

1 **Title: Cellular traits regulate fluorescence-based bio-optical phenotypes of coral**
2 **photosymbionts living *in-hospite***

3

4 **Running Head: Linking bio-optical phenotypes with cellular traits**

5

6 **Author list:**

7 Audrey McQuagge^{1,2}, K. Blue Pahl^{1,2}, Sophie Wong^{2,3}, Todd Melman⁴, Laura Linn², Sean
8 Lowry^{1,2}, Kenneth D. Hoadley^{1,2}

9

10 **Author affiliations:**

11 ¹ Department of Biology, University of Alabama, Tuscaloosa, AL, United States

12 ² Dauphin Island Sea Lab, Dauphin Island, AL, United States

13 ³ University of Virginia, Charlottesville, VA, United States

14 ⁴ Reef Systems Coral Farm, New Albany, OH, United States

15

16

17

18 **Corresponding Authors:**

19 Audrey McQuagge, email: audreymcquagge@gmail.com

20 Kenneth Hoadley, email: kdhoadley@ua.edu

21

22 **Abstract:** Diversity across algal family *Symbiodiniaceae* contributes to the environmental
23 resilience of certain coral species. Chlorophyll-*a* fluorescence measurements are frequently used
24 to determine symbiont health and resilience, but more work is needed to refine these tools and
25 establish how they relate to underlying cellular traits. We examined trait diversity in symbionts
26 from the genera *Cladocopium* and *Durusdinium*, collected from 12 aquacultured coral species.
27 Photophysiological metrics (Φ_{PSII} , σ_{PSII} , ρ , τ_1 , τ_2 , ABQ, NPQ, and qP) were assessed using a
28 prototype multi-spectral fluorometer over a variable light protocol which yielded a total of 1360
29 individual metrics. Photophysiological metrics were then used to establish four unique
30 phenotypic variants. Corals harboring C15 were predominantly found within a single phenotype
31 which clustered separately from all other coral fragments. The majority of *Durusdinium*
32 dominated colonies also formed a separate phenotype which it shared with a few C1 dominated
33 corals. C15 and D1 symbionts appear to differ in which mechanisms they employ to dissipate
34 excess light energy. Spectrally dependent variability is also observed across phenotypes that may
35 relate to differences in photopigment utilization. Cell physiology (atomic C:N:P, cell size,
36 chlorophyll-*a*, neutral lipid content) was also assessed within each sample and differ across
37 phenotypes, linking photophysiological metrics with underlying primary cellular traits. Strong
38 correlations between first- and second-order traits, such as Quantum Yield and cellular N:P
39 content, or light dissipation pathways (qP and NPQ) and C:P underline differences across
40 symbiont types and may also provide a means for using fluorescence-based metrics as
41 biomarkers for certain primary-cellular traits.

42

43

44 **Keywords:** *Symbiodiniaceae*, Coral photosymbionts, Functional Traits, Chlorophyll-*a*
45 fluorescence, Phenomics

46

47

48 **Introduction:**

49 The dinoflagellate algal family *Symbiodiniaceae* is genetically and phenotypically
50 diverse, having evolved to occupy numerous niches and lifestyles, which include free-living
51 open ocean as well as endosymbiotic roles most notably in stony corals (Muscatine & Hand,
52 1958; Loeblich & Sherley, 1979; Takabayashi et al., 2012). Within the coral holobiont,
53 *Symbiodiniaceae* live within coral gastrodermal cells, in which they recycle coral waste products
54 and in turn produce up to 90% of the coral's energy stores through fixed carbon (Yellowlees et
55 al., 2008). Their endosymbiotic relationship with stony corals is complex and dynamic, with
56 differing life histories, coral hosts, and environments giving rise to vast diversity in survival
57 strategies and physiology across the family (Wiedenmann et al., 2012; Pasaribu et al., 2016;
58 Suggett et al., 2017; LaJeunesse et al., 2018). Elevated seawater temperatures above a certain
59 threshold have increased the risk of coral endosymbiont loss (coral bleaching) and its associated
60 sublethal and lethal effects worldwide (Hoegh-Guldberg & Smith, 1989; Steen & Muscatine,
61 1987; Tchernov et al., 2011). Coral bleaching mitigation and reef restoration relies on improved
62 holistic understanding of the coral holobiont (the coral host and its microbiome, including
63 endosymbiotic algae), to determine what traits underpin resilience under environmental stressors.
64 Association with adaptable and resilient symbiont species is thought to be an important predictor
65 of coral resilience (Suggett et al., 2017), but the underlying phenotypic differences across the
66 family are not fully resolved.

67 Inherent functional traits of both the algal symbiont and the coral host, as well as their
68 interactive physiology, govern coral bleaching susceptibility which varies across different host-
69 symbiont combinations (Sampayo et al., 2008; Krueger & Gates 2012; Scheufen et al., 2017).
70 Certain genera of *Symbiodiniaceae*, such as *Durusdinium* (Clade D) are often linked with higher

71 thermal tolerance across many Caribbean and Pacific coral species where mixed assemblages of
72 photosymbionts are common (Baker et al., 2004; Fabricius et al., 2004; LaJeunesse et al., 2003;
73 Sampayo et al., 2008). For these ‘symbiont generalist’ coral species, dominance by the species
74 *Durusdinium trenchii* is particularly notable among colonies that display higher thermal
75 tolerance. Other coral species only associate with a single symbiont species (specialists), and
76 their responses to thermal stress are often more nuanced and species/environmentally dependent.
77 However, symbiont ‘specialist’ corals that house *Cladocopium C15* are often more thermally
78 resilient than others, suggesting that *C15* may also be a thermally tolerant symbiont type. What
79 functional traits these two species carry and allow them to be more thermally tolerant than others
80 is an active area of research both for basic and applied fields of coral conservation.

81 The *Symbiodiniaceae* family is genetically and phenotypically diverse, but phylogeny
82 alone is not sufficient to explain the broad differences in ecological success that have been
83 observed across the family (Lewis et al., 2018; Sampayo et al., 2008; Goyen et al., 2017; Suggett
84 et al., 2017; Mansour et al., 2018). Relatively recent adaptive radiations among certain genera
85 (Thornhill et al., 2014) driven by variable nutrient and light environments, coral skeletal
86 architecture, and tissue pigments have presumably resulted in diverse functional traits across
87 species, including variability in response to environmental perturbations such as thermal stress
88 (D’Angelo & Wiedenmann, 2014; Sully & van Woesik, 2020; Scheufen et al., 2017; Suggett et
89 al., 2015; Suggett et al., 2017). However, as there still exists a gap in knowledge regarding how
90 genomic diversity within this group translates into functional trait differences and phenotypes
91 across species and environments, a better understanding of algal trait variability across the
92 *Symbiodiniaceae* family is needed.

93 Chlorophyll-*a* fluorescence techniques are commonly employed within coral research as
94 a tool for assessing photosynthetic health under high temperature stress (Warner et al., 1999,
95 Rodríguez-Román et al., 2006, Cunning et al., 2021). Indeed, these tools have been a critical
96 component of bleaching response research and are increasingly utilized to characterize trait-
97 based differences within and across coral species (Suggett et al., 2022, Hoadley et al., 2021).
98 Incorporation of varying light protocols and multispectral analyses (Hoadley et al., 2023, Szabó
99 et al., 2014) further increases the utility of these tools for assessing nuanced functional trait
100 differences across coral species and/or environmental conditions. Such tools provide the ideal
101 platform for phenomic studies as ‘high-content’ data sets can be easily captured from individual
102 corals and then assessed using machine learning techniques to establish photo-physiological
103 profiles representative of key species and/or underlying cellular traits.

104 First-order traits, or traits which form the basis of function, are thought to be better
105 determinants of algal survival and success than secondary traits, which arise from the
106 performance of primary traits (Suggett et al., 2017). First-order traits such as allometric scaling
107 (cell size) and nutrient budgeting (atomic Carbon: Nitrogen: Phosphorus ratios) likely regulate
108 second-order traits, such as photoprotection and light utilization strategies (Suggett et al., 2017;
109 McIlroy et al., 2020; Hoadley et al., 2021). However, first order traits are often difficult to
110 measure, requiring destructive and sometimes expensive analytical methodology. In contrast,
111 second order traits, such as light utilization strategies in photosynthetic organisms, are relatively
112 easy to characterize using rapid and non-invasive tools such as chlorophyll-*a* fluorescence
113 (Warner et al., 1999, Suggett et al., 2015, Warner & Suggett 2016). Because light utilization
114 strategies differ across environmental conditions and species of *Symbiodiniaceae*, characterizing
115 relationships between such secondary and underlying primary traits could provide useful insight

116 into what drives the observed functional trait differences derived through chlorophyll-*a*
117 fluorescence. Establishing correlations between primary traits and light utilization
118 characteristics, future studies may also be able to infer certain primary trait characteristics via
119 chlorophyll-*a* fluorescence alone.

120 In this study, we characterized photosynthetic poise of six different *Symbiodiniaceae*
121 species living *in-hospite* among 60 Pacific coral fragments, spanning 12 coral species
122 (*Montipora capricornis*, *Acropora yongei*, *Montipora digitata*, *Turbinaria reniformis*, *Acropora*
123 *millepora*, *Acropora humilis*, *Acropora valida*, *Acropora* sp., *Pavona cactus*, *Psammacora*
124 *contigua*, *Pocillopora damicornis*, and *Cyphastrea chalcidicum*), sourced from the Reef Systems
125 Coral Farm, Inc, in New Albany, Ohio. Prior to isolation of the algal symbionts for
126 characterization of primary traits, we first assessed active chlorophyll-*a* fluorescence metrics
127 using 5 excitation wavelengths during a time-resolved actinic light protocol designed to test
128 acclimation, relaxation, and light utilization at high and low light intensities (Hoadley et al.,
129 2023). This yielded a total of 1360 individual metrics which were then used to cluster coral
130 colonies based on similarity of their photophysiological phenotype. Phenotypes were then
131 compared to identified symbiont species and linked to underlying differences in primary traits
132 across phenotypes. Next, a network analysis was utilized to elucidate specific correlations
133 between our primary and secondary traits. Convergence between algal species and phenotypes
134 provide a useful means for understanding trait-based differences across genetic lineages, along
135 with the underlying cellular traits that regulate them.

136

137

138 **Materials and Methods:**

139

140 **Coral husbandry and environmental conditions:** All corals were housed at Reef Systems
141 Coral Farm (New Albany, Ohio). This facility consists of large ~4000 L raceways (8' x 4' x 4')
142 housed within a greenhouse facility (optically clear plastic roofing with no shade cloth). Smaller
143 indoor tanks (~1100 L) contain additional corals under LED illumination. All tanks utilize the
144 same artificial seawater (Reef Crystals in RO/DI filtered water) and receive frequent (10-20%, 1-
145 2 week⁻¹) water changes. All tanks contain submersible power heads (Tunze) which circulate
146 water within each system between 50-100 times per hour. Additional overflow pumps exchange
147 water (1-2 times volume of tank hr⁻¹) with external sumps equipped with mechanical (25-micron
148 sieve) and foam fractionation filtration. All coral fragments are mounted on ceramic disks (3cm)
149 and attached using cyanoacrylate gel (coral glue). Peak irradiance (measured at the same tank
150 depth for each tank) within the outdoor (greenhouse) tanks was 1050 $\mu\text{mol m}^{-2} \text{ sec}^{-1}$ (walz, 4pi
151 sensor). Indoor corals were illuminated using LED lighting (Radion Xr30 Pro) on a 10:14 hr
152 dark: light cycle with peak irradiance measured at 300 $\mu\text{mol m}^{-2} \text{ sec}^{-1}$. Indoor and outdoor corals
153 thus differ both in max irradiance but also in light spectra (natural lighting vs. LED output).

154 Reef Systems Coral Farm (New Albany, Ohio) houses over 30 different species of coral,
155 with thousands of individual fragments originating from coral colonies that were harvested in
156 Fiji but have been captively grown at the facility for over ten years. All individual fragments
157 utilized in the study had been fragmented and mounted for at least one month prior to use. In
158 order to maximize diversity, we collected three replicate fragments from twenty different coral
159 colonies chosen to include a wide range of life strategies and histories, including both mound and
160 branching species acclimated to greenhouse conditions; *Psammacora contigua* (1 genotype),

161 *Acropora yongei* (1 genotype), *Acropora millepora* (1 genotype), *Acropora humilis* (1 genotype),
162 *Acropora valida* (1 genotype), *Acropora* species (1 genotype), *Turbinaria reniformis* (2
163 genotypes), *Pavona cactus* (1 genotype), *Montipora digitata* (1 genotype), *Montipora*
164 *capricornis* (3 genotypes), *Cyphastrea chalcidicum* (1 genotype), *Pocillopora damicornis* (2
165 genotypes). In addition, indoor acclimated fragments representing species *Acropora humilis* (1
166 genotype), *Turbinaria reniformis* (1 genotype), and *Montipora capricornis* (2 genotypes) were
167 also included in our analyses.

168

169 **Chlorophyll fluorescence-based phenotyping protocol:** Prior to measurements, each
170 individual coral fragment was dark acclimated for 20-25 minutes (Suggett et al., 2015).
171 Photophysiological responses to changing light conditions were then measured using a prototype
172 Chlorophyll-*a* fluorometer previously described in Hoadley et al., 2023. Briefly, fluorescence
173 induction curves were produced through excitation with 1.3- μ s single turnover flashlets spaced
174 apart by 3.4 μ s dark intervals (32 flashlets were utilized under 420, 442, and 458-nm excitation
175 while 40 flashlets were utilized during 505 and 520-nm excitation). Each fluorescence induction
176 curve was followed by a 300 ms relaxation phase consisting of 1.3- μ s light flashes spaced apart
177 with exponentially increasing dark periods (starting with 59- μ s). Fluorescence induction and
178 relaxation curves measured using each excitation wavelength were sequentially repeated 5 times
179 per measurement timepoint. These photophysiological measurements were repeated 34 times
180 during an 11-minute variable actinic light protocol in which corals were exposed to an initial
181 dark period (30s) followed by 3 different light intensities ($300 \mu\text{mol m}^{-2} \text{ sec}^{-1}$ for 3.5 minutes,
182 then $50 \mu\text{mol m}^{-2} \text{ sec}^{-1}$ for 1.5 minutes followed by $600 \mu\text{mol m}^{-2} \text{ sec}^{-1}$ for 3.5 minutes), and a
183 final dark recovery period (~ 2 minutes) (Hoadley et al., 2023). Resulting fluorescence data was

184 analyzed using custom R scripts (Hoadley et al., 2023) and according to equations set forth in
185 Kolber et al., 1998 in order to calculate quantum yield of photosystem II (Φ_{PSII}), PSII functional
186 absorption cross-section (σ_{PSII}), reaction center connectivity (ρ), non-photochemical quenching
187 (NPQ), antenna bed quenching (ABQ), photochemical quenching (qP), and two time constants
188 for electron transport (τ_1 and τ_2) where τ_1 reflects acceptor-side changes of PSII and τ_2 reflects
189 changes in plastoquinone pool reoxidation (Suggett et al., 2022; Hoadley et al., 2023). However,
190 downstream PQ reoxidation kinetics (τ_2) are typically derived from a multturnover induction and
191 relaxation flash sequence (Suggett et al., 2022) whereas ours are derived from the second
192 exponential component of a single turnover induction and relaxation flash sequence (τ_2^{ST}).
193

194 **Endosymbiont Isolation:** Once chlorophyll-*a* fluorescence-based measurements were complete,
195 a portion of coral tissue was removed using the water-pick method (Johannes & Wiebe, 1970)
196 and filtered seawater (artificial seawater vacuum-filtered, 0.2-micron filter). The resulting tissue-
197 water slurry was homogenized using a hand-held tissue homogenizer (tissue tearer) and then
198 measured using a graduated cylinder. Samples were then centrifuged (8,000 X g, 10 minutes,
199 room temperature). After centrifugation, the supernatant was removed, and the pellets were
200 resuspended in sterile seawater, vortexed for 30 seconds and then centrifuged once more to wash
201 the endosymbionts free of the host tissue. Resulting algal pellets were resuspended in 10ml of
202 sterile seawater.

203
204 **Flow Cytometry (cell size, chlorophyll-*a*, neutral lipid content, and granularity):** One ml
205 aliquots of resuspended algal samples were preserved with glutaraldehyde (0.1% final
206 concentration), incubated in the dark for 20 minutes, flash frozen in LN₂, and then stored at -80

207 C for downstream flow cytometry. All samples were analyzed using a Attune NxT (Invitrogen,
208 USA) equipped with a 488 nm (200 mW) laser and a 200 μ m nozzle. Glutaraldehyde-fixed
209 samples were re-pelleted using a centrifuge (12,000xg, 5 minutes), resuspended in 1x filtered
210 PBS, and then filtered through a 50-micron mesh filter to remove residual coral tissue or large
211 cell aggregates. Samples were then diluted 4x with 1x filtered PBS and spiked with 10 μ l of
212 1:1000 diluted fluorescent bead stock (Life Technologies 4.0 μ m yellow-green 505/515
213 Fluospheres sulfate). 100- μ l per culture was analyzed at a flow rate of 200- μ l min⁻¹. For
214 characterization of *Symbiodiniaceae* cells, data collection was triggered on forward light scatter
215 (FSC), while red (695/40 nm bandpass filter) autofluorescence detected chlorophyll-a, and both
216 were utilized to gate the cell and bead populations for bead-normalized FSC, side scatter (SSC)
217 and chlorophyll fluorescence measurements.

218 For quantification of neutral lipid content, 500 μ l of the diluted sample was first stained
219 with 2- μ l 5mM Bodipy 493/503 (Invitrogen, 4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-
220 Diaza-s-Indacene) and then incubated in the dark at 37 $^{\circ}$ C for 15 minutes. Stained samples were
221 then run according to the same conditions described above. The *Symbiodiniaceae* cell population
222 was identified using FSC-height and autofluorescence, and the gated population's green
223 fluorescence was quantified (bandpass filter 530/30).

224

225 **Total C:N:P Content and Nutrient Analysis:** For Carbon and Nitrogen analysis, 2-ml of each
226 resuspended algal sample was filtered through a 13mm ashed GF/F filter and dried in a 95 $^{\circ}$ C
227 oven for 24 hours. Filters were packed into tin capsules, combusted (Costech Instruments 4010
228 Elemental Combustion System) and analyzed via Elemental Analyzer. Total carbon and nitrogen
229 values were compared to an atropine standard. For particulate organic phosphorus (POP)

230 analysis, 2-ml of each isolate was filtered through a 13mm ashed GF/F filter and stabilized with
231 a 0.17M Na₂SO₄ rinse. Filters were placed in muffled scintillation vials with 2-ml aliquots of
232 0.017M Na₂SO₄ and evaporated to dryness in a 95°C muffle oven for 24 hours. Vials were
233 covered in aluminum foil and baked at 450°C for 2 hours, and then were baked with 5-ml 0.2 M
234 HCl at 90°C for 30 minutes. Samples were diluted with 5-ml ultra-pure water and analyzed
235 using the Skalar SAN+ system and compared to an Adenosine Triphosphate standard.

236 To confirm that corals across different tanks were grown under similar nutrient
237 conditions, 20-ml samples from each husbandry tank were collected and stored at -20°C until
238 analysis, when they were thawed and loaded into the Skalar SAN+ system's autosampler. The
239 samples were analyzed for μM nitrate, nitrite, ammonia, and phosphate via continuous flow
240 analysis and according to EPA standard techniques (EPA 1993a, EPA 1993b).

241

242 **DNA Sequencing:** A 2-ml aliquot of isolated symbiont cells were first pelleted (centrifugation at
243 10000 rcf for 5 minutes) and then stored in 1-ml of DMSO buffer solution (Pettay et al., 2015) at
244 4°C. DNA was extracted from each sample using the Wizard Genomic DNA Purification Kit
245 (Promega). Quality of DNA samples were assessed on a 1.0 Nanodrop (Thermo Scientific) and
246 all samples had 260/280 and 260/230 values above 1.5. For each sample, PCR was first
247 performed targeting the internal transcribed spacer 2 (ITS2) region using the previously
248 established primer pairs (ITSintfor2: 5'GAATTGCAGA ACTCCGTG-3', ITS2-reverse:
249 5'GGGATCCATA TGCTTAAGTT CAGCGGGT-3') (LaJeunesse et al., 2002; Sheffield et al.,
250 1989). Resulting amplicons were subjected to a second round of PCR (only 8 cycles) using the
251 same primer pairs with adapter sequence (Forward- TCGTCGGCAGCGTCAGATGTGTATA
252 AGAGACAGGAATTGCAGAACTCCGTG; Reverse-GTCTCGTGGCTCGGAGATGTGT

253 ATAAGAGACAGGGATCCATATGCTTAAGTTCAGCGGGT). Adapter sequences are
254 underlined in the above primer sets. All PCR was achieved using Hot Start Taq DNA
255 Polymerase (New England BioLabs, Inc) under the following settings: denaturation 94.0°C for
256 30s, annealing 54.0°C for 35s, extension 68.0°C for 3min x 35 cycles (8 cycles in round two),
257 final extension 68.0°C for 5 minutes. Samples were then purified using the GeneJET PCR
258 Purification Kit (Thermo Scientific) and visualized on agar gels to confirm results. Amplicons
259 were submitted to the University of Delaware Sequencing and Genotyping Center for library
260 preparation and metagenomic sequencing. Amplicons were dual indexed using the Nextera
261 system and were run as a single library using a paired-end 300 base pair x 2 strategy on an
262 Illumina MiSeq system. Demultiplexed FASTQ sequences were then uploaded to SymPortal for
263 profiling (Hume et al., 2019). Given known high variability in rDNA copy numbers across
264 species and genera (LaJeunesse & Thornhill, 2011) which may hinder translation of data into
265 accurate relative abundances (Davies et al., 2022), absolute abundance ITS2-type profiles were
266 then normalized to rDNA copy numbers according to Saad et al., 2020.

267
268 **Statistical Analyses:** All statistical analyses were conducted in R (version 4.1.3). Algal
269 genotypes for each coral sample were derived from SymPortal-generated ITS2 profiles
270 normalized to reflect relative abundance of each symbiont genera. Importantly, known
271 differences in *Cladocopium* and *Durusdinium* ITS2 copy numbers was addressed by normalizing
272 to previously derived rDNA copy ratios of 2119:362 (Saad et al., 2020). The dominant (> 70% of
273 ITS2 sequences) symbiont type in each coral fragment (Fig. 2b) was then utilized to screen for
274 photophysiological metrics that were significantly different across algal species using either a
275 one-way ANOVA or Kruskal-Wallis test if data did not meet the assumptions of normality. The

276 resulting dataset was then transformed using Z-scores and then plotted as a heatmap (Fig. 2a)
277 with individual coral colonies represented by each column, and photophysiological metrics
278 across rows. A clustering analysis (1000 bootstrap iterations) was performed using the R
279 packages pvclust (Suzuki & Shimodaira, 2006) and dendextend (Galili, 2015) to cluster
280 individual coral samples by algal phenotype. Clustering analyses were also carried out on
281 heatmap rows and resulting clusters were further analyzed using custom scripts to identify which
282 photophysiological metrics were most important for separating our coral fragments into separate
283 phenotypes.

284 Full actinic light profiles for identified photophysiological metrics (Fig. 2a) were plotted
285 in Fig. 3 and a repeated measures linear mixed model with a tukey posthoc (with Bonferroni
286 correction) identified significant differences across algal phenotypes (Supplemental Table 4)
287 using the lmerTest (Kuznetsova et al., 2017) and multicomp (Hothorn et al., 2008) R packages.
288 Spectrally-dependent differences within each photophysiological metric and algal phenotype
289 were similarly assessed (Supplemental Table 3). Significant differences in cellular physiology
290 (cell size, Granularity, Chl *a*, N:P, C:P, and C:N ratios) across phenotypes was also assessed. For
291 each metric, normality was first determined (Shapiro-Wilks). If data were determined to be
292 normal, a One Way ANOVA followed by a Tukey posthoc was performed. For data that did not
293 meet the assumptions of normality, a Kruskal Wallace with Bonferroni correction was performed
294 (Fig. 4).

295 A network analysis was employed to look for significant correlation between
296 photophysiological metrics and primary cellular traits using averaged values across coral species
297 replicates (3 species^{-1}). Only correlations with a Pearson value above 0.6 were utilized.

298 Using the igraph package (Csardi & Nepusz, 2006), specific correlations (Pearson's value of
299 0.55 or above) between symbiont cellular metrics and fluorescence-based phenotyping data were
300 identified and are displayed in Fig. 5.
301

302 **Results:**

303 **Symbiont types:** Symportal analysis revealed that most corals were dominated by a single
304 genotype (>70% relative abundance) of *Symbiodiniaceae*. *Acropora* (including *A. yongei*, *A.*
305 *millepora*, *A. humilis*, *A. valida*, and unknown species) predominantly hosted either *C3* or *C21*
306 symbiont types, while *Montipora* (including *M. capricornis* and *M. digitata*) hosted primarily
307 *C15*, but sometimes *C26*, variants (Fig. 2b). The symbiont type *D1* was primarily observed in
308 *Turbinaria*, *Psammacora*, and *Pocillopora*.

309

310 **Phenotype to genotype clustering and profiles:** Of the 1360 algal biometrics derived from the
311 fluorescence-based excitation profile, 987 were found to be significantly ($p < 0.05$) different
312 across the dominant symbiont species (*C1*, *C3*, *C15*, *C21*, *C26*, and *D1*, Table 1). These
313 identified algal biometrics were then utilized to organize samples according to trait-based
314 phenotypes (Fig. 2a), with the resulting dendrogram organized into four distinct phenotypes
315 according to the largest clustering groups (Fig. 2a). Phenotype 1 contains 14 of the 15 *C15*-
316 dominated coral colonies (*Montipora digitata* and *Montipora capricornis*), with both high and
317 low-light acclimated fragments clustering together (Fig. 2). Two additional fragments of
318 *Acropora* sp. (*C3*) were also found in phenotype 1. Phenotype 2 was predominantly (12 of 16
319 fragments) comprised of *Durusdinium trenchii* (*D1*)-dominated corals (low-light *Turbinaria*
320 *reniformis*, *Pocillopora damicornis*, and *Psammacora contigua*). The remaining four coral
321 fragments in phenotype 2, were dominated by *Cladocodium C1* (in *Cyphastrea chalcidicum* or
322 *Pavona cactus*). Coral fragments belonging to phenotype 3 were comprised of 3 *A. millepora*
323 fragments (*C3*) and 5 fragments of high-light acclimated *Durusdinium D1*-dominated *Turbinaria*
324 *reniformis*. Lastly, phenotype 4 was comprised of both high and low-light acclimated *A. humilis*

325 (C3) fragments, along with all *C21* dominated corals (*A. yongei* and *Acropora sp.*), all three
326 fragments of *M. digitata* dominated by *C26*, two fragments of *P. cactus* (*C1*) and single *C15*-
327 dominated (*M. digitata*) and *D1*-dominated (*T. reniformis* – high light acclimated) fragments. Of
328 the 20 coral colonies represented in this study, only four contained fragments which did not all
329 cluster within the same phenotype. Based on row clustering and custom scripts, quantum yield of
330 PSII (Φ_{PSII}), functional absorption cross section of PSII (σ_{PSII}), non-photochemical quenching
331 (NPQ), photochemical quenching (qP), along with the reoxidation kinetics (τ_1^{ST} and τ_2^{ST}) were
332 determined to be the primary drivers for the observed phenotypic structure and were thus plotted
333 in full detail (Fig. 3) for each of the four phenotypes described above.

334 A mixed linear model was utilized to identify spectrally dependent differences across
335 phenotypes for the photo physiological metrics, Φ_{PSII} , σ_{PSII} , NPQ, qP, τ_1^{ST} , and τ_2^{ST} reoxidation
336 kinetics (Fig. 3 and Supplemental Table 4). For all excitation wavelengths except 420nm,
337 phenotype 1 had significantly ($p < 0.0159$) lower Φ_{PSII} values compared to all other phenotypes.
338 Under 420nm excitation, Φ_{PSII} profiles for phenotype 1 were significantly ($p < 0.0001$) lower
339 than phenotypes 2 and 4, but not phenotype 3. Additionally, Φ_{PSII} profiles for phenotype 3 were
340 also significantly ($p < 0.001$) lower than phenotype 2 but only under 420nm and 442nm
341 excitation whereas phenotype 3 different significantly ($p < 0.043$) from phenotype 4 under all
342 excitation wavelengths except 525nm. No differences across phenotypes were observed for σ_{PSII}
343 under any excitation wavelength and indicate that subtle differences may only exist when
344 comparing across specific symbiont species (not phenotypes). Under all excitation wavelengths,
345 nonphotochemical quenching profiles reached the highest values in phenotype 1 whereas
346 relatively small changes were observed in phenotype 2. For phenotypes 3 and 4, NPQ values did
347 not differ significantly from one another but represent a medium level that is significantly ($p <$

348 0.001) different from phenotypes 1 and 2. Photochemical quenching (qP) profiles observed in
349 phenotypes 1 and 3 differed significantly ($p < 0.003$) from those in phenotype 2 and 4 under all
350 excitation wavelengths. Differences in τ_1^{ST} were more sporadic across phenotypes as profiles
351 under 420nm excitation differed significantly ($p = 0.001$) between phenotypes 1 and 2. Under
352 442nm excitation, τ_1^{ST} profiles for phenotype 1 were significantly ($p < 0.011$) different from
353 those observed for phenotype 2 and 3. For τ_1^{ST} profiles measured under 505nm excitation,
354 phenotype 1 was significantly ($p < 0.021$) different from all others, while phenotypes 3 and 4
355 were also differed ($p < 0.027$) from one another. Lastly, τ_2^{ST} profiles for phenotype 1 had
356 significantly ($p < 0.002$) slower (higher time constants) kinetics than those observed for all other
357 phenotypes under all excitation wavelengths except 420nm. Under 420nm excitation, τ_2^{ST}
358 profiles for phenotypes 1 and 3 were only significantly ($p < 0.002$) elevated over those found in
359 phenotypes 2 and 4.

360 A mixed linear model was also utilized to compare spectrally dependent photo-
361 physiological profiles within each phenotype (Fig. 3 and Supplemental Table 3). For Phenotype
362 1, Φ_{PSII}^{420} , Φ_{PSII}^{442} and Φ_{PSII}^{505} profiles were significantly ($p < 0.004$) higher than Φ_{PSII}^{458} and
363 Φ_{PSII}^{525} . For phenotype 2, Φ_{PSII}^{420} , Φ_{PSII}^{458} , and Φ_{PSII}^{525} profiles were lower ($p < 0.005$) than
364 Φ_{PSII}^{442} and Φ_{PSII}^{505} . For phenotype 3, Φ_{PSII}^{420} appeared to be significantly ($p < 0.006$) lower than
365 all other profiles whereas Φ_{PSII}^{505} was significantly ($p < 0.007$) higher than the rest. For
366 phenotype 4, Φ_{PSII}^{420} and Φ_{PSII}^{458} profiles were on average lower ($p < 0.029$) than Φ_{PSII}^{442} and
367 Φ_{PSII}^{505} profiles. For all four phenotypes, spectrally dependent σ_{PSII} differed significantly ($p <$
368 0.021) from one another with σ_{PSII}^{420} showing the highest and σ_{PSII}^{525} the lowest values overall.
369 Interestingly, and in contrast to that observed for σ_{PSII} , no spectrally dependent differences in qP
370 were observed within any phenotype. NPQ⁴²⁰ and NPQ⁴⁴² displayed significantly ($p < 0.0001$)

371 higher values as compared to NPQ^{458} , NPQ^{505} , and NPQ^{525} profiles within phenotype 1. For
372 phenotype 2, NPQ^{458} profiles were similar to NPQ^{442} and NPQ^{505} whereas all others differed
373 significantly ($p < 0.001$) from one another, as NPQ^{420} values tended to be slightly higher than the
374 rest. For phenotypes 3 and 4, the NPQ^{420} profile generated significantly ($p < 0.001$) higher values
375 whereas NPQ^{505} values were significantly ($p < 0.034$) lower than all others. All τ_1^{ST} profiles for
376 phenotypes 2 and 3 displayed significantly different responses from one another whereas τ_1^{505}
377 and τ_1^{525} were similar to one another within phenotypes 1 and 4. Overall, τ_1^{420} and τ_1^{442} produces
378 slower reoxidation kinetics as compared to τ_1^{458} , τ_1^{505} , and τ_1^{525} . Lastly, τ_2^{420} and τ_2^{442} values
379 were significantly lower than all others in phenotypes 1 and 2. For phenotype 3, τ_2^{442} and τ_2^{505}
380 produced significantly ($p < 0.004$) lower values than τ_2^{420} , τ_2^{458} , and τ_2^{425} . In contrast, τ_2^{420} , τ_2^{442}
381 and τ_2^{505} profiles produced significantly ($p < 0.001$) lower values than those observed for τ_2^{458} ,
382 and τ_2^{525} .

383 Underlying differences in cellular physiology were also compared across the 4
384 fluorescence-based phenotypes (Fig. 4). Cell size (FSC) was significantly ($p < 0.002$) higher in
385 phenotype 2 as compared with phenotypes 1 and 4 (Fig. 4a). Granularity (SSC) was significantly
386 ($p < 0.008$) higher in phenotypes 2 and 4 as compared to phenotypes 1 and 3 and may indicate
387 differences in light scattering abilities across groups (Fig. 4b). Fluorescence-based chlorophyll-*a*
388 measurements were significantly ($p < 0.025$) lower in phenotype 2 as compared with phenotypes
389 1 and 4 (Fig. 4c). N:P and C:P ratios were significantly ($p < 0.004$) higher in phenotype 1 as
390 compared with phenotypes 2 and 4 (Fig. 4d-e).

391
392 **Network analysis and Correlation Plots:** In order to look for broad connections between
393 primary (cellular) and secondary (photophysiological) traits, a network analysis (Fig. 5) was used

394 to search for significant correlation between each of the 1360 fluorescence-based measurements
395 and traditional cellular characteristics (Carbon per cell, Nitrogen per cell, Phosphate per cell,
396 C:N ratio, N:P ratio, Cell Size, Chlorophyll-*a* (FSC), Granularity (SSC), and neutral lipids). Our
397 analysis identified 415 correlations having a significant Pearson value of 0.6 or above. The
398 cellular metrics N:P, C:P, and SSC displayed the greatest number of significant correlations
399 (269, 63, and 70 respectively). For N:P ratios, the majority of positive correlations were with τ_s^{ST}
400 measurements, while most negative correlations were with Φ_{PSII} values. For C:P ratios, most
401 correlations occurred with NPQ or qP values while SSC correlated more broadly with various
402 metrics including Φ_{PSII} , τ_s^{ST} , qP and connectivity. A select number of these cellular to photo-
403 physiological correlations are displayed in full detail in Fig. 6.

404 **Discussion:**

405 Molecular and physiological techniques are commonly utilized by the coral research community

406 to better understand what underpins genetic diversity and the broad range of environmental

407 tolerances observed within the *Symbiodiniaceae* family. While the two *Symbiodiniaceae* genera

408 *Cladocopium* and *Durusdinum* are separated by over 100 million years of evolutionary history

409 (LaJeunesse et al., 2018), fluorescence-based phenotypes from our analysis did not entirely

410 converge across these broad genetic designations spread across our 12 coral colonies reared

411 under high and low light conditions (Fig. 1). For example, phenotypes 2 and 3 are comprised of

412 corals with both symbiont genera, indicating high functional trait similarity despite large genetic

413 differences (Fig. 2a). In contrast, greater phenotypic disparity is noted across some of the five

414 *Cladocopium* species in this study and may reflect the relatively high genetic diversity observed

415 in this genera as compared to others (Thornhill et al., 2014; LaJeunesse et al., 2018).

416 Nevertheless, the degree of phenotype to genotype convergence observed within our heatmap

417 analysis is notable, especially within the context of potentially contributing sources of functional

418 trait disparity such as host species and light environment. High content chlorophyll-*a*

419 fluorescence-based phenotyping is already proving useful for understanding functional trait

420 differences and their application to ecosystem services (Suggett et al., 2022, Hoadley et al.,

421 2023), and this study further showcases the technique's utility even across environmental light

422 gradients while also providing direct links with underlying cellular physiology which likely

423 regulate the observed photo physiological traits.

424

425 **'High content' chlorophyl-*a* based phenotypes:** Light acclimation state can mask species-

426 specific differences in certain physiological metrics, as higher irradiances often lead to

427 upregulation of stress-mitigating pathways (Ragni et al., 2010) and a reduction in photopigment
428 production (Hoadley & Warner, 2017). This has traditionally made it difficult to capture
429 species-specific trait-based differences without first accounting for light acclimation state.
430 However, differences in the degree of impact that light acclimation state has on photophysiology
431 may be largely species dependent, as high- and low-light acclimated fragments of *Cladocopium*
432 *C15* and *C1* (in *A. humilis*) all clustered within genotypes 1 and 4 respectively, indicating
433 minimal impact of light acclimation state on the overall photophysiological phenotype derived
434 through our ‘high content’ chlorophyll-*a* fluorescence protocol (Fig. 2). In contrast, high- and
435 low-light acclimated *T. reniformis* coral fragments containing *Durusdinium D1* symbionts
436 clustered into separate phenotypes, as did two of the low-light acclimated *C3*-dominated
437 *Acropora humilis* coral fragments (Fig. 2). Suggett et al., 2022 also noted that the variance in
438 light acclimation state (light niche plasticity) differed across three different species of coral
439 found along the same reef system and at a similar depth. Understanding how various
440 environmental factors constrain individual coral and symbiont species combinations and their
441 underlying phenotypes will become increasingly important, especially as trait-based approaches
442 are further applied toward coral restoration and conservation practices (Voolstra et al., 2021a).

443 While the degree of thermal tolerance can vary across specific host/symbiont
444 combinations (Suggett et al., 2017), comparatively high bleaching resistance in *Durusdinium D1*
445 and *Cladocopium C15* has been a focal point of coral research (Voolstra et al., 2021b). Whether
446 bleaching resistance is derived through similar functional traits or if mechanisms of thermal
447 tolerance differ across the two species is currently unknown. Coral endosymbiont thermal
448 tolerance is often linked to photochemistry (Fitt et al., 2001; Wang et al., 2012; Warner et al.,
449 1999), yet phenotypes differed across *Cladocopium C15* and *Durusdinium D1* dominated coral

450 fragments in this study (Fig.s 2-3), suggesting differences in their photosynthetic poise. For
451 example, higher reliance on non-photochemical quenching (NPQ) in response to rapid changes
452 in light is noted for the *Cladocopium C15*-dominated phenotype (phenotype 1 – Fig. 3i) whereas
453 *Durusdinum D1* symbionts from phenotype 2 and 3 relied more heavily on photochemical
454 quenching to mitigate excess excitation energy as a larger proportion of PSII reaction centers
455 remain closed throughout the actinic light protocol (Fig. 3n-o). Reoxidation kinetics between the
456 *C15* and *D1* phenotypes also differed as phenotype 1 had lower τ_1^{ST} values than phenotype 2
457 (under 420, 442, and 505nm excitation) or 3 (under 442, 458, 505, and 525nm excitation) and
458 indicate faster rates of electron transport between the Q_a and Q_b sites within the PSII reaction
459 centers of *Cladocopium C15* symbionts (Fig. 3q-s). Interestingly, faster τ_1^{ST} kinetics for C15
460 were coupled with much slower τ_2^{ST} rates as compared to other phenotypes (Fig. 3u-w).
461 Importantly, τ_2^{ST} values are derived from a 2 exponential equation fit model and thus do not
462 necessarily reflect a specific rate constant (Hoadley et al., 2023), the higher values likely indicate
463 slower rates of electron transport within and downstream of the plastoquinone pool. Alternative
464 electron sinks or cyclic electron transport can play an important role in coping with excess
465 excitation energy (Roberty et al., 2014; Vega de Luna et al., 2020) and differences in their utility
466 across symbiont species may help drive the different reoxidation profiles observed here. Overall,
467 stark contrasts in how each species copes with light energy during rapid changes in light are
468 perhaps not surprising given the > 100 million years of evolutionary history that separate the two
469 species (LaJeunesse et al., 2018). How and if these different functional traits drive unique
470 thermal acclimation strategies will need to be the focus of a future study.

471 Use of multiple LED colors to excite chlorophyll-*a* fluorescence allows for potential
472 differences in photopigment utilization to be incorporated into our phenomic analysis. For

473 example, spectrally-dependent variance in NPQ responses may point towards differences in how
474 photopigments are utilized to cope with excess excitation energy within phenotypes 1 and 3 (Fig.
475 3i, k). In contrast, phenotype 2 displayed much lower levels of NPQ in response to changes in
476 actinic light, and little spectral variance in its profile (Fig. 3j). Non-photochemical quenching
477 broadly encompasses various mechanisms utilized by photosynthetic organisms to dissipate
478 harmful excess excitation energy absorbed by light harvesting antennae (Lacour et al., 2020). For
479 many eukaryotic photoautotrophic taxa, the xanthophyll cycle (XC) is a major energy dissipation
480 mechanism regulating observed changes in NPQ. While XC is not always involved in NPQ
481 regulation, and its role in the family *Symbiodiniaceae* is not fully resolved, excess light energy is
482 dissipated as heat through the inter-conversion of the photopigments (zeaxanthin to violaxanthin)
483 or (diadinoxanthin to diatoxanthin). The sum of these various photopigments are collectively
484 known as the xanthophyll pool, and higher concentrations are often associated with acclimation
485 to high light (Lacour et al., 2020; Schuback et al., 2021). Importantly, these different
486 photopigments have unique absorption spectra which may be preferentially excited by our
487 multispectral analysis. For example, absorption spectra for extracted zeaxanthin and violaxanthin
488 pigments indicate that both absorb light from 420nm, 442nm, and 458nm excitation, but longer
489 wavelength excitation (505nm and 525nm) may not be as readily absorbed by violaxanthin
490 (Ruban et al., 2001). The spectrally-dependent variance in NPQ response observed for
491 phenotypes 1 and 3 (Fig. 3i-k) may potentially reflect differences in the relative abundance and
492 utilization of various xanthophyll pigments. While additional research is needed, such a
493 connection between XC pigment pool/utilization and excitation wavelength could provide an
494 additional dimension for understanding NPQ responses and how they might differ across species
495 and environmental conditions.

496 Significant spectrally-dependent variability is also notable within the τ_1^{ST} and τ_2^{ST}
497 reoxidation kinetics. These time constants reflect the rate of electron transport between the Qa
498 and Qb site of the PSII reaction center (τ_1^{ST}) and further downstream kinetics involving the PQ
499 pool (τ_2^{ST}) and further downstream electron transport. Previous work has indeed demonstrated
500 the utility of τ_1^{ST} for characterizing light or thermal acclimation state in reef corals (Suggett et
501 al., 2022; Hoadley et al., 2019, Hoadley et al., 2023) or productivity rates in marine algae
502 (Gorbunov & Falkowski, 2020). Values from τ_2^{ST} are less well understood yet the clear structure
503 observed in our profiles suggest this metric is indeed useful for assessing trait-based differences
504 across species and/or environmental conditions.

505

506 ***Linking primary cellular traits with photophysiology:*** Underlying *Symbiodiniaceae* cellular
507 physiology differed significantly across the four phenotypes derived from chlorophyll-*a*
508 fluorescence-based measurements. Linking underlying cellular physiology with more easily
509 measured secondary traits such as photo physiology is critical for broadening the utility of
510 multispectral and single-turnover chlorophyll-*a* fluorometers. These non-invasive, optical tools
511 could serve as highly informative platforms for monitoring health and resilience of
512 photosynthetic organisms, including reef corals (Suggett et al., 2022). Cellular traits, such as
513 granularity which broadly measures the light scattering properties of a cell, were significantly
514 higher in phenotypes 1 and 3 and may serve to deflect excess excitation energy. Reductions in
515 photochemical quenching are more quickly relaxed in phenotypes 1 and 3 and higher granularity
516 may serve to mitigate rapid shifts in light, functioning to reflect excess excitation energy away
517 from the cell and reducing reliance on downstream processes such as closing PSII reaction
518 centers in response to high light (qP, Fig. 3n, p). In contrast, large cell size and lower chlorophyll

519 content cell⁻¹ for phenotype 2 could reduce the package effect within these symbionts, thereby
520 reducing overall reliance on NPQ (Fig. 3j) as less light is captured by each individual cell.
521 Indeed, cellular characteristics may help explain the photo physiological strategies employed by
522 each phenotype, and further correlative analysis between primary and secondary traits is
523 warranted.

524 As chlorophyll-*a* fluorescence-based measurements are increasingly utilized for
525 understanding photosynthetic poise and the utilization of stress response mechanisms by coral
526 photosymbionts, identifying direct linkages between photo physiology and ecosystem services or
527 underlying cellular traits are needed (Suggett et al., 2017). Our network analysis identified key
528 correlations between basic cellular traits and photo physiological parameters across 20 different
529 coral/symbiont combinations (Fig. 5). Certain chlorophyll-*a* fluorescence-derived
530 photophysiological parameters may serve as useful biomarkers for some primary cellular traits,
531 especially when properly contextualized within specific environmental and/or acclimatory
532 conditions. For example, N:P ratios are inversely correlated to quantum yield of PSII
533 measurements and directly correlated with τ_2^{ST} reoxidation kinetics suggesting that phosphorous
534 limited cells downregulate photochemical activity. Specifically, reductions in the quantum yield
535 of PSII indicate reduced efficiency of light utilization for photochemistry whereas increases in
536 τ_2^{ST} reflect slower rates of electron transport, both of which appear to occur as N:P ratios rise.
537 From a genotype perspective, both cell size and C:P differ significantly across the predominantly
538 *Cladocopium C15* and predominantly *Durusdinium D1* phenotypes (phenotypes 1 and 2
539 respectively, Fig. 4a, e; Fig. 6a, c). These genotype level differences in cellular physiology may
540 also be reflected in the reoxidation kinetics values where *Durusdinium D1* (phenotype 2) appears
541 to have slower (higher rate constant) light acclimated τ_1^{ST} (Fig. 3q, r) yet faster (lower rate

542 constant) τ_2^{ST} (Fig. 3u, v) reoxidation rates than those for *Cladocopium C15* (Fig. 6d). Linking
543 both primary and secondary trait differences, especially across species known for their thermal
544 tolerance, can be valuable for understanding what function traits are important for establishing
545 resilient coral symbioses.

546 Carbon to phosphorous ratios also appear to be correlated with various photochemical
547 metrics, most notably photochemical and non-photochemical quenching mechanisms which
548 function to balance light utilization within the cell. Phosphorous limitation thus appears well
549 linked to photochemical metrics, potentially regulating gene expression along with cell
550 ultrastructure (Rosset et al., 2017; Ferrier-Pagès et al., 2016; Lin et al., 2019). Granularity is also
551 linked with many different photochemical metrics which is perhaps not surprising given the
552 strong phenotype differences observed for this cellular trait (Fig. 4). Overall, the strong linkages
553 observed in our network analysis help strengthen our understanding of how differences in
554 cellular traits across Symbiodiniaceae species regulate chlorophyll-*a* fluorescence-based
555 phenotypes.

556

557 **Conclusions:** The trends in this study further emphasize the utility of using photo-
558 physiologically derived biomarkers across a variable light protocol to elicit different phenotypic
559 responses in coral photosymbionts. Through the collection and analysis of large-scale
560 chlorophyll fluorescence data sets, it is possible to resolve differences across *in hospite* coral
561 symbionts for some species, regardless of growth environment. Further, by identifying
562 correlations between critical first-order cellular traits and second-order photo physiological
563 measurements, we can gain insight regarding how cellular mechanisms and characteristics affect
564 algal photosynthesis under environmental stress. Implementation of low-cost, open-sourced

565 methods of fluorescence measurement in coral restoration facilities may allow for quick
566 determination of endosymbiont characteristics and better identification of the traits which
567 underly thermal tolerance.

568

569 **Author Contributions:** A.M and K.H. planned and designed the research. A.M., B.P., S.L.,
570 S.W., L.L., and K.H conducted fieldwork, and analyzed data. T.M maintained the coral in
571 healthy and stable conditions prior to and during our experiment. A.M and K.H wrote the
572 manuscript. All authors provided feedback on the manuscript. A.M. and K.D.H agree to serve as
573 corresponding authors, responsible for contact and communication.

574

575 **Funding:** The work was funded by the National Science Foundation, grant no. 2054885 to K.D.
576 Hoadley.

577

578 **Competing interests:** The authors decline that there is no conflict of interest regarding the
579 publication of this article.

580

581 **Data Availability:** All data needed to evaluate the conclusions in the paper are present in the
582 paper and/or the Supplementary Materials. Pending scientific review, raw data and analytical
583 scripts for Fig.s 2 - 5 will be available via github ([khoadley/coral_phenotypes_2023](https://github.com/khoadley/coral_phenotypes_2023)).

584 **Figure Legends:**

585

586 **Figure 1 – Coral images, light environments, and dominant symbiont types.** Panels a-t show
587 the 12 coral species with 1-3 variants per species, separated by growth environment (Outdoor
588 grown corals on the left and indoor grown corals on the right). Dominant symbiont type found
589 for each coral is included in the top left of each panel, along with corresponding colored symbols
590 (circles and triangles) which are utilized throughout the remaining figures to identify symbiont
591 type. All photos taken by Audrey McQuagge.

592 **Figure 2 –Heat map with dendrogram and relative abundance bar graphs.** The heatmap (a)
593 analysis reflects a total of 987 photophysiological biometrics which were found to differ
594 significantly across symbiont types. Dominant photo-physiological metrics within each of the
595 four identified row clusters are displayed on the right of the heatmap. The colored dendrogram
596 above the heat reflects 4 distinct phenotypes with resulting bootstrap support indicated at each
597 major branch. The larger bar graph directly below the heat map (b) represents the relative
598 abundance of symbionts within each coral sample whereas the second (c) and third (d) bar
599 graphs represent host coral genera and coral growth environment (indoors or outdoors)
600 respectively. Capital letters underneath the bar graphs represent the coral species listed under the
601 various panels in Fig. 1. Letters that are in bold indicate that all three fragments for that coral
602 colony are found in the same phenotype.

603

604 **Figure 3 – Profiles for photophysiological biometrics driving variability across phenotypes.**
605 Average (\pm standard error) traces for photo-physiological metrics identified in Fig. 2 as
606 contributing significantly towards establishing the four phenotypes across our coral colonies.
607 Phenotypes 1-4 are displayed from left to right. Panels **a-d** reflect the Quantum Yield of PSII
608 (Φ_{PSII}), **e-h** reflect the absorption cross-section of PSII (σ_{PSII}), **i-l** reflect non-photochemical
609 quenching (NPQ), **m-p** reflect photochemical quenching (qP), **q-t** and **u-x** reflect the reoxidation
610 constants τ_1^{ST} and τ_2^{ST} respectively. Line color indicates excitation wavelength with purple
611 representing 420-nm; dark blue, 442-nm; light blue, 458-nm; teal blue, 505-nm, and green, 525-
612 nm. The grey line on panels a-d displays the variable light protocol. Bonferroni-adjusted p-
613 values for comparisons across excitation wavelength and phenotype can be found in
614 Supplemental Tables 3 and 4.

615

616 **Figure 4 – Differences in cellular physiology across phenotypes.** Differences in the
617 underlying symbiont cellular physiology was compared across our four photo-physiologically
618 derived phenotypes. Flow cytometrically derived cell size (**a**) granularity (**b**), chlorophyll-*a*
619 fluorescence (**c**), Nitrogen to phosphorous (**d**), Carbon to phosphorous (**e**), and Carbon to
620 nitrogen (**f**) ratios are represented as the mean (\pm standard error) for each phenotype. Different
621 letters above the bars in each panel reflect significant differences (Tukey posthoc) across
622 phenotypes.

623

624

625

626

627 **Figure 5 – Network analysis between cellular and photophysiological traits.** The network
628 analysis only reflects significant correlations between first (cellular) and second (photo-
629 physiological) order traits. Cellular traits are indicated by numbered grey vertices, **1** = cell size, **2**
630 = C:N, **3** = C:P, **4** = N:P, **5** = Granularity, **6** = Chl *a*. Line thickness corresponds to the strength
631 of the correlation (between 0.6 and 0.9 Pearson R values), with thicker lines representing traits
632 that are more highly correlated. Positive correlations are indicated by black lines, while negative
633 correlations are indicated by orange lines. Colored circles reflect the various photophysiological
634 variables with strong (> 0.6 Pearson R) correlation to underlying cellular metrics.
635
636

637 **Figure 6 – Correlation plots between symbiont cellular and photophysiological parameters.**
638 **Five correlations between** cellular and photo-physiological traits with high Pearson R^2 values
639 are displayed in panels (a) ABQ vs. Cell size, (b) Connectivity vs. C:N ratio, (c) qP vs. C:P ratio,
640 (d) τ_2^{ST} vs. N:P ratio, and (e) Φ_{PSII} vs. Granularity. Point shapes indicate coral growth
641 environment (triangles: outdoor, circles: indoor) while point color indicates ITS2 symbiont type.
642

643 **Table 1:** Coral hosts, growth environments, and relative abundances of ITS2 symbiont types
 644 determined through SymPortal.

Coral Host	Growth Environment	Dominant Symbiont Type (full ITS2 Name)	Rel. Abundance	Secondary Symbiont Type (Full ITS2 Name)	Rel. Abundance
<i>A. humilis</i> var 1	Outdoor	C3k/C3-C50a-C3dq-C50f-C3ba-C3a	1.00		
<i>A. millepora</i>	Outdoor	C3/C3u-C115-C21ab-C3ge	1.00		
<i>Acropora</i> sp.	Outdoor	C21-C3-C21ag-C21af	1.00		
<i>A. valida</i>	Outdoor	C3z-C3-C3.10-C115-C3an	0.98	C21	0.02
<i>A. yongei</i>	Outdoor	C21-C21ag-C3-C21as	1.00		
<i>C.chalcidium</i>	Outdoor	C1/C3-C1c-C1b-C42.2-C1bh-C1br	1.00		
<i>M.capricornis</i> var 1	Outdoor	C26A-C21	0.98	C1	0.02
<i>M.capricornis</i> var 2	Outdoor	C15-C15he-C15ed-C15cq-C15vl	1.00		
<i>M.capricornis</i> var 3	Outdoor	C15-C15he-C15ed-C15cq-C15vl	1.00		
<i>M.digitata</i>	Outdoor	C15/C15gb-C15vk	1.00		
<i>P. cactus</i>	Outdoor	C1b/C1/C1mm-C3-C1u-C1dg	1.00		
<i>P. contigua</i>	Outdoor	D1-D4-D4c-D1h	0.98	C1ec/C1-C1b-C3	0.02
<i>P. damicornis</i> var 1	Outdoor	D1/D6-D1h-D1kg-D1ke-D1kf-D1kh	0.98	C1d/C1/C42.2/C3-C1b-C3cg-C45c-C115k-C1au-C41p	0.02
<i>P. damicornis</i> var 2	Outdoor	D1/D6-D1h-D1kg-D1ke-D1kf-D1kh	0.84	C1d/C1/C42.2/C3-C1b-C3cg-C45c-C115k-C1au-C41p	0.16
<i>T. reniformis</i> var 1	Outdoor	D1-D4-D1ki-D1c	1.00		
<i>T. reniformis</i> var 2	Outdoor	D1-D4-D4c-D1c-D2-D1k	0.99	C3z-C3-C3.10-C115-C3an	0.01
<i>A. humilis</i> var 2	Indoor	C3k/C3-C50a-C21ab-C50f-C3ba-C3dq	0.97	C1/C1c	0.03
<i>M.capricornis</i> var 2	Indoor	C15-C15he-C15ed-C15cq-C15vl	0.95	D1/D6-D1h-D1kg-D1ke-D1kf-D1kh	0.05
<i>M.capricornis</i> var 3	Indoor	C15-C15he-C15ed-C15cq-C15vl	0.98	D1/D6-D1h-D1kg-D1ke-D1kf-D1kh	0.02
<i>T. reniformis</i> var 2	Indoor	D1-D4-D1ki-D1c	0.97	C1/C21/C3-C1b-C1c-C42.2-C1bh	0.03

645

646 **References:**

647 Baker, A. C., Starger, C. J., McClanahan, T. R., & Glynn, P. W. (2004). Corals' adaptive
648 response to climate change. *Nature*, 430(7001), 741–741. <https://doi.org/10.1038/430741a>

649 Csardi, G., Nepusz, T. (2006). “The igraph software package for complex network
650 research.” *InterJournal, Complex Systems*, 1695. <https://igraph.org>.

651 Cunning, R., Parker, K. E., Johnson-Sapp, K., Karp, R. F., Wen, A. D., Williamson, O. M.,
652 Bartels, E., D'Alessandro, M., Gilliam, D. S., Hanson, G., Levy, J., Lirman, D., Maxwell, K.,
653 Million, W. C., Moulding, A. L., Moura, A., Muller, E. M., Nedimyer, K., Reckenbeil, B., ...
654 Baker, A. C. (2021). Census of heat tolerance among Florida's threatened staghorn corals finds
655 resilient individuals throughout existing nursery populations. *Proceedings of the Royal Society
656 B: Biological Sciences*, 288(1961), 20211613. <https://doi.org/10.1098/rspb.2021.1613>

657 D'Angelo, C., & Wiedenmann, J. (2014). Impacts of nutrient enrichment on coral reefs: New
658 perspectives and implications for coastal management and reef survival. *Current Opinion in
659 Environmental Sustainability*, 7, 82–93. <https://doi.org/10.1016/j.cosust.2013.11.029>

660 Davies, S., Gamache, M., Howe-Kerr, L., Kriefall, N., Baker, A., Banaszak, A., Bay, L.,
661 Bellantuono, A., Bhattacharya, D., Chan, C. X., Claar, D., Coffroth, M. A., Cunning, R., Davy,
662 S., del Campo, J., Díaz-Almeyda, E., Frommlet, J., Fuess, L., González-Pech, R., & Parkinson, J.
663 (2022). Building Consensus around the Assessment and Interpretation of Symbiodiniaceae
664 Diversity. <https://doi.org/10.20944/preprints202206.0284.v1>

665 EPA. (1993a). Determination of phosphorus by semi-automated colorimetry. In *Methods for the
666 Determination of Metals in Environmental Samples* (pp. 479–495). Elsevier.
667 <https://doi.org/10.1016/B978-0-8155-1398-8.50027-6>

668 EPA. (1993b). Determination of nitrate-nitrite nitrogen by automated colorimetry. In *Methods
669 for the Determination of Metals in Environmental Samples* (pp. 464–478). Elsevier.
670 <https://doi.org/10.1016/B978-0-8155-1398-8.50026-4>

671 Fabricius, K. E., Mieog, J. C., Colin, P. L., Idip, D., & H. Van Oppen, M. J. (2004). Identity and
672 diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting
673 bleaching, temperature and shading histories. *Molecular Ecology*, 13(8), 2445–2458.
674 <https://doi.org/10.1111/j.1365-294X.2004.02230.x>

675 Ferrier-Pagès, C., Godinot, C., D'Angelo, C., Wiedenmann, J., & Grover, R. (2016). Phosphorus
676 metabolism of reef organisms with algal symbionts. *Ecological Monographs*, 86(3), 262–277.
677 <https://doi.org/10.1002/ecm.1217>

678 Fitt, W., Brown, B., Warner, M., & Dunne, R. (2001). Coral bleaching: Interpretation of thermal
679 tolerance limits and thermal thresholds in tropical corals. *Coral Reefs*, 20(1), 51–65.
680 <https://doi.org/10.1007/s003380100146>

681 Galili, T. (2015). “dendextend: an R package for visualizing, adjusting, and comparing trees of
682 hierarchical clustering.” *Bioinformatics*. [doi:10.1093/bioinformatics/btv428](https://doi.org/10.1093/bioinformatics/btv428)

683 Gorbunov, M. Y., & Falkowski, P. G. (2021). Using chlorophyll fluorescence kinetics to
684 determine photosynthesis in aquatic ecosystems. *Limnology and Oceanography*, 66(1), 1–13.
685 <https://doi.org/10.1002/lno.11581>

686 Goyen, S., Pernice, M., Szabó, M., Warner, M. E., Ralph, P. J., & Suggett, D. J. (2017). A
687 molecular physiology basis for functional diversity of hydrogen peroxide production amongst
688 *Symbiodinium* spp. (Dinophyceae). *Marine Biology*, 164(3), 46. <https://doi.org/10.1007/s00227-017-3073-5>

690 Hoadley, K. D., Pettay, D. T., Grottoli, A. G., Cai, W.-J., Melman, T. F., Schoepf, V., Hu, X., Li,
691 Q., Xu, H., Wang, Y., Matsui, Y., Baumann, J. H., & Warner, M. E. (2015). Physiological
692 response to elevated temperature and pCO₂ varies across four Pacific coral species:
693 Understanding the unique host+symbiont response. *Scientific Reports*, 5(1), 18371.
694 <https://doi.org/10.1038/srep18371>

695 Hoadley, K. D., & Warner, M. E. (2017). Use of Open Source Hardware and Software Platforms
696 to Quantify Spectrally Dependent Differences in Photochemical Efficiency and Functional
697 Absorption Cross Section within the Dinoflagellate *Symbiodinium* spp. *Frontiers in Marine
698 Science*, 4, 365. <https://doi.org/10.3389/fmars.2017.00365>

699 Hoadley, K. D., Pettay, Daniel. T., Lewis, A., Wham, D., Grasso, C., Smith, R., Kemp, D. W.,
700 LaJeunesse, T., & Warner, M. E. (2021). Different functional traits among closely related algal
701 symbionts dictate stress endurance for vital Indo-Pacific reef-building corals. *Global Change
702 Biology*, 27(20), 5295–5309. <https://doi.org/10.1111/gcb.15799>

703 Hoadley, K. D., Lockridge, G., McQuagge, A., Pahl, B., Lowry, S., Wong, S., Craig, Z., Petrik,
704 C., Klepac, C., Muller, E. (2023) A phenomic modeling approach for using chlorophyll-a
705 fluorescence-based measurements on coral photosymbionts: a step towards bio-optical bleaching
706 prediction. *Frontiers in Marine Science*, 10. <https://doi.org/10.3389/fmars.2023.1092202>

707 Hoegh-Guldberg, O., & Smith, G. J. (1989). The effect of sudden changes in temperature, light
708 and salinity on the population density and export of zooxanthellae from the reef corals
709 *Stylophora pistillata* Esper and *Seriatopora hystrix* Dana. *Journal of Experimental Marine
710 Biology and Ecology*, 129(3), 279–303. [https://doi.org/10.1016/0022-0981\(89\)90109-3](https://doi.org/10.1016/0022-0981(89)90109-3)

711 Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous Inference in General Parametric
712 Models. *Biometrical Journal*, 50(3), 346–363. <https://doi.org/10.1002/bimj.200810425>

713 Hume, B. C. C., Smith, E. G., Ziegler, M., Warrington, H. J. M., Burt, J. A., LaJeunesse, T. C.,
714 Wiedenmann, J., & Voolstra, C. R. (2019). SymPortal: A novel analytical framework and
715 platform for coral algal symbiont next-generation sequencing ITS2 profiling. *Molecular
716 Ecology Resources*, 19(4), 1063–1080. <https://doi.org/10.1111/1755-0998.13004>

717 Johannes, R.E., & Wiebe, W.J. (1970). Method for Determination of Coral Tissue Biomass and
718 Composition. *Limnology and Oceanography*, 15, 822-824.
719 <https://doi.org/10.4319/lo.1970.15.5.0822>

720 Kolber, Z. S., Prášil, O., & Falkowski, P. G. (1998). Measurements of variable chlorophyll
721 fluorescence using fast repetition rate techniques: Defining methodology and experimental
722 protocols. *Biochimica et Biophysica Acta (BBA) - Bioenergetics*, 1367(1), 88–106.
723 [https://doi.org/10.1016/S0005-2728\(98\)00135-2](https://doi.org/10.1016/S0005-2728(98)00135-2)

724 Krueger, T., & Gates, R. D. (2012). Cultivating endosymbionts—Host environmental mimics
725 support the survival of *Symbiodinium* C15 ex hospite. *Journal of Experimental Marine Biology
726 and Ecology*, 413, 169–176. <https://doi.org/10.1016/j.jembe.2011.12.002>

727 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). “lmerTest Package: Tests in
728 Linear Mixed Effects Models.” *Journal of Statistical Software*, 82(13), 1–26.
729 doi: [10.18637/jss.v082.i13](https://doi.org/10.18637/jss.v082.i13).

730 Lacour, T., Babin, M., & Lavaud, J. (2020). Diversity in Xanthophyll Cycle Pigments Content
731 and Related Nonphotochemical Quenching (NPQ) Among Microalgae: Implications for Growth
732 Strategy and Ecology. *Journal of Phycology*, 56(2), 245–263. <https://doi.org/10.1111/jpy.12944>

733 LaJeunesse, T. (2002). Diversity and community structure of symbiotic dinoflagellates from
734 Caribbean coral reefs. *Marine Biology*, 141(2), 387–400. <https://doi.org/10.1007/s00227-002-0829-2>

736 LaJeunesse, T. C., Loh, W. K. W., van Woesik, R., Hoegh-Guldberg, O., Schmidt, G. W., & Fitt,
737 W. K. (2003). Low symbiont diversity in southern Great Barrier Reef corals, relative to those of
738 the Caribbean. *Limnology and Oceanography*, 48(5), 2046–2054.
739 <https://doi.org/10.4319/lo.2003.48.5.2046>

740 LaJeunesse, T. C., & Thornhill, D. J. (2011). Improved Resolution of Reef-Coral Endosymbiont
741 (Symbiodinium) Species Diversity, Ecology, and Evolution through psbA Non-Coding Region
742 Genotyping. *PLoS ONE*, 6(12), e29013. <https://doi.org/10.1371/journal.pone.0029013>

743 LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C.
744 R., & Santos, S. R. (2018). Systematic Revision of *Symbiodiniaceae* Highlights the Antiquity
745 and Diversity of Coral Endosymbionts. *Current Biology*, 28(16), 2570-2580.e6.
746 <https://doi.org/10.1016/j.cub.2018.07.008>

747 Lewis, A., Chan, A., & LaJeunesse, T. (2018). New Species of Closely Related Endosymbiotic
748 Dinoflagellates in the Greater Caribbean have Niches Corresponding to Host Coral Phylogeny.
749 *The Journal of Eukaryotic Microbiology*, 66. <https://doi.org/10.1111/jeu.12692>

750 Lin, S., Yu, L., & Zhang, H. (2019). Transcriptomic Responses to Thermal Stress and Varied
751 Phosphorus Conditions in *Fugacium kawagutii*. *Microorganisms*, 7(4), 96.
752 <https://doi.org/10.3390/microorganisms7040096>

753 Loeblich, A. R., & Sherley, J. L. (1979). Observations on the theca of the motile phase of free-
754 living and symbiotic isolates of *Zooxanthella microadriatica* (Freudenthal) comb.nov. *Journal of*
755 *the Marine Biological Association of the United Kingdom*, 59(1), 195–205. Cambridge Core.
756 <https://doi.org/10.1017/S0025315400046270>

757 Mansour, J. S., Pollock, F. J., Díaz-Almeyda, E., Iglesias-Prieto, R., & Medina, M. (2018). Intra-
758 and interspecific variation and phenotypic plasticity in thylakoid membrane properties across
759 two *Symbiodinium* clades. *Coral Reefs*, 37(3), 841–850. <https://doi.org/10.1007/s00338-018-1710-1>

760

761 McIlroy, S. E., Wong, J. C. Y., & Baker, D. M. (2020). Competitive traits of coral symbionts
762 may alter the structure and function of the microbiome. *The ISME Journal*, 14(10), 2424–2432.
763 <https://doi.org/10.1038/s41396-020-0697-0>

764 Muscatine, L., & Hand, C. (1958). Direct evidence for the transfer of materials from symbiotic
765 algae to the tissues of a coelenterate. *Proceedings of the National Academy of Sciences*, 44(12),
766 1259–1263. <https://doi.org/10.1073/pnas.44.12.1259>

767 Pasaribu, B., Li, Y.-S., Kuo, P.-C., Lin, I.-P., Tew, K. S., Tzen, J. T. C., Liao, Y. K., Chen, C.-S.,
768 & Jiang, P.-L. (2016). The effect of temperature and nitrogen deprivation on cell morphology
769 and physiology of *Symbiodinium*. *Oceanologia*, 58(4), 272–278.
770 <https://doi.org/10.1016/j.oceano.2016.04.006>

771 Pettay, D. T., Wham, D. C., Smith, R. T., Iglesias-Prieto, R., & LaJeunesse, T. C. (2015).
772 Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. *Proceedings of the*
773 *National Academy of Sciences*, 112(24), 7513–7518. <https://doi.org/10.1073/pnas.1502283112>

774 Ragni, M., Airs, R. L., Hennige, S. J., Suggett, D. J., Warner, M. E., & Geider, R. J. (2010). PSII
775 photoinhibition and photorepair in *Symbiodinium* (Pyrrhophyta) differs between thermally
776 tolerant and sensitive phylotypes. *Marine Ecology Progress Series*, 406, 57–70.
777 <http://www.jstor.org/stable/24873901>

778 Roberty, S., Bailleul, B., Berne, N., Franck, F., & Cardol, P. (2014). PSI Mehler reaction is the
779 main alternative photosynthetic electron pathway in *Symbiodinium* sp., symbiotic dinoflagellates
780 of cnidarians. *The New Phytologist*, 204(1), 81–91. <https://doi.org/10.1111/nph.12903>

781 Rodríguez-Román, A., Hernández-Pech, X., E. Thome, P., Enríquez, S., & Iglesias-Prieto, R.
782 (2006). Photosynthesis and light utilization in the Caribbean coral *Montastraea faveolata*
783 recovering from a bleaching event. *Limnology and Oceanography*, 51(6), 2702–2710.
784 <https://doi.org/10.4319/lo.2006.51.6.2702>

785 Rosset, S., Wiedenmann, J., Reed, A. J., & D'Angelo, C. (2017). Phosphate deficiency promotes
786 coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. *Marine*
787 *Pollution Bulletin*, 118(1-2), 180–187. <https://doi.org/10.1016/j.marpolbul.2017.02.044>

788 Ruban, A. V., Pascal, A. A., Robert, B., & Horton, P. (2001). Configuration and dynamics of
789 xanthophylls in light-harvesting antennae of higher plants. Spectroscopic analysis of isolated
790 light-harvesting complex of photosystem II and thylakoid membranes. *The Journal of Biological
791 Chemistry*, 276(27), 24862–24870. <https://doi.org/10.1074/jbc.M103263200>

792 Saad, O. S., Lin, X., Ng, T. Y., Li, L., Ang, P., & Lin, S. (2020). Genome Size, rDNA Copy, and
793 qPCR Assays for Symbiodiniaceae. *Frontiers in Microbiology*, 11, 847.
794 <https://doi.org/10.3389/fmicb.2020.00847>

795 Sampayo, E. M., Ridgway, T., Bongaerts, P., & Hoegh-Guldberg, O. (2008). Bleaching
796 susceptibility and mortality of corals are determined by fine-scale differences in symbiont type.
797 *Proceedings of the National Academy of Sciences*, 105(30), 10444–10449.
798 <https://doi.org/10.1073/pnas.0708049105>

799 Scheufen, T., Iglesias-Prieto, R., & Enríquez, S. (2017). Changes in the Number of Symbionts
800 and *Symbiodinium* Cell Pigmentation Modulate Differentially Coral Light Absorption and
801 Photosynthetic Performance. *Frontiers in Marine Science*, 4, 309.
802 <https://doi.org/10.3389/fmars.2017.00309>

803 Schuback, N., Tortell, P. D., Berman-Frank, I., Campbell, D. A., Ciotti, A., Courtecuisse, E.,
804 Erickson, Z. K., Fujiki, T., Halsey, K., Hickman, A. E., Huot, Y., Gorbunov, M. Y., Hughes, D.
805 J., Kolber, Z. S., Moore, C. M., Oxborough, K., Prášil, O., Robinson, C. M., Ryan-Keogh, T. J.,
806 ... Varkey, D. R. (2021). Single-Turnover Variable Chlorophyll Fluorescence as a Tool for
807 Assessing Phytoplankton Photosynthesis and Primary Productivity: Opportunities, Caveats and
808 Recommendations. *Frontiers in Marine Science*, 8, 690607.
809 <https://doi.org/10.3389/fmars.2021.690607>

810 Sheffield, V. C., Cox, D. R., Lerman, L. S., & Myers, R. M. (1989). Attachment of a 40-base-
811 pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain
812 reaction results in improved detection of single-base changes. *Proceedings of the National
813 Academy of Sciences*, 86(1), 232–236. <https://doi.org/10.1073/pnas.86.1.232>

814 Steen, R. G., & Muscatine, L. (1987). Low temperature evokes rapid exocytosis of symbiotic
815 algae by a sea anemone. *The Biological Bulletin*, 172(2), 246–263.
816 <https://doi.org/10.2307/1541797>

817 Suggett, D. J., Goyen, S., Evenhuis, C., Szabó, M., Pettay, D. T., Warner, M. E., & Ralph, P. J.
818 (2015). Functional diversity of photobiological traits within the genus *Symbiodinium* appears to
819 be governed by the interaction of cell size with cladal designation. *New Phytologist*, 208(2),
820 370–381. <https://doi.org/10.1111/nph.13483>

821 Suggett, D. J., Warner, M. E., & Leggat, W. (2017). Symbiotic Dinoflagellate Functional
822 Diversity Mediates Coral Survival under Ecological Crisis. *Trends in Ecology & Evolution*,
823 32(10), 735–745. <https://doi.org/10.1016/j.tree.2017.07.013>

824 Suggett, D. J., Nitschke, M., Hughes, D., Bartels, N., Camp, E., Dilernia, N., Edmondson, J.,
825 Fitzgerald, S., Grima, A., Sage, A., & Warner, M.E. (2022). Toward bio□optical phenotyping of
826 reef□forming corals using Light□Induced Fluorescence Transient□Fast Repetition Rate
827 fluorometry. *Limnology and Oceanography: Methods*, 20. <https://doi.org/10.1002/lom3.10479>

828 Sully, S., & van Woesik, R. (2020). Turbid reefs moderate coral bleaching under climate-related
829 temperature stress. *Global Change Biology*, 26(3), 1367–1373.
830 <https://doi.org/10.1111/gcb.14948>

831 Suzuki, R., & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in
832 hierarchical clustering. *Bioinformatics*, 22(12), 1540–1542.

833 Szabó, M., Wangpraseurt, D., Tamburic, B., Larkum, A. W. D., Schreiber, U., Suggett, D. J.,
834 Kühl, M., & Ralph, P. J. (2014). Effective light absorption and absolute electron transport rates
835 in the coral *Pocillopora damicornis*. *Plant Physiology and Biochemistry*, 83, 159–167.
836 <https://doi.org/10.1016/j.plaphy.2014.07.015>

837 Takabayashi, M., Adams, L. M., Pochon, X., & Gates, R. D. (2012). Genetic diversity of free-
838 living *Symbiodinium* in surface water and sediment of Hawai‘i and Florida. *Coral Reefs*, 31(1),
839 157–167. <https://doi.org/10.1007/s00338-011-0832-5>

840 Tchernov, D., Kvitt, H., Haramaty, L., Bibby, T. S., Gorbunov, M. Y., Rosenfeld, H., &
841 Falkowski, P. G. (2011). Apoptosis and the selective survival of host animals following thermal
842 bleaching in zooxanthellate corals. *Proceedings of the National Academy of Sciences*, 108(24),
843 9905–9909. <https://doi.org/10.1073/pnas.1106924108>

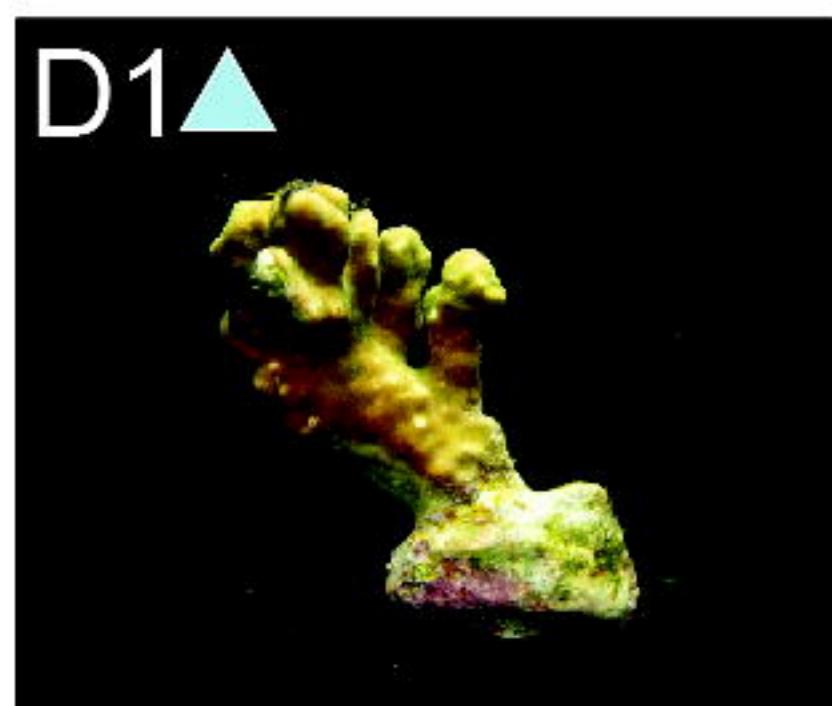
844 Thornhill, D. J., Lewis, A. M., Wham, D. C., & LaJeunesse, T. C. (2014). Host-specialist
845 lineages dominate the adaptive radiation of reef coral endosymbionts. *Evolution*, 68(2), 352–367.
846 <https://doi.org/10.1111/evo.12270>

847 Vega de Luna, F., Córdoba-Granados, J. J., Dang, K.-V., Roberty, S., & Cardol, P. (2020). In
848 vivo assessment of mitochondrial respiratory alternative oxidase activity and cyclic electron flow
849 around photosystem I on small coral fragments. *Scientific Reports*, 10(1), 17514.
850 <https://doi.org/10.1038/s41598-020-74557-0>

851 Voolstra, C. R., Valenzuela, J. J., Turkarslan, S., Cárdenas, A., Hume, B. C. C., Perna, G.,
852 Buitrago□López, C., Rowe, K., Orellana, M. V., Baliga, N. S., Paranjape, S., Banc□Prandi, G.,
853 Bellworthy, J., Fine, M., Frias□Torres, S., & Barshis, D. J. (2021a). Contrasting heat stress
854 response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal
855 tolerance. *Molecular Ecology*, 30(18), 4466–4480. <https://doi.org/10.1111/mec.16064>

856 Voolstra, C. R., Suggett, D. J., Peixoto, R. S., Parkinson, J. E., Quigley, K. M., Silveira, C. B.,
857 Sweet, M., Muller, E. M., Barshis, D. J., Bourne, D. G., & Aranda, M. (2021b). Extending the
858 natural adaptive capacity of coral holobionts. *Nature Reviews Earth & Environment*, 2(11), 747–
859 762. <https://doi.org/10.1038/s43017-021-00214-3>

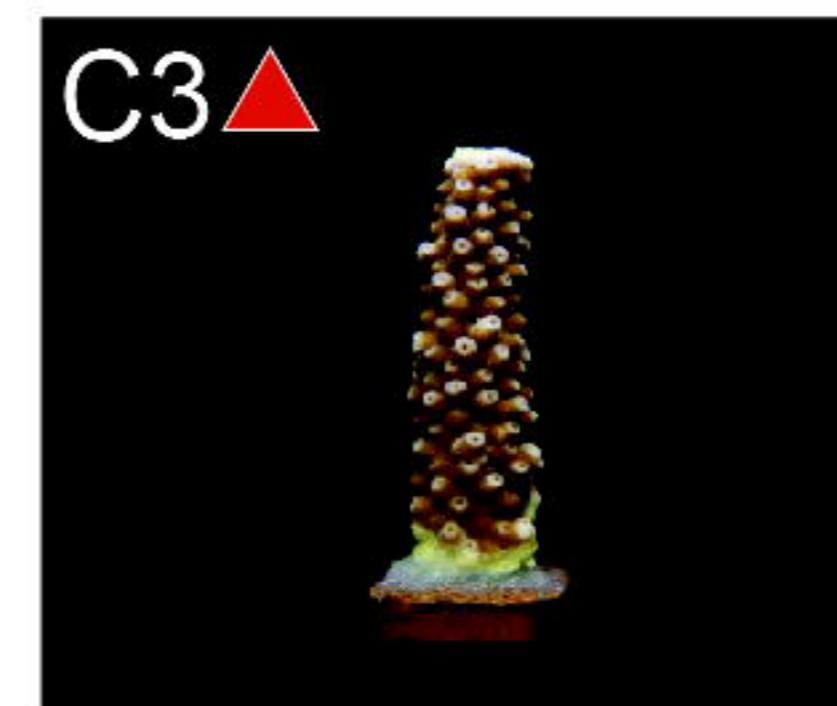
860 Wang, J., Meng, P.J., Chen, Y., & Chen, C. (2012). Determination of the thermal tolerance of
861 Symbiodinium using the activation energy for inhibiting photosystem II activity. *Zoological
862 Studies*, 137-142.

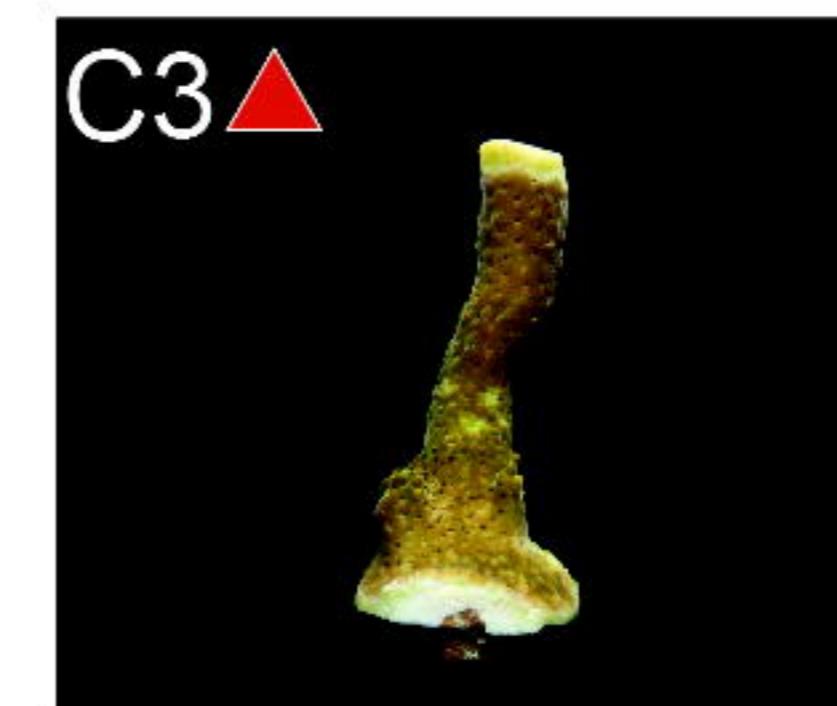

863 Warner, M. E., Fitt, W. K., & Schmidt, G. W. (1999). Damage to photosystem II in symbiotic
864 dinoflagellates: A determinant of coral bleaching. *Proceedings of the National Academy of
865 Sciences*, 96(14), 8007–8012. <https://doi.org/10.1073/pnas.96.14.8007>

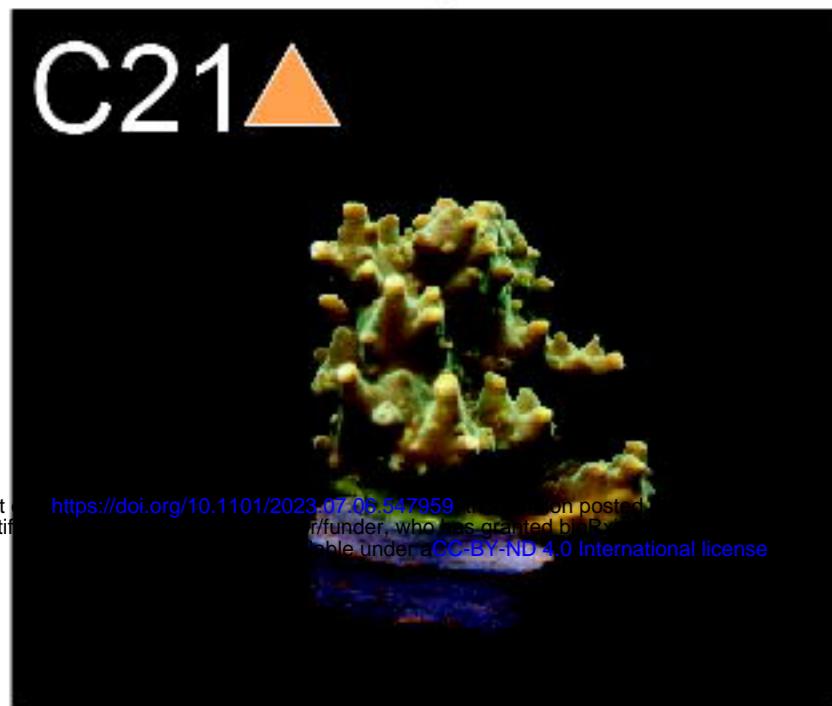
866 Warner, M., & Suggett, D. (2016). *The Photobiology of Symbiodinium spp.: Linking
867 Physiological Diversity to the Implications of Stress and Resilience* (pp. 489–509).
868 https://doi.org/10.1007/978-3-319-31305-4_30

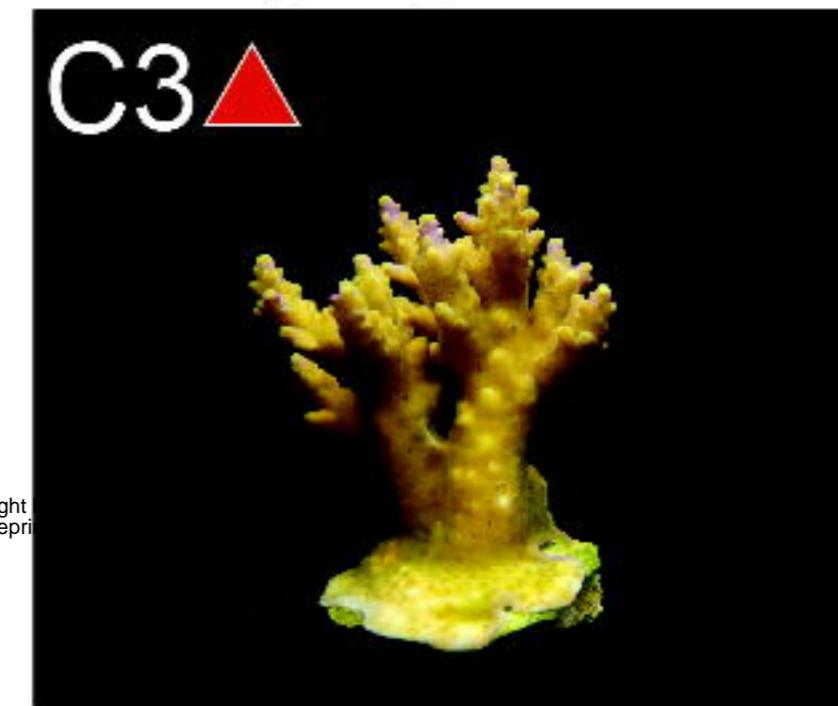
869 Wiedenmann, J., D'Angelo, C., Smith, E. G., Hunt, A. N., Legiret, F.-E., Postle, A. D., &
870 Achterberg, E. P. (2012). Nutrient enrichment can increase the susceptibility of reef corals to
871 bleaching. *Nature Climate Change*, 3(2), 160–164. <https://doi.org/10.1038/nclimate1661>

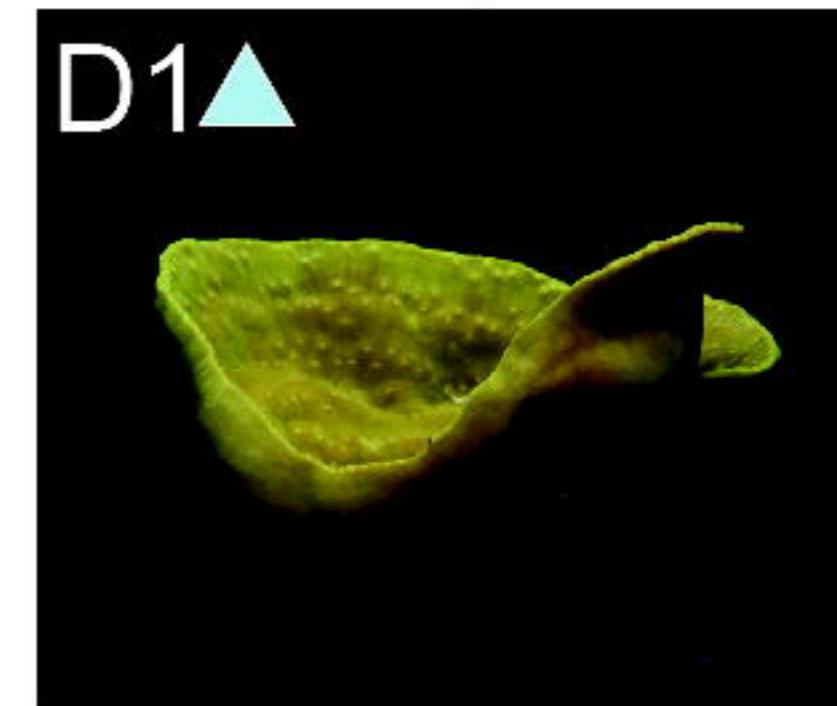
872 Yellowlees, D., Rees, T. A. V., & Leggat, W. (2008). Metabolic interactions between algal
873 symbionts and invertebrate hosts. *Plant, Cell & Environment*, 31(5), 679–694.
874 <https://doi.org/10.1111/j.1365-3040.2008.01802.x>
875

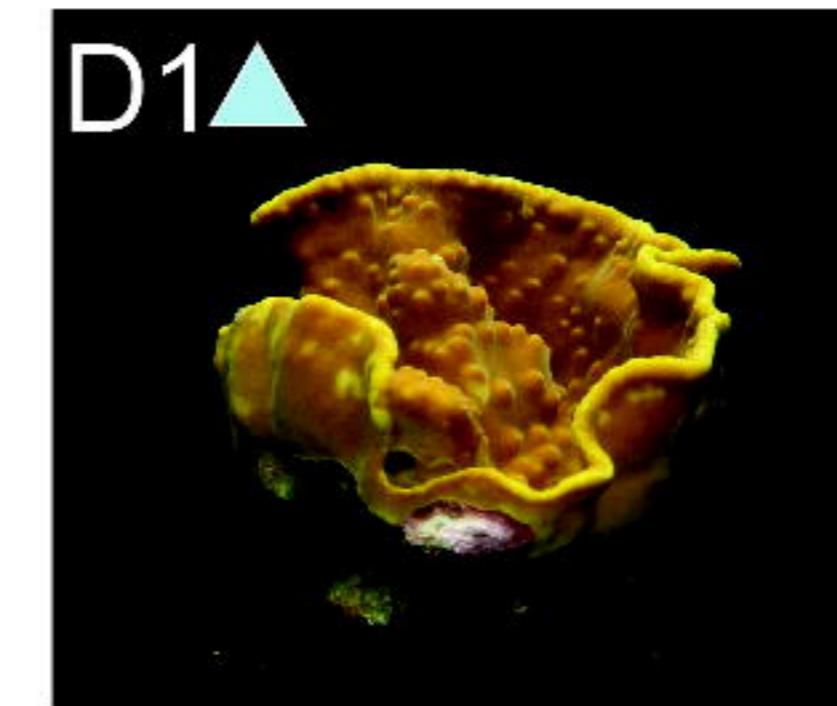

Outdoor

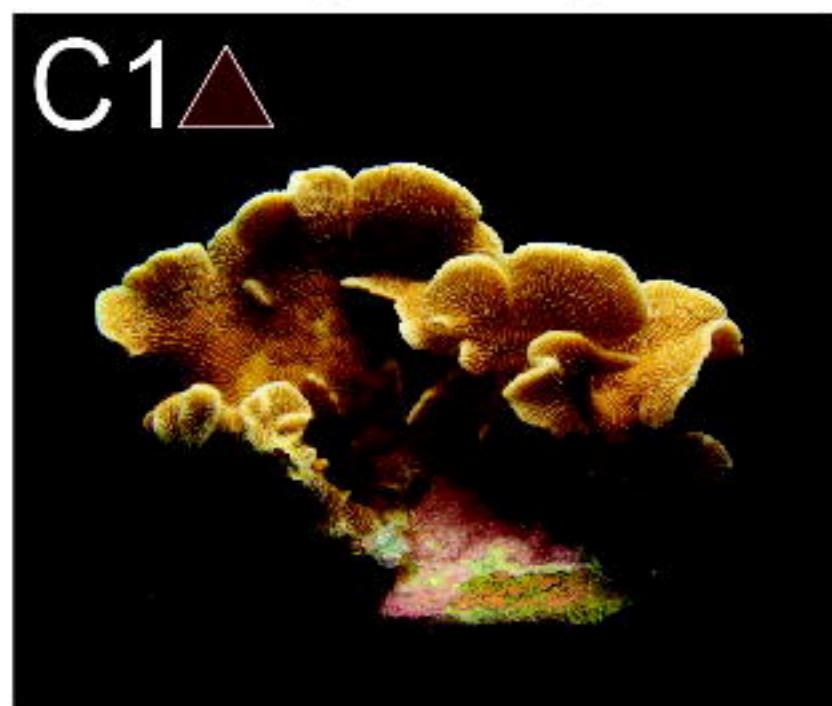

A. *P. contigua*


B. *A. yongei*

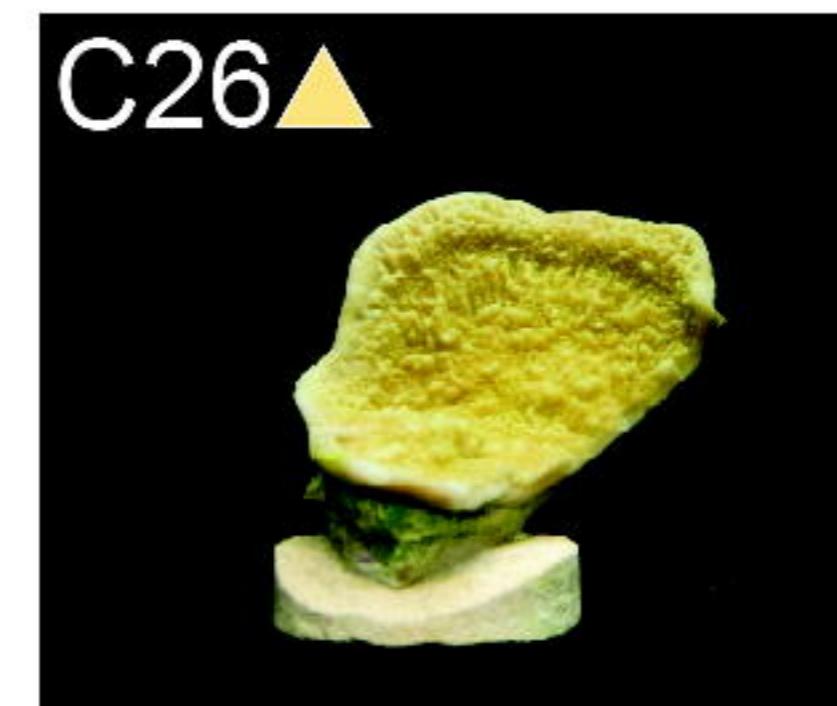

C. *A. millepora*

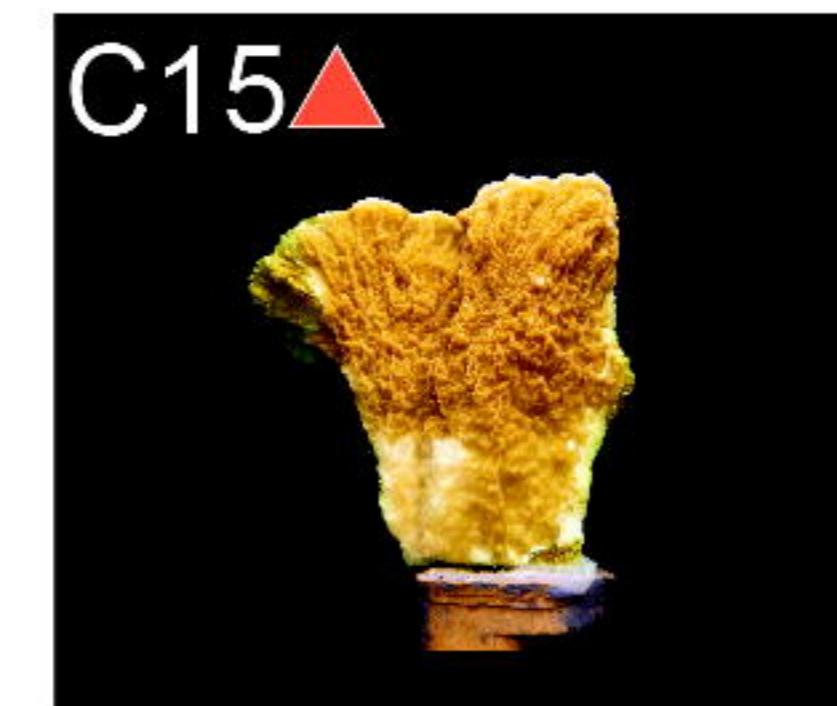

D. *A. humilis* var. 1

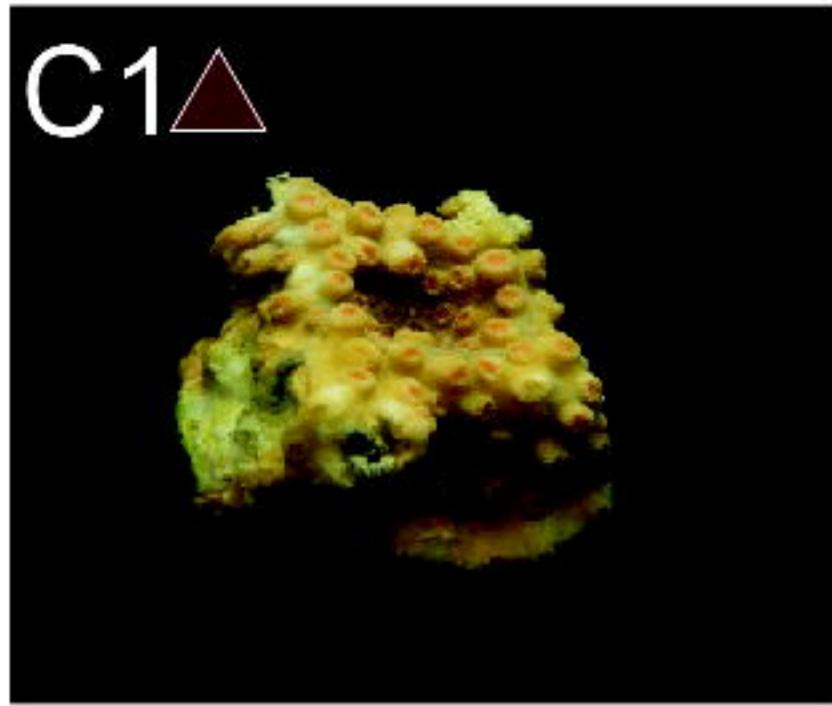

E. *Acropora* species

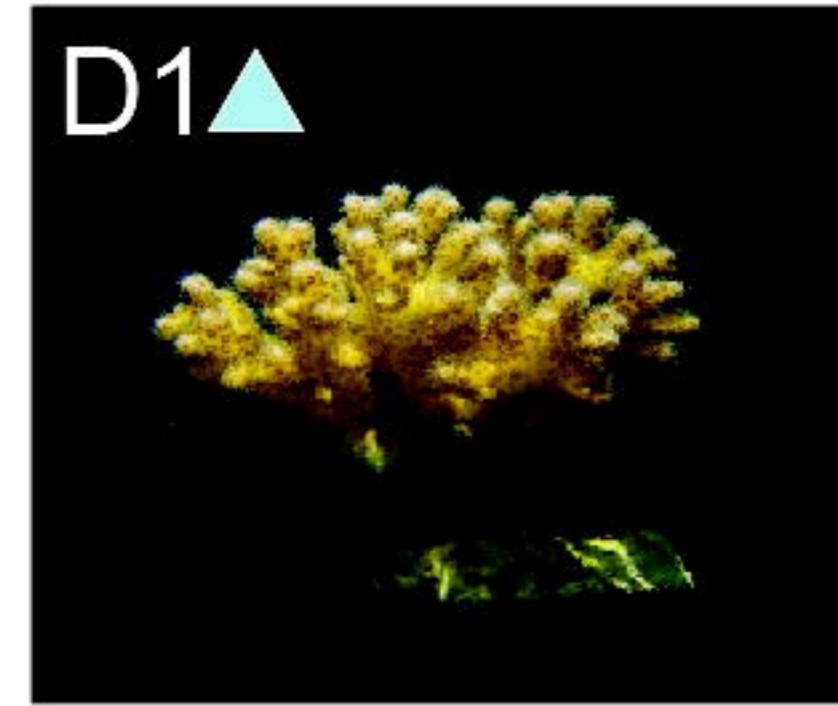

F. *A. valida*

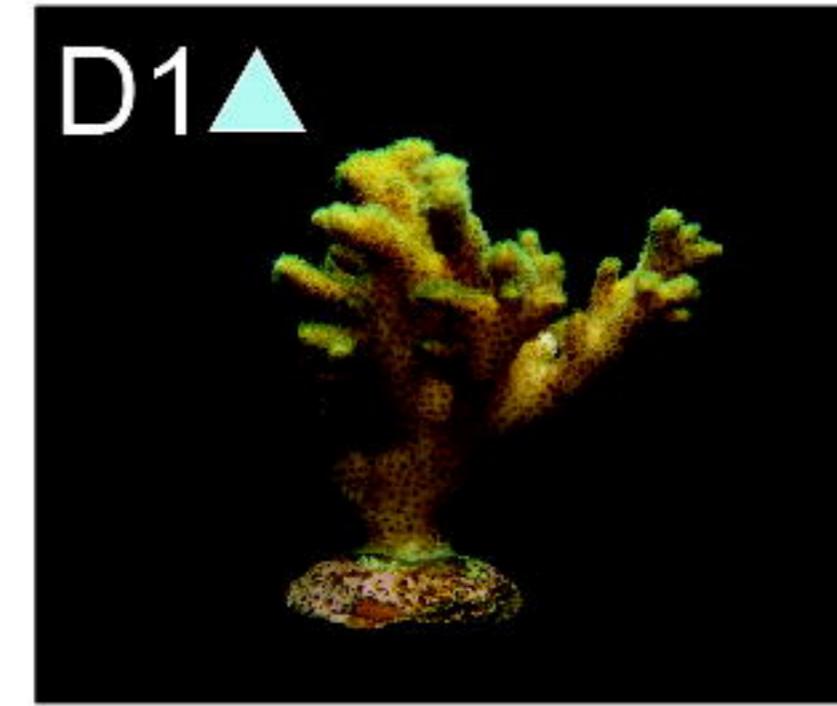
G. *T. reniformis* var. 1

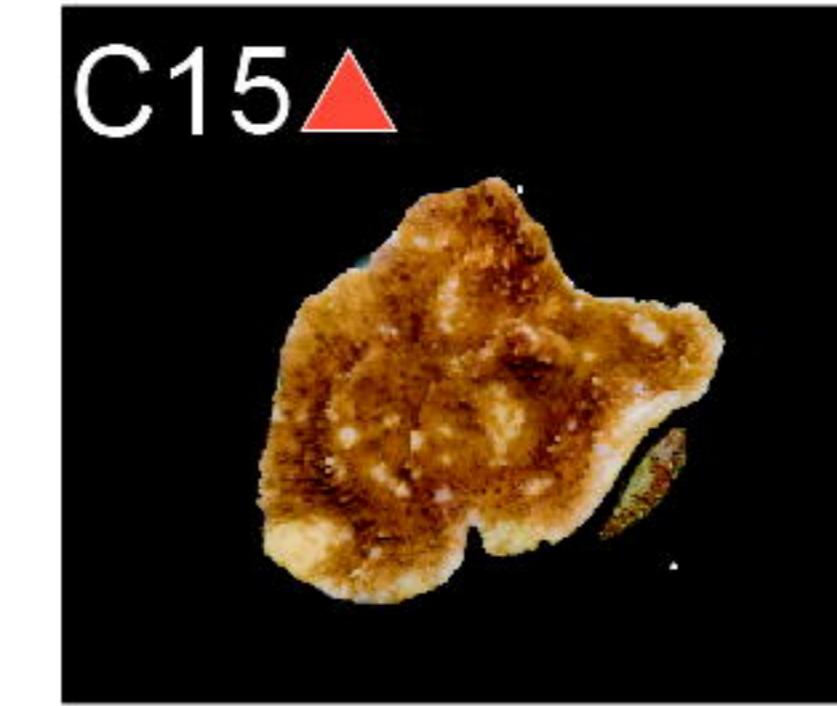

H. *T. reniformis* var. 2


I. *P. cactus*

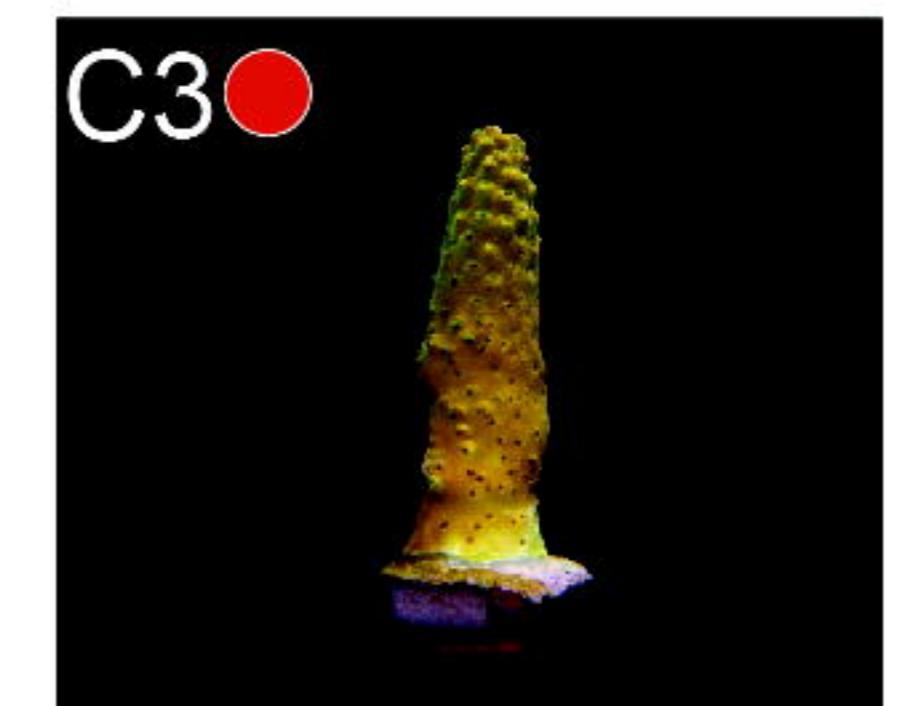

J. *M. digitata*


K. *M. capricornis* var. 1

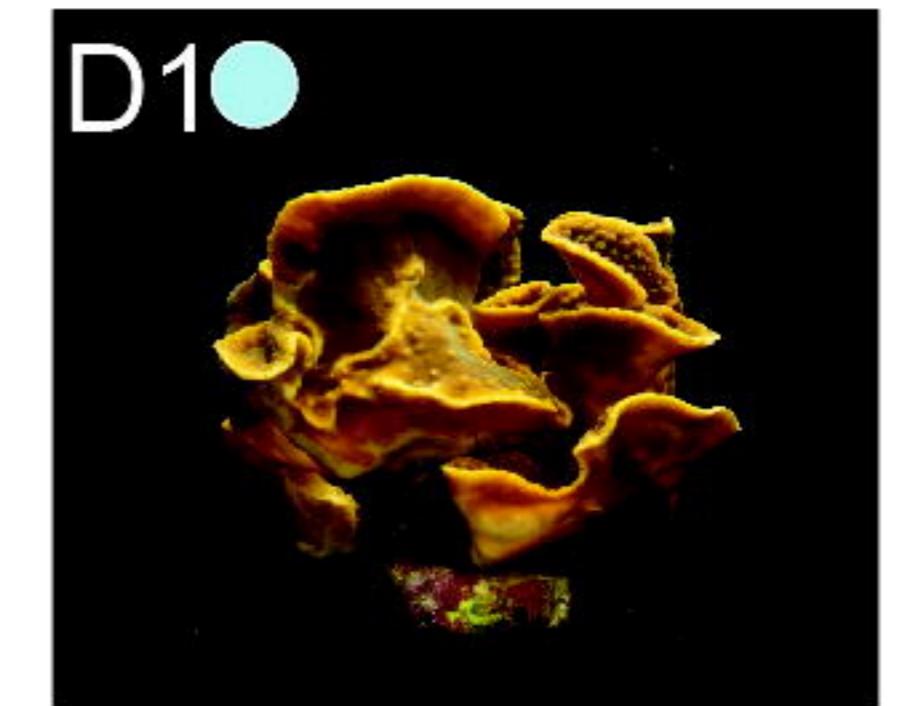

L. *M. capricornis* var. 2


M. *C. chalcidium*

N. *P. damicornis* var. 1

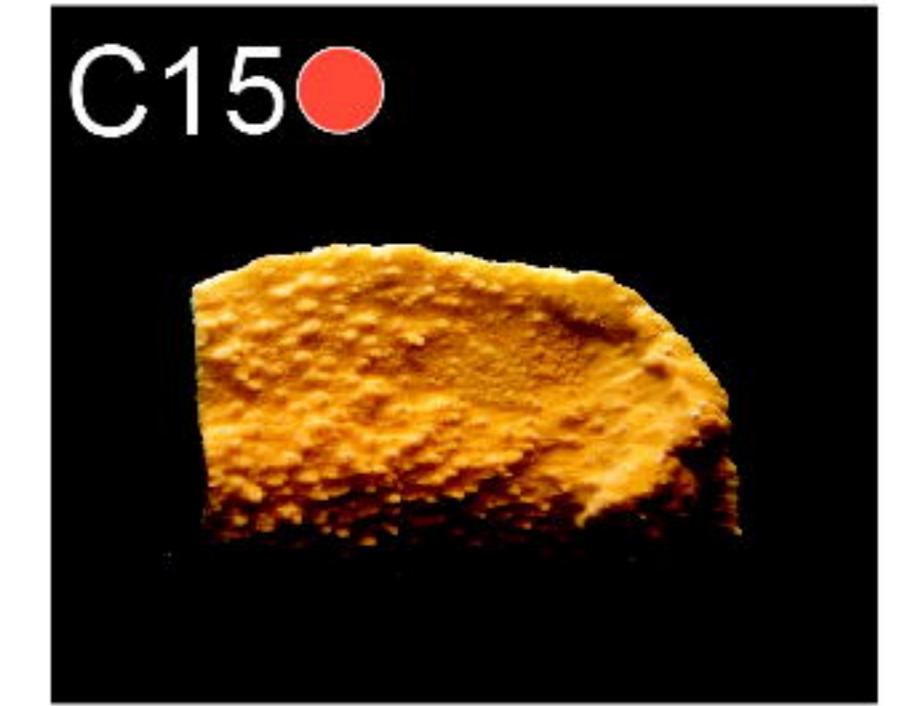


O. *P. damicornis* var. 2

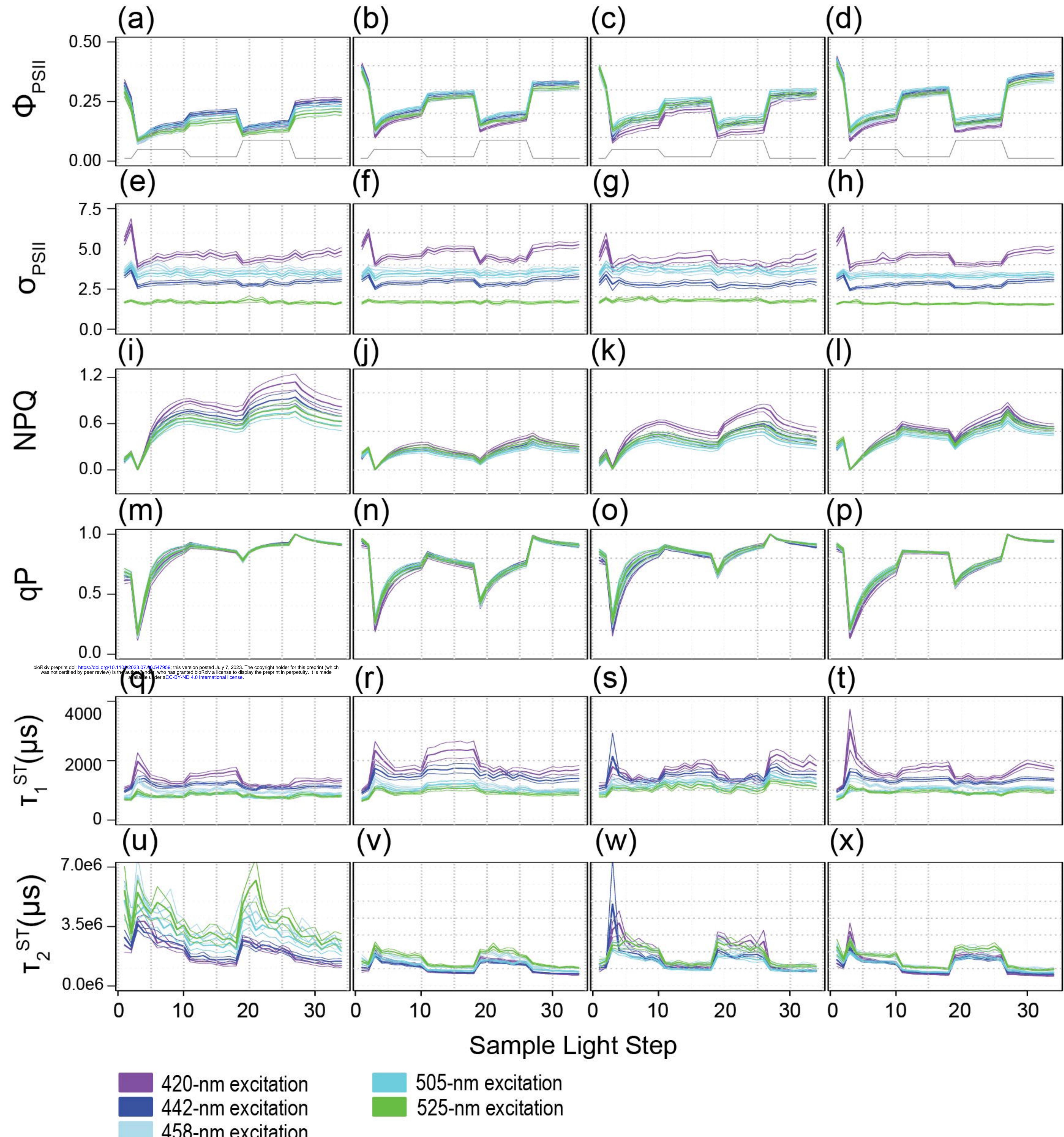


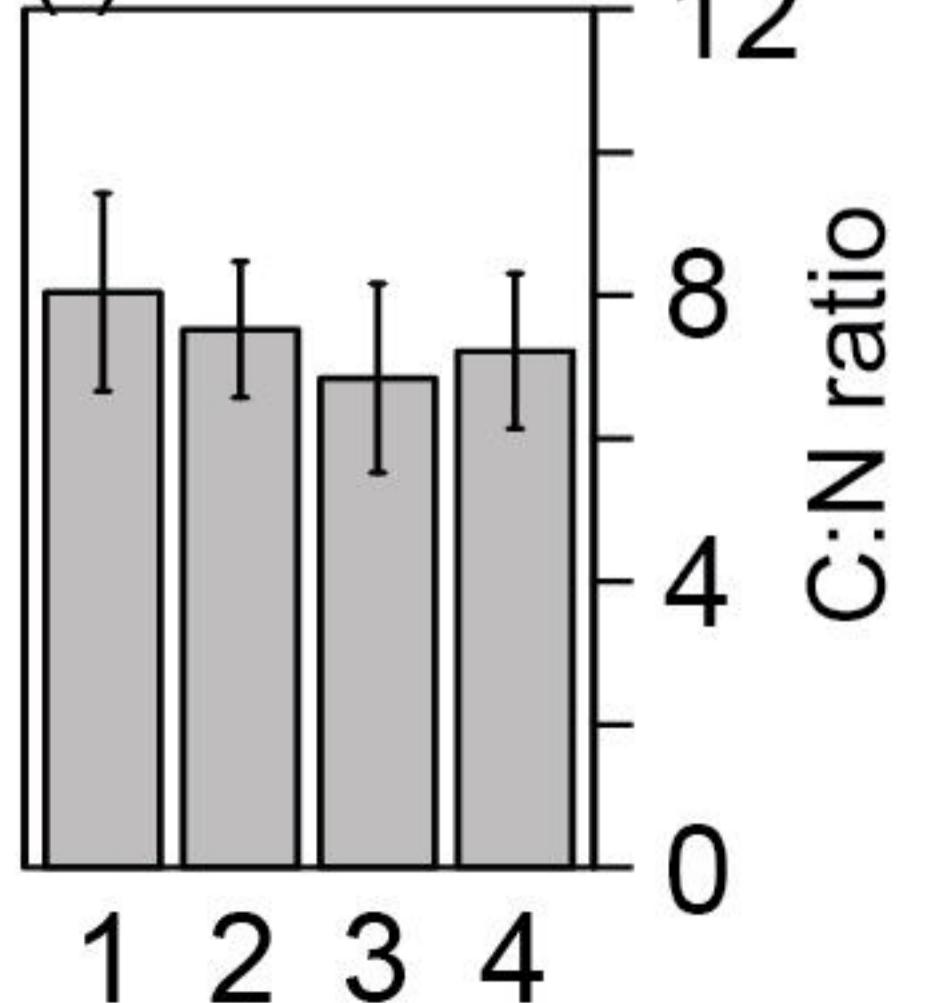
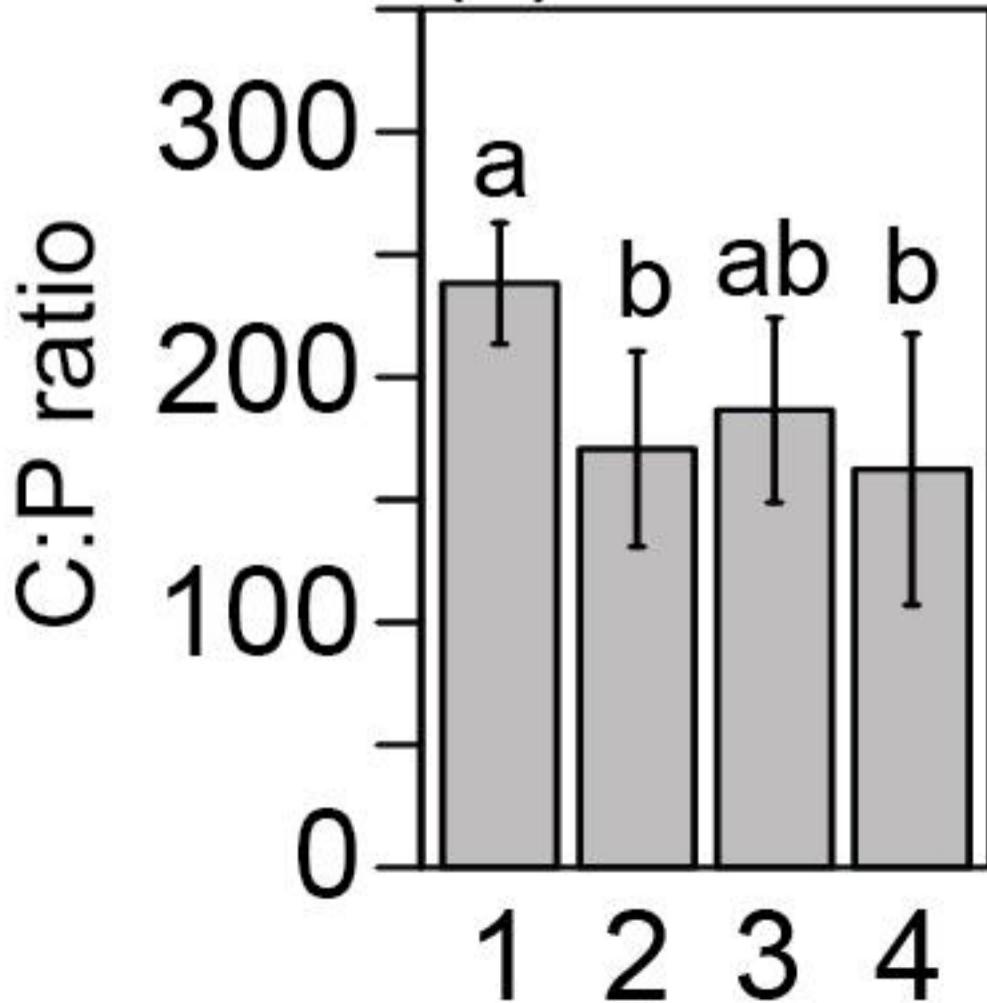
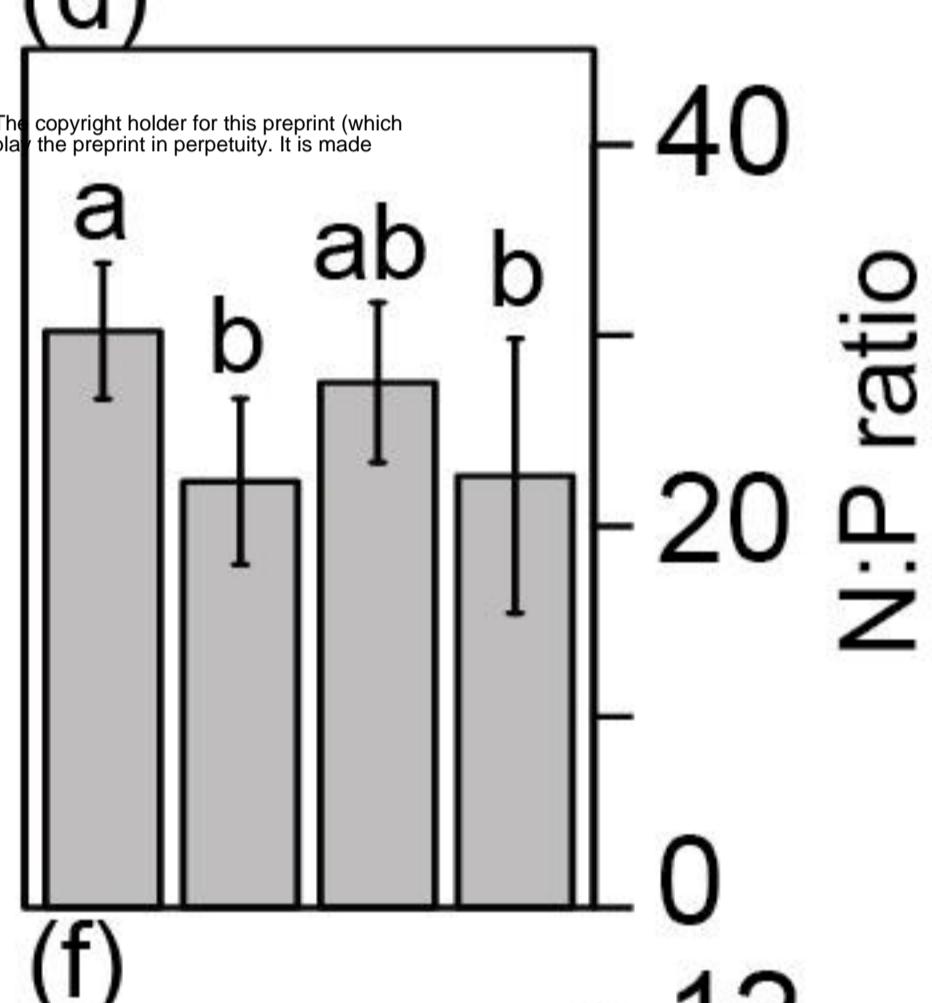
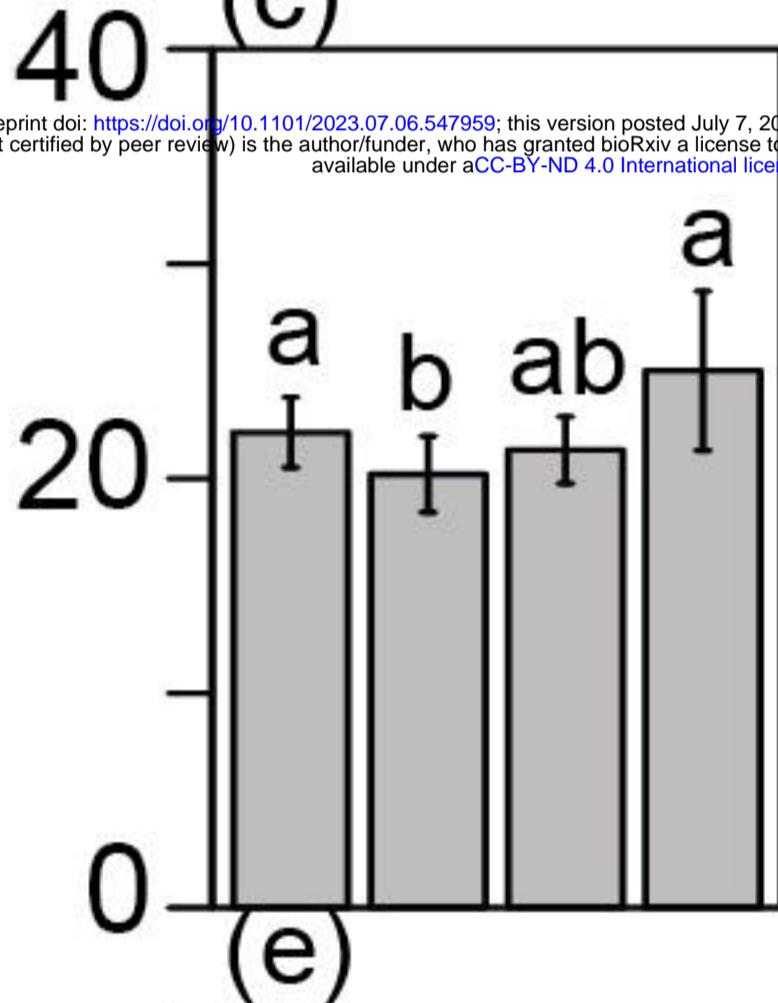
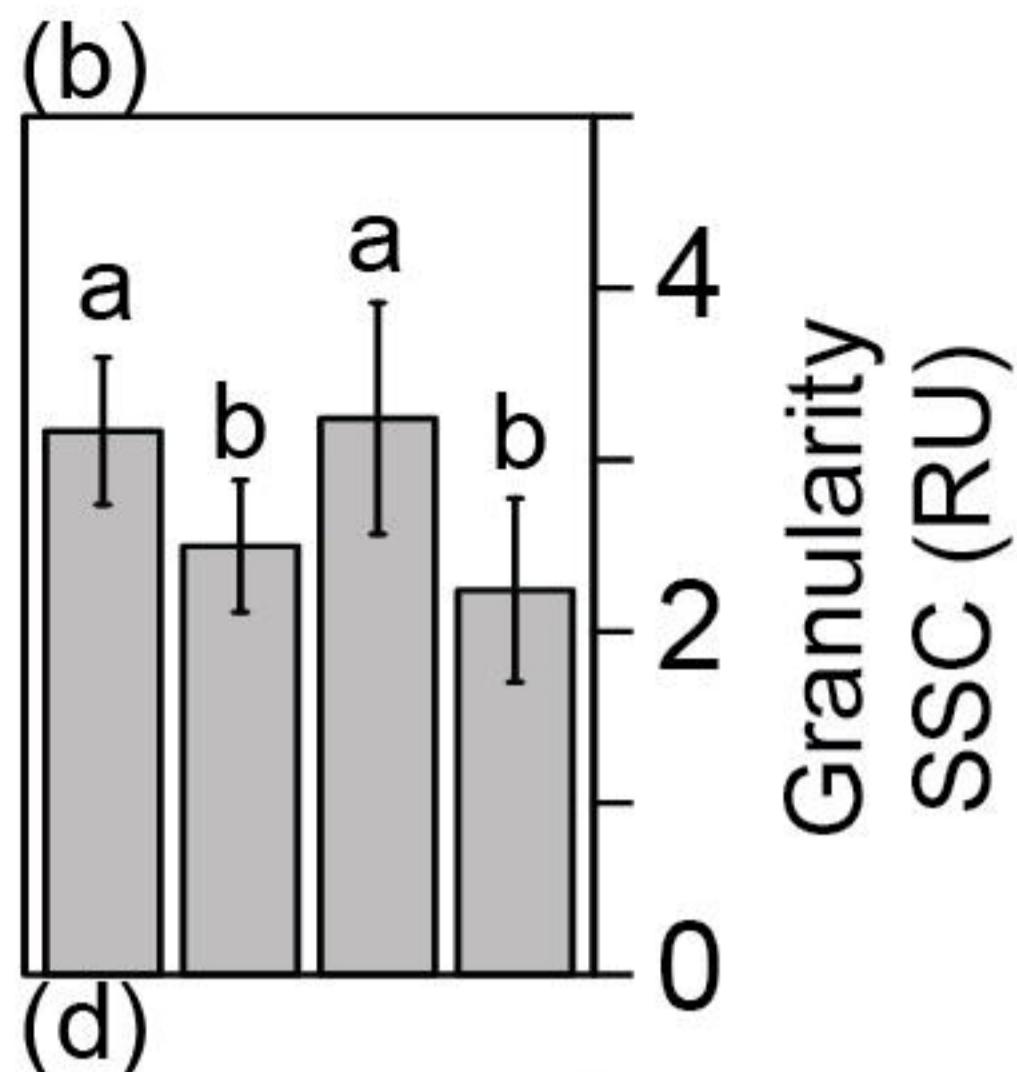
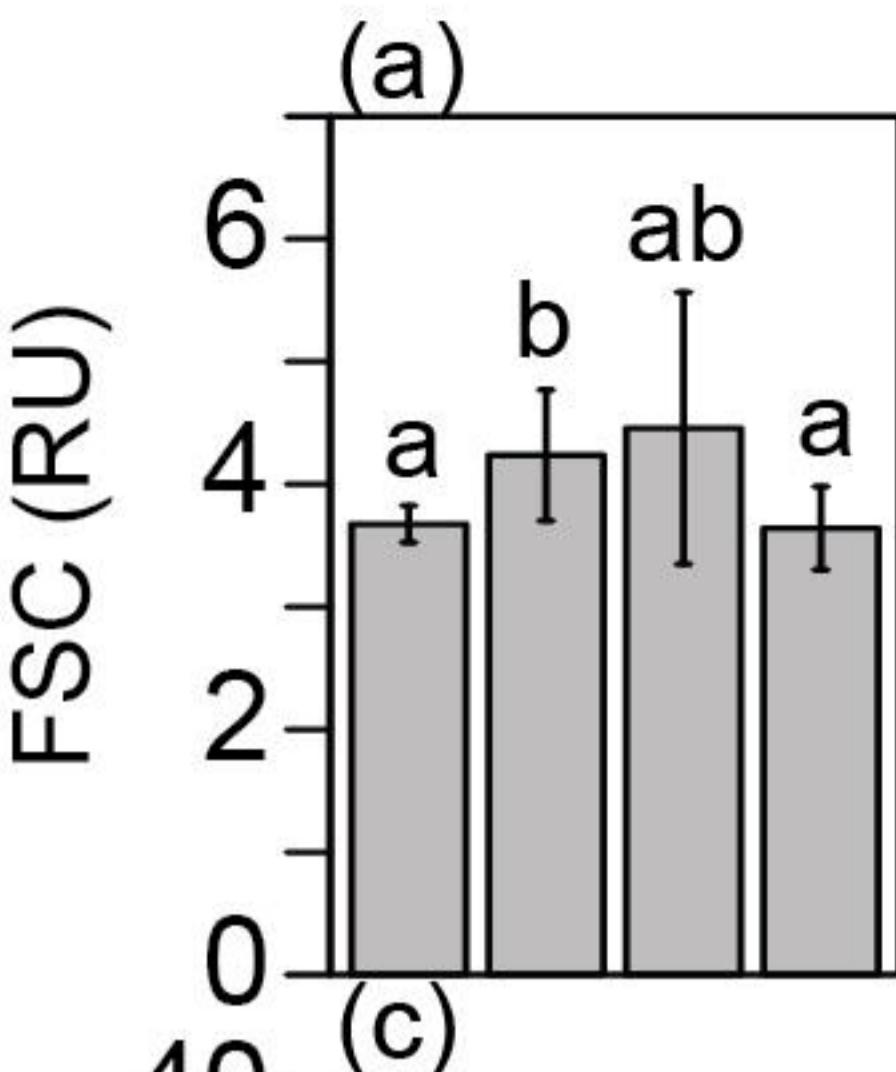
P. *M. capricornis* var. 3


Indoor

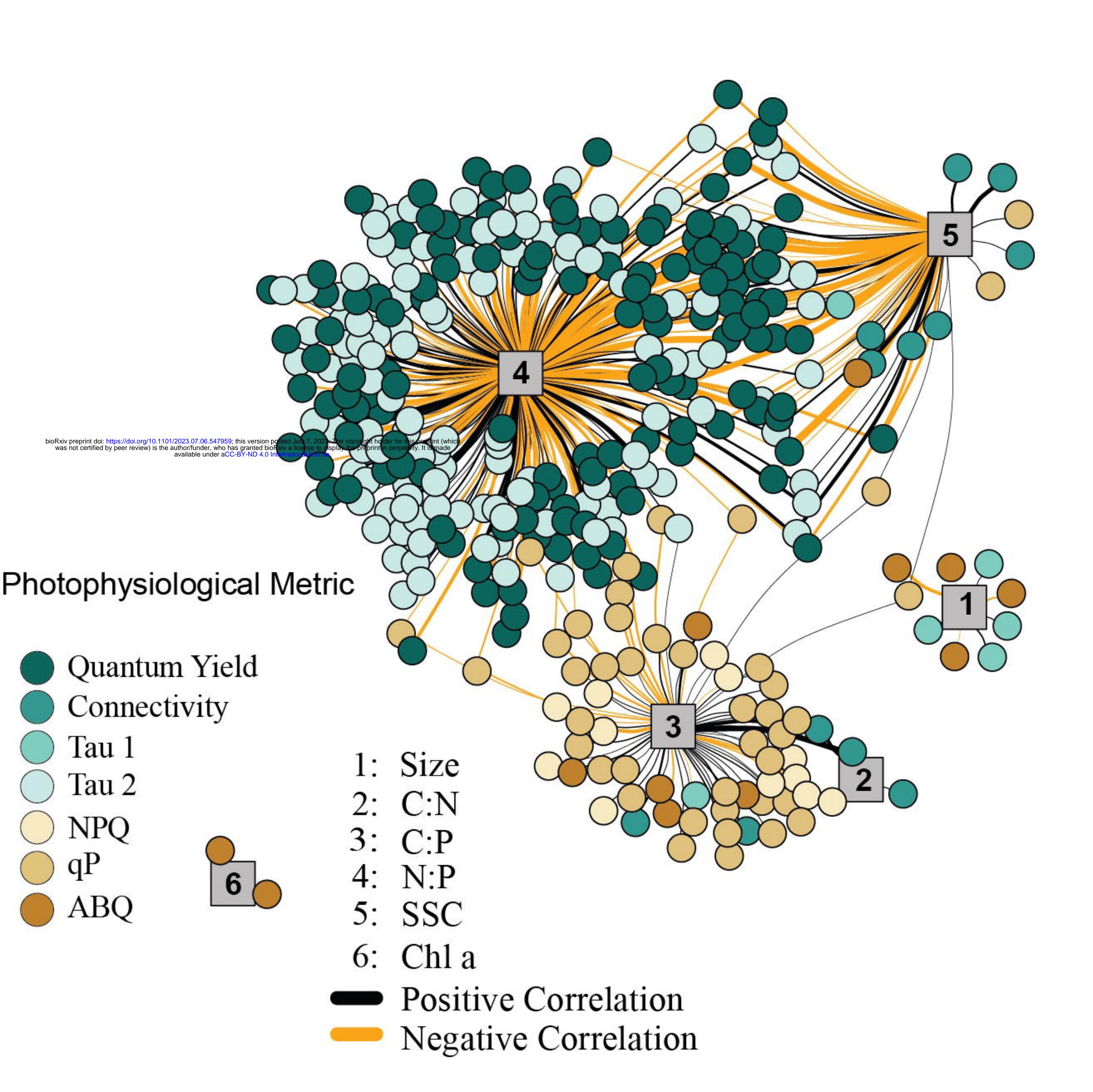

Q. *A. humilis* var. 1

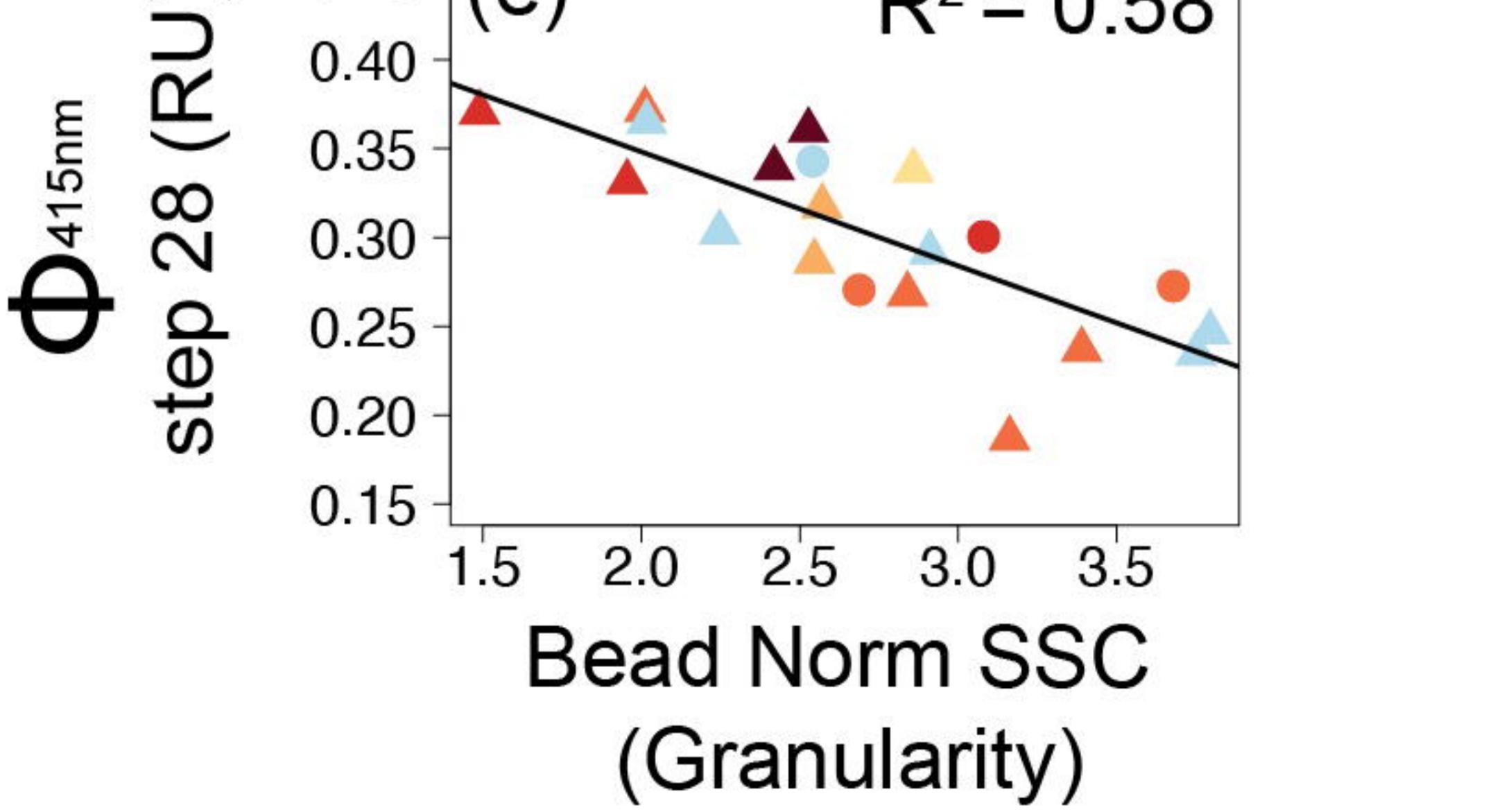
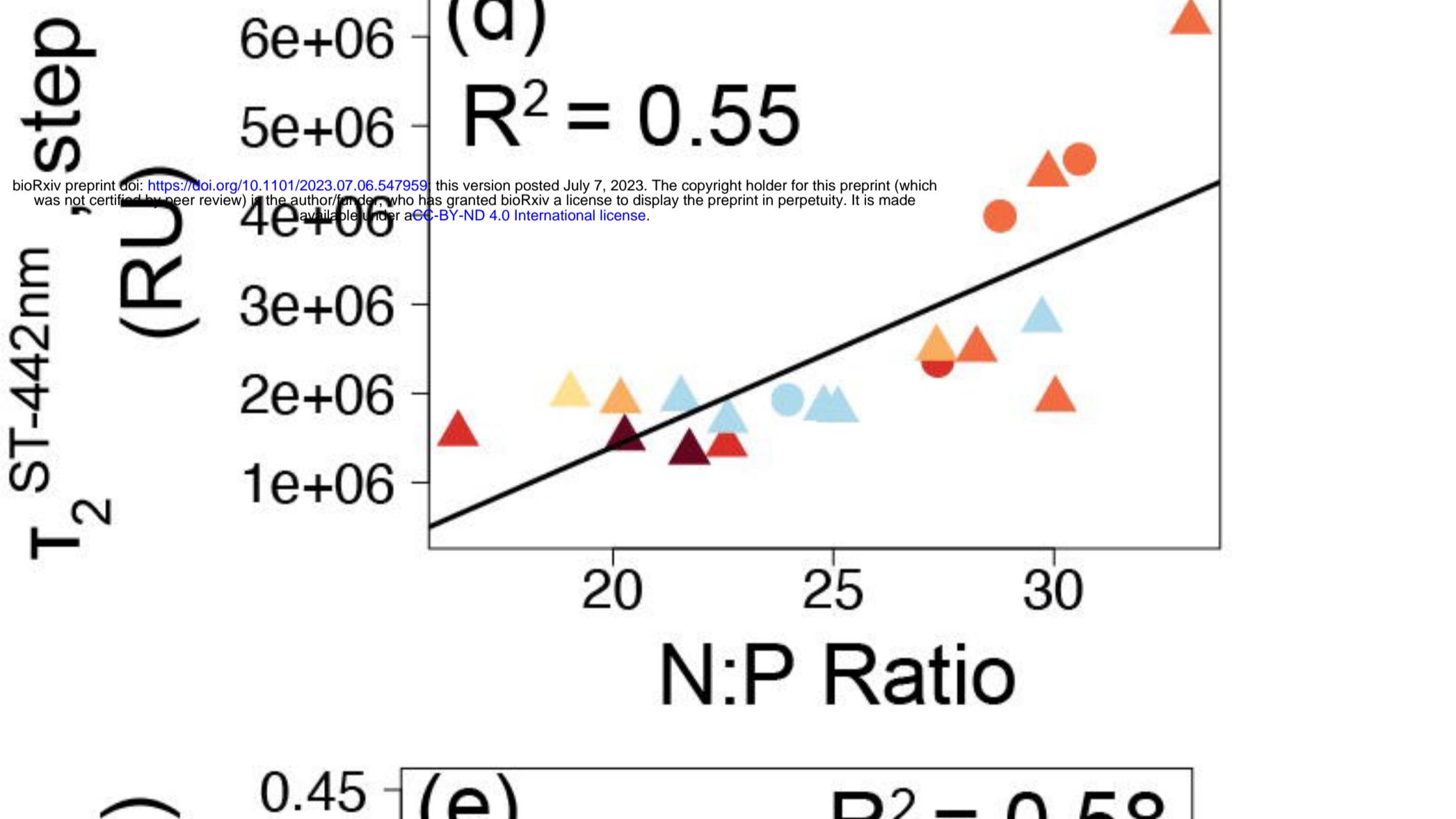
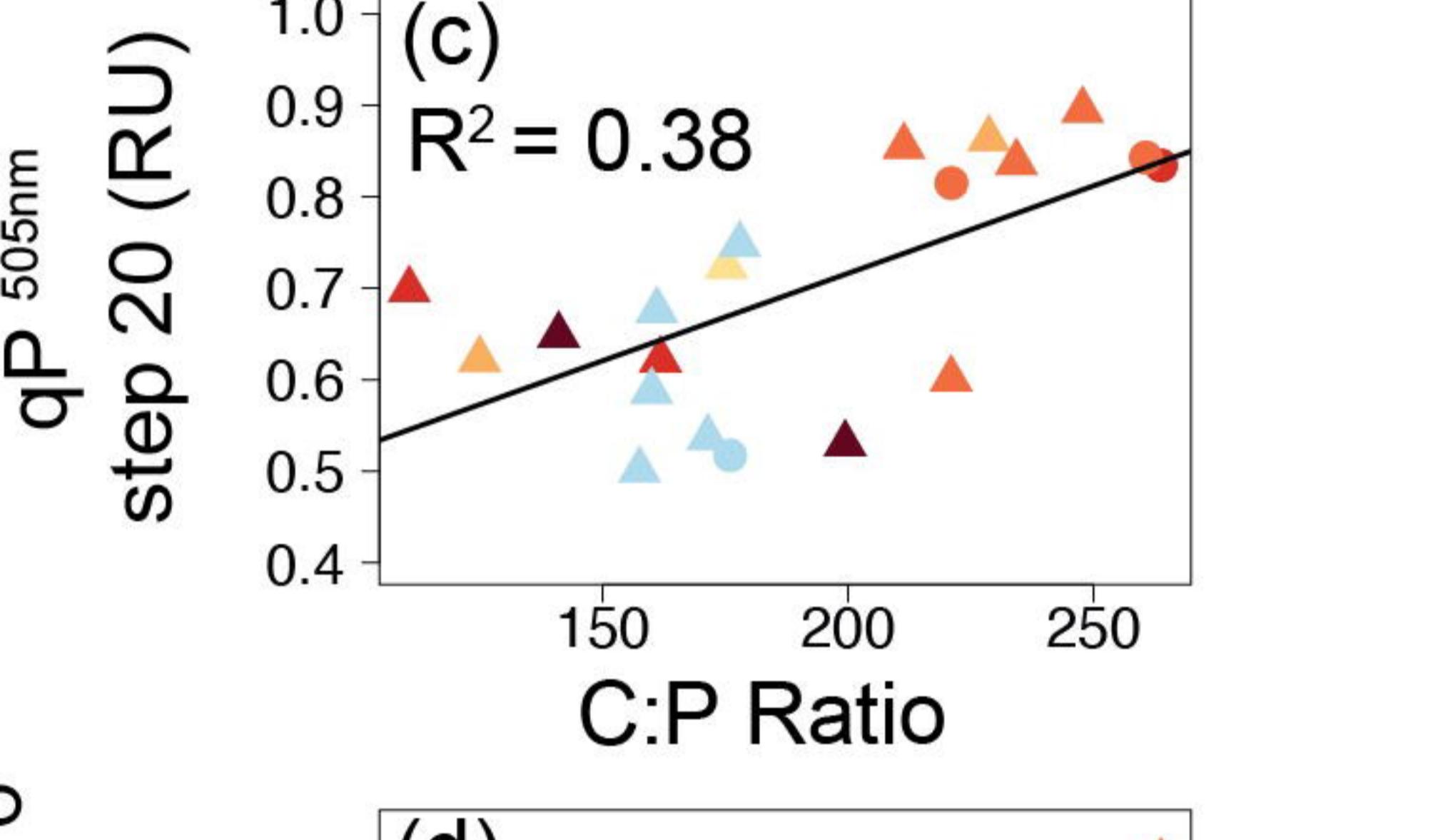
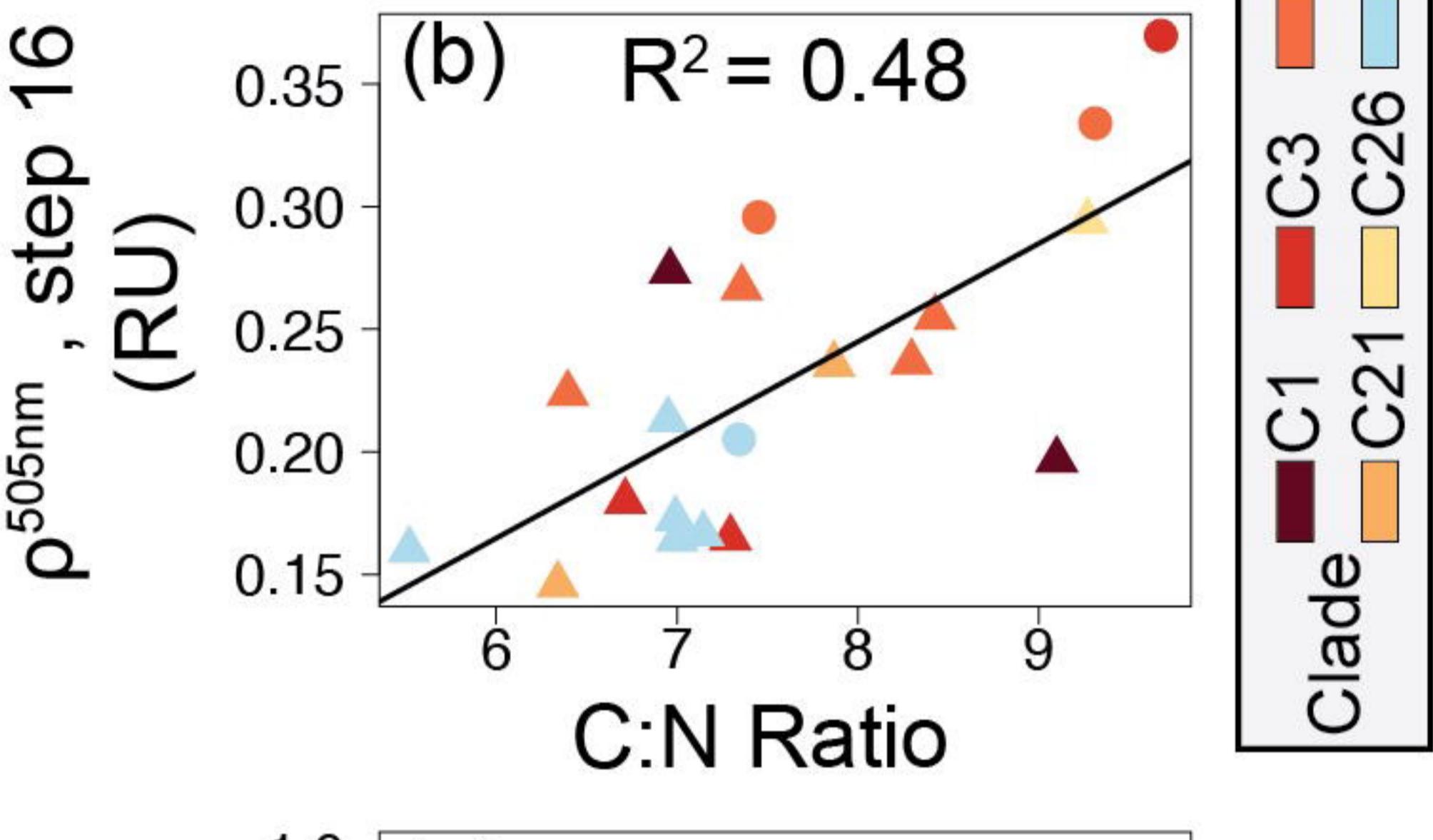
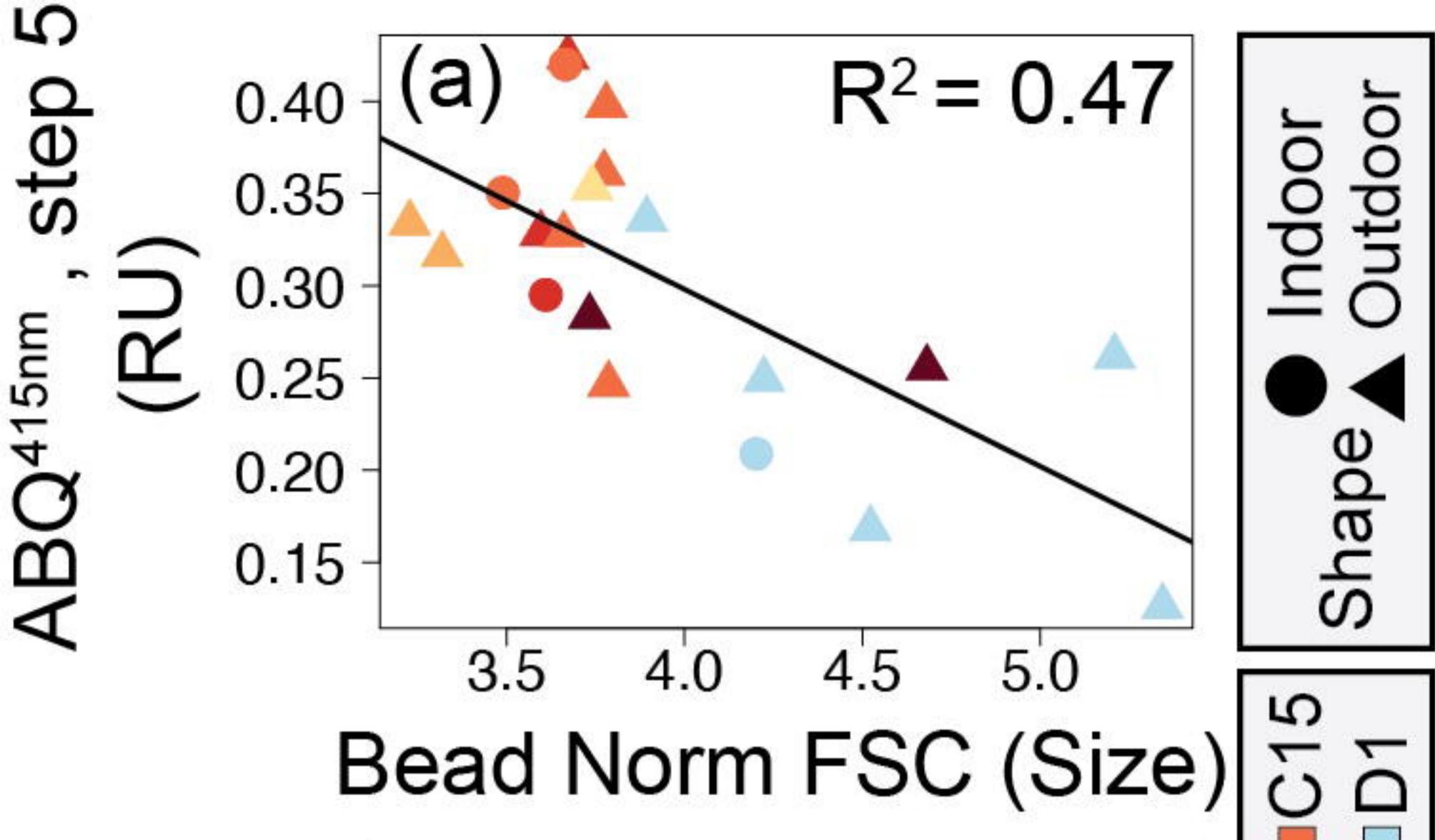
R. *T. reniformis* var. 2

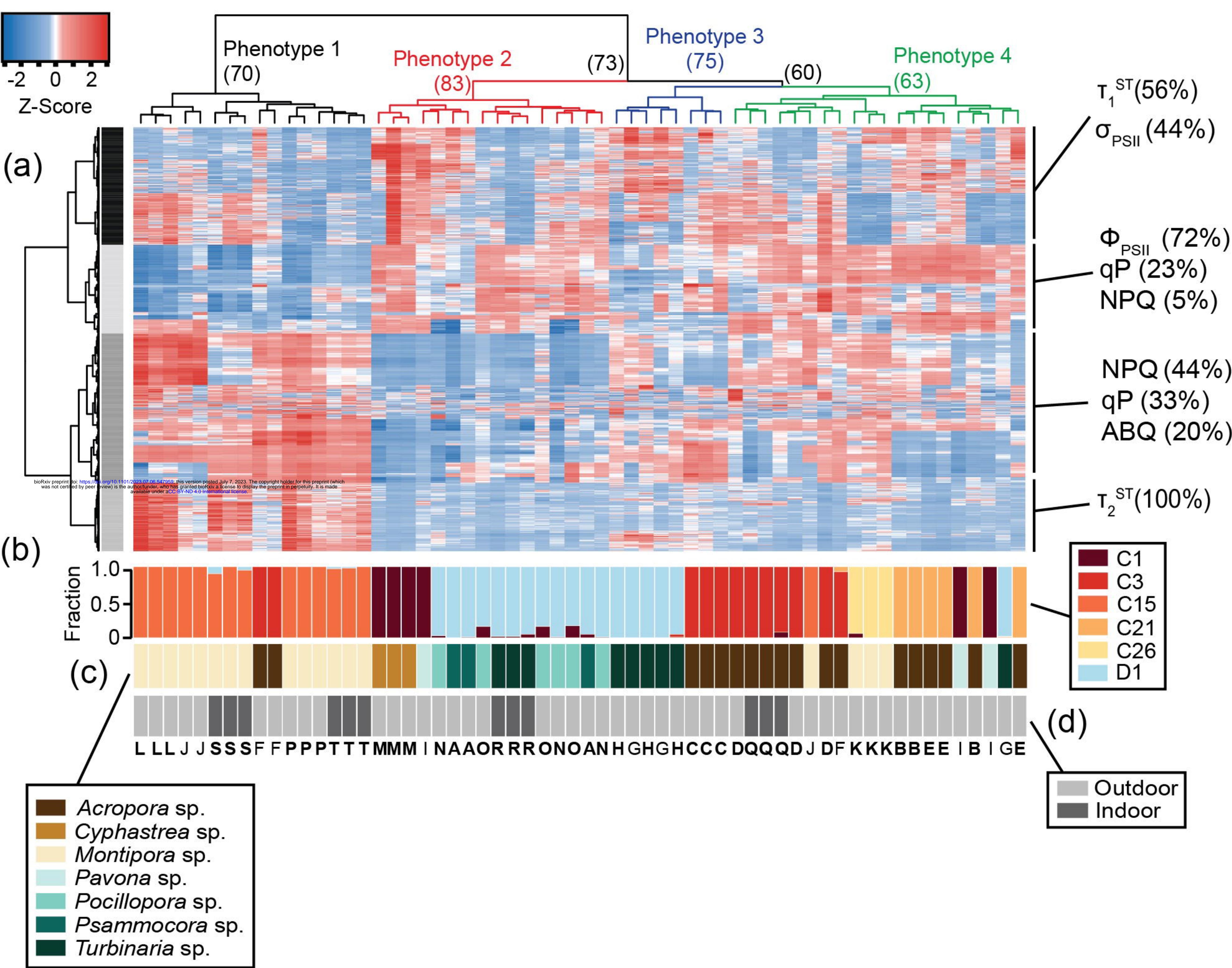








S. *M. capricornis* var. 2

T. *M. capricornis* var. 3


Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4



Phenotype

bioRxiv preprint doi: <https://doi.org/10.1101/2023.07.06.547959>; this version posted July 7, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

