

1 **Title: Single-cell profiling of bronchoalveolar cells**

2 **reveals a Th17 signature in neutrophilic severe equine asthma**

3

4 **Authors:** Sophie E. Sage^{1*}, Tosso Leeb^{2,4}, Vidhya Jagannathan^{2†}, Vinzenz Gerber^{1†}

5

6 **Affiliations:**

7 ¹ Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse

8 Faculty, University of Bern; Bern, Switzerland.

9 ² Institute of Genetics, Vetsuisse Faculty, University of Bern; Bern, Switzerland

10 ³ Clinical Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Vetsuisse

11 Faculty, University of Bern; Bern, Switzerland.

12 ⁴ Next Generation Sequencing Platform, University of Bern, Bern, Switzerland

13 * Corresponding author: sophie.sage@unibe.ch

14 †These authors contributed equally to this work.

15

16

17

18

19

20

21

22

23

24 **Abstract:**

25 Severe equine asthma (SEA) shares clinical and pathological features with human neutrophilic
26 asthma, serving as a rare natural model for this condition. To uncover the elusive immune
27 mechanisms driving SEA, we performed single-cell mRNA sequencing (scRNA-seq) on
28 cryopreserved bronchoalveolar cells from 11 Warmblood horses, five controls and six with SEA.
29 We identified six major cell types, showing significant heterogeneity and novel subtypes. Notably,
30 we observed monocyte-lymphocyte complexes and detected a robust Th17 signature in SEA, with
31 *CXCL13* upregulation in intermediate monocytes. Asthmatic horses exhibited expansion of the B
32 cell population, Th17 polarization of the T cell populations, and dysregulation of genes associated
33 with T cell function. Neutrophils demonstrated enhanced migratory capacity and heightened
34 aptitude for neutrophil extracellular trap formation. These findings provide compelling evidence
35 for a predominant Th17 immune response in neutrophilic SEA, driven by dysregulation of
36 monocyte and T cell genes. The dysregulated genes identified through scRNA-seq have potential
37 as biomarkers and therapeutic targets for SEA and provide insights into human neutrophilic
38 asthma.

39 **One Sentence Summary:** Single-cell mRNA sequencing identifies a predominant Th17-mediated
40 immune response in severe equine asthma

41

42 **INTRODUCTION**

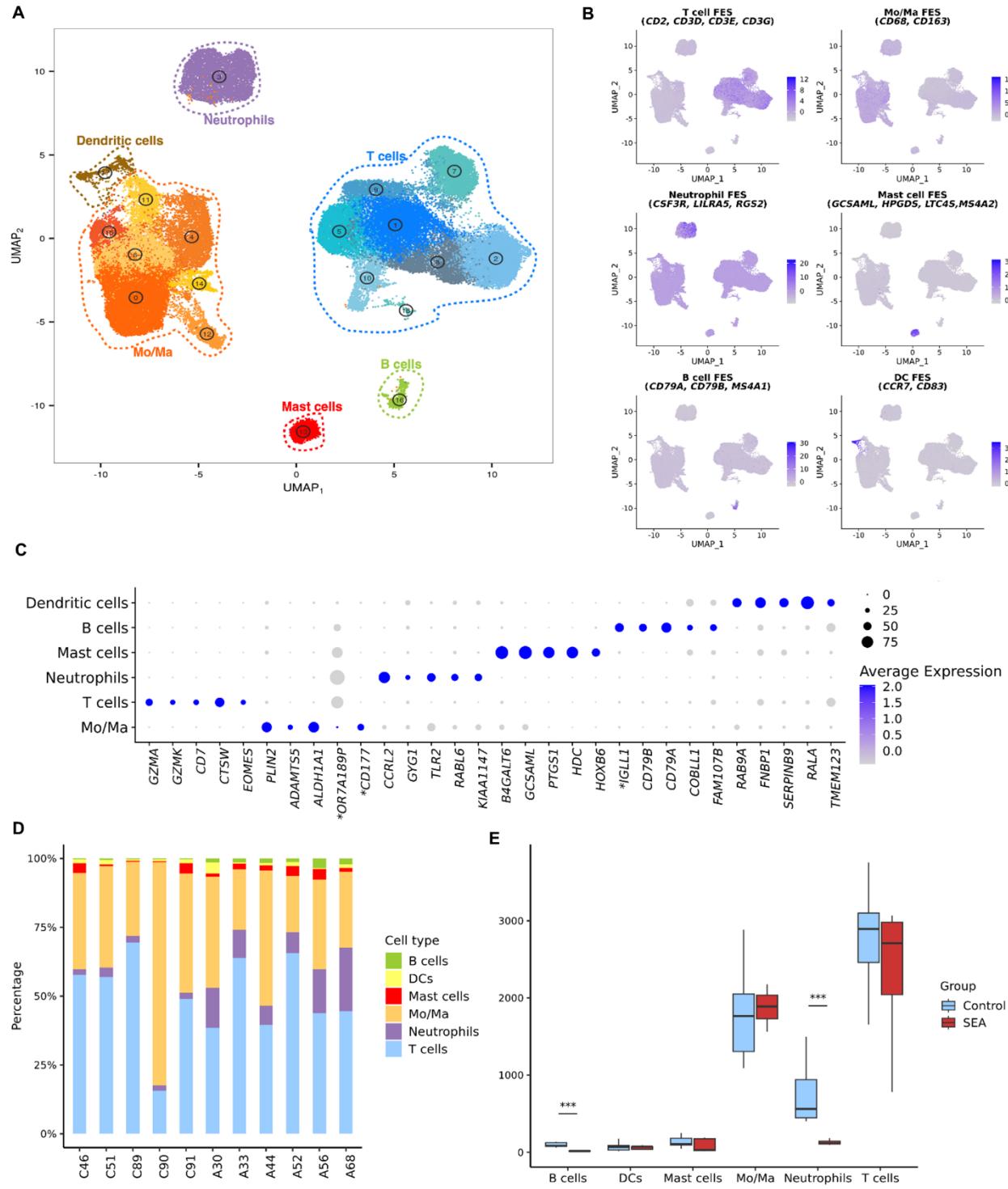
43 Equine asthma is a common respiratory disease of the horse characterized by
44 bronchoconstriction, mucus production and bronchospasm (1). Its severe form, severe equine
45 asthma (SEA), presents with increased breathing effort at rest, airway remodeling and in most
46 cases, airway neutrophilia (1). Equine asthma is a very active field of research, in part because of

47 its negative impact on animal welfare and the horse industry but also due to its similarities with
48 human asthma, making it a rare natural animal model (2–4). In contrast to murine models with
49 experimentally induced airway inflammation, horses develop asthma under natural conditions.
50 Their longer lifespan enables the study of disease progression, particularly airway remodeling.
51 Furthermore, their size facilitates the collection of lower airway samples. For instance, the
52 collection of bronchoalveolar lavage fluid (BALF) is a routine procedure in horses, in contrast to
53 humans and conventional laboratory animal models. Although promising asthma drugs have been
54 identified based on murine studies, their limited clinical efficacy when applied to humans (4) may
55 be attributed to disparities in the underlying pathophysiological mechanisms between
56 experimentally induced and naturally occurring diseases.

57 In humans, asthma is considered an umbrella diagnosis encompassing a plethora of
58 diseases with distinct pathophysiologic mechanisms (so-called endotypes). The advent of omics
59 technologies has begun to unveil the diversity of human asthma endotypes (5, 6). SEA shares
60 clinical and pathological features with several human asthma endotypes, including allergic, non-
61 allergic and late-onset asthma (2). Because they are exposed to high levels of dust in stables, horses
62 represent an ideal model for organic dust-induced asthma of agricultural workers (7). While SEA
63 has been mainly attributed to a Th2 response, there have also been reports of predominant Th1 and
64 mixed Th1/Th2 phenotypes (8). Furthermore, the Th17 pathway, typically associated with
65 autoimmune diseases, has been implicated (9–12). The complexity of the disease and limitations
66 of experimental techniques may have contributed to these inconsistent findings. To address this
67 knowledge gap, we leveraged the emerging single-cell mRNA sequencing (scRNA-seq)
68 technology to dissect the immune mechanisms of SEA at the single-cell level.

69 In a previous experiment, we demonstrated that scRNA-seq can be successfully applied to
70 fresh frozen equine BALF cells (13). Here, we employed the 10X Genomics droplet-based scRNA-
71 seq technology to sequence BALF cells from six horses with SEA and five control horses. Our
72 analysis revealed a distinct transcriptomic signature in several cell types from asthmatic horses,
73 with monocytes, alveolar macrophages, and T cells exhibiting a clear Th17 polarization.

74


75 **RESULTS**

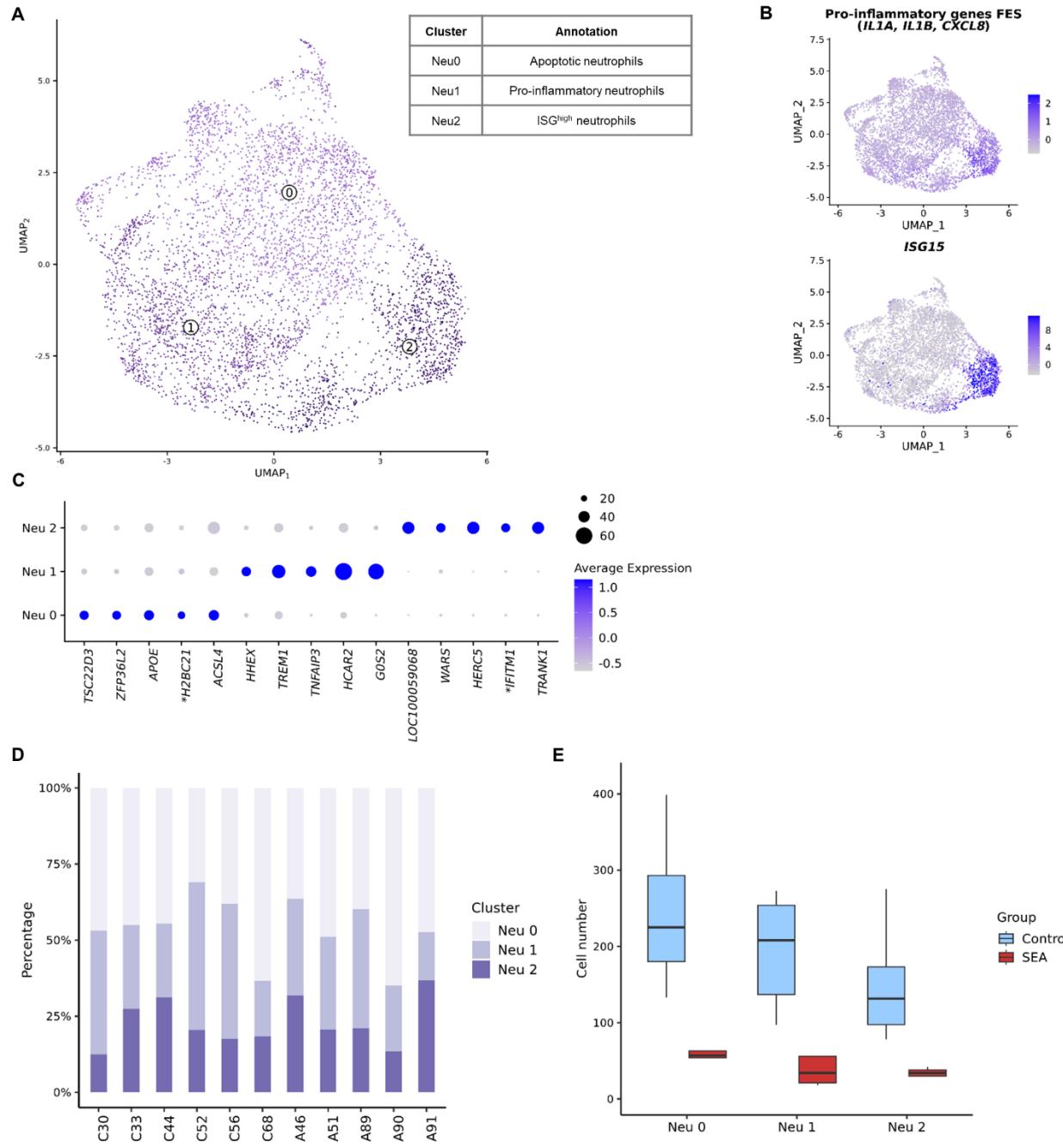
76 **Single-cell landscape of bronchoalveolar lavage fluid from asthmatic and control horses**

77 We analyzed the scRNA-seq data obtained from the BALF cells collected from six
78 asthmatic and five control horses. Detailed characteristics of the study population can be found in
79 Table 1. As anticipated, the Horse Owner Assessed Respiratory Signs Index (HOARSI) score and
80 BALF neutrophil count were significantly different between the two groups (Table 1).
81 Furthermore, the clinical score and tracheal mucus score exhibited significant differences,
82 confirming appropriate phenotyping (1).

83 Unsupervised clustering of the data identified 19 distinct cell clusters (Fig. 1A). Through
84 automated annotation using the top ten differentially expressed genes (DEGs) derived from major
85 cell types identified in our pilot study (13), we successfully predicted the identity of 99.6% of the
86 cells. Cell cluster identities were validated using the expression of known canonical markers and
87 the top DEGs specific to each cell group (Fig. 1B and 1C). Subsequently, the cell clusters were
88 consolidated into six major cells groups: B cells, dendritic cells (DCs), mast cells, monocytes-
89 macrophages (Mo/Ma), neutrophils and T cells. The marker genes used for annotation are
90 compiled in the supplementary tables 2 – 8.

91

92


93 **Figure 1: Major cell types identified in the BALF of asthmatic and control horses using**
94 **scRNA-seq. (A)** UMAP representation of the 19 clusters identified as six major cell types. *Mo/Ma*,
95 *monocyte-macrophage*. **(B)** Gene expression patterns of cell type canonical markers. *DC*, *dendritic*
96 *cell*; *FES*, *feature expression score*. **(C)** Top five differentially expressed genes per major cell type
97 (one non-coding gene removed). *NCBI 103 annotations for *LOC100146200*: *OR7A189P*,

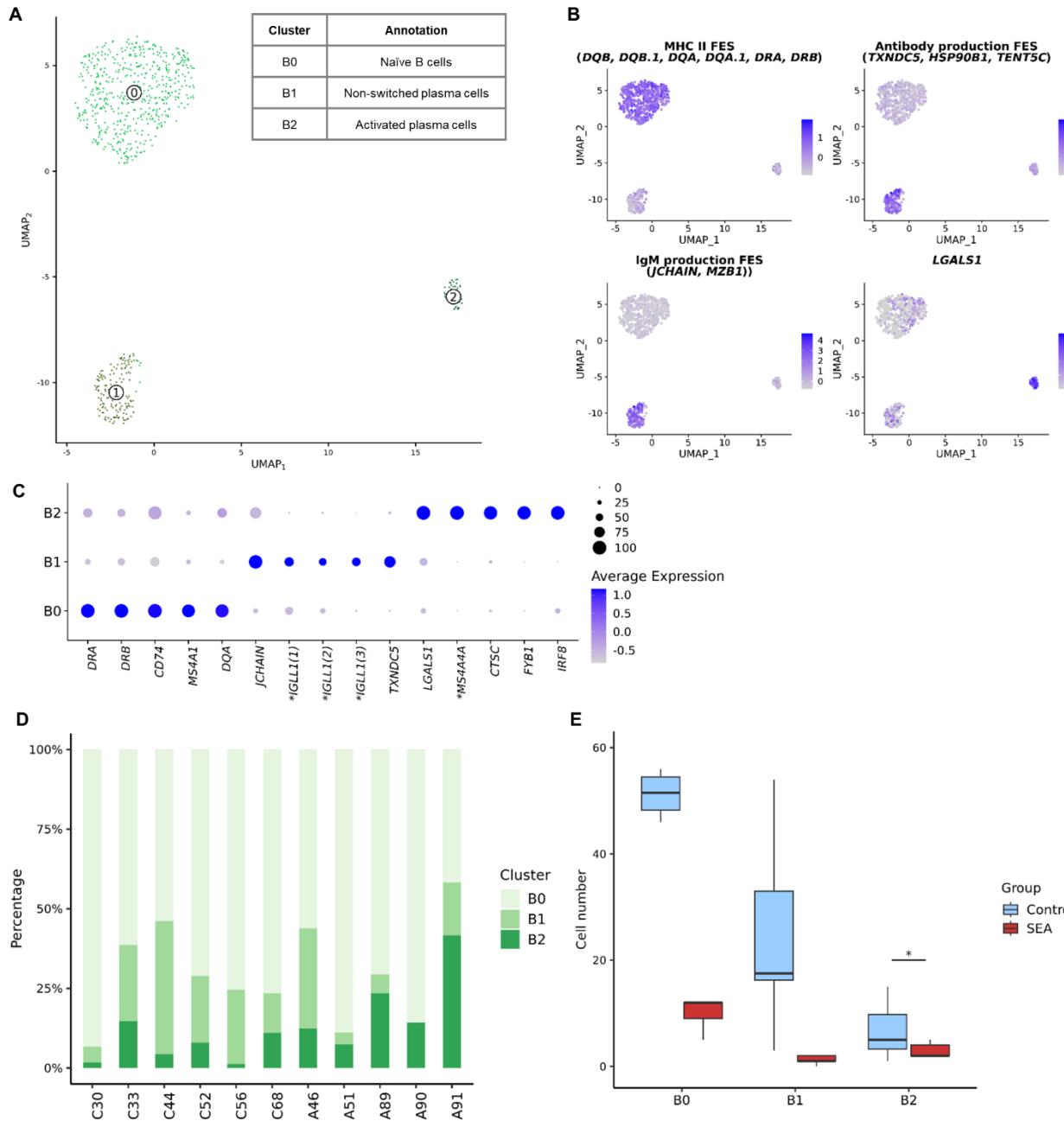
98 *LOC100069985*: *CD177*, *LOC102147726*: *IGLL1*. **(D)** Distribution of the six major cell types in
99 asthmatic and control horses. **(E)** Number of cells from each major cell type in the asthmatic and
100 control groups. *SEA*, *severe equine asthma*. ***, *P*-value < 0.001.

101

102 **ScRNA-seq reveals the presence of neutrophil subtypes in equine BALF**

103 To explore the diversity of each major cell type, we re-analyzed them independently.
104 Within the neutrophil population, unsupervised clustering revealed three distinct clusters: Neu0,
105 Neu1, and Neu2 (Fig. 2A). The most upregulated gene in Neu0 was *TSC22D3*, a gene involved in
106 neutrophil apoptosis (14). Additionally, the mitochondrial gene *ND2*, among the top five DEGs,
107 supported an apoptotic state (Fig. 2C). Upregulated genes involved in neutrophil extracellular trap
108 (NET) formation, including *LOC100054211* (annotated as *H2BC21* in the NCBI database) and
109 *FGL2* (15, 16), further characterized Neu0. Consequently, this cluster was designated as "apoptotic
110 neutrophils". Neu1 displayed elevated expression of *TREMI*, an established enhancer of pro-
111 inflammatory responses in human and canine neutrophils (17). Several pro-inflammatory
112 cytokines genes (*IL1A*, *IL1B*, *CXCL8*, and *CXCL2*) were also overexpressed in this cluster (Fig.
113 2B). Notably, *G0S2*, *CXCL8*, and *NFKBIA* showed elevated expression levels, which are
114 predictive of septic shock in human peripheral neutrophils (18). Thus, this cluster was annotated
115 as "pro-inflammatory neutrophils". The expression profile of cluster Neu2 was dominated by
116 interferon-stimulated genes (ISGs) such as *IFIT1/2/3/5*, *OAS 2/3* or *ISG15* (19), suggesting an anti-
117 viral phenotype (Fig. 2B). A similar gene signature has been observed in circulating neutrophils
118 of healthy humans (20) and equine BALF (21). Upregulation of the transcription factors *IRF7* and
119 *IRF1*, known to directly activate ISG expression (19), further supported the characterization of
120 Neu2 as "ISG^{high} neutrophils". Our findings confirm the presence of distinct neutrophil subtypes
121 in equine BALF, including pro-inflammatory and ISG^{high} populations previously identified in both
122 healthy and asthmatic horses' BALF (21).

123


124 **Figure 2: Neutrophils subtypes identified in the BALF of asthmatic and control horses using**
 125 **scRNA-seq. (A)** UMAP representation of the three clusters identified. **(B)** Gene expression
 126 **patterns used for annotation. FES, feature expression score. (C)** Top five differentially expressed
 127 **genes per cluster (one mitochondrial gene removed). NCBI 103 annotation for LOC100059068:**
 128 **IFIT5-like. *NCBI 103 annotation for LOC111774805: H2BC21, LOC100050797: IFITM1. (D)**
 129 **Distribution of clusters among asthmatic and control horses. (E)** Number of cells from each

130 **neutrophil cluster in the asthmatic and control groups. SEA, severe equine asthma.**

131

132 **B cell diversity is described for the first time in equine BALF**

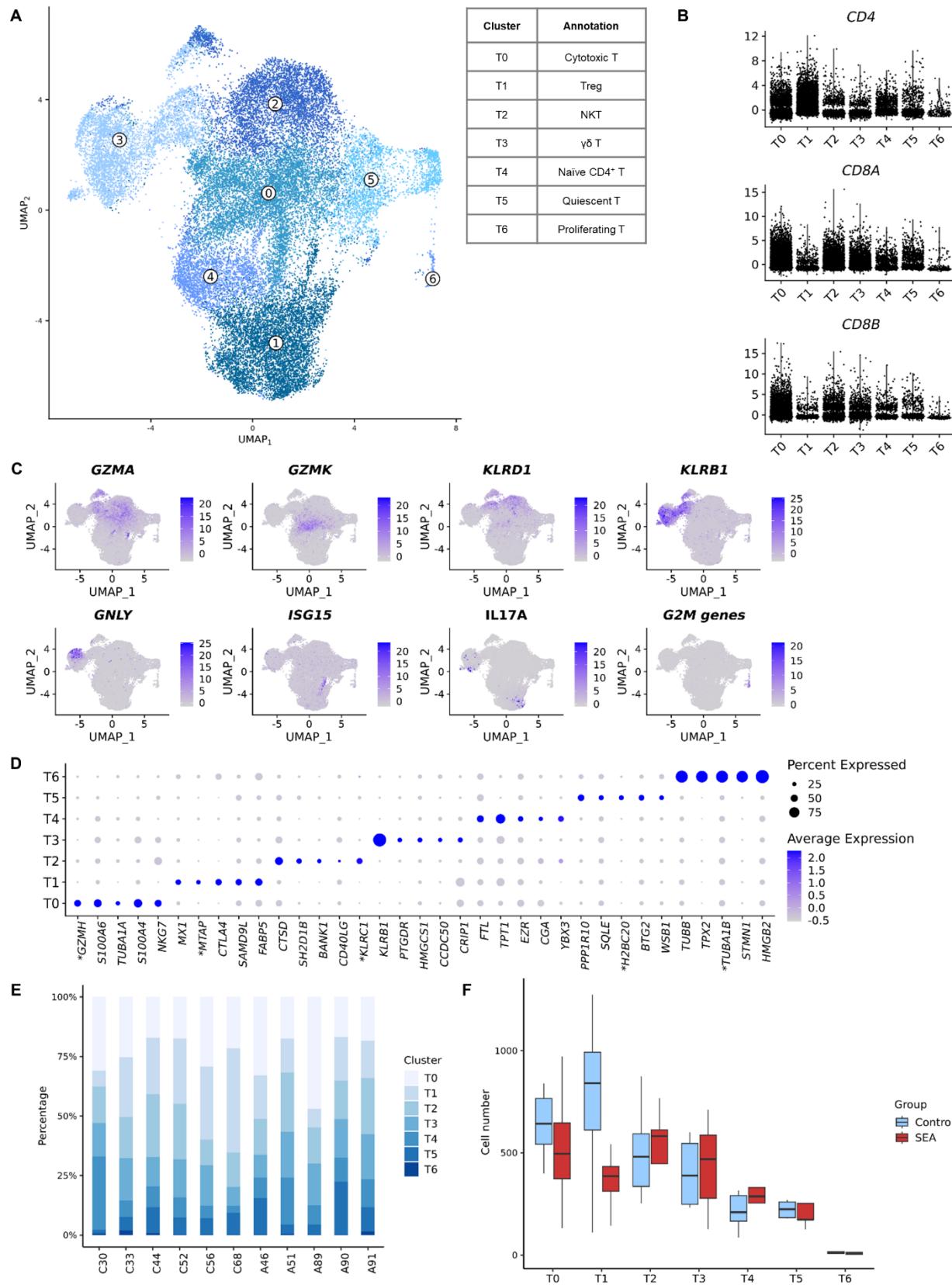
133 We identified three distinct B cell clusters through unsupervised clustering: B0, B1, and B2
134 (Fig. 3A), representing a novel description of B cell diversity in equine BALF. B0 exhibited gene
135 expression patterns consistent with naïve B cells, while B1 and B2 displayed characteristics
136 indicative of plasma (antibody-producing) cells (13) (Fig. 3B). B0 was characterized by the
137 upregulation of MHC-II associated genes (22) and the downregulation of genes associated with
138 antibody production, such as *TXND5*, *HSP90B1*, *TENT5C* and immunoglobulin λ light chain
139 (*IGLL1*)-coding genes. Cluster B1 showed an opposite gene expression pattern compared to B0.
140 Furthermore, genes involved in IgM production (*JCHAIN* and *MZB1*) were upregulated,
141 suggesting that these cells were in the early stages of differentiation into plasma cells. Cluster B2
142 displayed high levels of galectin 1 (*LGALS1*) mRNAs, a gene upregulated in differentiating plasma
143 cells following immunization and crucial for maintaining antibody secretion (23). Therefore, we
144 designated B0 as “naïve B cells”, B1 as “non-switched plasma cells” and B2 as “activated plasma
145 cells”.

146

147 **Figure 3: B cell subtypes identified in the BALF of asthmatic and control horses using**
148 **scRNA-seq. (A) UMAP representation of the three clusters identified. (B) Gene expression**
149 **patterns used for annotation. FES, feature expression score. (C) Top five differentially expressed**
150 **genes per cluster. *NCBI 103 annotations for *LOC111774805*, *LOC100060608* and**
151 ***LOC102147726*: *IGGL1*, for *LOC100061331*: *MS4A4A*. (D) Distribution of the clusters among**
152 **asthmatic and control horses. (E) Number of cells from each neutrophil cluster in the asthmatic**
153 **and control groups. SEA, severe equine asthma. *P-value < 0.05.**

154

155


156 **Equine BALF demonstrates substantial T cell diversity**

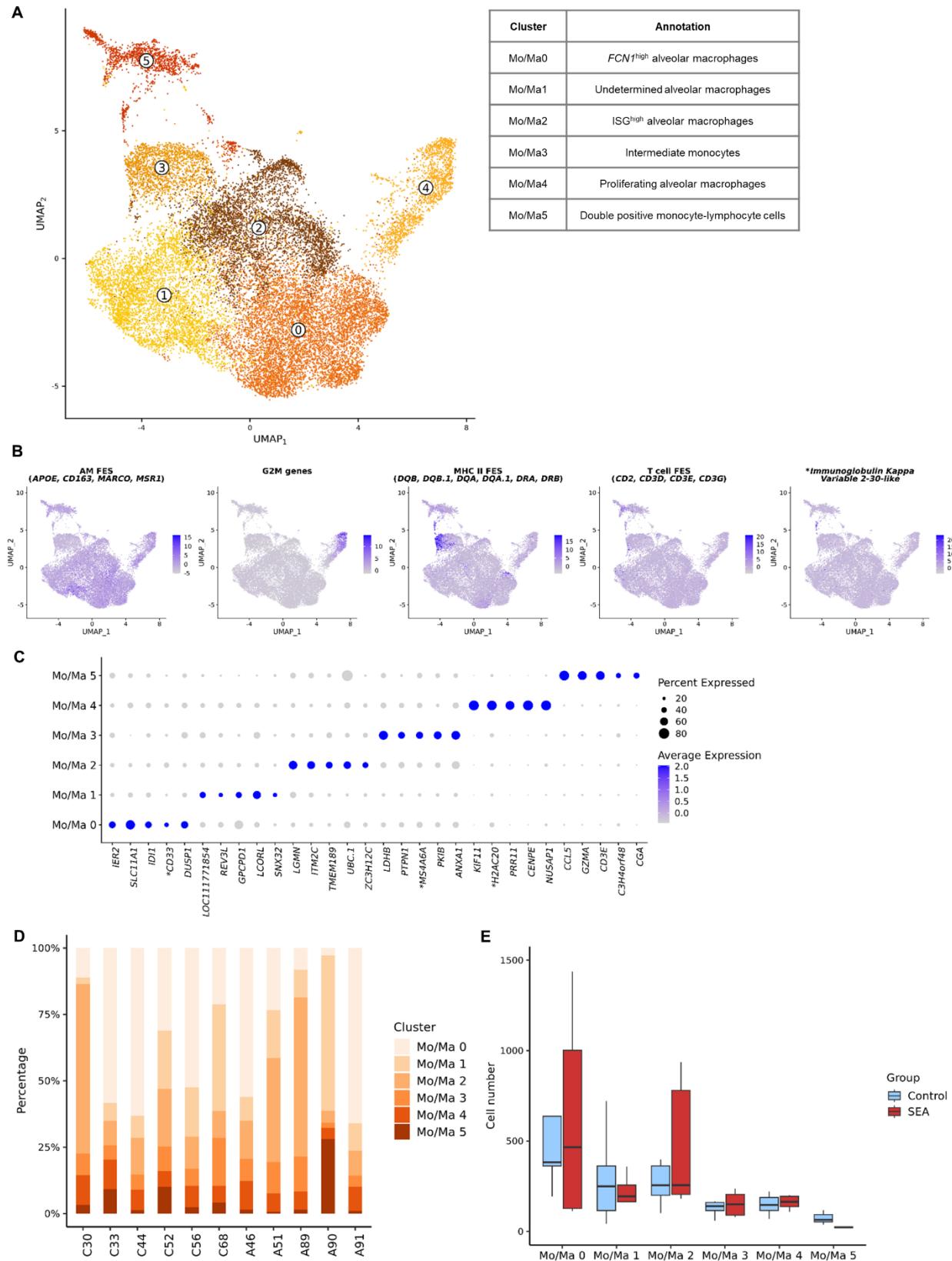
157 Unsupervised clustering identified seven T cell clusters (Fig. 4A). The tissue resident
158 marker *ITGAE* was expressed across all T clusters, albeit at lower levels in T6. Clusters T0, T2
159 and T3 were identified as *CD8⁺* T cells, while T1 was labeled as “*CD4⁺* T cells” (T helper cells)
160 based on the differential expression of cell surface markers *CD4*, *CD8a* and *CD8b* (Fig. 4B).
161 Cytotoxicity markers such as *CTSW*, *PRF1*, and *GZMA* were upregulated in T0, T2, and T3.
162 Notably, T0 overexpressed additional cytotoxicity effectors (*NKG7*, *EOMES* and *GZMK*) and the
163 chemokine gene *CCL5*, indicating an “effector *CD8⁺* T cells” identity (24) (Fig. 4C and 4D). A
164 subset of T0 cells showed upregulation of a *GZMH* isoform, suggesting a higher level of cytotoxic
165 specialization (25). Interestingly, some cells in T0 were *CD4⁺* (Fig. 4B), indicating the presence
166 of a *CD4⁺* cytotoxic T lymphocytes (*CD4⁺* CTLs) subset (26). Thus, T0 was annotated as
167 “cytotoxic T lymphocytes”.

168 The expression profile of T2 resembled that of previously identified natural killer T (NKT)
169 cells in equine BALF (13), displaying both natural killer (NK)-specific (*SH2D1B*, *KLRC1* and
170 *KLRD1*) (Fig. 4D) and T cell-specific (*TRAT1*) features. *TYROBP*, a marker for NKT cells in
171 human peripheral blood, was also upregulated (27). T3 was identified as “ $\gamma\delta$ T cells” based on the
172 upregulation of *KLRB1* (Fig. 4D) and the gene coding for a SCART1-like protein (13). This cluster
173 comprised a subset of cytolytic cells, as shown by the expression of *GNLY*, which codes for
174 granulysin (28) (Fig. 4C).

175 T1, labeled as “regulatory T cells” (Treg), exhibited a *CD4⁺FOXP3⁺* phenotype. Top DEGs
176 included Treg-specific genes such as *CTLA4*, *TRIB1*, *IL32*, *FGL2* or *FOXO1*. Within T1, a subset
177 displayed an *ISG^{high}* signature previously associated with Tregs (29), while another subset showed
178 overexpression of the pro-inflammatory cytokine *IL17A*, which can be induced in Tregs under

179 inflammatory conditions (30) (Fig. 4C). Cluster T4 exhibited unspecific DEGs, making annotation
180 challenging. We could not ascertain whether the cluster was $CD4^+CD8^-$ or double negative $CD4^-$
181 $CD8^-$ on the violin plots (Fig. 4B). Based on the absence of upregulation of canonical markers for
182 double negative T cells (31), we presumed these cells to be $CD4^+CD8^-$. *LEF1* and *CCR7*, typically
183 expressed by naïve T cells, were upregulated, and ribosomal protein genes were overexpressed,
184 indicating an ongoing differentiation process (32) (Suppl. fig. 1). Cluster T4 was thus annotated
185 as “naïve $CD4^+$ T cells”. Cells in T5 demonstrated upregulation of genes linked to the S phase
186 (e.g., *BTG2*, *PLK2* and *MCL1*) and downregulation of ribosomal protein genes, suggesting a
187 quiescent state. Conversely, T6 cells exhibited high levels of mitosis markers, indicating
188 proliferating cells (Fig. 4C). T5 and T6 were probably composed of both $CD4^+$ and $CD8^+$
189 phenotypes, as there was no clear increase in the expression of *CD4* or *CD8* genes in these clusters.

191 **Figure 4: T cell subtypes identified in the BALF of asthmatic and control horses using**
192 **scRNA-seq. (A)** UMAP representation of the seven clusters identified. *NKT*, *Natural Killer T cell*.
193 **(B)** Gene expression patterns used for annotation. **(C)** Top five differentially expressed genes per
194 cluster (snRNA, non-coding genes and ribosomal protein genes removed). *NCBI 103 annotations
195 for *LOC100051986*: *GZMH*, *LOC100065392*: *MTAP*, *LOC100062823*: *KLRC1*, *LOC100053968*:
196 *H2BC20*, *LOC100059091*: *TUBA1B*. **(D)** Expression levels of the cell surface markers *CD4*, *CD8a*
197 and *CD8b*. **(E)** Distribution of the clusters among asthmatic and control horses. **(F)** Number of
198 cells from each T cell cluster in the asthmatic and control groups. *SEA*, *severe equine asthma*.
199


200 **The monocyte-macrophage population is constituted from monocytes, several alveolar**
201 **macrophages subtypes, and putative monocyte-lymphocyte complexes**

202 Monocyte-macrophage diversity was explored through unsupervised clustering, revealing
203 six clusters (Fig. 5A). Clusters Mo/Ma0, Mo/Ma1, Mo/Ma2 and Mo/Ma5 were identified as
204 alveolar macrophages (AMs) based on specific marker expression (Fig. 5B). Clusters Mo/Ma3 and
205 Mo/Ma4 were annotated as monocytes.

206 Mo/Ma0 displayed an anti-inflammatory phenotype, with upregulation of *DUSP1*,
207 *LILRB4*, *IRS2* genes and downregulation of *NFKB1* and *NFKB2* genes. This cluster resembled the
208 “*FCN1*^{high} AM” previously identified in equine BALF (13), with overexpression of *FCN1*
209 (*LOC100069029*) and *ORM2* (*LOC100050034* and *LOC100050100* isoforms). Mo/Ma1 had a
210 lower feature count, a higher percentage of mitochondrial reads (Suppl. fig. 2), and no specific
211 gene expression pattern related to a particular cell type or function. It could potentially represent
212 either fragile or quiescent cells. Genes associated with cell adherence (*CDH23*, *RASAL2*) were
213 upregulated, supporting a population of quiescent resident AMs. This cluster was conservatively
214 annotated as “undetermined AM”. Mo/Ma2 showed upregulation of *LGMN* and *UBC*, associated
215 with a pro-inflammatory (M1) phenotype (33, 34), as well as a predominant expression of ISGs
216 (e.g., *OASL*, *IFI6*, *IFI44* or *IRF7*). We labeled the cluster “*ISG*^{high} AM”. Mo/Ma4 displayed a gene
217 expression profile indicative of “proliferating AMs” (Fig. 5B).

218 Mo/Ma3 exhibited a similar expression profile to intermediate monocytes in our pilot study
219 (13), with upregulation of genes *SPP1*, *CCL15*, *CD44* and *MMP9*, as well as high levels of MHCII-
220 associated genes (Fig. 5B). This cluster was thus labeled as “intermediate monocytes”. The
221 overexpression of genes associated with antigen processing and presentation (*IFI30*, *TGFB1*,
222 *CTSB* and *CD74*) suggested ongoing maturation into macrophages. Their relatively high
223 expression of ribosomal protein genes supported this hypothesis, as these genes are typically
224 upregulated during early differentiation (32) (Suppl. fig. 3).

225 Mo/Ma5 showed a distinct T cell signature with the expression of *CD2*, *CD3D*, *CD3E*,
226 *CD3G* and *CD7*, among others (Fig. 5B). A subset of Mo/Ma5 exhibited a B cell signature, with
227 overexpression of *LOC100630729*, encoding an Igκ-like protein (Fig. 5B). The gene expression
228 pattern of Mo/Ma5 resembled the double positive monocyte-lymphocyte cells we previously
229 identified in equine BALF (13). We hypothesized that this cluster represents immune cell
230 complexes similar to those found in human peripheral blood (35, 36). Mo/Ma5 also demonstrated
231 overexpression of MHCII-associated genes, critical for immunological synapse formation (Fig.
232 5B).

234 **Figure 5: Monocytes-macrophages (Mo/Ma) subtypes identified in the BALF of asthmatic**

235 **and control horses using scRNA-seq. (A)** UMAP representation of the six clusters identified. **(B)**

236 Gene expression patterns used for annotation. *FES*, *feature expression score*. *NCBI 103

237 annotations for *LOC100147522*: *GZMH*. **(C)** Top five differentially expressed genes per cluster

238 (non-coding, mitochondrial and ribosomal protein genes removed). NCBI 103 annotation for

239 *LOC111771854*: *oleosin-B6-like*. *NCBI 103 annotations for *LOC100066849*: *CD33*,

240 *LOC100061154*: *MS4A6A*, *LOC100058587*: *H2AC20*. **(D)** Distribution of the clusters among

241 asthmatic and control horses. **(E)** Number of cells from each Mo/Ma cluster in the asthmatic and

242 control groups. *SEA*, *severe equine asthma*.

243

244 **Distinct clusters of dendritic cells are present in equine BALF**

245 Unsupervised clustering identified four distinct DC clusters: DC0, DC1, DC2 and DC3 (Fig.

246 6A). DC0, characterized by the upregulation of *CD1C*, *CLEC10A*, *FCER1A* (37) and MHCII-

247 associated genes (38), was annotated as conventional DC2 (cDC2) (Fig. 6C). DC1 showed an

248 activation profile with upregulated genes from a previously described DC activation panel,

249 including *CCR7*, *LAMP3*, *IDO1*, *FSCN1* and *CD83* (37) (Fig. 6C). *SERPINB9*, a marker for cross-

250 presentation capable DCs (39), was upregulated in this cluster, along with downregulation of

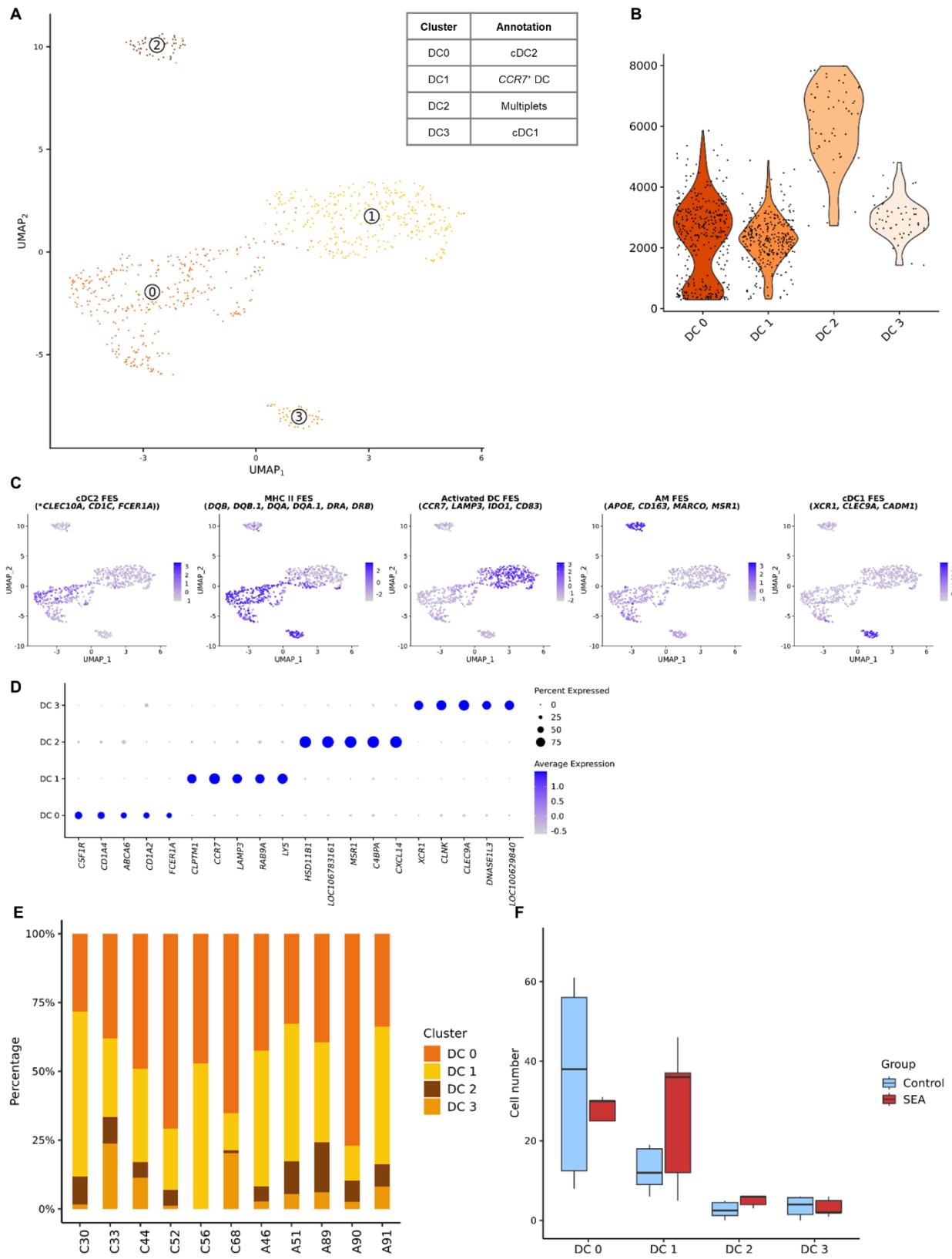
251 MHCII-associated genes (40), indicating a mature DC phenotype (Fig. 6C). DC1 was annotated

252 as “*CCR7*⁺ DCs”, which have been also referred to as “activated DCs” or “mature DCs enriched

253 in immunoregulatory molecules” (37). In humans, several DC types can display this activation

254 profile. Our equine *CCR7*⁺ DCs population may thus similarly be composed from different

255 lineages.


256 Cluster DC2 showed upregulated markers for AMs (*APOE*, *CD163*, *MARCO* and *MSR1*),

257 cDCs (*CXCL13*, *SIRPA*) and plasmacytoid DCs (*IRF7*) (Fig. 6C). The high RNA feature count in

258 this cluster further supported the presence of doublets and/or multiplets, and it was thus annotated

259 as “multiplets” (Fig. 6B) and was not used for further analysis. DC3 was annotated as “cDC1”

260 based on the expression of *XCR1*, *CLEC9A* and *CADM1* (37) (Fig. 6C).

262 **Figure 6: Dendritic cell (DC) subtypes identified in the BALF of asthmatic and control horses**
263 **using scRNA-seq. (A)** UMAP representation of the four clusters identified. *cDC*, conventional
264 *dendritic cell*. **(B)** Gene expression patterns used for annotation. *FES*, *feature expression score*.
265 *NCBI 103 annotations for *LOC100072936* and *LOC100072933*: *CLEC10*. **(C)** Top five
266 differentially expressed genes per cluster (non-coding genes removed). NCBI 103 annotations for
267 *LOC100629840*: *bone marrow proteoglycan-like*, *LOC106783161*: *apolipoprotein R*. **(D)** RNA
268 feature count for each DC cluster. **(E)** Distribution of the clusters among asthmatic and control
269 horses. **(F)** Number of cells from each DC cluster in the asthmatic and control groups. *SEA*, *severe*
270 *equine asthma*.
271

272 **The mast cells form a homogenous cluster in our study population**

273 The mast cells formed a highly homogenous cell cluster, without any convincing subclusters
274 identified in independent reanalysis. This finding contrasts with a previous scRNA-seq study on
275 the BALF from asthmatic and control horses, in which four distinct mast cell clusters were
276 identified (21). This study included horses affected by a different type of equine asthma, a milder
277 form characterized by a high proportion of mast cells in the BALF. The larger number of mast
278 cells in their study likely facilitated the identification of subtle differences between subtypes.
279

280 **Sample processing and counting techniques do not significantly influence cellular**
281 **composition**

282 To evaluate the potential impact of sample processing and cryopreservation on cellular
283 composition, we compared the distribution of the five cytologically distinguishable major
284 leukocytes (lymphocytes, macrophages, neutrophils, mast cells, and eosinophils). While some
285 variations were observed among individual horses, as shown in supplementary figure 4, repeated-
286 measure analysis of variance (ANOVA) did not reveal any significant differences, indicating that
287 sample processing did not have a substantial effect on the cellular composition of the samples.

288 Similarly, we compared the proportions of each cell type obtained through manual cell
289 counting on cell suspension cytology with those obtained through scRNA-seq. Once again, the
290 repeated-measure ANOVA did not detect any significant differences.

291

292 **The BALF of asthmatic horses is enriched in B cells but specifically depleted in activated
293 plasma cells**

294 As expected, asthmatic horses showed a significantly higher proportion of neutrophils
295 compared to the control horses (Table 2, fig. 1D and 1E). A novel finding was the B cell
296 enrichment in the BALF of asthmatic horses (Fig. 1D and 1E). Upon analyzing the distribution of
297 B cell subtypes between groups, we found that asthmatic horses exhibited approximately three
298 times fewer activated plasma cells (B2 cluster) than control horses (Table 2, fig. 3D and 3E). This
299 suggests that expansion of the naïve B cells and non-switched plasma cells primarily contributed
300 to the increased B cell proportion in asthmatic horses. No significant differences were observed
301 between asthmatic and control groups for other major cell types or subtypes (Table 2 and fig. 1E,
302 2E, 4F, 5E, 6F).

303

304 **Gene expression profile of neutrophils indicates altered NETosis and migratory function in
305 SEA**

306 Using a mixed model approach, we compared gene expression between asthmatic and
307 control horses within each cell type and subtype. Supplementary tables 9 – 13 provide the results
308 of the differential gene expression (DGE) analysis, where positive log fold change indicates
309 upregulation in the SEA group.

310 In asthmatic horses, neutrophils showed significant changes in gene expression. We
311 observed 13 upregulated genes and 206 downregulated genes in this cell population. The asthmatic

312 neutrophils exhibited an "asthma signature" characterized by upregulation of *CHI3L1* and
313 *MAPK13*, known markers of neutrophilic asthma in humans (41–43), and downregulation of
314 *SLC7A11*, an indicator of ferroptosis reduced in neutrophilic mice asthma (44). Apoptotic
315 neutrophils (Neu0) upregulated *S100A9* and *RETN*, both involved in NETosis function. NETosis
316 is a form of neutrophil death in which decondensed chromatin and granular contents (so-called
317 NETs) are released into the extracellular space. *S100A9* is a key mediator of neutrophilic asthma
318 and plays a role in neutrophil activation and NETs formation (45, 46). *RETN*, which codes for
319 resistin, is associated with increased susceptibility of neutrophils to LPS activation, and to
320 enhanced NETosis (47). Pro-inflammatory neutrophils (Neu1) of asthmatic horses only
321 upregulated one gene, *PTGS2*, and downregulated six genes, including *KLF2*. Reduced *KLF2*
322 levels can promote neutrophil migration (48) and exacerbate NET-induced transfusion-related
323 acute lung injury (49). In the ISG^{high} neutrophils (Neu2), we observed upregulation of *GIBp6*, an
324 ISG, and *ADGRE5*, also known as *CD97*. *ADGRE5* activation may promote migration of ISG^{high}
325 neutrophils to the lungs (50).

326 Interestingly, we also identified gene expression features that could have a protective effect
327 on the lower airways. The antileukoproteinase gene *SLPI* was upregulated in asthmatic horses,
328 which can provide anti-inflammatory actions by inhibiting the NFκB pathway and preventing
329 excess NET formation (51). *NFKB1* was indeed downregulated in asthmatic neutrophils.
330 Downregulation of *IL17RC* suggested a reduced capacity to respond to the Th17 cytokine IL17.
331 The predominant contributor of protective features was the apoptotic neutrophil subtype, with
332 upregulation of *SLPI* and downregulation of *CCL20* and *NR4A3*. The Th17-associated cytokine
333 *CCL20* is a potent chemotactic factor for lymphocytes and DCs. The downregulation of *CCL20*
334 could thus have an overall anti-inflammatory effect, with reduced chemotaxis of immune cells and

335 reduced Th17-signalling. *NR4A3* positively regulates neutrophil survival (52). Hence, its
336 downregulation may mitigate neutrophil persistence in the lungs in SEA.

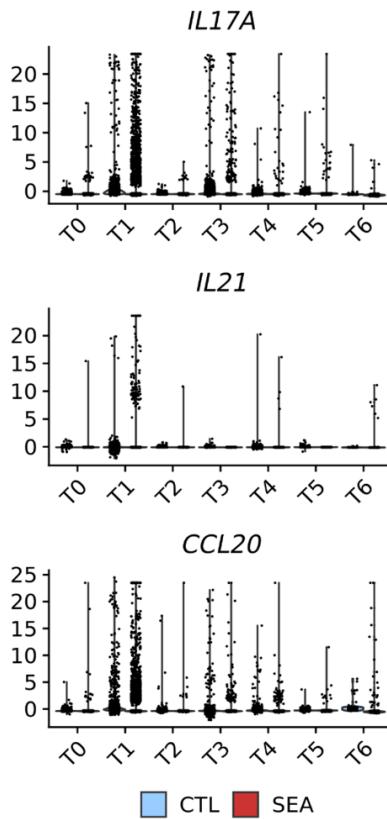
337 In summary, neutrophils from asthmatic horses exhibited DGE patterns indicative of
338 asthma, including known markers of human asthma. Moreover, these neutrophils displayed an
339 expression profile consistent with increased migratory capacity and the potential for NET
340 formation. The co-expression of genes with protective roles suggests a dual pro- and anti-
341 inflammatory role of neutrophils in SEA.

342

343 **Upregulation of POU2AF1 in asthmatic B cells reveals potential links to pulmonary fibrosis**

344 The DGE analysis conducted on B cells identified five DEGs in asthmatic horses. The only
345 upregulated gene was *POU2AF1*, a transcriptional coactivator essential for B cell function.
346 Elevated expression of *POU2AF1* in B lymphocytes has been associated with interstitial
347 pulmonary fibrosis (53) and chronic obstructive pulmonary disease (COPD) (54) in humans.
348 Notably, its expression has shown a negative correlation with lung function (54). The DGE
349 analysis between B cell subtypes did not yield any significant DEGs.

350


351 **Gene expression patterns of asthmatic T cells support a Th17-oriented immune response**

352 The DGE analysis in T cells revealed 77 upregulated genes and four downregulated genes
353 in asthmatic horses. Notably, two known markers of human asthma, *IL26* (55) and *OLFM4* (56),
354 were upregulated. As in neutrophils, the acute asthma marker *RETN* (57) was upregulated in
355 cytotoxic T cells (T0). Moreover, T cells from asthmatic horses exhibited a robust Th17 signature,
356 characterized by the upregulation of *IL17A*, *IL17F*, *IL21* and *CCL20*.

357 Interestingly, naïve $CD4^+$ T cells (T4) showed a simultaneous upregulation of Th17-
358 associated genes (*IL17A*, *IL1B*, *CCL20* and *NFKBID*) and *FOXP3*. This observation supported the

359 hypothesis that naïve $CD4^+$ T cells in asthmatic horses adopt a Th17 pathway during
360 differentiation, as *FOXP3* expression is transiently present during Th17 cell development (58).

361 Furthermore, the Treg cells (T1) displayed a Th17-oriented profile, with upregulation of
362 *IL21* and *IL17A* and downregulation of *EOMES*, a known suppressor of Th17 differentiation in
363 human Treg cells (59) (Fig. 7).

364

365 **Figure 7:** Upregulation of Th17-associated genes in the T cells of severely asthmatic horses (SEA, right) compared to control horses (CTL, left).
366

367

368 The $\gamma\delta$ T (T3) cells conjointly upregulated *IL17A* and *IL1R*, consistent with a $\gamma\delta$ 17
369 phenotype (60). In mice, $\gamma\delta$ T cells possess an intrinsic capacity for IL17 production, which is
370 directly induced by IL23 and IL1 (61). Notably, $\gamma\delta$ 17 T cells are implicated in various human
371 inflammatory diseases (61), and increased *IL1R* expression has been associated with neutrophilic
372 asthma and reduced pulmonary function in humans (60).

373 **Genes associated with T cell function are dysregulated in SEA**

374 Several genes involved in T cell function were differentially expressed in asthmatic horses.
375 Specifically, the marker of T cell exhaustion, *TOX2* (62), was upregulated, along with *S1PR5*,
376 whose expression is induced by antigen exposure (63). Cytotoxic T cells (T0) downregulated
377 *GZMB*, a gene associated with lymphocytic inflammation in the lungs (64). The downregulation
378 of *IL18R1* and *XCL1* supported Treg cell dysfunction. Indeed, downregulation of the IL18 receptor
379 is associated with unresponsiveness of exhausted *CD8⁺* T cells (65). Furthermore, dysfunctional
380 Treg cells in individuals with allergic asthma have been shown to downregulate *XCL1* (66).
381 Among the T cell subtypes, NKT cells (T2) upregulated *NPY*, a gene associated with reduced NK
382 function (67).

383 Surprisingly, the T cells and several T cell subtypes upregulated a few B cell-specific
384 immunoglobulin genes, including *LOC102147726* (coding for the immunoglobulin λ 1 light chain
385 *IGLL1*), *LOC100060608* (coding for the immunoglobulin λ constant 7 *IGLC7*), and *JCHAIN*. To
386 investigate this further, we examined the absolute gene expression level in T cells and found that
387 the log counts of immunoglobulin genes were three to seven times lower than the mean gene
388 expression level in the T cell cluster. Assuming a spurious signal, we concluded that the
389 upregulation of immunoglobulins was unlikely to have biological relevance in our dataset.

390

391 **Monocytes and alveolar macrophages from asthmatic horses display a Th17 signature**

392 The DGE analysis of Mo/Ma major cell type identified 35 upregulated genes and four
393 downregulated genes in the asthmatic group. Among the upregulated genes were *OLFM4*,
394 associated with severe lung disease in humans (68, 69), and the marker of neutrophilic asthma
395 *CHI3L1* (42). *S100A8*, shown for its increased expression in individuals with steroid-resistant

396 neutrophilic asthma, was upregulated (70). *TLR1*, recently identified as a potential therapeutic
397 target for asthma in humans (71), was also differentially expressed.

398 In the *FCN1*^{high} AMs (Mo/Ma0), positively DEGs included *PGLYRP1*, *PTX3* and *CCL20*.
399 In mice, *PGLYRP1* promotes pro-asthmatic Th2 and Th17 responses (72), while *PTX3* is a marker
400 of non-eosinophilic asthma in humans (73). In horses, BALF *PTX3* expression increases in acute
401 asthmatic crisis, particularly in dust-activated foamy macrophages (74). The simultaneous
402 upregulation of the Th17-associated cytokine *CCL20* and downregulation of the Th1-cytokine
403 *CCL11* supported a Th17 polarization of *FCN1*^{high} AMs in asthmatic horses. Moreover, in the
404 ISG^{high} AMs (Mo/Ma2), genes encoding *CCL20* and its receptor *CCR6* were upregulated, further
405 advocating for a Th17 phenotype.

406 An important finding was the significant upregulation of *CXCL13* in Mo/Ma, intermediate
407 monocytes (Mo/Ma3), and putative monocyte-lymphocyte complexes (Mo/Ma5). This B cell
408 chemoattractant has been previously shown to be upregulated in peripheral blood cells from horses
409 with SEA, particularly after stimulation with hay dust extract (75). *CXCL13* cytokine levels are
410 also elevated in the serum and the BALF of asthmatic humans (76, 77). In an OVA murine model
411 of asthma, an anti-*CXCL13* antibody reduced cell recruitment, bronchial-associated lymphoid
412 tissue formation, and airway inflammation, highlighting *CXCL13* as a promising therapeutic target
413 (76). Macrophages and Th17-derived cells are the primary sources of *CXCL13* production. In this
414 single-cell dataset, *CXCL13* was found to be upregulated in intermediate monocytes and putative
415 monocyte-lymphocyte complexes from asthmatic horses, but not in alveolar macrophages or T
416 cells. These findings suggest that the observed increase in *CXCL13* in horses and humans likely
417 results from activated monocytes' upregulation of *CXCL13*, rather than expansion of macrophage
418 or Th17 populations.

419 Furthermore, intermediate monocytes in asthmatic horses demonstrated upregulation of
420 *S100A9*, *S100A12*, *CCL17* and *S1PR5*. *S100A9* and *S100A12* serve as biomarkers for neutrophilic
421 asthma (78, 79), while *CCL17* is associated with asthma and may contribute to airway remodeling
422 through fibroblast activation via the CCR4-CCL17 axis (80, 81). Intriguingly, *S1PR5* regulates
423 monocyte trafficking (82), suggesting intermediate monocytes from asthmatic horses may possess
424 a higher migratory capacity.

425 In contrast to the predominant Th17 signature observed in the Mo/Ma clusters, we noted
426 upregulation of the Th2-associated genes *PRB1* and *NMUR1* in the Mo/Ma major cell population
427 (83, 84).

428

429 **Th17 activation may result from a crosstalk between monocytes and lymphocytes**

430 The presence of multiple cell types within the Mo/Ma5 cluster was supported by the high
431 number of DEGs identified. This cluster exhibited simultaneous upregulation of *CXCL13* and
432 *IL17A*, both associated with the Th17 pathway. Interestingly, while several T cell clusters in the
433 dataset upregulated *IL17A*, none of the Mo/Ma clusters, except Mo/Ma5, showed this upregulation.
434 Conversely, *CXCL13* upregulation was exclusive to Mo/Ma5 and not observed in any T cell
435 clusters. This led us to conclude that the co-upregulation of *IL17A* and *CXCL13* originated from
436 the dual nature of Mo/Ma5 as monocyte-lymphocyte complexes. Downregulation of the Th1-
437 associated gene *CD27* and granzyme B-like proteins further suggested a Th17 polarization within
438 the cells composing the complexes (85). Additionally, upregulation of inflammasome-related
439 genes (*SIGLEC14*, *KCNK13* and *PELI2*) (86) was observed.

440 Similar to T cells, upregulation of B-cell specific genes (*IGLL1* and *IGLC7*) was observed
441 in multiple Mo/Ma clusters. However, their average log counts were considerably lower compared

442 to the mean gene expression level in Mo/Ma, rendering their upregulation irrelevant. On the other
443 hand, *JCHAIN* was upregulated specifically in Mo/Ma1 (undetermined AMs), and its absolute
444 expression level closely aligned with the mean gene expression within the cluster. Possible
445 explanations include technical doublets, *bona fide* AM-B cell complexes, phagocytized B cells, or
446 the expression of immunoglobulin genes by activated AMs themselves, as recently demonstrated
447 in human and mice (87).

448

449 **Gene expression patterns of asthmatic DCs suggest enhanced migratory capacity and non-**
450 **Th2 response**

451 The DGE analysis of DCs identified 14 DEGs, of which nine were upregulated in asthmatic
452 horses. None of the upregulated genes had been previously associated with asthma or dendritic
453 cell function. On the other hand, downregulated genes included *MARCO* and *RSAD2*. In a murine
454 OVA-asthma model, *MARCO*-deficient mice showed increased eosinophilic airway inflammation
455 and airway hyperresponsiveness, accompanied by enhanced migration of lung DCs to draining
456 lymph nodes (88). Consequently, reduced *MARCO* expression in equine lung DCs may enhance
457 their migration to lymph nodes, leading to an amplified immune response against aeroallergens.

458 Further analysis of DC subtypes yielded significant results for DC0 (annotated as cDC2s)
459 only, with one upregulated (*GLRX2*) and five downregulated genes. Administration of *GLRX2* has
460 been shown to reduce airway inflammation in an OVA-asthma model (89), indicating its potential
461 protective function. The downregulation of the chemokine gene *CCL8* was of particular interest.
462 *CCL8* is responsible for the recruitment of basophils, eosinophils and mast cells in allergic
463 processes and contributes to airway allergic inflammation by promoting a Th2 immune response
464 (90). Hence, *CCL8* downregulation in cDC2s suggests a shift towards a non-Th2 response in SEA.

465

466 **Downregulation of *YBX3* in mast cells of asthmatic horses points to potential airway**
467 **remodeling**

468 In mast cells, eight DEGs were identified, with two (*LYZ* and *PTPRB*) upregulated in
469 asthmatic horses. Six genes were downregulated, including *YBX3*. Reduced circulating *YBX3*
470 mRNA is a sensitive predictor of idiopathic pulmonary fibrosis in humans (91). Therefore, the
471 downregulation of *YBX3* in mast cells of asthmatic horses may contribute to the observed airway
472 remodeling seen in SEA.

473

474 **DISCUSSION**

475 Severe equine asthma is characterized by neutrophilic inflammation in the lower airways,
476 resembling a subset of non-Th2 asthma observed in humans. In this study, we utilized scRNA-seq
477 to investigate the immune mechanisms underlying SEA. Among the six major cell types identified,
478 B cells and neutrophils were more abundant in asthmatic horses. Notably, the fraction of activated
479 (switched) plasma cells was decreased, indicating a non-Th2 response. Both T cells and Mo/Ma
480 displayed a strong Th17 signature, including upregulation of *CXCL13* by intermediate monocytes.
481 Furthermore, a subset of cells exhibited an expression profile indicative of monocyte-lymphocyte
482 complexes, potentially contributing to Th17 activation. Neutrophils appeared as bystanders of the
483 lung inflammatory response, with an increase in NETosis function and reduced capacity to respond
484 to Th17 signals. These findings support a primary Th17-mediated immune response in neutrophilic
485 SEA of horses, potentially initiated through crosstalk between monocytes and T cells via direct
486 contact.

487

488 Similar Th17-associated responses have been observed in non-Th2 asthma in humans,
489 including organic dust-induced asthma and a subset of non-Th2 asthma patients (7, 92). In horses,
490 previous studies have also implicated the Th17 response in SEA. Increased levels of *IL17* mRNA
491 have been observed in the BALF of horses with SEA following antigen challenge (9).
492 Dysregulation of miRNA in the serum of asthmatic horses supported the existence of a mixed
493 Th2/Th17 response (10). Furthermore, a comprehensive miRNA-mRNA study in equine lung
494 tissues have suggested a predominant Th17 pathway, along with some indications of a parallel
495 Th2-type response (11). Transcriptomics, proteomics, and tissue staining analyses of mediastinal
496 lymph nodes in horses have further supported a predominant Th17 response in severe equine
497 asthma (12).

498

499 While studies on asthma in mice and humans have mainly focused on T cells as the main
500 contributors to the Th17 response (92), our study demonstrated the involvement of both T cells
501 and Mo/Ma populations in driving the Th17 response in horses with asthma. Importantly, this
502 resulted from alterations in gene expression patterns rather than expansion of these cell
503 populations. The upregulation of key Th17 cytokines such as *IL17A*, *IL21*, and *CCL20* was
504 observed in T cell clusters, suggesting their engagement in a Th17 differentiation pathway.
505 Alveolar macrophages and intermediate monocytes also exhibited a strong Th17 signature, with
506 upregulation of *CXCL13*, *PGLYRP1*, *CCL20* or *CCR6*. *CXCL13*, a B cell chemoattractant
507 predominantly produced by Mo/Ma and Th17-derived cells (93), has been shown to be upregulated
508 in hay dust extract-stimulated PBMCs of asthmatic horses (75). Because the latter study was
509 performed on a cell mixture, the cellular origin of *CXCL13* could not be ascertained. Our findings
510 confirm that *CXCL13* in asthmatic horses mainly originates from activated monocytes. The release

511 of IL17 by T cells probably induces *CXCL13* upregulation in equine lung monocytes, as
512 demonstrated in asthmatic individuals (94). Activated monocytes could in turn induce Th17
513 differentiation of T cells (95–97). Collectively, our results support a crosstalk between *IL17A*-
514 producing T cells and *CXCL13*-producing monocytes in the context of Th17-mediated immune
515 response in SEA.

516

517 Of particular interest was the double positive cluster Mo/Ma5, which displayed a similar
518 transcriptomic profile as previously observed in equine BALF scRNA-seq studies (13, 21). The
519 presence of monocyte-T cell interactions has been reported in human blood, with the frequency
520 and phenotype of these cell-cell complexes varying depending on the immune response
521 polarization (35). Considering that the crosstalk between monocytes and T cells plays a key role
522 in the development of various human inflammatory diseases (95–97), the potential presence of
523 *bona fide* monocyte-lymphocyte complexes in the lower airway compartment is particularly
524 intriguing. The reciprocal activation of monocytes and lymphocytes may occur through direct
525 cellular contact rather than solely through endocrine or paracrine mechanisms.

526

527 In contrast to previous reports (reviewed in (2, 3, 8)), we did not detect a Th2 or Th1
528 signature in the cells from asthmatic horses, except for the upregulation of the Th2-associated
529 genes *PRB1* and *NMUR1* in Mo/Ma. Notably, we did not observe upregulation of characteristic
530 Th2 and Th1 cytokines such as *IL4*, *IL13* or *IFN γ* . Consistent with our findings, Th2 and Th17-
531 associated gene expression appears to be regulated in opposite direction in the airways of human
532 patients (98). In horses affected by SEA, downregulation of *IL4* has been shown to correlate with
533 increased IL17 staining intensity in the mediastinal lymph nodes (12). Moreover, Th1- and Th2-

534 associated genes are downregulated in antigen-challenged PBMCs from asthmatic horses (75). An
535 additional argument against a Th2 response is the reduced fraction of activated plasma cells in
536 asthmatic horses within our study population. Upon antigen stimulation, non-switched IgM-
537 producing plasma cells become activated and produce immunoglobulins of other classes, which is
538 a prerequisite for the Th2 response. While switched plasma cells were less frequent in asthmatic
539 horses, the proportion of total B and plasma cells was significantly higher, likely due to *CXCL13*
540 signaling (94). Consequently, asthmatic horses have a larger pool of B cells, which can potentially
541 differentiate into plasma cells and be activated. This could explain the increased susceptibility of
542 asthmatic horses to certain Th2-associated diseases, such as insect bite hypersensitivity and
543 urticaria (99). Overall, our findings indicate that SEA is primarily driven by a Th17-mediated
544 immune response characterized by an *IL17*-induced *CXCL13*-mediated recruitment of B cells into
545 the lower airways. The resulting increase in B cell abundance may predispose asthmatic horses to
546 secondary Th2-type responses.

547

548 The transcriptomic profile of T cells suggested alterations in T cell function, including T cell
549 exhaustion, unresponsiveness of Treg cells, and reduced cytotoxicity in NKT cells. It remains
550 unclear whether these dysregulations are associated with the Th17 polarization of the T cell
551 populations, or if they represent independent mechanisms. Nevertheless, these alterations in T cell
552 function may potentiate the abnormal immune response observed in SEA.

553

554 Neutrophils are short-lived cells that undergo apoptosis rapidly after emigration into the
555 lungs. *IL17*-induced influx and reduced apoptosis of neutrophils result in their persistence in the
556 lower airways of asthmatic horses (100). Neutrophil apoptosis is sometimes accompanied by the

557 formation of NETs. While the release of antimicrobial peptides and various proteases through
558 NETosis helps eliminate pathogens, it can also trigger tissue damage and sustain chronic
559 inflammation (101). The dysregulation of genes associated with NETosis in the neutrophils of
560 asthmatic horses agrees with the previous observations of excessive NETosis in the lungs of
561 severely asthmatic horses (102). The increased NETosis function suggests a pro-inflammatory role
562 of neutrophils in asthmatic horses, especially in the pro-inflammatory neutrophil subtype.
563 Conversely, several DEGs also suggested an anti-inflammatory phenotype, particularly in the
564 apoptotic neutrophil subtype. This could represent a protective mechanism aimed at preventing an
565 excessive inflammatory response within the lungs. In summary, our findings confirm that BALF
566 neutrophils from horses with SEA have a significant pro-inflammatory effect through increased
567 neutrophil persistence and facilitated NET formation in the lungs. The concomitant anti-Th17
568 transcriptomic profile observed in apoptotic neutrophils indicates a parallel attempt to mitigate
569 lung inflammation. This suggests neutrophils act as effectors rather than primary instigators of
570 asthmatic lung inflammation. Targeting treatment specifically towards the pro-inflammatory
571 neutrophil subtype could disrupt the self-perpetuating inflammatory circle while preserving the
572 antimicrobial functions of the remaining neutrophil subtypes.

573

574 By employing scRNA-seq on BALF cells of horses with SEA, we were able to elucidate
575 important underlying immune mechanisms of the disease. However, this study had certain
576 limitations. One significant challenge when studying horses is the inadequate quality of the current
577 reference annotation, necessitating manual annotation of the cell clusters, particularly for poorly
578 defined cell subtypes. Nonetheless, the detection of previously identified cell types and subtypes
579 in equine BALF (13, 21) supports the reproducibility of cluster annotation. Some clusters, such as

580 the "undetermined AMs" cluster, could not be confidently annotated. Further scRNA-seq studies
581 and complementary techniques are required to provide conclusive insights.

582 ScRNA-seq is a relatively new technology that comes with computational challenges. One
583 such challenge is the ability to detect and filter technical multiplets without removing biologically
584 significant signals representing cell-cell complexes or new cell types with a dual lineage signature.
585 In this study, we hypothesized that cluster Mo/Ma5 represented *bona fide* monocyte-lymphocyte
586 complexes, supported by the presence of a similar transcriptomic signature in equine BALF cells
587 (13, 21) and human PBMCs (35, 36). Although the existence of cellular complexes was confirmed
588 in human PBMCs using imaging flow cytometry (35, 36), validation in horses has yet to be
589 performed. Another potential limitation associated with the 10X Genomics droplet-based
590 technique is its low sensitivity for genes with a low average expression, which could explain the
591 discrepancies with previous bulk RNA or proteomics studies, such as the absence of upregulated
592 Th1 and Th2-associated cytokines.

593 This study was conducted on a small population. A power analysis indicated the need for
594 a minimum of six control and six asthmatic horses with 500 cells/sample to achieve adequate
595 statistical power. Unfortunately, the scRNA-seq experiment failed for one of the control samples.
596 However, considering that we obtained more than 5,000 cells per sample, we are confident that
597 the number of cells analyzed was sufficient to detect gene expression differences between the two
598 groups.

599 Since this study specifically focused on neutrophilic SEA, our results cannot be generalized
600 to other asthma subtypes. This is exemplified by a previous scRNA-seq study on equine BALF
601 cells from horses with mastocytic asthma (21), which exhibited a different set of differentially
602 regulated genes compared to our study. For example, *FKBP5* was significantly upregulated in the

603 mast cells of asthmatic horses, while we did not detect this gene in our dataset. Hence, studying
604 different endotypes separately is crucial to obtain meaningful results.

605 In conclusion, this scRNA-seq analysis of equine bronchoalveolar cells provided insights
606 into the major immune mechanisms underlying severe equine asthma. The use of scRNA-seq
607 allowed us to overcome the influence of varying cell type distribution associated with the disease
608 and gain unprecedented resolution into the pathophysiology of SEA. This represents a significant
609 breakthrough, challenging the prevailing perception of SEA as a Th2-associated disease.
610 Consequently, the use of IgE-based tests and hyposensitization therapy in SEA should be
611 reconsidered. We identified the crucial role of monocytes in initiating the Th17 response in the
612 lungs, and the upregulation of *CXCL13* in lung and blood monocytes suggests its potential as a
613 biomarker for SEA and as a therapeutic target. Our findings indicate that monocyte activation may
614 occur through direct cell-cell contact, a hypothesis that should be tested using imaging flow
615 cytometry. This has the potential to reshape our understanding of immunotherapy approaches.
616 Notably, therapies targeting Th17-associated cytokines have proven ineffective in reducing
617 symptoms in human asthma (92). One possible approach could be to prevent monocyte activation
618 by targeting monocyte-T cell synapses. Our results demonstrate several parallels with previous
619 studies on non-Th2 neutrophilic asthma in humans, further validating the horse as a valuable model
620 for studying human asthma.

621

622

623

624

625

626 **MATERIALS AND METHODS**

627 **Study design**

628 In this observational case-control study, we recruited SEA-affected horses and controls based on
629 their medical history. Following power analysis, we selected six asthmatic and six control horses,
630 using BALF quality, respiratory symptom history and BALF neutrophilia as inclusion criteria. We
631 applied 10X Genomics 3'-end scRNA-seq to the cryopreserved bronchoalveolar cells (~ 6,000
632 cells/horse). The experiment failed in one control horse, leaving 11 horses for the data analysis.
633 Our objectives were to assess the effect of SEA on i) the distribution of cell types and cell subtypes
634 in the BALF and ii) the DGE within each of the cell types/subtypes identified.

635 **Study population**

636 All animal experiments were performed according to the local regulations and with the consent of
637 horse owners. This study was approved by the Animal Experimentation Committee of the Canton
638 of Bern, Switzerland (BE4/20+). Privately owned horses were prospectively enrolled for a
639 concomitant study on equine asthma (104). Suitable candidates were identified through a validated
640 owner questionnaire (105, 106). Requirements for study enrollment were an age \geq 5 years old, a
641 longer than 2-month history of being fed hay, no history of immunotherapy, no history of upper
642 airway disease, no evidence of current systemic disease and a rectal temperature \leq 38.5°C the day
643 of the exam. Additionally, the horses should not have received any corticosteroids, bronchodilators
644 or anti-histaminic administration nor suffered from a respiratory infection in the two weeks
645 preceding the examination. Owners were asked to bring a healthy horse (without respiratory
646 symptoms) from the same barn along with their asthmatic horse to the Bern ISME equine clinic.
647 Six additional healthy horses belonging to the clinic employees or to an affiliated clinic (ISME
648 Avenches) were enrolled. In total, 94 horses (46 healthy and 48 asthmatic) were examined. Horses

649 underwent the following standard diagnostic procedures to characterize their respiratory status:
650 physical examination, rebreathing examination, arterial blood gas analysis, lower airway
651 endoscopy, tracheal aspirate and bronchoalveolar lavage. A BALF aliquot from 35 horses from
652 the Warmblood breed and aged ≥ 6 years old was processed and stored for putative scRNA-seq.

653 **Power calculation**

654 Data simulation was performed on a publicly available dataset to estimate the sample size required
655 to attain sufficient statistical power. The dataset was originally published in a study aiming to
656 characterize the immune cells in the peripheral blood of healthy horses using scRNA-seq (107) .
657 We used scRNA-seq template data constructed based on the monocyte and dendritic cells from
658 three healthy Warmblood horses (GSE148416). Data simulation was performed with Hierarchicell
659 (108), which captures key characteristics from real datasets. Hierarchicell uses normalized data to
660 obtain estimates of within sample variance (intra-individual variation) and between sample
661 variance (inter-individual variation and dropout rates) by pruning genes to a set of uncorrelated
662 genes. Using the estimated parameters from the template dataset, we simulated an RNA-seq
663 expression matrix for 1,000 genes. The amount of fold change in expression between case and
664 control groups was set at two. The number of cells per individual was set to be in the [150 – 1,000]
665 range. The number of cases and controls were set to be in the [3 – 6] range. On the tSNE plot
666 representing 6 controls and 6 cases with 500 cells/sample (see Suppl. fig. 5), the cases and controls
667 are clearly separated. We thus elected to sequence 6 control samples and 6 SEA samples to reach
668 adequate statistical power while optimizing sequencing cost.

669 **Case selection for scRNA-seq**

670 Selection of the samples for scRNA-seq was made based on the BALF quality (yield $\geq 30\%$ and
671 foam indicating presence of pulmonary surfactant) and on the horses' historical, clinical and

672 laboratory features, with the goal of selecting the most archetypal phenotypes for both control and
673 SEA groups. Horses included in the SEA group had a Horse Owner Assessed Respiratory Signs
674 (HOARSI) score ≥ 3 (105, 109) and a BALF neutrophilia $> 10\%$. The control group consisted of
675 horses with a HOARSI = 1 and a normal BALF differential cell count ($< 10\%$ BALF neutrophils,
676 $< 2\%$ mast cells and $< 1\%$ eosinophils).

677 **Sample collection**

678 Details about horse examination, respiratory work-up and BALF collection have been published
679 elsewhere (104).

680 **Cytology**

681 Preparation of the slides for cytological analysis are described in a previous publication (104). The
682 manual differential cell count including macrophages, lymphocytes, neutrophils, eosinophils and
683 mast cells was performed on a minimum of 400 cells and on four different microscopic fields.

684 **Cryopreservation**

685 The protocol used to freeze and subsequently thaw the BALF cells was adapted from the protocol
686 we develop in our proof-of-concept study (13). The detailed laboratory protocol can be found in
687 the supplementary materials. All samples were processed in less than two hours. Characteristics
688 of the cell suspensions subject to scRNA-seq are provided in the supplementary table 14. For each
689 sample, an aliquot of the final cell suspension was saved for the cytocentrifuge preparations.

690 **Single-cell cDNA library preparation and scRNA-seq**

691 GEM generation & barcoding, reverse transcription, cDNA amplification and 3' gene expression
692 library generation steps were all performed according to the Chromium Next GEM Single Cell 3'
693 Reagent Kits v3.1 (Dual Index) User Guide (10x Genomics CG000315 Rev B) with all stipulated
694 10x Genomics reagents. Specifically, 12.0 μL of each cell suspension (1,100 cells/ μL) and 31.2

695 μ L of nuclease-free water were used for a targeted cell recovery of 8,000 cells. GEM generation
696 and barcoding was followed by a GEM-reverse transcription incubation, a clean-up step and 11
697 cycles of cDNA amplification. The resulting cDNA was evaluated for quantity and quality using
698 a Thermo Fisher Scientific Qubit 4.0 fluorometer with the Qubit dsDNA HS Assay Kit (Thermo
699 Fisher Scientific, Q32851) and an Advanced Analytical Fragment Analyzer System using a
700 Fragment Analyzer NGS Fragment Kit (Agilent, DNF-473), respectively. Thereafter, 3' gene
701 expression libraries were constructed using a sample index PCR step of 12-14 cycles. The
702 generated cDNA libraries were tested for quantity and quality using fluorometry and capillary
703 electrophoresis as described above. The cDNA libraries were pooled and sequenced with a loading
704 concentration of 300 pM, asymmetric paired-end and dual indexed, on a shared Illumina NovaSeq
705 6000 sequencer using a NovaSeq 6000 S4 Reagent Kits v1.5 (200 cycles; Illumina, 20028313).
706 The read set-up was as follows: read 1: 28 cycles, i7 index: 10 cycles, i5: 10 cycles and read 2: 90
707 cycles. The quality of the sequencing runs was assessed using Illumina Sequencing Analysis
708 Viewer (Illumina version 2.4.7) and all base call files were demultiplexed and converted into
709 FASTQ files using Illumina bcl2fastq conversion software v2.20. More than 50,000 reads/cell
710 were generated for each sample. All steps were performed at the Next Generation Sequencing
711 Platform, University of Bern.

712 **Data pre-processing**

713 The raw fastq sequencing data was processed using the Cell Ranger (v6.0) standard workflow to
714 generate a count matrix of gene expression values. The annotations for the 3'-untranslated regions
715 of the genes in the reference genome (Equus caballus NCBI annotation release 103) were extended
716 by 2 kb, following the methodology described in a previous study (13). Supplementary table 1
717 contains the summary metrics of the identified cells for the 12 samples.

718 **Quality control, doublet filtering and data normalization**

719 Quality control was carried out with the R package Scater (v1.28.0) (110). Downstream analysis
720 was conducted using the R package Seurat (v4.3) (111). One control sample did not meet the
721 initial quality control criteria (only 844 cells retrieved), resulting in its exclusion. The output of
722 CellRanger for the remaining 11 samples consisted of 75,727 cells. Doublet detection was
723 conducted with scDblFinder (112), which led to the removal of 10,234 cells. Based on visual
724 inspection, we further filtered 15,465 cells containing less than 200 genes or more than 8,000 gene
725 features and/or greater than 15% mitochondrial genes. Overall, 25,699 (33.9%) cells were filtered
726 prior to integration.

727 **Integration and data normalization**

728 Data were integrated based on disease status (asthmatic vs control) using 3,000 integration
729 features. Data normalization was conducted with the sctransform R package (v0.3.5) (113, 114)
730 using 3,000 variable features. The final dataset for downstream analysis contained 60,262 cells
731 with 56,595 gene features.

732 **Principal component analysis (PCA) and cell clustering**

733 Dimensionality reduction was performed using Principal Component Analysis (PCA). The optimal
734 number of principal components (PCs) was based on an elbow plot. We conducted clustering on
735 the first 16 PCs using the default Louvain algorithm (“FindNeighbors()” function in Seurat).
736 Cluster granularity was explored using the clustree R package (115) and Uniform Manifold
737 Approximation and Projection method (UMAP) in order to select the best clustering resolution.
738 The Seurat function “FindCluster()” was run with a resolution of 0.6. Each of the six major cell
739 populations were isolated using the “subset()” Seurat function. The previous steps were repeated
740 to independently analyze B cells (11 PCs, clustering resolution 0.3), dendritic cells (DCs) (10 PCs,

741 clustering resolution 0.1), mast cells (7 PCs, clustering resolution 0.4), monocyte-macrophages
742 (Mo/Ma) (18 PCs, clustering resolution 0.2), neutrophils (11 PCs, clustering resolution 0.15) and
743 T cells (18 PCs, clustering resolution 0.3).

744 **Cell cycle analysis**

745 To analyze the effect of the cell cycle stage on clustering, we converted the human markers for the
746 G2M and S phases (“cc.genes.updated.2019”) to their equine orthologs using the Biomart R
747 package. Cells were divided into cycling (G2M phase) or resting (S phase) based on the score
748 attributed by the “CellCycleScoring()” Seurat function.

749 **Automated cluster annotation**

750 To facilitate cell cluster annotation, we performed automated annotation using the scSorter
751 package (116). The annotation file was constructed with the top ten DEGs (output of
752 “FindAllMarkers()” function) for each cluster identified in our previous equine BALF cells
753 scRNA-seq analysis (13). Automated annotation was performed on the complete dataset and on
754 the major cell groups for which previous annotation was available (B cells, Mo/Ma and T cells).

755 **Manual cluster annotation**

756 For the complete dataset, the annotation of the major cell groups was confirmed by visualization
757 of the gene expression pattern of canonical markers for cell type using the “DotPlot()”, “VlnPlot()”
758 and “FeaturePlot()” functions in Seurat. Expression scores for cell-specific group of genes were
759 calculated using the Seurat function “AddModuleScore()” to facilitate cell type identification.
760 Annotation was further ascertained by investigation of the markers list provided by the
761 “FindAllMarkers()” function, using an adjusted *P*-value <0.05 and an average log₂ fold change >
762 0.25. The cellular specificity of the markers was inferred based on the Human Protein Atlas version

763 22.0 database (117). The subclusters within the major cell groups were manually annotated, as
764 automated annotation did not allow for confident annotation.

765 **Differential gene expression (DGE) analysis**

766 Differential gene expression analysis between the SEA and the control groups was performed with
767 the R package Nebula (118). Nebula incorporates a negative binomial mixed model to consider
768 the hierarchical structure of the data, decomposing the total overdispersion into between-subject
769 and within-subject components. Only DEGs with an adjusted *P*-value <0.05 and an absolute
770 average log₂ fold change >1 were considered. The biological significance of the DEGs was
771 scrutinized using the Human Protein Atlas database 22.0 database (117) and literature search
772 (PubMed).

773 **Comparison of cellular distribution between groups**

774 The cell type proportions were compared between control and asthma groups using the
775 “propeller()” function from the speckle package in R (119). Propeller performs a variance
776 stabilizing transformation on the matrix of proportions and fits a linear model for each cluster
777 before implementing a moderated t-test to compare the groups. Benjamini and Hochberg false
778 discovery rates are calculated to account for multiple testing of cell clusters. The level of
779 significance was set at 0.05.

780 **Comparison of cellular distribution between sample types and counting techniques**

781 Based on a variance analysis, the proportions of the five cytologically distinguishable leukocytes
782 in the sample could be considered normally distributed, enabling parametric testing. To compare
783 the leukocyte proportions, we conducted a repeated measure ANOVA, considering individual
784 horses and the analysis type (BALF cytology, cell suspension cytology or cell suspension scRNA-
785 seq) as predictor variables. Specifically, we compared the leukocyte proportions between i) BALF

786 cytology and cell suspension cytology, and ii) cell suspension cytology and scRNA-seq. The level
787 of significance was set at 0.05.

788

789 **REFERENCES**

- 790 1. L. L. L. Couëtil, J. M. M. Cardwell, V. Gerber, J. -P. P. Lavoie, R. Léguillette, E. A. A. Richard, Inflammatory Airway Disease of Horses-Revised Consensus Statement. *J. Vet. Intern. Med.* **30**, 503–515 (2016).
- 791 2. S. Bond, R. Léguillette, E. A. Richard, L. Couetil, J. P. Lavoie, J. G. Martin, R. S. Pirie, Equine asthma: Integrative biologic relevance of a recently proposed nomenclature. *J. Vet. Intern. Med.* **32** (2018), pp. 2088–2098.
- 792 3. M. Bullone, J. P. Lavoie, Asthma “of horses and men”-How can equine heaves help us better understand human asthma immunopathology and its functional consequences? *Mol. Immunol.* **66**, 97–105 (2015).
- 793 4. A. Lange-Consiglio, L. Stucchi, E. Zucca, J. P. Lavoie, F. Cremonesi, F. Ferrucci, Insights into animal models for cell-based therapies in translational studies of lung diseases: Is the horse with naturally occurring asthma the right choice? *Cytotherapy*. **21**, 525–534 (2019).
- 794 5. M. E. Kuruvilla, F. E.-H. Lee, G. B. Lee, Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. *Clin. Rev. Allergy Immunol.* **56**, 219–233 (2019).
- 795 6. S. R. Tyler, S. Bunyavanich, Leveraging -omics for asthma endotyping. *J. Allergy Clin. Immunol.* **144**, 13–23 (2019).
- 796 7. M. K. Sheats, K. U. Davis, J. A. Poole, Comparative Review of Asthma in Farmers and Horses. *Curr. Allergy Asthma Rep.* **19**, 50 (2019).
- 797 8. J. Simões, M. Batista, P. Tilley, The Immune Mechanisms of Severe Equine Asthma—

809 Current Understanding and What Is Missing. *Animals*. **12**, 744 (2022).

810 9. M. Debrue, E. Hamilton, P. Joubert, S. Lajoie-Kadoch, J.-P. Lavoie, Chronic exacerbation
811 of equine heaves is associated with an increased expression of interleukin-17 mRNA in
812 bronchoalveolar lavage cells. *Vet. Immunol. Immunopathol.* **105**, 25–31 (2005).

813 10. A. Pacholewska, M. F. Kraft, V. Gerber, V. Jagannathan, Differential expression of serum
814 MicroRNAs supports CD4 + t cell differentiation into Th2/Th17 cells in severe equine
815 asthma. *Genes (Basel)*. **8** (2017), doi:10.3390/genes8120383.

816 11. M. F. Hulliger, A. Pacholewska, A. Vargas, J. Lavoie, T. Leeb, V. Gerber, V. Jagannathan,
817 An Integrative miRNA-mRNA Expression Analysis Reveals Striking Transcriptomic
818 Similarities between Severe Equine Asthma and Specific Asthma Endotypes in Humans.
819 *Genes (Basel)*. **11**, 1143 (2020).

820 12. A. Korn, D. Miller, L. Dong, E. L. Buckles, B. Wagner, D. M. Ainsworth, Differential Gene
821 Expression Profiles and Selected Cytokine Protein Analysis of Mediastinal Lymph Nodes
822 of Horses with Chronic Recurrent Airway Obstruction (RAO) Support an Interleukin-17
823 Immune Response. *PLoS One*. **10**, e0142622 (2015).

824 13. S. E. Sage, P. Nicholson, L. M. Peters, T. Leeb, V. Jagannathan, V. Gerber, Single-cell gene
825 expression analysis of cryopreserved equine bronchoalveolar cells. *Front. Immunol.* **13**, 1–
826 18 (2022).

827 14. M.-A. Espinasse, A. Pépin, P. Virault-Rocroy, N. Szely, S. Chollet-Martin, M. Pallardy, A.
828 Biola-Vidamment, Glucocorticoid-Induced Leucine Zipper Is Expressed in Human
829 Neutrophils and Promotes Apoptosis through Mcl-1 Down-Regulation. *J. Innate Immun.* **8**,
830 81–96 (2016).

831 15. N. Chen, D. He, J. Cui, A Neutrophil Extracellular Traps Signature Predicts the Clinical

Outcomes and Immunotherapy Response in Head and Neck Squamous Cell Carcinoma. *Front. Mol. Biosci.* **9**, 1–18 (2022).

16. X. Li, Q. Gao, W. Wu, S. Hai, J. Hu, J. You, D. Huang, H. Wang, D. Wu, M. Han, D. Xi, W. Yan, T. Chen, X. Luo, Q. Ning, X. Wang, FGL2–MCOLN3–Autophagy Axis–Triggered Neutrophil Extracellular Traps Exacerbate Liver Injury in Fulminant Viral Hepatitis. *Cell. Mol. Gastroenterol. Hepatol.* **14**, 1077–1101 (2022).

17. J. Li, A. J. Birkenheuer, H. S. Marr, M. G. Levy, J. A. Yoder, S. K. Nordone, Expression and function of triggering receptor expressed on myeloid cells-1 (TREM-1) on canine neutrophils. *Dev. Comp. Immunol.* **35**, 872–880 (2011).

18. Y. Hong, L. Chen, J. Sun, L. Xing, Y. Yang, X. Jin, H. Cai, L. Dong, L. Zhou, Z. Zhang, Single-cell transcriptome profiling reveals heterogeneous neutrophils with prognostic values in sepsis. *iScience.* **25**, 105301 (2022).

19. J. W. Schoggins, C. M. Rice, Interferon-stimulated genes and their antiviral effector functions. *Curr. Opin. Virol.* **1**, 519–525 (2011).

20. G. Wigerblad, Q. Cao, S. Brooks, F. Naz, M. Gadkari, K. Jiang, S. Gupta, L. O’Neil, S. Dell’Orso, M. J. Kaplan, L. M. Franco, Single-Cell Analysis Reveals the Range of Transcriptional States of Circulating Human Neutrophils. *J. Immunol.* **209**, 772–782 (2022).

21. M. Riihimäki, K. Fegraeus, J. Nordlund, I. Waern, S. Wernersson, S. Akula, L. Hellman, A. Raine, Single cell transcriptomics delineates the immune-cell landscape in equine lower airways and reveals upregulation of the FKBP5 gene in horses with asthma, , 07 April 2023, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1234567], 1–29.

22. H. S. Yoon, C. D. Scharer, P. Majumder, C. W. Davis, R. Butler, W. Zinzow-Kramer, I.

855 Skountzou, D. G. Koutsonanos, R. Ahmed, J. M. Boss, ZBTB32 Is an Early Repressor of
856 the CIITA and MHC Class II Gene Expression during B Cell Differentiation to Plasma
857 Cells. *J. Immunol.* **189**, 2393–2403 (2012).

858 23. A. Anginot, M. Espeli, L. Chasson, S. J. C. Mancini, C. Schiff, Galectin 1 Modulates Plasma
859 Cell Homeostasis and Regulates the Humoral Immune Response. *J. Immunol.* **190**, 5526–
860 5533 (2013).

861 24. M. Andreatta, J. Corria-Osorio, S. Müller, R. Cubas, G. Coukos, S. J. Carmona,
862 Interpretation of T cell states from single-cell transcriptomics data using reference atlases.
863 *Nat. Commun.* **12**, 2965 (2021).

864 25. M. C. van Aalderen, M. van den Biggelaar, E. B. M. Remmerswaal, F. P. J. van Alphen, A.
865 B. Meijer, I. J. M. ten Berge, R. A. W. van Lier, Label-free Analysis of CD8+ T Cell Subset
866 Proteomes Supports a Progressive Differentiation Model of Human-Virus-Specific T Cells.
867 *Cell Rep.* **19**, 1068–1079 (2017).

868 26. M. Cenerenti, M. Saillard, P. Romero, C. Jandus, The Era of Cytotoxic CD4 T Cells. *Front.*
869 *Immunol.* **13**, 1–14 (2022).

870 27. H. Zhang, A. Madi, N. Yosef, N. Chihara, A. Awasthi, C. Pot, C. Lambden, A. Srivastava,
871 P. R. Burkett, J. Nyman, E. Christian, Y. Etminan, A. Lee, H. Stroh, J. Xia, K. Karwacz, P.
872 I. Thakore, N. Acharya, A. Schnell, C. Wang, L. Apetoh, O. Rozenblatt-Rosen, A. C.
873 Anderson, A. Regev, V. K. Kuchroo, An IL-27-Driven Transcriptional Network Identifies
874 Regulators of IL-10 Expression across T Helper Cell Subsets. *Cell Rep.* **33**, 108433 (2020).

875 28. M. A. Hernández-Castañeda, K. Happ, F. Cattalani, A. Wallimann, M. Blanchard, I. Fellay,
876 B. Scolari, N. Lannes, S. Mbagwu, B. Fellay, L. Filgueira, P.-Y. Mantel, M. Walch, $\gamma\delta$ T
877 Cells Kill *Plasmodium falciparum* in a Granzyme- and Granulysin-Dependent Mechanism

878 during the Late Blood Stage. *J. Immunol.* **204**, 1798–1809 (2020).

879 29. L. E. Sjaastad, D. L. Owen, S. I. Tracy, M. A. Farrar, Phenotypic and Functional Diversity

880 in Regulatory T Cells. *Front. Cell Dev. Biol.* **9**, 1–19 (2021).

881 30. P. Pandiyan, J. Zhu, Origin and functions of pro-inflammatory cytokine producing Foxp3+

882 regulatory T cells. *Cytokine* **76**, 13–24 (2015).

883 31. Z. Wu, Y. Zheng, J. Sheng, Y. Han, Y. Yang, H. Pan, J. Yao, CD3+CD4-CD8- (Double-
884 Negative) T Cells in Inflammation, Immune Disorders and Cancer. *Front. Immunol.* **13**, 1–
885 14 (2022).

886 32. C. G. Sanchez, F. K. Teixeira, B. Czech, J. B. Preall, A. L. Zamparini, J. R. K. Seifert, C.
887 D. Malone, G. J. Hannon, R. Lehmann, Regulation of Ribosome Biogenesis and Protein
888 Synthesis Controls Germline Stem Cell Differentiation. *Cell Stem Cell* **18**, 276–290 (2016).

889 33. S. Freeley, J. Cardone, S. C. Günther, E. E. West, T. Reinheckel, C. Watts, C. Kemper, M.
890 V. Kolev, Asparaginyl Endopeptidase (Legumain) Supports Human Th1 Induction via
891 Cathepsin L-Mediated Intracellular C3 Activation. *Front. Immunol.* **9**, 1–7 (2018).

892 34. G. Ren, M. Juhl, Q. Peng, T. Fink, S. R. Porsborg, Selection and validation of reference
893 genes for qPCR analysis of differentiation and maturation of THP-1 cells into M1
894 macrophage-like cells. *Immunol. Cell Biol.* **100**, 822–829 (2022).

895 35. J. G. Burel, M. Pomaznay, C. S. Lindestam Arlehamn, D. Weiskopf, R. da Silva Antunes,
896 Y. Jung, M. Babor, V. Schulten, G. Seumois, J. A. Greenbaum, S. Premawansa, G.
897 Premawansa, A. Wijewickrama, D. Vidanagama, B. Gunasena, R. Tippalagama, A. D.
898 DeSilva, R. H. Gilman, M. Saito, R. Taplitz, K. Ley, P. Vijayanand, A. Sette, B. Peters,
899 Circulating T cell-monocyte complexes are markers of immune perturbations. *Elife* **8**, 1–
900 21 (2019).

901 36. J. G. Burel, M. Pomaznay, C. S. Lindestam Arlehamn, G. Seumois, P. Vijayanand, A. Sette,
902 B. Peters, The Challenge of Distinguishing Cell–Cell Complexes from Singlet Cells in Non-
903 Imaging Flow Cytometry and Single-Cell Sorting. *Cytom. Part A.* **97**, 1127–1135 (2020).

904 37. J. Villar, E. Segura, Decoding the Heterogeneity of Human Dendritic Cell Subsets. *Trends*
905 *Immunol.* **41**, 1062–1071 (2020).

906 38. J. C. Edwards, H. E. Everett, M. Pedrera, H. Mokhtar, E. Marchi, F. Soldevila, D. A. Kaveh,
907 P. J. Hogarth, H. L. Johns, J. Nunez-Garcia, F. Steinbach, H. R. Crooke, S. P. Graham,
908 CD1- and CD1+ porcine blood dendritic cells are enriched for the orthologues of the two
909 major mammalian conventional subsets. *Sci. Rep.* **7**, 1–14 (2017).

910 39. M. S. Mangan, J. Vega-Ramos, L. T. Joeckel, A. J. Mitchell, A. Rizzitelli, B. Roediger, D.
911 Kaiserman, W. W. Weninger, J. A. Villadangos, P. I. Bird, Serpinb9 is a marker of antigen
912 cross-presenting dendritic cells. *Mol. Immunol.* **82**, 50–56 (2017).

913 40. J. A. Villadangos, M. Cardoso, R. J. Steptoe, D. Van Berkel, J. Pooley, F. R. Carbone, K.
914 Shortman, MHC Class II Expression Is Regulated in Dendritic Cells Independently of
915 Invariant Chain Degradation. *Immunity.* **14**, 739–749 (2001).

916 41. L. Liu, X. Zhang, Y. Liu, L. Zhang, J. Zheng, J. Wang, P. M. Hansbro, L. Wang, G. Wang,
917 A. C. Y. Hsu, Chitinase-like protein YKL-40 correlates with inflammatory phenotypes,
918 anti-asthma responsiveness and future exacerbations. *Respir. Res.* **20**, 1–12 (2019).

919 42. L. Cremades-Jimeno, M. Á. de Pedro, M. López-Ramos, J. Sastre, P. Mínguez, I. M.
920 Fernández, S. Baos, B. Cárdaba, Prioritizing Molecular Biomarkers in Asthma and
921 Respiratory Allergy Using Systems Biology. *Front. Immunol.* **12**, 1004 (2021).

922 43. Y. G. Alevy, A. C. Patel, A. G. Romero, D. A. Patel, J. Tucker, W. T. Roswit, C. A. Miller,
923 R. F. Heier, D. E. Byers, T. J. Brett, M. J. Holtzman, IL-13–induced airway mucus

924 production is attenuated by MAPK13 inhibition. *J. Clin. Invest.* **122**, 4555–4568 (2012).

925 44. C. Bao, C. Liu, Q. Liu, L. Hua, J. Hu, Z. Li, S. Xu, Liproxstatin-1 alleviates LPS/IL-13-
926 induced bronchial epithelial cell injury and neutrophilic asthma in mice by inhibiting
927 ferroptosis. *Int. Immunopharmacol.* **109**, 108770 (2022).

928 45. Q. L. Quoc, Y. Choi, T. C. Thi Bich, E.-M. Yang, Y. S. Shin, H.-S. Park, S100A9 in adult
929 asthmatic patients: a biomarker for neutrophilic asthma. *Exp. Mol. Med.* **53**, 1170–1179
930 (2021).

931 46. E. G. G. Sprenkeler, J. Zandstra, N. D. van Kleef, I. Goetschalckx, B. Verstegen, C. E. M.
932 Aarts, H. Janssen, A. T. J. Tool, G. van Mierlo, R. van Bruggen, I. Jongerius, T. W.
933 Kuijpers, S100A8/A9 Is a Marker for the Release of Neutrophil Extracellular Traps and
934 Induces Neutrophil Activation. *Cells.* **11**, 236 (2022).

935 47. S. Jiang, D. W. Park, J.-M. Tadie, M. Gregoire, J. Deshane, J. F. Pittet, E. Abraham, J. W.
936 Zmijewski, Human Resistin Promotes Neutrophil Proinflammatory Activation and
937 Neutrophil Extracellular Trap Formation and Increases Severity of Acute Lung Injury. *J.
938 Immunol.* **192**, 4795–4803 (2014).

939 48. L. Zhu, D. Zeng, X. Lei, J. Huang, Y. Deng, Y. Ji, J. Liu, F. Dai, Y. Li, D. Shi, Y. Zhu, A.
940 Dai, Z. Wang, KLF2 regulates neutrophil migration by modulating CXCR1 and CXCR2 in
941 asthma. *Biochim. Biophys. Acta - Mol. Basis Dis.* **1866**, 165920 (2020).

942 49. A. Le, Y. Wu, W. Liu, C. Wu, P. Hu, J. Zou, L. Kuang, MiR-144-induced KLF2 inhibition
943 and NF-kappaB/CXCR1 activation promote neutrophil extracellular trap-induced
944 transfusion-related acute lung injury. *J. Cell. Mol. Med.* **25**, 6511–6523 (2021).

945 50. J. C. Leemans, A. A. te Velde, S. Florquin, R. J. Bennink, K. de Bruin, R. A. W. van Lier,
946 T. van der Poll, J. Hamann, The Epidermal Growth Factor-Seven Transmembrane (EGF-

947 TM7) Receptor CD97 Is Required for Neutrophil Migration and Host Defense. *J. Immunol.*
948 **172**, 1125–1131 (2004).

949 51. M. Majchrzak-Gorecka, P. Majewski, B. Grygier, K. Murzyn, J. Cichy, Secretory leukocyte
950 protease inhibitor (SLPI), a multifunctional protein in the host defense response. *Cytokine*
951 *Growth Factor Rev.* **28**, 79–93 (2016).

952 52. L. R. Prince, S. D. Prosseda, K. Higgins, J. Carlring, E. C. Prestwich, N. V. Ogryzko, A.
953 Rahman, A. Basran, F. Falciani, P. Taylor, S. A. Renshaw, M. K. B. Whyte, I. Sabroe,
954 NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil
955 number and survival. *Blood.* **130**, 1014–1025 (2017).

956 53. J. E. McDonough, F. Ahangari, Q. Li, S. Jain, S. E. Verleden, J. Herazo-Maya, M.
957 Vukmirovic, G. DeIuliis, A. Tzouvelekis, N. Tanabe, F. Chu, X. Yan, J. Verschakelen, R.
958 J. Homer, D. V. Manatakis, J. Zhang, J. Ding, K. Maes, L. De Sadeleer, R. Vos, A.
959 Neyrinck, P. V. Benos, Z. Bar-Joseph, D. Tantin, J. C. Hogg, B. M. Vanaudenaerde, W. A.
960 Wuyts, N. Kaminski, Transcriptional regulatory model of fibrosis progression in the human
961 lung. *JCI Insight.* **4** (2019), doi:10.1172/jci.insight.131597.

962 54. D.-W. Zhang, J.-J. Ye, Y. Sun, S. Ji, J.-Y. Kang, Y.-Y. Wei, G.-H. Fei, CD19 and POU2AF1
963 are Potential Immune-Related Biomarkers Involved in the Emphysema of COPD: On
964 Multiple Microarray Analysis. *J. Inflamm. Res.* **Volume 15**, 2491–2507 (2022).

965 55. E. I. Cardenas, K. F. Che, J. R. Konradsen, A. Bao, A. Lindén, IL-26 in asthma and COPD.
966 *Expert Rev. Respir. Med.* **16**, 293–301 (2022).

967 56. X. Chen, K. Khalid, D. Chen, C. Qiu, Serum levels of olfactomedin 4: a biomarker for
968 asthma control state in asthmatics. *Ann. Transl. Med.* **8**, 494–494 (2020).

969 57. S. S. Al Mutairi, O. A. Mojiminiyi, A. Shihab-Eldeen, T. Al Rammah, N. Abdella, Putative

970 roles of circulating resistin in patients with asthma, COPD and cigarette smokers. *Dis.*
971 *Markers.* **31**, 1–7 (2011).

972 58. R. K. W. Mailer, A.-L. Joly, S. Liu, S. Elias, J. Tegner, J. Andersson, IL-1 β promotes Th17
973 differentiation by inducing alternative splicing of FOXP3. *Sci. Rep.* **5**, 14674 (2015).

974 59. P. Gruarin, S. Maglie, M. Simone, B. Häringer, C. Vasco, V. Ranzani, R. Bosotti, J. S.
975 Noddings, P. Larghi, F. Facciotti, M. L. Sarnicola, M. Martinovic, M. Crosti, M. Moro, R.
976 L. Rossi, M. E. Bernardo, F. Caprioli, F. Locatelli, G. Rossetti, S. Abrignani, M. Pagani, J.
977 Geginat, Eomesodermin controls a unique differentiation program in human IL-10 and IFN-
978 γ coproducing regulatory T cells. *Eur. J. Immunol.* **49**, 96–111 (2019).

979 60. M. D. Evans, S. Esnault, L. C. Denlinger, N. N. Jarjour, Sputum cell IL-1 receptor
980 expression level is a marker of airway neutrophilia and airflow obstruction in asthmatic
981 patients. *J. Allergy Clin. Immunol.* **142**, 415–423 (2018).

982 61. A. Akitsu, Y. Iwakura, Interleukin-17-producing $\gamma\delta$ T ($\gamma\delta$ 17) cells in inflammatory diseases.
983 *Immunology.* **155**, 418–426 (2018).

984 62. H. Seo, J. Chen, E. González-Avalos, D. Samaniego-Castruita, A. Das, Y. H. Wang, I. F.
985 López-Moyado, R. O. Georges, W. Zhang, A. Onodera, C.-J. Wu, L.-F. Lu, P. G. Hogan,
986 A. Bhandoola, A. Rao, TOX and TOX2 transcription factors cooperate with NR4A
987 transcription factors to impose CD8 + T cell exhaustion. *Proc. Natl. Acad. Sci.* **116**, 12410–
988 12415 (2019).

989 63. M. Evrard, E. Wynne-Jones, C. Peng, Y. Kato, S. N. Christo, R. Fonseca, S. L. Park, T. N.
990 Burn, M. Osman, S. Devi, J. Chun, S. N. Mueller, G. Kannourakis, S. P. Berzins, D. G.
991 Pellicci, W. R. Heath, S. C. Jameson, L. K. Mackay, Sphingosine 1-phosphate receptor 5
992 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. *J. Exp. Med.* **219**

993 (2022), doi:10.1084/jem.20210116.

994 64. J. A. Hirota, P. R. Hiebert, M. Gold, D. Wu, C. Graydon, J. A. Smith, K. Ask, K. McNagny,
995 D. J. Granville, D. A. Knight, Granzyme B Deficiency Exacerbates Lung Inflammation in
996 Mice after Acute Lung Injury. *Am. J. Respir. Cell Mol. Biol.* **49**, 453–462 (2013).

997 65. J. T. Ingram, J. S. Yi, A. J. Zajac, Exhausted CD8 T Cells Downregulate the IL-18 Receptor
998 and Become Unresponsive to Inflammatory Cytokines and Bacterial Co-infections. *PLoS
999 Pathog.* **7**, e1002273 (2011).

1000 66. K. D. Nguyen, A. Fohner, J. D. Booker, C. Dong, A. M. Krensky, K. C. Nadeau, XCL1
1001 Enhances Regulatory Activities of CD4+CD25highCD127low/– T Cells in Human Allergic
1002 Asthma. *J. Immunol.* **181**, 5386–5395 (2008).

1003 67. M. P. N. Nair, S. A. Schwartz, K. Wu, Z. Kronfol, Effect of neuropeptide Y on natural killer
1004 activity of normal human lymphocytes. *Brain. Behav. Immun.* **7** (1993), pp. 70–78.

1005 68. H. K. Brand, I. M. L. Ahout, D. de Ridder, A. van Diepen, Y. Li, M. Zaalberg, A. Andeweg,
1006 N. Roeleveld, R. de Groot, A. Warris, P. W. M. Hermans, G. Ferwerda, F. J. T. Staal,
1007 Olfactomedin 4 Serves as a Marker for Disease Severity in Pediatric Respiratory Syncytial
1008 Virus (RSV) Infection. *PLoS One.* **10**, e0131927 (2015).

1009 69. F. Gong, R. Li, X. Zheng, W. Chen, Y. Zheng, Z. Yang, Y. Chen, H. Qu, E. Mao, E. Chen,
1010 OLFM4 Regulates Lung Epithelial Cell Function in Sepsis-Associated ARDS/ALI via
1011 LDHA-Mediated NF-κB Signaling. *J. Inflamm. Res.* **Volume 14**, 7035–7051 (2021).

1012 70. S. Bozinovski, M. Cross, R. Vlahos, J. E. Jones, K. Hsuu, P. A. Tessier, E. C. Reynolds, D.
1013 A. Hume, J. A. Hamilton, C. L. Geczy, G. P. Anderson, S100A8 Chemotactic Protein Is
1014 Abundantly Increased, but Only a Minor Contributor to LPS-Induced, Steroid Resistant
1015 Neutrophilic Lung Inflammation in Vivo. *J. Proteome Res.* **4**, 136–145 (2005).

1016 71. M. Wjst, Exome variants associated with asthma and allergy. *Sci. Rep.* **12**, 21028 (2022).

1017 72. S. Y. Park, X. Jing, D. Gupta, R. Dziarski, Peptidoglycan Recognition Protein 1 Enhances

1018 Experimental Asthma by Promoting Th2 and Th17 and Limiting Regulatory T Cell and

1019 Plasmacytoid Dendritic Cell Responses. *J. Immunol.* **190**, 3480–3492 (2013).

1020 73. P. Gao, K. Tang, M. Wang, Q. Yang, Y. Xu, J. Wang, J. Zhao, J. Xie, Pentraxin levels in

1021 non-eosinophilic versus eosinophilic asthma. *Clin. Exp. Allergy.* **48**, 981–989 (2018).

1022 74. E. Ramery, L. Fievez, A. Fraipont, F. Bureau, P. Lekeux, Characterization of pentraxin 3 in

1023 the horse and its expression in airways. *Vet. Res.* **41**, 18 (2010).

1024 75. A. Pacholewska, V. Jagannathan, M. Drögemüller, J. Klukowska-Rötzler, S. Lanz, E.

1025 Hamza, E. T. Dermitzakis, E. Marti, T. Leeb, V. Gerber, Impaired Cell Cycle Regulation in

1026 a Natural Equine Model of Asthma. *PLoS One.* **10**, e0136103 (2015).

1027 76. G. J. Baay-Guzman, S. Huerta-Yepez, M. I. Vega, D. Aguilar-Leon, M. Campillos, J. Blake,

1028 V. Benes, R. Hernandez-Pando, L. M. Teran, Role of CXCL13 in asthma: Novel therapeutic

1029 target. *Chest.* **141**, 886–894 (2012).

1030 77. W. Alturaiki, Elevated Plasma Levels of CXCL13 Chemokine in Saudi Patients With

1031 Asthma Exacerbation. *Cureus.* **14**, 1–7 (2022).

1032 78. O. S. Kotsiou, D. Papagiannis, R. Papadopoulou, K. I. Gourgoulianis, Calprotectin in Lung

1033 Diseases. *Int. J. Mol. Sci.* **22**, 1706 (2021).

1034 79. Q. Lin, H. Ni, J. Zhong, Z. Zheng, H. Nie, Identification of hub genes and potential

1035 biomarkers of neutrophilic asthma: evidence from a bioinformatics analysis. *J. Asthma.* **60**,

1036 348–359 (2023).

1037 80. X. Ai, H. Shen, Y. Wang, J. Zhuang, Y. Zhou, F. Niu, Q. Zhou, Developing a Diagnostic

1038 Model to Predict the Risk of Asthma Based on Ten Macrophage-Related Gene Signatures.

1039 *Biomed Res. Int.* **2022**, 1–14 (2022).

1040 81. Q. Wang, S. Liu, J. Min, M. Yin, Y. Zhang, Y. Zhang, X. Tang, X. Li, S. Liu, CCL17 drives
1041 fibroblast activation in the progression of pulmonary fibrosis by enhancing the TGF- β /Smad
1042 signaling. *Biochem. Pharmacol.* **210**, 115475 (2023).

1043 82. E. Debien, K. Mayol, V. Biajoux, C. Daussy, M. G. De Aguero, M. Taillardet, N. Dagany,
1044 L. Brinza, T. Henry, B. Dubois, D. Kaiserlian, J. Marvel, K. Balabanian, T. Walzer, S1PR5
1045 is pivotal for the homeostasis of patrolling monocytes. *Eur. J. Immunol.* **43**, 1667–1675
1046 (2013).

1047 83. F. Chen, Y. Liang, Z. Zeng, L. Du, C. Xu, Y. Guo, C. Xie, Association of increased basic
1048 salivary proline-rich protein 1 levels in induced sputum with type 2-high asthma. *Immunity, Inflamm. Dis.* **10**, 1–10 (2022).

1049 84. Y. Ye, J. Luo, N. Zeng, S. Jiang, W. Chen, R. D. Hoyle, P. Klenerman, I. D. Pavord, L.
1050 Xue, Neuromedin U promotes human type 2 immune responses. *Mucosal Immunol.* **15**,
1051 990–999 (2022).

1052 85. K. L. Hoek, M. J. Greer, K. G. McClanahan, A. Nazmi, M. B. Piazuelo, K. Singh, K. T.
1053 Wilson, D. Olivares-Villagómez, Granzyme B prevents aberrant IL-17 production and
1054 intestinal pathogenicity in CD4+ T cells. *Mucosal Immunol.* **14**, 1088–1099 (2021).

1055 86. J. Deng, X.-Q. Yu, P.-H. Wang, Inflammasome activation and Th17 responses. *Mol. Immunol.* **107**, 142–164 (2019).

1056 87. T. Fuchs, M. Hahn, L. Ries, S. Giesler, S. Busch, C. Wang, J. Han, T. J. Schulze, K.
1057 Puellmann, A. W. Beham, W. E. Kaminski, M. Neumaier, Expression of combinatorial
1058 immunoglobulins in macrophages in the tumor microenvironment. *PLoS One.* **13**, e0204108
1059 (2018).

1060 (2018).

1062 88. M. S. Arredouani, F. Franco, A. Imrich, A. Fedulov, X. Lu, D. Perkins, R. Soininen, K.
1063 Tryggvason, S. D. Shapiro, L. Kobzik, Scavenger Receptors SR-AI/II and MARCO Limit
1064 Pulmonary Dendritic Cell Migration and Allergic Airway Inflammation. *J. Immunol.* **178**,
1065 5912–5920 (2007).

1066 89. E.-M. Hanschmann, C. Berndt, C. Hecker, H. Garn, W. Bertrams, C. H. Lillig, C.
1067 Hudemann, Glutaredoxin 2 Reduces Asthma-Like Acute Airway Inflammation in Mice.
1068 *Front. Immunol.* **11**, 1–11 (2020).

1069 90. W. J. Branchett, J. Cook, R. A. Oliver, N. Bruno, S. A. Walker, H. Stölting, M. Mack, A.
1070 O’Garra, S. Saglani, C. M. Lloyd, Airway macrophage-intrinsic TGF- β 1 regulates
1071 pulmonary immunity during early-life allergen exposure. *J. Allergy Clin. Immunol.* **147**,
1072 1892–1906 (2021).

1073 91. S. Di Mauro, A. Scamporrino, M. Fruciano, A. Filippello, E. Fagone, E. Gili, F. Scionti, G.
1074 Purrazzo, A. Di Pino, R. Scicali, M. T. Di Martino, R. Malaguarnera, L. Malatino, F.
1075 Purrello, C. Vancheri, S. Piro, Circulating Coding and Long Non-Coding RNAs as Potential
1076 Biomarkers of Idiopathic Pulmonary Fibrosis. *Int. J. Mol. Sci.* **21**, 8812 (2020).

1077 92. Y. Xie, P. W. Abel, T. B. Casale, Y. Tu, TH17 cells and corticosteroid insensitivity in severe
1078 asthma. *J. Allergy Clin. Immunol.* **149**, 467–479 (2022).

1079 93. R. Takagi, T. Higashi, K. Hashimoto, K. Nakano, Y. Mizuno, Y. Okazaki, S. Matsushita, B
1080 Cell Chemoattractant CXCL13 Is Preferentially Expressed by Human Th17 Cell Clones. *J.*
1081 *Immunol.* **181**, 186–189 (2008).

1082 94. R. Al-Kufaidy, A. Vazquez-Tello, A. S. BaHammam, S. Al-Muhsen, Q. Hamid, R.
1083 Halwani, IL-17 enhances the migration of B cells during asthma by inducing CXCL13
1084 chemokine production in structural lung cells. *J. Allergy Clin. Immunol.* **139**, 696–699.e5

1085 (2017).

1086 95. C. A. Roberts, A. K. Dickinson, L. S. Taams, The Interplay Between
1087 Monocytes/Macrophages and CD4+ T Cell Subsets in Rheumatoid Arthritis. *Front.*
1088 *Immunol.* **6**, 571 (2015).

1089 96. Y. Pang, X. Du, X. Xu, M. Wang, Z. Li, Monocyte activation and inflammation can
1090 exacerbate Treg/Th17 imbalance in infants with neonatal necrotizing enterocolitis. *Int.*
1091 *Immunopharmacol.* **59**, 354–360 (2018).

1092 97. H. G. Evans, N. J. Gullick, S. Kelly, C. Pitzalis, G. M. Lord, B. W. Kirkham, L. S. Taams,
1093 In vivo activated monocytes from the site of inflammation in humans specifically promote
1094 Th17 responses. *Proc. Natl. Acad. Sci.* **106**, 6232–6237 (2009).

1095 98. D. F. Choy, K. M. Hart, L. A. Borthwick, A. Shikotra, D. R. Nagarkar, S. Siddiqui, G. Jia,
1096 C. M. Ohri, E. Doran, K. M. Vannella, C. A. Butler, B. Hargadon, J. C. Sciurba, R. L.
1097 Gieseck, R. W. Thompson, S. White, A. R. Abbas, J. Jackman, L. C. Wu, J. G. Egen, L. G.
1098 Heaney, T. R. Ramalingam, J. R. Arron, T. A. Wynn, P. Bradding, TH2 and TH17
1099 inflammatory pathways are reciprocally regulated in asthma. *Sci. Transl. Med.* **7** (2015),
1100 doi:10.1126/scitranslmed.aab3142.

1101 99. D. Kehrli, V. Jandova, K. Fey, P. Jahn, V. Gerber, Multiple Hypersensitivities Including
1102 Recurrent Airway Obstruction, Insect Bite Hypersensitivity, and Urticaria in 2 Warmblood
1103 Horse Populations. *J. Vet. Intern. Med.* **29**, 320–326 (2015).

1104 100. M. Bullone, R. Y. Murcia, J. P. Lavoie, Environmental heat and airborne pollen
1105 concentration are associated with increased asthma severity in horses. *Equine Vet. J.* **48**,
1106 479–484 (2016).

1107 101. K. U. Davis, M. K. Sheats, The Role of Neutrophils in the Pathophysiology of Asthma in

1108 Humans and Horses. *Inflammation*. **44**, 450–465 (2021).

1109 102. P. Janssen, I. Tosi, A. Hego, P. Maréchal, T. Marichal, C. Radermecker, Neutrophil
1110 Extracellular Traps Are Found in Bronchoalveolar Lavage Fluids of Horses With Severe
1111 Asthma and Correlate With Asthma Severity. *Front. Immunol.* **13**, 1–18 (2022).

1112 103. V. Gerber, C. Tessier, E. Marti, Genetics of upper and lower airway diseases in the horse.
1113 *Equine Vet. J.* **47**, 390–397 (2015).

1114 104. M. Wyler, S. E. Sage, E. Marti, S. White, V. Gerber, Protein microarray allergen profiling
1115 in bronchoalveolar lavage fluid and serum of horses with asthma. *J. Vet. Intern. Med.* **37**,
1116 328–337 (2023).

1117 105. E. Laumen, M. G. Doherr, V. Gerber, Relationship of horse owner assessed respiratory
1118 signs index to characteristics of recurrent airway obstruction in two Warmblood families.
1119 *Equine Vet. J.* **42**, 142–148 (2010).

1120 106. H. Rettmer, A. M. Hoffman, S. Lanz, M. Oertly, V. Gerber, Owner-reported coughing and
1121 nasal discharge are associated with clinical findings, arterial oxygen tension, mucus score
1122 and bronchoprovocation in horses with recurrent airway obstruction in a field setting.
1123 *Equine Vet. J.* **47**, 291–295 (2015).

1124 107. R. S. Patel, J. E. Tomlinson, T. J. Divers, G. R. Van de Walle, B. R. Rosenberg, Single-cell
1125 resolution landscape of equine peripheral blood mononuclear cells reveals diverse cell types
1126 including T-bet+ B cells. *BMC Biol.* **19**, 1–18 (2021).

1127 108. K. D. Zimmerman, C. D. Langefeld, Hierarchicell: an R-package for estimating power for
1128 tests of differential expression with single-cell data. *BMC Genomics*. **22**, 319 (2021).

1129 109. A. Ramseyer, C. Gaillard, D. Burger, R. Straub, U. Jost, C. Boog, E. Marti, V. Gerber,
1130 Effects of Genetic and Environmental Factors on Chronic Lower Airway Disease in Horses.

1131 *J. Vet. Intern. Med.* **21**, 149–156 (2007).

1132 110. D. J. McCarthy, K. R. Campbell, A. T. L. Lun, Q. F. Wills, Scater: pre-processing, quality
1133 control, normalization and visualization of single-cell RNA-seq data in R. *Bioinformatics*.
1134 **33**, 1179–1186 (2017).

1135 111. R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, A. Regev, Spatial reconstruction of single-
1136 cell gene expression data. *Nat. Biotechnol.* **33**, 495–502 (2015).

1137 112. P.-L. Germain, A. Lun, C. Garcia Meixide, W. Macnair, M. D. Robinson, Doublet
1138 identification in single-cell sequencing data using scDblFinder. *F1000Research*. **10**, 979
1139 (2022).

1140 113. C. Hafemeister, R. Satija, Normalization and variance stabilization of single-cell RNA-seq
1141 data using regularized negative binomial regression. *Genome Biol.* **20**, 296 (2019).

1142 114. S. Choudhary, R. Satija, Comparison and evaluation of statistical error models for scRNA-
1143 seq. *Genome Biol.* **23**, 27 (2022).

1144 115. L. Zappia, A. Oshlack, Clustering trees: a visualization for evaluating clusterings at multiple
1145 resolutions. *Gigascience*. **7**, 1–9 (2018).

1146 116. H. Guo, J. Li, scSorter: assigning cells to known cell types according to marker genes.
1147 *Genome Biol.* **22**, 69 (2021).

1148 117. E. Sjöstedt, W. Zhong, L. Fagerberg, M. Karlsson, N. Mitsios, C. Adori, P. Oksvold, F.
1149 Edfors, A. Limiszewska, F. Hikmet, J. Huang, Y. Du, L. Lin, Z. Dong, L. Yang, X. Liu, H.
1150 Jiang, X. Xu, J. Wang, H. Yang, L. Bolund, A. Mardinoglu, C. Zhang, K. von Feilitzen, C.
1151 Lindskog, F. Pontén, Y. Luo, T. Hökfelt, M. Uhlén, J. Mulder, An atlas of the protein-
1152 coding genes in the human, pig, and mouse brain. *Science (80-)*. **367** (2020),
1153 doi:10.1126/science.aay5947.

1154 118. L. He, J. Davila-Velderrain, T. S. Sumida, D. A. Hafler, M. Kellis, A. M. Kulminski,
1155 NEBULA is a fast negative binomial mixed model for differential or co-expression analysis
1156 of large-scale multi-subject single-cell data. *Commun. Biol.* **4**, 1–17 (2021).

1157 119. B. Phipson, C. B. Sim, E. R. Porrello, A. W. Hewitt, J. Powell, A. Oshlack, propeller: testing
1158 for differences in cell type proportions in single cell data. *Bioinformatics*. **38**, 4720–4726
1159 (2022).

1160

1161 **Acknowledgments:** The authors would like to thank Dr. med. vet. Michelle Wyler and Dr. med.
1162 vet. Nicole Altermatt for their assistance in sample collection. We thank Dr. Pamela Nicholson
1163 and the laboratory technicians from the Next Generation Sequencing Platform of the University of
1164 Bern for performing the sequencing experiments. We are grateful for the Interfaculty
1165 Bioinformatics Unit of the University of Bern for providing the high-performance computing
1166 infrastructure. The authors furthermore acknowledge Dr. med. vet. Laureen Peters for conducting
1167 cytological analysis and the laboratory technicians of the Central Diagnostic Laboratory of the
1168 Vetsuisse Faculty for their assistance in sample processing.

1169 **Funding:** Swiss National Science Foundation, Grant No. 31003A-162548/1; Internal Research
1170 Fund of the Swiss Institute of Equine Medicine, Bern, Switzerland, No. 33-890

1171 **Author contributions:** SS, TL and VG designed the study. Funding was acquired by VG. SS
1172 collected and processed the samples. PN supervised the scRNA-seq experiments. SS and VJ
1173 performed the computational analysis. SS wrote the original draft. All authors reviewed, edited
1174 and approved the final version of the manuscript.

1175 **Competing interests:** Authors declare that they have no competing interests.

1176 **Data and materials availability:** The datasets generated for this study will be deposited in the
1177 European Nucleotide Archive (ENA) repository <https://www.ebi.ac.uk>, after publication in a peer-
1178 reviewed journal. The R code used for data analysis will be published.

1179

1180 **SUPPLEMENTARY MATERIALS**

1181 **Supplementary figures**

1182 **Supplementary figure 1.** Ribosomal protein genes differential expression across the seven T cell
1183 populations (n=30,005 cells) visualized with UMAP (A) and with a violin plot (B).

1184 **Supplementary figure 2.** RNA feature count (A) and mitochondrial read percentage (B) across
1185 the six monocyte-macrophage (Mo/Ma) cell populations (n=22,370 cells).

1186 **Supplementary figure 3.** Ribosomal protein genes differential expression across the six
1187 monocyte-macrophage (Mo/Ma) cell populations (n=22,370 cells) visualized with UMAP (A) and
1188 with a violin plot (B).

1189 **Supplementary figure 4.** Distributions of the five cytologically distinguishable leukocytes
1190 obtained with cytology on bronchoalveolar lavage fluid (BALF), with cytology on the cell
1191 suspension (post cryopreservation) and with scRNA-seq on the cell suspension. T cells and B cells
1192 are counted as lymphocytes, while Mo/Ma and DCs are counted as macrophages.

1193 **Supplementary figure 5.** tSNE visualization of the data simulation using 6 control and 6 cases
1194 with 500 cells per sample. Hierarchicell [PMID: 33932993] was used to simulate the data based
1195 on scRNA-seq template data from healthy Warmblood horses (GSE148416). A 1000-gene RNA-
1196 seq matrix was generated with a fold change of 2 to simulate differential expression between case
1197 and control groups. Varying the number of cells (150 to 1,000) and samples (3 to 6) showed distinct
1198 clustering when using 6 horses per group with 500 cells per sample.

1199 **Supplementary tables**

1200 **Supplementary table 1.** Summary metrics of the detected cells for the 12 samples sequenced

1201 **Supplementary table 2.** Marker genes for the 19 clusters (complete dataset)

1202 **Supplementary table 3.** Marker genes for the six major cell types (complete dataset)

1203 **Supplementary table 4.** Marker genes for the neutrophil clusters (independent reanalysis)

1204 **Supplementary table 5.** Marker genes for the B cell clusters (independent reanalysis)

1205 **Supplementary table 6.** Marker genes for the T cell clusters (independent reanalysis)

1206 **Supplementary table 7.** Marker genes for the monocyte-macrophage clusters (independent
1207 reanalysis)

1208 **Supplementary table 8.** Marker genes for the dendritic cell clusters (independent reanalysis)

1209 **Supplementary table 9.** Differential gene expression analysis – Major cell types

1210 Supplementary table 10. Differential gene expression analysis – Neutrophils

1211 Supplementary table 11. Differential gene expression analysis – T cells

1212 Supplementary table 12. Differential gene expression analysis – Monocytes-Macrophages

1213 Supplementary table 13. Differential gene expression analysis – Dendritic cells

1214 Supplementary table 14. Characteristics of the cell suspensions subject to scRNA-seq

1215

1216 **Supplementary material and methods:** Experimental protocol for equine bronchoalveolar cells
1217 cryopreservation

1218

1219

1220

1221

1222 **TABLES**

1223

1224 **Table 1:** Study population characteristics

Variable	Control (N=5) ¹	Asthmatic (N=6) ¹	P-value ²
Sex			0.6
Mare	3 (60%)	2 (33%)	
Gelding	2 (40%)	4 (67%)	
Age (years)	12 (11, 12)	12 (7, 19)	> 0.9
HOARSI* score	1 (1, 1)	4 (3, 4)	< 0.01
Weight (kg)	594 (582, 613)	578 (548, 609)	> 0.9
Clinical score (/23)	1 (0, 1)	6 (5, 7)	< 0.01
Tracheal mucous score (/5)	1 (1, 2)	3 (3, 4)	< 0.05
BALF yield (%)	48 (48, 48)	52 (45, 56)	0.7
BALF macrophages (%)	51 (48, 56)	51 (38, 55)	0.5
BALF lymphocytes (%)	40 (36, 47)	36 (22, 40)	0.4
BALF neutrophils (%)	4 (2, 7)	18 (12, 25)	< 0.01
BALF mast cells (%)	1 (0, 1)	1 (1, 2)	0.5
BALF eosinophils (%)	0 (0, 0)	0 (0, 0)	> 0.9

¹Median (1st quartile, 3rd quartile)

²Fisher's exact test; Wilcoxon rank sum test

*HOARSI: Horse Owner Assessed Respiratory Signs

1225

1226 **Table 2:** Proportions of the major cell types determined with scRNA-seq and compared between
1227 asthmatic (SEA) and control (CTL) groups

Cell type	Number* (N=11)	Mean % (N=11)	Mean % (CTL, N=5)	Mean % (SEA, N=6)	Ratio SEA/CTL	P-value	FDR
<i>B cells</i>	756	1.3	0.3	1.9	5.9	< 0.001	< 0.001
<i>Neutrophils</i>	5,145	8.5	2.4	13	5.3	< 0.001	< 0.001
<i>Mast cells</i>	1,232	2.0	1.7	2.3	1.4	0.13	0.25
<i>Mo/Ma</i>	22,370	37.1	44.6	32.0	0.7	0.18	0.27
<i>Dendritic cells</i>	754	1.3	1.2	1.4	1.2	0.80	0.93
<i>T cells</i>	30,005	50.0	50.0	49.4	1.0	0.93	0.93

1228 * Post quality filtering

1229

1230 **Table 3:** Proportions of the B cell subtypes identified with scRNA-seq and compared between
1231 asthmatic (SEA) and control (CTL) groups

B cell cluster	Mean % (N=11)	Mean % (CTL, N=5)	Mean % (SEA, N=6)	Ratio SEA/CTL	P-value	FDR
B0	72.2	68.6	71.9	1.0	0.62	0.62
B1	20.5	11.5	21.3	1.8	0.18	0.26
B2	7.3	19.9	6.8	0.3	0.02	< 0.05

1232