bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.547963; this version posted July 8, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Mass2SMILES: deep learning based fast prediction of structures and

functional groups directly from high-resolution MS/MS spectra.

David Elser!*, Florian Huber?, Emmanuel Gaquerel!

Affiliations:
Tnstitut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg
2 University of Applied Sciences Diisseldorf

*Corresponding author:

David Elser

Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général
Zimmer, 67084 Strasbourg Cedex France

E-mail address: volvox292@gmail.com

Keywords: Structure prediction, MS/MS spectra, functional groups, deep learning, SMILES


https://doi.org/10.1101/2023.07.06.547963
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.06.547963; this version posted July 8, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Abstract

Modern mass spectrometry-based metabolomics generates vast amounts of mass spectral data as
part of the chemical inventory of biospecimens. Annotation of the resulting MS/MS spectra
remains a challenging task that mostly relies on database interrogations, in silico prediction and
interpretation of diagnostic fragmentation schemes and/or expert knowledge-based manual
interpretations. A key limitation is additionally that these approaches typically leave a vast
proportion of the (bio)chemical space unannotated. Here we report a deep neural network method
to predict chemical structures solely from high-resolution MS/MS spectra. This novel approach
initially relies on the encoding of SMILES strings from chemical structures using a continuous
chemical descriptor space that had been previously implemented for molecule design. The deep
neural network was trained on 83,358 natural product-derived MS/MS spectra of the GNPS library
and of the NIST HRMS database with addition of the calculated neutral losses for those spectra.
After this training and parameter optimization phase, the deep neural network approach was then
used to predict structures from MS/MS spectra not included in the training data-set. Our current
version, implemented in the Python programming language, accurately predicted 7 structures from
744 validation structures and the following 14 structures had a Tanimoto similarity score above
0.9 when compared to the true structure. It was also able to correctly identify two structures from
the CASMI 2022 international contest. On average the Tanimoto similarity is of 0.40 for data of
the CASMI 2022 international contest and of 0.39 for the validation data-set. Finally, our deep
neural network is also able to predict the number of 60 functional groups as well as the molecular
formula of chemical structures and adduct type for the analyzed MS/MS spectra. Importantly, this
deep neural network approach is extremely fast, in comparison to currently available methods,
making it suitable to predict on regular computers structures for all substances within large

metabolomics datasets.

Introduction

One of the major challenges in current metabolomics experiments is the illumination of the so

called dark matter (“unknown unknowns”), which currently corresponds to the largest proportion
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of data analysis results, even with state-of-the-art computational methods (Beniddir et al., 2021;
Aksenov et al., 2017; da Silva et al., 2015). The standard approach to retrieve high quality
annotations is by spectral library matching which generally uses cosine similarity, but also
alternative metrics have been developed recently, such as Spec2Vec (Huber et al., 2021a),
MS2deepscore (Huber et al., 2021b) or SIMILE (Treen et al., 2022). Due to the limited number of
entries in authentic standard-based spectral libraries, in silico fragmentation approaches have
emerged such as Metfrag (Ruttkies et al., 2016), CFM-ID (Wang et al., 2021), MassFormer
(Youngetal.,2021) or QCxMS (Koopman and Grimme, 2021), in order to mine chemical structure
libraries. Substructural information on unknown molecules can further be retrieved up to a limited
extent by programs such as MESSAR (Liu et al., 2020) or MS2LDA (Wandy et al., 2018). Other
approaches such as CSI:FingerID (Diihrkop et al., 2015), MIST (Goldman et al., 2022) or DeepEI
(Ji et al., 2020) use the generation of fingerprints from spectra to retrieve annotations from
chemical structural databases. In terms of MS/MS data classification, fingerprints and similarity
metrics can be used to create molecular networks as pioneered by Global Natural Products Social
molecular networking (GNPS) (Wang et al., 2016), which may further give insights into main
metabolic classes present within a dataset. Metrics used for molecular networking are also central
to retrieve annotations by database searches. Finally, it is now possible to retrieve hierarchically-
organized class-based annotations which are based on the ClassyFire (Djoumbou Feunang et al.,
2016) chemical ontology with the use of the deep neural network classifier CANOPUS (Diihrkop
et al., 2021).

The computational prediction of molecular structures solely from mass spectra has long been
envisioned as a Holy Grail in mass spectrometry, with first attempts to use artificial intelligence
dating back to the launch of the DENDRAL project in 1965 (Buchanan and Feigenbaum, 1978).
A seemingly logical approach to structure prediction would be to calculate the molecular formula
of a molecule using SIRIUS (Diihrkop et al., 2019) or BUDDY (Xing et al., 2022) and then
generate all possible structures with structure generators such as MAYGEN (Yirik et al., 2021) or
MOLGEN (Kerber et al., 2005), but this rapidly translates into a combinatorial explosion even for
relatively small molecules. A way to circumvent this bottleneck and avoid the generation of all
possible molecules is to use a continuous chemical descriptor space such as developed by Gémez-

Bombarelli et al. (2018) and Winter et al. (2019). Two tools have recently emerged for de novo
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structure prediction from high resolution MS/MS spectra, MSNovelist (Stravs et al., 2022) and
Spec2mol (Litsa et al., 2021), While the latter makes use of such a continuous descriptor space
approach as above described. Spec2mol uses a 1-D convolutional neural network to create a latent
representation of the spectra and a encoder-decoder architecture with gated recurrent units (GRU)
trained on a translation task from random to canonical SMILES as employed by Winter et al.
(2019). MSNovelist uses the fingerprint representation and molecular formula obtained by SIRIUS
to feed a recurrent neural network that will then predict a set of SMILES which are then further
ranked by scoring their probability. Another recently published tool is MS2prop, which applies
transformer like architectures to predict 10 chemical properties of unknowns with high accuracy

(Voronov et al., 2022a).

Despite having been reported as part of peer-reviewed articles, codes to Spec2mol and MS2prop
are not available for the general public and publicly released MSNovelist relies on SIRIUS which
makes it computationally demanding when processing large datasets because as it still relies on
hand crafted heuristics and kernel functions. Finally, none of the available tools can predict a set
of functional groups predicted to be present in a given molecule, even though it is known that
direct structure prediction alone is prone to errors. Here, we report an open-sourced deep learning
model that is able to quickly predict structures as SMILES strings, the presence of 60 functional
groups, the adduct type as well as to give an estimation of the number of different atoms in a given

molecule.

Methods

Spectral libraries were downloaded (16.12.2022) from GNPS (Wang et al., 2016) and the NIST
2020 HRMS database was purchased by the Institute of Molecular Biology of Plants, CNRS |
University of Strasbourg (IBMP). The NIST database was preprocessed with a script from
MassFormer (Young et al., 2021) to correct corrupted .mol files. For the NIST and the BMDMS-
NP (Lee et al., 2020) (which is contained within GNPS) the composite spectra were calculated to
account for the acquisition of these spectral at several collision energies (see also Data and code
availability). Early access to mFam Consortium Staging Database was kindly provided by

Chimmiri Anusha, Steffen Neumann and Gerd Balcke. The training data was preprocessed with
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matchms (version 0.11.0) package (Huber et al., 2020) and rdkit (Landrum, 2010). Spectra from
low-resolution mass spectrometers were excluded. Noise signals were discarded by reducing the
number of peaks to 250 and corresponding neutral losses were calculated, resulting in a maximum
of 500 peaks (see also Data and code availability). Only positive ion mode spectra with single
charges were considered for training, also less frequent adducts were discarded first in pandas
(https://pandas.pydata.org/) and then manually inspected and harmonized in OpenRefine (3.5.0).
For validation, 744 unique spectra were randomly selected based on Inchikey and all Inchikey
corresponding spectra were then discarded from the training dataset, resulting in a final training

dataset of 83,358 spectra with 18 different adducts (Table 1).
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Table 1. Adducts included in the Mass2SMILES training data, with their delta to the actual mass of the

molecule. The encoded numbers depicted here can be used to translate the predicted adducts.

Adduct Delta Encoding
[M+H-C>H402]"  -60 0
[M-3H,O+H]* -54 1
[M-2H,O+H]* -36 2
[M-H,O+H]* -18 3
[M-NH;+H]* -17 4
[M]" 5
[M+H]* +1 6
[M+H+2i]" +1 + Isotopes 7
[M+NH3]* +17 8
[M+NH4]* +18 9
[M+Na]* +23 10
[M+H+CH3OH]" +33 11
[M+K]* +39 12
[2M+H]* 2x +1 13
[2M+H+2i]* 2x +1 + Isotopes 14
[2M-+NH4]* 2x +18 15
[M-H+2Na]* +46 16
[2M+Na]* 2x +23 17
[2M+K]* 2x +39 18

Spectra were encoded by sinusoidal encodings inspired by Voronov et al. (2022b) with 256
dimensions and a precision of two decimals. On top of these 256 dimensions, the scaled intensities
were added as an additional dimension. The first peak was set to intensity 2.0 and the encoded
precursor ion mass. The spectral sequences were padded to a maximum length of 501, resulting in

a final matrix with a shape of 501x257.
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SMILES were encoded with the cddd package (Winter et al., 2019), which is based on a pretrained
continuous chemical descriptor space. The number of 60 different functional groups was extracted
using prebuilt rdkit functions and the number of sugars was identified by sugar removal utility
(Schaub et al., 2020) with the command -t "3" -remTerm "false” . Atom counts from molecular
formulas were extracted with the molmass package. These numbers were then scaled to floating

numbers to encode the information for the neural network.

The neural network architecture (Figure 1) has a total of 33 million parameters and is based on 5
standard transformer encoder layers (16 heads and 2048 units for feed forward) as described in
Vaswani et al., (2017) which are feeding into a temporal convolutional neural network (TCN) (Bai
et al., 2018) with a receptive field of 883, a kernel size of 8 and 256 filters. This is followed by
2x2 dense layers that produce two outputs of shape 512 and 71. The architecture is implemented
in tensorflow (version 2.11.0, Abadi et al., 2015) and the TCN is implemented by the keras-tcn
package (Bai et al., 2018). The training was performed on one Nvidia Tesla V100S GPU with 32
Gb RAM on the IBMP computing cluster. Training progress was logged with the package wandb
(version 0.13.5). A hyperparameter search was performed with keras-tuner package (Chollet and
others, 2015) in the random search mode for 99 trials, with one execution per trial and 4 epochs
(see also Data and code availability). In addition, manual inspections were performed to find
optimal parameters. The final training was stopped after 50 epochs, as the model performance did

not significantly improve with longer training (Figure S1).

Network analysis was performed with the matchms (version 0.15.0) and matchms extras (version
0.4.1) using the modified cosine score (tolerance=0.01) as similarity measure. Molecular networks
were created (score cutoff=0.7, max links=10), exported to cytoscape and Mass2SMILES

annotations were visualized by the chemV1z2 plugin.
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Figure 1. General architecture of Mass2SMILES. Encoded spectra are fed into the five transformer encoder
layers and then processed as part of a temporal convolutional neural network. The final two outputs are
produced by dense layers, which returns the chemical descriptor space encoding for the SMILES strings

and the encoded 60 functional groups as well as number of atoms and the adduct type.

Results and Discussion

Training of the final model of Mass2SMILES was accomplished within one day and two hours for
83,358 spectra on one Nvidia Tesla V100S GPU. The model loss was evaluated by the calculation
of the Mean Absolute Error (MAE) and of the Mean Squared Error (MSE). The final loss MAE
for SMILES descriptor space was of 0.18 (Figure 2A) and the MSE was of 0.06, whereas the
MAE calculated for the functional groups was of 0.004 and the MSE of 0.00006 (Figure 2D). The
final loss that was achieved on the validation data-set for the SMILES descriptor space was of 0.24
(Figure 2B) and the MSE was of 0.1, whereas for the functional groups MAE was of 0.004 and
MSE of 0.0001 (Figure 2C). The final model was inferred on CPU through a docker container
with the command: docker run -v c:/Users/delser/mass2smiles/:/app mass2smiles:transformer vl
conda run -n tf python app/mass2smiles_transformer.py input_file.mgf /app , which on average
takes two seconds processing time for one pair of structure and functional groups on our machine.

This makes it suitable to predict chemical structures for large-scale metabolomics studies, using
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GPU for inference could even drastically increase inference speed. The predictions from the 236
positive ion mode spectra of the CASMI 2022 contest retrieved 2 true structures (Table 2) and one
candidate with all true numbers of functional groups (Table 3) (Data and code availability:
Supplemental Data S1). Interestingly, the number of correctly predicted functional groups was
not necessarily reflected in the 7animoto similarity. Training two different models for each output
did not improve accuracy but rather slightly reduced performance e.g., from two true CASMI 2022
predictions to zero (the best one having a 0.96 Tanimoto similarity to the true structure and an
average Tanimoto similarity of 0.38). The average Tanimoto similarity achieved from the final
model (with 2 outputs) on this dataset was of 0.4, with two structures having a similarity higher
than 0.9 and 10 more than 0.7. On average there were 51 true numbers of functional groups out of
60. The molecular formula estimation resulted into 8 true hits, whereas when the predicted
SMILES were converted into molecular formulas, 7 true hits were retrieved. For 59 out of 236
molecules, the network was able to predict the true number of heteroatoms, which on average

resulted into 7 out of 8 possible heteroatom numbers.
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Figure 2. The training progress on the final model as tracked by wandb. The mean absolute error (MAE)
and the mean squared error (MSE) are shown according to the number of training steps. The training was
stopped after 50 epochs, as further training did not seem to improve the performance, one epoch is

comprised of 5210 steps.
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Table 2. The top predictions on the CASMI 2022 positive mode dataset sorted by Tanimoto similarity.
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Table 3. The top predictions on the CASMI 2022 positive mode dataset sorted by the number of true

functional groups. The true number of functional groups does not necessarily align with Tanimoto

similarity.
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From the 744 validation spectra, Mass2SMILES was able to predict 7 true structures (Table 4),
followed by 14 predictions with Tanimoto scores above 0.9, 62 with Tanimoto scores above 0.7.
The average Tanimoto similarity between predicted and true structures was of 0.39. Moreover, the
model was able to correctly predict the exact presence of functional groups for 17 spectra (Table
5), whereas on average the model predicted 54 true numbers of across the dataset (out of a
maximum of 60) (Data and code availability: Supplemental Data S2). Interestingly, the model
was able to correctly predict 436 adducts, for 11 molecules it found the true adduct and the
molecular formula. For 22 molecules, it found the true molecular formula alone and for 187 the
true number of heteroatoms. When converting the predicted SMILES into molecular formulas it

retrieved 63 true hits out of 744.

We then also examined Mass2SMILES on a metabolomics dataset acquired for 20 Nicotiana
species (Elser et al., 2022) to better judge of its performance on a real use case study. For this, we
first predicted all the structures across the whole dataset. On a Intel Xeon E5-2630 v2 @ 2.6 GHz
CPU, this took 9 hours and resulted in 16616 smiles out of 17902 spectra, most likely the spectra
without predictions contained less than 6 peaks and were therefore automatically discarded by
Mass2SMILES. In general, the model produces valid SMILES in most of the cases e.g. for the 744
validation spectra only 10 created errors with parsing by rdkit. For 457 features on the Nicotiana
dataset, the molecular formula was identical with the one predicted by SIRIUS which is frequently
is described as a gold standard method to perform this task. These features were then selected to
predict the ClassyFire classes (Djoumbou Feunang et al., 2016) which were then compared to the
ones predicted in parallel by CANOPUS (Diihrkop et al., 2021) directly from the MS/MS spectra.
For 235 of these, the superclass was identical and for 176 the class prediction matched. When
inspected with in further details, classes that had a mismatch were frequently very close and in a
lot of cases the Mass2SMILES prediction was even closer to the actual true structure (Table 6).
Interestingly, Mass2SMILES was able to annotate structures that did not retrieve database hits,
even for very common molecules such as nicotine (Table 6). This shows that neural networks such
as implemented as part of Mass2SMILES could possibly provide alternative solutions to

computationally intensive database searches. We observed for several spectra very accurate
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annotations that did not yield any database hits but were predicted to belong to these classes e.g.
terpenoids, coumarins, flavonoids, O-acyl-glucoses or O-acyl-glycerols (Data and code
availability: Supplemental Data S3 and Table 6). Some molecules did not yield a CANOPUS
annotation but could nonetheless be accurately predicted with Mass2SMILES (Table 6).

As an additional case study, we processed metabolomics data and predicted structures with Mass2
SMILES for MS/MS spectra collected from a dataset of 9 bryophyte analyzed and reported earlier
by Peters et al. (2018). This dataset had further been previously used to test the performance of the
MSNovelist de novo structure elucidation tool (Stravs et al., 2022). Figure 3 shows a molecular
network that comprises the MS/MS feature 377 for which a flavonoid-like structure had been
initially predicted as part of the study reporting the performance of MSNovelist (Stravs et al.,
2022). It is striking to see that several flavonoid-related structures were predicted for this network,
by Mass2SMILES. The structure, the number of aromatic hydroxyl groups (Mass2SMILES: 3/
MSNovelist: 5) and the number of benzene rings (Mass2SMILES: 2/ MSNovelist: 3) predicted by
MSNovelist does not correspond with the ones predicted by Mass2SMILES for this feature 377.
Nonetheless, both Mass2SMILES and MSNovelist converge on a flavonoid like structure for this
feature. Molecular networks with structures as depicted in Figure 3 may hence be combined in
future studies with Mass2SMILES or MSNovelist predictions to further assist in the annotation of

unknowns as well as to give insights into the compound class and dominating functional groups.

One drawback of Mass2SMILES is that it relies on the cddd package (Winter et al., 2019) which
runs on relatively old Python (3.6) and tensorflow (1.10) versions, future models should be built
on a pretrained SMILES transformer model such as ChemBERTa-2 (Ahmad et al., 2022) or a
transformer model that has been trained on a random to canonical SMILES translation task such
as is the cddd model, but with recurrent neural networks. The major limitation we see to further
improve the accuracy of Mass2SMILES, however, is the lack of comprehensive publicly available
annotated MS/MS data to better cover the extremely structurally diverse chemical space of natural
products. We expect that including high quality MS/MS data from databases such as METLIN or
Mzcloud would greatly increase the performance of the overall model. In addition, future progress
in molecular dynamics calculations such as QCxMS (Koopman and Grimme, 2021) and increased

computing power would offer a new potential for creating more sophisticated models. With the
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increasing availability of large-scale annotated MS/MS data, the use of large language models such
as LLaMA (Touvron et al., 2023), GPT-NeoX (Black et al., 2022) or Chinchilla (Hoffmann et al.,
2022) seems to be a highly promising methodological avenue to train a new generation of structure

prediction models in the future.

Conclusions

Mass2SMILES is a novel deep learning-based approach for the annotation of MS/MS spectra with
SMILES, which in addition also predicts the number of several functional groups present in a
molecule. It is also able to predict the adduct type and gives an estimation of the molecular formula.
This software can easily be applied to large metabolomics datasets and may represent an alternative
to computationally intensive database searches. We demonstrate the capabilities of Mass2SMILES
on the CASMI 2022 dataset, as well as on a previously reported large scale metabolomics dataset.
We expect that this tool will aid the metabolomics community in further illuminating the large

amount of dark matter present in current experiments.
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Table 4. The top predictions on the validation dataset sorted by Tanimoto similarity.
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Table 5. The top prediction on the validation dataset, sorted by the number of true functional groups. The

true number of functional groups does not necessarily align with Tanimoto similarity.
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Table 6. Selected predictions obtained for the metabolomics dataset on Nicotiana species (Elser et al., 2022). First, predicted SMILES were
converted into molecular formulas and then compared with the predictions from SIRIUS, if consistent, SMILES were further converted with
ClassyFire into chemical classes. Some examples of class predictions that did not match with CANOPUS ones are additionally depicted. If blank,

no annotation was generated in the study from Elser et al. (2022).
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Figure 3. A flavonoid related molecular network from bryophytes, annotated with Mass2SMILES. This

HO.

network was constructed on metabolomics data by Peters et al. (2018). The same dataset had been previously
used for structure prediction as part of the publication of MSNovelist (Feature 377, Stravs et al., 2022).
Numbers indicate the number of predicted aromatic hydroxyl groups, this number is not in line with the
structure predicted by MSNovelist (bottom left). The double circled structure (Feature 377), is the proposed
structure by Mass2SMILES.
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Figure S1. Example of a Mass2SMILES training run with 100 epochs. Longer training did not significantly
improve the overall model performance. The duration of 50 epochs was therefore chosen as good

compromise between model performance and training duration.
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