

1 **Mycorrhizal symbiont provides growth benefits in host plants via phosphate and**
2 **phenylpropanoid metabolism**

3
4 Cheng-Yen Chen^{1,*}, Naweed I. Naqvi^{1,2,*}
5 ¹Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604.
6 ²Department of Biological Sciences, National University of Singapore, 16 Science Drive 4,
7 Singapore 117558
8
9

10 *Authors for correspondence:

11 Naweed I. Naqvi, Email: naweed@tll.org.sg
12 Cheng-Yen Chen, Email: chengyen@tll.org.sg

13
14 **Summary**
15• Using functional interaction assays, *Tinctoporellus* species isolate AR8 was identified as a plant
16 growth-promoting fungus from *Arabidopsis* roots.
17• Confocal microscopy revealed interstitial growth and intracellular endophytic colonization
18 within root cortex by AR8 hyphae prior to induction of beneficial effects.
19• AR8 improved plant growth and fitness across a broad range of monocot and dicot host species.
20• AR8 solubilized inorganic phosphate and enabled macronutrient phosphorus assimilation into
21 the host plants, and the resultant growth promotion required an intact phosphate starvation
22 response therein.
23• Metabolomics analysis identified a highly specific subset of primary and secondary metabolites
24 such as sugars, organic acids, sugar alcohols, amino acids, and phenylpropanoids, which were
25 found to be essential for the plant growth-promoting activities of AR8.
26• *trans*-Cinnamic acid was identified as a novel AR8-induced plant growth promoting metabolite.

27

28

29 Key words:

30 Fungus, Brassica, Mycorrhiza, Microbiome, Plant growth promotion, Phenylpropanoids,

31 Symbiosis, *Tinctoporellus*, *trans*-cinnamic acid

32

33

34

35 **Introduction**

36 Plants provide ecological niches for a plethora of microorganisms, which build highly complex
37 communities therein, and profoundly influence the overall functioning and stability of such
38 tripartite plant-microbe-environment ecosystems. Numerous studies have revealed that such
39 microbial associations affect seed germination, growth and development, plant nutrition,
40 resilience, and reproduction in the plant hosts (Berendsen et al., 2012; Vandenkoornhuyse et al.,
41 2015; Leach et al., 2017). Given these paramount functions, such microbial assemblies are seen
42 as an extended or second plant genome, and are also referred to as microbiota (comprising all
43 microorganisms) or microbiome (comprising all microbial genomes). The rhizosphere is a
44 ubiquitous region for a set of microbial populations that support plant fitness too (Lundberg et
45 al., 2012; Ofek-Lalzar et al., 2014). The below-ground interactions between roots and
46 microbiota are critical for the plant adaptation capacity, which can determine plant growth and
47 health through various direct or indirect mechanisms (Bever et al., 2012; Herrera Paredes and
48 Lebeis, 2016). Therefore, it is of major interest to study plant microbiota that enhance growth,
49 biomass and/or provide resistance against pathogen infection in the host plants.

50 The mycobiome, or mycobiota, is the fungal community associated with an organism or a
51 habitat. Dependent on the multiple pivotal ecological functions driven by soil fungi, plant
52 performance can be governed and modified by changing the rhizosphere mycobiota. Arbuscular
53 mycorrhizal fungi (AMF) are a characteristic example of plant growth-promoting fungi (PGPF)
54 in the symbiotic system. It is now widely accepted that AMF symbiosis contributes to plant
55 nutrition (mainly phosphate; Pi), including solubilization, mineralization, and/or transfer of
56 nutrients in the bioavailable forms, which allows plants to thrive in harsh environments with
57 poor nutrient availability (Hijikata et al., 2010; Balliu et al., 2015; Etesami et al., 2021). The
58 role of root fungal endophytes in beneficial interactions with plants has been underestimated
59 but has recently attracted a great deal of attention due to their ability to provide mycorrhizal-
60 like functions to non-mycorrhizal plants. For example, *Colletotrichum tofieldiae* solubilizes

61 plant-inaccessible hydroxyapatite and transfers Pi to *Arabidopsis thaliana* under low-Pi
62 conditions (Hiruma et al., 2016). Similarly, the Helotiales fungus F229 transfers Pi to *Arabis*
63 *alpina* under both low- and high-Pi conditions (Almario et al., 2017). These studies endorse
64 that fungus-to-plant Pi transfer, commonly assigned as a hallmark of mycorrhizal symbiosis,
65 also occurs in root fungal endophytes and non-mycorrhizal plant interactions. Given this
66 scenario, in-depth studies of symbiotic mycobiota members and their function(s) on non-
67 mycorrhizal plants are critical to expand our knowledge of the ecological relevance of these
68 associations for plant growth and development.

69 The advantage of root fungal endophytes for plant growth promotion through different
70 beneficial pathways shows great potential in developing new strategies for sustainable
71 agriculture (Calvo Velez et al., 2014; Olanrewaju et al., 2017; Sood et al., 2020). Despite their
72 benefits, the use of root fungal endophytes in agriculture remains far below the number of fungi
73 described with plant growth-promoting activities. Lack of knowledge about molecular features
74 of plant-fungus symbiosis is the main issue limiting the use of these PGPF as sustainable
75 alternatives. Metabolomics analysis focusing on plant-fungal interaction has shown that the
76 specialized metabolic phenotypes of host plants are essential for shaping the morpho-
77 physiological traits of functional symbiosis with AMF. For example, the carbon demands of
78 AMF affect the photosynthetic capacity of plants, thereby enhancing sugar accumulation and
79 increasing plant biomass (Kaur and Suseela, 2020; Kaur et al., 2022). Furthermore, the
80 reprogramming of secondary metabolism in carotenoid, flavonoid, and phenylpropanoid
81 biosynthesis due to AMF symbiosis enables the plants to better stress tolerance (Fester et al.,
82 2005; Scervino et al., 2005; Schweiger and Müller, 2015; da Silva and Maia, 2018). Thus, the
83 specificity of plant metabolome not only illustrates molecular signatures but also reflects
84 symbiotic outcomes in the plant-fungal interactions. More importantly, understanding the
85 dynamics of plant metabolites in symbiotic associations would help decipher the plant growth-
86 promoting mechanisms, especially since the functional symbiosis elicited by root fungal

87 endophytes is highly host-specific.

88 Plants of the Brassicaceae family are found within the group of non-mycorrhizal symbiosis,
89 which comprises several model species of great scientific interest (i.e., *A. thaliana*) and/or
90 agronomic importance (i.e., food crops within the genus *Brassica*) (Cosme et al., 2018). On the
91 basis of accumulating evidence, the interactions between root fungal endophytes with plant
92 hosts resemble mycorrhizal symbiosis. However, most studies were conducted on the model
93 plants in controlled and optimized growth environments while only a few were performed under
94 less favorable field conditions. In this study, the primary objectives were to harness
95 mycobiome-based functions to improve plant growth by: (1) the identification of root fungal
96 endophyte(s) that can benefit green leafy vegetable Choy Sum (*Brassica rapa* var.
97 *parachinensis*) (2) the analysis of plant metabolome underlying the beneficial effects imparted
98 by the root fungal endophyte to the host plant; (3) the field trials to clarify plant growth-
99 promoting activity of root fungal endophyte and its ecological relevance as a potential
100 biofertilizer for agriculture.

101 Here, we identify a novel mycorrhizal fungus, the *Tinctoporellus* species isolate AR8
102 (hereafter AR8), which demonstrated robust plant growth-promoting activity in green leafy
103 vegetables in indoor and field conditions. Characterization of AR8-inoculated Choy Sum
104 revealed that AR8 hyphae systemically colonized the inter- and intracellular spaces within the
105 host root cortex and thus underscored the capability of fungal hyphae to transfer soil nutrients
106 to host plants. Indeed, *in vitro* studies confirmed that the contribution of AR8 to plant growth
107 promotion involves the solubilization of inorganic Pi and the transfer of bioavailable
108 phosphorus by root-associated hyphae. Detailed metabolite profiling extended our findings by
109 providing mechanistic and functional insight into the repertoire of primary and secondary
110 metabolites that significantly changed in Choy Sum upon AR8 inoculation. We also identified
111 and characterized *trans*-cinnamic acid (*t*-CA) as the metabolite with plant growth-promoting
112 activity. Increased shoot biomass by *t*-CA in exogenous complementation assays provided

113 further evidence for its bioactive functions, likely associated with enhanced plant growth in the
114 AR8 symbiosis model. Collectively, our results support a mycorrhizal model system that
115 imparts beneficial functions in plant growth via a new member of rhizosphere mycobiota with
116 potential applications in improving productivity in traditional and modern urban farm crops.

117

118 **Materials and Methods**

119

120 **Plant materials and growth conditions**

121 *Arabidopsis thaliana* ecotype Columbia (Col-0) wild type, the mutant line *phr1*, Choy Sum
122 (*Brassica rapa* var. *parachinensis*), Kailan (*Brassica oleracea* var. *alboglabra*), rice cultivar
123 CO39, and barley cultivar Express were used in this study. Seeds were stored at 4°C in the dark
124 to allow stratification. Seeds were surface-sterilized with 70% ethanol for 5 min, 10%
125 commercial bleach for 2 min, and followed by five times rinsing in sterile distilled water.
126 Sterilized seeds were placed on full Murashige and Skoog basal salts medium (Sigma-Aldrich;
127 no. M5524) with 1% sucrose and 1% agar (MS-agar) for germination and incubated vertically
128 in a plant growth chamber (AR95L, Percival Scientific) under long day conditions (16 h /8 h
129 light/dark photoperiod) at 22°C with 60% relative humidity and 120 $\mu\text{mol m}^{-2} \text{s}^{-1}$ light intensity.

130 For plant growth promotion assays, seedlings were transferred to trays containing
131 autoclaved (121°C, 1 hour) peat/perlite mix (BVB Substrates, Netherlands) prior to fungal
132 inoculation. Plants in the tray were watered (1000 ml/day) according to the method described
133 previously (Tan et al., 2020), and no additional fertilizers were added during the experimental
134 period.

135 **Plant growth promotion assays**

136 For qualitative and quantitative analysis of the growth-promoting effects of fungal isolates
137 extracted from *Arabidopsis* rhizosphere, conidial suspension (10^6 spores) were inoculated into
138 the rhizosphere region of Choy Sum plants. Four day-old Choy Sum seedlings were transferred

139 to the sterilized soil and conidia were directly inoculated to the roots and surrounding soil.
140 Distilled water was used as a mock control with the same inoculation method. Shoot fresh
141 weight was measured at 7, 14, and 21 days post-inoculation (dpi). To further verify the effect
142 of the fungal isolate AR8 on reproductive growth, the number of siliques was counted at 49 dpi.
143 *A. thaliana* Col-0, Kailan, rice, and barley were used as models for monocot and dicot species
144 to test AR8 growth-promoting effect using the same settings and methodology.

145 **Confocal microscopy and imaging**

146 For microscopic analysis of fungus-root interactions, four day-old Choy Sum seedlings were
147 inoculated with AR8 conidia (10^6 spores) for 16 and 24 hours post-inoculation (hpi) (conidia
148 morphology and germination), and 4, 7, 14 dpi (root colonization). Distilled water was used as
149 a mock control with the same inoculation method. Conidia and roots were stained with 10 μ g/ml
150 Wheat Germ Agglutinin, Alexa FluorTM 488 Conjugate for 10 minutes and 10 μ g/ml Propidium
151 iodide for 10 minutes to visualize fungal structure and root cell walls, respectively. Imaging
152 was done on a Leica TCS SP8 X inverted confocal system equipped with an HC Plan
153 Apochromat 20 \times /0.75 CS2 Dry objective or a 63 \times /1.40 CS2 Oil objective. Green fluorescence
154 (Wheat Germ Agglutinin Alexa FluorTM 488 Conjugate) was excited at 488 nm and detected at
155 500-530 nm and Red fluorescence (Propidium iodide) excited at 561 nm and detected at 600-
156 700 nm. All parts of the system were under the control of Leica Application Suite X software
157 package (release version 3.5.5.19976).

158 **Elemental analysis by Inductively-Coupled Plasma mass spectrometry (ICP-MS)**

159 Samples of 21 dpi Choy Sum shoot (with or without AR8 inoculation) were dried for 5 days at
160 65 °C. For pre-digestion, Homogenized plant powder (100 mg) was performed by 2.5 ml of
161 HNO₃ (66% v/v) and 0.5 ml of H₂O₂ (30% v/v) overnight. High Performance Microwave
162 Digestion System was followed to digest samples for 3 hours. Final solution was diluted by
163 1:10 dilution with deionized water and stored at 4 °C before analysis. The determination of
164 nitrogen, phosphorus, and potassium levels was performed with an Agilent 7700 ICP-MS

165 (Agilent) following the manufacturer's instructions.

166 **Pi translocation assay**

167 Square petri dishes (root/hyphal compartment, RHC; 12.5 x 12.5 cm) were prepared with either
168 Pi-limiting (100 μ M KH₂PO₄) or Pi-rich (1250 μ M KH₂PO₄) sucrose-free MS-agar medium.
169 Inside each square petri plate, a circular petri dish (hyphal compartment, HC; 3.8 cm in diameter)
170 was prepared with Pi-rich sucrose-free MS-agar medium and placed at the bottom. Notably, the
171 two compartments were separated by the plastic wall of the circular petri dish, which impeded
172 the growth of plant roots towards the content of the smaller plate. Two PA agar plugs (5 mm)
173 with or without AR8 mycelia were inoculated to HC for pre-inoculation 7 days. During the pre-
174 inoculation, AR8 hyphae spread from HC to the RHC, bridging the two compartments. Seven
175 day-old *A. thaliana* Col-0 or *phr1* mutant seedlings were transferred to the RHC and cultivated
176 vertically for 7 days. Shoot fresh weight was measured to determine the effect of fungal Pi
177 transport activity.

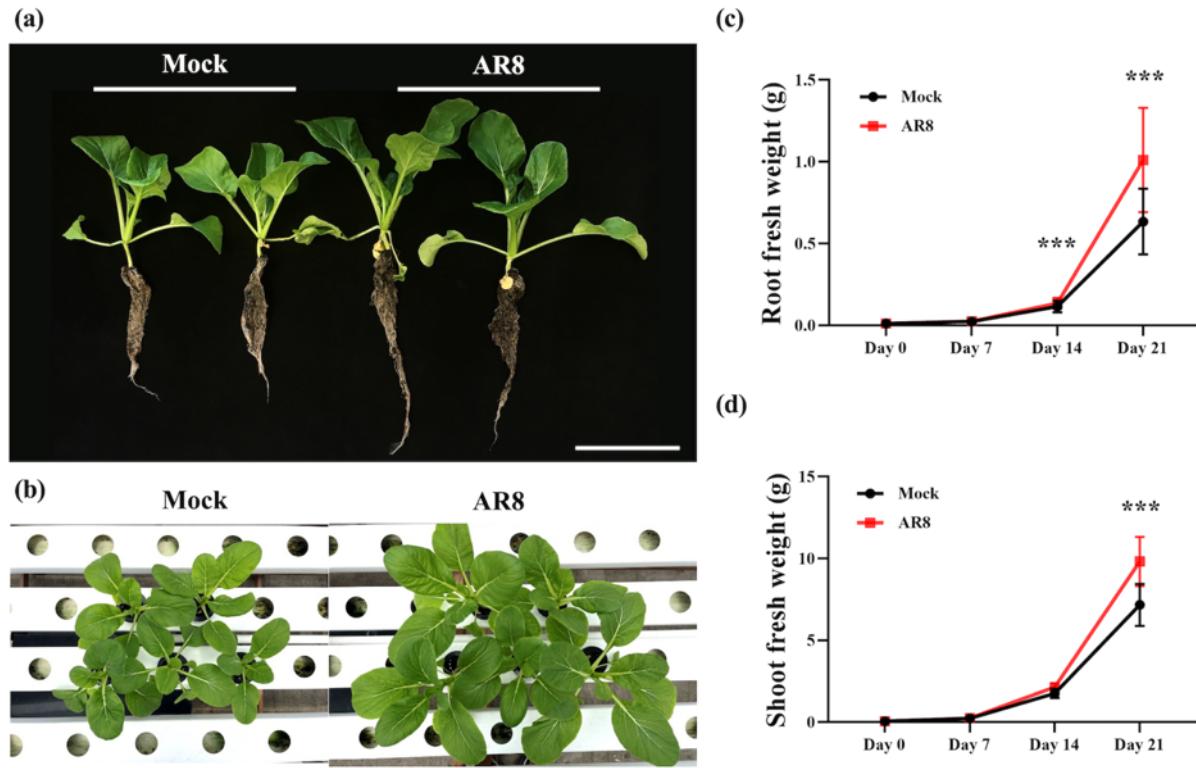
178 **Metabolomics profiling**

179 Metabolite profiling was performed by gas chromatography coupled to electron impact
180 ionization/time-of-flight mass spectrometry (GC-EI/TOF-MS) using Agilent 7890A gas
181 chromatogram with split and split-less injection onto the Agilent J&W GC column DB-5MS
182 (30 m length, 0.25 mm inner diameter, 0.25 μ m film thickness, Agilent), which was connected
183 to a 7200 quadrupole time-of-flight mass spectrometer. Helium was used as carrier gas and the
184 flow rate was 1 ml/min. Injection volume was 1 μ l in split and split-less mode. Injection and
185 transfer line temperatures were 250°C and 280°C, respectively. The oven temperature was held
186 at 70°C for 1 minute, and then increased to 250°C at 10°C/min and then it was increased to
187 300°C at 25°C/min and held for 6 minutes. The GC total run time was 27 minutes. The solvent
188 cut time was 4 minute. The ion source was operated in electron ionization (EI) mode and its
189 temperature was 230°C. The scan range for TOF was from m/z 50 to 800.

190 **Statistical Analysis**

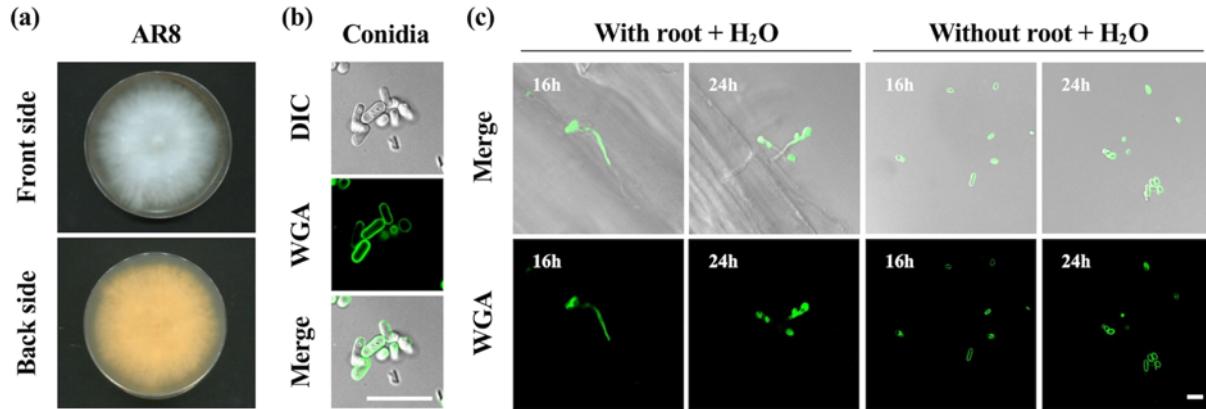
191 Statistical analysis was carried out using GraphPad prism software (San Diego, CA. and the
192 values of the treatments represented as mean with standard error. The significance of differences
193 between the treatments was statistically evaluated using Student's 't' test and significance was
194 considered at a probability level of $P < 0.05$ (*), $P < 0.01$ (**), and $P < 0.001$ (***)�

195


196 **Results**

197

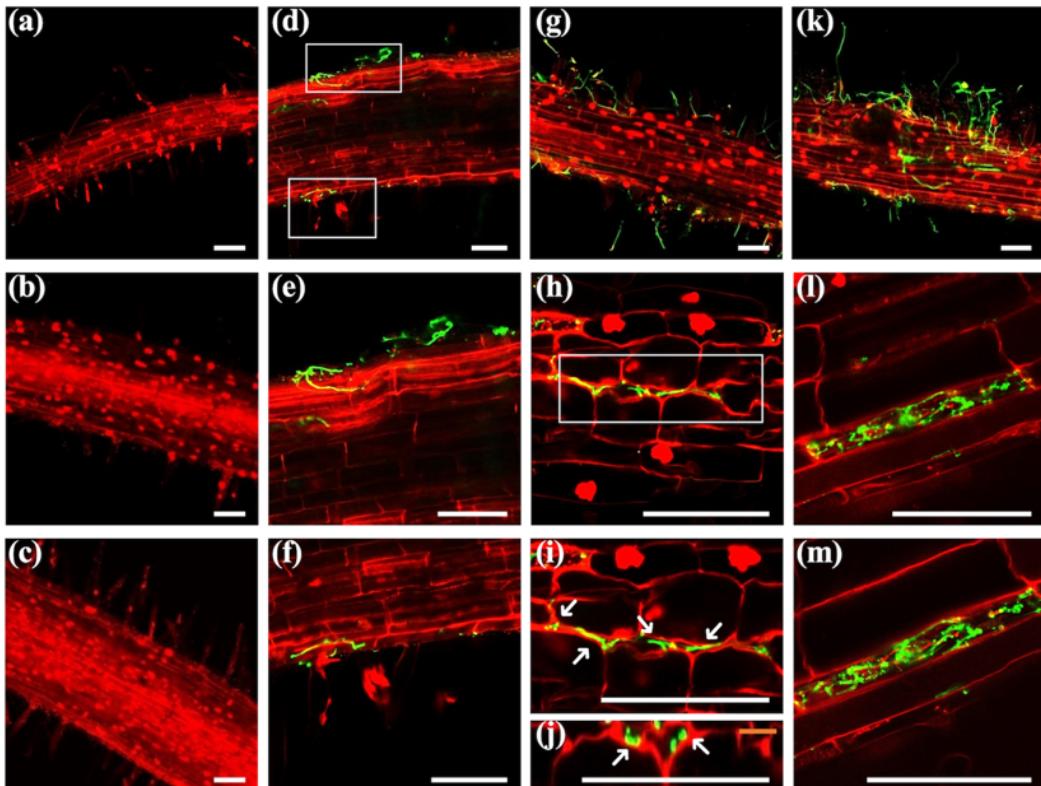
198 **Characterization of the mycobiota from *Arabidopsis thaliana* rhizosphere**


199 We used extracts from the surface-sterilized roots of *A. thaliana* Col-0 to obtain the
200 mycobiomes or fungal microbiota via subculture on PA medium. The fungal isolates thus
201 obtained were taxonomically identified by amplifying and sequencing the ITS region of fungal
202 the ribosomal DNA from the respective fungal isolates. Barcoding and identification of fungal
203 DNA on the NCBI BLAST database (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) was subsequently
204 conducted to assign the taxonomic identity of the mycobiont based on the highest ID scores. As
205 a result, a total of 21 individual fungal genera, including 18 isolates from Ascomycota and 3
206 isolates from Basidiomycota, were obtained from *A. thaliana* roots. To further verify the impact
207 (if any) on plant growth, we inoculated Choy Sum seedlings with our fungal isolates
208 individually and cultivated them under soil conditions. Shoot fresh weight or biomass of the
209 mock control and the fungus-inoculated plants was measured at 21 days (Fig. S1).

210 Based on our analysis, Choy Sum showed an increase in shoot biomass when co-cultivated
211 individually with 9 of the 21 fungal isolates, thus suggesting their plant growth-promoting effect
212 on Choy Sum under soil conditions (Fig. S1b). More importantly, the fungal isolate AR8
213 exhibited a better and more consistent beneficial effect on growth of Choy Sum shoots
214 compared to the other PGPF isolates. Thus, we selected AR8 to further investigate such
215 beneficial effects on plant biomass (Figure 1a,b). The significantly improved Choy Sum growth
216 provided by AR8 under soil conditions was evident at 14 dpi. AR8-inoculated plants exhibited

217
218
219 **Fig. 1** AR8 promotes significant increase in Choy Sum growth under soil conditions. (a-b) Representative images
220 of Choy Sum seedlings grown in soil in indoor conditions for 21 days (a) or in coco peat in field conditions for 28
221 days (b) with water (mock control) or inoculated with AR8 conidial suspension (10^6 spores in total). Scale bar, 10
222 cm. (c-d) Time course (7, 14, and 21 dpi) analysis of Choy Sum shoot (c) and root fresh weight (d) in soil inoculated
223 with water or AR8 conidia (n=12-20 plants per experiment) shown in (a). Data presented (mean \pm S.E) was derived
224 from 3 independent replicates of the experiment. Asterisks (****) represent significant differences compared to the
225 mock control at $P < 0.001$ (t-test).

226
227 a significantly higher shoot biomass increase by 22.01% at 14 dpi, and 37.07% at 21 dpi (Fig.
228 1c,d S2a). To address the long-term impact of AR8 interaction/colonization, the reproductive
229 growth of Choy Sum was also studied as an index of fertility. We observed that Choy Sum
230 inoculated with the beneficial mycobiont AR8 displayed an earlier transition to flowering and
231 an overall increase in production of siliques (Fig. S2b), thus indicating that the beneficial fungus
232 AR8 promotes the growth and development during both the vegetative and reproductive stages
233 in the host plants. We also tested the impact of AR8 on the model Brassicaceae species *A.*
234 *thaliana* Col-0 and Kailan, and in the cereal crops rice and barley. Remarkably, not only
235 Arabidopsis and Kailan but also barley demonstrated a significant improvement with an

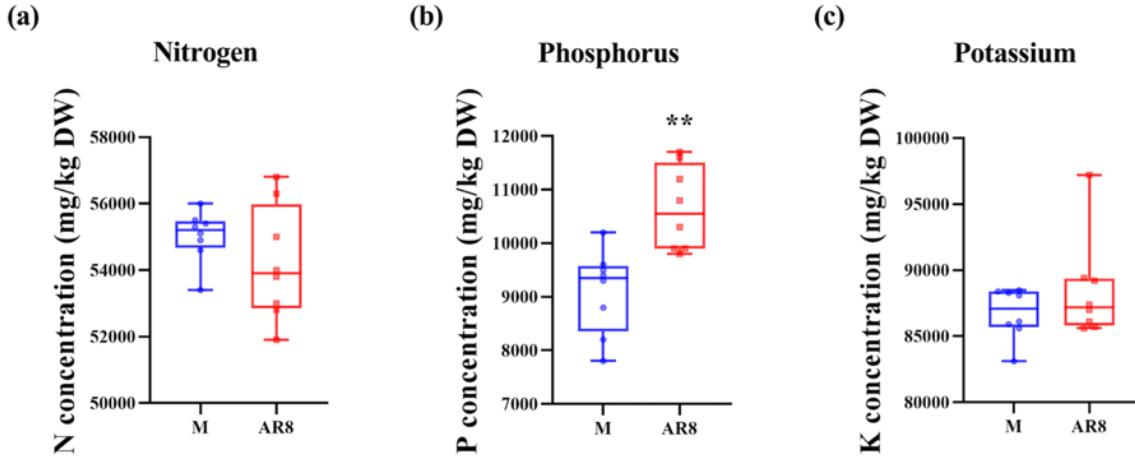


236
237 **Fig. 2** The morphological characteristics of the beneficial fungus AR8. (a-b) AR8 was cultured on PA agar (a) for
238 5 days and conidia (b) were harvested after subculture under light conditions for 7 days. (c) AR8 conidia were
239 cultured with or without Choy Sum roots for 16 and 24 hours. Laser scanning confocal microscopy of AR8 stained
240 with Wheat Germ Agglutinin-Alexa488 (green; fungal cell wall). Scale bars: 10 μ m.

241
242 average increase of 53.61%, 22.85%, and 21.91% , respectively, upon AR8 inoculation under
243 soil conditions (Fig. S3,S4c,d). However, AR8 showed a growth inhibitory effect on rice, and
244 the shoot fresh weight of rice was significantly decreased by 18.19% upon AR8 inoculation
245 (Fig. S4a,b). Collectively, we report a novel PGPF AR8, which demonstrates a robust growth
246 promotion effect on a range of crop species. Thus, the rhizosphere inoculation of AR8 conidia
247 on seedlings of leafy greens was an applicable strategy to maximize the crop growth and yield
248 in such urban crops.

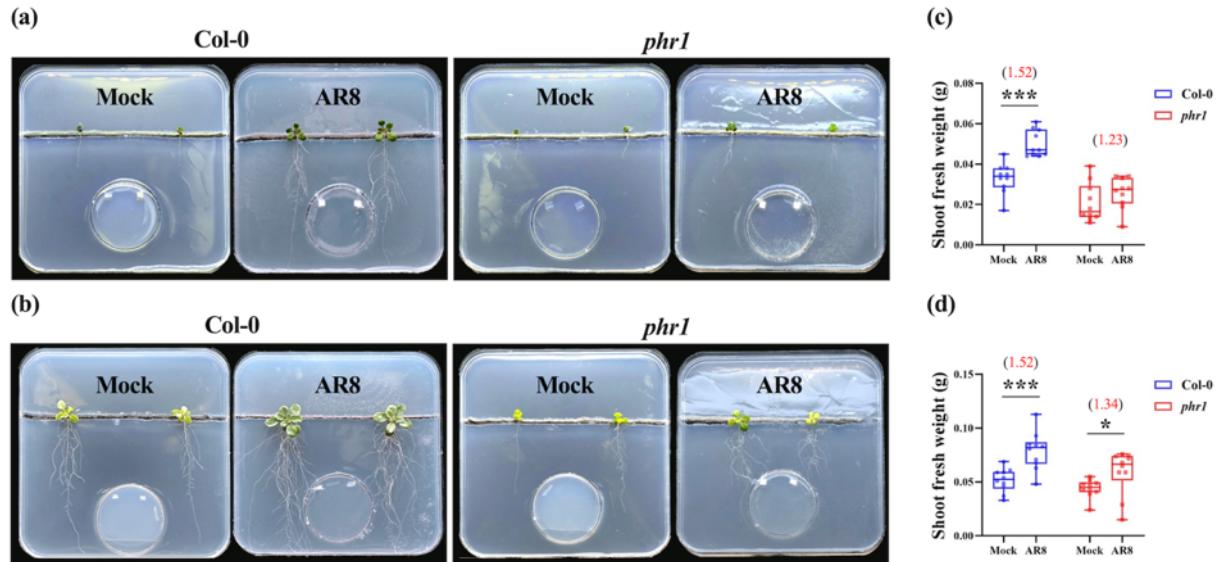
249 **The nature of AR8 growth and its systemic colonization in Choy Sum roots**

250 To investigate the growth characteristics of AR8, we performed confocal microscopy to first
251 assess the morphology and conidial germination. AR8 conidia produced on PA medium were
252 oblong or short rod-shaped with a uniform length of 4-8 μ m (Fig. 2a,b). Interestingly, AR8
253 conidia germinated and produced apparent germ tubes in water in the presence of Choy Sum
254 roots at 16 and 24 dpi, respectively. By contrast, AR8 conidia failed to germinate in the absence
255 of Choy Sum roots under these conditions (Fig. 2c). This suggested that (Choy Sum) root
256 exudates led to a significant acceleration of conidial germination in AR8, which resembles
257 mycorrhizal symbiosis in being mutually beneficial for both the partners.


258
259 **Fig. 3** AR8 shows systemic colonization as an endophyte in Choy Sum roots in soil conditions. (a-c) Choy Sum
260 roots were inoculated with water (mock control) and cultivated under sterilized soil conditions for 4 (a), 7 (b), and
261 14 days (c). No fungal conidia or mycelia are evident around the roots. (d-f) Choy Sum roots inoculated with AR8
262 conidia (10^6 spores) in sterilized soil for 4 days. Representative image showing the attachment of AR8 hyphae on
263 the root surface without penetrating the epidermis or inner cortex of the roots (d). Enlarged images of the sections
264 (e-f) from projections shown in (d). (g-j) Choy Sum roots inoculated with AR8 conidia (10^6 spores) for 7 days.
265 Representative images showing the external (g) and intercellular hyphae (h) of AR8 on the root surface and
266 between root epidermal cells. Enlargement (i) and orthogonal (j) of the sections from the projections is shown in
267 (h). Arrows indicate the intercellular hyphae between Choy Sum root epidermal cells. (k-m) Choy Sum root
268 inoculated with AR8 conidia (10^6 spores) for 14 days. Representative images of extra-radical hyphae (k) enveloped
269 Choy Sum root and intracellular hyphal (l) colonized in the root cortex. Enlargement of the section (m) from
270 projections shown in (l). Laser scanning confocal microscopy of Choy Sum roots upon water and AR8 inoculation
271 were all stained with Wheat Germ Agglutinin-Alexa488 and Propidium iodide. Scale bars: 100 μ m.
272

273 Next, to trace *in planta* colonization process of AR8 by live-cell confocal imaging, we
274 inoculated AR8 conidia on Choy Sum roots and stained with Wheat Germ Agglutinin Alexa
275 Flour⁴⁸⁸ conjugate and Propidium iodide to visualize fungal structures and root cell walls,
276 respectively, under sterilized soil conditions. Tracing the fluorescent signals, indicated a lack
277 of fungal hyphae or mycelial structures in the roots of control samples during *in planta*

278 colonization analysis (Fig. 3a-c). By contrast, Wheat Germ Agglutinin Alexa signal in AR8-
279 inoculated plants indicated that AR8 hyphae attach to the root surface at 4 dpi (Fig. 3d-f).
280 However, at this stage, none of the fungal AR8 hyphae penetrated the epidermal region or
281 colonized the endosphere. Around 7 dpi, AR8 showed a stable interaction with host roots, with
282 fungal hyphae in the rhizosphere gradually enveloping the roots (Fig. 3g). More importantly,
283 AR8 entered the roots interstitially, producing intercellular hyphae that advanced between PI-
284 labeled root epidermal cells (Fig. 3h-j). Thus, we hypothesized that AR8 establishes a biotrophic
285 interaction with plant roots (causing no damage/death, and keeping the host alive) at the early
286 stages of host colonization. Physically intact host root cells clearly outlined by the intercellular
287 hyphae, suggested the viability of host and fungal cells during such intricate AR8 colonization.
288 Following the entry into the root epidermis, AR8 further colonized the root cortex with both
289 inter- and intracellular hyphae at 14 dpi. At this stage, an extensive network of extra-radical
290 hyphae formed and enveloped the host roots (Fig. 3k). The root cortical cells colonized by
291 intracellular hyphae remained unharmed and were inferred to have established a stable
292 biotrophic and symbiotic mycorrhizal interaction within the root system (Fig. 3l,m).


293 **AR8 promotes plant growth by translocating assimilated phosphorous into the host plants**
294 There have been several studies on fungal endophytes with nutrient solubilizing and/or
295 transport activities, providing evidence that fungus-to-plant nutrient transfer is not only
296 restricted to mycorrhizal symbiosis but is also a common trait between soil fungi and plant
297 associations (Mendes et al., 2013). To address whether AR8 improves plant growth by acquiring
298 and providing soil nutrients, we measured the 3 major macronutrients, nitrogen, phosphorus,
299 and potassium, in Choy Sum under soil conditions by using ICP-MS. We found that AR8
300 inoculation significantly increased (by about 17%) the phosphorus levels in the shoots whereas
301 the concentration of nitrogen and potassium remained unperturbed therein (Fig. 4).

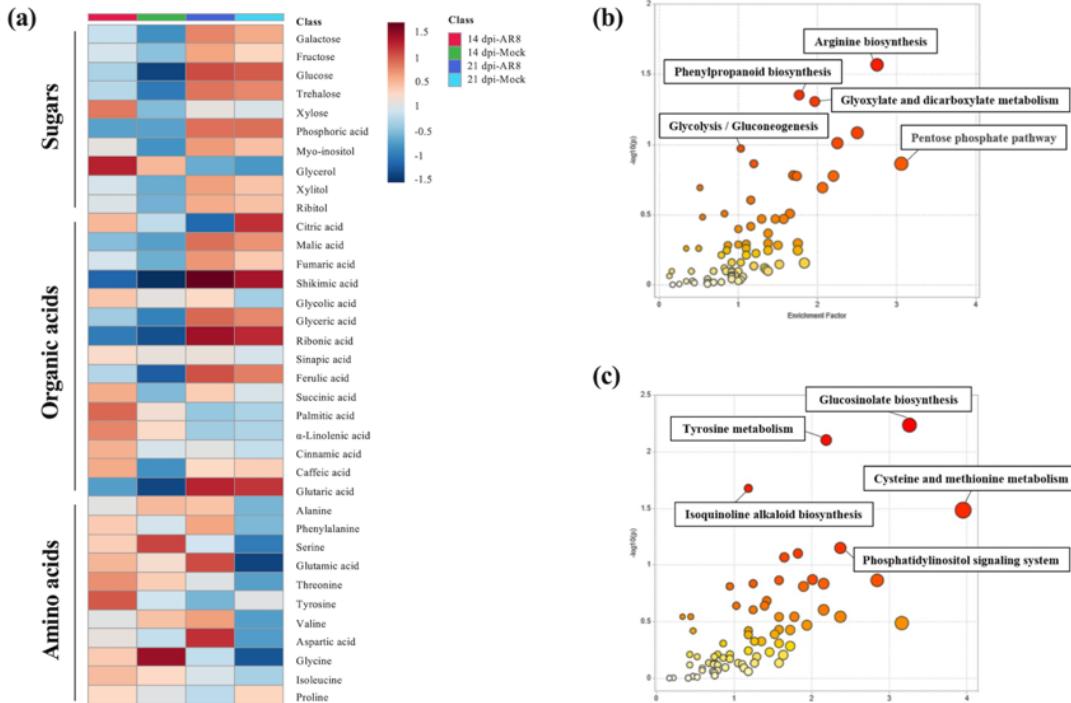
302 Fungal hyphae are known to capture environmental Pi outside the rhizosphere and transfer
303 it to the host plants (Bucher, 2007). To verify the Pi acquisition to plant growth in our model,

304
305 **Fig. 4** AR8 increases phosphorus accumulation in Choy Sum plants. (a-c) The concentration of nitrogen (a),
306 phosphorus (b), and potassium (c) in shoots of Choy Sum inoculated with water (mock control) or AR8 conidia
307 (10^6 spores) for 21 days. The nutrient concentration was calculated in mg/kg based on the shoot dry weight (n=16
308 plants per experiment; three replicates of the experiment). The boxes reveal the first quartile, median and third
309 quartile; the whiskers indicate the minimum and maximum values. Asterisk (**) represents significantly different
310 means compared to the mock control at $P < 0.01$ (t-test).

311
312 we tested hyphal transport in the bi-compartment system with wild-type and the *phrl* mutant
313 (defective in Phosphate Starvation Response 1) *Arabidopsis* plants. In this system, AR8
314 mycelial plugs were inoculated in the inner compartment (HC) while plants were cultivated in
315 the external compartment (RHC) (Hiruma et al., 2016). These two compartments were
316 separated by a plastic barrier, which only allowed the crossing over of AR8 hyphae. By
317 adjusting the Pi concentration in RHC, we aimed to understand whether Pi accumulation in
318 host plants is due to the AR8 hyphal transport. Remarkably, in the low-Pi conditions (100 μ M
319 KH_2PO_4), the plant size was significantly improved only in the AR8 inoculated wild-type
320 plants. By contrast, the *phrl* mutant defective in Pi starvation response was impaired in such
321 AR8-mediated plant growth promotion (Fig. 5a). Shoot fresh weight of *phrl* mutant plants was
322 comparable between mock and AR8 inoculation (Col-0: 1.52-fold; $P < 0.001$ versus *phrl*: 1.23-
323 fold; $P = 0.179$) (Fig. 5b). Similarly, in the high-Pi conditions (1250 μ M KH_2PO_4), shoot fresh
324 weight in the AR8-inoculated plants was significantly improved in the wild-type *Arabidopsis*
325 plants compared to the *phrl* mutant (Col-0: 1.52-fold; $P < 0.001$ versus *phrl*: 1.34-fold; $P <$

326
327 **Fig. 5** AR8 hyphae are capable of transporting phosphorus to the roots for plant growth promotion. (a-b)
328 Representative images of the bi-compartment system for assessing the Pi transportation. Mock or AR8 mycelial
329 plugs were placed on the MS medium in small round petri dishes (hyphal compartment; HC) of the bi-compartment
330 system while *Arabidopsis thaliana* Col-0 or the *phrl* mutant seedlings were transferred to MS medium with either
331 low (a) or high Pi (b) in square petri plates (Root hyphal compartment; RHC) of the bi-compartment system. (c-d)
332 Shoot fresh weight of *Arabidopsis thaliana* Col-0 or the *phrl* mutant line with or without AR8 mycelial plugs in
333 low (c) or high Pi (d) conditions in the bi-compartment system (n=10 plants per experiment; three replicates of the
334 experiment). The boxes reveal the first quartile, median and third quartile, while the whiskers indicate the
335 minimum and maximum values. Asterisks represent significantly different means compared to the corresponding
336 mock control at *P < 0.05 and ***P < 0.001 (t-test).

337
338 0.05), thus indicating the AR8-to-Choy Sum Pi transfer activity (Fig. 5c,d). In summary, we
339 conclude that the transfer of Pi from and/or via AR8 hyphae to the host plants supports shoot
340 growth under both low- and high-Pi conditions, suggesting the functional symbiosis between
341 AR8 and Choy Sum in Pi acquisition and transport.

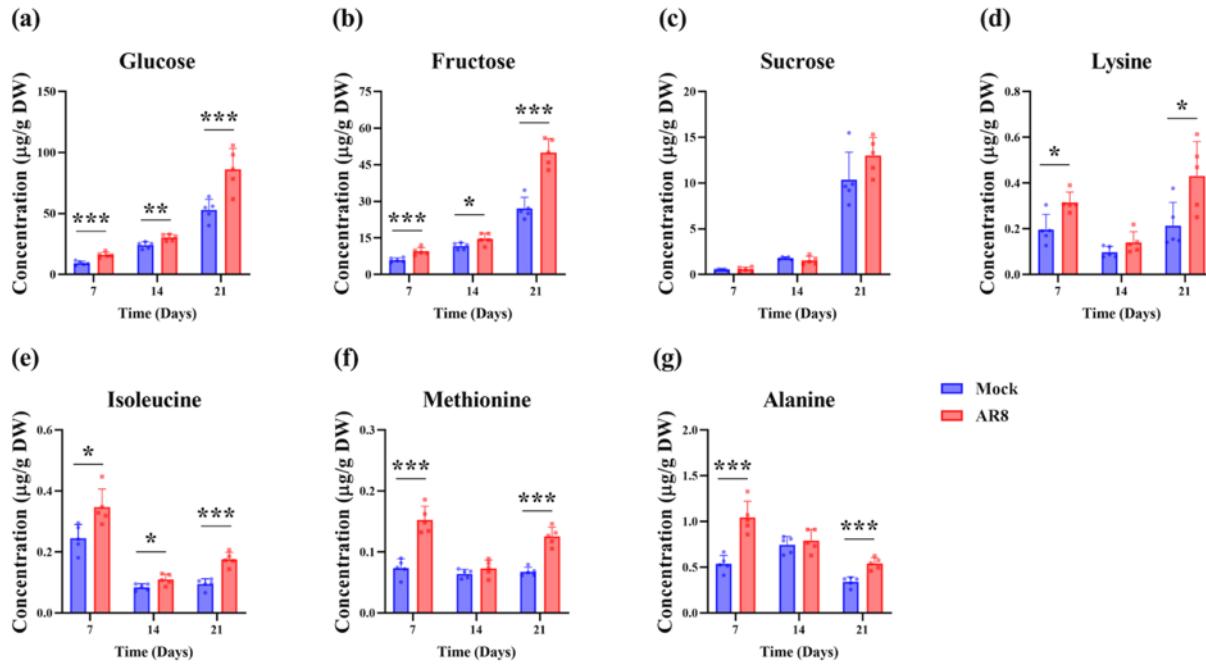

342 To further characterize the Pi solubilizing capacity, AR8 was inoculated in Pikovskaya
343 broth with different inorganic Pi sources (Fig. S5a) (Nautiyal, 1999). AR8 was found to
344 significantly solubilize tricalcium phosphate and hydroxyapatite. The soluble phosphorus
345 concentration was 11.61 ng/ml in tricalcium phosphate and 10.70 ng/ml in hydroxyapatite,
346 respectively (Fig. S5b). Taken together, these results indicate that the formation of extra-radical
347 AR8 hyphal networks likely increases the nutrient absorptive area and rate within the host root

348 system. Furthermore, the Pi solubilizing activity of AR8 was conducive to plant growth and
349 development in natural soils, under low as well as high bioavailable Pi conditions, and thus
350 leading to improved crop productivity.

351 **AR8 induces global metabolic changes in Choy Sum**

352 To assess the physiological responses by GC-MS-based metabolic profiling (Wagner et al.,
353 2003; Erban et al., 2007), Choy Sum upon mock or AR8 inoculation was performed to identify
354 the changes in primary metabolism in the fungus-inoculated Choy Sum plants in comparison to
355 the mock control. Plants were harvested at the following stages: microgreen stage (7 dpi, first
356 true leaf developed beyond the two cotyledons), seedling stage (14 dpi, with first three true
357 leaves developed after the two cotyledons), and adult stage (21 dpi, in line with harvest time in
358 agricultural practice). Principal component analysis (PCA) and partial least squares-
359 discriminant analysis (PLS-DA) revealed the clustering information between the different
360 groups. Both PCA and PLS-DA showed that the 20 samples (5 biological replicates for each of
361 the 2 treatments at 2 time points) were well-separated and assembled into 4 distinct groups (Fig.
362 S6). The distribution of samples suggested that the shift of metabolic phenotypes was not only
363 across time points but also between treatment regimes.

364 The time-dependent trajectory analysis demonstrated the metabolic signatures and
365 provided biological insights into plant growth-promoting effect in global (untargeted)
366 metabolomics (Fig. 6a). A total of 309 metabolites were identified based on matches against
367 the NIST mass spectral library. Sugars are products of photosynthesis, and are key metabolites
368 that connect to the tricarboxylic acid (TCA) cycle for energy production (Sheen, 2014). During
369 the vegetative growth phase in Choy Sum, AR8 inoculation strongly increased the levels of
370 most sugars, including monosaccharides (glucose, fructose, and galactose) and sugar alcohols
371 (inositol, xylitol, ribitol, and glycerol). Moreover, TCA intermediates showed higher
372 accumulation in AR8-inoculated Choy Sum, with several metabolites such as citric acid, malic
373 acid, fumaric acid, and succinic acid, showing an increase compared to the mock control.



374
375 **Fig. 6** Metabolome profiling and pathway analysis using global (untargeted) metabolomics for Choy Sum. (a)
376 Primary metabolites profiled by GC-EI/TOF-MS and matched to NIST library are displayed as a heatmap for
377 shoots metabolome of Choy Sum at 14 and 21 dpi upon water and AR8 inoculation. The heatmap was generated
378 for Pareto scaling, log transformation, and colored by relative abundance ranging from low (blue) to high (red) via
379 MetaboAnalyst 4.0. Samples (column) are average of five biological replicates while metabolites (rows) are
380 clustered for sugars, organic acids, and amino acids. (b-c) Metabolic pathway analysis in AR8-inoculated plants
381 at 14 (b) and 21 dpi (c) tabled output of metabolic pathway enrichment analysis. The annotated and statistically
382 significant metabolites ($P < 0.05$, fold change $> |1.5|$) are used for metabolomics pathway analysis. The Y-axis
383 indicates the logP value of the enrichment analysis while X-axis refers to the pathway impact values. The node
384 color is based on the pathway P value and the node radius (range 0 to 1, where 1 is maximal impact) displays
385 pathway impact values. Individual nodes represent individual pathways.

386
387 Amino acids are primary metabolites with crucial functions as building blocks and/or
388 precursors for the synthesis of nucleic acids, proteins, chlorophyll, and secondary metabolites,
389 regulating key metabolism as well as the formation of vegetative tissues during plant growth
390 and development (Bjorkman et al., 2011; Yang et al., 2020; Trovato et al., 2021). There were
391 significant increases in amino acids levels in Choy Sum upon AR8 inoculation. For example,
392 isoleucine, glycine, and alanine are linked to carbon sources biosynthesis and energy
393 metabolism (Yang et al., 2020). Increased accumulation of these 3 amino acids was observed

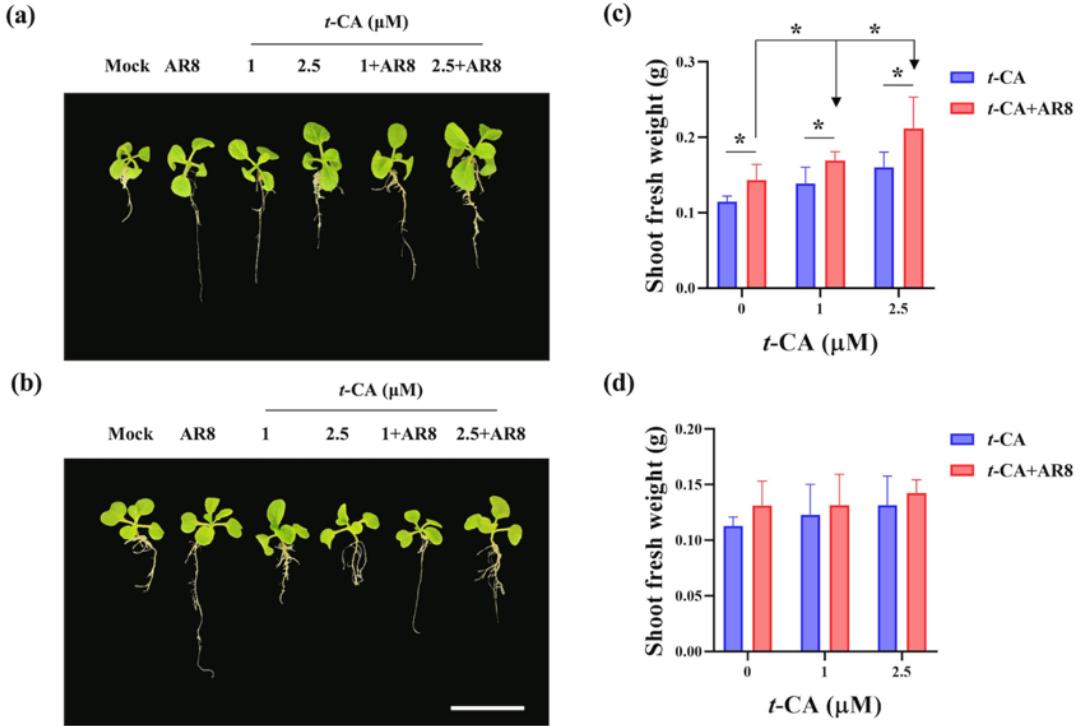
394 at both the seedling and adult stages of AR8-inoculated Choy Sum plants.

395 In the detailed (targeted) analysis, eight sugars, including four monosaccharides (glucose,
396 fructose, mannose, and galactose), a disaccharide (sucrose), and three sugar alcohols (inositol,
397 erythritol, and mannitol) were measured (Fig. S7a). Carbohydrate metabolism was significantly
398 impacted, and in general, we further confirmed the increased accumulation of these primary
399 metabolites in AR8-inoculated Choy Sum. Accumulation of glucose and fructose, the two major
400 monosaccharide carbon sources, was significantly increased during vegetative growth (Fig.
401 7a,b), while other monosaccharides and sugar alcohols were also observed with significant
402 changes (Fig. S7a). By contrast, the disaccharide, sucrose, did not show significant changes
403 during vegetative growth of AR8-inoculated and control plants (Fig. 7c). On the other hand, the
404 concentration of 19 proteinogenic amino acids were quantified, for which cysteine was found
405 to be lower than the detection limit, and hence was excluded from the analysis (Fig. S7b). AR8
406 inoculation led to an increased accumulation of amino acids directly related to energy-
407 producing metabolism (Hildebrandt et al., 2015; Yang et al., 2020). These include lysine,
408 isoleucine, methionine, and alanine, which showed significant accumulation at microgreen and
409 adult stages of growth in the host plants (Fig. 7d-g). Besides, aromatic amino acids
410 (phenylalanine, tyrosine, and tryptophan) in the AR8-inoculated Choy Sum showed significant
411 differences during vegetative growth, except for tryptophan in microgreens and seedlings and
412 tyrosine in seedlings only (Fig. S7b). Aromatic amino acids are essential components for the
413 synthesis of secondary metabolites with multiple biological functions (Tzin and Galili, 2010).
414 This observed accumulation in Choy Sum indicates an increased rate/induction of secondary
415 metabolism pathway(s) upon interaction with AR8. In summary, our results reveal the profile
416 of various primary metabolites at different growth stages of Choy Sum, and further provide a
417 metabolic link between AR8 and the associated plant growth promotion effect. The increase in
418 the levels of glucose and fructose suggests that the increased pool of carbon sources is likely
419 an attempt to promote core metabolism for energy production. Higher concentrations of sugar

420
421 **Fig. 7** AR8 increases the accumulation of sugars and amino acids during vegetative growth of Choy Sum. (a-c)
422 Quantification of glucose (a), fructose (b), and sucrose (c) in in shoots of Choy Sum inoculated with water (mock
423 control) or AR8 conidia (10^6 spores in total) for 7 (microgreen), 14 (seedling), and 21 dpi (adult) grown in soil.
424 (d-g) Quantification of lysine (d), isoleucine (e), methionine (f), and alanine (g) in in shoots of Choy Sum
425 inoculated with water or AR8 conidia for 7, 14 and 21 dpi grown in soil. Choy Sum shoots (n=16 plants per
426 experiment) of each group were pooled to measure metabolite concentration. The concentration was calculated in
427 µg/g based on the shoot dry weight. Data presented (mean \pm S.E) were derived from 3 independent replicates of
428 the experiment. Asterisks represent significant differences compared to AR8 and corresponding mock control at
429 $*P < 0.05$, $**P < 0.01$, $***P < 0.001$ (t-test).

430
431 alcohols and growth-related amino acids also reflect the scenario of greater energy-producing
432 and growth-promoting metabolism enabled by *Tinctoporellus* AR8 strain in Choy Sum plants.

433 **AR8 induces the phenylpropanoid t-CA as a growth-promoting metabolite in Choy Sum**
434 The mode of action of a fungal endophyte on plant growth is complex and unable to be
435 accurately described in terms of just a set of metabolites. Instead, a wide range of direct or
436 indirect metabolic targets interacting with multiple enzymes or pathways characterizes the
437 response of PGPF in plant growth and development. Thus, we further evaluated the metabolic
438 changes of AR8 to plant growth promotion by pathway analysis. The annotated and statistically
439 significant ($P < 0.05$, fold change $> |1.5|$) metabolites detected in the untargeted metabolomics


440 analysis were subjected to such pathway classification/predictions using MetaboAnalyst 4.0
441 (<https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml>) (Xia and Wishart, 2011). The
442 results showed that the metabolic pathways most likely to be reprogrammed upon AR8
443 inoculation in Choy Sum were: arginine biosynthesis, phenylpropanoid biosynthesis,
444 glyoxylate and dicarboxylate metabolism, glycolysis/gluconeogenesis, and pentose phosphate
445 pathway at 14 dpi (Fig. 6b); and glucosinolate biosynthesis, tyrosine metabolism, isoquinoline
446 alkaloid biosynthesis, cysteine and methionine metabolism, and phosphatidylinositol signaling
447 systems at 21 dpi (Fig 6c). Characterized below are the significant changes evident in
448 phenylpropanoid biosynthesis during *Tinctoriellus*-Choy Sum interaction (Fig. S8). We
449 focused on this pathway since it is critical to plant-environment interactions, i.e., metabolites
450 of phenylpropanoid pathway contribute to the priming of plant defense (Dixon et al., 2002;
451 Bressan et al., 2009). Moreover, recent findings have provided a potential link between
452 phenylpropanoid biogenesis and plant growth (Brown et al., 2001; Kurepa et al., 2018).
453 Therefore, observed changes at the seedling stage of Choy Sum upon AR8 inoculation
454 prompted us to explore the role of specific phenylpropanoids in such beneficial plant-fungus
455 interactions.

456 Phenylalanine derived from shikimic acid is the starting point for the phenylpropanoid
457 pathway, which can be converted into *t*-CA and diverted towards the biosynthesis of a number
458 of polyphenol classes, including lignin and flavonoids. These are reported to function in several
459 plant growth and developmental processes and are metabolic signatures in mycorrhizal
460 associations (Kaur and Suseela, 2020; Dong and Lin, 2021). In AR8-plant interaction, Shikimic
461 acid was significantly increased at the microgreen and seedling stages in Choy Sum (Fig. S8).
462 Hydroxycinnamic acids (*t*-CA, caffeic acid, and ferulic acid) showed a different trend in
463 contrast as they showed a significant increase in the seedlings or/and adult Choy Sum plants,
464 albeit with a dramatically decreased accumulation at the microgreen stage (Fig. S8). Lignin is
465 derived from hydroxycinnamic acid and is one of the major components of the plant cell wall.

466 As the main pathway involved in plant cell wall composition or strengthening, lignin plays a
467 vital role in plant growth, defense response, and environmental adaptation (Dong and Lin, 2021).
468 Intermediates of lignin biosynthesis in which caffeic acid and ferulic acids serve as precursors,
469 including coniferaldehyde, sinapic acid, caffeoylquinic acids, and feruloylquinic acids also
470 significantly increased in Choy Sum during vegetative growth in the presence of AR8 (Fig. S8).
471 In summary, quantification of hydroxycinnamic acids and their derivatives confirmed the
472 patterns observed in the untargeted metabolomics and pathway analyses, providing further
473 evidence for the reprogramming of phenylpropanoid biosynthesis upon and during prolonged
474 association of AR8 with the host plants.

475 Intriguingly, the increase of hydroxycinnamic acids at the seedling stage of Choy Sum
476 upon AR8 inoculation was concomitant with the observed dramatic growth promotion effect.
477 Hence, we hypothesized that hydroxycinnamic acids triggered by AR8 contribute to induction
478 of plant growth. To characterize the impact of hydroxycinnamic acids on plant growth, Choy
479 Sum seedlings were grown in MS medium supplemented with either *t*-CA, *p*-coumaric acid,
480 caffeic acid, or ferulic acid (Fig. S9). As expected, seedlings grown in the medium
481 supplemented with *t*-CA showed a growth-promoting effect on shoot biomass (an increase of
482 28.30%) while seedlings grown in other hydroxycinnamic acids did not. Subsequently, the
483 growth-promoting activity of *t*-CA was tested in a dose-dependent manner on Choy Sum
484 seedlings (Fig. S10). A clear trend towards growth promotion was only observed in shoot
485 biomass of Choy Sum (an increase of 22.93%, 38.01%, and 24.69%, respectively) upon
486 treatment with low concentration (1, 2.5, and 5 μ M) of *t*-CA. By contrast, the growth inhibitory
487 effect of exogenous *t*-CA at high concentration was evident in Choy Sum whereby a strong
488 decrease in shoot biomass (18.42% and 76.16%, respectively) was observed upon treatment
489 with 10 and 50 μ M *t*-CA.

490 To gain insight into the growth-promoting effect of *t*-CA in the AR8 model in Choy Sum,
491 seedlings were cultivated in the presence of a low dose (1 or 2.5 μ M) of *t*-CA and AR8

492

493 **Fig. 8** Light source and quality affects growth promotion effect of *t*-CA and AR8 in Choy Sum seedlings. (a-b)
494 Representative images of *t*-CA application in low concentration and/or in combination with AR8 on Choy Sum.
495 Choy Sum seedlings were grown in MS medium inoculated with either *t*-CA (1 and 2.5 μ M), AR8 mycelial plugs,
496 or in combination under tube light (a) or LED lighting conditions (b) for 7 days. Scale bar, 5 cm. (c-d) Shoot fresh
497 weight of Choy Sum seedlings (n=5 plants per experiment; three replicates of the experiment) upon AR8
498 inoculation, *t*-CA treatment (1 and 2.5 μ M), or denoted concentration of *t*-CA with AR8 in combination under tube
499 light (c) and LED lighting conditions (d). Data presented (mean \pm S.E) were derived from 3 independent replicates
500 of the experiment. Asterisks represent significant differences compared to AR8 and corresponding mock control
501 at $*P < 0.05$ (t-test).

502

503 separately and/or in combination (Fig. 8a,b). Importantly, a further enhancement was observed
504 in Choy Sum when *t*-CA and AR8 were applied together. Compared with AR8 inoculation alone,
505 the combined treatment (1 μ M *t*-CA+AR8 and 2.5 μ M *t*-CA +AR8) led to a further growth
506 increase of 17.99% and 47.69% on Choy Sum, respectively. These results suggest an additive
507 effect or positive interaction between *t*-CA-dependent and AR8-mediated plant growth-
508 promoting mechanisms.

509 CA exists as a *cis* or *trans* isomer in plants. Notably, the isomerization of CA is driven by
510 UV-B light. The duration and intensity of light directly determines the efficiency of such isomer

511 conversion. In previous findings, UV-B from the incandescent tube lights could establish a
512 60/40 *cis/trans*-CA equilibrium throughout the experiment in plant growth chambers
513 (Steenackers et al., 2017). To explore whether isomerization of CA contributes to growth
514 promotion in plant-fungus interactions, Choy Sum seedlings were cultivated as described above
515 under LED light conditions (Fig. 8c,d). In the absence of UV-B in the LED spectrum, seedlings
516 grown in the medium in the presence of *t*-CA and AR8 separately and/or in combination did
517 not show any growth induction or increase in shoot biomass. These results helped us reach two
518 conclusions. First, *c*-CA is likely the bioactive compound providing plant growth-promoting
519 activity. Second, since shoot biomass is greatly reduced under LED conditions, it is more likely
520 that AR8 increases and utilizes phenylpropanoid metabolism including cinnamic acid
521 biosynthesis to stimulate plant growth.

522 **AR8 is a PGPF that confers beneficial effects to Choy Sum: from macro- to micro-scale**

523 In summary, we propose a model integrating the beneficial mechanisms of AR8, a new fungal
524 endophyte identified from the rhizosphere of Arabidopsis. Typically, the colonization by AR8
525 initiates on the root surface but it can also systemically colonize both intra- and intercellular
526 regions of Choy Sum roots. These extra-radical hyphae and the Pi solubilizing activity of AR8
527 enhance soil exploration capacity and promote higher plant nutrition in Choy Sum. Proceeding
528 to the molecular mechanism(s) of plant growth promotion, the reprogramming in the shoot
529 metabolome further ensures the beneficial phenotype following the plant-fungal interaction.
530 The higher abundance of sugars, amino acids, and phenylpropanoids reveals the metabolic
531 signatures in Choy Sum upon AR8 inoculation, which resembles functional mycorrhizal
532 symbiosis. More importantly, we used the metabolic signatures to identify a specific metabolite
533 and characterized its plant growth-promoting function. Our results support a model explaining
534 the increase in shoot biomass as the consequence of higher *t*-CA levels upon AR8 inoculation.
535 Our study also highlights the beneficial activity of AR8 on different crop species. This
536 emphasizes the necessity to further explore the host range and plant growth-promoting

537 mechanism(s) (e.g., phytohormones) in plant-AR8 beneficial mycorrhizal associations for
538 improved crop production.

539

540 Discussion

541 In this study, AR8 was reported to be a PGPF in the urban farm crop Choy Sum (Figs 1, S11).
542 The phylogenetic analysis of AR8 revealed a close relationship to other *Tinctoporellus* species
543 in particular *epimiltinus* based on the ITS-based rDNA sequence analysis. However, little
544 information is currently available on the colony characteristics of *Tinctoporellus* and/or its
545 phylogeny. It was first circumscribed as a monospecific genus by Ryvarden and *T. epimiltinus*
546 was described as a type species (Ryvarden, 1979). Thereafter, *T. isabellinus*, *T. bubalinus*, and
547 *T. hinnuleus* were added to this genus in 2003 and 2012, respectively (Ryvarden and Iturriaga,
548 2003, Yuan and Wan, 2012). To gain more insights into the biological functions of AR8-plant
549 interaction, further studies will focus on the whole-genome sequencing, annotation and analysis
550 of AR8 genome and the identification of transcriptome in the host plants to elucidate the
551 molecular correlation with the plant growth-promoting metabolism reported here for this
552 beneficial mycorrhizal endophyte.

553 In the AR8-Choy Sum interaction, Choy Sum provides the required nutrient niche to
554 improve the germination of AR8 conidia and promote the establishment of such beneficial
555 interaction in the rhizosphere (Fig. 2). Intriguingly, the root colonization by AR8 appeared to
556 be a more prolonged process compared to other fungal endophytes. Taking *C. tofieldiae* as an
557 example, it only takes 2 days for *C. tofieldiae* to initiate biotrophic interaction with inter- and
558 intracellular hyphae in the root endosphere of *A. thaliana* (Hiruma et al., 2016). In comparison,
559 from hyphal attachment to the intracellular endophytic growth pattern, AR8 took around 1-2
560 weeks to establish a stable interaction within the Choy Sum roots (Fig. 3). Thus, we predict that
561 the beneficial impact of AR8 on the host plant growth already initiates/occurs during the early
562 stages of colonization. The molecular and biochemical mechanisms in host plants are likely to

563 be highly activated or induced and continuously improved plant growth and development from
564 hyphal attachment that precedes the initial intercellular hyphal growth or interstitial interaction
565 around the cell-cell junctions in the roots. If we refer to the growth promotion assay (Figs 1b,
566 S2a), there is no significant increase in shoot biomass until the formation of intracellular AR8
567 hyphae in Choy Sum roots at 7-14 dpi (Fig. 3l, 3m). These results partially confirmed our
568 predictions and helped us propose the spatiotemporal dimension of the endophytic colonization
569 process associated with the plant growth promotion effects by AR8. Overall, we suggest that
570 AR8 is a beneficial mycorrhizal endophyte, which colonizes the intra- and intercellular
571 compartments of the host roots and provides significant beneficial effects to the plants without
572 causing any apparent damage or detrimental symptoms.

573 Plant growth promotion by AR8 was shown to be associated with Pi acquisition. AR8 was
574 able to transport Pi to plants under high- and low-Pi conditions (1250 and 100 μM KH_2PO_4 ,
575 respectively) on MS agar medium (Fig. 5). This stands in stark contrast to the fungal endophyte
576 *C. tofieldiae*, in which beneficial activities are restricted strictly to the low-Pi conditions (50
577 μM KH_2PO_4) (Hiruma et al., 2016). In accordance with the role of AR8 in Pi acquisition, the
578 increased nutrient absorption from the soil implies the potential use of AR8 as a biofertilizer in
579 agriculture. Indeed, the colonization of AR8 reflects an expanded capacity of host roots to
580 access Pi by the long-distance transport of/via fungal hyphae. In addition to improving soil
581 exploration capacity through fungal hyphae, the solubilization of plant-inaccessible Pi might be
582 one of the relevant mechanisms by which AR8 accesses environmental P sources. Notably, an
583 *in vitro* study of AR8 indicates that the beneficial activity of AR8 involves the solubilization of
584 inorganic Pi (tricalcium phosphate and hydroxyapatite) sources (Fig. S5). Although the
585 insoluble Pi solubilization activity of AR8 was lower than that of the known PGPF B9 (Gu et
586 al., 2023), it convincingly supports the notion that AR8 expands the range of nutrient absorption
587 by Pi solubilization and hyphal transport, thereby promoting plant growth. Taken together, our
588 research provides evidence that fungus-to-plant Pi transport, generally attributed to mycorrhizal

589 interactions, is also found in the AR8 model.

590 The metabolic profiling helped gain molecular insights into the AR8-Choy Sum interaction.
591 A marked increase in the levels of primary metabolites suggests an improved plant growth
592 performance upon AR8 inoculation (Figs 6a, 7, S7). Sugars are the key components that reflect
593 energy status and, therefore, the capacity to respond to sugar levels is critical for plants to
594 maintain an appropriate physiological state (Lastdrager et al., 2014). Further increases in the
595 content of various sugars in AR8-inoculated Choy Sum during vegetative growth provide
596 evidence for the advanced photosynthetic capacity and the idea of plant growth promotion (Figs
597 7a-c, S7a). On the other hand, in plant-mycorrhizal symbiosis, host plants reciprocate the
598 nutrient supply of AMF by providing sugars and fatty acids (Schweiger and Müller, 2015; Jiang
599 et al., 2017). Thus, higher concentrations of sugars found in the leaves of mycorrhizal plants
600 suggest that AMF reprogram the sugar metabolism as an upgrade of carbon source and regulate
601 the sugar accumulation in roots to meet their demands (Lendenmann et al., 2011). In addition
602 to plant metabolome, trehalose is a fungus-specific sugar converted from hexose (e.g., glucose
603 and fructose) assimilated by AMF in the intra-radical hyphae, which can be linked to a
604 functional mycorrhizal symbiosis (Bago et al., 2000; Lohse et al., 2005). In the AR8 model, the
605 higher relative abundance of trehalose in AR8-inoculated Choy Sum in global metabolomics
606 indicates a potential carbon drain from the host plants to AR8 (Fig. 6a).

607 Apart from sugars, AR8 also impacts the TCA cycle and amino acid biosynthesis in Choy
608 Sum (Figs 6a, 7d-g, S7b). The activation of the TCA cycle provides the adenosine triphosphate
609 and carbon skeletons necessary for amino acid production (Lohse et al., 2005). These increased
610 metabolites help plants in their growth as well as adaptation to the environment. Among the
611 mentioned compounds, *t*-CA was brought to the front as an essential factor in the AR8 model.
612 In plant-mycorrhizal interactions, a higher abundance of hydroxycinnamic acids and their
613 derivatives is recognized as the priming of the defense system of the plant. On the other hand,
614 as defense molecules, a massive accumulation of these metabolites may negatively affect

615 mycorrhizal colonization due to their antimicrobial properties (Maier et al., 2000; Aliferis et al.,
616 2015). Thus, in our case, the plant growth-promoting activity of cinnamic acid during the
617 experiment is likely to be unintentional. The accumulation of *t*-CA at the seedling stage of AR8-
618 inoculated Choy Sum was likely exposed to environmental UV-B, thereby converting to *c*-CA
619 and promoting plant growth (Fig. 8). Cinnamic acid is claimed to be a growth-promoting
620 compound in *A. thaliana* (Kurepa et al., 2018). The narrow dose range in which cinnamic acid
621 acts as a growth stimulant may be a general effect not only in Choy Sum but also in other plant
622 species (Fig. S10). *c*-CA is the most promising candidate that can alter auxin transport and affect
623 plant growth among metabolites in phenylpropanoid pathways (Steenackers et al., 2019).
624 However, whether and at what level auxin signaling interacts with *c*-CA for plant growth
625 promotion in plant-fungal interaction remains to be tested. The possibility of *c*-CA being
626 involved in auxin-independent mechanisms cannot be excluded from the AR8 model, although
627 auxin seems to have a crucial role based on previous findings. Regardless of the hypothesis, the
628 fact that phenylpropanoid cinnamic acid induction by AR8 governs the developmental control
629 of Choy Sum growth, suggests an intricate and multifaceted plant-mycorrhiza interaction that
630 influences overall growth and fitness in the host.

631 Taken together, despite fungi not being the major microbiome constituents in the
632 rhizosphere, we cannot overlook their contribution to plant growth and health. In our study,
633 AR8 demonstrated a biotrophic lifestyle and colonized the root inter- and intracellular
634 compartments without causing negative influences and led to increased plant biomass. More
635 importantly, the Choy Sum-AR8 interaction provides an excellent example of a symbiotic
636 partnership for exploring such poorly understood mycorrhizal associations. Lastly, increased
637 molecular understanding of the biology of host-mycorrhizal endophyte systems will further the
638 adoption and application of such biofertilizers in sustainable- and precision agriculture.

639

640 **Acknowledgements**

641 We thank Poonguzhali Selvaraj, Wenhui Zheng, and Keyu Gu for their help at the initial stages
642 of this project. We thank the Fungal Patho-Biology Group for discussions and suggestions. We
643 are grateful to the Chua Lab (Chung-Hau Hwang) for sharing the *Arabidopsis phr1* mutant line;
644 and to Yang Fan for technical support in confocal imaging. Our sincere thanks to the Sanjay
645 Swarup Lab, and the NUS Environmental Research Institute (Singapore) for help in
646 metabolomics analysis.

647

648 **Author Contributions**

649 C.-Y.C., and N.I.N. designed the experiments. C.-Y.C., performed all the experiments. C.-Y.C.,
650 and N.I.N. interpreted and analyzed the data, compiled all the results, and co-wrote the
651 manuscript. N.I.N. provided funding support and resources, and overall project management.
652 All authors agree to the final submitted version of the manuscript.

653

654 **Funding**

655 This research was supported by grants from the National Research Foundation (Prime
656 Minister's office; NRF-CRP16-2015-04), Singapore Food Agency (SFS_RND_SUFP_002_04)
657 and the Temasek Life Science Laboratory (Singapore) to N.I.N.

658

659 **Declaration of Interests**

660 The authors declare competing interest for this research since a provisional patent application
661 (Reference Number E202305080336XPF1WX) has been filed for commercial use of fungal
662 isolate AR8.

663

664 **References**

665 **Aliferis, K. A., Chamoun, R. & Jabaji, S. 2015.** Metabolic responses of willow (*Salix*
666 *purpurea* L.) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR

667 spectroscopy metabolite profiling. *Front Plant Sci*, **6**, 344.

668 **Almario, J., Jeena, G., Wunder, J., Langen, G., Zuccaro, A., Coupland, G. & Bucher, M.**

669 **2017.** Root-associated fungal microbiota of nonmycorrhizal *Arabis alpina* and its

670 contribution to plant phosphorus nutrition. *Proc Natl Acad Sci USA*, **114**, E9403-e9412.

671 **Bago, B., Pfeffer, P. E. & Shachar-Hill, Y. 2000.** Carbon metabolism and transport in

672 arbuscular mycorrhizas. *Plant Physiol*, **124**, 949-58.

673 **Balliu, A., Sallaku, G. & Rewald, B. 2015.** AMF Inoculation Enhances Growth and Improves

674 the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings.

675 *Sustainability*, **7**, 15967-15981.

676 **Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. 2012.** The rhizosphere microbiome and

677 plant health. *Trends Plant Sci*, **17**, 478-86.

678 **Bever, J. D., Platt, T. G. & Morton, E. R. 2012.** Microbial population and community

679 dynamics on plant roots and their feedbacks on plant communities. *Annu Rev Microbiol*,

680 **66**, 265-83.

681 **Bjorkman, M., Klingen, I., Birch, A. N., Bones, A. M., Bruce, T. J., Johansen, T. J.,**

682 Meadow, R., Molmann, J., Seljasen, R., Smart, L. E. & Stewart, D. 2011.

683 Phytochemicals of Brassicaceae in plant protection and human health--influences of

684 climate, environment and agronomic practice. *Phytochemistry*, **72**, 538-56.

685 **Bressan, M., Roncato, M. A., Bellvert, F., Comte, G., Haichar, F. Z., Achouak, W. & Berge,**

686 **O. 2009.** Exogenous glucosinolate produced by *Arabidopsis thaliana* has an impact on

687 microbes in the rhizosphere and plant roots. *Isme j*, **3**, 1243-57.

688 **Brown, D. E., Rashotte, A. M., Murphy, A. S., Normanly, J., Tague, B. W., Peer, W. A.,**

689 **Taiz, L. & Muday, G. K. 2001.** Flavonoids Act as Negative Regulators of Auxin

690 Transport in Vivo in *Arabidopsis*. *Plant Physiology*, **126**, 524-535.

691 **Bucher, M. 2007.** Functional biology of plant phosphate uptake at root and mycorrhiza

692 interfaces. *New Phytol*, **173**, 11-26.

693 **Burkart, G. M. & Brandizzi, F. 2021.** A Tour of TOR Complex Signaling in Plants. *Trends*
694 *Biochem Sci*, **46**, 417-428.

695 **Calvo Velez, P., Nelson, L. & Kloepffer, J. 2014.** Agricultural uses of plant biostimulants.
696 *Plant and Soil*, **383**.

697 **Cosme, M., Fernández, I., Van Der Heijden, M. G. A. & Pieterse, C. M. J. 2018.** Non-
698 Mycorrhizal Plants: The Exceptions that Prove the Rule. *Trends Plant Sci*, **23**, 577-587.

699 **Da Silva, F. S. B. & Maia, L. C. 2018.** Mycorrhization and phosphorus may be an alternative
700 for increasing the production of metabolites in Myracrodroon urundeuva. *Theoretical*
701 *and Experimental Plant Physiology*, **30**, 297-302.

702 **Dixon, R. A., Achaine, L., Kota, P., Liu, C. J., Reddy, M. S. & Wang, L. 2002.** The
703 phenylpropanoid pathway and plant defence-a genomics perspective. *Mol Plant Pathol*,
704 **3**, 371-90.

705 **Dong, N. Q. & Lin, H. X. 2021.** Contribution of phenylpropanoid metabolism to plant
706 development and plant-environment interactions. *J Integr Plant Biol*, **63**, 180-209.

707 **Erban, A., Schauer, N., Fernie, A. R. & Kopka, J. 2007.** Nonsupervised construction and
708 application of mass spectral and retention time index libraries from time-of-flight gas
709 chromatography-mass spectrometry metabolite profiles. *Methods Mol Biol*, **358**, 19-38.

710 **Etesami, H., Jeong, B. R. & Glick, B. R. 2021.** Contribution of Arbuscular Mycorrhizal Fungi,
711 Phosphate-Solubilizing Bacteria, and Silicon to P Uptake by Plant. *Front Plant Sci*, **12**,
712 699618.

713 **Fester, T., Wray, V., Nimtz, M. & Strack, D. 2005.** Is stimulation of carotenoid biosynthesis
714 in arbuscular mycorrhizal roots a general phenomenon? *Phytochemistry*, **66**, 1781-6.

715 **Gu, K., Chen, C. Y., Selvaraj, P., Pavagadhi, S., Yeap, Y. T., Swarup, S., Zheng, W. & Naqvi,
716 N. I. 2023.** Penicillium citrinum Provides Transkingdom Growth Benefits in Choy Sum
717 (Brassica rapa var. parachinensis). *J Fungi (Basel)*, **9**.

718 **Herrera Paredes, S. & Lebeis, S. 2016.** Giving back to the community: Microbial mechanisms

719 of plant-soil interactions. *Functional Ecology*, **30**.

720 **Hijikata, N., Murase, M., Tani, C., Ohtomo, R., Osaki, M. & Ezawa, T. 2010.**

721 Polyphosphate has a central role in the rapid and massive accumulation of phosphorus

722 in extraradical mycelium of an arbuscular mycorrhizal fungus. *New Phytol*, **186**, 285-9.

723 **Hildebrandt, T. M., Nunes Nesi, A., Araujo, W. L. & Braun, H. P. 2015.** Amino Acid

724 Catabolism in Plants. *Mol Plant*, **8**, 1563-79.

725 **Hiruma, K., Gerlach, N., Sacristán, S., Nakano, R. T., Hacquard, S., Kracher, B.,**

726 **Neumann, U., Ramírez, D., Bucher, M., O'connell, R. J. & Schulze-Lefert, P. 2016.**

727 Root Endophyte *Colletotrichum tofieldiae* Confers Plant Fitness Benefits that Are

728 Phosphate Status Dependent. *Cell*, **165**, 464-74.

729 **Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X.,**

730 **Tang, D. & Wang, E. 2017.** Plants transfer lipids to sustain colonization by mutualistic

731 mycorrhizal and parasitic fungi. *Science*, **356**, 1172-1175.

732 **Kaur, S., Campbell, B. J. & Suseela, V. 2022.** Root metabolome of plant-arbuscular

733 mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. *New*

734 *Phytol*, **234**, 672-687.

735 **Kaur, S. & Suseela, V. 2020.** Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant

736 Primary and Secondary Metabolome. *Metabolites*, **10**.

737 **Kurepa, J., Shull, T. E., Karunadasa, S. S. & Smalle, J. A. 2018.** Modulation of auxin and

738 cytokinin responses by early steps of the phenylpropanoid pathway. *BMC Plant Biol*,

739 **18**, 278.

740 **Lastdrager, J., Hanson, J. & Smeekens, S. 2014.** Sugar signals and the control of plant growth

741 and development. *J Exp Bot*, **65**, 799-807.

742 **Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. 2017.** Communication in the

743 Phytobiome. *Cell*, **169**, 587-596.

744 **Lendenmann, M., Thonar, C., Barnard, R. L., Salmon, Y., Werner, R. A., Frossard, E. &**

745 **Jansa, J. 2011.** Symbiont identity matters: carbon and phosphorus fluxes between
746 Medicago truncatula and different arbuscular mycorrhizal fungi. *Mycorrhiza*, **21**, 689-
747 702.

748 **Lohse, S., Schliemann, W., Ammer, C., Kopka, J., Strack, D. & Fester, T. 2005.**
749 Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal
750 roots of Medicago truncatula. *Plant Physiol*, **139**, 329-40.

751 **Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S.,**
752 **Tremblay, J., Engelbrektson, A., Kunin, V., Del Rio, T. G., Edgar, R. C., Eickhorst,**
753 **T., Ley, R. E., Hugenholtz, P., Tringe, S. G. & Dangl, J. L. 2012.** Defining the core
754 Arabidopsis thaliana root microbiome. *Nature*, **488**, 86-90.

755 **Maier, W., Schmidt, J., Nimtz, M., Wray, V. & Strack, D. 2000.** Secondary products in
756 mycorrhizal roots of tobacco and tomato. *Phytochemistry*, **54**, 473-9.

757 **Mendes, R., Garbeva, P. & Raaijmakers, J. M. 2013.** The rhizosphere microbiome:
758 significance of plant beneficial, plant pathogenic, and human pathogenic
759 microorganisms. *FEMS Microbiol Rev*, **37**, 634-63.

760 **Nautiyal, C. S. 1999.** An efficient microbiological growth medium for screening phosphate
761 solubilizing microorganisms. *FEMS Microbiol Lett*, **170**, 265-70.

762 **Ofek-Lalzar, M., Sela, N., Goldman-Voronov, M., Green, S. J., Hadar, Y. & Minz, D. 2014.**
763 Niche and host-associated functional signatures of the root surface microbiome. *Nat*
764 *Commun*, **5**, 4950.

765 **Olanrewaju, O. S., Glick, B. R. & Babalola, O. O. 2017.** Mechanisms of action of plant
766 growth promoting bacteria. *World J Microbiol Biotechnol*, **33**, 197.

767 **Ryvarden, L. 1979.** Porogramme and related genera. *Transactions of the British Mycological*
768 *Society*, **73**, 9-19.

769 **Ryvarden, L. & Iturriaga, T. 2003.** Studies in neotropical polypores 10. New polypores from
770 Venezuela. *Mycologia*, **95**, 1066-77.

771 **Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Vierheilig, H., Ocampo, J. A. & Godeas,**
772 **A. 2005.** Flavonoids exhibit fungal species and genus specific effects on the
773 presymbiotic growth of Gigaspora and Glomus. *Mycol Res*, **109**, 789-94.

774 **Schweiger, R. & Müller, C. 2015.** Leaf metabolome in arbuscular mycorrhizal symbiosis. *Curr*
775 *Opin Plant Biol*, **26**, 120-6.

776 **Sheen, J. 2014.** Master Regulators in Plant Glucose Signaling Networks. *J Plant Biol*, **57**, 67-
777 79.

778 **Sood, M., Kapoor, D., Kumar, V., Sheteiw, M. S., Ramakrishnan, M., Landi, M., Araniti,**
779 **F. & Sharma, A. 2020.** Trichoderma: The "Secrets" of a Multitalented Biocontrol Agent.
780 *Plants (Basel)*, **9**.

781 **Steenackers, W., El Houari, I., Baekelandt, A., Witvrouw, K., Dhondt, S., Leroux, O.,**
782 **Gonzalez, N., Corneillie, S., Cesarino, I., Inzé, D., Boerjan, W. & Vanholme, B.**
783 **2019.** cis-Cinnamic acid is a natural plant growth-promoting compound. *J Exp Bot*, **70**,
784 6293-6304.

785 **Steenackers, W., Klíma, P., Quareshy, M., Cesarino, I., Kumpf, R. P., Corneillie, S., Araújo,**
786 **P., Viaene, T., Goeminne, G., Nowack, M. K., Ljung, K., Friml, J., Blakeslee, J. J.,**
787 **Novák, O., Zažímalová, E., Napier, R., Boerjan, W. & Vanholme, B. 2017.** cis-
788 Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root
789 Formation. *Plant Physiol*, **173**, 552-565.

790 **Tan, W. K., Goenadie, V., Lee, H. W., Liang, X., Loh, C. S., Ong, C. N. & Tan, H. T. W.**
791 **2020.** Growth and glucosinolate profiles of a common Asian green leafy vegetable,
792 *Brassica rapa* subsp. *chinensis* var. *parachinensis* (choy sum), under LED lighting.
793 *Scientia Horticulturae*, **261**, 108922.

794 **Trovato, M., Funck, D., Forlani, G., Okumoto, S. & Amir, R. 2021.** Editorial: Amino Acids
795 in Plants: Regulation and Functions in Development and Stress Defense. *Front Plant*
796 *Sci*, **12**, 772810.

797 **Tzin, V. & Galili, G. 2010.** New insights into the shikimate and aromatic amino acids
798 biosynthesis pathways in plants. *Mol Plant*, **3**, 956-72.

799 **Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. 2015.** The
800 importance of the microbiome of the plant holobiont. *New Phytol*, **206**, 1196-206.

801 **Wagner, C., Sefkow, M. & Kopka, J. 2003.** Construction and application of a mass spectral
802 and retention time index database generated from plant GC/EI-TOF-MS metabolite
803 profiles. *Phytochemistry*, **62**, 887-900.

804 **White, T. J., Bruns, T., Lee, S. & Taylor, J. 1990.** Amplification and Direct Sequencing of
805 Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis, M. A., Gelfand, D. H.,
806 Sninsky, J. J. & White, T. J., eds. *PCR Protocols: a Guide to Methods and Applications*.
807 Academic Press, 315-322.

808 **Xia, J. & Wishart, D. S. 2011.** Web-based inference of biological patterns, functions and
809 pathways from metabolomic data using MetaboAnalyst. *Nat Protoc*, **6**, 743-60.

810 **Yang, L., Xu, M., Koo, Y., He, J. & Poethig, R. S. 2013.** Sugar promotes vegetative phase
811 change in *Arabidopsis thaliana* by repressing the expression of MIR156A and MIR156C.
812 *Elife*, **2**, e00260.

813 **Yang, Q., Zhao, D. & Liu, Q. 2020.** Connections Between Amino Acid Metabolisms in Plants:
814 Lysine as an Example. *Front Plant Sci*, **11**, 928.

815 **Yu, S., Cao, L., Zhou, C. M., Zhang, T. Q., Lian, H., Sun, Y., Wu, J., Huang, J., Wang, G.**
816 **& Wang, J. W. 2013.** Sugar is an endogenous cue for juvenile-to-adult phase transition
817 in plants. *Elife*, **2**, e00269.

818 **Yuan, H.-S. & Wan, X.-Z. 2012.** Morphological and ITS rDNA-based phylogenetic
819 identification of two new species in *Tinctoporellus*. *Mycological Progress*, **11**.

820 **Zou, L., Tan, W. K., Du, Y., Lee, H. W., Liang, X., Lei, J., Striegel, L., Weber, N., Rychlik,**
821 **M. & Ong, C. N. 2021.** Nutritional metabolites in *Brassica rapa* subsp. *chinensis* var.
822 *parachinensis* (choy sum) at three different growth stages: Microgreen, seedling and

823 adult plant. *Food Chem.*, **357**, 129535.

824

825 **Figure Legends**

826 **Fig. 1** AR8 promotes significant increase in Choy Sum growth under soil conditions. (a)
827 Representative images of Choy Sum seedlings grown in soil with water (mock control) or
828 inoculated with AR8 conidial suspension (10^6 spores in total) for 21 days. Scale bar, 10 cm. (b-
829 c) Time course (7, 14, and 21 dpi) analysis of Choy Sum shoot (b) and root fresh weight (c) in
830 soil inoculated with water or AR8 conidia (n=12-20 plants per experiment). Data presented
831 (mean \pm S.E) was derived from 3 independent replicates of the experiment. Asterisks (***)
832 represent significant differences compared to the mock control at $P < 0.001$ (t-test).

833

834 **Fig. 2** The morphological characteristics of the beneficial fungus AR8. (a-b) AR8 was cultured
835 on PA agar (a) for 5 days and conidia (b) were harvested after subculture under light conditions
836 for 7 days. (c) AR8 conidia were cultured with or without Choy Sum roots for 16 and 24 hours.
837 Laser scanning confocal microscopy of AR8 stained with Wheat Germ Agglutinin-Alexa488
838 (green; fungal cell wall). Scale bars: 10 μ m.

839

840 **Fig. 3** AR8 shows systemic colonization as an endophyte in Choy Sum roots in soil conditions.
841 (a-c) Choy Sum roots were inoculated with water (mock control) and cultivated under sterilized
842 soil conditions for 4 (a), 7 (b), and 14 days (c). No fungal conidia or mycelia are evident around
843 the roots. (d-f) Choy Sum roots inoculated with AR8 conidia (10^6 spores) in sterilized soil for
844 4 days. Representative image showing the attachment of AR8 hyphae on the root surface
845 without penetrating the epidermis or inner cortex of the roots (d). Enlarged images of the
846 sections (e-f) from projections shown in (d). (g-j) Choy Sum roots inoculated with AR8 conidia
847 (10^6 spores) for 7 days. Representative images showing the external (g) and intercellular hyphae
848 (h) of AR8 on the root surface and between root epidermal cells. Enlargement (i) and orthogonal
849 (j) of the sections from the projections is shown in (h). Arrows indicate the intercellular hyphae
850 between Choy Sum root epidermal cells. (k-m) Choy Sum root inoculated with AR8 conidia

851 (10⁶ spores) for 14 days. Representative images of extra-radical hyphae (k) enveloped Choy
852 Sum root and intracellular hyphal (l) colonized in the root cortex. Enlargement of the section
853 (m) from projections shown in (l). Laser scanning confocal micrographs of Choy Sum roots
854 inoculated with water or AR8 conidia and stained with Wheat Germ Agglutinin-Alexa488 and
855 Propidium iodide. Scale bars: 100 μ m.

856
857 **Fig. 4** AR8 increases phosphorus accumulation in Choy Sum plants. (a-c) The concentration of
858 nitrogen (a), phosphorus (b), and potassium (c) in shoots of Choy Sum inoculated with water
859 (mock control) or AR8 conidia (10⁶ spores) for 21 days. The nutrient concentration was
860 calculated in mg/kg based on the shoot dry weight (n=16 plants per experiment; three replicates
861 of the experiment). The boxes reveal the first quartile, median and third quartile; the whiskers
862 indicate the minimum and maximum values. Asterisk (**) represents significantly different
863 means compared to the mock control at $P < 0.01$ (t-test).

864
865 **Fig. 5** AR8 hyphae are capable of transporting phosphorus to the roots for plant growth
866 promotion. (a-b) Representative images of the bi-compartment system for assessing the Pi
867 transportation. Mock or AR8 mycelial plugs were placed on the MS medium in small round
868 petri dishes (hyphal compartment; HC) of the bi-compartment system while *A. thaliana* Col-0
869 or the *phrl* mutant seedlings were transferred to MS medium with either low (a) or high Pi (b)
870 in square petri plates (Root hyphal compartment; RHC) of the bi-compartment system. (c-d)
871 Shoot fresh weight of *A. thaliana* Col-0 or the *phrl* mutant line with or without AR8 mycelial
872 plugs in low (c) or high Pi (d) conditions in the bi-compartment system (n=10 plants per
873 experiment; three replicates of the experiment). The boxes reveal the first quartile, median and
874 third quartile, while the whiskers indicate the minimum and maximum values. Asterisks
875 represent significantly different means compared to the corresponding mock control at * $P <$
876 0.05 and *** $P < 0.001$ (t-test).

877

878 **Fig. 6** Metabolome profiling and pathway analysis using global (untargeted) metabolomics for
879 Choy Sum. (a) Primary metabolites profiled by GC-EI/TOF-MS and matched to NIST library
880 are displayed as a heatmap for shoots metabolome of Choy Sum at 14 and 21 dpi upon water
881 and AR8 inoculation. The heatmap was generated for Pareto scaling, log transformation, and
882 colored by relative abundance ranging from low (blue) to high (red) via MetaboAnalyst 4.0.
883 Samples (column) are average of five biological replicates while metabolites (rows) are
884 clustered for sugars, organic acids, and amino acids. (b-c) Metabolic pathway analysis in AR8-
885 inoculated plants at 14 (b) and 21 dpi (c) tabled output of metabolic pathway enrichment
886 analysis. The annotated and statistically significant metabolites ($P < 0.05$, fold change $> |1.5|$)
887 are using for metabolomics pathway analysis. The Y-axis indicates the logP value of the
888 enrichment analysis while X-axis refers to the pathway impact values. The node color is based
889 on the pathway P value and the node radius (range 0 to 1, where 1 is maximal impact) displays
890 pathway impact values. Individual nodes represent individual pathways.

891

892 **Fig. 7** AR8 increases the accumulation of sugars and amino acids during vegetative growth of
893 Choy Sum. (a-c) Quantification of glucose (a), fructose (b), and sucrose (c) in in shoots of Choy
894 Sum inoculated with water (mock control) or AR8 conidia (10^6 spores in total) for 7
895 (microgreen), 14 (seedling), and 21 dpi (adult) grown in soil. (d-g) Quantification of lysine (d),
896 isoleucine (e), methionine (f), and alanine (g) in in shoots of Choy Sum inoculated with water
897 or AR8 conidia for 7, 14 and 21 dpi grown in soil. Choy Sum shoots (n=16 plants per experiment)
898 of each group were pooled to measure metabolite concentration. The concentration was
899 calculated in $\mu\text{g/g}$ based on the shoot dry weight. Data presented (mean \pm S.E) were derived
900 from 3 independent replicates of the experiment. Asterisks represent significant differences
901 compared to AR8 and corresponding mock control at $*P < 0.05$, $**P < 0.01$, $***P < 0.001$ (t-
902 test).

903

904 **Fig. 8** Light source and quality affects growth promotion effect of *t*-CA and AR8 in Choy Sum
905 seedlings. (a-b) Representative images of *t*-CA application in low concentration and/or in
906 combination with AR8 on Choy Sum. Choy Sum seedlings were grown in MS medium
907 inoculated with either *t*-CA (1 and 2.5 μ M), AR8 mycelial plugs, or in combination under tube
908 light (a) or LED lighting conditions (b) for 7 days. Scale bar, 5 cm. (c-d) Shoot fresh weight of
909 Choy Sum seedlings (n=5 plants per experiment; three replicates of the experiment) upon AR8
910 inoculation, *t*-CA treatment (1 and 2.5 μ M), or denoted concentration of *t*-CA with AR8 in
911 combination under tube light (c) and LED lighting conditions (d). Data presented (mean \pm S.E)
912 were derived from 3 independent replicates of the experiment. Asterisks represent significant
913 differences compared to AR8 and corresponding mock control at $*P < 0.05$ (t-test).

914

915 **Fig. S1** Fungal isolates from *Arabidopsis* rhizosphere modulate Choy Sum growth. (a-b) Shoot
916 fresh weight of Choy Sum plants inoculated with non-PGPF isolates (AR1, AR2, AR4, AR12,
917 AR13, AR14, AR19, AR22, AR30, AR36, AR50, and AR51) (a) or PGPF isolates (AR8, AR9,
918 AR11, AR18, AR32, AR36, AR51, AR65, and AR70) (b) in soil conditions. Choy Sum
919 seedlings (n=8 plants per experiment; three replicates of the experiment) inoculated with water
920 (mock control) or conidia (10^6 spores in total) from the indicated fungal isolate in each instance,
921 and shoot fresh weight measured at 21 days post-inoculation (dpi). M refers to mock control
922 inoculated with water. Numbers in (b) represent the fold change in shoot fresh weight between
923 fungal inoculation and mock control. The boxes reveal the first quartile, median and third
924 quartile; the whiskers indicate the minimum and maximum values. Asterisks represent
925 significantly different means compared to the mock control at $*P < 0.05$, $**P < 0.01$, $***P <$
926 0.001 (Student's t-test).

927

928 **Fig. S2** AR8 promotes plant growth and fertility under soil conditions. (a) Representative
929 images of Choy Sum seedlings grown in soil with water (mock control) or AR8 conidia (10^6
930 spores) for 7 and 14 days. Scale bar, 10 cm. (b) Representative images of floral initiation time
931 point in mock control or AR8-inoculated Choy Sum plants. Images shown are at 28 dpi. (c)
932 Siliques number produced by Choy Sum grown in soil measured at 49 dpi. Data presented (mean
933 \pm S.E) was derived from 3 independent replicates of the experiment. The boxes reveal the first
934 quartile, median and third quartile; the whiskers indicate the minimum and maximum values.
935 Asterisks (*) represent significantly different means compared to the mock control at $P < 0.05$
936 (t-test).

937
938 **Fig. S3** AR8 promotes growth in Brassicaceae plants under soil conditions. (a-b) Representative
939 images of *Arabidopsis thaliana* Col-0 (a) and Kailan (b) grown in soil with water (mock control)
940 or AR8 conidia (10^6 spores) for 21 days. Scale bars, 10 cm. (c-d) Shoot fresh weight of
941 *Arabidopsis thaliana* Col-0 (c) and Kailan (d) grown in soil inoculated with water or AR8
942 conidia (n=12 and 24 plants per experiment, respectively; three replicates of the experiment).
943 The boxes reveal the first quartile, median and third quartile; the whiskers indicate the minimum
944 and maximum values. Asterisks represent significantly different means compared to the mock
945 control at $**P < 0.01$, $***P < 0.001$ (t-test).

946
947 **Fig. S4** AR8 promotes growth in cereal crops under soil conditions. (a-b) Representative images
948 of rice cultivar CO39 (a) and barley cultivar Express (b) grown in soil with water (mock control)
949 or AR8 conidia (10^6 spores) for 21 days. (c-d) Shoot fresh weight of rice cultivar CO39 (c) and
950 barley cultivar Express (d) grown in soil inoculated with water or AR8 conidia (n=20 plants per
951 experiment, respectively; three replicates of the experiment). The boxes reveal the first quartile,
952 median and third quartile; the whiskers indicate the minimum and maximum values. Asterisks
953 represent significantly different means compared to the mock control at $*P < 0.05$ (t-test).

954

955 **Fig. S5** AR8 solubilizes inorganic Pi sources in Pikovskaya broth. (a) Pi solubilizing capability
956 of AR8 and B9 in different inorganic Pi sources (tricalcium phosphate, hydroxyapatite,
957 aluminum phosphate, and iron phosphate) after 7 days. (b) Soluble Pi concentration produced
958 by AR8 and B9 in in Pikovskaya broth with different inorganic Pi sources. Mycelial plugs (AR8
959 and B9) were inoculated to Pikovskaya broth with different inorganic Pi sources for 7 days and
960 the soluble Pi concentration was measured using phosphomolybdenum spectrophotometry.
961 Data presented (mean \pm S.E) was derived from 3 independent replicates of the experiment.
962 Asterisks represent significant differences compared to the mock control at *** $P < 0.001$ (t-
963 test).

964

965 **Fig. S6** Overview of metabolic changes in Choy Sum upon AR8 inoculation. (a-b) The PCA (a)
966 and PLS-DA (b) score plots for shoots metabolome of Choy Sum plants inoculated with water
967 or AR8 conidia (10^6 spores) at 14 and 21 dpi as captured by GC-EI/TOF-MS. The colored
968 ellipses represent 95% confidence regions for each group.

969

970 **Fig. S7** Repertoire of primary metabolites (sugars and amino acids) accumulating in Choy Sum
971 during beneficial association with AR8. (a-b) Heatmap showing quantitative and qualitative
972 changes in concentration of sugars (a) and amino acids (b) in Choy Sum shoots at three growth
973 stages (microgreen, seedling, and adult) upon water or AR8 conidial inoculation were
974 performed by targeted analysis. The heatmap was generated through log transformation and
975 colored by concentration ($\mu\text{g/g}$), e.g., 10 becomes 1, highlighted in blue (low) or red (high) via
976 GraphPad Prism 8, respectively. Numbers represent the average concentration of corresponding
977 metabolites derived from five biological replicates.

978

979 **Fig. S8** Repertoire of phenylpropanoid (hydroxycinnamic acids) accumulating in Choy Sum

980 during beneficial association with AR8. Heatmap showing quantitative and qualitative changes
981 in abundance of hydroxycinnamic acids and their derivatives in Choy Sum shoot at three growth
982 stages (microgreen, seedling, and adult) upon water or AR8 inoculation were performed by
983 targeted analysis. The heatmap was generated through log transformation and colored by
984 concentration ($\mu\text{g/g}$), e.g., 10 becomes 1, highlighted in blue (low) or red (high) via GraphPad
985 Prism 8, respectively. Numbers represent the average concentration of corresponding
986 metabolites abundance of five biological replicates.

987

988 **Fig. S9** Impact of specific hydroxycinnamic acids on the growth of Choy Sum. (a)
989 Representative images of Choy Sum seedlings grown in MS medium containing *t*-CA (2.5 μM),
990 *p*-coumaric acid (60 μM), ferulic acid (20 μM), and caffeic acid (20 μM) for 7 days. Scale bar,
991 5 cm. (b) Shoot fresh weight of Choy Sum grown on control and hydroxycinnamic acids-
992 supplemented (*t*-CA, *p*-coumaric acid, ferulic acid, and caffeic acid) medium for 7 days (n=10
993 plants per experiment). Data presented (mean \pm S.E) were derived from 3 independent
994 replicates of the experiment. Asterisks represent significant differences compared to the mock
995 control at ** $P < 0.01$ (t-test).

996

997 **Fig. S10** *trans*-Cinnamic acid displays growth-promoting activity in Choy Sum plants in a
998 dosage-dependent manner. (a) Representative images of Choy Sum seedlings grown in MS
999 medium containing the denoted amounts of *t*-CA (0, 1, 2.5, 5, 10, and 50 μM) for 7 days. Scale
1000 bar, 5 cm. (b) Shoot fresh weight of Choy Sum grown on uninoculated control or *t*-CA-
1001 supplemented medium for 7 days (n=10 plants per experiment). Data presented (mean \pm S.E)
1002 were derived from 3 independent replicates of the experiment. Asterisks represent significantly
1003 different means compared to the mock control at * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ (t-test).

1004

1005 **Fig. S11** AR8 promotes Choy Sum growth in urban farm conditions. (a) Representative images
1006 of Choy Sum plants grown in coco peat with water (mock control) or AR8 conidia (10^6 spores
1007 per coco peat) in outdoor field conditions. Choy Sum seeds placed on the surface of coco peat
1008 bungs (ensuring 1 seedling per bung per pot) were inoculated with water or with AR8 conidial
1009 suspension. (b) Shoot fresh weight at 28 dpi of Choy Sum seedlings inoculated with or without
1010 AR8. The boxes reveal the first quartile, median and third quartile; whereas the whiskers
1011 indicate the minimum and maximum values. Asterisks (****) represent significantly different
1012 means compared to the mock control at $P < 0.001$ (t-test).

1013

1014 **Supporting information**

1015 **Fig. S1** Fungal isolates from *Arabidopsis* rhizosphere modulate Choy Sum growth.

1016 **Fig. S2** AR8 promotes plant growth and fertility under soil conditions.

1017 **Fig. S3** AR8 promotes growth in Brassicaceae plants under soil conditions.

1018 **Fig. S4** AR8 promotes growth in cereal crops under soil conditions.

1019 **Fig. S5** AR8 solubilizes inorganic Pi sources in Pikovskaya broth.

1020 **Fig. S6** Overview of metabolic changes in Choy Sum upon AR8 inoculation.

1021 **Fig. S7** Repertoire of primary metabolites (sugars and amino acids) in Choy Sum upon AR8
1022 inoculation.

1023 **Fig. S8** Repertoire of phenylpropanoid (hydroxycinnamic acids) in Choy Sum upon AR8
1024 inoculation.

1025 **Fig. S9** Impact of hydroxycinnamic acids on the growth of Choy Sum.

1026 **Fig. S10** *trans*-Cinnamic acid displays growth-promoting activity in Choy Sum plants in a
1027 dosage-dependent manner.

1028 **Fig. S11** AR8 promotes Choy Sum growth in urban farm conditions.

1029 **Methods S1** Fungal molecular identification and growth conditions.

1030 **Methods S2** Pi solubilizing activity assay.

1031 **Methods S3** Phenotypic characterization of the effect of hydroxycinnamic acids on Choy Sum.

1032 **Methods S4** Metabolite extraction

1033 **Methods S5** Detailed targeted analysis using GC/LC-MS technology for metabolites

1034 quantification.

1035 **Methods S6** GC-MS data processing.

1036 **Methods S7** Outdoor field trial or urban farm experiments.

1037 **Dataset S1.** Normalized metabolites data from GC-MS and LC-MS analysis in shoot of Choy

1038 Sum upon water (mock control) and AR8 inoculation.