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Abstract

Learning effective representations is crucial for understanding proteins and their
biological functions. Recent advancements in language models and graph neural
networks have enabled protein models to leverage primary or tertiary structure
information to learn representations. However, the lack of practical methods to
deeply co-model the relationships between protein sequences and structures has
led to suboptimal embeddings. In this work, we propose CoupleNet, a network that
couples protein sequence and structure to obtain informative protein representations.
CoupleNet incorporates multiple levels of features in proteins, including the residue
identities and positions for sequences, as well as geometric representations for
tertiary structures. We construct two types of graphs to model the extracted
sequential features and structural geometries, achieving completeness on these
graphs, respectively, and perform convolution on nodes and edges simultaneously
to obtain superior embeddings. Experimental results on a range of tasks, such as
protein fold classification and function prediction, demonstrate that our proposed
model outperforms the state-of-the-art methods by large margins.

1 Introduction

Proteins are the fundamental building blocks of life and play essential roles in a diversity of ap-
plications, from therapeutics to materials. They are composed of 20 different basic amino acids,
which are lined by peptide bonds and form a sequence. The one-dimensional (1D) sequence of a
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Figure 1: Illustration of the protein sequence and structure. 1) The primary structure comprises n
amino acids. 2) The tertiary structure with atom arrangement in Euclidean space is presented, where
each atom has a specific 3D coordinate. Amino acids have fixed backbone atoms (C,, C,N, O)
and side-chain atoms that vary depending on the residue types. GLU: Glutamic acid. Complete
geometries can be obtained based on these coordinates. The sequence and structure provide different
information types and data categories.

protein determines its structure, which in turn determines its biochemical function [40]]. Due to recent
progress in protein sequencing [34]], massive numbers of protein sequences are now available. For
example, the UniProt [3]] database contains over 200 million protein sequences with annotations,
e.g., gene ontology (GO) terms, similar proteins, family and domains. Notably, the development of
large-scale language models (LMs) in natural language processing has substantially benefited protein
research owing to similarities between human language and protein sequences [[16}27]]. For instance,
models like ProtTrans [[14] and ESM-series [39}|33]] in learning protein representations have proven
successful utility of pre-training protein LMs with self-supervision to process protein sequences.

Thanks to the recent significant progress made by AlphaFold2 [30] in three-dimensional (3D) structure
prediction, a large number of protein structures from their sequence data are now made available. The
latest release of AlphaFold protein structure database [43]] provides broad coverage of UniProt [3].
Recently proposed structure-based protein encoders become to utilize geometric features 25} |24,
53], e.g., ProNet [47]] learns representations of proteins with 3D structures at different levels, like the
amino acid, backbone or all-atom levels. There also exists a group of methods that build graph neural
networks and LMs (LSTMs or attention models) to process sequence and structure [53],|50} 19]], for
example, GearNet [53]] encodes sequential and spatial features by alternating node and edge message
passing on protein residue graphs.

The 1D sequence and 3D structure of a protein provide different types of information, in detail, as
shown in Figure[I] compared with the 1D sequential order and amino acids in peptide chains, the
tertiary structure provides 3D coordinates of each atom in protein residues, which allow them to
perform precise functions. Although a protein’s sequence determines its structure, various works
have demonstrated the effectiveness of learning from either sequence or structure [33}25]]. However,
rich constraints between the sequence and structure of a protein, which may be critical for protein
tasks [4], have yet to be fully explored. Most protein sequence-structure modeling methods cannot
deeply integrate the information behind sequence and structure for the reason that they tend to fuse
representations together, extracted from sequence and structure encoders, respectively, by message
passing mechanism [8]] or by simple concatenation operations.

In this work, we aim to learn protein representations by deeply coupling the protein sequences and
structures. Considering the relative positions of residues in the sequence and the spatial arrangement
of atoms in the Euclidean space, the proposed CoupleNet constructs two categories of graphs for them,
respectively. The complete representations are obtained at the base and backbone levels on the two
graphs, which are used as node and edge features to learn the final graph-level representations. Rather
than concatenating sequence and structure representations, we take advantage of graph convolutions,
performing node and edge convolutions simultaneously. The contributions of this paper are threefold:

* We propose a novel two-graph-based approach for representing the sequence and the 3D
geometric structure of a protein, which is an effective way to guarantee completeness.
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* We propose CoupleNet, a model that performs convolutions on nodes and edges of graphs
to effectively integrate protein sequence and structure. This can better model the node-edge
relationships and utilize the intrinsic associations between sequences and structures.

* Practically, the proposed model is verified by obtaining new state-of-the-art experimental
results compared with current mainstream protein representation learning methods on a
range of tasks, including protein fold classification, enzyme reaction classification, GO term
prediction, domain prediction, and enzyme commission number prediction.

2 Related Work

Protein Representation Learning Protein representation learning has become an active and promis-
ing direction in biology, which is essential to various downstream tasks in protein science. Because
of the different levels of protein structures, existing methods mainly fall into three categories: protein
LMs for sequences, structure models for geometry, and hybrid methods for both of them. As proteins
are sequences of amino acids, considering their similarities with human languages, UniRep [1],
UDSMProt [42] and SeqVec [23]] use LSTM or its variants to learn sequence representations and
long-range dependencies. TAPE [37] benchmarks a group of protein models, e.g., 1D CNN, LSTM,
and Transformer by various tasks. Elnaggar et al. [[14]] have trained six successful transformer variants
on billions of amino acid sequences, like ProtBert, and ProtT5. Similarly, ESM-series 39|38} |33]
employs a transformer architecture and a masked language modeling strategy to train robust represen-
tations based on large-scale databases. Besides the protein sequence, as we have stated before, the
3D geometric structure is vital to enhance protein representations. Most methods commonly seek to
encode the spatial information of protein structures by convolutional neural networks (CNNs) [11]],
or graph neural networks [19, 2 29]. For instance, SPROF [7]] employs distance maps to predict
protein sequence profiles, and IEConv [25]] introduces a convolution operator to capture all relevant
structural levels of a protein. GVP-GNN [29] designs the geometric vector perceptrons (GVP) for
learning both scalar and vector features in an equivariant and invariant manner, Guo et al. [21]]
adopt SE(3)-invariant features as the model inputs and reconstruct gradients over 3D coordinates to
avoid the usage of complicated SE(3)-equivariant models. ProNet [47]] learns hierarchical protein
representations at multiple tertiary structure levels of granularity. Moreover, CDConv [[15] proposes
continuous-discrete convolution using irregular and regular approaches to model the geometry and
sequence structures. Some protein learning methods model the multi-level of structures at the same
time [353] |6} |15]], except for the primary structure and the tertiary structure, the second refers to the
3D form of local segments of proteins (e.g., a-helix, S-strand), the quaternary is a protein multimer
comprising multiple polypeptides, for example, PromtProtein [48]] adopts a prompt-guided multi-task
learning strategy for different protein structures with specific pre-training tasks. While previous
works have attempted to combine protein sequence and structure, we focus on profoundly integrat-
ing them by specifically designing two types of graphs respectively and conducting convolutions
simultaneously to learn protein representations.

Complete Message Passing Mechanism ComENet [46] proposes rotation angles and spherical
coordinates to fulfil the global completeness of 3D information on molecular graphs. By incorporating
these designed geometric representations into the message passing scheme [18]], the complete
representation for a whole 3D graph is eventually yielded [47]]. Unlike these methods, we couple
sequence and structure via corresponding graphs and different geometric representations to obtain
completeness representations.

3 Method

3.1 Preliminaries

Notations We represent a 3D graph as G = (V,&,P), where V = {v;}i=1,.n and & =
{eij}; j—1,...n denote the vertex and edge sets with n nodes in total, respectively, and P =
{Pi}i=1,...,n is the set of position matrices, where P; € RF:ix3 represents the position matrix
for node v;. We treat each amino acid as a graph node for a protein, then k; depends on the number
of atoms in the ¢-th amino acid. The node feature matrix is X = [mq;}i=17.,_,n, where x; € R% is
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the feature vector of node v;. The edge feature matrix is £ = [Eij]i}jzl’,”’n, where e;; € R% is the
feature vector of edge €;;. d,, and d. denote the dimensions of feature vectors x; and e;;.

Invariance and Equivariance We consider affine transformations that preserve the distance
between any two points, i.e., the isometric group SE(3) in the Euclidean space. This is called
the symmetry group, and it turns out that SE(3) is the special Euclidean group that includes 3D
translations and the 3D rotation group SO(3) [[17, [12]. The matrix form of SE(3) is provided in

Appendix [A.T]

Given the function f : R™ — R™', assuming the given symmetry group G acts on R and R™
then f is G-equivariant if,

f(Tyx) = Sef(x), Ve e R, g € G )
where T}, and S, are the transformations. For the SE(3) group, when m =1, the output of fisa

scalar, we have
[(Tyx) = f(x), Ve € R™, g€ G 2)

thus f is SE(3)-invariant.

Complete Geometric Representations A geometric transformation F(+) is complete if two 3D
graphs G* = (V, &, P') and G% = (V, €, P?), there exists T, € SE(3) such that the representations

F(GY) = F(G?) < P! =T,(P?), fori=1,...n 3)
The operation T,; would not change the 3D conformation of a 3D graph [46]. Positions can generate

geometric representations, which can also be recovered from them.

Message Passing Paradigm Message passing mechanism is mainly applied in graph convolutional
networks (GCNs) [32], which follows an iterative scheme of updating node representations based on
the feature aggregation from nearby nodes.

h{") = BN (FC (),

! ! -1

ul = £ (W Vs € N(wy)), )
l l -1 l

hg ) = f[(J[))date(h§' )’ ’UJE ))

where FC(+) and BN(-) mean the linear transformation and batch normalization respectively. N (v;)

denotes the neighbours of node v;. fg;g and félp)) date ar€ aggregation and transformation functions at
the [-th layer, which are permutation invariant and equivariant of node representations.

3.2 Sequence-Structure Graph Construction

Specifically, we represent each amino acid as a node,

considering the residue types and their positions i =

1,2,--- ,n (See Figure in the sequence, we de-

fine the sequential graph primarily on the sequence, Piiic,
if ||s — j|| < I, the edge ¢;; exists, where [ is a hyper-

parameter. Besides the sequential graph, we predefine a I

radius r, and build the radius graph, and there exists an \ 2
edge between node v; and v; if | P co — Pjcall <7, ;;)_)
where P; ¢, denotes the 3D position of C,, in the i-th V i
residue.

n;

bi X n;
Firstly, we design a base approach called CoupleNet,, "

that only uses the C, positions of the structures. In-
spired by Ingraham et al. [28]], we construct a local
coordinate system (LCS) for each residue, as shown in
Figure @ Figure 2: The local coordinate system.

P,
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1.33A Rit peptide plane

backbone -

Figure 3: The polypeptide chain depicting the characteristic backbone bond lengths, angles, and
torsion angles (U;, ®;, ();). The planar peptide groups are denoted as shaded gray regions, indicating
that the peptide plane differs from the geometric plane calculated based on the 3D positions.

_ Pica—Pi-1,co L ui—uiq o uwiXuiq :
where u; = ”Pi,Ca*Pi—l,Ca‘Vbz = Huryiﬂl\’nz = Turxua] Then we can get the geometric
representations at the base level of a protein 3D graph,

_ T 7,Ca 7,Ca T
F(G)ij,aa - (”H,Ca - Pj,CaH 3Qi : P P aQi : Qg) (6)
1Pi,ca = Pjcall

where - is the matrix multiplication, this implementation is SE(3)-equivariant and obtains complete
representations at the base level; as if we have Q;, the LCS Q; can be easily obtained by F(G)ij,aa-

For a node v;, the node features x; 4, in the baseline approach is the concatenation of the one-hot
embeddings of the amino acid types and the physicochemical properties of each residue, namely, a
steric parameter, hydrophobicity, volume, polarizability, isoelectric point, helix probability and sheet
probability [51}22]], which provide quantitative insights into the biochemical nature of each amino
acid. And F(G);j,qq is set as edge features for CoupleNet,,.

Secondly, we consider all backbone atoms C,, C, N, O in CoupleNet. In detail, the peptide bond
exhibits partial double-bond character due to resonance [20]], indicating that the three non-hydrogen
atoms comprising the bond (the carbonyl oxygen, carbonyl carbon, and amide nitrogen) are coplanar,
as shown in Figure [3] There is some rotation about the connection. The N; — C,; and Cy; — C;
bonds, are the two bonds in the basic repeating unit of the polypeptide backbone. These single bonds
allow unrestricted rotation until sterically restricted by side chains [35, 45]. Since the coordinates
of C, can be obtained as we have the complete representations at the base level, the coordinates of
other backbone atoms based on these rigid bond lengths and angles are able to be determined with
the remaining degree of the backbone torsion angles ®;, ¥;, {2;. The omega torsion angle around
the C — N peptide bond is typically restricted to nearly 180° (trans) but can approach 0° (cis) in
rare instances. Other than the bond lengths and angles presented in Figure[3] all the H bond lengths
measure approximately 1 A.

For the sequential graph, we compute the sine and cosine values of ®;, ¥;, §2; for each amino acid i,
and use them as another part of nodes features for node v;.

i = 1 o | ((50 A c08) (@5, 7, 2,) D

where || denotes concatenation. There is no isolated node for the designed graph, which means
the backbone atoms can be determined one by one along the polypeptide chain based on the po-
sitions of C, and these three backbone dihedral angles. Therefore, the existing presentations
[F(G)ijaalij=1,..n and [@;];=1,. ., are complete at the backbone level for the sequential graph.

For the radius graph, we want to get the positions of backbone atoms in any two amino acids ¢
and j. Inspired by trRosetta [52], the relative rotation and distance are computed including the
distance (d;j,c,), three dihedral angles (w;;, 0;5, ;) and two planar angles (¢;;, ¢;i), as shown in
Figure E], where d;j.c, = dji,cs,wij = wyi, but 0 and ¢ values depend on the order of residues.
These interresidue geometries define the relative locations of the backbone atoms of two residues
in all their details [52]], because the torsion angles of N; — C,; and C,; — C; do not influence their
positions. Therefore, these six geometries are complete for amino acids at the backbone level for the
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radius graph. The graph edges contain the relative spatial information between any two neighboring
amino acids e;; = F(G)ij qa || F (G)ij,pb, Where

F(G)ijop = (dij,cy, (sin Acos)(wij, 05, @ij)) (8

The designed node and edge features, x; and e;;, for the sequential and radius
graphs, provide a new perspective to represent protein sequences and structures.  Such
integration can bring better performance for the following graph-based learning tasks.

3.3 Secqunce-Structure Graph Convolution

Inspired by the message passing paradigm and continuous- Wi
discrete convolution [[15]], sequences and structures are en-
coded successfully together by convolutions. To deeply
couple sequences and structures of proteins and encode
them jointly, we employ convolution to embed them simul-
taneously, exploring their relationships to generate compre-
hensive and effective embeddings. Different from previous @ @
works, we innovatively construct two categories of graphs
for sequence and structure and design various sequential Figure 4: Interresidue geometries in-
and structural representations to achieve completeness on cluding angles and distances.

them at the base and backbone levels. We then convolve

node and edge features with the help of the message passing

mechanism.

| @i

 residue 4

In order to implement convolution on nodes and edges
simultaneously between sequence and structure, we set €;; to exist if the following conditions are
satisfied

li—jll <l and ||Pica— Pjcall <7 )

The existing node and edge feature matrices (X, ) are complete representations of a protein 3D
graph to reconstruct its backbone atom positions. Compared with the equation Eq. 4] the proposed
CoupleNet first apply a FC(-) layer and a BN(-) layer to the node features to obtain the initial

encoded representation. Then the fg;g is applied to gather neighboring features of nodes and edges
by convolution, where o (-) is the activation function, and W is the learnable convolutional kernel

matrix. We use the dropout and add a residual connection from the previous layer as fgg) date- TOr the
consideration that the spatial arrangement and tight positioning of specific amino acids, which may be
spaced widely apart on the linear polypeptide, are necessary for proteins to operate as intended [[10]],
l is set to be a relatively large number, see Appendix for details.

h!” = BN (FC (z;)),

ul) =o(BN( Y Weyh{™),
v EN(v5)

r{" = Y 4+ Dropout(ul’)

(10)

3.4 Model Architecture

Building upon the sequence-structure graph convolution, we build the CoupleNet, as shown in
Figure[5] The inputs to the graph are the calculated sequential and structural representations (X, E).
Following the existing protein graph models [[15} 25| |47]], our CoupleNet employs graph pooling
layers to obtain deeply encoded, graph-level representations. After pooling, due to the decrease
in nodes, we increase the predefined radius r to include more neighbors. The message passing
mechanism only executes on nodes for the consideration of reducing model complexity. Another
reason is that representations of sequences and structures have already been coupled by equation
Eq.[] A detailed description of the model architecture is provided in Appendix
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Figure 5: An illustration of CoupleNet.

4 Experiments

4.1 Datasets and Settings

The models are trained with the Adam optimizer [31] using the PyTorch and PyTorch Geometric
libraries. Detailed descriptions of the datasets and experimental settings are provided in Appendix[A.3]
Following the tasks in IEconv [25]], GearNet [53]] and CDConv [15], here, we evaluate the CoupleNet
on four protein tasks: protein fold classification, enzyme reaction classification, GO term prediction
and enzyme commission (EC) number prediction.

Fold Classification Protein fold is to predict the fold class label given a protein, which is crucial for
understanding how protein structure and protein evolution interact [26]). In total, this dataset contains
16, 712 proteins with 1, 195 fold classes. There are three test sets available, Fold: Training excludes
proteins from the same superfamily. Superfamily: Training does not include proteins from the same
family. Family: Proteins from the same family are included in the training.

Enzyme Reaction Classification Reaction categorization aims to predict a protein’s class of
enzyme-catalyzed reactions, according to all four levels of the EC number [49, [36]. Following the
setting in [[25]], this dataset has 37, 248 proteins from 384 four-level EC numbers [5].

GO Term Prediction The goal of GO term prediction is to foretell whether a protein is related
to a certain GO term. Following [19]], these proteins are organized into three ontologies: molecular
function (MF), biological process (BP), and cellular component (CC), which are hierarchically
connected, functional classes. MF describes activities that occur at the molecular level, BP represents
the larger processes, and CC describes the parts of a cell or its extracellular environment [3].

EC Number Prediction This task seeks to predict the 538 EC numbers from the third level and
fourth levels of different proteins [[19], which describe their catalysis of biochemical reactions.

4.2 Baselines

We compare our proposed method with existing protein representation learning methods, which are
classified into three categories based on their inputs, which could be a sequence (amino acid sequence),
3D structure or both sequence and structure. 1) Sequence-based encoders, including CNN [41]],
ResNet [37]], LSTM [37] and Transformer [37]]. 2) Structure-based methods (GCN [32], GAT [44],
3DCNN_MQA [11]], IEConv (atom level) [25]]). 3) Sequence-structure based models, e.g., GVP [29],
ProNet [47], GearNet [53]], CDConv [15]], etc. GearNet-IEConv and GearNetEdge-IEConv [53]] add
the IEConv layer based on GearNet, which is found important in fold classification.

4.3 Resluts of Fold and Reaction Classification.

Table [T] provides the comparisons on the fold and enzyme reaction classification. The results are
reported in terms of accuracy (%) for these two tasks. From this table, we can see that the proposed
model CoupleNet achieves the best performance across all four test sets on the fold and enzyme
reaction classification compared with recent state-of-the-art methods. Especially on the Fold and
SuperFamily test sets, CoupleNet improves the results by about 4%, showing that CoupleNet is
proficient at learning the mapping between protein sequences, structures and functions. Moreover,
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Table 1: Accuracy (%) on fold classification and enzyme reaction classification. [*] means the results
are taken from [15]]. The best and suboptimal results are shown in bold and underline.

Tnput Method Fold Classification Enzyme
Fold SuperFamily Family Reaction
CNN [41]* 11.3 134 53.4 51.7
Sequence ResNet [37]]* 10.1 7.21 23.5 24.1
LSTM [37]]* 6.41 4.33 18.1 11.0
Transformer [37]]* 9.22 8.81 40.4 26.6
GCN [32]* 16.8 21.3 82.8 67.3
Structure GAT [44]* 12.4 16.5 72.7 55.6
3DCNN_MQA [11]* 31.6 454 92.5 72.2
IEConv (atom level) [25]]* 45.0 69.7 98.9 87.2
GraphQA [2]]* 23.7 32.5 84.4 60.8
GVP [29]* 16.0 22.5 83.8 65.5
ProNet-Amino Acid [47]] 51.5 69.9 99.0 86.0
ProNet-Backbone [47]] 52.7 70.3 99.3 86.4
ProNet-All-Atom [47]] 52.1 69.0 99.0 85.6
Sequence-Structure IEConv (residue level) [25]* 47.6 70.2 99.2 87.2
GearNet 53] 28.4 42.6 95.3 79.4
GearNet-IEConv [53]] 423 64.1 99.1 83.7
GearNet-Edge [53] 44.0 66.7 99.1 86.6
GearNet-Edge-IEConv [53]] 48.3 70.3 99.5 85.3
CDConv [15] 56.7 71.7 99.6 88.5
CoupleNet (Proposed) 60.6 82.1 99.7 89.0

CDConv [|15] ranks second among these methods, both CDConv and our method are implemented
by sequence-structure convolution. This phenomenon illustrates that deeply coupling sequences
and structures of proteins is conducive to learning better protein embeddings. And our proposed
CoupleNet model utilizes complete geometric representations and the specially designed message
passing mechanism, achieving new state-of-the-art results.

4.4 Results of GO Term and EC Prediction

We follow the split method in [[19,53]] to guaran-
tee that the test set only comprises PDB chains

with sequence identity no higher than 95% to EC
the training set for GO term and EC number ), N
prediction. Table[2]compares different protein  os0  amy | 07 opT 076 0
modeling methods on GO term prediction and |7 o35 " oshEp 06
EC number prediction. The results are reported  os00
in terms of F,.x, which considers both pre- E:Eg
cision and recall for evaluation, the equation o200
of Fpax is provided in Appendix [A:4 The o
. . 0.000
proposed model, CoupleNet yields the highest 30% 40% s0% 70% 950
F ...« across these four test sets of two tasks, out- 8 GearNet GearNet Edge 5 CDConv = CouNet

performing other state-of-the-art models. This

indicates CoupleNet can effectively predict the Figure 6: Fy,, on EC number prediction under
functions, locations, and enzymatic activities of ~different cutoffs.

proteins. These results once again illustrate the

importance of deeply coupled sequences and structures. The improvements of CoupleNet over the
suboptimal CDConv [15]] model indicate the advanced modeling power of CoupleNet.

We employ different cutoff splits following [19}15]], which means that the proteins in the test set
are divided into groups that have, respectively, 30%, 40%, 50%, 70%, and 95% similarity to the
training set for GO term and EC number prediction, as shown in Figure[6|and Appendix [A.3] From
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Table 2: F,j,.x on GO term and EC number prediction. [*] means the results are taken from [[15]]. The
best and suboptimal results are shown in bold and underline.

Category Method GO-BP GO-MF GO-CC EC
CNN [41]* 0.244 0.354 0.287  0.545
Sequence ResNet [37]]* 0.280 0.405 0.304  0.605
q LSTM [37]* 0.225 0.321 0.283  0.425
Transformer [37]]* 0.264 0.211 0.405 0.238
GCN [32]* 0.252 0.195 0.329  0.320
Structure GAT [44]* 0.284 0.317 0.385  0.368
3DCNN_MQA [11]* 0.240 0.147 0.305  0.077
GraphQA [2[* 0.308 0.329 0413  0.509
GVP [29]* 0.326 0.426 0.420 0.489
IEConv (residue level) [25]*  0.421 0.624 0.431 -
Sequence-Structure GearNet [53]] 0.356 0.503 0414  0.730
q GearNet-IEConv [53] 0.381 0.563 0.422  0.800
GearNet-Edge [53] 0.403 0.580 0450 0.810
GearNet-Edge-IEConv [53]] 0.400 0.581 0.430 0.810
CDConv [15] 0.453 0.654 0479  0.820
CoupleNet (Proposed) 0.467 0.669 0.494 0.866

Table 3: Ablation of our proposed method
Fold Classification Enzyme GO

Method EC
Fold Superfamily Family Reaction BP MF CC
CoupleNet 60.6 82.1 99.7 89.0 0.467 0.669 0.494 0.866
CoupleNet,, 57.8 78.7 99.6 88.6 0.458 0.660 0.484 0.851
w/o @, U, Q 60.3 81.3 99.6 88.7 0463 0.666 0.490 0.862
wlod,w,f,¢ 60.4 81.5 99.7 88.9 0461 0.666 0.488 0.864

Figure[6] we can see that our proposed model CoupleNet achieves the highest Fy,,,x scores across
all cutoffs, especially when the cutoffs are at 30% to 50%. There is a larger margin compared with
GearNet, GearNet-Edge [53[] and CDConv [15]. This demonstrates that CoupleNet, which utilizes
complete geometric representations, is more robust, especially when there is a low similarity between
the training and test sets.

4.5 Ablation Study

Table[3|presents an ablation study of the proposed CoupleNet model on the four protein tasks. We
examined the impact of removing the backbone torsion angles (w/o ®, ¥, ) and removing the
interresidue geometric structure representations (w/o dc,, w, 0, ¢). The former is designed for the
sequential graph, and the latter is for the radius graph to achieve completeness at the protein backbone
level. However, we combine the two types of graphs together to enhance the relationships between
sequence and structure. From Table [3] we can also find that these complete geometries provide
complementary information to amino acid position features, with one of their removals leading to
minor performance drops for the reason that they both provide complete geometries from different
perspectives. Removing &, ¥, 2 causes larger performance degradation compared with removing
dcy,w, 0, . Such comparisons indicate that the backbone dihedral angles may have more effects on
learning protein representations in these experimental settings. CoupleNet,, is a base model that
only adopts the C,, position of protein structures. Compared with CoupleNet,,, CoupleNet achieves
significant improvements on the four tasks, demonstrating the importance of complete structural
representations at the backbone level in learning protein embeddings.
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5 Conclusions and Limitations

In this work, we propose CoupleNet, a novel protein representation learning method that deeply fuses
protein sequences and multi-level structures by conducting convolution on graph nodes and edges
simultaneously. We design the sequential graph and the radius graph, achieving completeness on
them at different protein structure levels. Our approach achieves new state-of-the-art results on the
protein tasks, which demonstrates the superiority our the proposed method. A limitation is that the
detailed inter-relationships between sequence and structures remain to be explored and uncovered.
We leave such research for future work.

While our model can enable advanced protein analyses and provide effective representations, there
may exist broader impacts and harmful activities. The representations could potentially be misused,
e.g., for designing harmful molecules or proteins.
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A Appendix

A.1 SE@Q)
The collection of 4 x 4 real matrices of the SE(3) is shown as:

1 ri2 riz b
Rt To1 T2 T23 12
= 11
[0 1} r31 T3z T3z t3 |’ an
0 0 0 1

where R € SO(3) and t € R3, SO(3) is the 3D rotation group. R satisfying R’ R = I and
det(R) = 1.

A.2 Details of Model Architecture

As stated in Sec. [3.3]on sequence-structure graph convolution, [ is set to be a constant number 11. We
increase the predefined radius r to 27 after one pooling layer, and the number of feature channels for
node embeddings is also doubled. We use a Leaky ReLU function [|13]] as the activation o () in the
message passing layers.

We design the sequential and radius graph instead of the k-nearest neighbour graph because a constant
k make some neighbor nodes far away from the center node. As shown in Figure[7] the distances
of a group of neighbor nodes (|| P;,ca — Pj,cal|) are larger than 20 A, which cannot be seen as
contacts [9]]. Therefore, the radius is initially set to 4, enlarging to 16 in deeper layers. There are
four massage passing and pooling layers. In this condition, when the number of nodes decreases, [ is
constant, 7 increases, neighbours of center nodes gradually cover more distant nodes.
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Figure 7: The histogram of distance statistics of k£ = 30 nearest neighbor nodes of a protein dataset
(CATH [29]). The horizontal axis denotes the distance in terms of exponents of 10, and the vertical
axis represents the number of neighbor nodes with this distance.
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Table 4: Dataset statistics. # X means the number of X.

Dataset # Train  # Validation # Test
Enzyme Commission 15,550 1,729 1,919
Gene Ontology 29, 898 3,322 3,415
Fold Classification - Fold 12,312 736 718

Fold Classification - Superfamily 12,312 736 1,254
Fold Classification - Family 12,312 736 1,272
Reaction Classification 29,215 2,562 5,651

A.3 Details of Datasets and Training Setup

For all datasets, we use a data augmentation strategy by adding noise for the training set to increase
the variability of data. For example, we update the position of C;,

P, ¢, < Pic, + N(un,o%) (12)

where p1), 03 are the mean (expectation) and variance of the normal distribution N, which are set
to 0 and 0.1 in experiments. Dataset statistics 53] of our four downstream tasks are summarized in
Table

Settings The proposed models are conducted on a single NVIDIA-SMI A100 GPU, through
PyTorch 1.13+cul17 and PyTorch Geometric 2.3.1 with CUDA 11.2. The number of the initial
feature channels is 256. The learning rate is set to 0.001. More details about implementation is shown
in Table

Table 5: More details of training setup

Hyper-parameter Fold Enzyme Reaction GO EC

Batch size 4 4 24 64
Epoch 400 400 500 500

A.4 Evaluation Metric F .,

Fmax is calculated by first determining the precision and recall for each protein, then averaging these

results over all proteins [53,|15,|19]]. p! is the prediction probability for the j-th class of the i-th
protein, given the decision threshold ¢ € [0, 1], the precision and call are give as:

(] 2 ) ) S U((p = t) nel)]
=10l > 1)) L

where b/ € {0, 1} is the corresponding binary class label, and T € {0, 1} is an indicator function. If
there are IV proteins in total, then the average precision and recall are defined as:

N
. 11; (¢
mﬂwzzg%gg

precision, (t) = , recall;(t) =

N .
> Dprecision;(t)

o (GHEEN S

Finally, F,,.« is defined as the maximum value of F-score over all thresholds,

{ 2 - precision(t) - recall(t) }

precision(t) 4 recall(t)

precision(t) =

Fmax = mtax

(13)

A.5 More Results of GO Term Prediction

For GO term prediction, we also apply different cutoff splits. Proteins in the test set are categorized
into five groups based on their similarity to the training set ( 30%, 40%, 50%, 70%, and 95%). As
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Figure 8: F ,ax on GO term and EC number prediction under different cutoffs.

shown in Figure [] the results of GO term prediction are presented in Figure 8(a)-(c). The proposed
model CoupleNet achieves the highest F,,,x scores across all cutoffs on these tasks. Even when
there is a low similarity between the training and test sets, our model also has higher scores, which
demonstrates the superiority and robustness of the proposed model.

A.6 Completeness Analysis

Given a protein 3D graph G = (V,&,P), we capture the geometric representations based on
the atoms’ 3D positions and use sequential and structural representations as the node and edge
features. For a 3D structure, based on the definition of completeness in Sec.[3.1]and the rigorously
demonstrated method to show the calculated geometries can achieve completeness for structures [47],
we guarantee the completeness of the selected geometric representations at the base and backbone
levels of structures.

The geometric representations are SE(3) invariant (distances, angles) and SE(3) equivariant (directions,
orientations). Therefore, it is natural for Eq.[3]to hold from right to left. To demonstrate Eq.[3]holding
from left to right, we need to show F(G) = T,(P), where T,; does not change the 3D conformation
of a 3D graph. Thus we need to show positions can be determined by F(G).

The base approach CoupleNet,, only considers the C, coordinates and constructs LCS for each
residue. F(G),, provides complete representations. First, when n = 1, it holds. Assume the case
n = k holds such that F(G),, is complete. Then we need to prove the case n = k + 1 still holds.
This is obvious because if v; is the (k + 1)-th node connected to node v; among the existing k nodes,
the LCS @; can be easily obtained from Q; and F(G)qq

When considering the backbone atoms Cy, C,N, O, F(G),q is complete. As shown in Figure[3] the
remaining degree of freedom at the backbone level is the rotation angles ®, U, {2 based on the rigid
bond lengths and angles. Such backbone torsion angles are calculated and concatenated with @; 4,
into x;. Besides, for any residues ¢ and j, the calculated six inter-residue geometries fully define the
relative locations of backbone atoms. Therefore, there are no other remaining degrees of freedom.
Consequently, the obtained geometric representations at the backbone level are complete.
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Table 6: More Ablation of our proposed method

Method Fold Classification Enzyme GO EC
Fold Superfamily Family Reaction  BP MF CC
CoupleNet 60.6 82.1 99.7 89.0 0467 0.669 0.494 0.866
w/o sequence  60.0 81.6 99.6 88.4 0.441 0.650 0.456 0.700
w/o structure  26.1 36.4 92.9 81.3 0.406 0.586 0427 0.625

A.7 More Results of Ablation Study

Table 3] presents an ablation study of the proposed CoupleNet model. Apart from removing ®, ¥, Q)
or d,w, 0, ¢ and using the base model CoupleNet,,. we conduct more ablation experiments on the
four tasks. The results are shown in Table[6

Compared with the full model, we consider removing either the sequence or structure information
to analyze their importance. Removing the sequence information means removing the encoding of
amino acid types for each node. Removing the structure information means removing features related
to protein geometry (F(G)aa, @, ¥, 2, d,w, 8, p, and we omit related subscripts for brevity).

As shown in Table [} removing either sequence or structure causes a performance drop on all
tasks, demonstrating that both types of information are critical for the proposed method. When
removing the structure, the performance decreases more significantly, suggesting that structural
information provides more important and comprehensive clues compared with sequence information
alone. Combining these diverse data sources leads to optimal predictive performance.

17


https://doi.org/10.1101/2023.07.05.547769
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Related Work
	Method
	Preliminaries
	Sequence-Structure Graph Construction
	Secqunce-Structure Graph Convolution
	Model Architecture

	Experiments
	Datasets and Settings
	Baselines
	Resluts of Fold and Reaction Classification.
	Results of GO Term and EC Prediction
	Ablation Study

	Conclusions and Limitations
	Appendix
	SE(3)
	Details of Model Architecture
	Details of Datasets and Training Setup
	Evaluation Metric Fmax 
	More Results of GO Term Prediction
	Completeness Analysis
	More Results of Ablation Study


