

1 **Molecular insights into atypical modes of β-arrestin interaction with seven**
2 **transmembrane receptors**

3 Jagannath Maharana^{1#}, Fumiya K. Sano^{2#}, Parishmita Sarma^{1#}, Manish K. Yadav¹, Longhan
4 Duan³, Tomasz M. Stepniewski⁴, Madhu Chaturvedi¹, Ashutosh Ranjan¹, Vinay Singh¹,
5 Sayantan Saha¹, Gargi Mahajan¹, Mohamed Chami⁵, Wataru Shihoya², Jana Selent³, Ka
6 Young Chung⁴, Ramanuj Banerjee^{1*}, Osamu Nureki^{2*} and Arun K. Shukla^{1*}

7 ¹Department of Biological Sciences, Indian Institute of Technology Kanpur, India; ²Graduate
8 School of Science, The University of Tokyo, Tokyo, Japan; ³School of Pharmacy,
9 Sungkyunkwan University, Suwon 16419, Republic of Korea; ⁴Research Program on
10 Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of
11 Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain;
12 ⁵BioEM Lab, Biozentrum, University of Basel, 4056 Basel, Switzerland.

13 *Corresponding authors

14 (ramanujb@iitk.ac.in; nureki@bs.s.u-tokyo.ac.jp; arshukla@iitk.ac.in)

15 **Keywords:** GPCRs, ACRs, β-arrestins, Biased agonism, Cellular signaling, cryo-EM

16

17

18

19

20

21

22

23

24 **Abstract**

25 β -arrestins are multifunctional proteins that are critically involved in regulating spatio-
26 temporal aspects of GPCR signaling. The interaction of β -arrestins with GPCRs is typically
27 conceptualized in terms of receptor activation and phosphorylation primarily in the carboxyl-
28 terminus. Interestingly however, there are several GPCRs that harbor majority of
29 phosphorylation sites in their 3rd intracellular loop (ICL3) instead of carboxyl-terminus but still
30 robustly engage β -arrestins. Moreover, there are several 7TMRs that are now characterized
31 as intrinsically-biased, β -arrestin-coupled receptors (ACRs) due to lack of functional G-
32 protein-coupling but robust β -arrestin binding leading to functional outcomes. The molecular
33 basis of β -arrestin interaction and activation upon binding to these types of 7TMRs is
34 currently elusive, and it represents a major knowledge gap in our current understanding of
35 this signaling system. Here, we present seven cryo-EM structures of β -arrestins in basal
36 state, activated by the muscarinic M2 receptor (M2R) through its ICL3, and a β -arrestin-
37 coupled receptor known as decoy D6 receptor (D6R). These structural snapshots combined
38 with biochemical, cellular, and biophysical experiments including HDX-MS and MD
39 simulation provide novel insights into the ability of β -arrestins to preferentially select specific
40 phosphorylation patterns in the receptors, and also illuminate the structural diversity in
41 7TMR- β -arrestin interaction. Surprisingly, we also observe that the carboxyl-terminus of β -
42 arrestin2 but not β -arrestin1 undergoes structural transition from a β -strand to α -helix upon
43 activation by D6R, which may preclude the core-interaction with the activated receptor.
44 Taken together, our study elucidates previously unappreciated aspects of 7TMR- β -arrestin
45 interaction, and provides important mechanistic clues about how the two isoforms of β -
46 arrestins can recognize and regulate a large repertoire of GPCRs.

47

48

49

50 **Introduction**

51 β -arrestins (β barrs) are multifunctional proteins that interact with, and regulate a large
52 repertoire of G protein-coupled receptors (GPCRs) at multiple levels (1-4). The interaction of
53 GPCRs and β barrs is typically conceived to be driven primarily by agonist-induced receptor
54 phosphorylation and receptor activation although emerging studies have started to suggest
55 additional contributing factors such as membrane interaction, catalytic activation, and role of
56 specific phospholipids (2-10). A number of structures of GPCR- β barr1 complexes have been
57 determined in the past couple of years, which have provided the first glimpse of high-
58 resolution information about this interaction (11-16). Still however, considering the divergent
59 primary sequence and phosphorylation patterns of GPCRs, the molecular mechanisms
60 driving the broadly conserved nature of GPCR- β barr interaction and activation remains
61 elusive to a large extent until recently. Some recent studies however have started to shed
62 light on phosphorylation-mediated components of GPCR- β barr binding through broadly
63 conserved phosphorylation motifs identified in a large number of GPCRs (17-20). For
64 example, structural and biophysical studies have proposed the framework of phosphorylation
65 codes and modulatory sites in the GPCR carboxyl-terminus as a possible mechanism
66 governing phosphorylation-mediated β barr interaction (19, 20). More recently, two
67 independent structural studies have identified that the presence of a P-X-P-P type
68 phosphorylation motif in the carboxyl-terminus of a broad set of GPCRs, where P is a
69 phosphorylation site, is a critical determinant of β barr interaction and activation (17, 18). Still
70 however, there are several key questions about this versatile interaction that remain
71 unanswered and represent important knowledge gaps in our current understanding of this
72 signaling and regulatory paradigm.

73 There are several GPCRs, for example the human muscarinic receptor subtype 2
74 (M2R), that contain a short carboxyl-terminus with a very few potential phosphorylation sites,
75 but they harbor phosphorylation sites primarily in their 3rd intracellular loop (5, 21-24). Site-
76 directed mutagenesis and biochemical studies have demonstrated the contribution of

77 phosphorylation sites in the intracellular loops of some of these receptors to contribute
78 towards β arr binding (25, 26). However, whether these receptors engage the same binding
79 interface with β arrs and impart similar activation features as other GPCRs with
80 phosphorylation sites on their carboxyl-terminus remains primarily unexplored in terms of
81 direct structural visualization. Moreover, there are several 7TMRs such as the human decoy
82 D6 receptor (D6R), sometimes classified as non-signaling or non-functional GPCRs as they
83 lack functional G-protein-coupling, but robustly interact with, and signal through β arrs (27-
84 30). The molecular mechanisms engaged by these receptors, known as atypical chemokine
85 receptors (ACKRs) or Arrestin-coupled receptors (ACRs), to bind and activate β arrs are also
86 mostly elusive with respect to the binding interface and activation dependent conformational
87 changes vis-à-vis prototypical GPCRs (31-34). The paucity of structural information and
88 functional correlation on β -arrestin interaction and activation by the ACRs, and GPCRs
89 engaging β arrs through their ICL3, limits current understanding of structural and functional
90 diversity encoded in the 7TMR- β -arrestin system.

91 Accordingly, here we visualize the structural details of β arr interaction and activation
92 by M2R and the D6R using cryogenic-electron microscopy (cryo-EM). The structural
93 snapshots of M2R- β arr complexes uncover the precise interaction interface between ICL3
94 and β arrs for the first time. Surprisingly, we observe an α -helical conformation adopted by
95 the distal carboxyl-terminus of β arr2 but not β arr1, upon activation by the phosphorylated
96 D6R. We complement the key findings uncovered by the structural snapshots with HDX-MS,
97 molecular dynamics simulation, and cellular assays. Taken together, our findings provide
98 previously lacking and unanticipated aspects of 7TMR- β arr interaction and activation, and
99 significantly advance the current conceptual framework in the field with direct implications for
100 exploring novel therapeutic avenues.

101 **Results**

102 In order to visualize the atypical modes of β arr recruitment, we focused our efforts on the
103 M2R which has a short carboxyl-terminus with the majority of potential phosphorylation sites

104 localized in ICL3, and D6R that is intrinsically β arr-biased receptor with no detectable G-
105 protein activation despite robust β arr binding and signaling (Figure 1). We used full-length,
106 wild-type M2R phosphorylated *in-cellulo* via co-expression of a membrane-tethered GRK2
107 construct (GRK2^{CAAX}) and agonist-induced phosphorylation followed by incubation with
108 purified β arr1 and Fab30 to reconstitute the complex (Figure S1A-B). Subsequently, we
109 attempted to determine the structure of this complex using cryo-EM, and while the receptor
110 component was not resolved at high-resolution, presumably due to inherent flexibility, we
111 successfully determined the structure of receptor-bound β arr1 at 3.1 \AA resolution with
112 focused refinement (Figure 1C and Figure S2). In order to reduce the flexibility of the
113 receptor component in this complex, we cross-linked the pre-formed M2R- β arr1-Fab30
114 complex using on-column glutaraldehyde cross-linking (35) followed by cryo-EM data
115 collection. Still however, the receptor exhibited flexible positioning relative to β arr1, and
116 therefore, we could determine the structure of only the receptor-bound β arr1 at 3.2 \AA (Figure
117 1C, Figure S1C-D, and Figure S3). Nonetheless, these structural snapshots allowed us to
118 identify the phosphorylated region of the ICL3 in M2R that forms the key interaction interface
119 with β arr1, and thereby allowed us to synthesize and validate the corresponding
120 phosphopeptide (M2Rpp) (Figure S4A-B), and determine the structure of M2Rpp- β arr2-
121 Fab30 complex at 2.9 \AA resolution (Figure 1C, Figure S1E-F, and Figure S5).

122 For D6R, we have reported previously that the critical determinants of β arr
123 recruitment are located primarily in its carboxyl-terminus (28), and therefore, we generated a
124 set of phosphopeptides corresponding to the phosphorylated D6R and tested their ability to
125 activate β arrs *in-vitro* using Fab30 reactivity or limited proteolysis as readouts (Figure S4C-
126 F). Based on these assays, we identified D6Rpp2, referred to as D6Rpp from here onwards,
127 to activate β arrs most efficiently, and we used it to reconstitute D6Rpp- β arr1/2-Fab30
128 complexes (Figure S1G-H), and determined their structures at 3.4 \AA and 3.2 \AA resolution,
129 respectively (Figure 1D, Figure S6, and Figure S7). In addition, we also determined the
130 structures of wild-type β arr2 in its basal conformation stabilized by Fab6 (Figure 1A, Figure

131 S11, and Figure S8), and β arr1 in complex with a carboxyl-terminus phosphopeptide of the
132 complement C3a receptor (C3aR), a prototypical GPCR (Figure 1B, Figure S1J, and Figure
133 S9), as references for basal and typical active conformations. The electron densities of the
134 phosphorylated receptor domains and the key loops in β arrs in these above-mentioned
135 structures are presented in Figure S10.

136 The M2R- β arr1-Fab30 complexes reminisce a hanging conformation observed
137 previously for prototypical GPCRs (11, 35) with a significant spacing between the receptor
138 and β arr components, presumably due to their interaction mediated primarily through the
139 long ICL3 (~150 residues) in the M2R (Figure 2A-E). Not only this is observed in M2R
140 complexes with both isoforms of β arrs but also in complexes where the receptor is
141 phosphorylated by either GRK2 or GRK6 (Figure 2A), suggesting that hanging
142 conformations represent a significant population in M2R- β arr interaction irrespective of β arr
143 or GRK isoforms. While glutaraldehyde cross-linking appears to stabilize a more closely
144 engaged complex as reflected in negative-staining 2D class averages (Figure 2G), it did not
145 significantly help resolve the receptor component better compared to the non-cross-linked
146 complex in cryo-EM. The structure of M2R-bound β arr1 revealed a phosphorylated stretch of
147 ICL3 in the receptor that harbors the residues from Q³⁰³-G³¹³ with four phosphorylation sites
148 (Thr³⁰⁸, Ser³¹⁰, Thr³¹¹ and Ser³¹²), and it docks on the N-domain of β arr1 (Figure 2F and
149 Figure 2H). Interestingly, M2Rpp that is derived from the ICL3 sequence visualized in M2R-
150 bound β arr1 structure binds to an analogous interface on β arr2 (Figure 2I-J). The β arr1 and
151 2 in these structures exhibit an inter-domain rotation of ~18° and 23°, respectively, disruption
152 of the three-element and polar-core network (Figure S11A-D), and significant reorientation of
153 the critical loops compared to the basal conformation (Figure S11E). Notably, the phosphate
154 groups in the M2R-ICL3 stretch resolved in these structures are organized in a P-X-P-P
155 pattern, where P is a phosphorylation site, and they are engaged in ionic interactions with
156 conserved Lys and Arg residues in β arrs organized in K-R-K type pattern involving Arg^{7/8},

157 $K^{10/11}$, $K^{11/12}$, $R^{25/26}$, $K^{107/108}$ and $K^{294/295}$ (Figure 2K). A comprehensive list of residue-residue
158 contacts between the phosphopeptides and β barrs have been provided in Table S3.

159 The sequence analysis of M2R reveals that there are two plausible P-X-P-P type
160 motifs in the ICL3, one represented by T^{308} -V-S³¹⁰-T³¹¹ that is observed in the structures
161 presented here while the other is represented by T^{340} -N-T³⁴²-T³⁴³ (Figure 2L). Therefore, in
162 order to further validate the key contribution of T-V-S-T stretch in M2R-ICL3 in β barr
163 engagement and activation, we generated two different mutants of the receptor with the
164 phosphorylation sites in each of these P-X-P-P motifs changed to Ala residues by site-
165 directed mutagenesis. Subsequently, we measured agonist-induced β barr1 recruitment to
166 these mutants vis-à-vis the wild-type receptor using NanoBiT and co-immunoprecipitation
167 assay, and observed that mutation of T-V-S-T, but not T-N-T-T, nearly ablates β barr binding
168 (Figure 2L-M and Figure S12). These observations establish the key contribution of the T-V-
169 S-T motif in M2R-ICL3 in driving β barr recruitment, and also underscore the shared
170 mechanism of β barr activation by M2R and other prototypical GPCRs despite distinct receptor
171 domains engaging β barrs.

172 In contrast to prototypical GPCRs, some chemokine receptors such as CXCR7 and
173 D6R, and a complement C5 receptor (C5aR2), lack G-protein-coupling but maintain robust
174 β barr recruitment and downstream signaling (28, 36-39). These receptors, referred to as
175 atypical chemokine receptors (ACKRs) or Arrestin-coupled Receptors (ACRs), are
176 essentially intrinsically β barr-biased and represent an excellent model system to probe
177 structural and functional diversity of β barrs. Thus, we next attempted to reconstitute D6R- β barr
178 complexes using co-expression of the receptor, GRK2 or GRK6, and β barr1/2, followed by *in-*
179 *cellulo* assembly of the complex via agonist-stimulation and stabilization using Fab30. While
180 we observed clear complex formation and a typical architecture by negative staining that is
181 reminiscent of the hanging conformation (Figure 3A-B), attempts to scale-up the complex for
182 cryo-EM analysis were not successful. Therefore, we focused our efforts to determine the
183 structures of β barrs in complex with a phosphorylated peptide corresponding to the carboxyl-

184 terminus of D6R (D6Rpp). We first confirmed that D6R- β arr interaction depends on receptor
185 phosphorylation by truncating the carboxyl-terminus of D6R harboring the phosphorylation
186 sites, which resulted in near-complete ablation of agonist-induced β arr1 recruitment (Figure
187 3C). Subsequently, we characterized D6Rpp using *in-vitro* proteolysis and Fab30 reactivity
188 assays (Figures S4C-F), and further validated β arr activation by this peptide using HDX-MS
189 (Figure 3D). We observed that D6Rpp binding resulted in robust activation of β arrs as
190 reflected by significant conformational changes in multiple β -strands and loop regions in the
191 N-domain (Figure 3E-F and Figure S13). Interestingly, we also observed notable differences
192 between the HDX-MS pattern of β arr1 vs. β arr2 such as reduced solvent exposure of β -
193 strand XIV and XV in the C-domain of β arr2, which suggests isoform-specific differences
194 between activation of β arr1 vs. β arr2.

195 Next, we determined the structures of β arr1 and β arr2 in complex with D6Rpp,
196 stabilized by Fab30, at resolution of 3.4 \AA and 3.2 \AA , respectively (Figure 1D, Figure 3G-H).
197 We observed a similar interaction interface of D6Rpp on N-domains of β arr1 and 2 although
198 seven phosphates were resolved in β arr2 structure compared to five in β arr1 (Figure 3G-H).
199 Interestingly however, we observed that three phosphate groups namely Ser³⁴⁸, Ser³⁵⁰ and
200 Ser³⁵¹ organized in a P-X-P-P pattern are engaged in most extensive interactions with
201 selected Lys and Arg residues in the N-domain of β arrs (Figure 3I). Similar to M2R, there are
202 two putative P-X-P-P motifs in D6Rpp as well, still however, our structural snapshots reveal
203 that β arrs prefers one of them (Figure S14). Expectedly, we also observed significant inter-
204 domain movement in D6Rpp-bound β arrs, the reorientation of the key loop regions
205 compared to the basal state, and disruption of the three-element and polar core network
206 (Figure S11). A comprehensive list of residue-residue contacts between the
207 phosphopeptides and β arrs have been given in Table S3.

208 Surprisingly, the distal carboxyl-terminus of β arr2 (Tyr³⁹¹-Lys⁴⁰⁸) in D6Rpp-bound
209 conformation adopts an α -helical structure, which is positioned in the central crest of β arr2
210 (Fig. 4A-B) and makes extensive interactions (Figure S15). This α -helix in β arr2 forms a key

211 dimerization interface for the two protomers in this structure and arranged in an anti-parallel
212 coiled coil fashion with extensive contacts across the two protomers (Figure 4C, Table S4).
213 We further analyzed the stability of this α -helix using molecular dynamics simulation, and
214 observed that it exhibited robust stability during simulation frames (Figure 4D). In addition,
215 we also observed that this stretch of β arr2 carboxyl-terminus has a propensity to adopt α -
216 helical conformation even in isolated form i.e., without β arr2 core being present.
217 Interestingly, we did not observe this α -helical structure in D6Rpp-bound β arr1 although the
218 corresponding segment is not resolved in the structure.

219 It is important to note that in previous structures of activated β arrs, either in complex
220 with phosphopeptides or full-length receptors, either truncated β arrs have been used, or the
221 carboxyl-terminus is not resolved structurally. Even in the crystal structure of β arr2 in its
222 basal conformation, which is used as the only reference for basal conformation in the field,
223 only a part of the carboxyl-terminus is structurally resolved (40, 41). Therefore, we also
224 determined the cryo-EM structure of wild-type, full length β arr2, and a significantly longer
225 stretch of the carboxyl-terminus was resolved compared to the previously available crystal
226 structure (Figure 4F-G and Figure S16). Still however, the same stretch of β arr2 adopts a β -
227 strand in its basal conformation, which docks to the N-domain and maintains β arrs in an
228 inactive conformation. Interestingly, a previous structure of β -appendage domain of Adaptiln
229 (AP2) in complex with a peptide corresponding to the C-terminus of β arr1 also exhibits an α -
230 helical conformation of the peptide that is positioned onto a groove in the platform sub-
231 domain of β -appendage (Figure 4E) (42). Thus, the propensity of the carboxyl-terminus in
232 β arr1 and 2 to adopt α -helical conformation should be explored further.

233 **Discussion**

234 We note that a cryo-EM structure of a chimeric M2R with engineered V2R carboxyl-terminus
235 (M2-V2R) with β arr1 has been determined previously (11), however, the ICL3 of M2R was
236 not resolved in the structure. Therefore, it remains unknown how precisely M2R or other
237 similar GPCRs with short carboxyl-terminus but relatively longer ICL3 engage β arrs (43).

238 Our structure of M2R- β arr1 and M2Rpp- β arr2 underscore that the key interaction interface
239 and the activation mechanism remains rather conserved despite distinct domains on the
240 receptor being used to engage β arrs. This essentially starts to provide a structural basis of
241 long-standing questions in the field about how two isoforms of β arrs are able to interact with,
242 and regulate, a broad set of receptors with structurally conserved interface and activation
243 mechanism. We also note from the C3aRpp- β arr1 structure and the comparison of all other
244 structures determined so far of β arr1 and β arr2 pairs bound to the same receptor, underlines
245 a significantly higher inter-domain rotation in β arr2 compared to β arr1 (Figure S17). It is
246 tempting to speculate that this observation provides a molecular mechanism of how class B
247 GPCRs classified based on relatively stable β arr interaction, exhibit apparently higher affinity
248 for β arr2 over β arr1 that was reported almost two decades ago (44). Moreover, a direct
249 comparison of M2R-bound β arr1 structure presented here with previously reported M2R-
250 V2R- β arr1 complex reveals the hanging conformation in our complex in terms of β arr1
251 positioning with respect to the receptor component (Figure S18). This observation further
252 underlines the occurrence of hanging conformation as a major population in the context of
253 native M2R- β arr interaction, and offers a structural framework to design guided experiments
254 in order to probe functional outcomes in future studies. However, the active conformations of
255 β arr1 were similar in terms of the interacting residues on N-domain, key loops, and C-
256 domain rotation values (Figure S19).

257 The observation of an α -helical conformation in β arr2 upon activation by D6Rpp is
258 intriguing from multiple perspectives. For example, the same conformation is not observed in
259 β arr1, and while this may simply be due to higher flexibility of the carboxyl-terminus in β arr1,
260 it would be anticipated that extensive interactions would allow structural visualization of α -
261 helix if it was being formed. It is intriguing to note that D6Rpp-bound β arr2 exhibits a dimeric
262 assembly while all the previously determined active-like structures such as those bound to
263 V2Rpp, C5aR1pp, M2Rpp, and IP6 reveal a trimeric state (Figure S20 and Table S4). In
264 addition, the α -helix observed in the carboxyl-terminus of β arr2 in D6Rpp-bound state is also

265 absent from the previously determined β arr2 structures. While it cannot be completely ruled
266 out that these differences may arise due to a preferential orientation of the samples on cryo-
267 EM grids, it is tempting to speculate that these differences underscore the conformational
268 signatures in β arrs upon their interaction with GPCRs vs. ACRs, which should be
269 investigated further in subsequent studies. The α -helix in D6Rpp- β arr2 also underscores the
270 “chameleon” nature of the distal carboxyl-terminus to adopt a β -strand in the basal state
271 while transitioning to α -helix upon activation (Figure 4H). Interestingly, such secondary
272 structure switching is also observed for several other proteins that exhibit functional diversity
273 (45). It is tempting to speculate that the positioning of α -helix in the central crest of β arr2
274 may potentially interfere with the core interaction of β arr2 with the receptor although it
275 remains to be experimentally visualized in future studies. This notion is supported by the
276 overlay of D6Rpp-bound β arr2 with previously determined GPCR- β arr structures where
277 either of the ICLs of the receptors appears to clash with the α -helix in β arr2 (Figure 4I and
278 Figure S21). Whether this is a general feature of ACR- β arr interaction or specific to D6R,
279 remains to be examined experimentally in future, possibly through additional structural
280 snapshots and experiments focused to probe conformational dynamics in solution.

281 We also note that there are several key questions that remain to be answered in the
282 context of GPCR- β arr interaction. For example, there are several prototypical GPCRs that
283 are likely to engage β arrs through their ICL3 but lack P-X-P-P motif, and even some of the
284 ACRs such as CXCR7 and C5aR2 lack this motif in their carboxyl-terminus but they still
285 recruit β arrs. It is also noteworthy that the structural snapshots presented here involve
286 isolated phosphopeptides with defined phosphorylation patterns without the transmembrane
287 core of the receptors. Thus, it is likely that there exist additional mechanisms and/or
288 conformations of β arrs induced by such receptors that remain to be visualize in future
289 studies. As the interaction of receptor core imparts additional conformational changes in
290 β arrs (46, 47), it is plausible that the full complexes of receptors and β arrs may exhibit
291 additional conformational changes in β arrs, especially in terms of the positioning of the

292 proximal region of the phosphorylated segment. However, the conserved principle of “P-X-P-
293 P key” to open the “K-K-R-K-R-K lock” is likely to be maintained and guide β arr activation
294 even in the context of full receptors (Figure S22).

295 In summary, we present novel structural insights into agonist-induced β arr interaction
296 and activation by selected 7TMRs through previously uncharacterized domains namely
297 ICL3, and identify a structural transition in β arr2 carboxyl-terminus from β -strand to α -helix
298 (Figure 5). Taken together, our findings provide important missing information about the
299 current understanding of 7TMR- β arr interaction and signaling with broad implications for
300 GPCR activation, signaling and regulatory paradigms.

301 **ACKNOWLEDGMENTS**

302 Research in A.K.S.’s laboratory is supported by the Senior Fellowship of the DBT Wellcome
303 Trust India Alliance (IA/S/20/1/504916) awarded to A.K.S., Science and Engineering
304 Research Board (SPR/2020/000408 and IPA/2020/000405), Council of Scientific and
305 Industrial Research [37(1730)/19/EMR-II], Indian Council of Medical research
306 (F.NO.52/15/2020/BIO/BMS), Young Scientist Award from Lady Tata Memorial Trust, and IIT
307 Kanpur. This work was supported by grants from the JSPS KAKENHI, grant numbers
308 21H05037 (O.N.), 22K19371 and 22H02751 (W.S.), and 23KJ0491 (F.S.); The Kao
309 Foundation for Arts and Sciences (W.S.); The Takeda Science Foundation (W.S.); The Lotte
310 Foundation (W.S.); and the Platform Project for Supporting Drug Discovery and Life Science
311 Research (Basis for Supporting Innovative Drug Discovery and Life Science Research
312 (BINDS)) from the Japan Agency for Medical Research and Development (AMED), grant
313 numbers JP22ama121012 (O.N.) and JP22ama121002 (support number 3272, O.N.). HDX-
314 MS work in K.Y.C.’s laboratory was supported by grants from the National Research
315 Foundation of Korea funded by the Korean government (NRF-2021R1A2C3003518 and
316 NRF-2019R1A5A2027340). We thank Manisankar Ganguly for assistance with structural
317 analysis, and Sudha Mishra, Annu Dalal and Nashrah Zaidi for help with functional assays.
318 Cryo-EM on basal state β arr2, C3aRpp- β arr1 and, D6Rpp- β arr complexes were performed

319 at the BioEM lab of the Biozentrum at the University of Basel, and we thank Carola Alampi
320 and David Kalbermatter for their excellent technical assistance.

321 **AUTHOR CONTRIBUTIONS**

322 JM and MKY prepared various complexes used here for structural analysis, JM processed
323 the cryo-EM data together with RB and prepared the figures with input from RB; FKS
324 prepared cryo-EM grids for the M2R complexes, collected and analyzed the data under the
325 supervision of WS and ON; PS carried out the site directed mutagenesis and functional
326 assays; LD performed the HDX-MS experiments under the supervision of KYC; TMS carried
327 MD simulation under the supervision of JS; MC and AR contributed in D6Rpp
328 characterization; VS, SS, and GM contributed in protein purification; MoC prepared the grids
329 and collected cryo-EM data on D6Rpp complexes; AKS supervised the overall project and
330 wrote the manuscript with input from all the authors.

331 **DECLARATION OF INTERESTS**

332 The authors declare no competing interests.

333 **METHODS**

334 **General reagents, plasmids for cellular assay**

335 Most standard reagents were purchased from Sigma Aldrich unless mentioned. Dulbecco's
336 Modified Eagle's Medium (DMEM), Phosphate Buffer Saline (PBS), Trypsin-EDTA, Fetal-
337 Bovine Serum (FBS), Hank's Balanced Salt Solution (HBSS), and Penicillin-Streptomycin
338 solution were purchased from Thermo Fisher Scientific. HEK-293 cells were purchased from
339 ATCC and cultured in 10% (v/v) FBS (Gibco, Cat. No. 10270-106) and 100U mL⁻¹ penicillin
340 and 100µg mL⁻¹ streptomycin (Gibco, Cat. No. 15140122) supplemented DMEM (Gibco, Cat.
341 No. 12800-017) at 37°C under 5% CO₂. For β-arrestin recruitment assays, LgBiT/SmBiT-
342 βarr1/2 and Lg-CAAX construct were used and the same as previously described (67). For
343 bystander NanoBiT assay, the cDNA coding region of M2R-WT, M2R-AVAA, and M2R-

344 ANAA with a HA signal sequence, a FLAG tag followed by the N-terminal region of M4
345 receptor (2-23 residues) at the N-terminus was cloned into pcDNA3.1 vector. To study direct
346 β arr recruitment assay, D6R-WT and D6R- Δ 338 harboring SmBiT at the carboxyl-terminus
347 were cloned into the pCAGGS vector. For crosslinking colP, β arr1 cloned into pCMV vector
348 was used. All DNA constructs were verified by sequencing from Macrogen. The small
349 molecule compound Carbachol was synthesized from Cayman Lifesciences, and CCL7 was
350 purified in the laboratory.

351 **Expression and purification of β arrs**

352 For expression and purification of β arrs, a previously reported protocol was followed (48). In
353 brief, cDNAs of rat β arr1, β arr2^{WT} and bovine β arr2^{DM} (full-length) were cloned into pGEX4T3
354 vector with GST tag and thrombin cleavage site. An isolated *E. coli* BL21 colony was
355 inoculated into a primary culture of 50mL TB medium supplemented with 100 μ g mL⁻¹
356 ampicillin. After growing up to a cell optical density at 600nm (OD600) of 0.8-1.0, a
357 secondary culture of 1.5L Terrific Broth media was inoculated from the primary culture and
358 grown till an optical density at 600nm (OD600) of 0.8-1.0. The expression of β arrs were
359 enhanced with 25 μ M concentration of IPTG and further incubated till 16h at 18°C. Cultures
360 were harvested and stored at -80°C until further use.

361 Cell lysis was carried out by sonicating the pellets resuspended in lysis buffer 25mM
362 Tris, pH 8.5, 150mM NaCl, 1mM PMSF (phenylmethylsulfonyl fluoride), 2mM Benzamidine,
363 1mM EDTA (Ethylenediaminetetraacetic acid), 5% Glycerol, 2mM Dithiothreitol (DTT) and
364 1mg mL⁻¹ Lysozyme. The lysate was further spun at 18,000-20,000rpm at 4°C followed by
365 filtration with 0.45 μ m pore size filter to obtain a clear supernatant. Batch binding was
366 performed overnight with Glutathione resin (Glutathione SepharoseTM 4 Fast Flow, GE
367 Healthcare Cat. no. 17-5132-02) at 4°C. Subsequently, beads bound with proteins were
368 rigorously washed with (25mM Tris, pH 8.5, 150mM NaCl, 2mM DTT and 0.02% n-dodecyl-
369 β -D-maltopyranoside [DDM]) buffer after transferring into Econo columns (Biorad, Cat. no.
370 7372512). Thrombin at concentration 1unit μ L⁻¹ was added to the resin slurry at 1:1 (dry

371 resin:cleavage buffer) with cleavage buffer 25mM Tris, pH 8.5, 350mM NaCl and 0.02%
372 DDM, and incubated for 2h at room temperature for on-column cleavage. Pure, tag-free
373 β barrs were eluted and further purified on HiLoad 16/600 Superdex gel-filtration column in
374 running buffer, 25mM Tris, pH 8.5, 350mM NaCl, 2mM DTT and 0.02% DDM. Fractions
375 corresponding to β barrs were pooled and stored at -80°C by adding 10% glycerol until use.

376 **Expression and purification of Fabs**

377 For expression and purification of Fabs a similar procedure was followed as reported
378 previously (49). Briefly, *E. coli* M55244 cells (ATCC) transformed with Fab plasmid were
379 grown in 5mL 2XYT media for overnight 30°C as seed culture. 1L of 2XYT media was further
380 inoculated using 5% of the seed culture and incubated for 8h at 30°C. Post incubation, cells
381 were harvested and resuspended in 1L of CRAP medium already supplied with 100 μ g mL⁻¹
382 ampicillin, and further incubated for 16h at 30°C. Cells were harvested and subjected to lysis
383 using sonication with buffer, 50mM HEPES, pH 8.0, 500mM NaCl, 0.5% (v/v) Triton X-100,
384 0.5mM MgCl₂. The lysate was heated at 65°C in a water bath for 30min and immediately
385 chilled on ice for 5min. To obtain a clear supernatant, lysate was centrifuged for 30min at
386 20,000g and loaded into a column packed with Protein L resins at room temperature. Post
387 bead binding, washing was performed with 50mM HEPES, pH 8.0, 500mM NaCl buffer.
388 Proteins were eluted with 100mM acetic acid in tubes filled with 1M HEPES, pH 8.0 at 10%
389 of column volume for quick neutralization of eluted proteins. Protein solution was then buffer-
390 exchanged into buffer, 20mM HEPES, pH 8.0, 100mM NaCl using pre-packed de-salting
391 columns (GE Healthcare Cat. no. 17085101). Fabs were then stored at -80°C by adding
392 10% glycerol until further use.

393 **Co-immunoprecipitation assay using purified proteins**

394 β -arrestin interaction with phosphopeptides derived from receptors was studied by Co-
395 immunoprecipitation assay. In brief, 5 μ g of β -arrestin was activated by incubating it with 10
396 molar excess of individual phosphopeptides on ice for 40min followed by adding 2.5 μ g of

397 Fab30. The reaction was incubated at room temperature with constant mixing on a tumbler
398 (5rpm) for 1h. 25 μ L of Protein L beads (Cat. no. CaptoTM L resin, GE Healthcare Cat. no.
399 17547802), pre-equilibrated with binding buffer (20mM HEPES, PH 7.4, 150mM NaCl and
400 0.01% MNG) was added to each reaction and further incubated for 1h. After 1h, beads were
401 extensively washed with binding buffer and eluted in 30 μ L 2X SDS dye. 20 μ L sample was
402 then analyzed on 12% SDS-PAGE, and the intensity of the protein band was quantified by
403 ImageJ (50) for statistical analysis. The data were normalized with respect to their respective
404 experimental control and appropriate statistical analyses were performed as indicated in the
405 corresponding figure legend.

406 **Limited trypsin proteolysis**

407 To quantify the conformational changes in β -arrestin upon binding with differently
408 phosphorylated phosphopeptides derived from the C-terminus of D6R, we performed limited
409 trypsin proteolysis following previously established protocols (51-53). Briefly, 10 μ g of β -
410 arrestin was incubated with a 50-fold molar excess of phosphopeptide for 40min on ice.
411 Activated β -arrestin was digested with TPCK-treated trypsin (Sigma Aldrich, Cat no. T1426)
412 in a 1:100 (trypsin: arrestin) ratio (w/w) for 5-10min at 37°C. The reaction was stopped by
413 transferring 20 μ L of the reaction mix to another microcentrifuge tube containing 5 μ L of 5X
414 SDS-protein loading dye. Digestion reactions were analyzed by SDS-PAGE, and digested
415 products were quantified using the Image J program. Trypsin untreated and apo β -arrestin
416 were also taken as controls for every set of experiments.

417 **Reconstitution of receptor- β arr-Fab complexes from Sf9 cells**

418 Wild type, full-length, human receptors (M2R, D6R, C3aR) were used for complex
419 reconstitution with β bars and Fabs. A similar protocol was followed for purification of all the
420 receptor- β arr-Fab complexes. For expression of receptors, the constructs contain
421 haemagglutinin (HA) sequence and FLAG tag followed by a portion of M4R (Muscarinic
422 receptor 4; ANFTPVNGSSGNQSVRLVTSSS), and a 3C protease cleavage site in the N-

423 terminus. Baculoviruses were generated for each receptor till passage P3 stage. For the
424 reconstitution of complexes, receptors were expressed and purified from *Sf9* cells while the
425 other components (β arr and Fab) were added after FLAG elution of receptors. In some
426 cases, viruses were also prepared for β arrs and GRK2/GRK6 till P3 passage. 600mL of *Sf9*
427 cells at $1.8\text{-}2.0 \times 10^6 \text{ mL}^{-1}$ density were infected with 12-14mL of receptor, 4-6mL of β arr and
428 3-5mL of GRK viruses and incubated for 72h at 27°C. The morphology of infected cells was
429 routinely checked under microscope. Cells were stimulated with agonists 1h prior to
430 harvesting. Carbachol (1mM) (Cat. no. 51-83-2, Cayman chemical), CCL7 (1 μ M, in-house
431 purified) and C3a (1 μ M, in-house purified) were supplemented to M2R, D6R and C3aR
432 cultures, respectively. Pellets were stored at -80°C until purification.

433 Before proceeding with purification, expression status for all complex components
434 were checked using western blot analysis. Similar purification steps were followed for all
435 receptor- β arr complexes. Co-expressed culture pellets were resuspended in buffer 20mM
436 HEPES, pH 7.4, 150mM NaCl, 1mM PMSF and 2mM Benzamidine and homogenized using
437 glass dounce-homogenizer for 60 strokes. Fabs were supplemented at a 1.5 molar excess of
438 an estimated receptor amount and kept on stirring for 1h at room temperature. Post
439 incubation, 1% LMNG, 0.01% CHS were added to the lysate and further homogenized for 60
440 strokes and was incubated for solubilization for 2h at 4°C. Lysate was centrifuged for 30min
441 at 18,000-20,000rpm. The supernatant was filtered with 0.45 μ m pore-size filter before
442 proceeding for bead binding. Clear lysate was passed onto M1-FLAG resin pre-packed into
443 glass Econo columns (Biorad, Cat. no. 7372512) and allowed to gravity-flow at 1-2mL min $^{-1}$.
444 Extensive washing was done by passing a low-salt buffer (20mM HEPES, pH 7.4, 150mM
445 NaCl, 0.01% LMNG, 0.01% CHS and 2mM CaCl $_2$) thrice and with a high-salt buffer (20mM
446 HEPES, pH 7.4, 350mM NaCl, 0.01% LMNG) twice, each with 10mL of volume alternatively.
447 FLAG peptide at concentration of 0.25mg mL $^{-1}$ was added to low-salt buffer for gravity flow
448 elution at around 1mL min $^{-1}$. Fractions were further analyzed on SDS-PAGE and
449 concentrated with 100 MWCO concentrators (Vivaspin, Cytiva Cat. no. 28932319) before

450 gel-filtration chromatography. Superose 6 Increase 10/300 GL (Cytiva Cat. no. 29091596)
451 column was used for further purifying the complexes with a running buffer (20mM HEPES,
452 pH 7.4, 100mM NaCl, 0.00075% LMNG, 0.00025% CHS). Elution fractions corresponding to
453 complexes were analyzed on SDS-PAGE and concentrated to 8-10mg mL⁻¹ for negative-
454 staining EM and cryo-EM studies. Respective agonists were kept in excess during all steps
455 and buffers of purification.

456 **Reconstitution of phosphopeptide-βarr-Fab complexes**

457 A previously published protocol was followed for the phosphopeptide-βarr complex
458 reconstitution (17). In brief, phosphopeptides at three molar excesses were added to βarrs
459 and incubated for 30min at room temperature for activation. Post incubation, corresponding
460 Fabs were mixed at 1:1.5 ratio (βarr:Fab) and allowed for complex formation for 90min at
461 room temperature. The reconstituted complexes were further purified on Superose 6
462 Increase 10/300 GL (Cytiva Cat. no. 29091596) gel-filtration column with a running buffer
463 (20mM HEPES, pH 7.4, 100mM NaCl, 0.00075% LMNG, 0.00025% CHS and 2mM DTT)
464 post concentration with 30,000 MWCO concentrators (Vivaspin, Cytiva Cat. no. 28932361).
465 Fractions corresponding to the complex were pooled, concentrated to desired concentration
466 (8-10mg mL⁻¹) and used for negative-staining EM and cryo-EM analysis.

467 **Glutaraldehyde crosslinking of M2R-βarr1 complex**

468 An on-column cross-linking step was performed to stabilize the pre-formed M2R-βarr1-
469 Fab30 complex. A previously reported protocol was followed with modifications (35). Here,
470 pre-packed PD-10 desalting columns (GE Healthcare Cat. no. 17085101) were used instead
471 of gel-filtration columns. The below described protocol has been optimized for 250μL of
472 complex solution. 250μL of glutaraldehyde (1% final concentration) was applied to the pre-
473 equilibrated de-salting column in buffer (20mM HEPES, pH 7.4, 100mM NaCl, 0.00075%
474 LMNG, 0.00025% CHS, 1mM Carbachol) and allowed to gravity-flow. Subsequently, 500μL
475 of running buffer was given twice in sequence. The reconstituted complex sample (250μL)

476 was then allowed to pass through the column with gravity-flow. Immediately after loading the
477 complex sample, two rounds of running buffers (500 μ L each) were passed down the column.
478 After flow-through of ~2.5mL, elution was carried out with loading the running buffer and
479 fractions were collected in separate tubes filled with 350 μ L of 1M Tris, pH 8.0 for quenching
480 additional cross-linking of proteins in proximity. Elution fractions were analyzed on SDS-
481 PAGE and proceeded for further rounds of purification with size-exclusion chromatography
482 after concentration with 100 MWCO concentrators (Vivaspin, Cytiva Cat. no. 28932319).
483 After separating cross-linked aggregates with the Superose 6 Increase 10/300 GL (Cytiva
484 Cat. no. 29091596) gel-filtration column, fractions corresponding to complex were further
485 concentrated and sent for EM analysis.

486 **Negative-staining EM**

487 Negative-staining EM of all samples were performed to assess complex formation,
488 homogeneity and particle quality prior to grid freezing for cryo-electron microscopy. Negative
489 staining and imaging of the samples were performed in accordance with a previously
490 published protocol (28). Briefly, 3.5 μ L of the protein sample were dispensed on glow
491 discharged carbon/formvar coated 300 mesh Cu (PELCO, Ted Pella) grid, allowed to adsorb
492 for 1min and blotted off using a filter paper. Two separate drops of freshly prepared 0.75%
493 (w/v) uranyl formate stain were set and the grid was gently touched onto the first drop of
494 stain, and immediately blotted off using a filter paper. The grid was then touched onto a
495 second drop of stain for 30s, blotted off and left on the bench on a petri plate for air drying.
496 Imaging was done on a FEI Tecnai G2 12 Twin TEM (LaB6) operating at 120kV and
497 equipped with a Gatan CCD camera (4k x 4k) at 30,000x magnification. Micrographs were
498 collected and processed in Relion 3.1.2 (54-56). About 10,000 autopicked particles were
499 autopicked with the gaussian picker, extracted, and subjected to reference free 2D
500 classification.

501 **Cryo-EM sample preparation and data acquisition**

502 3 μ L of the samples corresponding to M2R- β barr1 or M2Rpp- β barr2 complexes were dispensed
503 onto glow discharged Quantifoil holey carbon grids (Au R1.2/1.3) and plunged frozen in
504 liquid ethane (-181°C) using a Vitrobot MarkIV maintained at 100% humidity and 4°C. Data
505 were collected on a 300kV Titan Krios microscope (G3i, Thermo Fisher Scientific) equipped
506 with a K3 direct electron detector (Gatan) and BioQuantum K3 imaging filter. Movies were
507 acquired in counting mode across a defocus range of -0.6 to -1.6 μ m at a pixel size of
508 0.83 $\text{\AA}/\text{px}$ using EPU software (Thermo Fisher Scientific) software. Movies were dose
509 fractionated into 48 frames with a dose rate of approximately 50e $^-/\text{\AA}^2$.

510 For the D6Rpp- β barr, C3aRpp- β barr and basal β barr2 complexes, 3 μ L of the samples
511 were dispensed onto glow discharged Quantifoil holey carbon grids (Cu R2/1 or R2/2) using
512 a Leica GP plunger (Leica Microsystems, Austria) maintained at 90% humidity and 10°C,
513 and vitrified in liquid ethane. A 300kV TFS Titan Krios microscope equipped with Gatan K2
514 summit direct electron detector (Gatan Inc.) was used to film the cryo-electron microscopy
515 images for the D6Rpp- β barr2-Fab30 complex. SerialEM software was used to automatically
516 capture images in counting mode across a defocus range of 0.5-2.5 μ m, at a nominal
517 magnification of 165,000x and pixel size of 0.82. A total dose of 56 e $^-/\text{\AA}^2$ was divided among
518 40 frames of each movie stack. A 200kV TFS Glacios microscope equipped with a Gatan K3
519 direct electron detector (Gatan Inc.) was used to collect data for the D6Rpp- β barr1-Fab30,
520 C3aRpp- β barr1-Fab30 and basal β barr2-Fab6 complexes. Each movie stack was dose-
521 fractionated into 40 frames with a total accumulate a total dose of ~50e $^-/\text{\AA}^2$ and exposure
522 time of 4s.

523 **Cryo-EM data processing and model building**

524 Movie frames corresponding to M2R- β barr1 or M2Rpp- β barr2 complex datasets were aligned
525 (4x4 patches) and dose-weighted with RELION's implementation of the MotionCor2
526 algorithm (57). The motion corrected micrographs were imported into cryoSPARC v3.3.1 or
527 4.0 and contrast transfer function parameters were estimated with Patch CTF (multi).

528 For the non-crosslinked M2R- β barr1-Fab30 complex dataset, 31,758 motion corrected
529 micrographs with CTF fit better than 4.5 \AA were curated and selected for further processing in
530 cryoSPARC v3.3.1. 17,218,446 particles were automatically picked using the blob-picker
531 subprogram, extracted with a box size of 416px (fourier cropped to 64px) and subjected to
532 reference free 2D classification. Clean 2D classes containing 4,815,631 particles with
533 conformations corresponding to receptor- β barr complexes were selected and re-extracted
534 with a box size of 416px (fourier cropped to 256px). Subsequent ab-initio reconstruction and
535 heterogeneous refinement yielded a 3D class with 34% of the particles and features of
536 GPCR- β barr hanging conformation. Particle projections from this 3D class were extracted
537 with full box size (416px) and subjected to non-uniform refinement to yield a map with clear
538 density and secondary features corresponding to β barr-Fab30 portion but not very well-
539 defined micellar density, suggesting flexibility in the micelle region of the map. Particle
540 subtraction was performed on the particle projections with mask on the micelle, followed by
541 local refinement with mask on the β -arrestin and variable domain of Fab30. This yielded a
542 locally refined map (voxel size of 0.83 $\text{\AA}/\text{px}$) with an overall resolution of 3.1 \AA in accordance
543 with the gold standard Fourier Shell Correlation (FSC = 0.143) criteria. DeepEMhancer (58)
544 available at the COSMIC cryo-EM webserver was used for map sharpening to improve the
545 interpretability and remove the light directional (resolution) anisotropy exhibited by the final
546 map.

547 For the crosslinked M2R- β barr1-Fab30 complex dataset, a total of 5,235,492 particles
548 were automatically picked, extracted with a box size of 416px (fourier cropped to 64px), and
549 subjected to 2D classification, ab-initio reconstruction, and heterogeneous refinement. The
550 following steps were the same as those used for the non-crosslinked M2R- β barr1-Fab30
551 complex dataset. The particle projections corresponding to the best 3D class were re-
552 extracted with a box size of 416px (fourier cropped to 288px). The re-extracted particles
553 were subjected to focused 3D classification (without alignment) with a mask on the β barr-
554 Fab30 component, followed by homogeneous refinement yielding a map with an overall

555 resolution of 3.5Å. The map so obtained was subjected to local refinement with mask on β-
556 arrestin and variable domain of Fab30 portion resulting in a map with an overall resolution of
557 3.2Å (voxel size of 1.2Å/px) with the gold standard Fourier Shell Correlation using the 0.143
558 criterion. As for the crosslinked M2R-βarr1-Fab30 complex dataset, the final map exhibited a
559 small degree of anisotropy, which was also corrected through map sharpening with
560 DeepEMhancer.

561 For the M2Rpp-βarr2-Fab30 complex dataset, 1,861,553 particles were autopicked
562 from 2,596 motion corrected micrographs using blob-picker and extracted with a box size of
563 416px (fourier cropped to 64px). Reference free 2D classification yielded class averages
564 with clear secondary features corresponding to a trimeric assembly. Selected 2D averages
565 containing 1,861,553 particles were re-extracted with a box size of 416px (fourier cropped to
566 288px) and subjected to ab-initio reconstruction followed by heterogenous refinement
567 yielding 2 classes. Non-uniform refinement with C3 symmetry followed by local refinement
568 with mask on the β-arrestin and variable domain of Fab30 yielded a map with an overall
569 resolution of 2.9Å (voxel size = 1.2Å/px) according to the FSC = 0.143 criterion.

570 For the D6Rpp-βarr, C3aRpp-βarr and basal βarr2 complex datasets, all data
571 processing steps were performed in cryoSPARC 3.3.2 or 4.0 unless otherwise stated. Patch
572 motion correction (multi) was used to perform beam-induced motion correction on the dose-
573 fractionated movie stacks, and Patch CTF estimation (multi) was used to estimate the
574 contrast transfer function parameters.

575 For the D6pp-βarr2-Fab30 dataset, 9,977 dose weighted, motion corrected
576 micrographs with CTF fit resolution better than 4.5Å were chosen for further processing.
577 496,954 particles were autopicked, extracted with a box size of 480px (fourier cropped to
578 64px) and subjected to reference-free 2D classification to eliminate junk particles. 337,137
579 particle projections corresponding to 2D class averages with evident secondary features
580 were subjected to ab-initio reconstruction yielding 3 classes. Following heterogenous
581 refinement, the 3D class with characteristics of a dimeric βarr-Fab30 complex containing

582 83,459 particles (58% of the total particles) was subjected to non-uniform refinement with C2
583 symmetry followed by local refinement with a mask to remove the constant zone of Fab30.
584 This resulted in a coulombic map with a global resolution of 3.2 at 0.143 FSC cut-off.

585 For the D6pp2- β arr1-Fab30 dataset, 5,300,908 particles were initially picked from the
586 total of 9,698 micrographs using the blob-picker sub-program. These particles were
587 extracted with a box size of 480px (fourier cropped to 64px) and subjected to several rounds
588 of 2D classifications. The best 2D averages containing 511,711 particles were re-extracted
589 with a box size of 480px (fourier cropped to 288px) and subjected to ab-initio reconstruction
590 and heterogenous refinement yielding two models. The 3D class containing a dimeric
591 architecture and defined secondary features (369,871 particles) was selected for non-
592 uniform refinement and successive local refinement with mask on the β -arrestin molecule
593 and Fab30 variable domain. The final local refinement yielded a map with a global resolution
594 of 3.4 \AA , according to the FSC at 0.143 criterion.

595 For the C3aRpp- β arr1-Fab30 complex dataset, two independent data collection
596 sessions – 7,246 movies (untilted) and 6,192 movies (45 $^{\circ}$ tilted) were performed to solve the
597 preferred orientation issue which arose during initial data processing. Particles were picked
598 with blob-picker from both datasets independently, extracted with a box size of 480px
599 (fourier cropped to 64px) and subjected to several rounds of 2D classification to eliminate
600 noisy particles. Particles corresponding to the clean classes from both datasets were then
601 selected, merged, and re-extracted with a box size of 480px (fourier cropped to 288px). The
602 re-extracted particles were then used for ab-initio reconstruction and subsequent
603 heterogenous refinement yielding two models. The 3D class with features of a dimeric
604 complex containing 252,613 particles were then subjected to 3D classification without
605 alignment, followed by non-uniform refinement and local refinement with a mask on the
606 dimeric complex with imposed C2 symmetry. The final map (voxel size of 1.46 $\text{\AA}/\text{px}$)
607 exhibited slight directional anisotropy which was corrected through map sharpening using
608 DeepEMhancer.

609 For the basal state β -arrestin2-Fab6 complex dataset, 7,887,274 particles were
610 autopicked from 12,586 motion corrected micrographs, extracted with a box size of 360px
611 (fourier cropped to 64px) and subjected to several rounds of 2D classification to yield class
612 averages with clear secondary features. The particles corresponding to the best classes
613 were selected and extracted with a box size of 416px (fourier cropped to 256px) for
614 subsequent ab-initio reconstruction and heterogenous refinement. 506,938 particles
615 corresponding to the best 3D class were subjected to non-uniform refinement yielding a map
616 with 3.7 \AA overall resolution. Subsequent masked local refinement resulted in a final map
617 with an overall resolution of 3.5 \AA (1.2347 \AA /px) as estimated by the gold standard fourier
618 shell correlation using 0.143 criterion.

619 The β -arrestin molecule and Fab30 were masked for local 3D refinement, which
620 resulted in more distinct densities in the pliable areas, including the loops, and facilitated
621 model construction in the coulombic densities. Local resolution estimates of all maps were
622 calculated using the Blocres module of cryoSPARC and their complementary half maps. All
623 maps were sharpened using Phenix's "Autosharpen maps" (59, 60) tool or DeepEMhancer
624 to improve maps for model building. Detailed schematic pipeline for data processing have
625 been included as Figures S3-S9.

626 **Model building and refinement**

627 Sharpened maps were used for model building, refinement, validation, and successive
628 structural analysis. Protomeric coordinates of β arr1 were obtained from previously solved
629 cryo-EM structure of C5aR1pp- β arr1-Fab30 complex (PDB 8GO8), while the coordinates of
630 β arr2 and Fab30 were adapted from the cryo-EM structure of V2Rpp- β arr2-Fab30 complex
631 (PDB 8GOC). The initial model of Fab6 was generated in MODELLER (61) with the
632 coordinates of Fab30 from 8GOC. These initial models of β arrs and Fabs were docked into
633 the individual coulombic maps with Chimera (62, 63), followed by flexible fitting of the
634 docked models with the "all atom refine" module in COOT (64). Phosphopeptide residues
635 were built manually. The models obtained were refined with Phenix real-space refinement

636 with imposed secondary structural restraints against the coulombic maps. The final statistics
637 of all models were evaluated with Molprobity (65) included within Phenix comprehensive
638 validation job with the final refined models as input. All structural figures used in the
639 manuscript were prepared using either Chimera or ChimeraX (63). Data collection,
640 processing and refinement statistics have been included as Table S1.

641 **Hydrogen/deuterium exchange mass spectrometry (HDX-MS)**

642 Protein samples were prepared at a final concentration of 35-40 μ M in 20mM HEPES pH 7.4,
643 150mM NaCl, and 1mM DTT. For phosphopeptide binding, 10-fold excess concentration of
644 D6Rpp was added to β -arrestins and incubated for 30min at room temperature (23-25°C).
645 Hydrogen/deuterium exchange was initiated by mixing 3 μ L of protein samples with 27 μ L
646 D₂O buffer (20mM HEPES pH 7.4, 150mM NaCl, and 10% glycerol in D₂O) and incubating
647 the mixtures for 10, 100, 1000 and 10000s on ice. At each time point, 30 μ L of ice-cold
648 quench buffer (60mM NaH₂PO₄, pH 2.01, 10% glycerol) was added to quench the deuterium
649 exchange reaction. For non-deuterated samples by mixing 3 μ L of protein samples with 27 μ L
650 of H₂O buffer (20mM HEPES, pH 7.4, 150mM NaCl, and 10% glycerol in H₂O), followed by
651 quench steps as described above. After injection, the quenched samples were sent for
652 digestion via an immobilized pepsin column (2.1 \times 30mm) (Life Technologies, Carlsbad, CA,
653 USA) at 100mL min⁻¹ with 0.05% formic acid in H₂O at 12°C. Peptic peptides were
654 transmitted to a C18 VanGuard trap column (1.7 μ m \times 30mm) for desalting with 0.05% formic
655 acid in H₂O, and then separated by ultra-pressure liquid chromatography through an Acquity
656 UPLC C18 column (1.7 μ m, 1.0 \times 100mm) at 40mL min⁻¹ with an acetonitrile gradient of 8-
657 85% B over 8.5min. Mobile phase A was 0.1% formic acid in H₂O and mobile phase B was
658 0.1% formic acid in acetonitrile. Buffers were adjusted to pH 2.5 and system was maintained
659 at 0.5°C (except pepsin digestion at 12°C) to minimize the back-exchange of deuterium to
660 hydrogen. Mass spectral analyses were performed by using a Xevo G2 quadrupole time-of-
661 flight (Q-TOF) equipped with a standard ESI source in MS E mode (Waters) in positive ion
662 mode. The capillary, cone, and extraction cone voltages were set at 3kV, 40V, and 4V,

663 respectively. Source and desolvation temperatures were set at 120°C and 350°C,
664 respectively. Trap and transfer collision energies were set to 6V and the trap gas flow rate
665 was set at 0.3mL min⁻¹. Sodium iodide (2µg µL⁻¹) was used to calibrate the mass
666 spectrometer, and [Glu1]-Fibrinopeptide B (200fg µL⁻¹) in MeOH:water (50:50 (v/v)+1%
667 acetic acid) was used for lock-mass correction. The ions at mass-to-charge ratio (m/z) of
668 785.8427 were monitored at a scan time of 0.1s with a mass window of ±0.5Da. The
669 reference internal calibrant was introduced at a flow rate of 20µL min⁻¹, and all spectra were
670 automatically corrected using lock-mass. Two independent interleaved acquisition functions
671 were created. The first function, typically set at 4eV, collected low-energy or unfragmented
672 data, whereas the second function collected high-energy or fragmented data typically
673 obtained using a collision ramp from 30–55eV. Ar gas was used for collision-induced
674 dissociation (CID). Mass spectra were acquired in the range of m/z 100–2000 for 10min.
675 Peptides from non-deuterated samples were identified by ProteinLynx Global Server 2.4
676 (Waters) with variable methionine oxidation modification and a peptide score of 6. Deuterium
677 uptake levels of each peptide were determined by measuring the centroid of the isotopic
678 distribution via DynamX 3.0 (Waters). All the data was obtained from at least three
679 independent experiments. The summary of HDX-MS profiles and uptake levels of all the
680 analyzed peptides are listed in the Table S5.

681 **Surface expression assay**

682 Receptor surface expression in respective assays was measured by whole cell-based
683 surface ELISA as previously described (66). Briefly, transfected cells were seeded in 0.01%
684 poly-D-Lysine pre-treated 24-well plate at a density of 2x10⁵ cells well⁻¹ and incubated for
685 24h at 37°C. After 24h, growth media was aspirated, and washed once with ice-cold 1XTBS,
686 followed by fixation with 4% PFA (w/v in 1XTBS) on ice for 20min. After fixation, three times
687 washing with 1XTBS (400µL in each wash) followed by blocking with 1% BSA (w/v in
688 1XTBS) at room temperature for 90min. Afterward, 200µL anti-FLAG M2-HRP was added
689 and incubated for 90min (prepared in 1% BSA, 1:10,000) (Sigma, Cat. no. A8592). Post

690 antibody incubation, three times washed with 1%BSA (prepared in 1XTBS) followed by
691 development of signal by treating cells with 200 μ L TMB-ELISA (Thermo Scientific, Cat no.
692 34028) until the light blue color appeared. After that, signal was quenched by transferring the
693 blue-colored solution to a 96-well plate containing 100 μ L 1M H₂SO₄. Absorbance of the
694 signal was measured at 450nm using a multi-mode plate reader. Next, cells were washed
695 two times with 200 μ L 1XTBS followed by incubation with 0.2% Janus Green (Sigma; Cat no.
696 201677) w/v for 15min. By washing with distilled water excess stains were removed. After
697 washing, 800 μ L of 0.5N HCl was added to elute the stain. After elution, 200 μ L of the solution
698 was transferred to a 96-well plate, and at 595nm, absorbance was recorded. Data were
699 analyzed by calculating the ratio of absorbance at 450/595 followed by normalizing the value
700 of pcDNA transfected cells reading as 1. Normalized values were plotted using GraphPad
701 Prism v 9.5.0 software.

702 **NanoBiT-based β arr recruitment assay**

703 Plasma membrane localization of β arr upon stimulation of M2R and D6R with respective
704 agonists were measured by a bystander and direct physical recruitment NanoBiT-based
705 assay, respectively, following previously described protocols (67, 68). For M2R β arr
706 recruitment study, HEK-293 cells were transfected with 3 μ g of above mentioned M2R
707 constructs along with N-terminally SmBiT tagged β arr1/2 constructs (3.5 μ g), and the plasma
708 membrane localization tag CAAX (5 μ g) harboring LgBiT at the N-terminus using transfection
709 reagent polyethyleneimine (PEI) linear at DNA:PEI ratio of 1:3. For β arr recruitment study
710 downstream of D6R, HEK-293 cells were cotransfected with D6RWT and truncation
711 constructs harboring SmBiT at the C-terminus and β arr1/2 constructs (3.5 μ g) with N-
712 terminally fused LgBiT. 0.25 μ g of D6R^{WT}, 3.5 μ g of D6R ^{Δ 338} were transfected, to match the
713 cell surface expression level. Post 16-18h of transfection, cells were trypsinized, and
714 resuspended in the NanoBiT assay buffer consisting of 1XHBSS, 0.01% BSA, 5mM HEPES,
715 pH 7.4, and 10 μ M coelenterazine (GoldBio, Cat. no. CZ05). After resuspension of the pellet,
716 cells were seeded in an opaque flat bottom white 96 well plate at a density of 1x10⁵ cells

717 well⁻¹. Next, cells were incubated for 120min (90min at 37°C, followed by 30min at room
718 temperature). Post incubation, basal level luminescence readings were taken, followed by
719 ligand addition. For dose-response assay, ligand concentrations ranging from 100pM to
720 100μM for carbachol and 1pM to 1μM for CCL7 were prepared in the buffer composed of
721 1XHBSS, 5mM HEPES, pH 7.4, and cells were stimulated with varying doses of indicated
722 ligands. Luminescence upon stimulation was recorded up to 20 cycles by a multimode plate
723 reader. For analysis, average data from the 5 cycles with the maximum reading is used and
724 normalized with respect to the signal of minimal ligand concentration as 1 and plotted using
725 nonlinear regression analysis in GraphPad Prism v 9.5.0 software.

726 **Chemical cross-linking and co-immunoprecipitation**

727 Agonist-induced βarr recruitment downstream of M2R^{WT} and mentioned mutants was
728 performed by chemical crosslinking following previously published protocol (69). Briefly,
729 HEK-293 cells were co-transfected with N-terminally FLAG tagged receptor and βarr1. After
730 48 h of transfection, cells were serum starved for another 6h, followed by stimulation with
731 100μM Carbachol. The cell pellet was resuspended in lysis buffer (20mM HEPES, pH 7.4,
732 100mM NaCl, 0.1mM PMSF, 0.2mM Benzamidine, and 1X Phosphatase inhibitor cocktail)
733 and then lysed in a homogenizer. For crosslinking, freshly prepared crosslinker DSP (3,3'-
734 Dithiodipropionic acid di(N-hydroxysuccinimide ester) (Sigma, Cat. no. D3669) was used at a
735 concentration of 1.5mM. After adding DSP, the sample was incubated for 40 min at room
736 temperature. Post crosslinking, the reaction was quenched by adding 1mM Tris, pH 8.0, and
737 1% MNG (maltose neopentyl glycol) was added for solubilization for 1h. The bait for this
738 coIP was FLAG M1 antibody coupled beads; beads were pre-equilibrated with buffer
739 consisting of 20mM HEPES, pH 7.4, and 150mM NaCl. After solubilization, spin the lysate at
740 15,000rpm for 15 min. The supernatant was loaded in the beads for binding, followed by
741 washing, and finally eluted using FLAG-EDTA buffer (20mM HEPES, 150mM NaCl, 2mM
742 EDTA, 0.01% MNG, 250 mg mL⁻¹ FLAG peptide). After adding elution buffer, incubate for
743 30min and flick gently at 10min intervals. The signal was probed by using immunoblotting

744 technique. To probe β arr, β arr1/2 monoclonal anti-rabbit antibody (1:5000, CST, Cat. no.
745 4674) was used. Blots were stripped, and probe the receptor using anti-FLAG peroxidase
746 coupled antibody (1:2000, Sigma, Cat. no. A8592). Data were quantified using ImageLab
747 software (Bio-Rad) and analysed by dividing signal for β arr by receptor signal followed by
748 normalizing 30min signal for M2RWT as 100%. Data was plotted in GraphPad Prism v 9.5.0
749 software.

750 **Molecular dynamics simulations**

751 Residue protonation was assigned using Protonate 3D available within the MOE package
752 (www.chemcomp.com). Complexes were solvated with TIP3P waters containing a 0.15
753 concentration of NaCl ions. System parameters were derived from Charmm36M (70) and
754 subsequent simulations were run using the ACEMD3 engine (71). Each system underwent
755 an initial 20ns equilibration run in conditions of constant pressure and temperature (pressure
756 kept constant at 1.01325 bar with the Berendsen barostat), with a timestep of 2fs and
757 restraint applied to protein backbone atoms. Temperature was maintained constant at 310K
758 using the Langevin thermostat, hydrogen bonds were restrained using the RATTLE
759 algorithm. Non-bonded interactions were cut-off at 9 \AA , with a smooth switching function
760 applied at 7.5 \AA . To simulate the stability of the β arr2/C-tail interface as well as stability of the
761 dimer with and without the C-tail we have utilized the D6Rpp- β arr2 structure obtained within
762 this study as a starting point. To simulate β arr2 folding we have started with the fully
763 unfolded β arr2 C-tail fragment (residues 392 to 408). To simulate the interface between
764 adaptin and the β arr2 C-tail we have utilized the deposited structure (PDB 2IV8) as a
765 starting point.

766 **References**

767 1. D. S. Kang, X. Tian, J. L. Benovic, Role of beta-arrestins and arrestin domain-containing
768 proteins in G protein-coupled receptor trafficking. *Curr Opin Cell Biol* **27**, 63-71 (2014).
769 2. V. V. Gurevich, E. V. Gurevich, The structural basis of the arrestin binding to GPCRs. *Mol Cell
770 Endocrinol* **484**, 34-41 (2019).
771 3. S. Ahn, S. K. Shenoy, L. M. Luttrell, R. J. Lefkowitz, SnapShot: beta-Arrestin Functions. *Cell*
772 **182**, 1362-1362 e1361 (2020).

773 4. J. Maharana, R. Banerjee, M. K. Yadav, P. Sarma, A. K. Shukla, Emerging structural insights
774 into GPCR-beta-arrestin interaction and functional outcomes. *Curr Opin Struct Biol* **75**,
775 102406 (2022).

776 5. R. Ranjan, H. Dwivedi, M. Baidya, M. Kumar, A. K. Shukla, Novel Structural Insights into
777 GPCR-beta-Arrestin Interaction and Signaling. *Trends Cell Biol* **27**, 851-862 (2017).

778 6. J. Grimes *et al.*, Plasma membrane preassociation drives beta-arrestin coupling to receptors
779 and activation. *Cell* **186**, 2238-2255 e2220 (2023).

780 7. J. Janetzko *et al.*, Membrane phosphoinositides regulate GPCR-(3-arrestin complex assembly
781 and dynamics. *Cell* **185**, 4560-+ (2022).

782 8. K. Eichel *et al.*, Catalytic activation of beta-arrestin by GPCRs. *Nature* **557**, 381-386 (2018).

783 9. K. Eichel, D. Jullie, M. von Zastrow, beta-Arrestin drives MAP kinase signalling from clathrin-
784 coated structures after GPCR dissociation. *Nat Cell Biol* **18**, 303-310 (2016).

785 10. R. Ranjan, P. Gupta, A. K. Shukla, GPCR Signaling: beta-arrestins Kiss and Remember. *Curr
786 Biol* **26**, R285-288 (2016).

787 11. D. P. Staus *et al.*, Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid
788 nanodisc. *Nature* **579**, 297-302 (2020).

789 12. W. Huang *et al.*, Structure of the neuropeptid Y receptor 1 in complex with beta-arrestin 1.
790 *Nature* **579**, 303-308 (2020).

791 13. Y. Lee *et al.*, Molecular basis of beta-arrestin coupling to formoterol-bound beta(1)-
792 adrenoceptor. *Nature* **583**, 862-866 (2020).

793 14. C. Cao *et al.*, Signaling snapshots of a serotonin receptor activated by the prototypical
794 psychedelic LSD. *Neuron* **110**, 3154-3167 e3157 (2022).

795 15. W. Yin *et al.*, A complex structure of arrestin-2 bound to a G protein-coupled receptor. *Cell
796 Res* **29**, 971-983 (2019).

797 16. J. Bous *et al.*, Structure of the vasopressin hormone-V2 receptor-beta-arrestin1 ternary
798 complex. *Sci Adv* **8**, eab07761 (2022).

799 17. J. Maharana *et al.*, Structural snapshots uncover a key phosphorylation motif in GPCRs
800 driving beta-arrestin activation. *Mol Cell*, (2023).

801 18. P. Isaikina *et al.*, A key GPCR phosphorylation motif discovered in arrestin2-CCR5
802 phosphopeptide complexes. *Mol Cell*, (2023).

803 19. D. Mayer *et al.*, Distinct G protein-coupled receptor phosphorylation motifs modulate
804 arrestin affinity and activation and global conformation. *Nat Commun* **10**, 1261 (2019).

805 20. X. E. Zhou *et al.*, Identification of Phosphorylation Codes for Arrestin Recruitment by G
806 Protein-Coupled Receptors. *Cell* **170**, 457-469 e413 (2017).

807 21. J. Maharana *et al.*, Structural snapshots uncover a key phosphorylation motif in GPCRs
808 driving beta-arrestin activation. *Mol Cell* **83**, 2091-2107 e2097 (2023).

809 22. A. B. Tobin, A. J. Butcher, K. C. Kong, Location, location, location...site-specific GPCR
810 phosphorylation offers a mechanism for cell-type-specific signalling. *Trends Pharmacol Sci*
811 **29**, 413-420 (2008).

812 23. A. B. Tobin, G-protein-coupled receptor phosphorylation: where, when and by whom. *British
813 Journal of Pharmacology* **153**, S167-S176 (2008).

814 24. J. L. DeGraff, V. V. Gurevich, J. L. Benovic, The third intracellular loop of alpha 2-adrenergic
815 receptors determines subtype specificity of arrestin interaction. *J Biol Chem* **277**, 43247-
816 43252 (2002).

817 25. R. Pals-Rylaarsdam *et al.*, Internalization of the m2 muscarinic acetylcholine receptor.
818 Arrestin-independent and -dependent pathways. *J Biol Chem* **272**, 23682-23689 (1997).

819 26. M. M. Hosey *et al.*, Molecular events associated with the regulation of signaling by M2
820 muscarinic receptors. *Life Sci* **64**, 363-368 (1999).

821 27. S. Pandey, J. Maharana, X. X. Li, T. M. Woodruff, A. K. Shukla, Emerging Insights into the
822 Structure and Function of Complement C5a Receptors. *Trends Biochem Sci* **45**, 693-705
823 (2020).

824 28. S. Pandey *et al.*, Intrinsic bias at non-canonical, beta-arrestin-coupled seven transmembrane
825 receptors. *Mol Cell* **81**, 4605-4621 e4611 (2021).

826 29. S. Rajagopal *et al.*, Beta-arrestin- but not G protein-mediated signaling by the "decoy"
827 receptor CXCR7. *Proc Natl Acad Sci U S A* **107**, 628-632 (2010).

828 30. E. M. Borroni *et al.*, beta-Arrestin-Dependent Activation of the Cofilin Pathway Is Required
829 for the Scavenging Activity of the Atypical Chemokine Receptor D6 (vol 6, ra30, 2013).
830 *Science Signaling* **6**, (2013).

831 31. M. H. Ulvmar, E. Hub, A. Rot, Atypical chemokine receptors. *Exp Cell Res* **317**, 556-568
832 (2011).

833 32. G. J. Graham, M. Locati, A. Mantovani, A. Rot, M. Thelen, The biochemistry and biology of
834 the atypical chemokine receptors. *Immunol Lett* **145**, 30-38 (2012).

835 33. C. Cancellieri, A. Vacchini, M. Locati, R. Bonecchi, E. M. Borroni, Atypical chemokine
836 receptors: from silence to sound. *Biochem Soc Trans* **41**, 231-236 (2013).

837 34. R. J. Nibbs, G. J. Graham, Immune regulation by atypical chemokine receptors. *Nat Rev
838 Immunol* **13**, 815-829 (2013).

839 35. A. K. Shukla *et al.*, Visualization of arrestin recruitment by a G-protein-coupled receptor.
840 *Nature* **512**, 218-222 (2014).

841 36. S. Pandey *et al.*, Partial ligand-receptor engagement yields functional bias at the human
842 complement receptor, C5aR1. *J Biol Chem* **294**, 9416-9429 (2019).

843 37. D. E. Croker *et al.*, Discovery of functionally selective C5aR2 ligands: novel modulators of C5a
844 signalling. *Immunology and Cell Biology* **94**, 787-795 (2016).

845 38. Y. C. Yen *et al.*, Structures of atypical chemokine receptor 3 reveal the basis for its
846 promiscuity and signaling bias. *Sci Adv* **8**, eabn8063 (2022).

847 39. H. T. Nguyen *et al.*, CXCR7: a beta-arrestin-biased receptor that potentiates cell migration
848 and recruits beta-arrestin2 exclusively through Gbetagamma subunits and GRK2. *Cell Biosci*
849 **10**, 134 (2020).

850 40. M. Han, V. V. Gurevich, S. A. Vishnivetskiy, P. B. Sigler, C. Schubert, Crystal structure of beta-
851 arrestin at 1.9 Å: possible mechanism of receptor binding and membrane Translocation.
852 *Structure* **9**, 869-880 (2001).

853 41. X. Zhan, L. E. Gimenez, V. V. Gurevich, B. W. Spiller, Crystal structure of arrestin-3 reveals the
854 basis of the difference in receptor binding between two non-visual subtypes. *J Mol Biol* **406**,
855 467-478 (2011).

856 42. E. M. Schmid *et al.*, Role of the AP2 beta-appendage hub in recruiting partners for clathrin-
857 coated vesicle assembly. *PLoS Biol* **4**, e262 (2006).

858 43. M. Seyedabadi, M. Gharghabi, E. V. Gurevich, V. V. Gurevich, Receptor-Arrestin Interactions:
859 The GPCR Perspective. *Biomolecules* **11**, (2021).

860 44. R. H. Oakley, S. A. Laporte, J. A. Holt, M. G. Caron, L. S. Barak, Differential affinities of visual
861 arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two
862 major classes of receptors. *J Biol Chem* **275**, 17201-17210 (2000).

863 45. L. L. Porter *et al.*, Many dissimilar NusG protein domains switch between alpha-helix and
864 beta-sheet folds. *Nature Communications* **13**, (2022).

865 46. E. Ghosh *et al.*, Conformational Sensors and Domain Swapping Reveal Structural and
866 Functional Differences between beta-Arrestin Isoforms. *Cell Rep* **28**, 3287-3299 e3286
867 (2019).

868 47. N. R. Latorraca *et al.*, Molecular mechanism of GPCR-mediated arrestin activation. *Nature*
869 **557**, 452-456 (2018).

870 48. M. K. Yadav, V. Singh, S. Saha, A. K. Shukla, A streamlined protocol for expression and
871 purification of wild-type beta-arrestins. *Methods Enzymol* **682**, 465-475 (2023).

872 49. E. Ghosh *et al.*, A synthetic intrabody-based selective and generic inhibitor of GPCR
873 endocytosis. *Nat Nanotechnol* **12**, 1190-1198 (2017).

874 50. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image
875 analysis. *Nat Methods* **9**, 671-675 (2012).

876 51. M. Baidya *et al.*, Allosteric modulation of GPCR-induced beta-arrestin trafficking and
877 signaling by a synthetic intrabody. *Nat Commun* **13**, 4634 (2022).

878 52. K. N. Nobles, Z. Guan, K. Xiao, T. G. Oas, R. J. Lefkowitz, The active conformation of beta-
879 arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational
880 differences in the active states of beta-arrestins1 and -2. *J Biol Chem* **282**, 21370-21381
881 (2007).

882 53. K. Xiao, S. K. Shenoy, K. Nobles, R. J. Lefkowitz, Activation-dependent conformational
883 changes in {beta}-arrestin 2. *J Biol Chem* **279**, 55744-55753 (2004).

884 54. J. Zivanov *et al.*, A Bayesian approach to single-particle electron cryo-tomography in RELION-
885 4.0. *Elife* **11**, (2022).

886 55. J. Zivanov, T. Nakane, S. H. W. Scheres, Estimation of high-order aberrations and anisotropic
887 magnification from cryo-EM data sets in RELION-3.1. *IUCrJ* **7**, 253-267 (2020).

888 56. J. Zivanov *et al.*, New tools for automated high-resolution cryo-EM structure determination
889 in RELION-3. *Elife* **7**, (2018).

890 57. S. Q. Zheng *et al.*, MotionCor2: anisotropic correction of beam-induced motion for improved
891 cryo-electron microscopy. *Nat Methods* **14**, 331-332 (2017).

892 58. R. Sanchez-Garcia *et al.*, DeepEMhancer: a deep learning solution for cryo-EM volume post-
893 processing. *Commun Biol* **4**, 874 (2021).

894 59. D. Liebschner *et al.*, Macromolecular structure determination using X-rays, neutrons and
895 electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877 (2019).

896 60. P. D. Adams *et al.*, PHENIX: a comprehensive Python-based system for macromolecular
897 structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221 (2010).

898 61. B. Webb, A. Sali, Comparative Protein Structure Modeling Using MODELLER. *Curr Protoc
899 Protein Sci* **86**, 2 9 1-2 9 37 (2016).

900 62. E. F. Pettersen *et al.*, UCSF Chimera--a visualization system for exploratory research and
901 analysis. *J Comput Chem* **25**, 1605-1612 (2004).

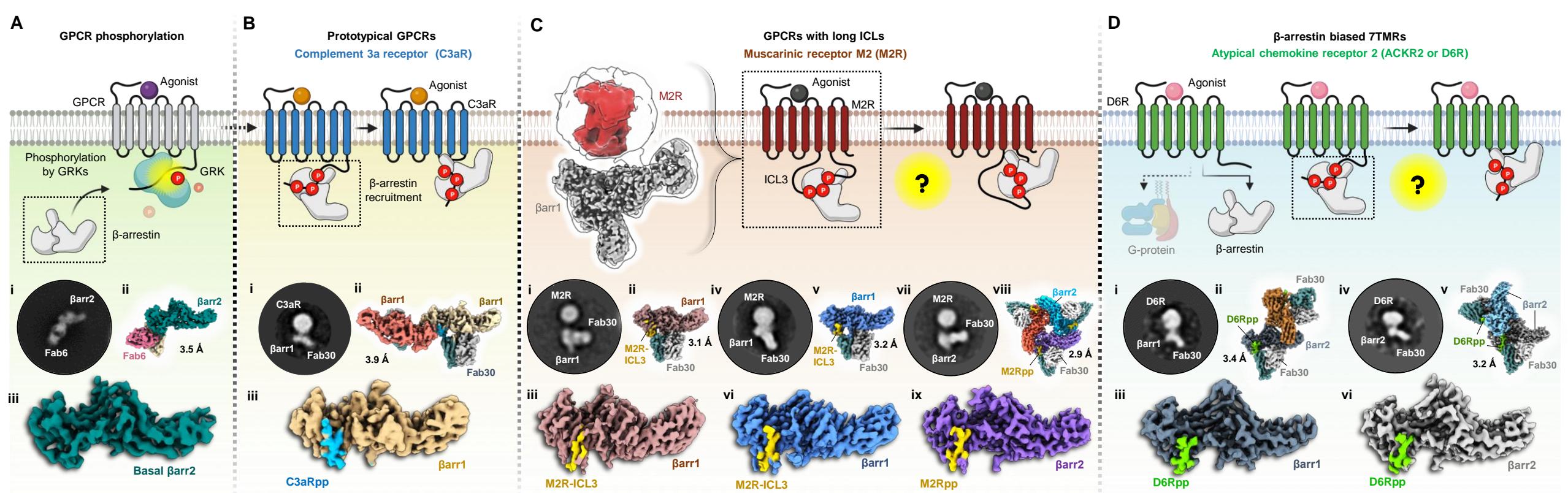
902 63. E. F. Pettersen *et al.*, UCSF ChimeraX: Structure visualization for researchers, educators, and
903 developers. *Protein Sci* **30**, 70-82 (2021).

904 64. P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics. *Acta Crystallogr D
905 Biol Crystallogr* **60**, 2126-2132 (2004).

906 65. V. B. Chen *et al.*, MolProbity: all-atom structure validation for macromolecular
907 crystallography. *Acta Crystallogr D Biol Crystallogr* **66**, 12-21 (2010).

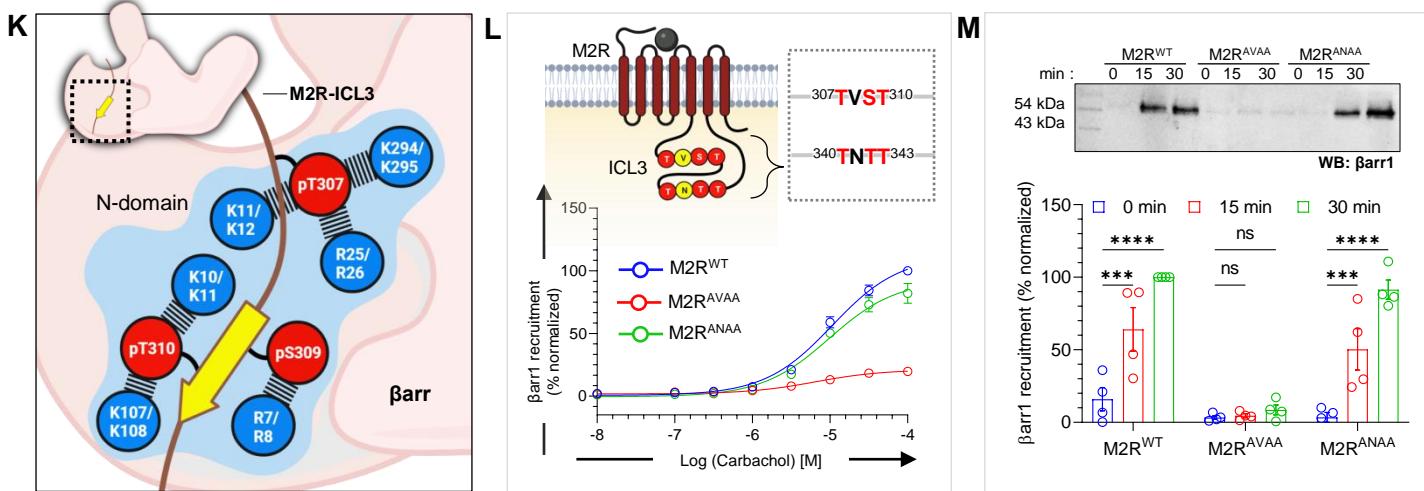
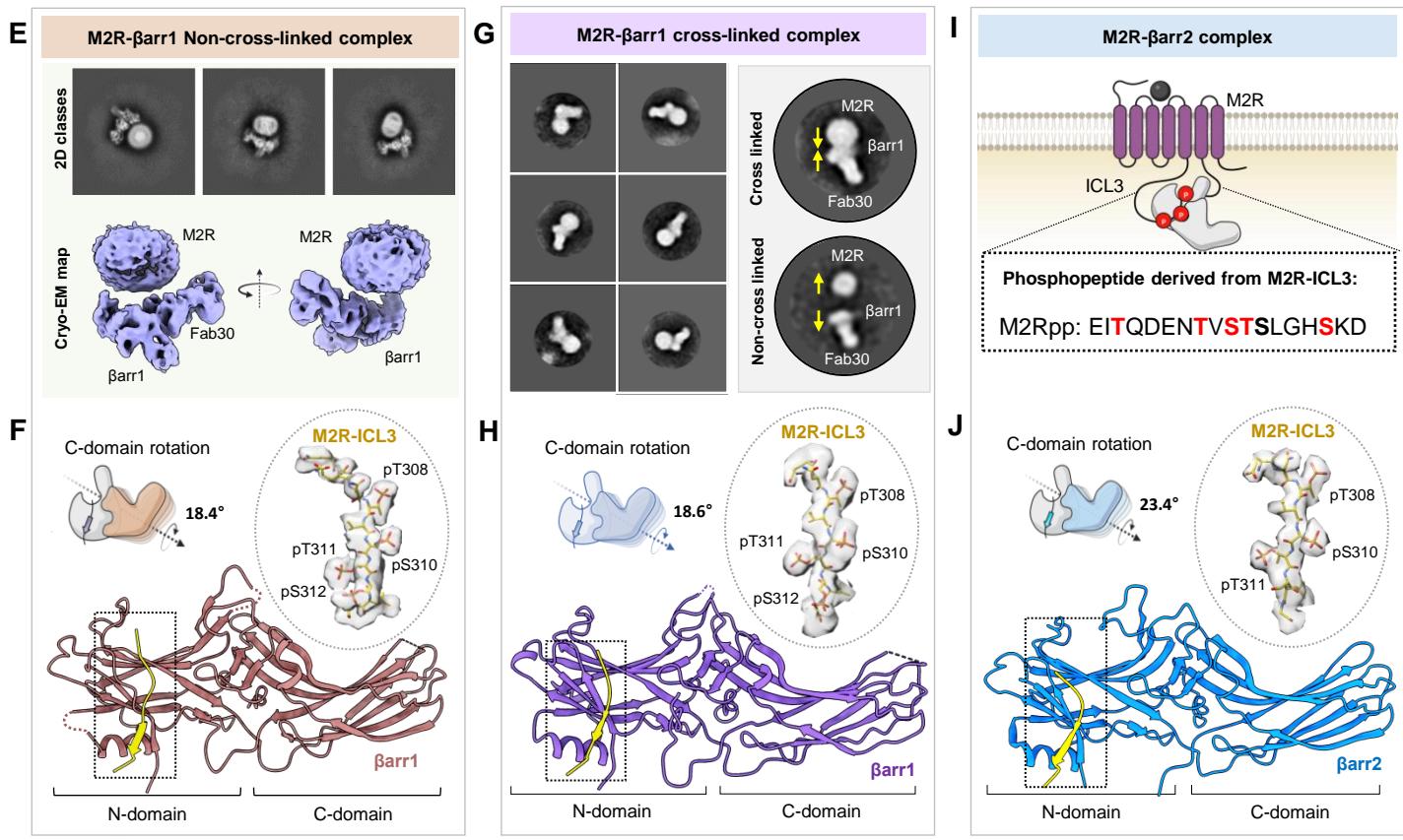
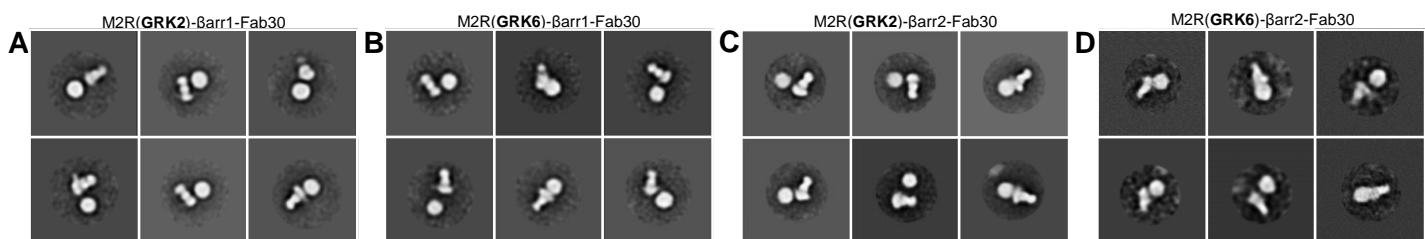
908 66. S. Pandey, D. Roy, A. K. Shukla, Measuring surface expression and endocytosis of GPCRs
909 using whole-cell ELISA. *Methods Cell Biol* **149**, 131-140 (2019).

910 67. S. P. Dwivedi-Agnihotri H, Deeksha S, Kawakami K, Inoue A, Shukla AK., An intrabody sensor
911 to monitor conformational activation of β -arrestins. *Methods in Cell Biology* **169**, 267-278.
912 (2022).

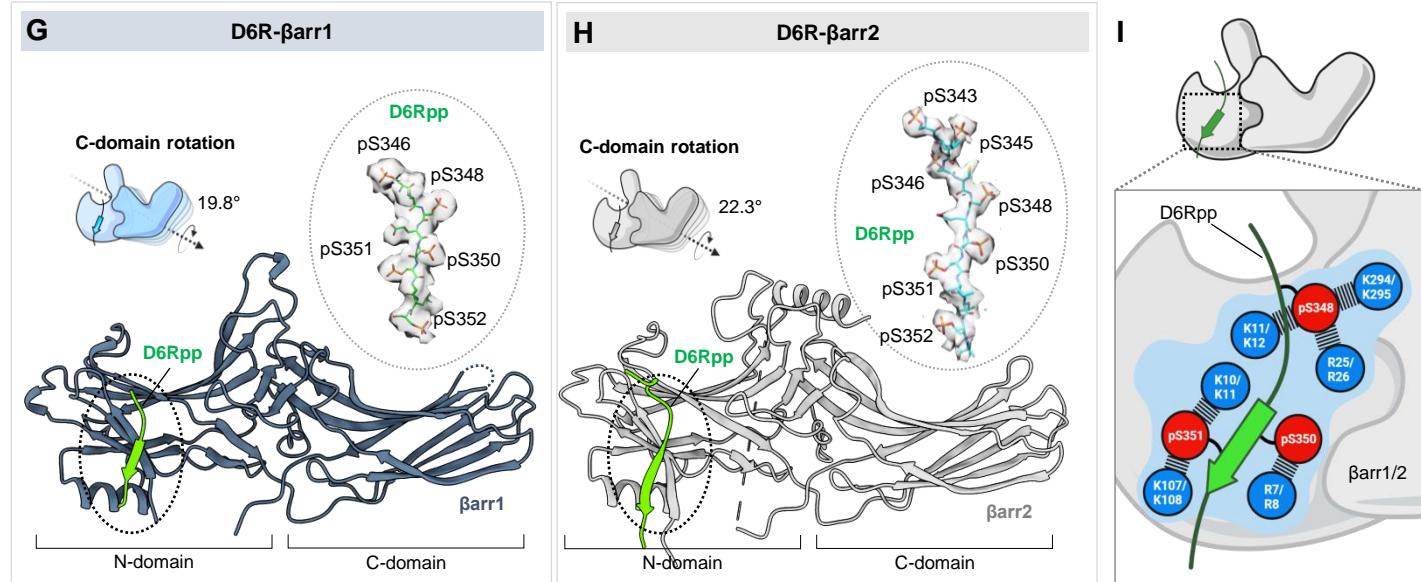
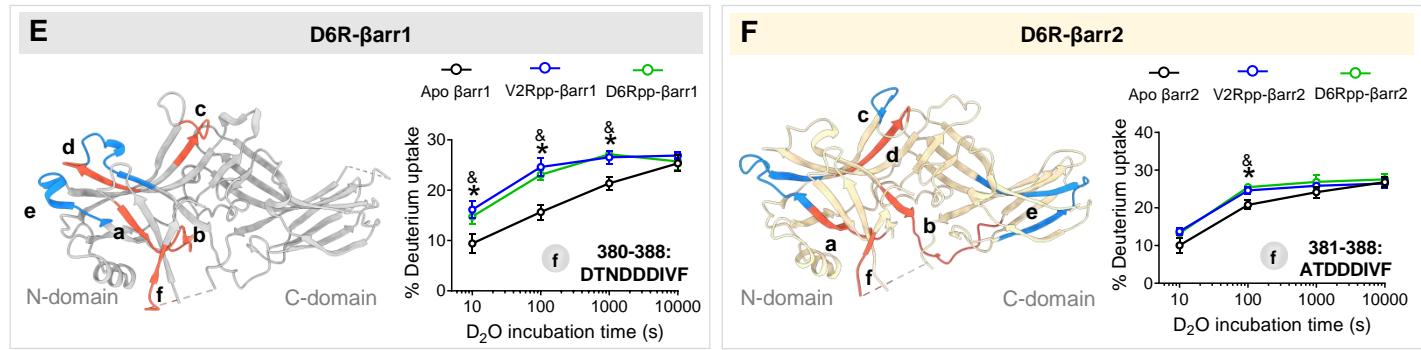
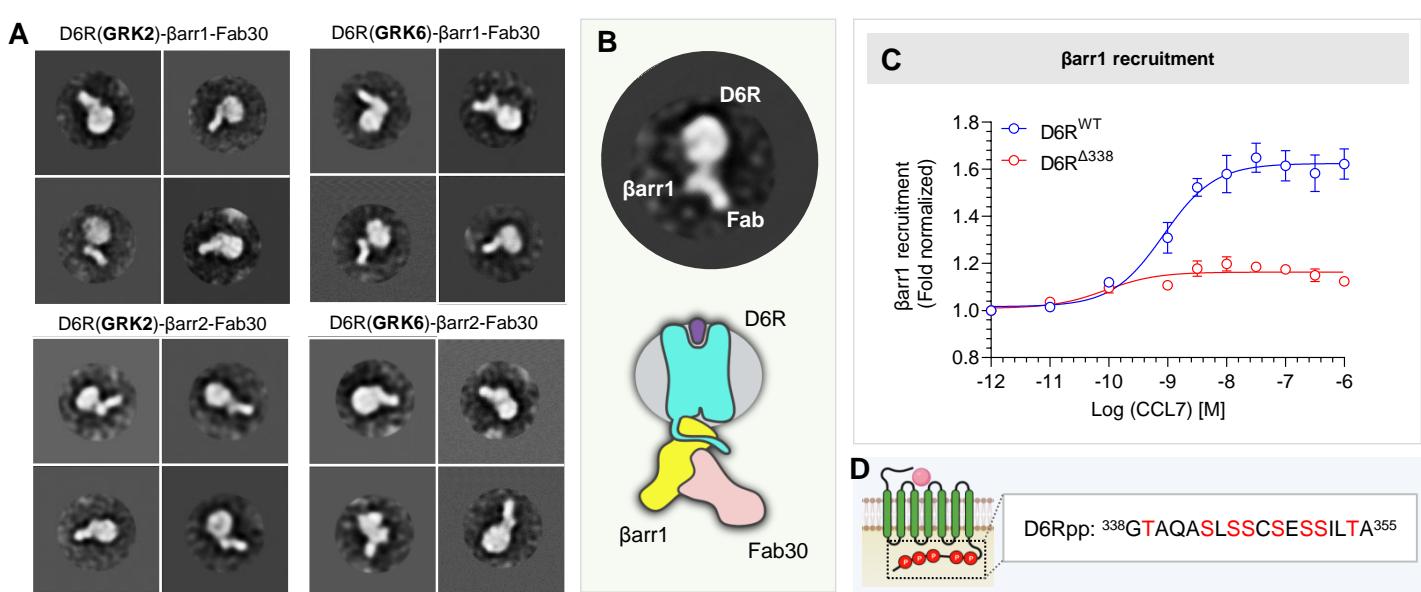

913 68. K. Kawakami *et al.*, Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity
914 underlying beta-arrestin transducer bias. *Nat Commun* **13**, 487 (2022).

915 69. S. Saha, A. Ranjan, M. Godara, A. K. Shukla, In-cellulo chemical cross-linking to visualize
916 protein-protein interactions. *Methods Cell Biol* **169**, 295-307 (2022).

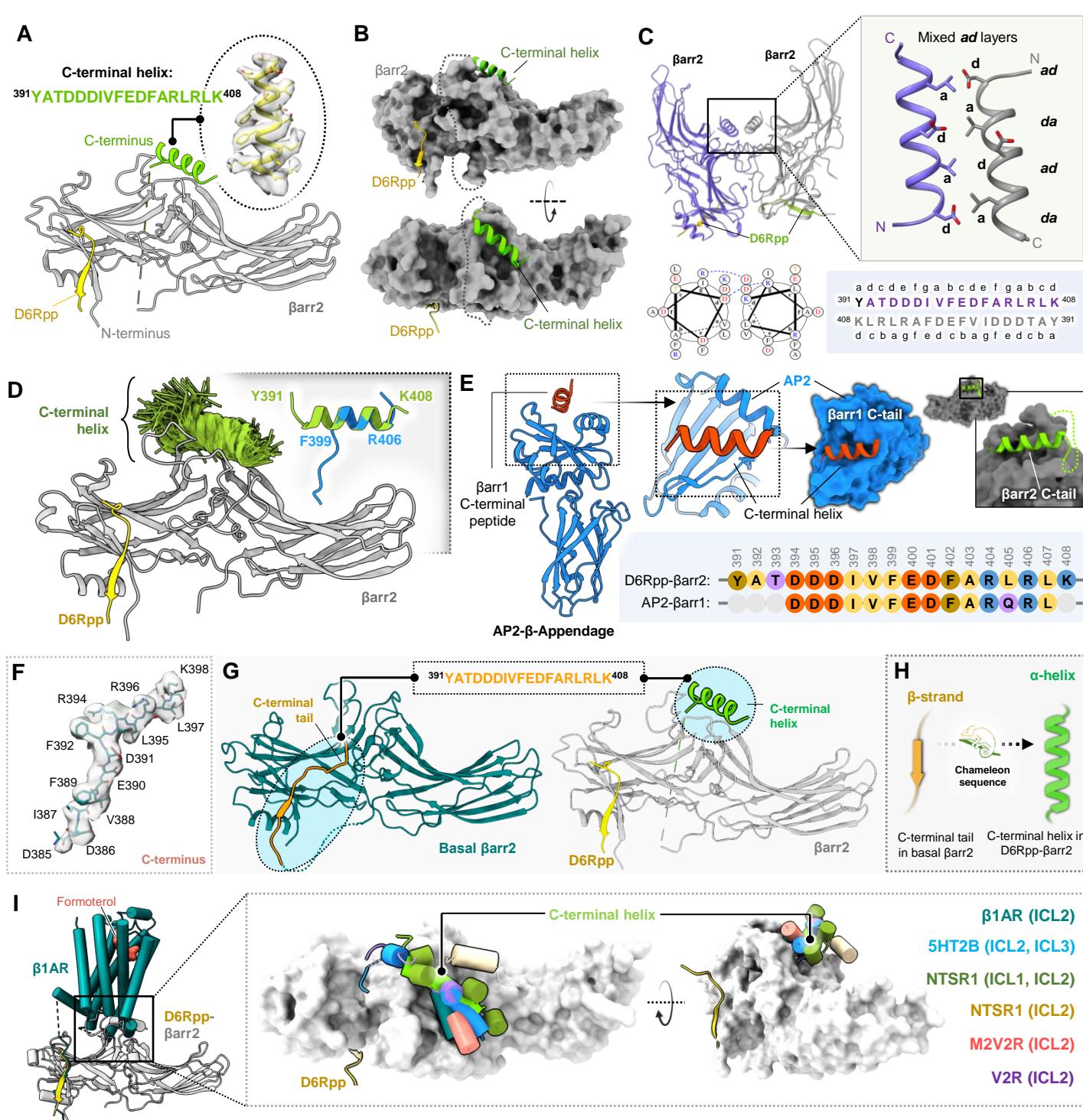
917 70. J. Huang *et al.*, CHARMM36m: an improved force field for folded and intrinsically disordered
918 proteins. *Nat Methods* **14**, 71-73 (2017).




919 71. M. J. Harvey, G. Giupponi, G. D. Fabritiis, ACEMD: Accelerating Biomolecular Dynamics in the
920 Microsecond Time Scale. *J Chem Theory Comput* **5**, 1632-1639 (2009).

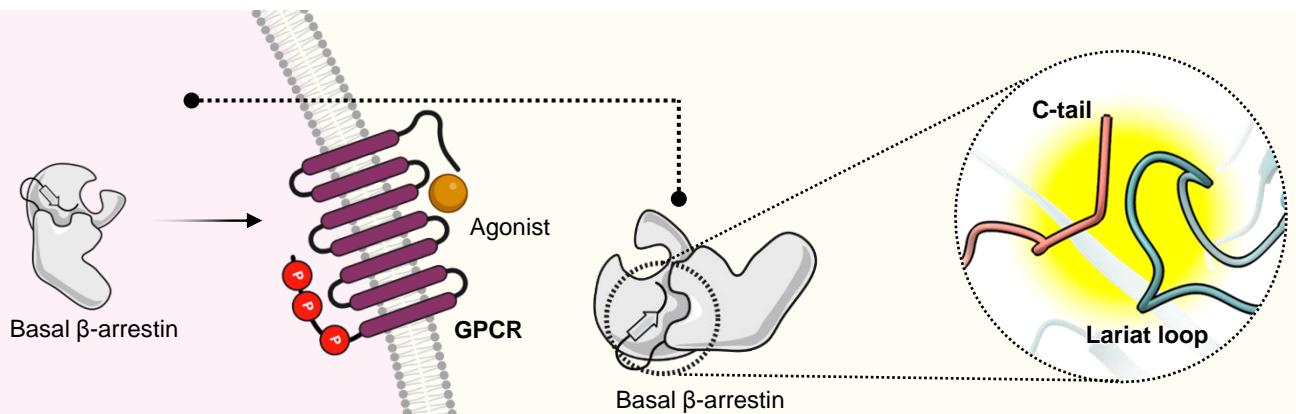
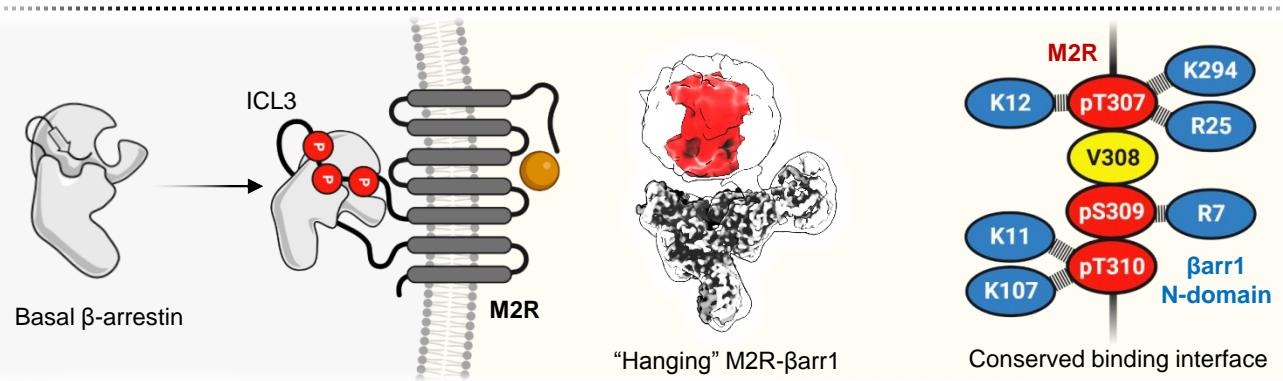
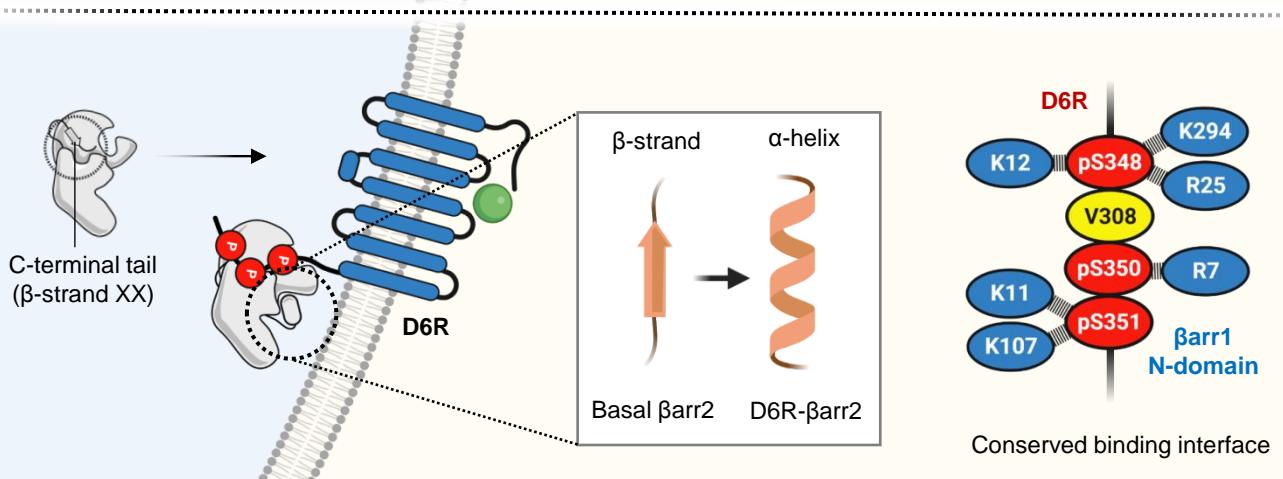
921




Fig. 1. A structural approach to understand the atypical modes of β arr interaction with 7TMRs.

(A) Phosphorylation by GRKs mediate β arr interaction with GPCRs. Cryo-EM structure of full-length β arr2 sheds light into its basal state conformation. (i, ii, iii) 2D class average, overall 3D map of β arr2 bound to Fab6 and structure of β arr2 alone are shown. **(B)** Two distinct modes of interactions of β -arrestins with the phosphorylated tail of GPCRs. The phosphorylation pattern of complement receptor C3aR has been utilized to delineate the “hanging” mode of β arr interaction. (i, ii, iii) 2D class average, overall dimeric 3D map and structure of C3aRpp- β arr1 are presented. **(C)** Muscarinic receptor 2 was chosen to represent the class of GPCRs that control β arr activation and signalling through extended intracellular loops. Lack of phosphorylation at the C-terminus raises the question of the existence of the biphasic mode of β arr interaction. A 3D reconstruction has been shown to the left to show a “hanging” mode of complex organization. High resolution structures of M2R-ICL3 bound β arr1/2 are shown below. 2D class average, overall 3D map and structure of (i, ii, iii) M2R- β arr1, (iv, v, vi) M2R- β arr1 of cross-linked complex, and (vii, viii, ix) M2Rpp- β arr2 are shown. **(D)** β arr biased 7TMRs lack G protein coupling, but signal through β arrs. The mode of β arr interaction to this class of receptors is yet to be explored and presented as a schematic diagram. To explore the possibilities of the “hanging” mode, structures of β arr1/2 have been determined in complex with the phosphorylation patterns of the Decoy receptor D6R or ACKR2. 2D class average, overall dimeric 3D map and structure of (i, ii, iii) D6Rpp- β arr1, and (iv, v, vi) D6Rpp- β arr2 have been shown. The estimated resolutions for all the structures have been mentioned against each map.


Fig. 2. Structural insights into ICL3 driven βarr interaction with M2R.

(A, B, C, D) Negative staining EM class averages of M2R, endogenously phosphorylated by GRK2/6 in complex with βarr1 or βarr2. **(E)** Cryo-EM 2D classes, 3D reconstruction of “hanging” M2R-βarr1-Fab30 complex. **(F)** structure of βarr1 bound to phosphorylated M2R-ICL3. The EM density of ICL3 has been shown in inset. βarr1 attains an active conformation with a C-domain rotation of 18.4° with respect to the N-domain. **(G)** On-column crosslinking was performed to rigidify the M2R-βarr1 complex. Representative negative staining EM 2D classes have been presented to depict the effect of cross-linking. While yellow arrows show potential movement of the complex subunits. **(H)** Structure of cross-linked M2R-βarr1 complex. The EM density of ICL3 has been shown in inset. C-domain rotation value with respect to N-domain is 18.6°. **(I)** Sequence of phosphopeptide derived from the ICL3 of M2R. **(J)** Structure of M2Rpp-βarr2 in ribbon representation. M2Rpp is shown in yellow and βarr2 in blue. Density map of phosphopeptide has been displayed to the left. βarr2 attains an active conformation with 23.4° rotation of C-domain upon activation with M2Rpp. **(K)** The phosphorylated residues from ICL3 make critical contacts with the Lys and Arg residues present on the N-domains of βarrs. Lys and Arg residues of βarr1 (upper) and βarr2 (lower) have been highlighted in blue. **(L)** Cartoon representation illustrating the presence of possible phosphorylation clusters in the ICL3 of M2R. Mutations of the two phosphor-motifs: TVST and TNTT have been generated to assess the βarr recruitment measured by bystander NanoBiT assay (receptor+SmBiT-βarr1+LgBiT-CAAX). Substitution of phosphosites of TVST to AVAA leads to abrupt reduction in βarr recruitment, whereas, TNTT to ANAA substitution maintained βarr recruitment, suggesting critical role played by TVST on βarr recruitment to M2R. (mean±SEM; n=3; normalized with respect to highest ligand concentration signal for M2RWT as 100%). **(M)** Role of TVST in βarr recruitment is further corroborated by co-immunoprecipitation assay. On Carbachol stimulation, M2RAVAA showed dramatic reduction in βarr1 recruitment. A representative blot and densitometry-based quantification (mean±SEM; n=4; normalized with M2R 30min stimulation condition signal as 100%; Two-way ANOVA, Tukey’s multiple comparisons test) is presented. The exact p values are as follows: M2R^{WT} - 0 vs. 15min = 0.0006, M2R^{WT} - 0min vs. 30min = <0.0001, M2RANAA - 0min vs. 15min = 0.0008, M2RANAA - 0min vs. 30min = <0.0001. (**p = 0.0001; ****p < 0.0001; ns, non-significant).




Fig. 3. Structural insights into D6R-βarr complex interaction and activation.

(A) Reconstitution of D6R-βarr1 complex and visualization by negative staining EM. 2D class averages of D6R-βarr1/2 complexes endogenously phosphorylated with GRK2/6. **(B)** A representative 2D class average has been illustrated to highlight the “hanging” mode of βarr1 interaction with the receptor. **(C)** Dose response curve for CCL7-induced βarr1 recruitment for the mentioned D6R constructs using NanoBiT assay (Receptor-SmBiT+LgBiT-βarr1) (mean±SEM; n=3; normalized with respect to the lowest ligand concentration signal as 1). **(D)** Design of selected phosphopeptide derived from the C-terminus of D6R. **(E, F)** HDX-MS plots to show the potential of generated phosphopeptides from D6R to activate βarr1 and βarr2, respectively. Among regions (a-f) showing significant changes upon deuterium exchange, the fragment at the C-terminus (f) has been demonstrated to show activation of βarrs upon D6Rpp binding. **(G)** Structure of D6Rpp-βarr1 complex in ribbon representation. The density map of D6Rpp has been shown to the left. C-domain rotation of βarr1 bound to D6Rpp is 19.8°. **(H)** Structure of D6Rpp-βarr2 complex in ribbon representation. The density map of D6Rpp has been shown to the left. C-domain rotation of βarr2 bound to D6Rpp was calculated to be 22.3°. **(I)** The phosphorylation pattern from D6Rpp engage with a network of Lys and Arg residues present on the N-domains of βarrs. Residues highlighted in blue circles show the Lys and Arg residues in βarr1 (upper) and βarr2 (lower) respectively.

Fig. 4. Discovery of a C-terminal helix in D6R activated β barr2.

(A) Cartoon representation of β barr2 bound to D6R phosphopeptide. β barr2 and D6Rpp are presented in gray and yellow respectively, while the sequence of the C-terminal helix has been provided in an inset. **(B)** D6Rpp- β barr2 structure has been displayed in surface representation in two different views to highlight the pose of the helix. The C-terminal helix (green) and D6Rpp (yellow) are shown as ribbon diagrams. **(C)** Dimeric organization of D6Rpp- β barr2 structure shown in ribbon representation (top left). Formation of anti-parallel coiled-coil (obtained using DrawCoil 1.0 by the C-terminal helix of β barr2 at the dimeric interface (top right) shown as cartoon representation. The anti-parallel coiled-coil exhibits mixed *ad* layers. Helical wheel representation of the anti-parallel coiled-coil shows Asp at position *d* of one helix which forms salt bridge with Arg at position *g* in the other helix (bottom left). Heptad helical representation of the anti-parallel coiled-coil residues in the β barr2 sequence (bottom right). **(D)** MD simulations confirm stability of the distal C-terminal helix/ β barr2 interface. Structural snapshots (1 snapshot every 10ns, 7 x 250ns of simulation time) presented here are of the position of the C-tail during simulation. For each residue, frames where it assembles a α -helical conformation are colored green. Fragments of the C-terminal helix can spontaneously assemble a α -helical conformation (right corner, blue cartoon) in 3 out of 4 independent MD simulations (each 2 μ s) which is overlayed with the crystallized C-tail for comparison (green cartoon). The For each residue, frames where it assembles a helical conformation are colored green. Comparison of a spontaneously assembled helical conformation of the β barr2 C-tail (blue) with that present in the structure (gray). **(E)** Structure of AP2- β -appendage protein in complex with β barr1 C-terminal peptide (PDB 2IV8) has been shown as cartoon representation (left). The β barr1 C-terminal peptide can be seen to adopt similar helical conformation as the C-terminal helix in the D6Rpp bound β barr2 structure (right). The sequence alignment of the C-terminal stretches of β barr1 and β barr2 are shown in inset. **(F)** Cryo-EM density map of the isolated C-terminus of β barr2 has been illustrated. **(G)** The peptide stretch sequence (top) of C-tail in basal β barr2 transforms into a helical conformation in D6Rpp bound state (highlighted in cyan circles). **(H)** The C-tail of β barr2 exhibits a chameleon like property adopting a helical conformation in active state from a β -strand in the basal state. **(I)** Ribbon representation of β 1AR- β barr1 structure superimposed with D6Rpp- β barr2 on β barrs (left) shows positioning of C-terminal helix on the central crest of β barrs. Upon structural superimposition with all reported GPCR- β barr1 structures, ICL1/2/3 of various receptors reside on the central crest as C-terminal helix on D6Rpp- β barr2 (right).

A**B****C**

Fig. 5. Non-canonical nature of Barr interaction with 7TMRs.

(A) Barrs in basal state get recruited to phosphorylated GPCRs. The basal conformation of Barrs is stabilized by extensive interactions between the C-terminus and the lariat loop of Barrs. **(B)** M2R-Barr1 adopts a “partially engaged” or “hanging” mode of complex in solution. Despite harboring phosphorylation patterns on long ICL3 in M2R, Barrs engage in similar interaction as in a prototypical receptor. **(C)** Barrs provide a similar set of interacting residues for engaging with the phosphorylated tail of D6R as canonical GPCRs. The C-tail of Barr2 adopts a β -strand conformation in its basal state, whereas it attains an α -helical form upon binding to D6Rpp. Moreover, positioning of the C-terminal helix might sterically clash with ICLs of D6R and could prevent a core-engaged conformation of Barr2 when present in an intact D6R bound complex.