATX1
AT5G22270	SEID1
AT1G80830	NRAMP1
AT4G39350	CESA2
AT2G33770	PHO2
AT1G1211	NRT1/CHL1
AT1G23020	FRO3
AT2G41240	BHLH100
AT1G68880	ATBZIP
AT5G53550	YSL3

AT5G09220	AAP2
AT3G16400	NSP1
AT3G20470	GRP5
AT3G28910	MYB30
AT2G21170	TIM
AT4G15093	LIGB
AT3G44735	PSK3
AT2G41420	WIH2
AT4G17870	PYR1
AT1G32450	NPF7
AT1G13280	AOC4
AT5G58670	PLC1
AT2G35880	WDL4
AT1G66180	ASP
AT3G20310	ERF7
AT1G49860	GSTF14
AT4G34710	ADC2
AT2G03090	EXP15
AT3G14310	PME3
AT5G18960	FRS12
AT1G56110	NOP56
AT3G17170	RFC3
AT3G14210	ESM1
AT4G26630	DEK3
AT4G13850	GRP2
AT1G11840	GLX1
AT2G19480	NAP1
AT3G09820	ADK1
AT4G13430	IIL1
AT1G80600	TUP5/WIN1
AT5G37780	CAM1
AT5G65670	IAA9

422

423

424

425 **References**

426

427

428 Berry, S., Dean, C., and Howard, M. (2017). Slow Chromatin Dynamics Allow Polycomb
429 Target Genes to Filter Fluctuations in Transcription Factor Activity. *Cell Syst* 4, 445-
430 457 e448.

431 Blackledge, N.P., and Klose, R.J. (2021). The molecular principles of gene regulation by
432 Polycomb repressive complexes. *Nature Reviews Molecular Cell Biology* 22, 815-833.

433 Brookes, E., de Santiago, I., Hebenstreit, D., Morris, K.J., Carroll, T., Xie, S.Q., Stock, J.K.,
434 Heidemann, M., Eick, D., Nozaki, N., *et al.* (2012). Polycomb associates genome-wide
435 with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. *Cell Stem Cell* 10, 157-170.

436 Chan, J., Kumar, A., and Kono, H. (2022). RNAPII driven post-translational modifications of
437 nucleosomal histones. *Trends in Genetics* 38, 1076-1095.

438 Crevillen, P., Sonmez, C., Wu, Z., and Dean, C. (2013). A gene loop containing the floral
439 repressor FLC is disrupted in the early phase of vernalization. *The EMBO journal* 32,
440 140-148.

441 Escobar, T.M., Loyola, A., and Reinberg, D. (2021). Parental nucleosome segregation and
442 the inheritance of cellular identity. *Nature Reviews Genetics* 22, 379-392.

443 Fang, X., Wang, L., Ishikawa, R., Li, Y., Fiedler, M., Liu, F., Calder, G., Rowan, B., Weigel,
444 D., Li, P., *et al.* (2019). *Arabidopsis* FLL2 promotes liquid-liquid phase separation of
445 polyadenylation complexes. *Nature* 569, 265-269.

446 Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical reactions. *The
447 journal of physical chemistry* 81, 2340-2361.

448 Ietswaart, R., Rosa, S., Wu, Z., Dean, C., and Howard, M. (2017). Cell-Size-Dependent
449 Transcription of *FLC* and Its Antisense Long Non-coding RNA *COOLAIR* Explain
450 Cell-to-Cell Expression Variation. *Cell Syst* 4, 622-635 e629.

451 Inagaki, S., Takahashi, M., Takashima, K., Oya, S., and Kakutani, T. (2021). Chromatin-
452 based mechanisms to coordinate convergent overlapping transcription. *Nat Plants* 7,
453 295-302.

454 Kim, D.-H., Tang, Z., Shimada, M., Fierz, B., Houck-Loomis, B., Bar-Dagen, M., Lee, S.,
455 Lee, S.-K., Muir, T.W., Roeder, R.G., *et al.* (2013). Histone H3K27 Trimethylation
456 Inhibits H3 Binding and Function of SET1-Like H3K4 Methyltransferase Complexes.
457 *Molecular and Cellular Biology* 33, 4936-4946.

458 Leung, C.S., Douglass, S.M., Morselli, M., Obusan, M.B., Pavlyukov, M.S., Pellegrini, M.,
459 and Johnson, T.L. (2019). H3K36 Methylation and the Chromodomain Protein Eaf3
460 Are Required for Proper Cotranscriptional Spliceosome Assembly. *Cell Reports* 27,
461 3760-3769.e3764.

462 Li, Z., Jiang, D., and He, Y. (2018). *FRIGIDA* establishes a local chromosomal environment
463 for *FLOWERING LOCUS C* mRNA production. *Nature Plants* 4, 836-846.

464 Liang, S.C., Hartwig, B., Perera, P., Mora-García, S., de Leau, E., Thornton, H., de Alves,
465 F.L., Rapsilber, J., Yang, S., James, G.V., *et al.* (2015). Kicking against the PRCs – A
466 Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group
467 Proteins and Is an Accessory Component of Polycomb Repressive Complex 2. *PLOS
468 Genetics* 11, e1005660.

469 Liu, F., Quesada, V., Crevillén, P., Bäurle, I., Swiezewski, S., and Dean, C. (2007). The
470 *Arabidopsis* RNA-Binding Protein FCA Requires a Lysine-Specific Demethylase 1
471 Homolog to Downregulate FLC. *Molecular Cell* 28, 398-407.

472 Liu, J., He, Y., Amasino, R., and Chen, X. (2004). siRNAs targeting an intronic transposon in
473 the regulation of natural flowering behavior in *Arabidopsis*. *Genes Dev* 18, 2873-2878.

474 Lovkvist, C., Mikulski, P., Reeck, S., Hartley, M., Dean, C., and Howard, M. (2021). Hybrid
475 protein assembly-histone modification mechanism for PRC2-based epigenetic
476 switching and memory. *Elife* 10.

477

478 Matsumoto, M., and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally
479 equidistributed uniform pseudo-random number generator. ACM Trans. Model.
480 Comput. Simul. 8, 3–30.

481 McCabe, M.T., Graves, A.P., Ganji, G., Diaz, E., Halsey, W.S., Jiang, Y., Smitheman, K.N.,
482 Ott, H.M., Pappalardi, M.B., Allen, K.E., *et al.* (2012). Mutation of A677 in histone
483 methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of
484 histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci U S A 109, 2989–2994.

485 Michaels, S.D., He, Y., Scortecci, K.C., and Amasino, R.M. (2003). Attenuation of
486 FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual
487 flowering behavior in *Arabidopsis*. Proc Natl Acad Sci U S A 100, 10102–10107.

488 Oya, S., Takahashi, M., Takashima, K., Kakutani, T., and Inagaki, S. (2022). Transcription-
489 coupled and epigenome-encoded mechanisms direct H3K4 methylation. Nature
490 Communications 13, 4521.

491 Questa, J.I., Antoniou-Kourounioti, R.L., Rosa, S., Li, P., Duncan, S., Whittaker, C., Howard,
492 M., and Dean, C. (2020). Noncoding SNPs influence a distinct phase of Polycomb
493 silencing to destabilize long-term epigenetic memory at *Arabidopsis FLC*. Genes Dev
494 34, 446–461.

495 Rahni, R., and Birnbaum, K.D. (2019). Week-long imaging of cell divisions in the
496 *Arabidopsis* root meristem. Plant Methods 15, 30.

497 Rosa, S., Duncan, S., and Dean, C. (2016). Mutually exclusive sense–antisense transcription
498 at *FLC* facilitates environmentally induced gene repression. Nature Communications 7,
499 13031.

500 Schmitges, Frank W., Prusty, Archana B., Faty, M., Stützer, A., Lingaraju, Gondichatnahalli M., Aiwasian, J., Sack, R., Hess, D., Li, L., Zhou, S., *et al.* (2011).
501 Histone Methylation by PRC2 Is Inhibited by Active Chromatin Marks. Molecular Cell
502 42, 330–341.

503 Shema, E., Jones, D., Shores, N., Donohue, L., Ram, O., and Bernstein, B.E. (2016). Single-
504 molecule decoding of combinatorially modified nucleosomes. Science 352, 717–721.

505 Shu, J., Chen, C., Thapa, R.K., Bian, S., Nguyen, V., Yu, K., Yuan, Z.-C., Liu, J., Kohalmi,
506 S.E., Li, C., *et al.* (2019). Genome-wide occupancy of histone H3K27
507 methyltransferases CURLY LEAF and SWINGER in *Arabidopsis* seedlings. Plant
508 Direct 3, e00100.

509 Smith, E.R., Lee, M.G., Winter, B., Droz, N.M., Eissenberg, J.C., Shiekhattar, R., and
510 Shilatifard, A. (2008). *Drosophila* UTX Is a Histone H3 Lys27 Demethylase That
511 Colocalizes with the Elongating Form of RNA Polymerase II. Molecular and Cellular
512 Biology 28, 1041–1046.

513 Soares, L.M., He, P.C., Chun, Y., Suh, H., Kim, T., and Buratowski, S. (2017). Determinants
514 of Histone H3K4 Methylation Patterns. Molecular Cell 68, 773–785.e776.

515 Tamada, Y., Yun, J.-Y., Woo, S.c., and Amasino, R.M. (2009). ARABIDOPSIS
516 TRITHORAX-RELATED7 Is Required for Methylation of Lysine 4 of Histone H3 and
517 for Transcriptional Activation of *FLOWERING LOCUS C*. The Plant Cell 21, 3257–
518 3269.

519 Tian, Y., Zheng, H., Zhang, F., Wang, S., Ji, X., Xu, C., He, Y., and Ding, Y. (2019). PRC2
520 recruitment and H3K27me3 deposition at *FLC* require FCA binding of *COOLAIR*.
521 Science Advances 5, eaau7246.

522 Voigt, P., LeRoy, G., Drury, William J., III, Zee, Barry M., Son, J., Beck, David B., Young,
523 Nicolas L., Garcia, Benjamin A., and Reinberg, D. (2012). Asymmetrically Modified
524 Nucleosomes. Cell 151, 181–193.

526 Wang, H., Fan, Z., Shliaha, P.V., Miele, M., Hendrickson, R.C., Jiang, X., and Helin, K.
527 (2023). H3K4me3 regulates RNA polymerase II promoter-proximal pause-release.
528 *Nature* *615*, 339-348.

529 Wu, Z., Ietswaart, R., Liu, F., Yang, H., Howard, M., and Dean, C. (2016). Quantitative
530 regulation of *FLC* via coordinated transcriptional initiation and elongation. *Proc Natl
531 Acad Sci U S A* *113*, 218-223.

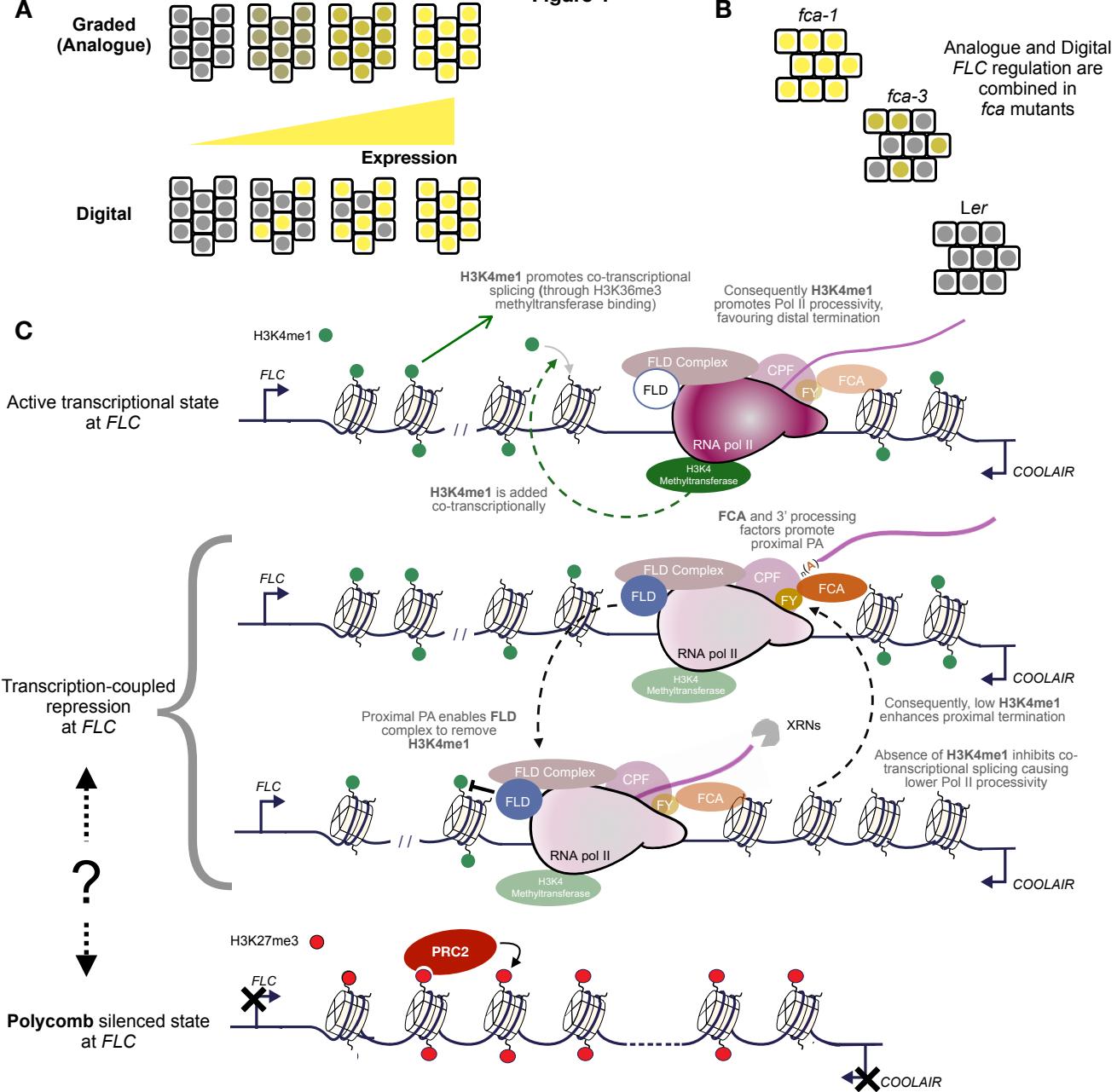
532 Yang, H., Berry, S., Olsson, T.S.G., Hartley, M., Howard, M., and Dean, C. (2017). Distinct
533 phases of Polycomb silencing to hold epigenetic memory of cold in *Arabidopsis*.
534 *Science* *357*, 1142-1145.

535 Yang, H., Howard, M., and Dean, C. (2016). Physical coupling of activation and derepression
536 activities to maintain an active transcriptional state at *FLC*. *Proc Natl Acad Sci U S A*
537 *113*, 9369-9374.

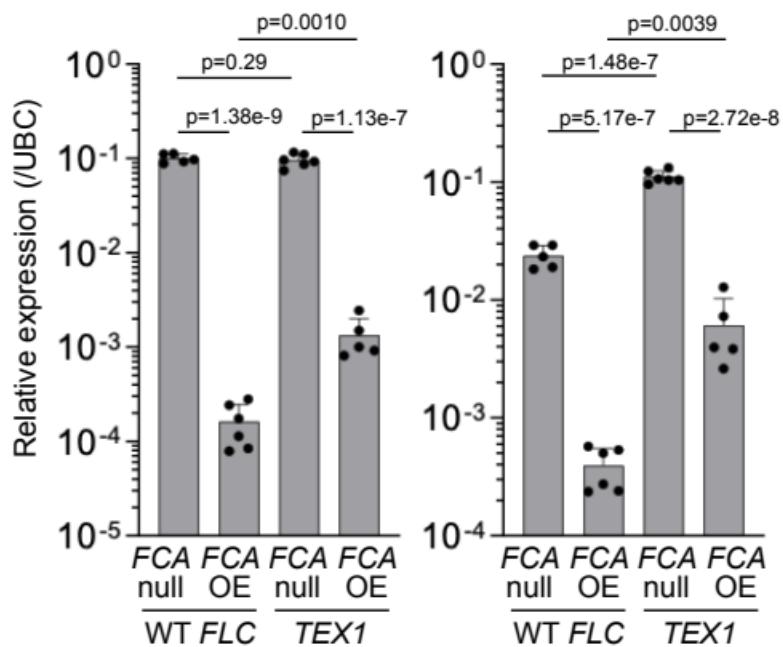
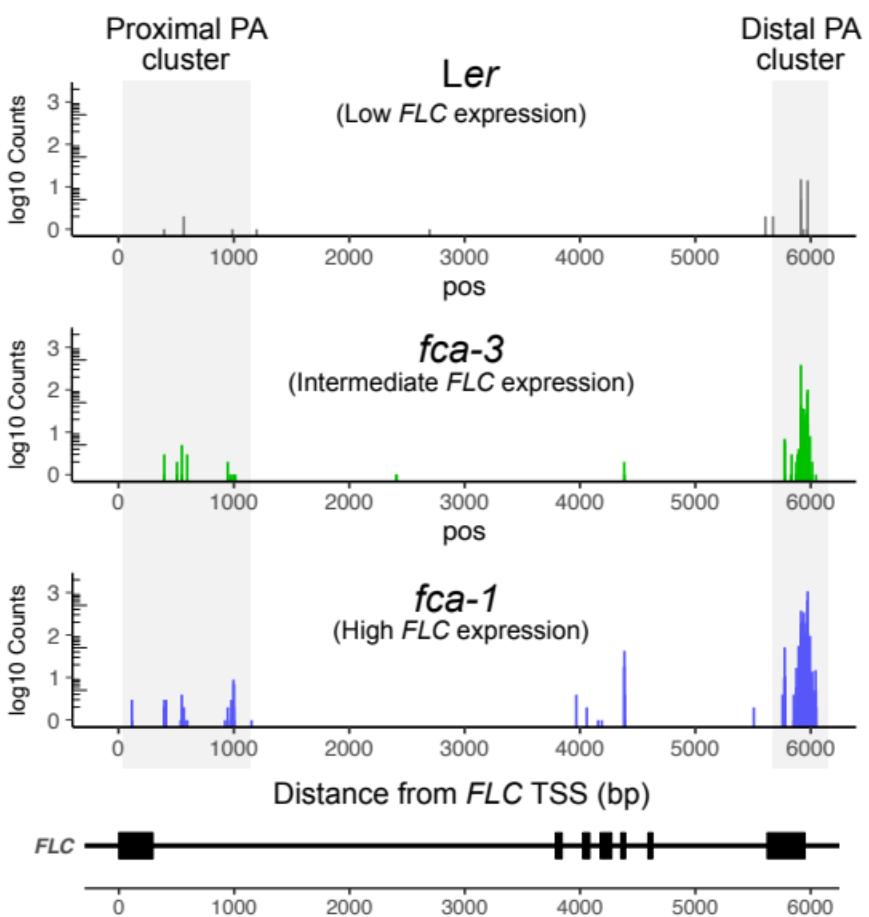
538 Zee, B.M., Levin, R.S., Xu, B., LeRoy, G., Wingreen, N.S., and Garcia, B.A. (2010). In vivo
539 residue-specific histone methylation dynamics. *J Biol Chem* *285*, 3341-3350.

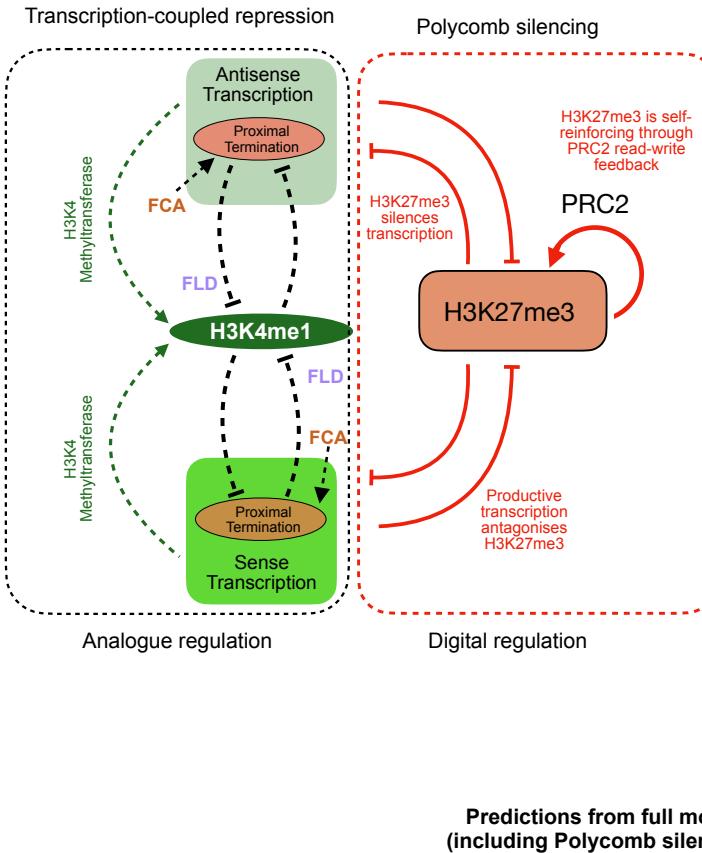
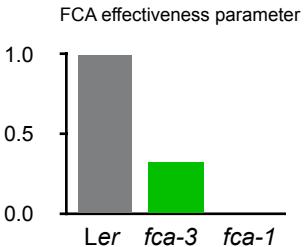
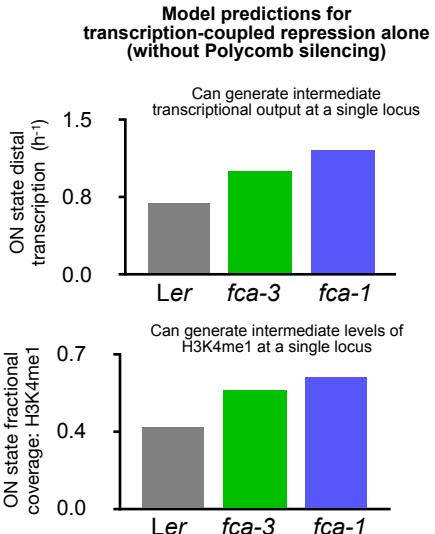
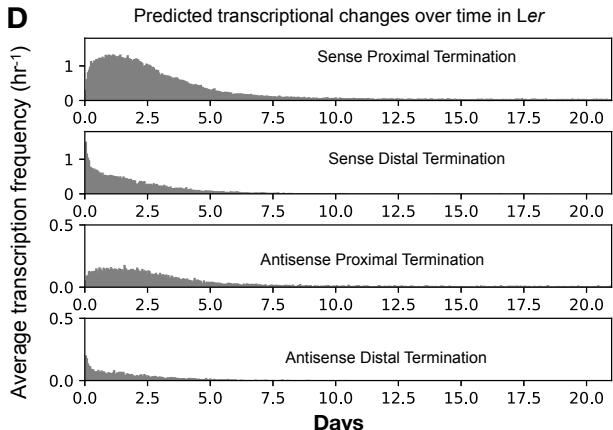
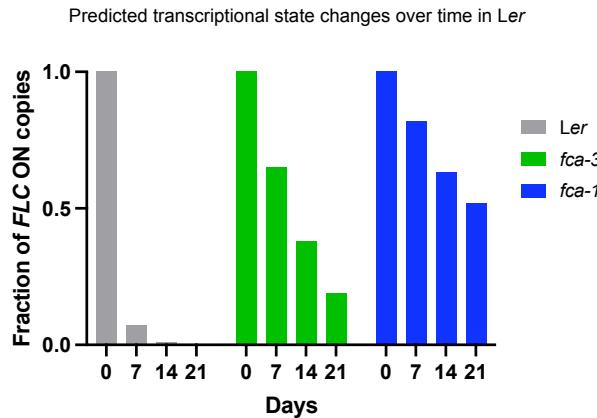
540 Zhang, Y.-Z., Yuan, J., Zhang, L., Chen, C., Wang, Y., Zhang, G., Peng, L., Xie, S.-S., Jiang,
541 J., Zhu, J.-K., *et al.* (2020). Coupling of H3K27me3 recognition with transcriptional
542 repression through the BAH-PHD-CPL2 complex in *Arabidopsis*. *Nature Communications* *11*, 6212.

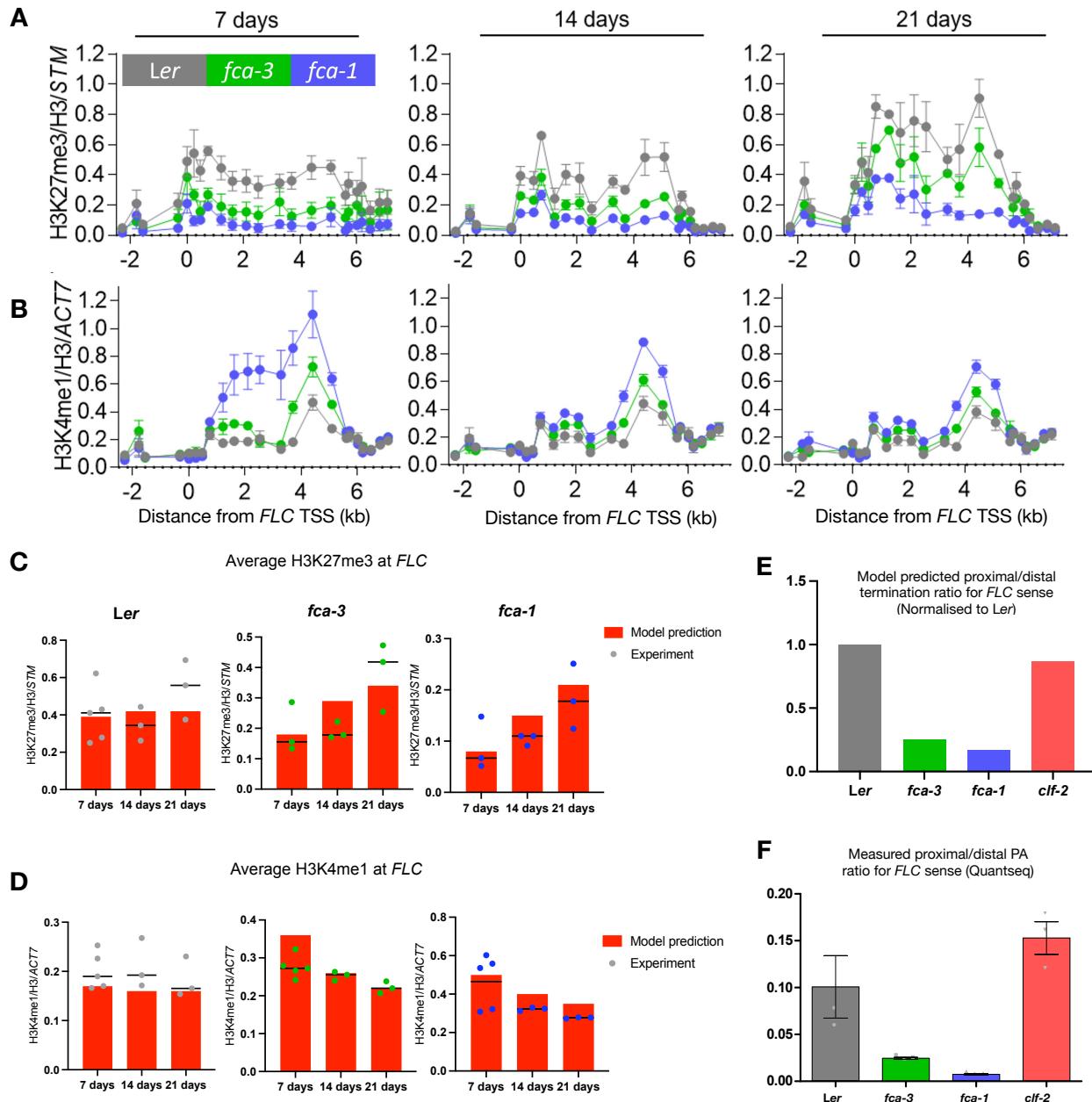
543 Zhao, Y., Zhu, P., Hepworth, J., Bloomer, R., Antoniou-Kouroulioti, R.L., Doughty, J.,
544 Heckmann, A., Xu, C., Yang, H., and Dean, C. (2021). Natural temperature fluctuations
545 promote *COOLAIR* regulation of *FLC*. *Genes Dev* *35*, 888-898.

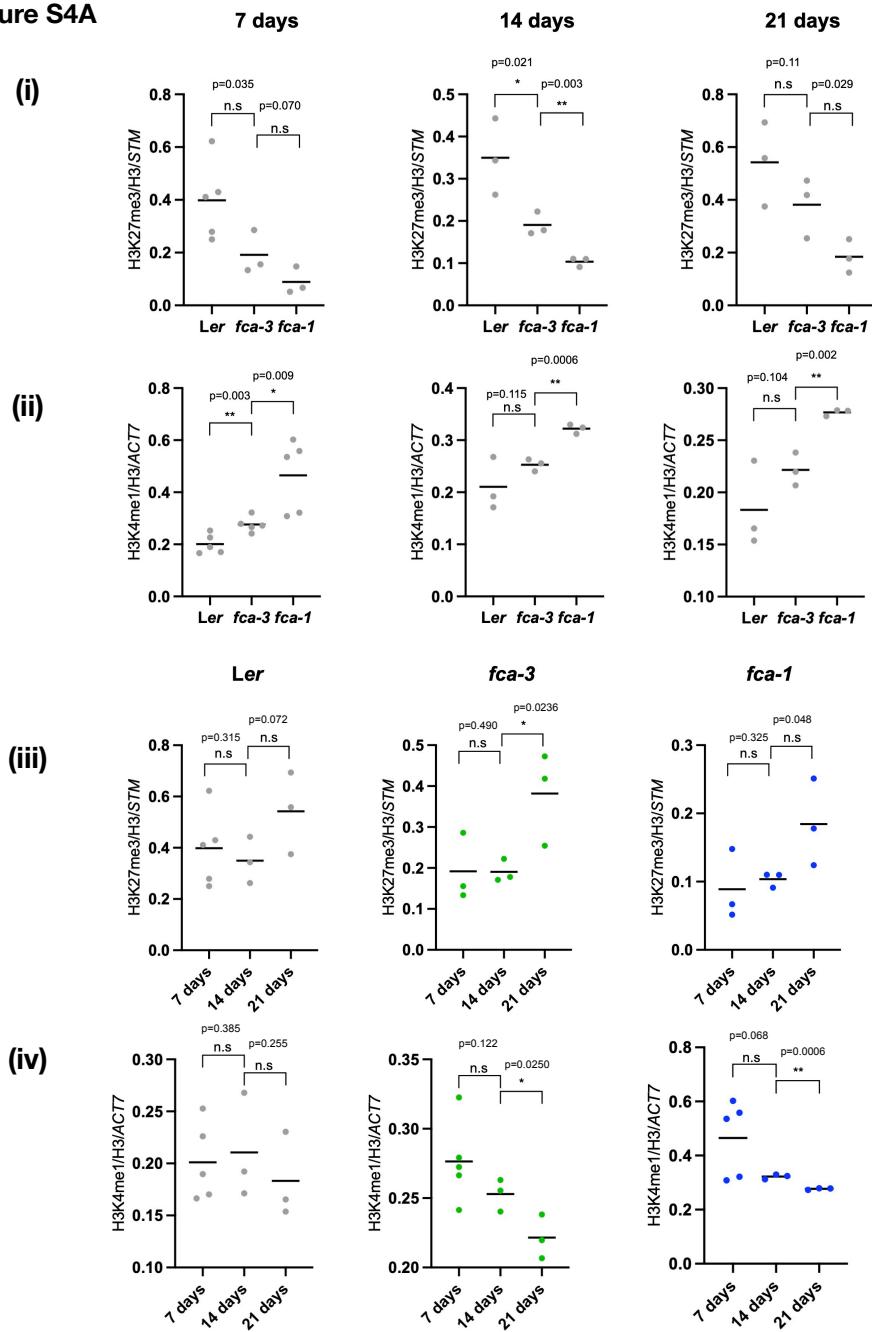

546

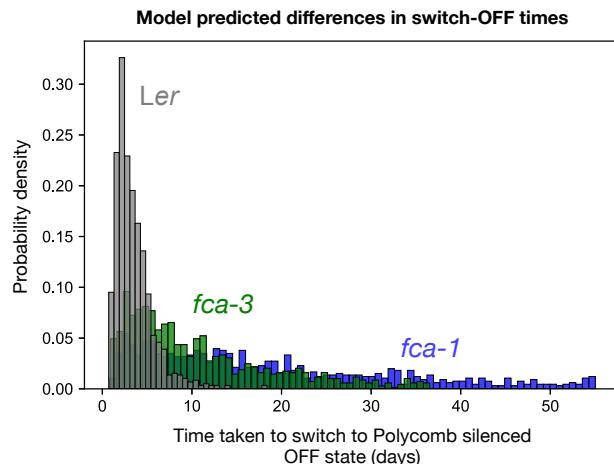
547



548






549


Figure 1




Figure 2

A**B**

Figure 3**A****B****C****D****E**

Figure 4

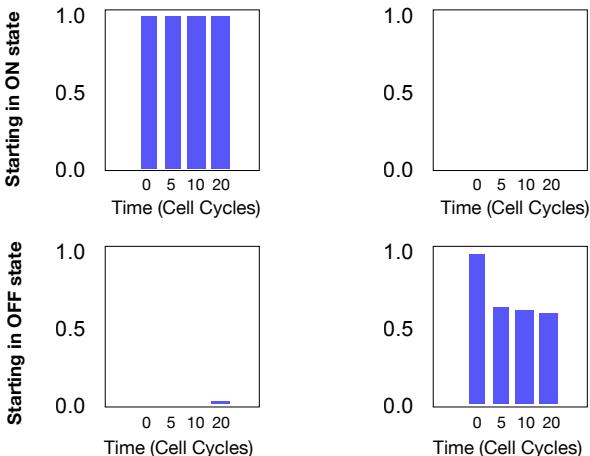
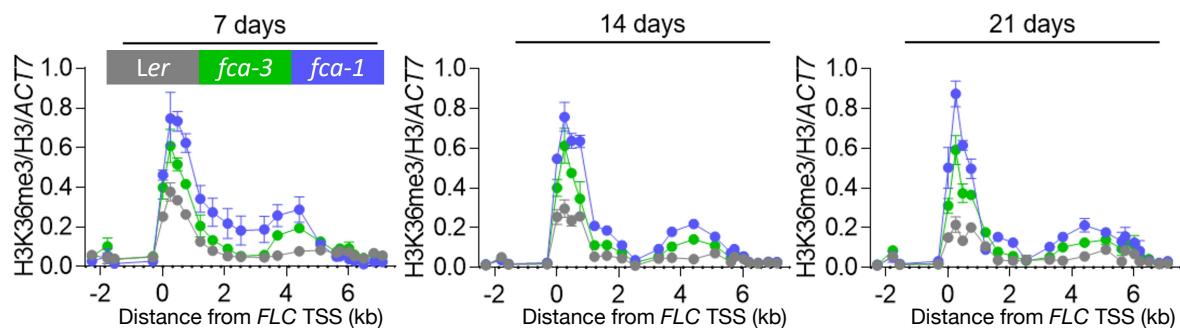


Figure S4A

Figure S4B**(i)****(ii)**

Bistability in the absence of the transcription-coupled repression mechanism

Fraction of ON copies

Fractional coverage of H3K27me3

(iii)

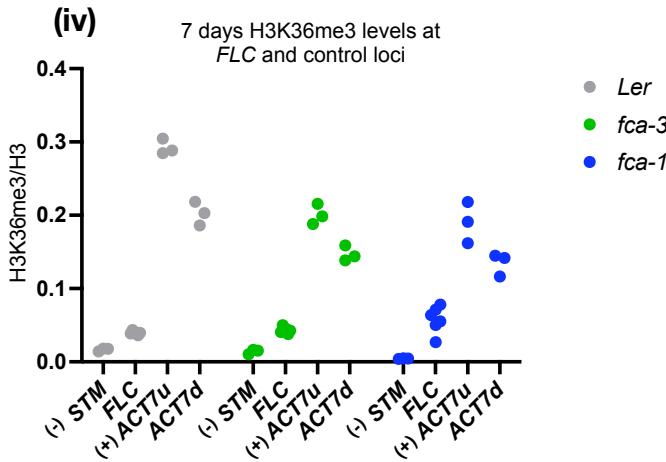
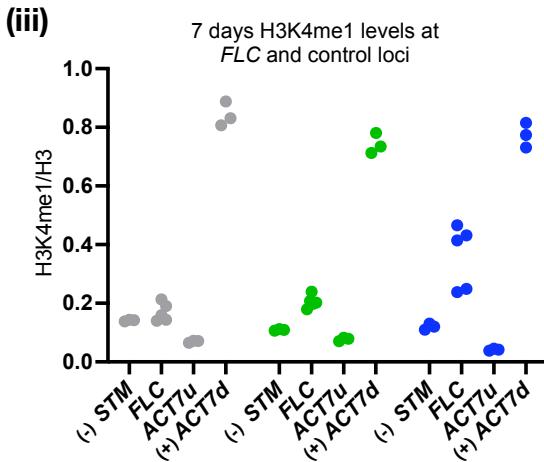
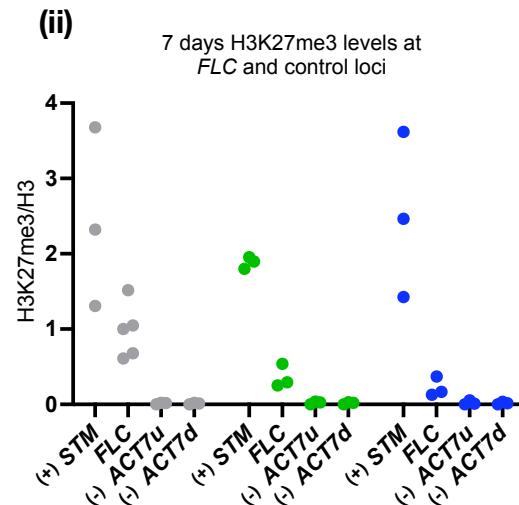
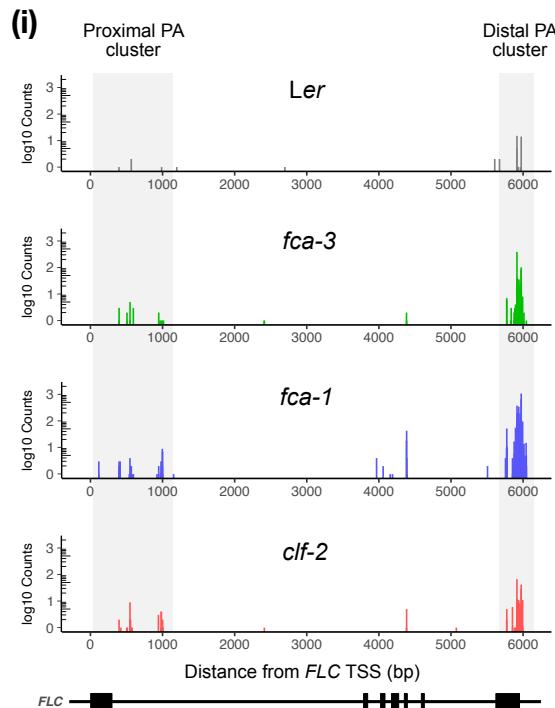
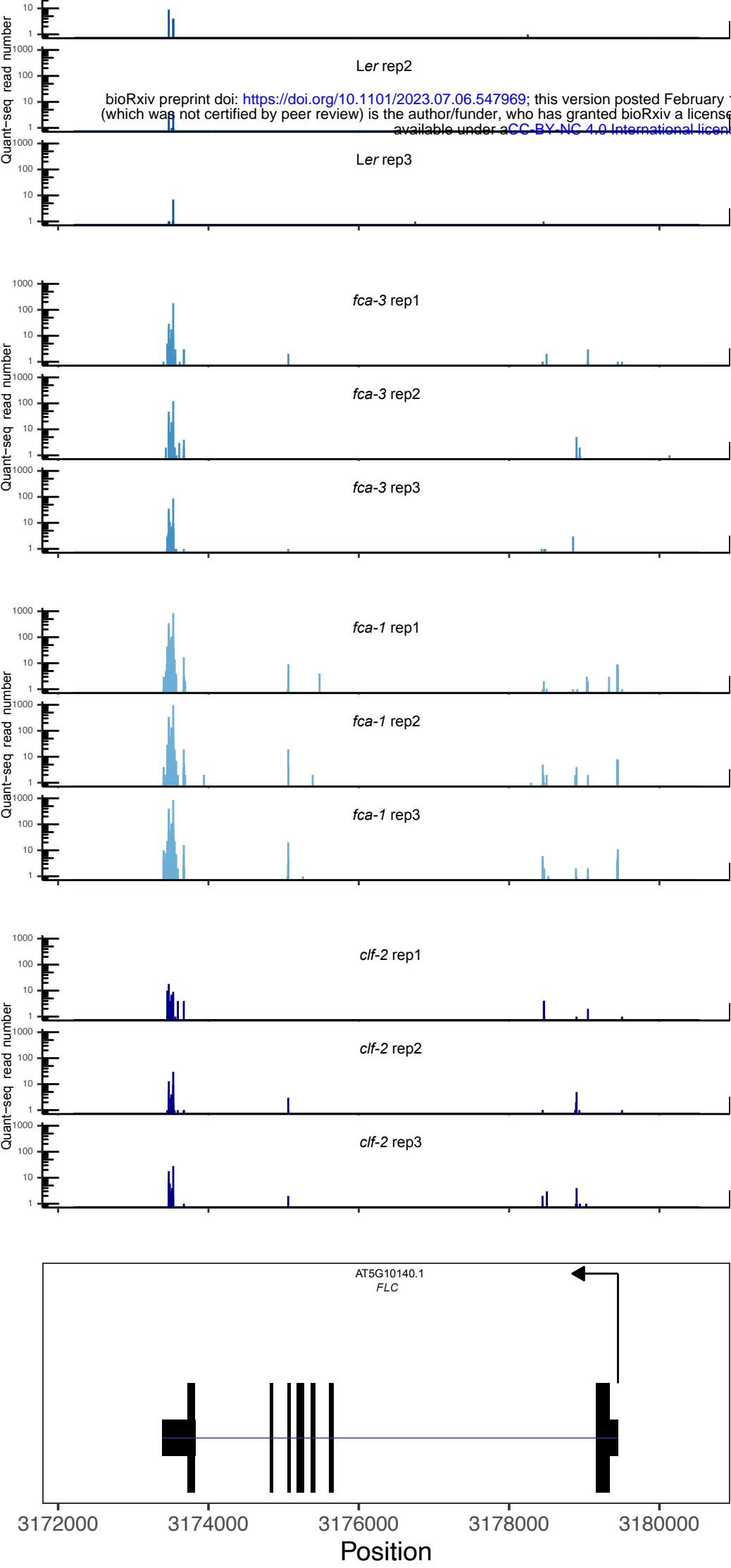
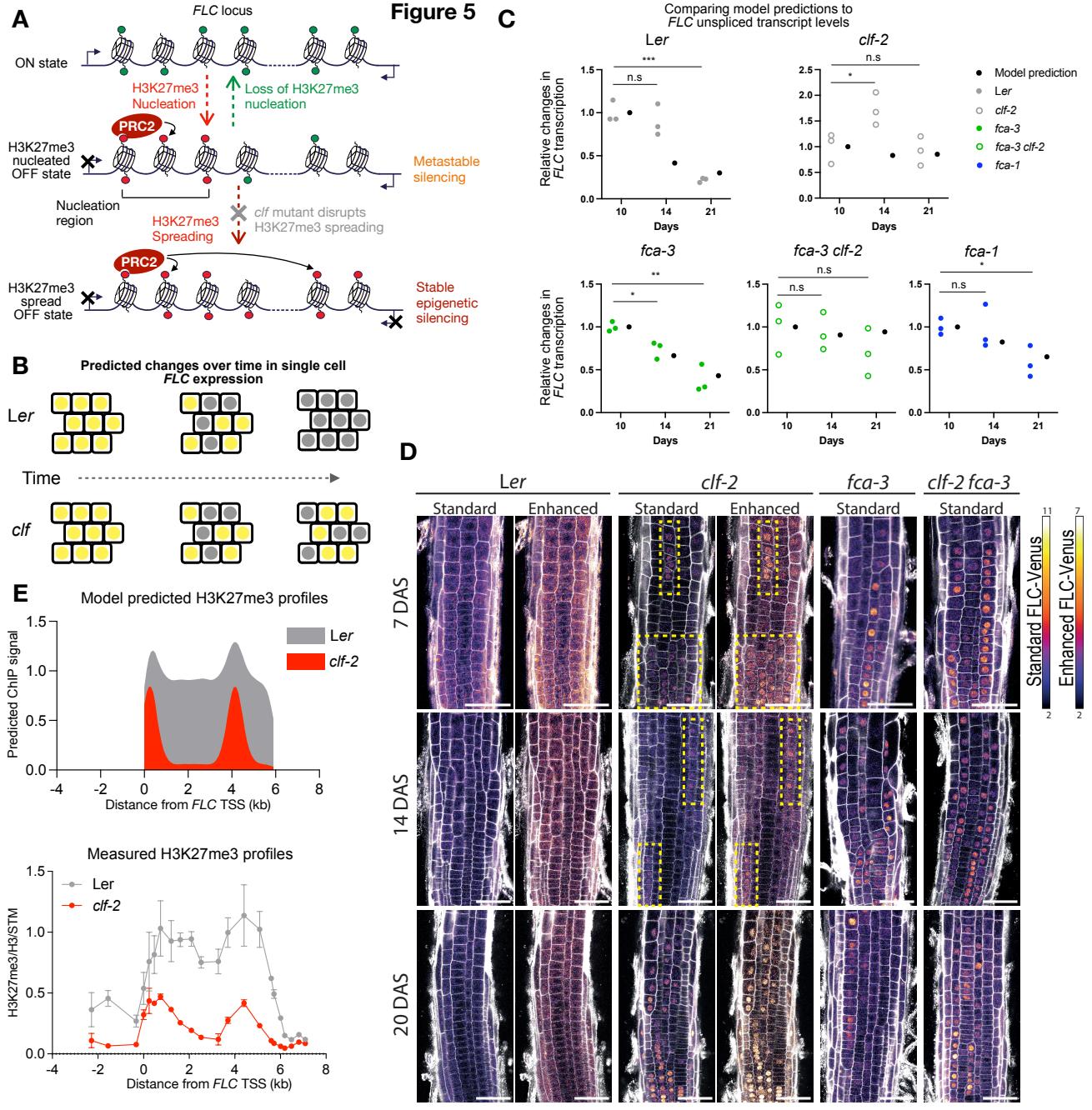
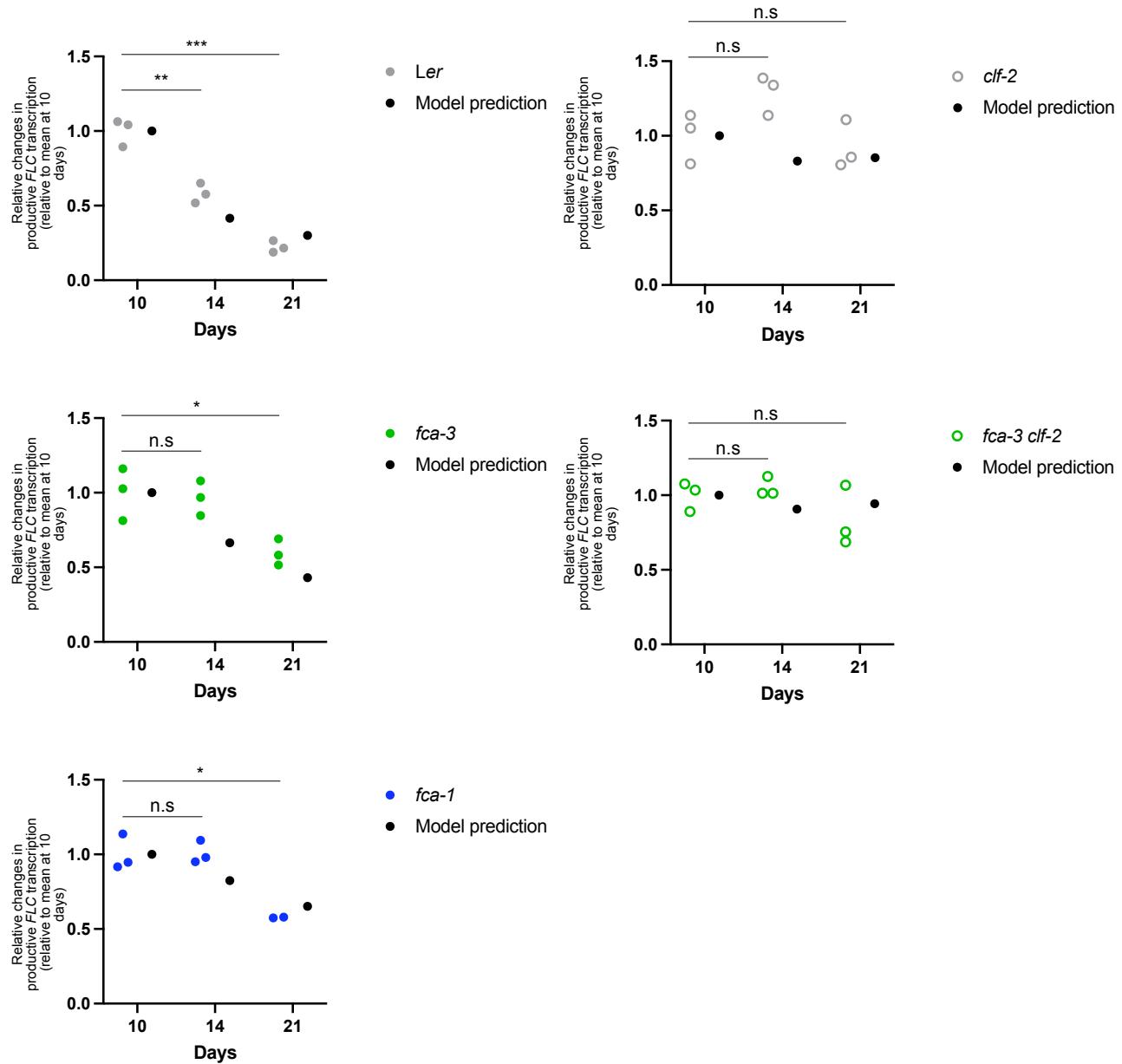
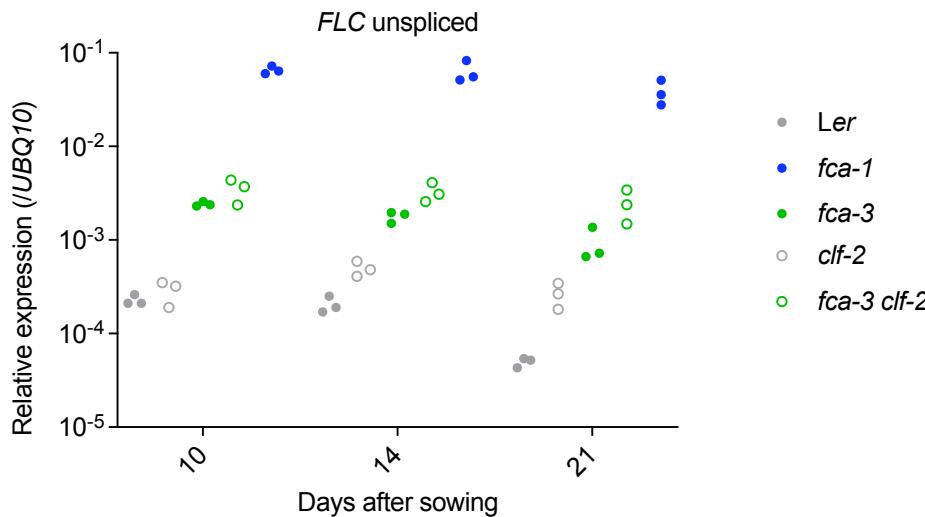
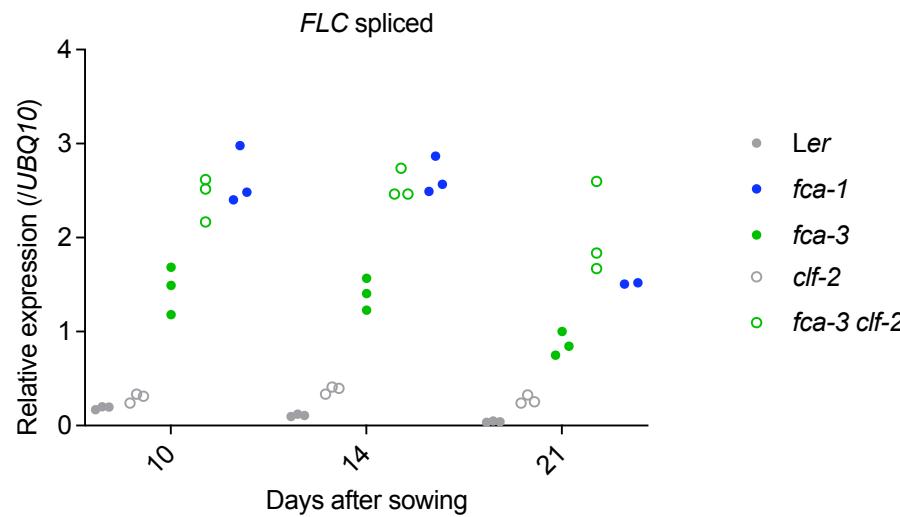
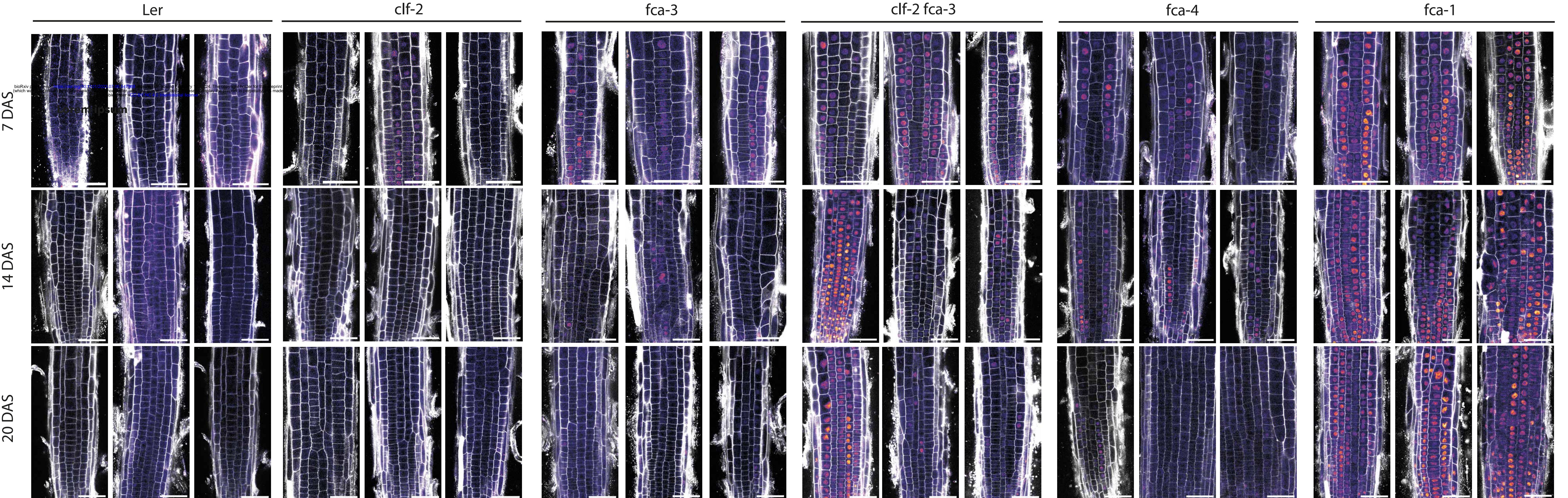






Figure S4C

Figure S4D

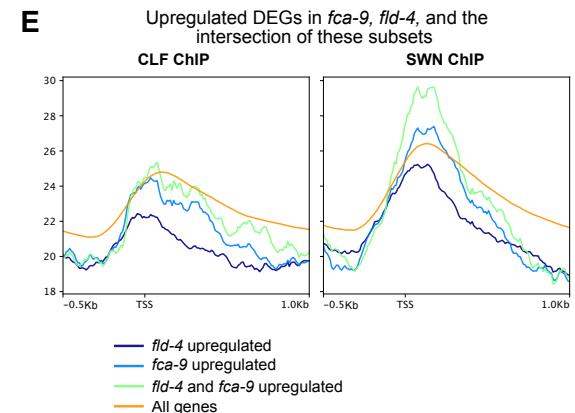
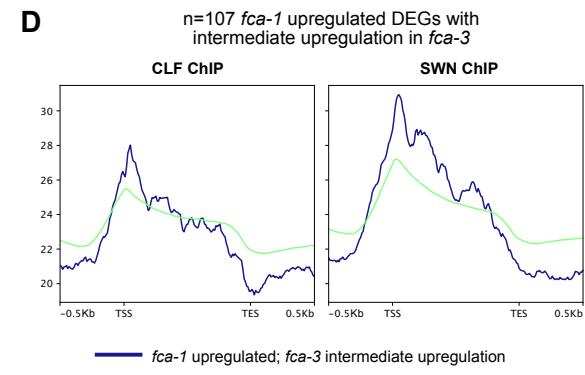
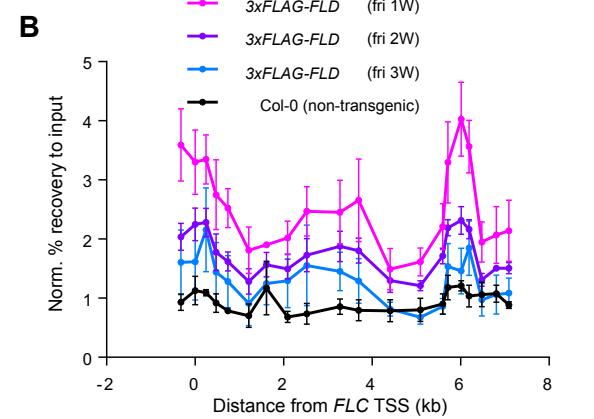
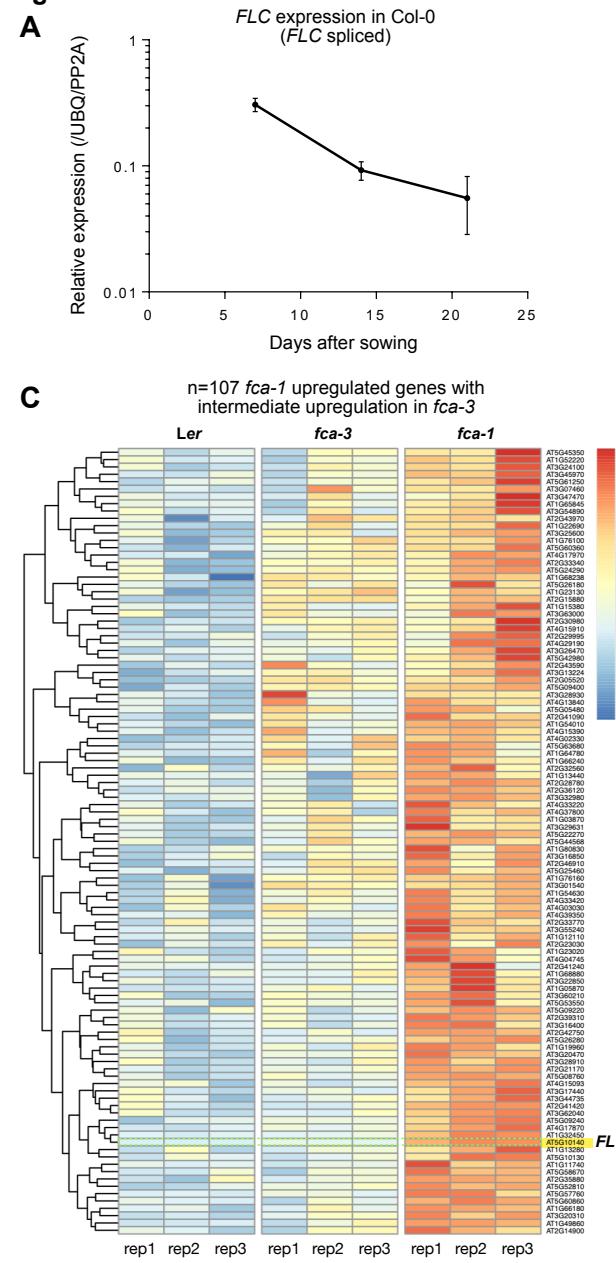
Ler rep1

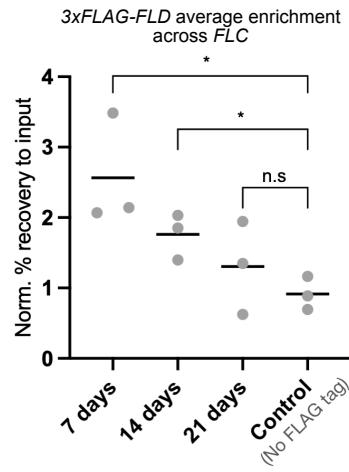
Figure 5




Figure S5AComparing model predictions to
FLC spliced transcript levels


Figure S5B

(i)


(ii)

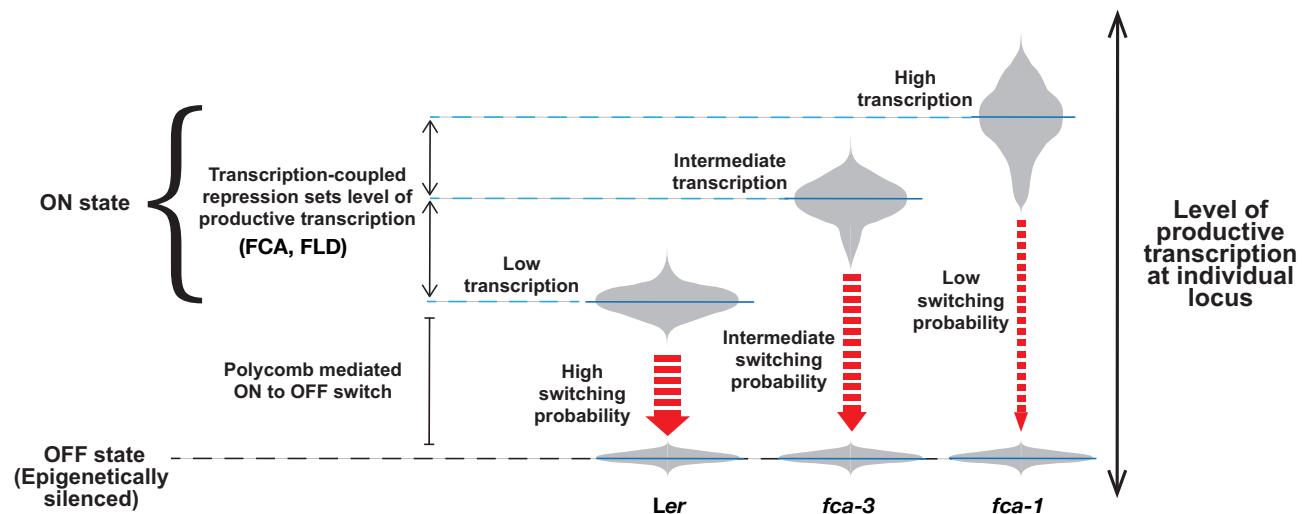

Figure S5C

Figure 6

Figure S6

Figure 7

