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ABSTRACT 

Standard ChIP-seq and RNA-seq processing pipelines typically disregard 

sequencing reads whose origin is ambiguous (“multimappers”). This usual practice 

has potentially important consequences for the functional interpretation of the data: 

genomic elements belonging to clusters composed of highly similar members are left 

unexplored. In particular, disregarding multimappers leads to the systematic 

underrepresentation in epigenetic studies of recently active transposons, such as 

AluYa5 and L1HS. Furthermore, this common strategy also has implications for 

transcriptomic analysis: members of repetitive gene families, such the ones including 

major histocompatibility complex (MHC) class I and II genes, are systematically 

underquantified. Based on these findings, we strongly advocate for the 

implementation of multimapper-aware bioinformatic genomic analyses. 
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BACKGROUND 

Next-generation sequencing (NGS) technologies such as Chromatin 

Immunoprecipitation followed by sequencing (ChIP-seq) [1] and RNA-seq [2] have 

emerged as the state of the art for investigating the (epi-)genome and the 

transcriptome. ChIP-seq and RNA-seq reads are typically short, with customary 

protocols recommending 1  50 bp and 2  75 bp, respectively [3,4], and such read 

lengths are insufficient to completely span many of the repetitive elements that 

abound in complex eukaryotic genomes. As a consequence, standard analysis 

pipelines struggle to unambiguously trace the locus from which the reads have 

arisen. This is well recognized by scientists working on the function and evolution of 

transposable elements, which have often expressed their concerns about most 
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studies disregarding more than half of the human genome [5–7] and proposed 

several strategies to alleviate the problem. While simple strategies acknowledge 

ambiguously mapping reads (“multimappers”) by dividing the number of reads 

assigned to a locus by the total number of loci to which the reads map (e.g., [8,9]), 

more sophisticated approaches use context information to infer their origin (e.g., 

[10,11]). Standard NGS pipelines, however, habitually disregard multimappers [12], 

at most randomly reporting one of the best mappings [13]. 

With the present study we wish to draw attention to the systematic biases in 

downstream analysis of NGS data that result from disregarding multimappers.  

RESULTS AND DISCUSSION 

Inspection of exemplary ChIP-seq ENCODE [14] libraries (Additional file 1: 

Suppl. Table 1) revealed that multimappers constitute a substantial proportion (9-

32%) of all reads mapped to the human genome (Fig. 1A), although the exact 

numbers vary greatly depending on the mapping tool: Bwa mem [15] (26-32%) 

reported twice or more the number of multimappers than BBMap [16] (9-16%). As 

expected, a large fraction (43-79%) of multimappers mapped to regions annotated 

as transposable elements (TEs). Motivated by the fact that multimappers mainly 

originate from TEs and by the enormous expansion of repetitive TE sequences in 

mammalian genomes –e.g., they comprise ~46% of the human genome–, we used 

ChIP-seq data to explore the impact of multimappers on the epigenetic 

characterisation of TEs. TE individual copies in the human genome vary widely in 

length (from 10 to 153,104 bp), but span a median of 231 bp, mostly reflecting the 

relatively recent expansion of elements from the SINE Alu family (median of 294 bp, 

Fig. 1B). Thus, the substantial fraction of multimappers derived from TEs can be 

explained by the fact that TE copies are not fully covered by conventional NGS 

reads. Specifically, we saw that while multimappers tended to be associated with 

evolutionary young TEs, such as AluYa5 and L1HS (Additional file 1: Suppl. Table 

2), uniquely mapped reads (“unimappers”) tended to be associated with old TEs (p < 

2.2x10-16, Chi-squared test; Fig. 1C; Additional file 2: Suppl. Figs. 1-2). This is 

natural, since relatively young TEs have not had enough time to accumulate 

variations in their sequences, but has far-reaching consequences: using standard 

ChIP-seq pipelines will specifically underrepresent recently active TEs, hampering 
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their study. This situation is especially dire because TE activity is associated with 

diverse human diseases [17], and hence, the characterisation of these TEs is 

imperative. 

ChIP-seq is not the only NGS technology concerned by the current prevailing 

approach to handling multimappers. Standard RNA-seq analysis pipelines use tools 

such as HTSeq-count [18] and STAR [19] for quantifying reads mapping to 

annotated genes, and these tools also deliberately disregard multimappers. Using 

RNA-seq dendritic cell libraries as an illustration of the problem, we found that ~10% 

(Fig. 2A) and ~5% of the fragments mapped to the human and mouse genomes, 

respectively, were multimappers (Additional file 2: Suppl. Fig. 3). Moreover, about 

6% (777 out of 13,437) of the human and 4% (468 out of 12,561) of the mouse 

genes expressed in these cells were under-quantified by HTSeq-count and STAR 

geneCounts when comparing to our “multimapper-aware” strategy (Fig. 2B; 

Additional file 1: Suppl. Tables 3-4; Additional file 2: Suppl. Fig. 4). Importantly, 

these genes were related to specific functions intrinsic to the biology of the samples 

under investigation: MHC class I and II immune responses and peptide antigen 

binding (Fig. 2C; Additional file 2: Suppl. Fig. 5). In other words, disregarding 

multimappers may result in failure to identify relevant genes and functions. Finally, it 

is worth noticing that biases in quantification are likely to impact differentially 

expression analysis as well, since poorly expressed genes are normally filtered 

before testing for differential expression.  

Although, we saw little difference in the proportion of multimappers when 

comparing sequencing libraries with read lengths within current working standards 

and guidelines for ChIP-seq and RNA-seq (Figs. 1A and 2A), the use of 

substantially longer reads should improve the mappability in repetitive regions. Thus, 

long-read sequencing technologies (e.g., PacBio and Nanopore) are promising to 

minimise the effect of ambiguously mapping reads, but at higher cost and lower 

accuracy than NGS. 

CONCLUSIONS 

In conclusion, we showed that standard NGS pipelines systematically omit 

genomic features containing repetitive sequences by disregarding ambiguously 

mapping reads (or read pairs). Furthermore, mischaracterisation of some GO 
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functional terms is magnified when shorter reads are used. In addition, we provide a 

list containing the most affected features and the resulting functional consequences 

in our specific dataset. Finally, since the use of long-read sequencing technologies is 

not yet a reality in many laboratories, we raise awareness on the importance of 

retrieving multimappers from NGS experiments using already available strategies to 

gain complete understanding of the data, even if repeats are not the main focus of 

the analysis. 

METHODS 

Datasets 

We selected four human and mouse experiments from the ENCODE Project 

data repository [14] for single-end ChIP-seq and pair-end RNA-seq with read (or 

read pair) length ranging from 50 to 100 bp (Additional file 1: Suppl. Table 1). 

Repeat annotation 

Repeat annotation was obtained from the RepeatMasker track of the UCSC 

Genome Browser [20]. Immediately adjacent or overlapping annotations for TEs with 

the same “name” (“repName” in the RepeatMasker track) were merged. We further 

refer to all TEs with the same name as a TE “group”. 

Quality control and read mapping 

Quality of raw ChIP-seq and RNA-seq samples was assessed using FASTQC 

v0.11.9 [21]. Reads were trimmed for adapters with Cutadapt 2.8 [22] and filtered 

with Trimmomatic v0.39 [23]. Bwa mem v0.7.17 [15] and BBMap v39.01 [16] were 

used to map reads against the human (GRCh38/hg38) and mouse (GRCm38/mm10) 

genome assemblies for ChIP-seq; STAR v2.7.10a [19] was used for RNA-seq. Gene 

annotations (GRCh38.p13 and GRCm38.p4) were obtained from GENCODE [24]. 

Duplicated reads were filtered out using PICARD v2.24.0 [25]. Reads mapping to 

non-chromosomal scaffolds and mitochondrial chromosome were excluded from the 

analysis of ChIP-seq samples. Only reads mapped in a proper pair were considered 

for RNA-seq data analysis; they were retrieved with SAMtools v1.10 [26]. The 

parameters used for each tool are listed in Additional file 1: Suppl. Table 5. 

TE group age 

The oldest clade in which the TEs from a given group can be assumed to 

have been active was retrieved from Dfam (“Clades” column, [27]). 
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TE group coverage 

 Bedmap v2.4.37 [28] was used to identify overlaps between the coordinates 

of read mappings and annotated TEs. Reads that mapped only once in the genome 

were considered “unimappers”; reads that mapped more than once were considered 

“multimappers”. Read coverage was computed for each TE group as: 

 

where  is the set of all copies of a TE group,  is the set of all reads in the library, 

 is the set of all loci to which read  (of  length) mapped, and  is the size of 

that set, and  is the number of overlapping nucleotides of the  th mapping of the 

read  and TE copy . For each mapping  of  

. 

Gene expression quantification 

Multimappers were defined as read pairs (“fragments”) for which  at least one 

read of the pair mapped more than once in the genome.  

Standard gene expression quantification was performed with HTSeq-count 

(v2.0.2, [18]) using default parameters (“--nonunique none”), i.e., not accounting for 

multimappers. The expression value of a gene  was defined as , where  is 

the count for gene  assigned by HTSeq-count, and  is the gene length as defined 

by its start and end coordinates in the R Ensembl BioMart database v2.54.0 [29]. 

To account for multimappers, we used a “multimapper-aware” strategy that 

counted fragments in genes based on the list of genes (“set S”) overlapping with the 

fragment mappings generated by HTSeq-count [30]. Specifically, gene counts were 

computed for each gene  as: 

 

where  is the set of all fragments in the library,  is the set of all mappings in the 

transcriptome for fragment  and  is the size of that set, and for each mapping  

of  

.  
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Note that if  overlaps not only with  but also with at least another gene, then 

. This is the default behaviour of HTSeq-count (Additional file 3: 

Additional Material). 

A gene  was considered “expressed” if . The multimapper-aware 

expression value of gene  was defined as . 

Genes were considered under-quantified by HTSeq-count if , 

where  is the count for gene  assigned by HTSeq-count. 

Computations were repeated with simulated libraries constructed by trimming 

the 3’ UTR end of the read pairs to 25, 50 or 75 bp with Cutadapt 2.8 [22]. 

Functional analysis 

The 50, 100 or 200 protein-coding genes with the highest expression values 

were subjected to functional analysis using the “compareCluster” function of the R 

clusterProfiler package (v.4.6.0, [31]). Gene type was retrieved from R Ensembl 

BioMart database v2.54.0 [29]. 
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FIGURES AND FIGURE LEGENDS 

 
Figure 1. Discarding multimappers leads to epigenetic mischaracterization of 

young TEs. (A) Percentage of uni- and multimapper reads mapping to portions of 

the human genome annotated as TEs and not annotated as TEs (non-TE) for two 

ChIP-seq libraries generated by the ENCODE consortium using single-end 50bp 

(“SE50”) and 100bp (“SE100”) reads. Mapping was performed with two different 

mapping tools: with BBMap and Bwa mem. TEs are the major source of ChIP-seq 

multimappers in the human genome. (B) Length distribution of TE individual copies. 

Only TEs shorter than 500 bp are shown. Note that ˜74% (856 out of 1,160) of the 

TEs in the human genome are longer than 500 bp, spanning up to 153,104 bp. The 

bin width is 10 bp. TEs were classified as DNA, LTR (long terminal repeat), SINE 

(short interspersed nuclear element), LINE (long interspersed nuclear element) and 
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Others (e.g., rolling-circle (RC), unknown classification). Standard NGS reads are 

too short to fully cover most TE copies, explaining why TEs often give rise to 

multimappers. (C) Read coverage (bar plot on the left y-axis; see Methods) per clade 

for the SE100 ChIP-seq library for uni- and multimappers. Reads were mapped 

using Bwa mem. TEs found in multiple clades (e.g., L1HS and L1P1) were assigned 

to the “younger” clade (Homo and Hominoidea, respectively). Only 30 out of 1,160 

different TEs in the human genome (~3%) have not been annotated to any clade and 

were not represented. The number of TE copies for each clade (line plot on the right 

y-axis) shows that the majority of TEs are Primates and Eutherian-specific. 

Evolutionary young TEs are prone to be underrepresented when excluding 

multimappers from ChIP-seq analysis. 
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Figure 2. Discarding multimappers leads to functional mischaracterization of 

repetitive gene families. (A) Percentage of uni- and multimapper fragments 

mapping to human genome for an RNA-seq library generated by the ENCODE 

consortium using pair-end 100 bp (“PE100”) and thereof simulated libraries with read 

pairs of length 25, 50 and 75 bp (“PE25”, “PE50” and “PE75”, respectively). Within 

the read lengths assessed, the difference in the proportion of multimappers was 

modest (10-21%). (B) Scatter plot showing gene expression values computed with 

HTSeq-count using default parameters (“--nonunique none”; x-axis) and by our 

“multimapper-aware” strategy (y-axis) for PE100. Each dot represents a protein-

coding gene and is coloured differently depending on whether it is considered 

(approximately) equally-quantified or under-quantified by HTSeq-count (see 

Methods). The dashed line indicates identical gene expression values. About 6% 

(777 out of 13,437) expressed genes are under-quantified when discarding 

multimappers. (C) Gene ontology (GO) enrichment analysis of the 50, 100, and 200 

protein-coding genes with the highest expression values in PE100 as computed by 

HTSeq-count (“H50”, “H100”, and “H200”, respectively) or our “multimapper-aware” 

strategy (“C50”, “C100”, and “C200”, respectively). GO enrichment analysis was 

performed for the “molecular function” category and using the “org.Hs.eg.db” 

annotation for the human genome. The q-value threshold was set to 0.01. Dot size 

represents the ratio between the number of genes in the given GO term (y-axis) and 

the number of genes annotated as participating in each category (shown in brackets, 

below the label of each gene set on the x-axis). Dot colour indicates the P-value 

adjusted by Benjamini-Hochberg (BH, “p.adj.”). Neglecting multimappers leads to the 

underrepresentation of genes with specific functions. 

SUPPLEMENTARY INFORMATION 

Additional file 1: Supplementary Tables 1–5. 

Additional file 2: Supplementary Figures 1–5. 
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