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ABSTRACT

Standard ChlIP-seq and RNA-seq processing pipelines typically disregard
sequencing reads whose origin is ambiguous (“multimappers”). This usual practice
has potentially important consequences for the functional interpretation of the data:
genomic elements belonging to clusters composed of highly similar members are left
unexplored. In particular, disregarding multimappers leads to the systematic
underrepresentation in epigenetic studies of recently active transposons, such as
AluYa5 and L1HS. Furthermore, this common strategy also has implications for
transcriptomic analysis: members of repetitive gene families, such the ones including
major histocompatibility complex (MHC) class | and Il genes, are systematically
underquantified. Based on these findings, we strongly advocate for the

implementation of multimapper-aware bioinformatic genomic analyses.
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BACKGROUND

Next-generation sequencing (NGS) technologies such as Chromatin
Immunoprecipitation followed by sequencing (ChlP-seq) [1] and RNA-seq [2] have
emerged as the state of the art for investigating the (epi-)genome and the
transcriptome. ChlP-seq and RNA-seq reads are typically short, with customary
protocols recommending 1 x 50 bp and 2 x 75 bp, respectively [3,4], and such read
lengths are insufficient to completely span many of the repetitive elements that
abound in complex eukaryotic genomes. As a consequence, standard analysis
pipelines struggle to unambiguously trace the locus from which the reads have
arisen. This is well recognized by scientists working on the function and evolution of

transposable elements, which have often expressed their concerns about most
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studies disregarding more than half of the human genome [5-7] and proposed
several strategies to alleviate the problem. While simple strategies acknowledge
ambiguously mapping reads (“multimappers”) by dividing the number of reads
assigned to a locus by the total number of loci to which the reads map (e.g., [8,9]),
more sophisticated approaches use context information to infer their origin (e.g.,
[10,11]). Standard NGS pipelines, however, habitually disregard multimappers [12],
at most randomly reporting one of the best mappings [13].

With the present study we wish to draw attention to the systematic biases in

downstream analysis of NGS data that result from disregarding multimappers.
RESULTS AND DISCUSSION

Inspection of exemplary ChiP-seq ENCODE [14] libraries (Additional file 1:
Suppl. Table 1) revealed that multimappers constitute a substantial proportion (9-
32%) of all reads mapped to the human genome (Fig. 1A), although the exact
numbers vary greatly depending on the mapping tool: Bwa mem [15] (26-32%)
reported twice or more the number of multimappers than BBMap [16] (9-16%). As
expected, a large fraction (43-79%) of multimappers mapped to regions annotated
as transposable elements (TEs). Motivated by the fact that multimappers mainly
originate from TEs and by the enormous expansion of repetitive TE sequences in
mammalian genomes —e.g., they comprise ~46% of the human genome—, we used
ChiP-seq data to explore the impact of multimappers on the epigenetic
characterisation of TEs. TE individual copies in the human genome vary widely in
length (from 10 to 153,104 bp), but span a median of 231 bp, mostly reflecting the
relatively recent expansion of elements from the SINE Alu family (median of 294 bp,
Fig. 1B). Thus, the substantial fraction of multimappers derived from TEs can be
explained by the fact that TE copies are not fully covered by conventional NGS
reads. Specifically, we saw that while multimappers tended to be associated with
evolutionary young TEs, such as AluYa5 and L1HS (Additional file 1: Suppl. Table
2), uniquely mapped reads (“unimappers”) tended to be associated with old TEs (p <
2.2x10"®, Chi-squared test; Fig. 1C; Additional file 2: Suppl. Figs. 1-2). This is
natural, since relatively young TEs have not had enough time to accumulate
variations in their sequences, but has far-reaching consequences: using standard

ChiIP-seq pipelines will specifically underrepresent recently active TEs, hampering
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their study. This situation is especially dire because TE activity is associated with
diverse human diseases [17], and hence, the characterisation of these TEs is
imperative.

ChIP-seq is not the only NGS technology concerned by the current prevailing
approach to handling multimappers. Standard RNA-seq analysis pipelines use tools
such as HTSeg-count [18] and STAR [19] for quantifying reads mapping to
annotated genes, and these tools also deliberately disregard multimappers. Using
RNA-seq dendritic cell libraries as an illustration of the problem, we found that ~10%
(Fig. 2A) and ~5% of the fragments mapped to the human and mouse genomes,
respectively, were multimappers (Additional file 2: Suppl. Fig. 3). Moreover, about
6% (777 out of 13,437) of the human and 4% (468 out of 12,561) of the mouse
genes expressed in these cells were under-quantified by HTSeq-count and STAR
geneCounts when comparing to our “multimapper-aware” strategy (Fig. 2B;
Additional file 1: Suppl. Tables 3-4; Additional file 2: Suppl. Fig. 4). Importantly,
these genes were related to specific functions intrinsic to the biology of the samples
under investigation: MHC class | and Il immune responses and peptide antigen
binding (Fig. 2C; Additional file 2: Suppl. Fig. 5). In other words, disregarding
multimappers may result in failure to identify relevant genes and functions. Finally, it
is worth noticing that biases in quantification are likely to impact differentially
expression analysis as well, since poorly expressed genes are normally filtered
before testing for differential expression.

Although, we saw little difference in the proportion of multimappers when
comparing sequencing libraries with read lengths within current working standards
and guidelines for ChlP-seq and RNA-seq (Figs. 1A and 2A), the use of
substantially longer reads should improve the mappability in repetitive regions. Thus,
long-read sequencing technologies (e.g., PacBio and Nanopore) are promising to
minimise the effect of ambiguously mapping reads, but at higher cost and lower
accuracy than NGS.

CONCLUSIONS

In conclusion, we showed that standard NGS pipelines systematically omit
genomic features containing repetitive sequences by disregarding ambiguously

mapping reads (or read pairs). Furthermore, mischaracterisation of some GO
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functional terms is magnified when shorter reads are used. In addition, we provide a
list containing the most affected features and the resulting functional consequences
in our specific dataset. Finally, since the use of long-read sequencing technologies is
not yet a reality in many laboratories, we raise awareness on the importance of
retrieving multimappers from NGS experiments using already available strategies to
gain complete understanding of the data, even if repeats are not the main focus of

the analysis.
METHODS

Datasets

We selected four human and mouse experiments from the ENCODE Project
data repository [14] for single-end ChIP-seq and pair-end RNA-seq with read (or
read pair) length ranging from 50 to 100 bp (Additional file 1: Suppl. Table 1).
Repeat annotation

Repeat annotation was obtained from the RepeatMasker track of the UCSC
Genome Browser [20]. Immediately adjacent or overlapping annotations for TEs with
the same “name” (“repName” in the RepeatMasker track) were merged. We further
refer to all TEs with the same name as a TE “group”.
Quality control and read mapping

Quality of raw ChIP-seq and RNA-seq samples was assessed using FASTQC
v0.11.9 [21]. Reads were trimmed for adapters with Cutadapt 2.8 [22] and filtered
with Trimmomatic v0.39 [23]. Bwa mem v0.7.17 [15] and BBMap v39.01 [16] were
used to map reads against the human (GRCh38/hg38) and mouse (GRCm38/mm10)
genome assemblies for ChiP-seq; STAR v2.7.10a [19] was used for RNA-seq. Gene
annotations (GRCh38.p13 and GRCm38.p4) were obtained from GENCODE [24].
Duplicated reads were filtered out using PICARD v2.24.0 [25]. Reads mapping to
non-chromosomal scaffolds and mitochondrial chromosome were excluded from the
analysis of ChlP-seq samples. Only reads mapped in a proper pair were considered
for RNA-seq data analysis; they were retrieved with SAMtools v1.10 [26]. The
parameters used for each tool are listed in Additional file 1: Suppl. Table 5.
TE group age

The oldest clade in which the TEs from a given group can be assumed to

have been active was retrieved from Dfam (“Clades” column, [27]).
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TE group coverage
Bedmap v2.4.37 [28] was used to identify overlaps between the coordinates
of read mappings and annotated TEs. Reads that mapped only once in the genome
were considered “unimappers”; reads that mapped more than once were considered
“multimappers”. Read coverage was computed for each TE group as:
o gE T ()
r T

keK reQ ryeMy

where K is the set of all copies of a TE group, Q is the set of all reads in the library,
M, is the set of all loci to which read 7 (of Ly length) mapped, and |Mylis the size of

that set, and l*-r.- is the number of overlapping nucleotides of the § th mapping of the
read Ti and TE copy k. For each mapping Fiof r
L) = {1, if g cviarla.ps with &
0, otherwise
Gene expression quantification

Multimappers were defined as read pairs (“fragments”) for which at least one
read of the pair mapped more than once in the genome.

Standard gene expression quantification was performed with HTSeq-count
(v2.0.2, [18]) using default parameters (“--nonunique none”), i.e., not accounting for
multimappers. The expression value of a gene g was defined as Hg/Lg, where Hy is
the count for gene ¥ assigned by HTSeg-count, and Lgis the gene length as defined
by its start and end coordinates in the R Ensembl BioMart database v2.54.0 [29].

To account for multimappers, we used a “multimapper-aware” strategy that
counted fragments in genes based on the list of genes (“set S”) overlapping with the
fragment mappings generated by HTSeg-count [30]. Specifically, gene counts were

computed for each gene g as:
] (ﬁ.
Co=2. D T

feQ s EMJ

where & is the set of all fragments in the library, Mf is the set of all mappings in the

transcriptome for fragment f and IMglis the size of that set, and for each mapping Ji

of f

L(F) = {1, if f; overlaps with g

0, otherwise
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Note that if f overlaps not only with § but also with at least another gene, then
L(fiY=10_ This is the default behaviour of HTSeg-count (Additional file 3:
Additional Material).

A gene 8 was considered “expressed” if Ce>0 The multimapper-aware
expression value of gene 4 was defined as Col Ly

Genes were considered under-quantified by HTSeq-count if Hs/Lg ,
where Hyg is the count for gene ¢ assigned by HTSeq-count.

Computations were repeated with simulated libraries constructed by trimming
the 3' UTR end of the read pairs to 25, 50 or 75 bp with Cutadapt 2.8 [22].
Functional analysis

The 50, 100 or 200 protein-coding genes with the highest expression values
were subjected to functional analysis using the “compareCluster” function of the R
clusterProfiler package (v.4.6.0, [31]). Gene type was retrieved from R Ensembl
BioMart database v2.54.0 [29].
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Figure 1. Discarding multimappers leads to epigenetic mischaracterization of
young TEs. (A) Percentage of uni- and multimapper reads mapping to portions of
the human genome annotated as TEs and not annotated as TEs (non-TE) for two
ChiIP-seq libraries generated by the ENCODE consortium using single-end 50bp
(“SE50”) and 100bp (“SE100") reads. Mapping was performed with two different
mapping tools: with BBMap and Bwa mem. TEs are the major source of ChlP-seq
multimappers in the human genome. (B) Length distribution of TE individual copies.
Only TEs shorter than 500 bp are shown. Note that “74% (856 out of 1,160) of the
TEs in the human genome are longer than 500 bp, spanning up to 153,104 bp. The
bin width is 10 bp. TEs were classified as DNA, LTR (long terminal repeat), SINE

(short interspersed nuclear element), LINE (long interspersed nuclear element) and

10
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Others (e.g., rolling-circle (RC), unknown classification). Standard NGS reads are
too short to fully cover most TE copies, explaining why TEs often give rise to
multimappers. (C) Read coverage (bar plot on the left y-axis; see Methods) per clade
for the SE100 ChiIP-seq library for uni- and multimappers. Reads were mapped
using Bwa mem. TEs found in multiple clades (e.g., LIHS and L1P1) were assigned
to the “younger” clade (Homo and Hominoidea, respectively). Only 30 out of 1,160
different TEs in the human genome (~3%) have not been annotated to any clade and
were not represented. The number of TE copies for each clade (line plot on the right
y-axis) shows that the majority of TEs are Primates and Eutherian-specific.
Evolutionary young TEs are prone to be underrepresented when excluding

multimappers from ChIP-seq analysis.
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Figure 2. Discarding multimappers leads to functional mischaracterization of
repetitive gene families. (A) Percentage of uni- and multimapper fragments
mapping to human genome for an RNA-seq library generated by the ENCODE
consortium using pair-end 100 bp (“PE100") and thereof simulated libraries with read
pairs of length 25, 50 and 75 bp (“PE25”, “PE50” and “PE75", respectively). Within
the read lengths assessed, the difference in the proportion of multimappers was
modest (10-21%). (B) Scatter plot showing gene expression values computed with
HTSeqg-count using default parameters (“--nonunique none”; x-axis) and by our
“multimapper-aware” strategy (y-axis) for PE100. Each dot represents a protein-
coding gene and is coloured differently depending on whether it is considered
(approximately) equally-quantified or under-quantified by HTSeq-count (see
Methods). The dashed line indicates identical gene expression values. About 6%
(777 out of 13,437) expressed genes are under-quantified when discarding
multimappers. (C) Gene ontology (GO) enrichment analysis of the 50, 100, and 200
protein-coding genes with the highest expression values in PE100 as computed by
HTSeq-count (“H50”, “H100”, and “H200", respectively) or our “multimapper-aware”
strategy (“C50”7, “C100”, and “C200”, respectively). GO enrichment analysis was
performed for the “molecular function” category and using the “org.Hs.eg.db”
annotation for the human genome. The g-value threshold was set to 0.01. Dot size
represents the ratio between the number of genes in the given GO term (y-axis) and
the number of genes annotated as participating in each category (shown in brackets,
below the label of each gene set on the x-axis). Dot colour indicates the P-value
adjusted by Benjamini-Hochberg (BH, “p.adj.”). Neglecting multimappers leads to the

underrepresentation of genes with specific functions.
SUPPLEMENTARY INFORMATION

Additional file 1: Supplementary Tables 1-5.
Additional file 2: Supplementary Figures 1-5.
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