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Abstract

The ecological and evolutionary perspectives of tumorigenesis can be characterized as a process of
microevolution in tumor cells that altered the tumor microenvironment and further induced tumor
cell proliferation, metastasis, and the death of tumor patients. Here, we introduced XgeneVAE, an
interpretable unsupervised deep learning framework that quantified the semantic changes in multi-
omics embedding space for characterizing the microevolution processes and fitness effects of
heterogeneous tumor samples. We then validated that the scales of the latent embedding variances
can reflect the differences in the overall survival of tumor patients, as well as their applications in
uncovering the driving genomic alternations in different cancer types. These results confirmed that
the XgeneVAE model can better represent the heterogeneity in distinct cancer types and as an
interpretable model for understanding the fitness effects in tumorigenesis and their association with
clinical outcomes.

Keywords: tumor microevolution, multi-omics embedding, tumor fitness effects, interpretable deep

learning

Introduction
Tumorigenesis can be characterized as a aggregations of changes that have occurred in the DNA
sequence of the genomes of cancer cells and further effects its proliferation and differentiation [1].
Recently, this process has increasingly been accepted as an evolutionary process and populations of
cancerous cells evolve, much like populations of organisms do. This microevolutionary process
involves genomic alternations in tumor cells that, under natural selection, can induce changes in
both the tumor microenvironment and phenotype [2]. These alterations are captured and reflected
via multi-omics data at the molecular level, which includes genomics, epigenomics, transcriptomics,
and proteomics. Each of these type of datasets provides unique insights into the tumoral cellular
microenvironment [3]. Given the large-scale availability of this multi-omics data, a primary
challenge inthe fieldis how to effectively integrate these data and the extract valuable features from
such rich resources [4].

Recently, deep learning has emerged as a powerful approach for extracting non-linear
informative features from multi-omics data in oncology [5-7]. However, the majority of these

studies have relied on supervised learning methods, given the deep learning's inherent design for
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learning from experience and mapping input data to the distribution of supervisory labels [8].
Furthermore, a significant drawback in most of these studies is the lack of consideration for the
complexity of tumor microevolution, which results in poor biological interpretability [9, 10].

Recent advancements in unsupervised methods have demonstrated that pretraining procedures
can extract universal features and unveil novel knowledge from training data [11, 12]. Previous
studies have successfully utilized unsupervised methods such as gene embedding and variational
autoencoders (VAESs) to extract latent factors from gene expression or multi-omics data [13]. Such
latent factors have been shown to be biologically relevant [8, 14, 15]. Unsupervised autoencoder
models can encode input data into a semantic embedding space. Following the microevolutionary
biology of tumors, the distance in the embedding space can signify the variance or evolutionary
distance and change of tumor microenvironment in the process. This concept of an embedding
semantic space originates from natural language processing, where sentences are mapped to a
continuous vector space based on their distributional properties. This approach has produced
impressive results, preserving the semantic relationships between words and phrases as distances
within the embedding space. In this study, we hypothesize that multi-omics features also follow a
distributional pattern. The characteristics of multi-omics data can be defined by their associations
in terms of multi-omics features, and the embedding space can be used to encapsulate the entirety
of cancer's complexity [16]. In this space, each patient is represented by a point, with semantically
similar patients situated closely to each other [17].

In this study, we introduce an unsupervised pretraining framework for multi-omics data,
XgeneVAE, along with a semantic change metric of multi-omics embedding space from the
microevolutionary process perspective. This metric is used to characterize the intratumor
heterogeneity and predict the phenotype of cancer patients. Our Variational Autoencoder (VAE)-
based framework can reduce the dimensionality of high-dimensional multi-omics data and encode
it to represent the embedding features of tumors [ 18]. We computed the semantic changes of tumors
and identified gene mutations that significantly contribute to these changes. Drawing inspiration
from the Phenotype Embedding (PE) theorem (Liu, et al., 2023), we used the semantic embedding
change to predict the phenotype of patients, and applied overall survival as the ground truth
reference. Remarkably, our methods successfully predicted the overall survival of cancer patients

(log-rank test P-value<0.05) without any clinical information used in the training. The results show
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the semantic change in the multi-omics embedding space is related to biological phenotype and
cancer heterogeneity. Our study introduces a novel methodology and provides fresh insight into the

heterogeneity and fitness of tumors by computing the semantic change in the embedding space.

Results

Unsupervised pretrain model to learn the semantic embedding

Inthis study, we introduce XgeneVAE, an unsupervised pretraining framework for multi-omics data,
accompanied by a unique metric methodology for computing semantic changes within the
embedding space to elucidate the heterogeneity and phenotype of cancers, as shown in Figure 1 A.
XgeneVAE was pretrained on the TCGA pan-cancer dataset, and this process did not incorporate
any supervised labels [19]. A key step in pretraining involved reducing the dimensionality of multi-
omics features to obtain a representative semantic embedding of the data, enabling the model to
encapsulate the inherent structure and relationships within the multi-omics data [20].

We scrutinize this low-dimensional embedding latent space and visualize tumor clustering using
t-SNE for the direct reduction of embedding latent variables to a two-dimensional format. The multi-
omics features of 8,174 samples, as learned by XgeneVAE, are presented in a scatter plot in Figure
2. The visualization results showcase a hierarchical structure and a clear demarcation between
different cancer types. Intriguingly, cancers originating from the same system or organ are spatially
close yet distinguishable in the visualizations, as depicted in Figure 2. This indicates that these
cancer points in the embedding space are semantically similar, underscoring the effectiveness of our
approach.

In the clustering visualization, three subtypes of kidney tumors - kidney clear cell carcinoma
(KIRC), kidney papillary cell carcinoma (KIRP), and kidney chromophobe (KICH) - are clearly
differentiated. Yet, they cluster closely together due to their shared organ of origin. Similarly, despite
being distinct in the visualization, two subtypes of lung cancer cluster closely on a larger scale.
Cancers from the digestive system, although separated based on their subtypes, also cluster near
each other in the broader landscape. This spatial distribution mirrors the shared and unique
molecular characteristics of cancers based on their tissue or organ of origin.

To validate the feasibility of the learned embedding relationship between samples, we used

cancer types as a readily available ground truth reference to examine the embedding features. We
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applied Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-
SNE), and Uniform Manifold Approximation and Projection (UMAP) for comparison with our
model's embedding [21-23]. While both t-SNE and UMAP are capable of capturing non-linear
relationships, PCA is a linear method for dimension reduction. These methods were used to embed
the same multi-omics data into a two-dimensional space.

The low-dimensional representations learned by PCA were plotted on a scatter graph, as shown
on the right of Figure 2. The 2D embedding obtained from PCA displays a more mixed clustering
structure compared to that learned by XgeneVAE, making it challenging to discriminate between
different tumor types. We then input this 2D representation into XGBoost to classify 32 classes of
tumors [24].

We measured the classification performance of the four methods using four multi-class
classification metrics: overall accuracy, weighted precision, weighted recall, and weighted F1 score.
The performance results of 5-fold cross-validation are displayed in Table 1. As shown, the 2D
representation of embedding learned by XgeneVAE outperforms those 2D dimensions learned by
the other methods. This suggests that the embedding space learned by XgeneVAE effectively

represents the multi-omics data and accurately reflects the heterogeneity between cancers.

Learn the tumor heterogeneity of multi-omics data in the embedding latent space

Based on the embedding space of multi-omics data, and drawing inspiration from the Phenotype
Embedding (PE) theorem [25] and as well as the semantic meanings within natural language
processing, the values derived within the embedding space can be utilized to represent macroscopic
phenotypes. Here, we consider the euclidean distance between two points as a semantic change in
the embedding space:

I 2 = Zreperence Il

as a metric for quantifying the heterogeneity and fitness effects of tumor multi-omics data, as shown
in Figure 1 B. This is defined by the multi-omics embedding of a tumor sample within the
embedding space relative to a reference point. This reference point could be any randomly selected
point within the embedding space, where each point embedding reference a unique biological
insight. The euclidean distance to the reference point symbolizes the deviation within the embedding

space, which is determined by the input multi-omics data. The map between the input data and the
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embedding features was learned during the pretraining stage.

Semantic change driven gene mutation identification of intratumor heterogeneity
Intuitively, our objective is to identify mutations that induce significant semantic changes relative
to the reference point within the embedding space. Initially, to focus on the internal structure of
cancer, we employ the k-nearest neighbors (KNN) algorithm to compute the average centroid for
each type of cancer sample within the embedding space [26]. This KNN-derived centroid effectively
represents the mean features of a given cancer type within the embedding space. We select the
embedding centroid of each type of cancer sample as the reference point. For each individual cancer
sample embedding z, we calculate the euclidean distance from each sample to this average point
within the embedding space:
Il z— Emean "2

For each patient, this semantic deviation in the embedding space reflects the intratumor
heterogeneity. When considering a group of patients, the mean euclidean distance represents the
evolutionary difference within the cancer type. Subsequently, we apply Integrated Gradients (IG), a
gradient-based attribution method, to compute the contribution score of each feature within the
multi-omics data to the semantic change [27]. This process generates a score quantifying the
influence of each feature on the semantic shift within the embedding space. This score offers an
interpretable metric for delineating how individual molecular multi-omics features impact the
heterogeneity and conservation of cancers. As shown in Figure 3, we enumerate the top 10 gene
mutations most relevant to the corresponding cancer semantic changes, thereby demonstrating the
interpretability of XgeneVAE and semantic shifts by revealing the contribution scores for each gene
mutation.

Most of the genes we identified are widely associated with cancer development and are
frequently corroborated in existing literature. To validate the top genes revealed by XgeneVAE, we
first compared the genes, ranked by contribution for each tumor type, with genes associated with
the corresponding tumor type from GeneCard [28]. We chose GeneCard because of its
comprehensive disease gene sets, integrated from roughly 150 different web sources, thereby
covering the majority of tumor types in our analysis. We compared the genes at 100 different

thresholds, spaced evenly from 1 (the most important gene) to 58,043 (the total number of genes).
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A total of 21 tumor types had gene sets found in GeneCard and were thus chosen for analysis. The
overlap of GeneCard demonstrated that tumor driven genes identified by XgeneVAE are

biologically relevant.

Predict the phenotype of overall survival by semantic change
Beyond the intrinsic differences within the embedding space of cancer, we also consider the distance
from each feature point to the mean of normal tissues. This distance reflects the deviation between
tumor cells and normal cells at the molecular level, a deviation caused by multi-omics and changes
in the microenvironment. We employ the KNN algorithm to compute the mean of the normal
samples embedding feature. This provides a representative average of the embedding characteristics
within normal tissues. For each feature point, the semantic change or deviation in the embedding
space relative to the reference can be calculated euclidean distance for each sample:

Iz = Znormar 2
This deviation from normal tissue is considered to reflect the level of severity and fitness of the
tumor in the evolutional process. In this context, the fitness value is inversely correlated with the
patient's survival phenotype, with a higher semantic change indicating a higher risk score.

To examine the relation semantic change with tumor fitness and patient survival, the overall
survival event and time of patients were used to validate as the ground truth reference. We calculated
the semantic change value for each patient's embedding point, relative to the average point for
normal tissue. We identified the median semantic change value within each cancer group and
utilized it to categorize samples into high-risk and low-risk groups. Subsequently, we visualized the
survival outlook for cancer patients through Kaplan-Meier (KM) survival curves, as depicted in
Figure 4. Statistical validation results substantiate that the semantic changes in the embedding space
can effectively differentiate patients in the majority of cancers (log-rank test P-value<0.05). This
suggests that the semantic change relative to the average point for normal tissue in the embedding

space can be used to predict fitness of tumors and the prognosis of patients.

Conclusion
In this study, we introduced XgeneVAE, an unsupervised pretrain framework, along with a novel

semantic change metric of embedding space to characterize cancer and predict the phenotype of
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cancer patients. Drawing inspiration from the Phenotype Embedding (PE) theorem [25], this
approach serves as a new metric to characterize the heterogeneity of cancers at the level of multi-
omics data and to compute the fitness effects of multi-omics. To our knowledge, this is the first use
of semantic change in the embedding space for identifying cancer-driving genes and predicting
phenotype in an unsupervised manner from the perspective of the tumor microevolutionary process.
We trained XgeneVAE on TCGA pan-cancer datasets and obtained a representation of multi-omics
data within the embedding space. The results show the semantic change in the multi-omics
embedding space is related to biological phenotype and cancer heterogeneity. Our approach
demonstrates substantial potential for uncovering novel biomedical insights from unsupervised deep
learning models, with findings that align well with current domain knowledge, including the

biological annotation and academic literature.

Materials and Methods

Datasets collection and preprocessing

We sourced multi-omicsdata for 32 pan-cancers from the TCGA database, which consisted of 8,174
samples, including normal tissue samples. Each cancer dataset incorporated four types of omics data:
RNA-Seq gene expression profiles, DNA methylation profiles, gene mutation data, and copy
number variation (CNV) data. Additionally, corresponding clinical information was included.

For multi-omics data, in line with previous studies [29], we included five types of
nonsynonymous mutations: missense and nonsense mutations, frameshift insertions and deletions,
and splice sites. Within the TCGA dataset, only high-confidence mutations that passed the Multi-
Center Mutation Calling in Multiple Cancers filter were considered. We included 4,539 genes that
were mutated in at least 1% of TCGA samples. Gene expression levels were represented by
log2(TPM + 1), where TPM denotes the number of transcripts per million, using data from 9,806
TCGA tumors. We included 6,016 genes that showed a mean and standard deviation greater than 1
in the TCGA samples. For DNA methylation, data from 12,039 TCGA samples were used. We
excluded probes with low methylation (B value, <0.3) in more than 90% of TCGA samples, retaining
6,617 probes for further analysis. CNA data, collected from Affymetrix SNP 6.0 arrays of 11,101

TCGA samples, were mapped onto approximately 310,000 consecutive segments of length 10,000
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bases along the chromosomes, with each CNA being weighted by the percentage covered by the
CNA. We included 7,460 informative CNA segments, which fulfilled the criteria of zeros in less
than 5% of samples, a mean of absolute values greater than 0.20, and a coefficient of variation
greater than 0.20 in TCGA. In our study, mutation and expression data were gene-based, while

methylation and CNA data were represented by probes and chromosomal segments, respectively.

Multi-omics VAE

The overall structure of our model is depicted in Figure 1. A Variational Autoencoder (VAE) is a
potent deep generative model capable of learning essential information from the manifold of multi-
omics data [30]. Building upon the fundamental VAE, we proposed a framework for learning
embeddings from multi-omics data.

In this framework, we deploy omic-specific variational autoencoders to learn low-dimensional
omics-specific tumor embeddings. Concurrently, we employ a shared feature encoder to learn the
joint tumor embedding [31]. The embeddings from all omics layers are then aligned and fused to
derive a multi-omics embedding, which serves as the overall tumor embedding. To achieve
alignment across omics-specific data spaces, we use a discriminator (D). This aligns the tumor
embeddings across different omics layers using adversarial learning, essentially harmonizing the
multi-omics data representations. This alignment is critical to ensure that our VAE can appropriately
analyze and interpret the multi-omics data, leading to more meaningful and accurate biological
insights. Then we concatenate all the omics specific feature and the shared feature as the embedding

of multi-omics data in the late fusion method [32].

VAE Framework
Following the based VAE, the VAE network was optimized by maximizing the variational evidence
lower bound (ELBO) defined in Equation:
ELBO = EQ¢(Z|X)[—logq¢ (z|x) + logpe(x,2)]
Equation can further transform to Equation 3:
ELBO = E; qy(z1x)l0gpe(x | z) — Dy (q¢(2]%) | po(2))
The network was optimized to maximize Equation 3 and for the deep learning model, the generative

distributions can be implemented by the deep decoder neural network, and the variational posteriors
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by deep encoder neural networks. The VAE loss can be defined as follows:
Lyap = MSE (x},x) + D1 (q¢ (2 | x) | po(2))
For multi-omics data, each omics data was first passed into VAE encoder to reduce the
dimensionality from high dimensionality to 64 in the embedding space. For the omics input x, the
VAE encoder network outputs two vector, the mean vector u and the standard deviation vector 4§,
which determined the Gaussian distribution N (u,d) ofthe latent variable z in the embedding space.
The latent variable z is randomly sampled from the distribution. In order to achieve backpropagation
in deep neural network, the reparameterization trick was applied using Equation (1) to approximate
the latent variable z:
z=u+d¢
Then the latent variable z was passed to reconstruct the omics data x of the input x through the

VAE decoder network.

Cross modal adversarial learning

Apart from the fundamental Evidence Lower Bound (ELBO) computations, we've introduced a
cross-modal adversarial learning procedure to align the omics-specific representations within the
embedding space. In this framework, shared encoders are used to extract common features from
various omics data. These common features are then processed by a discriminator that discerns the
source omics data for these features. Through this process, we aim to extract and emphasize the
shared, joint features from diverse omics data.

In the latent space, the omics-specific embeddings are again fed into the discriminator, which
attempts to identify the omics data inferred from these embeddings. Consequently, the encoders are
trained adversarial to deceive the modality discriminator. This adversarial training procedure
ensures the alignment of embeddings from different omics data, promoting a more comprehensive
and unified understanding of the multi-omics landscape [33]. By aligning and integrating these
various omics-specific representations, our model facilitates a more coherent and informative multi-

omics analysis:

1
Lp = Ec[mZEq(mx)I”CI(k | 2)]
c
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Visualization of embedding dimension

Embedding matrices were visualized by either t-distributed stochastic neighbor embedding (t-SNE)
or PCA. Three-dimensional t-SNE was implemented with perplexity = 5 and 50,000 iterations.
Three components PCA were implemented using default setting. Both t-SNE and PCA were done

using scikit-learn library.

Interpretability of Multi-omics Data:

By leveraging Integrated Gradients (IG), a gradient-based attribution method, we are able to assign
a contribution score to each feature present in our multi-omics data, including individual gene
mutations. These scores essentially quantify the influence that each feature has on the semantic shift
observed within the embedding space. In doing so, we're provided with an interpretable metric that
clearly delineates how each feature, be it a gene mutation or another form of multi-omics data,

contributes to the heterogeneity and conservation observed within cancers.

Implementation:

We adopted a 5-fold cross-validation strategy to partition all datasets, ensuring that each split was
stratified according to the sample collection site to help control potential batch artifacts. Our model,
XgeneVAE, was developed on the PyTorch framework, with the interpretability analysis being
performed using Captum. We employed the Adam optimizer to improve XgeneVAE, with a learning
rate of 0.0001, a batch size of 64, and 0.001 weight decay. The training process was finished on the
NVIDIA RTX 3090 with CUDA acceleration. The validation set was used to select the model with
the best performance during the pretraining stage. The effectiveness of the pretraining stage was
assessed using the LogME method, while the semantic change analysis was conducted in an

unsupervised manner on the training dataset.
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Figure 1. Framework of XgeneVAE(A) and semantic change in multi-omics embedding space(B)
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Figure 2. Visualization of tumor clustering by using t-SNE for the direct reduction of multi-omics
embedding latent variables to a two-dimension. Samples of various tumor types were plotted with

different colors shown in the figure.
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Table 1. Cancer classification performance of multi-omics embedding learned by different

dimensionality reduction methods and XgeneVAE.

Methods Accuracy Precision Recall F1 Score
PCA+XGBOOST 0.30 0.26 0.30 0.26
t-SNE+XGBOOST 0.82 0.80 0.83 0.80
UMAP+XGBOOST 0.80 0.73 0.80 0.76
XgeneVAE+XGBOOST | 0.89 0.80 0.79 0.82
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Figure 3. Top 10 gene mutations significantly contributing to the semantic changes observed in a
particular cancer type. Using Integrated Gradients (IG), we calculated the contribution scores of
each feature from multi-omics data to the observed semantic changes per sample. 1G values were
subsequently computed for numerous samples and averaged to ascertain the average feature

importance associated with each gene.
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Figure 4 Kaplan-Meier (KM) survival curves of low- and high-risk patients via semantic changes
learned by XgeneVAE. Low and high risks are defined by the median 50% percentile of semantic
change compared to the mean embedding point of normal tissues. Log rank test was used to test for

statistical significance in survival distributions between low- and high-risk patients.
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