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Abstract 

Mitochondria play an essential role in the life cycle of eukaryotic cells. However, we still don't 
know how their ultrastructure, like the cristae of the inner membrane, dynamically evolves to 
regulate these fundamental functions, in response to external conditions or during interaction 
with other cell components. Although high-resolution fluorescent microscopy coupled with 
recently developed innovative probes can reveal this structural organization, their long-term, 
fast and live 3D imaging remains challenging. To address this problem, we have developed a 
convolutional neural network, called DeepCristae, to restore mitochondria cristae in low spatial 
resolution microscopy images. Our network is trained from 2D STED images using a novel 
loss specifically designed for cristae restoration. To efficiently increase the size of the training 
set, we also developed a random image patch sampling centered on mitochondrial areas. To 
evaluate DeepCristae, quantitative assessments were carried out using metrics we derived by 
focusing on the mitochondria and cristae pixels rather than on the whole image as usual. 
Depending on the conditions of use indicated, DeepCristae works well on broad microscopy 
modalities (Stimulated Emission Depletion (STED), Live-SR, AiryScan and Lattice Light Sheet 
Microscopy). It is ultimately applied in the context of mitochondrial network dynamics during 
interaction with endo/lysosome membranes. 

Keywords: Convolution neural network, image restoration, mitochondria cristae, fluorescence 
microscopy, super resolution, live imaging 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2024. ; https://doi.org/10.1101/2023.07.05.547594doi: bioRxiv preprint 

mailto:anais.badoual@inria.fr
https://doi.org/10.1101/2023.07.05.547594
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Introduction 

The study of certain pathologies has shown the importance of mitochondria, which above all, 
ensure ATP production within cells and are central in many biological functions (e.g., metabolic 
pathways, ion homeostasis, apoptosis, autophagy, epigenetics…)1,2. Mitochondrial energetic 
adaptations to environmental constraints encompass a plethora of processes that maintain 
cell survival. An alteration of these processes generally leads to serious diseases such as 
cancer, neurodegenerative and cardiovascular disorders3. Although much attention has been 
paid to the role of mitochondria, the precise niche the organelle plays in cell life and death still 
remains unclear. The lack of in-depth knowledge about the ultrastructural evolution of 
mitochondria in live cells, under normal and stressful conditions, might be one of the blind 
spots. In particular, the cristae formed by the inner membrane of mitochondria that concentrate 
ATP production in a defined area, their dynamic behavior, sublocation or density have been 
poorly related to the various functionalities or dynamic processes (e.g., fusion, fission) that 
mitochondria undergo. The challenge we address lies in imaging mitochondria cristae, which 
measure between 30 and 50 nm wide4, at a high spatial and temporal resolution so that their 
structural dynamics and interactions can be accurately studied over time for several dozens of 
milliseconds to a few seconds. However, this is starting to be possible with the recent 
development of high-resolution imaging approaches5. 

Stimulated emission depletion (STED) microscopy, which allows for sub-diffraction resolution 
(xy: 30-50 nm), is one of the very few techniques6,7 able to decipher dynamics of mitochondria 
cristae in live cells4. However, their observation in 3D and in fast time is limited by the 
acquisition frame rate capacity (1 plane ≈ 1 to 10 s). In addition, depletion STED, which is the 
principle that achieves nanoscopic resolution, induces local heat by high illumination intensity8 
to which mitochondria are known to be particularly sensitive9,10. This can affect their overall 
physiology and potentially lead to apoptosis and mitophagy. A number of new fluorescent 
probes that are more photostable with less saturation intensity and that allow cristae 
decoration, have been developed in the very last years7,9,11,12. Yet, the application of a dark 
recovery step (≈ 30 s) after STED imaging is still necessary, again at the expense of temporal 
resolution. This could be improved by applying a partial STED depletion protocol, leading to 
an intermediate quality resolution (xy ≈ 100 nm)13, but insufficient to spatially resolve 
mitochondria cristae and not solving the frame rate limitation (4-5 s in average). 

In this context, one solution to study the dynamics of mitochondria cristae is to collect as much 
temporal information with minimal phototoxicity using an appropriate microscope, and then 
restore the spatial dimension using computational methods. Indeed, the development of image 
restoration algorithms has become increasingly popular in recent years with the need for 
nanoscale analysis14–23. At the heart of fluorescence microscopy have been actively developed 
denoising algorithms24–29, dedicated to images corrupted by a mixed Poisson-Gaussian noise, 
as well as deconvolution algorithms30–32, designed to remove the blur induced by the limited 
aperture of the microscope objective. Some methods combine the two approaches33. However, 
these conventional restoration methods usually rely on general assumptions, such as the 
nature and level of noise and spatial regularity, which hampers their effectiveness on the 
diversity of structures and level of degradation in microscopy images. Over the years, the 
literature on image restoration has evolved considerably due to deep learning and the rapid 
growth of convolutional neural networks (CNNs). These methods have the advantage of 
making assumptions based on image content, resulting in state-of-the-art performance in 
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denoising34,35 and deblurring14,19,22,23,36–40 fluorescence microscopy images. However, these 
methods have two major drawbacks. First, these CNNs often require a training step based on 
a large ground truth dataset that is generally not available in microscopy. Second, they focus 
on restoring the entire image, while sometimes little information is worth restoring within it, 
especially in the dark background. This is the case with mitochondria cristae, which have a 
sparse number of pixels in the image compared to the background. Therefore, CNNs that have 
been previously applied to mitochondria microscopy images21,22,39,41 provide good global 
restoration of the background and mitochondria but fail to accurately restore fine details as 
cristae, especially in very low spatial resolution images. To circumvent this, new conventional 
methods have been proposed to enhance resolution and suppress artifacts in high-resolution 
techniques, including Hessian-SIM17. However, the denoising results are limited when dealing 
with low signal-to-noise ratio images and Hessian deconvolution assumes that the unknown 
image is smooth and sparse. A hybrid solution has been proposed in TDV-SIM42, which 
combines the strengths of conventional physical model-based algorithms with deep learning-
based algorithms. Another hybrid solution, rdLSIM21, incorporates the deterministic physical 
model of specific microscopy into network training and inference. Nevertheless, the 
effectiveness of these methods, along with conventional restoration algorithms, relies on the 
careful selection of optimal parameters or on prior knowledge of illumination patterns, 
respectively. 

Instead of developing an additional generic image restoration method that may not 
satisfactorily enhance certain sparse but informative pixels in the image, we present 
DeepCristae, a CNN specifically developed to restore mitochondria cristae in low spatial 
resolution microscopy images. DeepCristae was applied to several microscopy modalities and 
different biological scenarios capturing live mitochondria at high speed with low illumination 
and thus low phototoxicity. DeepCristae allows long-term/fast dynamic observation of cristae 
behavior and organization. The main challenge was to handle the low number of cristae pixels 
compared to the background in the acquired images. Therefore, the main contributions of this 
work are 1) the design of a new training loss dedicated to the restoration of specific pixels of 
interest, 2) the development of a random image patch sampling focusing on areas of 
mitochondria to increase the size of the training set, and 3) the building of metrics for objective 
assessment of cristae restoration. 

Results 

Overview of DeepCristae 

DeepCristae aims to restore mitochondria cristae in intermediate to low spatial resolution 
microscopy images. Its pipeline is illustrated in Fig. 1. DeepCristae mainly consists of a U-Net 
trained on a dedicated dataset built from real high-resolution 2D STED images (Methods) and 
using a novel training loss we specifically designed for cristae restoration (Methods, Eq. (1)). 
Although the term is not fully appropriate, for simplification we refer to this dataset as “synthetic” 
𝐷!"#$. A pipeline for random image patch sampling focusing on regions of mitochondria in the 
acquired data was also developed (Methods) to efficiently increase the size of the training set 
of 𝐷!"#$ and avoid empty patches. DeepCristae image restoration network was implemented 
in Python (TensorFlow version 2.11) and is freely available as an open-source software (see 
code availability). DeepCristae is also integrated into BioImageIT43, an open-source platform 
with existing software for microscopy. 
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Figure 1. Overview of DeepCristae. Training step: (a) Acquisition of 33 high-resolution (HR) 2D STED 
images of live RPE1 cells stained with PKMITO-Orange for mitochondria. From these HR images (𝐼!"), 
counterpart low-resolution (LR) images (𝐼#$%&!")	were created (b) to form the dataset 𝐷#$%&: resolution 
degradation of the 𝐼!" images by applying Gaussian filtering (with standard deviation 𝜎'()* = 3.25 pixels) 
and by corrupting images with Poisson-Gaussian noise of standard deviation 𝜎%+,#- = 4.0 . (c) 
Enhancement of the mitochondria cristae on the 𝐼!"	images using a Richardson-Lucy algorithm. The 
obtained dataset 𝐷#$%& is divided into a training set of 24 images and a test set. To increase the size of 
the training set, the pair of images 𝐼#$%&!"/𝐼!"	are then augmented (d) and sampled in patches of size 
128×128 pixels (e). We finally obtained 1824 pairs of HR images (blue) and LR input images (orange) 
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to train our network (f), 80% of which is used for training and 20% for validation. The training is 
performed by minimizing our SCoP loss, especially dedicated to restoring mitochondria pixels. Inference 
step: (g) Long-term and fast acquisition with low illumination of live mitochondria. Note that if the training 
was performed on degraded STED images, the inference can be made on other microscopy modalities 
(e.g., Live-SR and Lattice Light Sheet Microscopy (LLSM)). (h, i) Frame-by-frame restoration of the 
acquired sequence by our previously trained DeepCristae network, allowing observation of the 
mitochondrial cristae dynamics at high resolution. 

DeepCristae quantitatively outperforms state-of-the-art algorithms on the synthetic 
dataset 𝐷!"#$ 

Our method was quantitatively compared to existing both conventional (Richardson-Lucy30,31, 
Wiener32, SPITFIR(e)33) and deep learning (ESRGAN40, CARE19, RCAN38 and SRResNet36) 
algorithms for image restoration. Details about their implementation are in Supplementary 
Note 2.2.2. All deep learning methods were trained from the same patches extracted from the 
training set of 𝐷!"#$. To evaluate the performance of the different methods, we used current 
metrics, namely NRMSE (normalized root mean square error), PSNR (peak signal-to-noise 
ratio) and SSIM (structural similarity index) (see Supplementary Note 2.1). However, these 
measures are relevant to the image as a whole, but insufficient in the context of mitochondrial 
cristae restoration. Indeed, the images contain only a few pixels of cristae and thus have too 
little impact in those metrics unlike the many background pixels. To overcome this issue, we 
encouraged the evaluation metrics to focus exclusively on mitochondria pixels (Supplementary 
Fig. 1, second column). We call these mitochondrial metrics 𝑁𝑅𝑀𝑆𝐸%&$' , 𝑃𝑆𝑁𝑅%&$'  and 
𝑆𝑆𝐼𝑀%&$'. To go one step beyond and accurately assess cristae restoration, we also introduced 
the cristae metrics 𝑁𝑅𝑀𝑆𝐸()&!$*+, 𝑃𝑆𝑁𝑅()&!$*+ and 𝑆𝑆𝐼𝑀()&!$*+. These metrics are computed 
over mitochondria cristae pixels only, obtained from manual annotations (Supplementary Fig. 
1, third column). More details about these customized metrics are given in Supplementary 
Note 2.1. Each competing algorithm was evaluated over the test set of 𝐷!"#$  for the nine 
aforementioned metrics (Fig. 2a). For all measurements focusing on cristae, DeepCristae 
ranks first, and is either first or second otherwise. Conventional methods behave worse than 
deep learning approaches, CARE appearing as DeepCristae's most competitive method. In 
terms of visual assessment, we make the same observation (Fig. 2b). RCAN amplifies the 
background noise, resulting in less accurate restoration of cristae and unrealistic reconstructed 
structures in the background or in mitochondria. DeepCristae and CARE remove noise 
background while restoring most of the cristae details. However, CARE restores mitochondria 
cristae with less sharpness compared to DeepCristae, especially for mitochondria with low 
contrast (Fig. 2b, CARE white arrows). This improvement by DeepCristae is highlighted by the 
values of the metrics 𝑁𝑅𝑀𝑆𝐸()&!$*+ , 𝑃𝑆𝑁𝑅()&!$*+ 	and 𝑆𝑆𝐼𝑀()&!$*+ , and by the Fourier Image 
REsolutions (FIREs) computed using Fourier Ring Correlation Plugin44 (Fig. 2c). We also 
demonstrated that DeepCristae outperforms CARE by quantitatively studying their 
performance in terms of cristae resolution (Fig. 2 d-f). We measured cristae widths for 155 
cristae (mean of 92.44	 ± 	23.59 nm on HR STED) from the test set of 𝐷!"#$  by fitting line 
profiles (Fig. 2d) to a Gaussian model and measuring the Full Width at Half Maximum (FWHM) 
(Supplementary Note 1.3). DeepCristae slightly improves the number of cristae restored 
compared to CARE and, on average, restores individual cristae at 137.62	 ± 	59.64 nm of 
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resolution, as compared to 143.15	 ± 	71.15  nm for CARE (Fig. 2e). This improvement is 
statistically relevant as confirmed by the results shown in Fig. 2f. 

In Fig. 3, we take a closer look at three of the restorations previously obtained by DeepCristae 
on 𝐷!"#$ . For each restoration, a comparison of normalized intensity profiles is performed 
between the input image, the DeepCristae-restored image, and the high-resolution (HR) STED 
image. It shows that DeepCristae restores spatial information by revealing mitochondria cristae 
while improving signal to noise ratio. 

Figure 2. DeepCristae outperforms state-of-the-art methods for restoring mitochondria cristae 
in low-resolution 2D STED images. (a) Quantitative comparison of DeepCristae with conventional 
(Richardson-Lucy (RL)30,31, Wiener32, SPITFIR(e)33) and deep learning (ESRGAN40, CARE19, RCAN38 
and SRResNet36) image restoration methods. Metrics were computed on the test set of 𝐷#$%&. Note that 
all deep learning methods were trained using the same patches extracted from the training set of 𝐷#$%& .	
Parameters used for conventional methods are indicated in Supplementary Note 2.2.2. (b) The image 
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a

b Input DeepCristae HR STEDRCAN CARE

d Table 1: Cristae measurements for DeepCristae and CARE. NB cristae on HR STED = 155

Cristae width [nm] Nb cristae detected [%]

DeepCristae 137,62± 59,64 89,03

CARE 143,15 ± 71,15 84,52

HR STED 92,44 ± 23,59

Table 2: T and F test Cristae measurements for DeepCristae and CARE. NB cristae on HR STED = 155

t-test p-val F-test p-val

HR STED - DeepCristae <0,0001 [****] <0,0001 [****]

HR STED - CARE <0,0001 [****] <0,0001 [****]

DeepCristae - CARE ns 0,0098 [**]

Table 3: Cristae measurements - Ablation study. NB cristae on HR STED = 155

Cristae width [nm] Nb cristae detected [%]

DeepCristae 137,62± 59,64 89,03

SCoP1,1 148,55 ± 75,56 87,10

MAE 154,31 ± 90,39 86,45

No DA 153,30 ± 66,51 87,74

Grid 153,60 ± 72,49 89,03

HR STED 92,44 ± 23,59

Table 4: T and F test Cristae measurements - Ablation study. NB cristae on HR STED = 155

t-test p-val F-test p-val

DeepCristae - SCoP1,1 ns 0,0021 [**]

DeepCristae - MAE ns <0,0001 [****]

DeepCristae - No DA 0,041 [*] ns

DeepCristae - Grid 0,046 [*] 0,0115 [*]

e f

Table 1: Cristae measurements for DeepCristae and CARE. NB cristae on HR STED = 155

Cristae width [nm] Nb cristae detected [%]

DeepCristae 137,62± 59,64 89,03

CARE 143,15 ± 71,15 84,52

HR STED 92,44 ± 23,59

Table 2: T and F test Cristae measurements for DeepCristae and CARE. NB cristae on HR STED = 155

t-test p-val F-test p-val

HR STED - DeepCristae <0,0001 [****] <0,0001 [****]

HR STED - CARE <0,0001 [****] <0,0001 [****]

DeepCristae - CARE ns 0,0098 [**]

Table 3: T and F test Cristae measurements for DeepCristae and CARE. NB cristae on HR STED = 155

t-test p-val F-test p-val

DeepCristae - CARE ns 0,0098 [**]

Table 4: Cristae measurements - Ablation study. NB cristae on HR STED = 155

Cristae width [nm] Nb cristae detected [%]

DeepCristae 137,62± 59,64 89,03

SCoP1,1 148,55 ± 75,56 87,10

MAE 154,31 ± 90,39 86,45

No DA 153,30 ± 66,51 87,74

Grid 153,60 ± 72,49 89,03

HR STED 92,44 ± 23,59

Table 1: Results on Dsynt test dataset with DeepCristae and existing reference methods. RL: Richardson-Lucy algorithm. All deep learning methods
are trained using our patches. GT = HR STED ROIs

NRMSE NRMSEmito NRMSEcristae PSNR PSNRmito PSNRcristae SSIM SSIMmito SSIMcristae

DeepCristae 0.059± 0.016 0.090± 0.021 0.113± 0.026 22.75 ± 2.81 19.46 ± 2.50 17.91± 2.30 0.50± 0.11 0.52± 0.10 0.51± 0.15

RL 0.070 ± 0.018 0.098 ± 0.026 0.135 ± 0.036 19.09 ± 2.42 16.04 ± 2.79 16.18 ± 2.85 0.32 ± 0.08 0.40 ± 0.09 0.39 ± 0.10

Wiener 0.077 ± 0.020 0.107 ± 0.030 0.148 ± 0.040 18.56 ± 2.14 15.90 ± 2.36 16.05 ± 2.40 0.26 ± 0.07 0.36 ± 0.09 0.35 ± 0.11

SPITFIR(e) 0.065 ± 0.014 0.096 ± 0.021 0.121 ± 0.030 19.99 ± 1.98 17.45 ± 2.57 16.67 ± 2.48 0.29 ± 0.09 0.46 ± 0.09 0.45 ± 0.10

ESRGAN 0.060 ± 0.016 0.091 ± 0.017 0.121 ± 0.029 19.48 ± 3.05 15.36 ± 3.63 15.21 ± 3.45 0.48 ± 0.11 0.47 ± 0.08 0.42 ± 0.07

CARE 0.059± 0.017 0.090± 0.023 0.117 ± 0.030 22.95± 2.79 19.61± 2.62 17.88 ± 2.38 0.49 ± 0.11 0.50 ± 0.11 0.48 ± 0.15

RCAN 0.067 ± 0.018 0.101 ± 0.020 0.132 ± 0.027 22.04 ± 2.32 18.38 ± 2.07 16.76 ± 1.85 0.45 ± 0.13 0.44 ± 0.11 0.40 ± 0.16

SRResNet 0.071 ± 0.017 0.110 ± 0.021 0.145 ± 0.032 20.81 ± 2.25 17.11 ± 1.92 15.48 ± 2.11 0.42 ± 0.10 0.41 ± 0.07 0.38 ± 0.11

Inputs 0.077 ± 0.019 0.108 ± 0.029 0.151 ± 0.040 18.51 ± 2.34 15.85 ± 2.67 16.29 ± 2.82 0.25 ± 0.07 0.34 ± 0.09 0.32 ± 0.10

Table 2: Ablation study for different components of our method. Each time, we suppress or modify only one component, respectively, reduction of
the size of our network (Depth 2), substitution of our SCoP loss by another loss (SCoP1,1, SCoP1,6, MAE), removal of the data augmentation and
substitution of our patch sampling method by a simple grid sampling one. GT = HR STED ROIs

NRMSE NRMSEmito NRMSEcristae PSNR PSNRmito PSNRcristae SSIM SSIMmito SSIMcristae

DeepCristae 0.059 ± 0.016 0.090 ± 0.021 0.113± 0.026 22.75 ± 2.81 19.46± 2.50 17.91 ± 2.30 0.50± 0.11 0.52± 0.10 0.51± 0.15

Depth 2 0.063 ± 0.018 0.097 ± 0.023 0.123 ± 0.027 22.31 ± 2.74 18.92 ± 2.14 17.33 ± 2.03 0.47 ± 0.11 0.48 ± 0.10 0.47 ± 0.15

SCoP1,1 0.059 ± 0.017 0.089 ± 0.020 0.113± 0.026 22.48 ± 2.58 19.44 ± 2.29 18.00± 2.13 0.47 ± 0.10 0.52± 0.10 0.51± 0.14

SCoP1,6 0.061 ± 0.017 0.093 ± 0.021 0.117 ± 0.026 22.81 ± 2.74 19.39 ± 2.11 17.72 ± 2.01 0.49 ± 0.12 0.51 ± 0.09 0.50 ± 0.14

MAE 0.058± 0.017 0.088± 0.021 0.114 ± 0.027 22.85± 2.79 19.46± 2.75 17.86 ± 2.39 0.50± 0.11 0.52± 0.10 0.49 ± 0.14

No DA 0.059 ± 0.016 0.088± 0.019 0.113± 0.025 22.34 ± 2.36 19.29 ± 2.16 17.91 ± 2.08 0.47 ± 0.10 0.52± 0.08 0.51± 0.13

Grid 0.060 ± 0.016 0.090 ± 0.019 0.113± 0.023 22.37 ± 2.67 19.11 ± 2.11 17.75 ± 2.06 0.49 ± 0.11 0.52± 0.09 0.51± 0.13
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grid displays restoration results of 3 test images from 𝐷#$%&  obtained with DeepCristae and two 
competitive deep learning methods: RCAN38 and CARE19. Pixel size: 25 nm. Scale bar: 0.5 μm. White 
arrowheads indicate mitochondria with low contrast restored by CARE; to be compared with 
DeepCristae column. (c) Fourier Image REsolution (FIRE) was estimated using Fourier Ring 
Correlation44 for 3 test images before restoration, after CARE restoration and after DeepCristae 
restoration. (d-f) Measurement of cristae widths for 155 cristae from the test set after CARE and 
DeepCristae restoration. Line profiles (as depicted in (d)) were fitted to a Gaussian model and FWHM 
was measured (Supplementary Note 1.3). (e) Table with the number of cristae restored by CARE and 
DeepCristae, in comparison to the 155 observed in HR STED images, and their average width. (f) Table 
with statistical significance from Student’s t-tests and Fisher’s tests; ns= non-significant. 

Figure 3. DeepCristae reveals mitochondria cristae from low resolution (LR) 2D STED images. 
(a-c) Restoration of 3 test images of 𝐷#$%& depicting RPE1 cells that were labeled with PKMITO-Orange 
for mitochondria. Pixel size: 25 nm. Scale bar: 0.5 μm. Top, from left to right: thumbnails of the LR image 
(Input), the image restored by DeepCristae and the HR STED image, respectively. Bottom: comparison 
of normalized intensity line profiles along a mitochondrion in the three thumbnails. The yellow line 
indicated in the HR STED thumbnail serves to identify the fluorescence profile. 

Robustness of DeepCristae with respect to noise, blur and mitochondria scale in the 
low-resolution images. 

We have shown that DeepCristae performs well on 2D STED images and outperforms state-
of-the-art algorithms. However, it is important to verify the reliability of DeepCristae more 
widely. DeepCristae has been trained on a dedicated dataset acquired with specific 
microscope settings and mitochondria properties (e.g., fluorescence markers, width in pixels 
of the mitochondria in the images). Any change in these settings during the inference step is 
expected to alter the quality of the restoration results. We performed experiments to evaluate 
the influence of changes in three parameters on the results: the level of noise, the amount of 
blur and the average width in pixels of mitochondria in the images to be restored. First, our 
model was trained on images obtained with specific parameters that mimic microscope 
settings: real images are assumed to be corrupted by mixed Poisson-Gaussian noise (with 
standard deviation 𝜎#'&!+ = 4) and the point spread function of the microscope is approximated 
by an isotropic Gaussian function of standard deviation 𝜎,-.) = 3.25 pixels. We investigated 
the robustness of DeepCristae to noise and to blur in the input images (Fig. 4). To that end, 
we corrupted the test images of 𝐷!"#$ by several levels of mixed Poisson-Gaussian noise (from 
𝜎#'&!+ = 0 to 𝜎#'&!+ = 8) and by different sizes of a Gaussian filter (from 𝜎,-.) = 0 to 𝜎,-.) = 7 
pixels), independently. Note that these values of 𝜎#'&!+ were chosen in line with the test images 
where the maximum intensity varies between 80 and 259. DeepCristae was applied to the 

Figure 3

a Input DeepCristae HR STED b Input DeepCristae HR STED c Input DeepCristae HR STED
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resulting images and the metrics were computed (Fig. 4a, c). Visual results show that the 
quality of the restoration decreases as 𝜎#'&!+ and 𝜎,-.) increase (Fig. 4b, d). The higher the 
𝜎#'&!+ or 𝜎,-.) values are, the blurriest the mitochondria's boundaries and their cristae. This is 
also confirmed by the evolution of the metrics as a function of 𝜎#'&!+  (Fig. 4a) and by the 
evolution of 𝑆𝑆𝐼𝑀%&$'  and 𝑆𝑆𝐼𝑀()&!$*+  as a function of 𝜎,-.)  (Fig. 4c). Surprisingly, the 
evolution of the PSNR and NRMSE as a function of 𝜎,-.) have a bell-shape with a maximum 
and a minimum, respectively, for values of 𝜎,-.) close to 3.25 pixels. We thus recommend 
using DeepCristae on microscopy images with blur and noise levels at worst equal to our 
training conditions ( 𝜎#'&!+ = 4  and 𝜎,-.) = 3.25  pixels). Beyond this, the quality of the 
restoration can drastically decrease. Next, our model was trained from the training images of 
𝐷!"#$ depicting mitochondria of width 15.64	 ± 4.04 pixels on average. We studied the quality 
of the predictions as a function of the mitochondria width in pixels in the input images. To that 
end, the test images of 𝐷!"#$  were rescaled 11 times in order to contain mitochondria of 
specific widths (in pixels) on average. It thus results on 11 test sets on which our trained 
DeepCristae model was applied (Supplementary Fig. 2a, b) and the metrics were computed. 
The evolution of the metrics as a function of average mitochondrial width shows that the closer 
you get to the training parameters (i.e. an average width of 15.64 pixels), the better the quality 
of restoration. In fact, if the mitochondria are too small, few cristae are restored, and the 
mitochondria are thin. On the contrary, if the size is too large, DeepCristae tends to create 
artifacts looking like cristae patterns (Supplementary Fig. 2b, scaling of 31.28 pixels).  

Finally, it is worth noting that DeepCristae has been developed and trained to restore 
mitochondria cristae in microscopy images. Consequently, any use of DeepCristae for other 
specimens or for any other application may lead to invalid results (Supplementary Fig. 2c, d). 
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Figure 4. Robustness of DeepCristae to noise and blur in the LR image. First experiment (a, b): 
assessment of the robustness of DeepCristae to the level of noise in the image. To that end, RPE1 cells 
were labeled with PKMITO-Orange prior to 2D HR STED imaging. The obtained HR images, whose 
maximum intensity varies between 80 and 259, were then degraded with a gaussian filter (𝜎'()* = 3.25 
pixels) to approximate the blurring effect due to the point spread function (PSF) of the microscope. Then, 
17 test sets composed of 26 images were obtained by applying different levels of additive mixture of 
Poisson-Gaussian noise (from 𝜎%+,#- = 0 to 𝜎%+,#- = 8 with an increment of 0.5 unit, 𝜎%+,#-  being the 
standard deviation of the Gaussian noise). Our trained model DeepCristae was then applied on each of 
these test sets. Note that our model was trained from the training set of 𝐷#$%& constructed with 𝜎'()* =
3.25 pixels and 𝜎%+,#- = 4. (a) Evolution of the metrics (NRMSE, PSNR and SSIM) as a function of 𝜎%+,#-. 
Full image metrics (blue line), mitochondrial metrics (red line), and cristae metrics (green line). The 
dashed lines on the plots indicate the training parameters of our model. (b) Illustrations of two test 
images for five different values of 𝜎%+,#-  (left to right: 𝜎%+,#- =	 0, 2, 4, 6, 8) (top-left) and the 
corresponding predictions obtained with DeepCristae (bottom-right). Pixel size: 25 nm. Scale bar: 0.5 
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μm. Second experiment (c, d): assessment of the robustness of DeepCristae to the level of blur in the 
image. To that end, from the HR images described above, 29 test sets composed of 26 images were 
obtained by applying different sizes of a Gaussian filter (from 𝜎'()* = 0 to 𝜎'()* = 7 pixels with an 
increment of 0.25 pixel) to approximate different PSF sizes. Then, mixed Poisson-Gaussian noise with 
𝜎%+,#- = 4 was added. Our trained model DeepCristae was then applied on each of these test sets. (c) 
Evolution of the metrics (NRMSE, PSNR and SSIM) as a function of 𝜎'()*. Full image metrics (blue line), 
mitochondrial metrics (red line), and cristae metrics (green line). The dashed lines on the plots indicate 
the training parameters of our model. (d) Illustrations of two test images for five different values of 𝜎'()* 
(left to right: 𝜎'()* = 0, 1.75, 3.25, 4, 5 pixels) (top-left) and the corresponding predictions obtained with 
DeepCristae (bottom-right). Pixel size: 25 nm. Scale bar: 0.5 μm. 

Reliability of image restoration by DeepCristae. 

It is important to guarantee that under well-controlled conditions of use (mitochondria width, 
image blur and noise), DeepCristae is stable and hallucination-free. By stable we mean that 
different training leads to consistent predictions. To demonstrate that this requirement has 
been met, we performed two experiments. First, we trained 10 DeepCristae neural networks 
with different training data (Fig. 5), each generated with our patch generation method applied 
to the 24 training images of 𝐷!"#$. For each training, the resulting model was applied to the 
test set of 𝐷!"#$ and the metrics were computed. The average metrics obtained over the 10 
trainings are close to the ones obtained with our model and the standard deviations are very 
low, showing consistency between predictions (Fig. 5a). By visually analyzing the predictions, 
the color map of the standard deviation (Fig. 5b) as well as looking at normalized intensity line 
profiles along mitochondria (Fig. 5c-f), we observe that the 10 trainings agree overall on the 
presence or absence of cristae but diverge in their intensity and their precise boundaries. In 
this experiment, all networks were initialized with the same weights, confirming that our image 
patch-sampling method is robust and leads to homogeneous learning. A second similar 
experiment was carried out. Ten trainings were performed from one dataset but with 10 
different initializations of weights (Supplementary Fig. 3). This experiment indicates that the 
same dataset leads to homogeneous learning, meaning that the randomness of initialization 
does not play a key role in the learning process. 

Now, that stability has been demonstrated, it is important to investigate if our method is 
hallucination-free. Correctly defining what hallucinations are and providing an appropriate 
quantifier is not trivial. In our case, it is reasonable to consider as hallucinations cristae 
perceived by DeepCristae that are non-existent (or imperceptible) in the data, creating 
nonsensical results such as cristae outside mitochondria or with a too high density inside 
mitochondria. To investigate hallucinations, we acquired 6 pairs of real 2D STED images. Each 
pair contains one low-resolution (LR) and one HR STED image, acquired as quickly as 
possible (~30 s), to minimize the displacements and deformations of mitochondria between 
the two acquisitions (Supplementary Note 1.2.1). The LR STED images were resized to have 
an average mitochondrial width of 15.64 pixels (391 nm), in line with the conclusions drawn 
above, and were then given as input to DeepCristae. The obtained predictions were 
qualitatively compared to the HR STED images to control their consistency (Supplementary 
Fig. 4). Four ROIs, from three of the six pairs of real STED images and corresponding 
predictions, were selected in regions where small mitochondrial displacements were observed 
to better appreciate the restoration (Supplementary Fig. 4 a-c). For each ROI, a comparison 
of normalized intensity profiles between the input LR STED image, DeepCristae restored 
image, and the HR STED image is performed (Supplementary Fig. 4 d-g). Despite an offset 
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due to mitochondrial motion, a correspondence can be established between the peaks of 
intensity, corresponding to cristae, of the line profiles of the restored images and the ones of 
the HR STED images. Moreover, the distance between cristae was measured along ten-line 
profiles taken through the six pairs of real data (Supplementary Fig. 4h). The metrics obtained 
on the restored images are comparable to the ones obtained on the HR images. Hence, a 
consistency in terms of location and density between the cristae restored by DeepCristae and 
the ones present in the HR STED images is observed overall. This result, combined with the 
stability of DeepCristae and the fact that no cristae were seen in the background, except for 
bad conditions of use (Supplementary Fig. 2b, scaling of 31.28 pixels), strongly suggests that 
we can consider DeepCristae hallucination-free, in the sense that if hallucinations exist, they 
are rare and minimal. 

Figure 5. Stability of image restoration by DeepCristae. Assessment of the stability of DeepCristae 
by studying the consistency between its predictions obtained with different training. To that end, 10 
DeepCristae neural networks were trained with different training data, each one generated with our 
patch generation method applied to the 24 training images of 𝐷#$%&. Note that for this experiment, all 
networks were initialized with the same weights. (a) Quantitative comparison of the 10 DeepCristae 
models. Metrics were computed on the test set of 𝐷#$%& . (b) From left to right: predictions of three 
DeepCristae networks on two images, the average prediction over the 10 trainings and the 
corresponding pixel-wise normalized standard deviation. Pixel size: 25 nm. Scale bar: 1 μm. (c-f) 
Comparison of normalized intensity line profiles along a mitochondrion in (b) between the 10 trainings. 
The yellow line， indicated in the corresponding colored inset in (b) serves to identify the fluorescence 
profile. 

DeepCristae enables to restore 2D+time STED images 

To validate the restoration capabilities of DeepCristae in live biological samples, we first 
compare HR STED raw data with their DeepCristae restoration (Fig. 6a). This initial test 
confirms the absence of hallucinations, allowing us to proceed with a series of 2D+time data. 
While 2D STED nanoscopy enables to resolve mitochondria cristae and was here helpful to 
develop DeepCristae, live STED acquisition encompasses a number of hurdles. It includes 

Figure 5
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Table 1: Results for 10 datasets. GT = HR STED ROIs

NRMSE NRMSEmito NRMSEcristae PSNR PSNRmito PSNRcristae SSIM SSIMmito SSIMcristae

Mean 0.060 ± 0.001 0.091 ± 0.001 0.116 ± 0.002 22.52 ± 0.19 19.25 ± 0.18 17.67 ± 0.14 0.48 ± 0.01 0.51 ± 0.01 0.49 ± 0.01
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relatively long-time frames between images, even when a photostable probe was used (Fig. 
6b), limiting the temporal overview of the mitochondrial dynamics in the same plane. Moreover, 
STED imaging may rapidly induce photo-bleaching, which makes ultrastructural details 
progressively dimmed. More problematic, repeated STED imaging rapidly induces 
morphological deterioration of live mitochondria, illustrated by their swelling in the latest time 
points (Fig. 6b). This swelling effect was quantified here for HR STED by measuring the lateral 
widths of 7 distinct mitochondria over the 10 time points (Fig. 6d) in the image series (Fig. 6b). 
Swelling appears between the 4th and the 7th frames.  

In order to improve the frame rate of 2D+time STED imaging while limiting photodamage on 
mitochondria, one may adjust the STED imaging protocols (Supplementary Note 1). 
Accordingly, we built another live STED dataset, first to indicate how long we can image under 
lower depletion conditions before the mitochondria are damaged, and second to control the 
efficiency of DeepCristae restoration over time. In what follows, these low-resolution (LR) 
STED images were referred to as Fast STED images. This goes at the dependence on the xy 
resolution (Fig. 6c, left bottom triangles in image series) for both the lateral width of 
mitochondria and the cristae width (Fig. 6d, Fast STED and Fig. 6e, Raw, respectively). 
Applying DeepCristae restoration on these latest series clearly revealed cristae morphology 
(Fig. 6c, right top triangle in image series). As expected, LR (or Fast) 2D+time STED images 
show little changes in mitochondria lateral widths in time, in contrast to HR STED (early and 
late time points in Fig. 6d), but a degraded resolution in the cristae widths (from a mean (𝜇) of 
~90  nm in HR STED to ~120  nm in Fast STED with standard deviation 𝜎 = ±	47  nm). 
Applying DeepCristae allows recovery of a resolution lower than 100 nm and drastically 
reduces the variability of the measurement. The mean crista-to-crista distance, measured as 
peak-to-peak intervals (Fig. 6f), widely depends on the cristae density along the mitochondria 
network. Here, in RPE1 cell, it varies from 50 nm to 173 nm in early time points in HR STED 
(𝜇	 = 	104.9 nm, 𝜎 = ±	38 nm) while the heterogeneity increases in late time points (from 130 
nm up to 1.6 µm), consistently with the observable swelling of the mitochondria. In Fast STED, 
the cristae intervals measurements were non-significant. However, after DeepCristae 
restoration the mean crista-to-crista distance was estimated at ~142 nm (𝜎	 = 	±	46 nm) (Fig. 
6f, g). Differences in these crista-to-crista measurements with similar studies11 on HeLa or 
Cos7 cells for instance, will be further discussed. DeepCristae restored the individual cristae 
at 81 nm of resolution (𝜎 = ±9 nm) at FWHM, as compared to the approximately 50 nm 
obtained in other studies4. DeepCristae provides a useful way to improve live STED nanoscopy 
by improving the resolution and decreasing the frame rates (3 to 6 s versus 13 s), yet with no 
observable photodamage as illustrated here by measuring the swelling of mitochondria. 
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Figure 6. DeepCristae reveals mitochondria cristae from low resolution 2D live STED. (a–c) 2D 
live STED imaging of RPE1 cells labeled with PKMITO-Orange. (a) Single time points of 2D high-
resolution (HR) STED (Raw) imaging (see Supplementary Note 1) before and after DeepCristae 
restoration. (b) First 4 time points of a 10-image time series (∆𝑡~13	s) using 2D HR STED. Phototoxic 
damage is shown by the swelling of the mitochondria. Pixel size is 50×50 nm in (a) and 25×25 nm in 
(b). (c) Time series of 2D Fast STED, reducing the time delay between time points (∆𝑡~5.9	s) and 
minimizing mitochondrial damage. Each thumbnail is diagonally divided into raw 2D Fast low-resolution 
(LR) STED images (bottom-left) and after DeepCristae restoration (top-right). Note: a rescaling factor 
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of 1.87 was applied to the LR image data before DeepCristae inference to match the training 
mitochondria settings (see Results, "Robustness of DeepCristae with respect to noise, blur, and 
mitochondria scale in low-resolution images"). Scale Bars in (a-c) are: 2μm. (d) Lateral widths of 7 
mitochondria measured at each time point (series of 10 time points) in HR STED and Fast (LR) STED, 
before and after DeepCristae restoration (line profiles as indicated by arrowheads in (b) t2 and t4). Line 
profiles were fitted to a Gaussian model and the Full Width Half Maximum (FWHM) was measured, as 
described in Supplementary Note 1. Data are presented as mean ± SD. (e) Cristae widths were 
measured as described in (d) for 30 cristae from 20 mitochondria (from 4 distinct image series) at early 
and late time points of HR STED, and for 31 cristae of Fast (LR) STED, before (Raw; two measurements 
outside the ordinate scale) and after DeepCristae restoration (line profiles as illustrated in (b) t4 and (c) 
t10). Data are expressed as mean ± SD. Student’s t-test: ** (p-value=0.0082), ***(p-value=0.0003). (f) 
Distances between two cristae (cristae intervals) measured from peak-to-peak intensity in plot profiles 
(measurements from Raw Fast STED imaging was not possible). Early: N=56 from 2 series; Late: N=80 
from 2 series; DeepCristae: N=60 from 3 series, distributed in all time points. Data are expressed as 
mean ± SD. F-test: ****(p-value<0.0001). (g) Statistics table, including significance testing with Student's 
t-test and Fisher's test; ns = non-significant. 

DeepCristae restores 3D+time images of mitochondria cristae by using intermediate 
high-resolution and diffraction limited microscopy 

STED nanoscopy is not the only high-resolution microscopy adapted to resolve internal 
mitochondria ultrastructures in live cells. Indeed, a number of works using adaptation of SIM 
approaches have been published over the last few years16,45, some combined with 
conventional deep learning methods20,22,41. Yet, the best compromise between fast and 3D 
imaging still remains an issue. We next investigated the performance of DeepCristae 
prediction on intermediate HR microscopies chosen for their 3D optical slicing performance. 
Spinning disk confocal equipped with a Live-SR module (or SDSRM for Spinning Disk Super 
Resolution Microscopy) is one of those well-disseminated systems equivalent to SIM. It 
improves the xy resolution by a factor of ~2 (~120 − 130 nm at 488 nm, ~140 nm at 561 
nm)46 while giving access to the depth (z-axis) of the sample and the live imaging of 
mitochondria (time t) without severe photo-bleaching and phototoxicity. The use of the Live-
SR is therefore motivated here by both the study of these four dimensions and the ability of 
our model to correctly perform cristae reconstruction via multiple microscope imaging 
modalities. DeepCristae efficiently revealed cristae organization in single 2D Live-SR images 
acquired within 30 ms (Fig. 7a, upper images) and thus in 3D (Fig. 7a, lower images, MIP on 
14 planes, with a stack time ~800 ms), giving access to the overall mitochondria network in 
the live cell at a fast rate. In this respect, it outperforms HR STED imaging and even Fast (LR) 
2D-STED imaging after DeepCristae restoration (compared to Fig. 6c). Cristae width 
comparative estimation (Fig. 7b) shows the improvement in resolution obtained after 
DeepCristae restoration on single plane Live-SR images (Raw: 149 ± 64  nm when 
measurable; DeepCristae: 87 ± 11 nm). These results are close to the expected widths of 
circumvoluted cristae tubules (50 to 100 nm) obtained by other methods derived from SIM 
imaging22.  

We then tested DeepCristae restoration on Lattice Light Sheet Microscopy (LLSM)47 imaging 
which is not an HR microscopy by itself (at least in the dithered mode) but gives the best 
compromise in terms of fast 3D acquisition with minimal photon dose illumination and 
consequently low photo-damage of the mitochondria over time. Surprisingly, although with 
intrinsic limited and non-isotropic resolutions (PSF 𝑥𝑦 = 300 nm and 𝑧 = 600 − 700 nm in our 
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system) and a particular geometrical acquisition mode, cristae were however detectable in 
some mitochondria after realignment (deskew) and a Richardson-Lucy deconvolution. The 
resulting images were here considered as “Raw” data (Fig. 7c, 2D upper panel, left image). 
Applying DeepCristae to them (Fig. 7c, 2D upper panel, right image and composite zoomed 
area for comparison) improves the cristae resolution (Raw: 339 ± 248 nm, when measurable; 
DeepCristae: 94 ± 15 nm) and strongly reduces the variance of paired measurements (Fig. 
7d). One of the obvious advantages of LLSM over confocal imaging is to allow continuity 
between single image planes over large stacks coupled to an extended depth of focus, as 
illustrated here by the 3D rendering as an oblique projection (Fig. 7c, 3D). Moreover, LLSM is 
particularly adapted to long range/high frequency imaging on whole living cells, which, coupled 
to low photon dose illumination, makes it one of the best imaging systems, if not the best, for 
the highly light-sensitive organelles that are the mitochondria. Applying DeepCristae adds 
information on cristae ultrastructural organization in the whole mitochondria network of the cell. 

Finally, Fast 3D Live-SR and LLSM time series (Fig. 7e, f) were treated for DeepCristae 
restoration. Cristae ultrastructural features can be observed, while the mitochondrion network 
undergoes well known dynamic modifications such as fusion or fission processes (Fig. 7e, f, 
panels of composite zoomed area in both time series; left “RAW '' and right “DeepCristae”; 
Movies S1 and S2). Images are of better quality after restoration of Live-SR compared to LLSM 
images. However, it should be noted the gain in acquisition parameters for the latter in these 
experiments, with 71 slices per stack and a double channel stack time of 1.3 s versus 14 
planes per stack and double channel stack time of 5.6 s for Live-SR. DeepCristae restoration 
was also tested with an AiryScan 5 LSM 980. It provided similar improvements, although for a 
15 planes stack time of about 30 s and with more artifacts appearing after DeepCristae, the 
nature of which most probably lies in the way the reconstruction of the AiryScan images was 
carried out from the values determined automatically by the commercial software 
(Supplementary Fig. 5a-c). 
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Figure 7. DeepCristae restoration enhances cristae width resolution in 3D and 3D+live imaging. 
(a) 2D plane (top) and 3D MIP (Maximum Intensity Projection of 14 planes) (bottom) of an RPE1 cell 
labeled with PKMITO-Orange, acquired using an SD microscope with a Live-SR module, before (left) 
and after DeepCristae (right) restoration. Thumbnails are zoomed areas corresponding to the insets 
(red and blue) and are composites of RAW and DeepCristae images. Color scale bar indicates 
mitochondria position (z-step: 200 nm) from bottom to top (bottom right). (b) Cristae widths were 
measured as in Fig. 6e; each individual measurement in DeepCristae restored images is compared to 
its equivalent in RAW images, except for 10 cristae that were not measurable in RAW (N=60 and N=60-
10, respectively). Data are expressed as mean ± SD (DeepCristae: 87 ± 11 nm; RAW: 149 ± 64 nm; 
Student’s t-test, [****] p<0.0001). (c) One section plane (top) and 3D reconstructed MIP of 71 planes 
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(bottom) of a RPE1 cell labeled with PKMITO-Orange, acquired with a Lattice Light Sheet Microscope 
(LLSM) in dithered mode (after realignment (deskew) and a Richardson-Lucy deconvolution), before 
(left, RAW) and after DeepCristae (right). Thumbnails are zoomed areas corresponding to the insets 
(red and blue) and are composites of RAW and DeepCristae restored images. Color scale bar indicates 
mitochondria position (z-step: 325 nm) from bottom to top (bottom right). (d) Cristae widths were 
measured as in Fig. 6e in DeepCristae restored images and compared to their RAW equivalents, when 
possible (N=60 and N=60-19, respectively). Data are expressed as mean ± SD (DeepCristae: 94 ± 15 
nm; RAW: 339 ± 248 nm; Student’s t-test, [****] p<0.0001). (e, f) 3D+time imaging using Live-SR (e) or 
LLSM (f). MIP of single time points are shown (left images). Insets indicated in red are zoomed in the 
thumbnails (right image series) to illustrate fusion or fission dynamics of mitochondria. The selected 
zoomed areas are shown at different time points before (left panel) and after (right panel) DeepCristae 
restoration. Time frames between stacks are 5.6 s and 1.31 s in double-channel acquisition for Live-SR 
and LLSM, respectively. Scale bars are 5 µm in full field images and 1 µm in zoomed thumbnails. Before 
DeepCristae restoration, rescaling factors of 2.6 and 4.16 were applied to each raw Live-SR and LLSM 
dataset, respectively (see Results, "Robustness of DeepCristae with respect to noise, blur, and 
mitochondria scale in low-resolution images"). 

DeepCristae restoration allows to decipher mitochondria cristae morphodynamics 
during inter organelles interactions  

The most documented membrane-membrane interactions involving mitochondria are the 
endoplasmic reticulum (ER)–mitochondria contacts, whose functions have been continuously 
expanded since the 1990s48,49. In addition to the ER, mitochondria contact vacuoles/lysosomes, 
peroxisomes, lipid droplets, endosomes, the Golgi, the plasma membrane and melanosomes50. 
The number of these interactions as well as their duration drastically vary from one type to the 
other, as they depend on the respective membrane surface of the specific organelles within 
the cell and their contact time51. Their detection may thus require fast and/or long-range 3D 
imaging. As already mentioned, even high-resolution approaches which are well adapted to 
decipher ultrastructural features of mitochondria such as cristae, generally fail to capture their 
dynamic evolution in the 3D space of the whole cell at multiple time scales. This can be critical, 
if one wants to study inter-organelle membrane interactions and their effects. We next initiate 
the investigation of endosome/lysosome-mitochondria dynamic interactions by addressing 
specifically the ultrastructural behavior of the cristae during these contacts. This was done by 
imaging multiple 3D+time double fluorescence series in Live-SR (represented as a single stack 
MIP in Fig. 8a, left) or LLSM (represented as a single stack MIP in Supplementary Fig. 5d), 
where the membranes of the endo-lysosomal pathway were continuously labeled with Plasma 
Membrane Deep Read (PMDR) (Supplementary Note 1.1). DeepCristae restoration was 
applied on both datasets. A number of mitochondria dynamic events correlated with 
endosomal structure behaviors were captured. Only a few of them are here extracted as 
thumbnail time series (Fig. 8a right and Supplementary Fig. 5e) of zoomed area (colored insets 
in Fig. 8a left and Supplementary Fig. 5d) from the Live-SR and LLSM acquisitions, 
respectively. Among others, the formation of endo-lysosomes contacts sites with mitochondria 
(Fig. 8a and Movie S3, blue and red insets), very long confinement of endo-lysosomes within 
the mitochondria network (Fig. 8a and Movie S3, orange inset) and image series of endo-
lysosomes appearing to pull a small mitochondrion from one to another elongated tubules of 
mitochondria (Fig. 8a, red inset). DeepCristae restoration on the space-time localization of 
these events can also be evaluated dynamically (Movie S3). Similar events are followed with 
LLSM, such as the fission of mitochondria at a contact site with an endo/lysosome vesicle 
(Supplementary Fig. 5e, orange inset) and long confinement of an endo/lysosome vesicle 
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within the mitochondria network (Supplementary Fig. 5d and Movie S4, green inset). The main 
advantage of the LLS modality (fast frame rate, low photon illumination of the sample coupled 
to whole cell 3D acquisition) is the improvement of the time resolution of the data series (or 
long-range acquisition). Consequently, fast events involving endo-lysosome contacts with 
mitochondria are easier to capture and these dynamics are precisely deciphered. For instance, 
one may extract first (Supplementary Fig. 5d, blue inset), probably a fusion process 
(Supplementary Fig. 5e, blue inset, from time point 105 to time point 113; ∆𝑡 = 8 s), and 
second a fission process (Movie S4, from time point 192 to time point 198; ∆𝑡 = 6 s). At each 
time point, DeepCristae-restored mitochondria and denoised/deconvoluted endo-lysosomes 
double-labeled images (Supplementary Note 1) are paired to non-treated images (right and 
left panel, respectively, of thumbnails time series in Fig. 8a and Supplementary Fig. 5e). While 
cristae resolution in LLSM does not reach that obtained with Live-SR, DeepCristae restoration 
brings values closer together (Fig. 7b, d).  

In all situations and for both intermediate HR (Live-SR) and diffracted limited (LLSM) 
(Supplementary Fig. 5d) imaging modalities, DeepCristae restoration provides ultrastructural 
information on the positioning, density, and dynamics of mitochondria cristae. We then wanted 
to quantitatively assess how the dynamic architecture of the mitochondria internal membrane 
during endo/lysosomes-mitochondria interaction could be revealed with DeepCristae. We 
focused on the fission process. To do so, we first selected 21 distinct 3D+time image series 
from the Live-SR datasets, in which mitochondria fission was monitored. Intensity line plots 
were measured along mitochondria on some time points framing the fission event (Fig. 8b). 
This was done on both DeepCristae-restored and unrestored individual time points in a “blind” 
manner, meaning without looking in the second channel depicting the location of endo-
lysosomes. Measurements of “peak-to-peak” intervals between cristae, were only possible in 
the DeepCristae restored images and show an increased density after fission occurs (Fig. 8c, 
dark circles). Interestingly, by overlaying the second channel in a second step, 62% (13 out of 
21) of these selected time series showed proximity if not direct contact between 
endo/lysosomes and mitochondria at the site where mitochondria fission is observed (Fig. 8c, 
red circles; Fig. 8d for statistics). Similarly, 32 distinct 3D+time image series from Live-SR 
datasets of labeled mitochondria (PKMITO-Orange) and lysosomes (SIR_lysosome) were 
analyzed (Supplementary Fig. 6). In this case, 59% (19 out of 32) of the selected time series 
showed proximity between lysosomes and mitochondria, where mitochondrial fission was 
observed (Supplementary Fig. 6b, c). While still preliminary and not deciphering the exact 
nature of the endosomal compartments involved (i.e., PMDR labels the overall endo-lysosomal 
pathway), this illustrates how DeepCristae would represent an asset to quantitatively study the 
dynamic architecture of the mitochondria internal membrane during diverse dynamic 
processes or in particular physiological or constrained conditions. 
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Figure 8. DeepCristae reveals 3D+time cristae morphology during endo/lysosome mitochondria 
interactions. (a-b) RPE1 cells incubated for 4 hours with Cell Mask Plasma Membrane (PM) Deep Red 
(red) were labeled with PKMITO-Orange (green) in the last 15 minutes. (a-left) A Maximum Intensity 
Projection (MIP) (20 planes; stack time = 1.86 s/channel, time point T1 out of 60) image acquired with 
Live-SR microscopy is shown after DeepCristae restoration of the mitochondria (green channel), as well 
as after denoising (ND-SAFIR) and Richardson-Lucy (RL) deconvolution of the endo/lysosomes (red 
channel). Colored Insets indicate intracellular locations with dynamic events of interest. (a-right) 
Thumbnails show selected time points of blue and red zoomed areas, as indicated by insets. They are 
presented as paired images: before (left panels) and after (right panels) DeepCristae restoration. Both 
time points (left panels) and time frames in seconds (right panels) are indicated for comparison. Full 
acquisition video (T1-T60), including the four regions, is provided as Movie S3. Scale bars are 5 µm in 
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the full field image and 1 µm in zoomed thumbnails. (b) Thumbnails show selected time points of a 
zoomed area, from a different cell than (a), as MIP (14 planes; stack time = 2.8 s/channel, time points 
T6, T8 and T9) from an image acquired with Live-SR microscopy after DeepCristae restoration (green 
channel), as well as after denoising (ND-SAFIR) and RL deconvolution for endo/lysosomes labeling (red 
channel). It represents a location where mitochondria fission is occurring. Profile lines are indicated in 
orange in (b) top. The bottom plots illustrate the PKMITO-Orange intensity line plot before (orange line) 
and after DeepCristae restoration (blue line) at the same time points. Scale bar in (b) is 1 µm. (c) Graphs 
measuring the “peak-to-peak” intervals between cristae in DeepCristae restored images, measured 
before, during and after fission. Measurements were first taken from 21 distinct time series, in a blinded 
manner (black circles; number of peak-to-peak intervals (N) are indicated in (d)), and then where 
endo/lysosomes contacts with mitochondria occur in the same series (13 of 21 distinct time series; red 
circles). Error bars indicate mean ± standard deviation (SD). (d) Statistics table for cristae intervals 
measurements, including mean, standard deviation (SD), and significance levels using Student's and 
Fisher's tests. Note that a rescaling factor of 2.6 was applied to raw Live-SR data prior to DeepCristae 
restoration. This is done to comply with the usage conditions of DeepCristae (see Results, “Robustness 
of DeepCristae with respect to noise, blur and mitochondria scale in the low-resolution images”). 

Discussion 

Mitochondrial membrane architecture is essential for the many functions of mitochondria. In 
particular, mitochondria cristae are the main site of energy production and are dynamic 
ultrastructures that remodel in response to various cellular stimuli and natural processes 
(apoptosis1; aging52). Therefore, understanding the structure and dynamics of cristae is vital 
for comprehending mitochondrial function and its implications in cellular physiology and 
diseases. High-resolution microscopy coupled with robust mitochondrial probes7,9 are key 
recent developments that started to reveal the fine details of mitochondrial cristae structure 
and organization, overcoming the limitations of conventional microscopy. However, imaging at 
high spatial and temporal resolution remains a challenge. 

DeepCristae exploits the power of deep learning to reveal cristae in images taken with low 
photon illumination, enabling clearer visualization and analysis of mitochondria cristae in living 
cells without interfering with the natural behavior of mitochondria. While it has been trained on 
a dedicated dataset that was created from real high-resolution 2D STED images, we have 
shown that it operates for a wide range of optical resolutions, from diffraction-limited to 
intermediate high-resolution microscopy, providing researchers with a powerful tool to study 
cristae dynamics without compromising their structural integrity or functionality. 

While there are other deep learning approaches available for revealing cristae 
ultrastructure21,22,39,41, DeepCristae offers unprecedented advantages. First, thanks to a well -
defined training loss dedicated to the restoration of mitochondria signals; it outperforms state-
of-the-art methods. Secondly, it not only makes it possible to visualize and restore cristae 
dynamics in 2D STED nanoscopy with minimal illumination and without damaging 
mitochondria but more importantly, it extends these capabilities to other high-resolution 
imaging techniques such as Live-SR and AiryScan, more suited to such 3D dynamics. Finally, 
DeepCristae can be applied to advanced microscopy techniques such as LLSM, enabling fast 
and long-duration 3D+time acquisitions within the diffraction-limited range. This versatility 
makes DeepCristae a unique and valuable solution for studying cristae dynamics across a 
range of spatial and temporal scales. 
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Overall, our results show that fluorescence microscopy combined with DeepCristae enables 
long-term/fast dynamic observation of cristae behavior and organization with high quality. To 
illustrate the contribution of our approach to biological phenomena that are likely to involve the 
functional structure of mitochondria, we have chosen to focus on inter-organelle interactions 
and their consequences. While mitochondria-associated ER membranes, the biochemical 
composition of the contact sites and diverse physiological and disease-related functions have 
been extensively studied over the decades53,54, it is increasingly recognized that other 
organelle contacts have a vital role in diverse cellular functions55. More recently, there has 
been growing interest in quantifying other membrane interactions with mitochondria and their 
cell distribution in space and time51, in particular within the endo-lysosomal pathway and their 
contribution to the fission/fusion process of the mitochondria network56. Here, while confirming 
the coincidence of contacts between the endo-lysosomal membrane and mitochondria, we 
enlightened the change of cristae density during fission (Fig. 8 and Supplementary Fig. 6). 
This density as well as complex cristae arrangements depends on cell types and metabolic 
activities4,57, not talking of obvious modifications induced by environmental conditions. Until 
now, to provide a dynamic view of individuals and groups of cristae required 3D nanoscopy or 
linear SIM16, which are not always compatible with the time frame required to capture the event 
of interest. In this respect, DeepCristae might be an asset to compare the cristae dynamics in 
different cell types and in these various conditions. 

However, as with any image restoration method, scientists may be concerned by the reliability 
of DeepCristae to accurately restore mitochondria cristae and not hallucinate them. This is 
why we investigated the robustness, stability and limits of our method (Figs. 4 and 5, 
Supplementary Figs. 2, 3 and 4). We worked out different conditions of use to be respected to 
guarantee good quality and truthfulness of the results. It is important to feed DeepCristae with 
images containing mitochondria whose average width in pixels is close to the one seen during 
the training. Concerning the microscope settings, it is better to ensure that the level of noise 
and blurring in the input images is equivalent to or better than the one present in the training 
data (which was quite high in our training). Under these conditions of use, across all our 
experiments on real data and through different microscopy modalities, no hallucination was 
observed: a consistency between line profiles along mitochondria between raw and restored 
data was always observed (Figs. 6 and 7).  

Like cytoskeletal elements, the mitochondrial ultrastructure is a key element for comparing the 
performance of new super-resolution microscopy techniques. In terms of applications, 
DeepCristae makes it possible to track the evolution of mitochondrial cristae morphology over 
time, during interactions with other membrane components of the cell, or under extracellular 
conditions that mimic various pathological or stress situations. 

Methods 

In this section, we present the main features of DeepCristae. We first present the dataset we 
created from real 2D STED images to train and evaluate the network. Then, we overview our 
network architecture and present the novel learning loss function, which prioritizes the 
restoration of specific pixels. We finally detail the image patch-sampling method used during 
the training step to efficiently increase the size of our training set and thus improve the learning 
process. 
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Generation of the 2D STED dataset - 𝐷!"#$. As mitochondria are living organelles, mostly 
organized as a quite fast-moving network in RPE1 cells (Supplementary Note 1.1), the 
acquisition of a pair of high and low-resolution images at the exact same time point is 
impossible. To train and quantitatively validate DeepCristae, we thus created a dataset (Fig. 
1a-c), called 𝐷!"#$, from 33 acquired 2D HR STED images (25 × 25 nm) that we denote 𝐼/0. 
More information on the acquisition of the images 𝐼/0 are available in Supplementary Note 
1.2.1.  

First, we degraded the images 𝐼/0 to obtain LR images of mitochondria, denoted 𝐼!"#$!" (Fig. 
1b), that will serve as input to the neural network. To that end, we first applied a Gaussian filter 
of standard deviation 𝜎,-.) = 3.25 pixels to the images 𝐼/0 in order to approximate the blurring 
effect due to the point spread function of the microscope. Then, we added a Poisson-Gaussian 
noise (𝜎#'&!+ = 4.0), consistently with noises observed in real STED images. The parameters 
𝜎,-.)  and 𝜎#'&!+  were set to create pertinent input data that mimic real LR STED images 
(Supplementary Note 1.2.1). Note that the value of 𝜎#'&!+ was chosen in line with our data 
where the maximum intensity varies between 56 and 356. Second, we paired the LR STED 
images 𝐼!"#$!") with their restored counterpart, the HR STED images 𝐼/0 	that are considered 
as ground truths. Finally, we split the dataset 𝐷!"#$ into 24 training images and 9 test images. 
Note that to improve the training, we enhanced the mitochondria cristae in the images 𝐼/0 of 
the training set using the Richardson-Lucy algorithm30,31 (Fig. 1c). Other non-iterative 
deconvolution algorithms were tried, such as SPITFIR(e)33 or Wiener32, but the results 
obtained after training were not as good. 

To further increase the size of the training set, data augmentation (Fig. 1d) and patch sampling 
(Fig. 1e and later described in Methods) are performed on the pair of LR images 𝐼!"#$!" and 
HR STED images 𝐼/0. The dataset is first augmented by applying three different rotations to 
the images (90°, 180° and 270°). Then, a shrink transform, and horizontal and vertical flips are 
successively applied to 25% of the augmented dataset, randomly selected. The final training 
set is made of 1824 patches of size 128×128 pixels, whose 20% are used for the validation 
set and so that there is no overlap with the patches used for training (summary in 
Supplementary Table 1). 

The 9 HR STED test images 𝐼/0 have different levels of noise and blur due to out-of-focus light 
mitochondria. For the evaluation of our method, we selected 26 ROIs out of these 9 𝐼/0 images 
where the mitochondria are in the focal plane, that we have labeled as “test images”. 

Network architecture. We used the network proposed by Weigert et al.19 as the backbone of 
the CNN architecture, itself built upon the U-Net58. It has a contracting path and an expansive 
path, each one consisting of 3 sequential downsampling and upsampling blocks, respectively. 
Each block of the first path is skip-connected to the associated one of the expansive paths. 
The contracting path consists of two successive 3×3 convolutions, each followed by a Rectified 
Linear Unit (ReLU), and a 2×2 max pooling operation with stride 2 for downsampling. Every 
depth in the expansive path consists of a 2×2 up-sampling of the feature map, concatenated 
with the corresponding feature map from the contracting path, followed by two 3×3 
convolutions with a ReLU activation function. At the final layer, one 1×1 convolution is used. 
The output results from an additive assembly between the input of the neural network and the 
last layer's output. The network (Fig. 1f) outputs the same size restored images. Note that the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2024. ; https://doi.org/10.1101/2023.07.05.547594doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.05.547594
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

network was trained with patches of size 128×128 pixels, but in the inference step (Fig. 1g-i), 
raw data of any size can be used as input. 

Design of the training loss. We present our new loss, the Similarity Component Prioritization 
(SCoP) loss, that has been designed to better restore mitochondria cristae. Most losses and 
metrics used to train networks or to evaluate the quality of restorations compute the score on 
the whole image, giving the same weight to any pixel. For example, the MAE computes the 
mean absolute error between the prediction and the target image, while the SSIM, despite not 
basing the calculation on pixels-to-pixels difference, computes the similarity among all the 
pixels of both images. Instead, our purpose is to focus on informative pixels corresponding to 
target structures in images. Indeed, the dark and noisy background occupies most of 
fluorescence images, which alters the learning. To overcome this issue, we introduce SCoP, 
a novel loss which adaptively prioritizes the restoration of mitochondria pixels. 

Our SCoP loss is built upon the structural dissimilarity (DSSIM) measure. Consider (𝑖, 𝑗) the 
spatial coordinates of a given pixel and a patch of size (𝑁,𝑁). The loss formula between a 
target image 𝑦 and its prediction 𝑦E is given by 

 𝑆𝐶𝑜𝑃(𝑦, 𝑦E) =
1
𝑁1HHI

1− 𝑆𝑆𝐼𝑀","3
%*4(𝑖, 𝑗)
2

J
5#,%6

789

6

&89

,	 (1) 

where 𝑆𝑆𝐼𝑀","3
%*4 is the map of the local structural similarity (SSIM) values for corresponding 

pixels between the images 𝑦  and 𝑦E . Each SSIM value ranges in [-1,1], where -1 (1, 
respectively) testifies of a bad (very good similarity, respectively) between 𝑦(𝑖, 𝑗)	and 𝑦E(𝑖, 𝑗). 
The parameter 𝛾&,7 prioritizes the restoration of specific regions of interest. In our case, we 
chose 𝛾&,7 = 1  if the pixel (𝑖, 𝑗)  belongs to a mitochondrion, 4 otherwise. In this way, we 
encourage the network to focus on restoring mitochondria pixels and reduce the influence of 
a poorly restored background on the loss. Determining whether a pixel belongs to the 
background or to a mitochondrion can be performed automatically (using our method 
described below in Methods “Image patch sampling for the training step - Thresholding”) or 
manually by using any binary segmentation provided by the user. 

Data normalization. Our training images of 𝐷!"#$ have different ranges of intensity values. To 
homogenize them, we normalized the input data and their corresponding ground truth to a 
common distribution of intensity values with the percentile normalizer. This normalization also 
has the advantage of excluding outliers, which are very frequent in microscopy imaging due to 
noise and luminance. The percentile normalization of an image 𝐼	is defined as 

 𝐼#')% =
𝐼 − 𝑝𝑒𝑟𝑐(𝐼, 	𝑝-':)

𝑝𝑒𝑟𝑐P𝐼, 	𝑝;&<;Q − 𝑝𝑒𝑟𝑐(𝐼, 𝑝-':)
	,	 (2) 

where 𝑝𝑒𝑟𝑐(𝐼, 𝑝) is the p-th percentile of 𝐼. We used 𝑝-': = 2 and 𝑝;&<; = 99.8. This step is 
also performed during the inference step on any input data. 

Image patch sampling for the training step. Our model is trained on the training set of 𝐷!"#$ 
containing 24 images (96 after data augmentation) of different sizes. In order to homogenize 
and increase the training dataset, we performed patch sampling. We sampled each input 
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training image 𝐼 ∈ 𝑅=×? , defined over the grid 𝛺  of size 𝑊 × 𝐿 , within 𝑁@ = W =
91A
X ∗ W ?

91A
X 

patches of size 128×128. As our images contain more background pixels than mitochondria 
pixels, grid or simple random patch sampling will end in too many empty patches. This can 
degrade the training of our model. Instead, we perform a random sampling focusing on the 
regions of interest, the mitochondria. Our pipeline (Supplementary Fig. 7) is described as 
follows. 

• Anscombe transform. To detect the areas of interest, we need to enhance the 
mitochondria signal with respect to the noise. To do this, we first remove the Poisson-Gaussian 
noise in STED images. This is achieved by applying an Anscombe transform, which enables to 
stabilize noise variance and to approximately convert Poisson-Gaussian noise into white Gaussian 
noise with a constant variance. The Anscombe transform of an image 𝐼 is given by 

 𝐼B#!((𝑖, 𝑗) = 2Z
3
8
+ 𝐼(𝑖, 𝑗), ∀(𝑖, 𝑗) ∈ 𝛺	.	 (3) 

• Z-score. Then, we compute the Z-score map defined as 

 𝑍(𝑖, 𝑗) =
𝐼B#!((𝑖, 𝑗) 	−	 𝜇̂∈

𝜎E∈
, ∀(𝑖, 𝑗) ∈ 𝛺	,	 (4) 

where 𝜇̂D  and 𝜎ED  are the estimated mean and standard deviation of the Gaussian noise 𝜖, 
respectively. Since most of the pixels in 	𝐼	belong to the background, we consider 𝜇̂D =
𝑚𝑒𝑑𝑖𝑎𝑛P{𝐼(𝑖, 𝑗)}(&,7)DGQ. For 𝜎ED, we use a robust estimator derived from the Median Absolute 
Deviation (MAD) such that 𝜎ED = 1.4826 ⋅ 𝑚𝑒𝑑𝑖𝑎𝑛P{	|𝑟(𝑖, 𝑗)|}(&,7)DGQ , where 𝑟(𝑖, 𝑗) =
1@&'()(&,7)	I	@&'()(&J9,7)I	@&'()(&,7J9)

√L
, ∀(𝑖, 𝑗)𝜖𝛺 , are the pseudo-residuals. In fact, under the 

hypothesis of having a white Gaussian noise and that the noise-free image is piecewise 
smooth in a local neighborhood, we have that 𝜎ED1 = 𝐸[𝑟1(𝑖, 𝑗)].  

• Thresholding. The higher the Z-score in Eq. (4), the higher the pixel value is above the 
mean of the measured noise and therefore the pixel (𝑖, 𝑗) is considered as a pixel of interest. 
We apply a threshold c, in a way that any pixel (𝑖, 𝑗)𝜖	𝛺 such that 𝑍(𝑖, 𝑗) > 𝑐 is considered as 
a mitochondria pixel. We denote this set as 𝛺%&$'. The threshold is automatically adapted for 
each training image. Starting from a fixed high value of 30, while 𝛺%&$' does not contain a 
minimum of 10% mitochondrial information (i.e., #𝛺%&$'  < 10% #𝛺 , where #𝛺  and #𝛺%&$' 
denote the number of pixels in the sets 𝛺 and 𝛺%&$', respectively), we subtract 5 from the 
threshold value. This creates a binary mask on which we apply a median to remove the 
surrounding noise. This automatic procedure avoids cumbersome manual annotations. Note 
that this mask can also be used to compute the parameter 𝛾&,7 in our loss (see Eq. (1)). 

• ROIs selection. From 𝛺%&$', we randomly choose 𝑁@ different pixels to be the center of 
ROIs of size 128×128 pixels. Thus, the more pixels of mitochondria a ROI contains, the more 
likely it is to be chosen. The following conditions have to be respected: i) the ROI centers 
should not belong to the borders of the image; ii) to avoid redundancy, a minimum distance of 
60 pixels is established between each pairwise ROI center. The resulting ROIs are finally used 
to create the patches from the normalized training data (see above “Data normalization”). 
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Network evaluation. In addition to a quantitative comparison to the state-of-the-art methods 
and experiments to show the reliability of our method (Results), an ablation study was also 
performed (Supplementary Fig. 8; Supplementary Note 2.3) to highlight the individual 
contribution of key components of our method. More details about the evaluation metrics and 
the implementation details of DeepCristae are also given in Supplementary Note 2.1 and 
Supplementary Note 2.2.1, respectively. 

Other Methods and Materials 

Cell culture and biological materials, fluorescence labeling, all used microscopy techniques, 
image acquisition protocols and quantitative measurements are detailed in the Supplementary 
Note 1. PKMITO dyes are commercially available at Spirochrome (Stein-am-Rhein, 
Switzerland) and Genvivo Biotech (Nanjing, China) 

Data availability 

Data generated during this study are available in Figshare with the identifier doi:  
10.6084/m9.figshare.26940892. Currently data can be accessed in the following private link:  
https://figshare.com/s/75471f3f0122df6f04fe. 

Code availability  

DeepCristae source code used in this publication is open-source and published under the BSD 
3-Clause "Original" or "Old" License. Upon publication source code will be available through 
GitHub. Reviewers may access through  

https://gitfront.io/r/user-2634057/nYmNiN2cMUku/DeepCristae/  
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