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Abstract 17 

Archiving data in synthetic DNA offers unprecedented storage density and longevity. Handling and 18 

storage introduce errors and biases into DNA-based storage systems, necessitating the use of Error 19 

Correction Coding (ECC) which comes at the cost of added redundancy. However, insufficient data on 20 

these errors and biases, as well as a lack of modelling tools, limit data-driven ECC development and 21 

experimental design. In this study, we present a comprehensive characterisation of the error sources 22 

and biases present in the most common DNA data storage workflows, including commercial DNA 23 

synthesis, PCR, decay by accelerated aging, and sequencing-by-synthesis. Using the data from 40 24 

sequencing experiments, we build a digital twin of the DNA data storage process, capable of simulating 25 

state-of-the-art workflows and reproducing their experimental results. We showcase the digital twin’s 26 

ability to replace experiments and rationalize the design of redundancy in two case studies, 27 

highlighting opportunities for tangible cost savings and data-driven ECC development.  28 
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Introduction 29 
As the amount of digital data to be stored continues to grow by Zettabytes every year, DNA is 30 

considered as a potential alternative to conventional storage media due to its exceptional stability and 31 

storage density.1–5 The use of DNA as storage medium presents unique practical challenges, such as 32 

affordability and scalability, as well as design challenges, such as the choice of redundancy and 33 

algorithm  for error correction coding (ECC).3,6,7 The latter challenge is aggravated by the errors 34 

incurred by data stored in DNA, ranging from single-site errors (i.e., substitutions, deletions, and 35 

insertions) to sequence dropout (i.e., the loss of data-encoding sequences).6 While errors stem directly 36 

from the chemical or biological processes involved in the DNA data storage workflow (e.g., synthesis, 37 

amplification, aging, and sequencing), sequence dropout is the product of a biased distribution for the 38 

oligonucleotide count per sequence (i.e., the coverage distribution). Due to these errors and biases, 39 

data stored in DNA is encoded with redundancy using ECC.6,8,9 These coding schemes add redundancy 40 

to recover the encoded data from the DNA sequences while correcting a limited number of errors and 41 

tolerating some missing sequences. However, choosing the optimal level of redundancy requires a 42 

priori knowledge of the expected error and dropout rates, for which insufficient experimental data are 43 

available. Instead, experience and overcompensation currently guide the choice of parameters.  44 

Beyond just choosing an adequate redundancy level, choosing a suitable ECC from the many 45 

implementations reported to date8,10–13 requires standardized error scenarios facilitating meaningful 46 

and fair comparisons. Computational comparisons have relied on fictitious error scenarios12,13 – 47 

considering error types in isolation – while experimental comparisons are costly and potentially 48 

misleading due to the plethora of potentially critical experimental parameters. In-silico tools for the 49 

simulation of errors in DNA exist,14–16 but they often do not support the parallel simulation of large 50 

oligonucleotide pools, neglect sequence dropout due to evolving bias in the coverage distribution, or 51 

directly reproduce experimental error patterns without considering experimental parameters. To 52 

replace experiments or compare ECCs however, an in-silico tool for DNA data storage must accurately 53 

reflect the errors and sequence dropout of state-of-the-art workflows based only on experimental 54 
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parameters. This requires a systematic understanding of the individual sources of errors and biases 55 

encountered in such workflows.  56 

Many of the biological and synthetic methods used in common DNA data storage workflows are well 57 

characterized (e.g. oligonucleotide synthesis17,18, PCR19,20, sequencing-by-synthesis (SBS)21,22). In 58 

contrast, studies on DNA data storage often only quantify overall error rates – if at all – and do not 59 

consider coverage biases. The works by Heckel et al.6 and Chen et al.23 began quantifying these error 60 

sources in isolation, identifying significant biases related to the synthesis and amplification of 61 

oligonucleotide pools. Still, no study has systematically investigated the evolution of error rates and 62 

coverage biases throughout the entire DNA data storage workflow. 63 

In this work, we comprehensively characterise the error sources and biases present in the most widely-64 

used DNA data storage workflows to date.1,9 This includes commercial DNA synthesis from the two 65 

major providers of large-scale oligonucleotide pools used in the literature1 (i.e., Twist Biosciences and 66 

Genscript/CustomArray), amplification via PCR, long-term storage and decay by accelerated aging, and 67 

sequencing by Illumina’s SBS technology. For our investigation, we systematically sequenced 68 

oligonucleotide pools throughout the workflows to analyse their error profiles and coverage 69 

distributions, for a total of 40 sequencing datasets. By characterising the base preferences, positional 70 

dependencies, and distributional inhomogeneities of all errors, we provide a complete description of 71 

all error sources in the various steps of the workflows. In addition, the analysis of coverage 72 

distributions revealed any potential coverage bias from synthesis, amplification, and aging, which we 73 

show to be critical for understanding sequence dropout. Finally, we condense the data on error rates 74 

and biases into a digital twin of the DNA data storage process: a tool to explore experimental workflows 75 

and provide standardized simulations for experimental scenarios. We demonstrate the digital twin’s 76 

ability to reproduce state-of-the-art workflows and showcase its application to the data-driven design 77 

of redundancy, which offers opportunities to replace costly experiments and facilitate meaningful 78 

comparisons between ECCs.  79 
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Results 80 
In this work, we characterize errors and biases from sequencing data using four oligonucleotide pools, 81 

each with 12000-12472 sequences of 143-157 nucleotides (nt). Two pools were synthesized via an 82 

electrode array-based method (Genscript/CustomArray) and two by a material deposition-based 83 

technology (Twist Biosciences). All pools consisted of random sequences, with one pool each enforcing 84 

a constraint on GC-content of 50% (“GC-constrained”), while the other remained unconstrained (see 85 

Methods and Supplementary Table 1). All pools were used in two workflows, consisting of either 86 

extensive reamplification with up to 90 PCR cycles or accelerated aging up to an equivalent storage 87 

duration of 1000 years at 10°C. Throughout the process, samples of the pools were sequenced to track 88 

the evolution of errors and biases for a total of 40 experimental endpoints across the two workflows. 89 

For our analysis, errors and biases were characterized by aligning sequencing reads to their respective 90 

references, identifying mutations, and evaluating the resulting error patterns. For more details on the 91 

analysis procedure and the datasets used, we refer to the Methods and Supplementary Note 1.  92 

In the following, we first quantify the overall error rates in our experiments, followed by the 93 

characterization of each individual error source in the data storage workflow. We then build and verify 94 

a computational model of the workflow, which is used in a case study to illustrate its value for the 95 

data-driven choice of redundancy in ECCs. 96 

Identifying error sources and assessing error independence 97 

To validate our experimental approach, we first compared our overall error rates to those published 98 

in previous studies. Throughout all our 40 datasets, we observed overall error rates of 6.7±6.9 99 

deletions, 7.9±2.0 substitutions, and <0.3±0.2 insertions per thousand nucleotides (i.e., 10-3 nt-1) on 100 

average, in-line with error rates published in other studies.6,24,25 Variation in the observed deletion and 101 

substitution rates between different experimental conditions and different oligonucleotide pools was 102 

large, with maximum rates of 17.1⋅10-3 nt-1 deletions and 12.5⋅10-3 nt-1 substitutions, respectively. 103 

Analysing the variance across the measured error rates in this diverse dataset (three-way ANOVA with 104 

HC3 correction, see Fig. 1a) – considering synthesis provider, number of PCR cycles, and storage 105 
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duration as factors in a main effects analysis – showed that synthesis and PCR were the major error 106 

sources in our experiments. The synthesis process explains most of the difference observed in deletion 107 

rates (F(1, 76) = 933.7, p = 10-44), accounting for 92% of its variance. This highlights synthesis as a 108 

dominating source of deletions, as noted by others,17,18 and identifies a large difference in fidelity 109 

between synthesis processes. In contrast, substitution rates varied most between samples with 110 

different sample preparations. PCR was found to be the main factor affecting substitutions (F(1, 76) = 111 

1251, p = 10-49), accounting for 86% of the variance (see Fig. 1a). The full ANOVA results are presented 112 

in Supplementary Table 8. 113 

Next, we assessed error independence in our datasets, i.e. the assumption that mutations occur 114 

independently from one to another, which is often inherently assumed when modelling errors in 115 

DNA.12,13,15 To do so, we compared the frequency distributions of consecutive errors and errors per 116 

read to those expected assuming that errors are introduced independently. Under error 117 

independence, we expect to observe consecutive errors according to a geometric distribution with 118 

success probability equal to the average error rate. We found that, while the frequency of consecutive 119 

substitutions closely matches its theoretical distribution (see Fig. 1c), the occurrence of multiple 120 

consecutive deletions was considerably more frequent (see Fig. 1b). Runs of consecutive deletions – 121 

with a mean length of 2.6 bases and referred to as a deletion event – were overrepresented and 122 

accounted for 10-14% of all deletions, depending on the synthesis process. Going further, the 123 

frequency distribution of errors per read is expected to be binomially distributed under the assumption 124 

of error independence, with the length of the sequence and the average error rate as parameters. 125 

Substitutions showed good agreement to this theoretical distribution (see Fig. 1e), whereas deletion 126 

events behaved differently depending on synthesis technology (see Fig. 1d). For electrochemical 127 

synthesis, deletion events were heavily clustered in a small subset of reads. While this led to a greater 128 

proportion of deletion-free reads (52% vs. 35% expected) and a small number of reads with only one 129 

or two deletions (35% vs. 56% expected), about 13% (vs. 9% expected) of oligonucleotides in these 130 

pools featured at least three deletions. No clustering across reads was evident for the material 131 
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deposition-based synthesis, as deletions were generally rare. Taken together, this analysis established 132 

that the assumption of error independence is generally valid for substitutions, but is violated for 133 

deletions, which tend to cluster both within and across reads in the electrochemical synthesis. 134 

 135 

Fig. 1: Overview of error variance and general error distributions. (a) The contributions of synthesis process, PCR cycles, and 136 

extent of decay to the overall variance in mean deletion (left) and substitution (right) rates between samples were assessed 137 

by four-way analysis of variance (ANOVA, see Methods and Supplementary Table 8). (b-e) Distributional analysis of error 138 

independence for deletions (b+d) and substitutions (c+e) based on the observed frequency of error runs (b+c) and errors per 139 

read (d+e), for the GC-unrestricted pools synthesized by electrochemical (dark grey) and material deposition (light grey) 140 

processes. Theoretical distributions expected under the assumption of error independence are also shown (black diamonds, 141 

geometric/binomial). The histogram for deletions per read treats any run of deletions as a single event to accommodate the 142 

non-ideality of deletion runs. Error bars show the standard deviation of the sample. 143 

Not all DNA is created equal: synthesis errors and coverage biases 144 

As noted above, the large difference in mean deletion rate between electrochemical (13.5±2.0⋅10-3 nt-145 

1) and material deposition-based (0.58±0.15⋅10-3 nt-1) synthesis identified synthesis as the main error 146 

source for deletions. This is corroborated by the positional dependence of deletions in the sequencing 147 

reads, which showed a distinct increase in the synthesis direction for the electrochemical synthesis 148 

(i.e., 3’-5’ for the forward read, 5’-3’ for the reverse read, Fig. 2a). The strongly increasing deletion rate 149 
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observed towards the 5’-end of the electrochemically synthesized oligonucleotides, >5% per 150 

nucleotide, likely stems from mass-transfer limitations. As the synthesized oligonucleotide becomes 151 

longer, the distance to the acid-generating electrode grows and steric hindrance increases the 152 

electrochemical cell resistance, impeding acid-induced deprotection and preventing both subsequent 153 

addition of the next nucleotide and blocking of the erroneous oligonucleotide by capping.26,27 This also 154 

explains the observed deviation from statistical independence for deletions noted previously: 155 

oligonucleotides which have already suffered from mass transfer-induced deletions are more likely to 156 

do so again in subsequent deprotection steps, leading to a cluster of deletions. Material deposition-157 

based synthesis on the other hand exhibited neither a high deletion rate nor any considerable 158 

positional dependence. With a fidelity exceeding one deletion error in 2000 nucleotides, these 159 

amplified oligonucleotides were essentially error-free for the purposes of DNA data storage. Despite 160 

this large difference in deletion rates, both synthesis processes find broad application in DNA data 161 

storage,1 likely due to considerations of scalability and cost. For both synthesis processes, deletions 162 

also did not show any relevant bias towards any nucleotide, and only a negligible number of 163 

substitutions were introduced (see Supplementary Note 3).  164 

Focussing on the coverage distributions of the oligonucleotide pools after synthesis, we compared 165 

sequencing data obtained after minimal sample preparation (15 PCR cycles and size selection by 166 

agarose gel electrophoresis). Similar to other studies,8,23 the normalized coverage distributions of all 167 

oligonucleotide pools in our study were positively skewed – featuring a long tail of few sequences at 168 

high coverages – and were well approximated by lognormal distributions (see Fig. 2b). Quantifying this 169 

coverage bias with the standard deviation of the corresponding lognormal distribution (σ) highlighted 170 

the severe effects of the GC-constraint on the electrochemically synthesized pools. While synthesis by 171 

material deposition yielded near-gaussian coverage both with unconstrained and GC-constrained 172 

sequences (𝜎 = 0.27 vs. 𝜎 = 0.30), electrochemical synthesis yielded slightly biased coverage with 173 

GC-constrained sequences (𝜎 = 0.58), and severe bias without constraints  (𝜎 = 1.30, see Fig. 2b). 174 

Combined with the significant difference in mean deletion rates between these synthesis methods, 175 
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the choice of synthesis provider critically affects the baseline error level and coverage bias for DNA 176 

data storage. 177 

 178 

Fig. 2: Errors and biases from synthesis. (a) Median deletion rate over all experiments as a function of position in synthesis 179 

direction, grouped by synthesis process and read direction. The deletion rate is strongly position-dependent for 180 

electrochemical synthesis (dark purple) but negligible for DNA synthesized via material deposition (light purple, magnified in 181 

inset). Both forward (solid lines) and reverse reads (dotted lines) are shown, each in synthesis direction, for all samples 182 

irrespective of their sample preparation. Shaded areas enclose all datapoints from the set, e.g., from minimum to maximum. 183 

Co-synthesized priming regions flanking the data-encoding bases are not considered, as PCR is expected to select for error-184 

free priming regions.24 Mean deletion rates over all positions (dashed line) and the indexing region (shaded in grey), where 185 

the sequences have very low diversity, are also shown. (b) Coverage distributions normalized to the mean coverage for 186 

oligonucleotide pools with (bottom) and without (top) constraints on GC content from electrochemical (dark purple) and 187 

material deposition-based synthesis (light purple) after 15 PCR cycles. All pools fit a lognormal distribution (solid line), but 188 

the material deposition-based pools show more even oligonucleotide coverage for both pool types. Standard deviations of 189 

the fitted lognormal distributions are shown in the plot. 190 

Quantifying substitutions and bias introduced via PCR 191 

Generally, PCR introduces both substitution errors and biases into oligonucleotide pools, mainly due 192 

to the limited fidelity of the polymerase.6,23 Previous studies have characterized PCR errors in the 193 

context of genomic sample amplification (e.g. for mutation detection via high-throughput 194 

sequencing),19,20 but PCR errors are also relevant for DNA data storage, where they reduce the fraction 195 
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of error-free oligonucleotides. To assess this, we characterized the errors introduced during PCR by 196 

amplifying samples of the oligonucleotide pools with varying numbers of PCR cycles and quantifying 197 

the evolution in error rates (see Fig. 3a). All PCR experiments were stopped well before reaching the 198 

plateau phase to ensure an excess of primers and nucleotides for exponential amplification. 199 

Sequencing data showed that PCR introduced only substitutions, at a mean rate of 1.09⋅10-4 nt-1 cycle-200 

1 for our Taq-based polymerase (KAPA SYBR FAST), see Fig. 3b and Fig. 3c. The polymerase exhibited 201 

a strong bias towards A→G/T→C transitions (61% of substitutions), with further preference for 202 

A→T/T→A transversions (13%). This is in-line with the studies quantifying polymerase fidelity based 203 

on single amplicons, which found substitution rates within 1⋅10-5 to 2⋅10-4 nt-1 cycle-1 for Taq-204 

polymerase, and similar substitution patterns.19,20,28 Consequently, the established polymerase fidelity 205 

metric (i.e. polymerase fidelity relative to Taq-polymerase) can be used to extrapolate the substitution 206 

rates expected from other commonly-used polymerases in the context of DNA data storage.19,20 The 207 

C→T/G→A transition was also relevant in our experiments (19% of substitutions), but is thought to 208 

occur due to temperature-induced cytosine deamination during thermocycling rather than polymerase 209 

errors.20  210 

Stochastic effects of PCR and non-uniform amplification lead to biases in coverage distributions.6,23,29–211 

31 To quantify this amplification bias in a DNA data storage context, we characterized the distribution 212 

of normalized amplification efficiencies, i.e. the ratio !"#!
!"#$

 between an individual sequence’s efficiency, 213 

𝜖% ∈ [0,1], and the pool’s mean efficiency, 𝜖,̅ for our datasets. Assuming negligible stochastic effects 214 

(i.e., at high initial coverage), the relative amplification efficiency is related to the experimentally-215 

observed fractional change in normalized sequence coverage, 𝑥%, from sequencing before and after 216 

amplification with 𝑐 cycles:31 217 

1 + 𝜖%
1 + 𝜖̅

= 5
𝑥%(𝑐)
𝑥%(0)

8

!
&
. 218 
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We found that the relative amplification efficiencies are normally distributed in our material 219 

deposition-based oligonucleotide pools, with a standard deviation of 0.0051 (unconstrained pool) and 220 

0.0048 (GC-constrained pool), see Fig. 3d and Supplementary Figure 13. To validate our estimate of 221 

the overall PCR bias, we replicated this analysis for the sequencing data reported by Chen et al.23 222 

(change of 31 PCR cycles), Erlich et al.8 (90 cycles), and Koch et al.25 (60 cycles). We found amplification 223 

biases which were larger, but comparable to ours (see Fig. 3d), with standard deviations ranging from 224 

0.0058 to 0.012. Given these datasets, the broadness of the efficiency distribution does not appear to 225 

directly depend on GC constraints and is thus likely caused by experimental conditions. To this end, 226 

factors such as the choice of primer, the temperature and duration of the steps, or the polymerase 227 

itself are known to affect amplification efficiency and thus amplification bias, amongst others.32–35 228 

Specifically the use of high-fidelity, proofreading polymerases (such as by Erlich et al.8 and Organick et 229 

al.23), which stall DNA synthesis upon reading uracil, might incur a stronger amplification bias due to 230 

cytosine deamination to uracil during storage.36  Moreover, the repeated dilutions needed after each 231 

amplification, albeit performed at high physical coverage, will introduce stochastic effects. The data by 232 

Koch et al.25 is an extreme example of this: after amplification, the DNA was incorporated into silica 233 

nanoparticles embedded in polymer.  For these reasons, the empirical distributions of the relative 234 

amplification efficiencies should be interpreted as an upper bound of the true amplification bias.  235 

Due to the exponential nature of PCR, the normally distributed amplification efficiency leads to a 236 

progressively more positively skewed coverage distribution with a long tail (see Fig. 3d). This initially 237 

small effect thus gains relevance as many amplifications are performed, in-line with observations in 238 

literature.30,37 Considering that data storage workflows routinely use >60 PCR cycles and pools might 239 

already be highly skewed from synthesis (see Fig. 2b), PCR considerably biases the oligonucleotide 240 

pool. Thus, the efficiency bias presents a constraint on the number of re-amplifications that a DNA 241 

data storage system may go through before the uneven coverage distribution either prevents 242 

successful decoding or necessitates higher physical coverage and sequencing depth.6,23 243 
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 244 

Fig. 3: Errors and biases from PCR. (a) Experimental workflow for estimating the error rates and biases during PCR. (b+c) 245 

Substitutions introduced as a function of the number of additional PCR cycles for the oligonucleotide pools from material 246 

deposition-based synthesis, using the substitution rate at 15 cycles as the baseline. The regression slope (solid lines) yields 247 

an overall error rate of 1.09⋅10-4 nt-1 per cycle and shows A→G/T→C transitions account for 61% of substitutions, followed 248 

by C→T/G→A transitions (20%) and A→T/T→A transversions (13%). (d) The normalized coverage distributions (left) of 249 

sequencing pools shown before (dark orange) and after repeated amplification (light orange). Without any PCR bias, the post-250 

PCR coverage distributions are expected to be identical to the pre-PCR distributions. Relating the change in coverage pre- and 251 

post-PCR to the number of PCR cycles on the sequence level yields an estimate of the efficiency relative to the pool (right). 252 

The broadness of the resulting efficiency distribution, characterized by the standard deviation of the fitted normal 253 

distributions given in the plots (solid lines), can be interpreted as an upper bound on the overall PCR bias. Comparison shown 254 

of efficiency distributions between our experiments, the deep amplification performed by Erlich et al.8, the bias experiment 255 

by Organick et al.23, and the bunny experiments by Koch et al.25. Individual sequences with less than 10 reads in the 256 

sequencing data were removed from this analysis, due to the large uncertainty associated with sampling at low coverage. 257 

  258 
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Quantifying errors during storage 259 

The detrimental impact of long-term storage on DNA data storage systems is well established, and 260 

usually quantified by the loss of amplifiable DNA over time.7,38,39 Here, in addition to quantifying this 261 

loss of DNA, we also tracked the evolution of errors and biases during rapid aging by sequencing the 262 

oligonucleotide pools at various storage durations, up to the equivalent of more than 1000 years at 263 

10°C (7 days at 70°C, see Fig. 4a). We observed a linear increase in C→T and G→A transitions as the 264 

major type of substitution errors, with around 1.64⋅10-4 nt-1 per half time of decay overall (see Fig. 4b 265 

and c). In addition, a small number of deletions were introduced. These were negligible compared to 266 

the deletions present due to the synthesis (see Supplementary Figure 14). Overall, the measured error 267 

rates show that storage-induced decay is not a significant error source in the context of DNA data 268 

storage. Comparing to other error sources, storage for eight half-lives – equivalent to the loss of 99.6% 269 

of DNA – introduces less errors than just 15 cycles of standard, Taq-based PCR. Therefore, the main 270 

effect of storage-induced decay is limited to the loss of sequences, and we focussed on characterising 271 

any possible bias in this loss. 272 

To assess the overall bias in decay, we compared the coverage distributions between aged samples 273 

and an equally diluted and amplified, but unaged, reference. We observed no difference in the 274 

coverage of aged samples compared to unaged, but diluted samples (see Fig. 4d), meaning decay did 275 

not introduce considerable additional bias over random sampling. Thus, the impact of decay on 276 

coverage distribution is well approximated by random sampling and any potential bias is likely 277 

secondary to the stochastic effects from sampling at low physical coverage. As aging neither 278 

introduced errors at relevant rates, nor significantly affected the coverage distribution in our 279 

experiments, recovered oligonucleotides (i.e., those without strand breaks induced by β-elimination) 280 

remained virtually unaffected by decay. This implies that long-term storage does not negatively impact 281 

the error resilience or fidelity, as long as sequence dropout is limited by sufficient coverage or 282 

enzymatic repair.38 283 
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 284 

Fig. 4: Errors and biases during storage. (a) Experimental workflow for estimating the error rates and biases during aging. 285 

(b+c) Substitutions introduced as a function of the total storage duration in half-lives, using the error rates of the unaged 286 

reference as baseline. Substitutions increase at a rate of 1.64⋅10-4 nt-1 per half-live based on the regression slope (solid line). 287 

Substitutions are mainly C→T/G→A transitions (dark green, 77%) with minor C→A/G→T and C→G/G→C transversions (7% 288 

and 6% respectively). (d) Kernel density estimate plot of the oligonucleotide coverage for the GC-unconstrained samples 289 

which were only diluted (grey), and samples which underwent decay for 2-7 days (green), for both electrochemical (left) and 290 

material deposition-based synthesis (right). All samples were diluted to the same concentration prior to amplification. The 291 

grey distribution shows the effect of subsampling via dilution, whereas the other distributions show the combined effects of 292 

dilution and decay. The standard deviations of the lognormalized distributions are given in the plot. 293 

Inhomogeneities in sequencing errors 294 

We further investigated the errors introduced during Illumina sequencing by characterizing the error 295 

profile of reads mapped to PhiX, a common spike-in used as sequencing control and for color balancing. 296 

For our analysis, we consider PhiX – a PCR-free, adapter-ligated sample derived from genomic DNA40 297 

– essentially error-free and attribute all errors in its sequencing data to the sequencer. Using the eight 298 

PhiX datasets generated during sequencing on the Illumina iSeq 100 sequencer, we found substitutions 299 

are dominating, at 1.8±0.8⋅10-3 nt-1 on average, versus <0.1⋅10-3 nt-1 for both deletions and insertions. 300 
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This is in-line with other reports for other SBS-based sequencers21,22,41 and the analysis of non-301 

consensus errors between paired reads in our datasets (see Supplementary Figure 15). The 302 

substitution rates in our experiments differed substantially between forward (1.1±0.3⋅10-3 nt-1) and 303 

reverse reads (2.5±0.6⋅10-3 nt-1), and were strongly cycle-dependent (see Fig. 5a). They declined rapidly 304 

towards a minimum around cycle 20, which coincides well with the calculations for phasing/pre-305 

phasing and colour-matrix corrections occurring at cycle 25.42 After cycle 25, the number of 306 

substitutions consistently, but slowly increased each cycle (see Fig. 5a). 307 

The substitutions introduced during sequencing showed a clear bias towards base transitions (e.g. 308 

A↔G and C↔T) over transversions (all other combinations, see Fig. 5b), which differed slightly 309 

between forward and reverse reads. Moreover, the increase in substitution rate after cycle 20 appears 310 

to be primarily caused by A→T and T→G substitutions, while all other substitution patterns remain 311 

nearly constant throughout the duration of the sequencing run (see Supplementary Figure 16). The 312 

comparison to the base-calling method used in the iSeq’s one-dye sequencing (see Fig. 5b, inset) shows 313 

that base transitions correspond to false positive and false negative calls in the primary image, 314 

accounting for 54% of all sequencing errors on average. A major exception is the A→T transition, 315 

responsible for an additional 17±5% and 37±5% of substitutions in the forward and reverse reads 316 

respectively, which corresponds to a false positive in the secondary image. Thus, unlike for sequencers 317 

with other dye chemistries,22 substitution bias on the iSeq 100 appears to be related to its base-calling 318 

matrix. Underlining this, substitutions involving miscalling intensities in both images (“cross-over” in 319 

Fig. 5b) were rare and accounted for only 15% of substitution errors. Additionally, the analysis of non-320 

consensus errors between paired reads in our datasets (see Supplementary Figure 15) suggests that 321 

polymerase errors during clonal amplification (i.e., the clustering step in SBS) also skew the 322 

substitution bias. 323 
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 324 

Fig. 5: Errors and biases from Illumina sequencing. (a) Substitution rate during sequencing on the Illumina iSeq 100, 325 

estimated from the PhiX reads obtained during all sequencing experiments. Points show the individual substitution rate of 326 

the forward (dark blue) and reverse reads (light blue) at every position, with their respective moving median (10 base window, 327 

black lines). Only the positions until cycle 112 are shown, as low base diversity in the priming regions of the co-sequenced 328 

oligonucleotides drastically skews base calling accuracy. (b) Base bias of substitutions occurring during sequencing in the 329 

forward (dark blue) and reverse reads (light blue), shown as fractions of the total substitutions. The one-dye sequencing 330 

system used by the iSeq 100 sequencer (inset) uses the fluorescence intensity in two separate images for base calling.42 331 

Depending on which fluorescence signal is miscalled, false positive (solid), false negative (dashed), or cross-over (dotted) 332 

errors occur and introduce a substitution into the sequencing data. Error bars show the standard deviation of the sample. 333 

A digital twin for DNA data storage 334 

Towards our goal of providing an accurate virtual representation of DNA data storage experiments, we 335 

implemented the error sources and biases characterized above into a digital twin of the DNA data 336 

storage process (see Fig. 6a). The digital twin’s underlying model simulates all process steps (e.g., 337 

synthesis, PCR) by stochastically introducing mutations into sequences at rates estimated from user-338 

supplied experimental parameters. Specifically, we represent an oligonucleotide pool as a collection 339 

of sequences with associated abundances and use many oligonucleotides for each sequence to 340 

accurately represent the experimentally observed diversity of error patterns. Importantly, the biases 341 

introduced into the coverage distributions by synthesis, amplification, and dilution are also modelled 342 
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(e.g. by skewed initial distributions as in Fig. 2b, or non-homogeneous amplification as in Fig. 3d), so 343 

that their negative effects on coverage homogeneity and sequence dropout are included. Additional 344 

information and details on the implementation of each process step are given in the Methods and 345 

Supplementary Note 2. 346 

To assess our model’s accuracy and versatility in predicting errors and biases from an experimental 347 

workflow, we reproduced the experiments presented in this study (as internal validation) and 348 

modelled the generational experiments by Koch et al.25 (as external validation). These generational 349 

experiments, starting from an electrochemically synthesized oligonucleotide pool, are ideal for model 350 

validation: they consist of multiple dilutions and error-prone re-amplifications – exceeding 100 PCR 351 

cycles in total – and include seven sequencing datasets for comparison. We observed good agreement 352 

in the overall error rates and the coverage bias for both internal (𝑅error* = 0.98, 𝑅bias* = 0.74, see 353 

Supplementary Note 5) and external validation (𝑅error* = 0.87, 𝑅bias* = 0.64, see Fig. 6b and 354 

Supplementary Note 5). Notably, the experimental deletion rates in the generational experiments by 355 

Koch et al.25 exceeded the prediction of our model by about 20%, mostly due to differences in the 356 

position-dependent deletion rates during synthesis (see Supplementary Figure 17). This difference is 357 

likely caused by the implementation of process improvements by the synthesis provider sometime 358 

between the study by Koch et al. and this work. This highlights the possible relevance of the digital 359 

twin for the investigation of process deviations. Turning to coverage bias, we considered the rate of 360 

sequence dropout – i.e., the ratio of original sequences which are no longer present in the sequencing 361 

data – as our metric, due to its relevance for successful data recovery in a data storage context. We 362 

found that our simulated sequencing data, downsampled to the original experiment’s read counts, 363 

accurately reproduced the sequence dropout observed over all seven generations (see Fig. 6c). 364 

Importantly, had Koch et al.25 been able to model their workflow, they would have been able to 365 

increase storage capacity (by reducing redundancy) or lower costs (by synthesizing fewer sequences) 366 

by more than threefold (the authors included redundancy for a sequence dropout of 80%, but a 367 

maximum of 30% was required). Alternatively, using the model to forecast future generations of Koch’s 368 
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experiment, at least four more generations would have been feasible at their redundancy level. This 369 

analysis highlights the value of the digital twin for the rational design of redundancy: it enables cost-370 

saving optimizations and facilitates experimental planning. 371 

 372 

Fig. 6: Simulation of the DNA data storage channel. (a) Overview of the developed model for the DNA data storage channel. 373 

Experimental parameters for the synthesis, amplification, decay, and sequencing are used to replicate errors and biases in an 374 

in-silico representation of an oligonucleotide pool. The order and parameters of all process steps can be customized to 375 

describe user-defined workflows. (b+c) Verification of simulation results using the generational experiments reported by Koch 376 

et al.25 The mean error rates (b) and sequence loss (c) of the  data storage workflow, as experimentally observed (light grey) 377 

and as replicated in our model (dark grey), is shown for the master pool (denoted M), the parent (P), and all progeny 378 

generations (F1 through F5). The model was also used to predict four further generations (F6 through F9). Datapoints are 379 

slightly offset horizontally to prevent occlusion. Sequencing data from the model was downsampled to the read count in the 380 

experimental sequencing data. (d+e) Simulation of the effects of physical coverage on sequences dropout in a best- and 381 

worst-case scenario. By implementing a typical data storage workflow (d) using high- or low-fidelity process steps in our 382 

model, the sequence dropout (e) as a function of physical redundancy is determined. The loss of sequences considering both 383 

all sequencing reads (solid line) and only error-free reads (dashed line) is reported, with the shaded area in-between denoting 384 
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the improvement possible by error-correction coding. For comparison, the state-of-the-art storage density and redundancy 385 

by Organick et al.24 is shown (black diamond, 6.2x coverage at 15% data redundancy).  386 

Case study: optimal redundancy in extreme scenarios 387 

To highlight the value of modelling each process step for the design of redundancy in DNA data storage 388 

systems, we implemented a prototypical storage workflow in our model as a case study. To investigate 389 

optimal physical and logical redundancy, our prototypical workflow (see Fig. 6d) – involving post-390 

synthesis amplification, dilution to a specified physical coverage, storage for one half-live, re-391 

amplification, and sequencing – was further divided into two extreme cases. In our worst-case 392 

scenario, an unconstrained, electrochemically synthesized oligonucleotide pool was used (see Fig. 2b) 393 

together with a low-fidelity polymerase for PCR. Due to the highly skewed coverage and large error 394 

rate, this scenario is representative of studies in which high redundancy is favoured and storage density 395 

is not the main concern.9,25,43 In contrast, the best-case scenario utilized a narrowly distributed 396 

oligonucleotide pool synthesized by a material deposition-based process, and further used a high-397 

fidelity polymerase for amplification. This is a low-error, low-bias scenario like those used in many 398 

studies on ECC.8,12 As expected, our model predicted that the physical redundancy used during storage, 399 

i.e., the effectively achieved storage density, strongly influences the sequence loss in  both our 400 

scenarios (see Fig. 6e). The less biased best-case scenario yielded near-complete recovery (98%) of 401 

error-free sequences with only 10 copies per sequence during storage, corresponding to a storage 402 

density close to the experimentally demonstrated state-of-the-art (6.2x coverage, 15% 403 

redundancy).23,24 In contrast, the worst-case scenario lost 24% of all sequences at the same physical 404 

redundancy, highlighting the importance of coverage homogeneity for high-density DNA data storage. 405 

Logical redundancy implemented into an ECC provides two main benefits: first, it tolerates the loss of 406 

a certain number of sequences (via ); second, it enables the use and decoding of erroneous reads if no 407 

error-free reads of a sequence are available (via within-sequence redundancy). The latter benefit 408 

effectively yields either a gain in storage density or a gain in sequence coverage, as shown when 409 

moving from the curve considering only error-free reads (naïve encoding, no within-sequence 410 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2023. ; https://doi.org/10.1101/2023.07.04.547683doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547683
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

redundancy) to all reads (ideal ECC, capable of decoding every erroneous read) in Fig. 6e. To take full 411 

advantage of this gain in density or coverage, an ECC would have to be able to correct up to two 412 

deletions and two substitutions per sequence in our low-fidelity scenario. However, our model shows 413 

that even just the capability to correct up to two substitutions would approximately double the 414 

number of eligible reads, as deletions are clustered in only 48% of reads (see Fig. 1d). In contrast, the 415 

implementation of such within-sequence error correction would prove wasteful in our high-fidelity 416 

scenario. There, considering only error-free reads does not significantly deteriorate sequence 417 

coverage, as 81% of reads are error-free on average anyway. Consequently, a naïve encoding without 418 

within-sequence redundancy will achieve a higher storage density in the best-case scenario than any 419 

other ECC in the worst-case scenario, independently of the ECC’s capabilities.   420 
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Discussion 421 
The lack of comprehensive data on error rates, error homogeneity, and coverage biases throughout 422 

the DNA data storage workflow has impeded the optimal design of ECCs and their parameters, as well 423 

as hindered the comparison of ECC implementations. In this work, we have comprehensively 424 

quantified errors and biases in DNA storage systems and developed a digital twin for modelling state-425 

of-the-art data storage workflows. Systematic sequencing of oligonucleotide pools during processing 426 

showed that synthesis and standard PCR account for most deletions and substitutions, which 427 

outnumber insertions by a factor of >10. Deletions were almost exclusively introduced by synthesis 428 

and heterogeneously distributed in clusters. All other processing steps – amplification via PCR, aging, 429 

and sequencing by SBS – added substitutions at varying rates, which were homogeneously distributed 430 

but biased towards certain substitution patterns. Remarkably, the state-of-the-art data storage 431 

workflow has become close to error-free (up to 87% of forward reads without error, 96% deletion-432 

free), as shown in our idealized high-fidelity storage scenario (see Fig. 6d). This implies some of the 433 

ongoing optimization of ECCs towards increased error resilience to be better suited for applications in 434 

which low-fidelity synthesis or sequencing processes require an ECC capable of utilizing highly 435 

erroneous reads.43,44 In contrast, the commonly used workflow for high-density DNA data storage – 436 

based on synthesis via material deposition and high-fidelity PCR – does not appear to benefit from 437 

such ECC optimizations, as storage density is currently limited by coverage biases.  438 

Synthesis and amplification also emerged as the major contributors to skewed coverage distributions 439 

in our systematic analysis of coverage bias in synthetic oligonucleotide pools. While unoptimized 440 

synthesis processes and the stochasticity of amplification are known to affect the coverage 441 

distribution,23 we identified both a striking difference in coverage uniformity between two different 442 

synthesis processes and an apparent bias in the amplification efficiency during PCR. The consideration 443 

of these coverage biases was shown to be crucial for understanding sequence dropout, a vital metric 444 

for error-free readout due its severe effect compared to single mutations – necessitating redundant 445 

sequences rather than just redundant symbols.  446 
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Our experimentally verified digital twin showcased the value of a customizable digital representation 447 

of the DNA data storage process for experimental planning and the ECC design. The digital twin 448 

facilitated the design of redundancy both in a literature scenario and a case study, which was shown 449 

to translate into tangible cost savings. Furthermore, it highlighted that sequence dropout caused by 450 

coverage bias, rather than erroneous sequences caused by mutations, is currently the limiting factor 451 

in designing DNA data storage systems with increasingly higher storage densities. To this end, novel 452 

approaches to remedy sequence dropout – such as ECCs capable of utilizing partial sequences45 or 453 

methods for enzymatic DNA repair38 – will be invaluable to facilitate long-term storage at these high 454 

storage densities. 455 

Key limitations of our study include the consideration of only two commercial providers for synthesis 456 

and only Illumina’s SBS technology for sequencing. While these technologies are currently the most 457 

relevant and widely-used,1,9 other emerging technologies – such as photoarray-based or enzymatic 458 

synthesis, as well as nanopore sequencing – are expected to soon become relevant cost-effective 459 

alternatives despite their lower fidelity.3,43,44 Furthermore, the broad scope of our analysis precluded 460 

a detailed investigation into individual error sources, such as the effects of different polymerases or 461 

correlations with sequence properties (e.g. GC content, homopolymers). Despite these limitations, we 462 

hope both our error characterisation and our digital twin will help standardize the comparison and 463 

accelerate the development of ECCs, as well as assist users in designing redundancy and experimental 464 

workflows. For this, we provide a web platform to simulate both standardized and customized storage 465 

scenarios at dt4dds.ethz.ch, as well as source code for fully custom workflows at github.com/fml-466 

ethz/dt4dds. We also invite others to extend our model with more data, especially for the emerging, 467 

low-fidelity technologies previously mentioned.   468 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2023. ; https://doi.org/10.1101/2023.07.04.547683doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547683
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Methods 469 
Reagents 470 

Electrochemically synthesized oligonucleotide pools were ordered from CustomArray Inc. (Redmond, 471 

WA, United States) and Genscript Biotech Corp. (Piscataway, NJ, United States) and used as delivered. 472 

Material deposition-based oligonucleotide pools were synthesized by Twist Bioscience (San Francisco, 473 

CA, United States) and resuspended to 10 ng µL-1 in ultrapure water. Primers were purchased from 474 

Microsynth AG (Balgach, Switzerland). All pools and primers were further diluted as required with 475 

ultrapure water. Additional details about the design of oligonucleotide pools and primers are given in 476 

Supplementary Tables 1 and 2. KAPA SYBR FAST polymerase master mix was purchased from Sigma-477 

Aldrich (St. Louis, MI, United States). 478 

PCR and sequencing preparation 479 

Unless otherwise noted, 5 µL of an oligonucleotide pool and 1 µL each of the forward and reverse 480 

primers (0F/0R, 10 μM) were added to 10 µL of 2x KAPA SYBR FAST master mix. Ultrapure water was 481 

added up to a final volume of 20 µL. Amplification by PCR used an initial denaturation at 95°C for 3 482 

min, followed by cycles at 95°C for 15 s, 54°C for 30 s, and 72°C for 30 s. Cycling was stopped as soon 483 

as the fluorescence intensity reached its plateau to prevent resource exhaustion, except for 484 

quantitative PCR (calibration curves are given in Supplementary Figure 11). For sequencing 485 

preparation, indexed Illumina adapters were added by PCR with overhang primers (2FUF/2RIF, 7-9 486 

cycles, see Supplementary Table 2). The PCR product from each well was then run on an agarose gel 487 

(E-Gel EX Agarose Gels 2%, Invitrogen) with a 50 bp ladder (Invitrogen), and the appropriate band was 488 

purified (ZymoClean Gel DNA Recovery Kit, ZymoResearch) before quantification by fluorescence 489 

(Qubit dsDNA HS Kit, Invitrogen).9 490 

Sequencing 491 

For each sequencing run, 5-6 samples were individually diluted to 1 nM and pooled. The pooled sample 492 

was further diluted to 50 pM. Then, 2% PhiX (PhiX Control v3, Illumina) was spiked into the sample and 493 

20 µL were added to an Illumina iSeq 100 i1 Reagent v2 cartridge. 150 nt paired-end sequencing with 494 
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the Illumina iSeq 100 sequencer yielded between 4-5 million reads, leading to an average sequencing 495 

coverage of 90 paired reads per sequence. 496 

Protocol for amplification experiments 497 

For the amplification experiments, oligonucleotide pools were sequentially amplified and diluted 498 

multiple times under the same conditions to yield samples at six different PCR cycle counts. For this, 499 

the pools synthesized by material deposition (500x dilution) were amplified in two wells each, one well 500 

containing standard primers (0F/0R) and one containing the indexed overhang primers with 501 

sequencing adapters (2FUF/2RIF). After 15 cycles, the PCR product with sequencing adapters was 502 

stored at -20°C. 1 µL of the PCR product with the standard primers was diluted by 3800x, and 5 µL were 503 

used for the next round of amplification (for a total dilution of 15200x, equivalent to 1.915, the expected 504 

amplification factor after 15 PCR cycles with 90% efficiency). If the fluorescence observed in the last 505 

cycle of an amplification round was approaching the plateau value, the dilution for the next round was 506 

increased two-fold, i.e., to 7600x. This sequential procedure was performed for a total of six rounds, 507 

yielding samples with 15 to 90 PCR cycles. The PCR products with sequencing adapters were then 508 

prepared for sequencing (see above) without the additional indexing step. The workflow is shown in 509 

Supplementary Figures 18 and 19. 510 

The procedure and results for the amplification experiments of the electrochemically synthesized 511 

pools (not shown in Fig. 3) are given in Supplementary Note 4. The workflow is illustrated in 512 

Supplementary Figures 20 and 21. 513 

Protocol for storage experiments 514 

Both the electrochemically synthesized pools (50x dilution) and the pools synthesized by material 515 

deposition (1000x dilution) were first amplified for 20-21 cycles, using 96 wells each and 1 µL sample 516 

per well. Then, all wells from each pool were pooled and purified (DNA Clean & Concentrator-5, 517 

ZymoResearch) to yield stock solutions with 30-50 ng µL-1 dsDNA in ultrapure water. Of these, 30 ng 518 

each were added to microcentrifuge tubes and dried in vacuo for 30 min at 45°C. After drying, one set 519 

of tubes was immediately stored at -20°C to represent the unaged reference sample. For accelerated 520 
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aging, all other samples were stored in a desiccator over saturated sodium bromide in water (>99%, 521 

Roth AG) at 70°C and 50% relative humidity.7 Samples were moved to -20°C storage after around two, 522 

four and seven days, with each time point at least in triplicate. All samples were resuspended in 200 523 

µL ultrapure water and quantified by qPCR to yield a decay curve, as described below. Calibration 524 

curves for this qPCR analysis were previously established by serial dilution of the stock solutions and 525 

are shown in Supplementary Figure 11 with their parameters given in Supplementary Table 3. For the 526 

decay curve, the concentration of all samples was normalized to the mean concentration of the unaged 527 

reference sample, and then fitted to a first-order decay model according to: 528 

𝑐(𝑡)
𝑐(0)

= 𝑒/01 , where 𝑘 =
ln2
𝜏
. 529 

The decay curves and their parameters are given in Supplementary Figure 11 and Supplementary Table 530 

4, respectively.  531 

For sequencing, all samples were diluted to the concentration of the sample at seven days to 532 

circumvent any dilution effects, amplified for 16-18 cycles, and then underwent the standard 533 

sequencing preparation (see above). The workflow is shown in Supplementary Figures 23-26. To 534 

normalize the extent of decay across the four oligonucleotide pools for the estimation of error rates 535 

during aging, the number of half-lives, determined as the storage duration relative to the half-live, was 536 

used. The conversion for all timepoints is given in Supplementary Table Error! Reference source not 537 

found.5. 538 

Read mapping and error analysis 539 

To estimate error rates from sequencing reads, up to 1 million paired-end sequencing reads were first 540 

mapped to their respective reference sequence using a custom Python script, and then filtered to 541 

exclude reads with less than 85% similarity to their reference. This filtering threshold was chosen based 542 

on similarity comparisons between experimental and random datasets (see Supplementary Figure 1). 543 

From the resulting mappings, error rates as a function of position, involved bases, read direction, and 544 

error length were derived and used for further data analysis. Coverage distributions were derived from 545 
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the alignment counts given by sequence alignment with BBMap46 after adapter trimming and 546 

normalization to the mean oligonucleotide coverage. Lognormal distributions were fitted to the 547 

normalized coverage distributions to help with visualization, and the corresponding standard deviation 548 

of the lognormal distribution is shown to quantify the coverage bias. Full details are given in 549 

Supplementary Note 2 and the complete source code is publicly available in the GitHub repository (see 550 

Code Availability statement). 551 

ANOVA and error independence 552 

Three-way ANOVA (𝑛 = 80) with the factors synthesis provider, number of PCR cycles, and days of 553 

storage was performed using type II sum of squares, heteroskedasticity-consistent standard errors 554 

(HC3) and without interactions. The analysis was performed for each error type independently and 555 

according to the following linear model: 556 

Error	rate	~	𝐶(synthesis) + #PCR	cycles + #Days	of	storage 557 

For the analysis of error independence, theoretical probability mass functions under the assumption 558 

of error independence were independently calculated for each pool and experiment. For the 559 

probability mass function of consecutive errors, a geometric distribution parameterized by the mean 560 

error rate was used, i.e. 𝑛	~	Geom(1 −mean	error	rate). For the probability mass function of errors 561 

per read, a binomial distribution parameterized by the length of the sequence and the mean error rate 562 

was used, i.e. 𝑛	~	Binom(length,	mean	error	rate). 563 

Modelling of the DNA data storage process 564 

The model used for the simulation of the DNA data storage process, implemented in Python, consists 565 

of a hash map representing a pool of oligonucleotides, error generators introducing mutations at 566 

specified rates and with certain biases, and classes encapsulating the error generators into the 567 

individual process steps (i.e. synthesis, PCR, storage, and sequencing). Starting from a set of reference 568 

sequences and an experimental workflow provided by the user, the model simulates errors and biases 569 

and ultimately yields artificial sequencing data in the FASTQ format for further use. The individual error 570 

sources and coverage biases of each process step are reproduced based on user-defined experimental 571 
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parameters (e.g. synthesis provider, choice of polymerase, storage duration) and the error rates and 572 

biases quantified in this study. Coverage bias is implemented both during synthesis – via skewed initial 573 

count distributions as in Fig. 2d – and during amplification, using normally-distributed relative 574 

amplification efficiencies as in Fig. 3d. Additionally, amplification is implemented as a branching 575 

binomial process, based on oligonucleotide count and the sequence’s amplification efficiency, to 576 

account for the stochastic effects observed at low coverage.23,29 Dilution, sequencing, and decay are 577 

modelled as random sampling, in-line with the findings in Fig. 4 and the literature.6,23 Full details are 578 

given in Supplementary Note 2 and the complete source code is publicly available in the GitHub 579 

repository (see Code Availability statement). 580 

Internal and external validation 581 

For the internal validation, all experimental conditions from this study were recreated with our tool 582 

and the simulated sequencing data underwent identical post-processing and error analysis. Only the 583 

position-, length-, and base-dependent error rates, process-specific error patterns, and coverage 584 

biases characterized in this study were utilized. Due to small differences in the positional deletion rates 585 

between the two electrochemically synthesized pools, pool-specific deletion rates were used (see 586 

Supplementary Note 3) rather than the overall deletion rate presented in Fig. 2a.  587 

For the external validation, the workflow for the generational experiments by Koch et al.25 was 588 

reproduced with our tool to the extent possible given the information provided in their study. 589 

Electrochemical synthesis was assumed with positional error rates as in Fig. 2a, and a coverage bias of 590 

𝜎 = 0.94 (mean of GC-constrained and unconstrained pools, see Fig. 2b) due to their use of a partially 591 

GC-constraining ECC. Amplification by PCR assumed a Taq-based polymerase with an amplification bias 592 

as estimated for the Koch et al. experiments in Fig. 3d (i.e., 𝜎 = 0.012). Missing information about 593 

dilutions were estimated from other protocols9 and the number of PCR cycles used. For the analysis in 594 

Fig. 6c, only error-free reads were used – as in the original study – and the simulated sequencing data 595 

was downsampled to the same read count as the experimental data to ensure comparability. For the 596 

generations F6-F9, the average read count of generations M-F5 was assumed. 597 
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More details on the parameters and results for both internal and external validation are presented in 598 

Supplementary Note 5. The scripts for both internal and external validation are also provided with the 599 

code in the repository for reproducibility. 600 

Case study on storage density 601 

The best- and worst-case scenarios implemented in our tool were both based on the error 602 

characterization in this study and common experimental workflows for high-density DNA data 603 

storage.8,10,13,24 The scenarios followed an identical workflow (see Fig. 6d and below) consisting of 604 

synthesis, amplification, storage, re-amplification, and sequencing. Specifically, 12000 sequences were 605 

synthesized at a mean coverage of 200, underwent 20 PCR cycles with an amplification bias of 𝜎 =606 

0.0051 (see Fig. 3c), were stored for one half-life at mean coverages ranging from 0.5-50 607 

oligonucleotides per sequence, amplified for another 30 cycles, and finally sequenced with the iSeq 608 

100. In the best-case scenario, the coverage bias and error rate of the material deposition-based 609 

synthesis (see Fig. 2), and the polymerase fidelity of Q5 High-Fidelity DNA Polymerase (i.e., 280)20 were 610 

used. In the worst-case scenario, the coverage bias and error rate of electrochemical synthesis, and 611 

the fidelity of a Taq-based polymerase (i.e., 1) were used instead. For the analysis in Fig. 6e, either all 612 

or only error-free reads (see Supplementary Note 1) were used to determine the sequence dropout in 613 

both cases, equivalent to an ideal ECC, and a naïve ECC, respectively. The script for this case study is 614 

provided with the code in the repository for full documentation of the parameters. 615 

  616 
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