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The process of cell differentiation in multicellular organisms is characterized by hierarchy and
irreversibility in many cases. However, the conditions and selection pressures that give rise to these
characteristics remain poorly understood. By using a mathematical model, here we show that the
network of differentiation potency (differentiation diagram) becomes necessarily hierarchical and ir-
reversible by increasing the number of terminally differentiated states under certain conditions. The
mechanisms generating these characteristics are clarified using geometry in the cell state space. The
results demonstrate that the appearance of these characteristics can be driven without assuming the
adaptive significance. The study also provides a new perspective on the structure of gene regulatory
networks that produce hierarchical and irreversible differentiation diagrams. These results indicate
some constraints on cell differentiation, which are expected to provide a starting point for theoretical
discussion of the implicit limits and directions of evolution in multicellular organisms.

INTRODUCTION

Multicellular organisms have various cell types that
are generated during the process of cell differentiation.
The process of cell differentiation can be characterized
by the following important properties, namely hierarchy
and irreversibility [1]. Typically, this process involves a
series of hierarchical fate decisions before reaching a fi-
nal non-differentiable state (“hierarchy”). Once a cell
reaches its downstream state, it cannot revert back to its
stem cell state during normal development (“irreversibil-
ity”). These features of cell differentiation are commonly
seen in various species [2–10]. Waddington’s “epigenetic
landscape” is a qualitative metaphor that captures these
characteristics of the cell differentiation process [11]. Un-
derstanding the cell state transitions described above re-
mains a key goal in developmental biology, and has also
recently become a significant challenge in the context
of medical applications, such as reprogramming [12] and
cancer therapy [13, 14].

To theoretically understand cell differentiation, math-
ematical models have been employed and developed.
These models are usually based on the fact that the gene
expression state of a cell is regulated by a gene regulatory
network (GRN) [15–17]. For instance, Kauffman linked
cell types to multiple attractors in a dynamical system of
a Boolean network model that abstracts a GRN [18, 19].
In this model, the expression state of each gene is rep-
resented as a binary value and the cell state is defined
as a vector composed of these values. Despite its bold
formulation, the model has been successful in explaining
gene expression data in real organisms [20, 21]. Based
on this pioneering work, further theoretical models have
been established that consider transitions between cell
types. For example, Huang and colleagues demonstrated

that bistable switches, composed of two self-activating
and mutually repressing genes, can theoretically exhibit
a differentiation process into two distinct differentiated
types from an identical stem cell type [22, 23].

Moreover, several models have been proposed that can
generate hierarchical and irreversible networks of dif-
ferentiation potency (differentiation diagrams) between
multiple stable states. For instance, hierarchical differ-
entiation diagrams can be constructed when two or more
bistable switches are connected in a hierarchical manner
[23–27]. Other mechanisms, such as Turing instability
[28, 29], temporal change of an expression system assum-
ing epigenetic changes [30] and bifurcation of dynamical
systems [31] have also been proposed to design hierarchi-
cal and irreversible differentiation diagrams.

As demonstrated thus far, mechanisms capable of ex-
hibiting hierarchy and irreversibility have been studied
and proposed, but the reasons why these characteris-
tics are commonly observed among various species re-
main poorly understood. Specifically, what conditions
and selection pressures give rise to hierarchy and irre-
versibility? By what mechanisms are they acquired? As
differentiation diagrams with hierarchy and irreversibil-
ity are the outcome of evolution from simpler structures,
it is required to investigate how these diagrams change
their topology during their evolution. In order to answer
these questions, a theoretical study is necessary that is
independent of specific species details.

In view of taking cell types as attractors of dynamical
systems, the structure of the differentiation diagram can
be reframed as a question of how the basin boundaries of
attractors are arranged. If it is assumed that transitions
between them can occur due to some kind of perturba-
tion (e.g., fluctuations in gene expression, signal-induced
changes in expression levels or gene-gene interaction), un-
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derstanding the arrangement of the basin boundaries can
help to understand which basins the cell state can move
between.

Here we use an abstract cell model with a GRN to in-
vestigate how hierarchy and irreversibility emerge in cell
differentiation during evolution. In our study, the multi-
cellular systems are optimized to increase the number of
terminally differentiated states, envisioning an abstract
evolutionary process. We vary the magnitude of per-
turbations to gene expression driving differentiation and
show that large perturbation conditions lead to inevitable
hierarchical differentiation, whereas small perturbation
conditions do not. Furthermore, under the conditions
that lead to the emergence of a hierarchical differen-
tiation diagram, the diagrams also become irreversible.
These findings indicate that hierarchy and irreversibility
are inherent outcomes of the evolutionary process under
certain conditions. We also clarify the mechanism for
their inevitable emergence by analyzing the geometrical
aspects of the cell state space. Finally, we explore the
typical structures observed in GRNs resulting in differ-
entiation diagrams with hierarchy and irreversibility.

Overall, our findings suggest the possibility that the
nature of cell differentiation that emerged through evo-
lution is due to secondary effects resulting from the
optimization of the number of terminally differentiated
states, rather than adaptive significance. In addition,
our results offer a new perspective on the structure of
GRNs that exhibit hierarchy and irreversibility.

MODEL

To investigate the evolution of differentiation dia-
grams, we consider a cell model where cells have the ca-
pability to differentiate into another cell type (Fig. 1).

Cell state regulation The model cell is described by
a gene regulatory network (GRN) in which each gene
expression is regulated by the other genes. The state of
a cell, denoted by x = (x1, x2, . . . xn) is characterized by
the expression levels of n genes. The dynamics of a cell
state x obeys the following ordinary differential equation.

dxi

dt
= H(Ji · x− θi)− xi (1)

where H(ξ) =

{
0 ξ < 0

1 ξ ≥ 0
(2)

The matrix J represents the GRN, where its element Jij
represents how strongly gene j interacts with gene i. Ji

is the i-th row of J . θi is the expression threshold for
each gene i. When the sum of the interactions from all
genes (Ji ·x) exceeds the threshold θi, the first term H (·)
takes 1, indicating that the mode of expression of gene
i is “on”. The second term represents the decay of gene
expression. Because of this term, the range of x is limited
to [0,1].
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FIG. 1. A schematic of this model. (left) An abstract repre-
sentation of a GRN. The blue arrows represent positive inter-
action, while the red arrows represent negative interactions.
(right) An abstract representation of the differentiation di-
agram. Each node represents an attractor of the dynamical
system determined by the GRN on the left. The arrows repre-
sent possible differentiation paths by perturbation. The pink
nodes represent precursor states, while the purple nodes rep-
resent terminally differentiated states.

Differentiation by perturbation on expression Fixed
point attractors in the dynamical system according to eq.
(1) are considered to represent distinct cell types. To de-
termine the directions in which differentiation is possible
between these cell types, we need to consider the mech-
anisms driving differentiation. While there are several
possible driving forces that actually cause differentiation,
we assume for simplicity that differentiation is caused by
stochastic fluctuations in gene expression [23, 32]. We
then derive a differentiation diagram using the following
method.

The attractor to which an initial point xinit = 0
converges is referred to as “the root attractor (aroot)”.
Throughout this research, we assume that aroot repre-
sents the most upstream stem cell type (e.g., hematopoi-
etic stem cell). Since the expression states of 0 and 1 are
symmetric in this model and since we later evolve the
differentiation diagram with xinit fixed, choosing 0 for
xinit has no essential meaning.

Now, to define differentiation by perturbation, we con-
sider adding a perturbation pk to an attractor a to create
a new state a+pk for all k (= 1, 2, · · ·N), where N is the
number of perturbations. If this new state subsequently
converges to another attractor a′ (̸= a), we consider it
possible to differentiate from a to a′. Starting from aroot,
we repeat the same procedure for all newly emerged at-
tractors until no new attractor is found any further. Note
that a differentiation diagram can be derived by deter-
mining J and θ.

If no further transition occurs from a certain attractor
under given perturbations, the attractor is referred to
as the “terminally differentiated state” hereafter. This
means that after any perturbation is added, the new ini-
tial state converges back to the attractor before the per-
turbation. Attractors that are not the terminally differ-
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entiated state are referred to as “precursor states”.
The subsequent results presented in this study are

relatively independent of the number of perturbations
(N), as long as it is sufficiently large. In this research,
N = 1000 was used. Here, we assume that the norm
of every perturbation vector, ||pk|| is identical, which is
represented as a parameter δ. Thus, each pk is uniformly
distributed on a hypersphere with radius δ. In this re-
search, we will investigate the changes in the differentia-
tion diagram under various conditions of δ while optimiz-
ing the number of terminally differentiated states using
the method described below.

Optimization of GRNs In this study, we aim to in-
crease the number of terminally differentiated states by
optimizing both the GRN matrix, denoted by J , and
the threshold vector, denoted by θ, using a genetic al-
gorithm (GA). In other words, the fitness of the GA
is set as the number of terminally differentiated states
obtained. The reason for this is based on our assump-
tion that the diversity of terminally differentiated states
is linked to the number of specialized functions of cells.
This is supported by the fact that many specialized cell
types, such as neurons, osteoblasts, and muscle cells, do
not undergo further differentiation [33]. Taking this into
account, the above-mentioned fitness is set, guided by the
idea that species with a higher number of terminally dif-
ferentiated states, reflecting diverse functionalities, pos-
sess evolutionary advantages.

Furthermore, we also randomly sample high-fitness
(J,θ), using multicanonical sampling [34], a type of
Markov chain Monte Carlo method. The reason we use
this method is to collect a number of rare high-fitness
samples efficiently. Using this method for a sufficiently
long time, we can sample diagrams as a random walk
along the fitness axis, without getting trapped in local
optima. [34].

RESULTS

Acquisition of hierarchy To investigate the influence
of δ on the differentiation diagram, particularly on its
hierarchical structure, we implement GA under various
conditions of δ. Fig. 2a shows typical differentiation dia-
grams which evolved under two different δ values. Under
δ = 0.05, almost all terminally differentiated states di-
rectly emerge from the root attractor, i.e., little hierarchy
is observed in the differentiation diagram. In contrast,
in the cases under δ = 0.4, the differentiation diagram
generally becomes more complex and hierarchical. No-
tably, the final mean fitness does not exhibit a significant
change when δ varies between 0.05 to 0.4 (Fig. 2b). How-
ever, it become much more difficult to increase the fitness
when δ ≥ 0.5 since the perturbations are too large. In
the region where evolution is reasonably possible (here,
with a final average fitness of around 15 or more, which
is 0.05 ⪅ δ ⪅ 0.4), a larger δ leads to a greater value of
depth (Fig. 2b). We will focus mainly on the results ob-

tained under the conditions of δ = 0.05 and 0.4 hereafter.
Having discovered the clear trend of acquired depth

along with the GA, the focus shifts to the reason why it
appeared. In this model, cell differentiation occurs when
perturbations cause the state to move out of the original
attractor’s basin and into the adjacent attractor’s basin.
While computing attractor basins is generally challeng-
ing, this model allows for a partial examination of basin
structure the following two characteristics.

1. Since eq. (1) can be rewritten as follows, dx/dt of
any point x takes the direction toward the lattice
point a below.

dx

dt
= a− x (3)

where ai =

{
0 if Ji · x− θi < 0

1 if Ji · x− θi ≥ 0
(4)

Property 1 is simply a substitution of a for the first term
H(Ji · x − θi) on the right-hand side in eq. (1). Here,
in the two regions of the state space divided by the i-
th hyperplane Ji · x − θi = 0, the i-th coordinate of
the destination switches. Note that each of the n genes
has the corresponding hyperplane. Fig. 3 illustrates this
property using a two-dimensional example. When Ji ·
p − θi and Ji · q − θi have the same sign, p and q are
referred to as being “on the same side” with respect to
the hyperplane Ji · x− θi = 0.
The model then has the following property 2.

2. If the lattice point a is a fixed point and x is on the
same side as a with respect to all n hyperplanes,
then x converges to a after sufficient time.

From Property 1, the time derivative of x is oriented
toward a, hence x moves toward a in a straight line.
Since x and a are on the same side with respect to all
of the hyperplanes, the line does not cross any of these
hyperplanes on its way from x to a.
As long as perturbations to an attractor do not cross

any hyperplanes, the attractor will not transition to an-
other attractor. In other words, if the hypersphere with a
radius of δ centered on an attractor does not intersect any
hyperplanes, it becomes a terminally differentiated state.
Thus, increasing the number of terminally differentiated
states requires that as many hyperspheres as possible do
not intersect the hyperplane. In addition, points in the
state space often converge to lattice points with coordi-
nates of 0 or 1, since H in the eq. (1) is a step function1.

1 Despite H being a step function, it is possible to have exceptional
cases where it does not converge to a lattice point. An example
of such a case is when a vector field is formed in a direction facing
across a hyperplane. However, these cases become less frequent
with optimization in this study. For instance, when the fitness is
15, such cases exist in less than 1% of cases for both δ = 0.05, 0.4.
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FIG. 2. (a). Typical examples of time series of differentiation diagrams in GA under different δ (= 0.05, 0.4). (b)(left). The
mean fitness and depth during GA. (right). The mean (white circle) and standard deviation (black bar) of fitness and depth
reached at the final generation (= 106). Each δ has 50 independent series. Depending on the value of δ, the depth and the fitness
that emerge with optimization varies. Specifically, as δ changes, different types of diagrams emerged, including low-fitness and
low-depth (δ ≈ 0.01), high-fitness and low-depth (0.05 ⪅ δ ⪅ 0.2), high-fitness and high-depth (0.3 ⪅ δ ⪅ 0.4), low-fitness and
low-depth (0.5 ⪅ δ). Note that all subsequent results in this paper are for n = 5 genes and N = 1000 perturbations.

Using these properties, we can explain the difference in
hierarchical structure between small and relatively large
δ as follows. First, in order not to intersect as many hy-
perspheres as possible for the sake of increasing fitness
under δ(≈ 0.4), each hyperplane must be placed orthog-
onally to the corresponding axis, dividing the hypercube
in two (Fig. 4a). When the planes are orthogonalized,
the off-diagonal terms Jij(j ̸= i) are small relative to
the diagonal term Jii. This can be understood from the
fact that in the limit where Jij/Jii ≪ 1, the equation
of the i-th hyperplane becomes xi − θi/Jii = 0. Indeed,
under the condition of δ = 0.4, the magnitude of the off-
diagonal terms of J becomes much smaller than the di-
agonal terms (i.e., more orthogonal) as optimization pro-
ceeds (Fig. 4d). When the corresponding hyperplanes are
orthogonalized with respect to each axis and separating
adjacent hyperspheres, the intersection of these n hyper-
planes will be located near the center of the hypercube.
(the white dot in Fig. 4a). This idea is supported by the
fact that, under the condition of δ = 0.4, the distribution
of the distance between the intersection and aroot tends
to peak around 1.1 (≈

√
5× 0.52) as optimization pro-

gresses (Fig. 4e). Since this is greater than δ(= 0.4), it
becomes impossible to cross at least n(= 5) hyperplanes
simultaneously. Moreover, the number of hyperplanes
that can be crossed at once by a single perturbation be-
comes limited. As a result, in order to reach a terminally

differentiated state that is distant from the root attrac-
tor, a minimum of two consecutive differentiation steps
must be traversed. This phenomenon contributes par-
tially to the reason behind the hierarchical nature of the
multi-step differentiation diagram.

On the other hand, if δ is small, the hyperplanes can
be placed more easily not intersecting the hyperspheres.
This means that each hyperplane need not be orthogo-
nalized during optimization (Fig. 4b,c,e). The intersec-
tion of the n hyperplanes can be placed close to the root
attractor (Fig. 4b-d) since there is no such restriction
for the hyperplanes to be orthogonalized as the case in
δ = 0.4. In this case, it is unnecessary to create any pre-
cursor state to gain fitness. In addition, the hyperplanes
are less likely to intersect a hypersphere of a relatively
small radius. Thus, the non-hierarchical pattern of dif-
ferentiation diagrams holds the majority.

Acquisition of irreversibility The second purpose of
this work is to elucidate the condition and the mecha-
nism by which irreversibility appears in differentiation
diagrams.

The differentiation diagram in Fig. 2a seems to differ-
entiate irreversibly. Hence, we will examine whether the
high-fitness differentiation diagrams under δ = 0.4 ac-
tually have an irreversible tendency. Here, we focus on
the graph only between precursor states since the ter-
minally differentiated states do not differentiate further
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FIG. 3. An example of state space in a two-gene system.
dx/dt of the state space is visualized as a vector field. Two
“hyperplanes”, Ji · x − θi = 0 (i = 1, 2) are drawn as blue
and orange lines respectively. The four points at each corner
in blue are fixed point attractors. The sets of possible states
that can be reached by perturbations are represented by red
dashed lines that form an arc of radius δ in the 2D state
space (in n dimensions, it is the surface of a hypersphere).
When a state crosses the i-th hyperplane by being added some
perturbation, the attractor to which it heads changes, and the
i-th gene of the destination flips its value.

by definition and therefore cannot be included in a cy-
cle (Fig. 5a). To quantify irreversibility of differentiation
diagram, we use the size of the feedback arc set (FAS),
which is the smallest set of edges that must be removed
to make a graph acyclic. Using this measure, we show
that high-fitness differentiation diagrams tend to have a
smaller FAS when compared to randomly sampled graphs
with the same number of precursor states (Fig. 5b). This
trend is independent of the number of precursor states.
In other words, even though there is no explicit selection
pressure on irreversibility between precursor states, it in-
evitably arises due to the demand to increase the number
of terminally differentiated states.

What is the reason for the acquisition of irreversibility
under δ = 0.4? In other words, why cannot diagrams
have multiple cycles? In the following section, we will
illustrate that the difficulty in creating cycles on a differ-
entiation diagram can be accounted for by the orthogo-
nalization of each hyperplane. Specifically, we focus par-
ticularly on the observation that in order to complete a
cycle, i.e., to return to the original attractor by differ-
entiation, the expression state of at least one gene must
change in both the positive (0 → 1) and negative (1 → 0)
directions.

As mentioned in the previous section, when the hy-

perplanes are orthogonalized with respect to the corre-
sponding axes, the off-diagonal terms Jij(j ̸= i) are small
relative to the diagonal term Jii. Hence, if the i-th plane
is orthogonalized, the distance between an attractor a
and the plane is approximated by the following equation.

d(i,a) =
|Ji · a− θi|

||Ji||
≈


|θi|
|Jii|

(ai = 0)

|Jiiai − θi|
|Jii|

(ai = 1)
(5)

Here, this distance d(i,a) is a typical threshold for the
norm of a perturbation needed to differentiate from a to
another attractor āi whose i-th component is opposite to
a(Fig. 6c(inset)):

āij =

 1 (j = i ∧ ai = 0)
0 (j = i ∧ ai = 1)
aj (j ̸= i)

(6)

If δ is larger than d(i,a), a can be differentiated into
ā since a perturbation can cross the i-th hyperplane.
Here, from approximation (5), d(i,a) + d(i, ā) ≈ 1 (Fig.
6c(inset)). This means that when δ ⪅ 0.5, differen-
tiations in both directions (0 → 1 and 1 → 0) can
hardly be possible at the same time. In addition, on
the right-hand side of (5), the formula is independent
of aj(j ̸= i). Hence, approximation (5) suggests that if
the hyperplanes are orthogonalized, most of the differ-
entiation paths which involve the i-th gene, regardless
of aj , tend to head in the same direction (either 0 → 1
or 1 → 0) (Fig. 6a). Since the expression state of each
gene of the root attractor (i.e., arooti ) is likely to be zero2,
differentiation from aroot often occurs in the positive di-
rection (0 → 1), but not often in the negative direction
(1 → 0). This local tendency also appears globally in
the state space due to the fact that the approximation
of d(i,a) is independent of aj(j ̸= i). In fact, in the
optimized samples, more paths differentiate in the pos-
itive direction than in the negative direction (Fig. 6b).
The distribution of the distances d0 from the attractor
with ai = 0 to each hyperplane and d1 from the one with
ai = 1 supports the hypothesis above (Fig. 6c). Thus, it
is difficult to create a cycle because of such a bias in the
direction of differentiation.

Structure of optimized GRNs In the previous sec-
tions, we have seen that the key to the emergence of
hierarchy and irreversibility is the diagonal terms’ (Jii)
being much larger than the off-diagonal terms (Jij) in
the interaction matrix. Next, can we find any rules here
for the relationship between the off-diagonal terms? In
the following, we will analyze the structure between the
off-diagonal terms in more detail.

2 For instance, under δ = 0.4 and fitness being 15, the percentage
of arooti that are not 0 is less than 0.01%.
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FIG. 4. (a,b,c). Typical examples of 3D state spaces obtained from optimizing three-gene systems with δ = 0.4 (a) and
0.05 (b, c), respectively. Here, we use three-gene systems for visualization. Each plane represents Ji · x − θi = 0 (i =
1 (blue), 2 (orange), 3 (green)). The white dot denotes the intersection of the three planes. The sets of possible states that
can be reached by perturbations are represented by red octants. (c) is enlarged view near the origin in (b). In the case of
δ = 0.4, the intersection is outside the sphere, whereas in the case of δ = 0.05, it is inside the sphere. (d) The distribution of
the ratio Jij/Jii(j ̸= i). The off-diagonal terms are low compared to the diagonal terms when it has high fitness under δ = 0.4,
but not so much under δ = 0.05. (e) The distribution of the distance to the intersection from aroot (, regardless of whether
the intersection is inside the hypercube or not). Under δ = 0.4, samples with higher fitness tends to keep the distance farther
away, while under δ = 0.05, the distance is optimized to be closer. In (d) and (e), we used multicanonical Monte Carlo method
to sample 10000 systems for every fitness.

After optimization under δ = 0.05, no clear structure
is observed in GRNs, while under δ = 0.4, there sponta-
neously appears a structure with a certain type of genes
that receives interaction from other genes but gives little
(less than a given threshold, 0.2) (Fig. 7a,b). We will
refer to this type as “peripheral genes” (green in Fig. 7)
and those that are not as “core genes” (gray in Fig. 7).
The fact that peripheral genes receive little interaction
means that the hyperplanes corresponding to the core
genes are almost parallel to the axes of peripheral genes
(Fig. 7c). In other words, the boundaries that deter-
mine the expression of core genes are almost independent
of the expression states of peripheral genes. Hence, the
two subspaces, one in which peripheral gene expression
is on and the other in which is off, are almost identical

(Fig. 7c,d). In short, peripheral genes play such a role
as to clone the subspace spanned by core genes. Here,
the peripheral genes divide the two subspaces in a way
that makes it difficult for each state to differentiate in
a reversible manner. In this way, when the state space
is sliced in two by a peripheral gene, the original dif-
ferentiation diagram can be copied in the direction of
the peripheral gene (Fig. 7c,d). By introducing a hyper-
plane of a peripheral gene that intersects the center of
the hypercube, with a slope of small but finite magni-
tude against the corresponding axis, it becomes feasible
to enter the clonal subspace defined by the core genes
through differentiation. This strategic approach holds
the potential to ideally double the count of terminally
differentiated states associated with the original differen-
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FIG. 5. (a). A schematic of the comparison. We compared
diagrams with fitness=15 to randomly sampled ones with the
equivalent number of precursor states (drawn in pink). The
red edges are an example of a feedback arc set (FAS) for each
diagram. (b). The density of differentiation diagrams under
δ = 0.4 with various numbers of precursor states (top) and
their size distributions of FAS (bottom). Regardless of the
number of precursor states, high-fitness (fitness=15) diagrams
tend to have smaller FAS sizes compared to those of randomly
sampled ones. Here, we used the multicanonical Monte Carlo
method to collect 10000 samples in total for each.

tiation diagram, without considering the peripheral gene.
Importantly, this gene configuration can serve as a suffi-
cient condition for constructing a hierarchical differentia-
tion diagram capable of generating numerous terminally
differentiated states.

Next, we investigate whether the described mechanism
is utilized in the GA simulation. If this scenario is in-
deed employed, we would expect the peripheral genes to
play a predominant role in differentiating between pre-
cursor states, while the core genes would primarily con-
tribute to differentiation towards the terminally differen-
tiated state. The reason behind this lies in the fact that
peripheral genes play a key role in transitioning to the
cloned subspace, but once core genes’ expression levels
change, the traversal between subspaces along the axis
of peripheral genes becomes difficult. This scenario finds
support in the contrasting preferences observed regarding
the types of genes more likely to be utilized in differentia-
tion between precursor states and differentiation towards
the final state (Fig. 7e).

In addition, the number of peripheral genes and the
depth of the diagram has a positive correlation (Fig. 7f).
This is because the more peripheral genes there are, the

more differentiation there is using those peripheral genes
before using core genes to differentiate into the terminally
differentiated state. To increase the number of terminally
differentiated states, peripheral genes have such an effect
that the system of the core network is used repeatedly.
The “core & peripheral” strategy is used in the major-

ity of cases. This fact suggests that the parameter sets in
such a strategy exists much more than those which use
all the genes as core.

DISCUSSION

In this paper, we employed an abstract cell model to
study the characteristics which arise as the differentia-
tion diagrams evolve. Here, the cell state is regulated
by GRNs, and differentiation is induced by perturbation
of the gene expression, whose strength is represented as
δ. We revealed that the emergence of hierarchy and irre-
versibility in differentiation diagrams depends on δ. Our
findings are novel in that they demonstrate the inevitabil-
ity of these properties through optimization of the num-
ber of terminally differentiated states. Specifically, under
conditions of high gene expression noise, these proper-
ties will inevitably emerge. In fact, several researches
reported that the magnitude of stochastic fluctuations in
gene expression in living cells can reach levels compara-
ble to the average expression level [35, 36]. Thus, actual
organisms might have evolved in an condition with such
large fluctuations in expression. The outcomes of evo-
lution under these highly fluctuating conditions may be
effectively captured by our theoretical model.
Next, we further elucidated the mechanism behind the

acquisition of hierarchy and irreversibility in differenti-
ation diagrams. To investigate the mechanism, we pre-
sented a geometric approach in high-dimensional state
space. Specifically, we considered the intersection of
the hyperspheres centered on each attractor and the
hyperplanes determined by the GRN. This helped us
to determine whether perturbations could cross typical
basin boundaries and cause a differentiation. The re-
sults showed that when fluctuations were high, the hy-
perplanes were orthogonal to the axis for attractors not
to cross the basin boundary by perturbations. This
orthogonalization means that each gene generally had
stronger positive self-regulation compared to the mutual
regulation with other genes. Indeed, several studies on
key genes that regulate cell differentiation have indicated
that the estimated strength of positive self-regulation ex-
ceeds the strength of mutual regulation from other genes
[37, 38]. However, there is still a limited number of quan-
titative assessments on gene interactions in the context of
GRN inference, requiring further extensive examination.
We also observed that a “core & peripheral” structure

emerged in the GRN after optimization under δ = 0.4.
Here, the genes were spontaneously divided into two
groups, referred to as core genes and peripheral genes,
breaking the initial symmetry between genes. The sys-
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FIG. 6. (a). An illustration of the mechanism how irreversibility emerges. Differentiations in positive direction are drawn in
yellow, while negative are in cyan. The direction of differentiation in state space is biased positively with respect to each axis
as the hyperplane is orthogonalized. (b). The bias of the differentiation direction in high-fitness samples (top) and randomly
sampled ones (bottom). In high-fitness samples, the direction of differentiation is positively biased. On the other hand, in the
random samples, there is no significant bias. (c). Distribution of d0 and d1 in high-fitness samples (top) and random samples
(bottom). It indicates that in high-fitness samples, d0 has a peak in low value while d1 has a peak in high value. On the other
hand, in random samples, there is no significant difference in the distribution of d0 and d1. The inset is a schematic visualization
of d0 and d1. It shows that when the hyperplanes are orthogonalized, the distribution of d0 and d1 should be biased (if d0
is small, d1 should be relatively large). Here in (b,c), the high-fitness sample has fitness=15. We compared high-fitness and
random samples with 5 precursor states, using 10000 samples for each.

tem was typically structured to change the expression of
peripheral genes while transitioning between precursors,
while the state of core genes was changed mainly in tran-
sition into a terminally differentiated state. This system
uses the same genes in various transition events, and dis-
tinguishes cell types through different combinations of
gene expression states. In fact, recent data from verte-
brate development partially supports this idea of generat-
ing various stable cell types through combinatorial reuse
of transcription factors [4]. On the other hand, the pro-
cess of cell fate determination has been majorly explained
by the expression of lineage-specific genes which are reg-
ulated by bistable switches [39–41]. These switches con-
trol the expression of genes, and their hierarchical link-
ages are thought to lead the multi-step process of cell
fate determination [25, 42]. However, recent researches
suggested that the inferred structure of GRN controlling
hematopoiesis is somehow densely interconnected rather
than hierarchical [38, 43]. Here, Our model can provide
a fresh perspective and prediction on the GRN structure
that generates hierarchical differentiation. Further re-
search will be required to verify whether this novel mech-
anism can be found in actual organisms.

Considering the intrinsic stochastic nature of gene ex-

pression in actual organisms [44, 45], this study employed
a model that considers fluctuations in gene expression as
the primary driving force behind transitions between sta-
ble states. In fact, this concept does not contradict the
evidence from various studies that have demonstrated the
role of stochastic gene expression in hematopoietic dif-
ferentiation [46–48] and the early developmental process
of mice [49, 50]. Since our model is not specific to any
particular genes, signals, or environmental conditions, its
conclusions might be applied to a broad range of systems
where stochastic state transitions can occur.

MATERIALS & METHODS

Genetic algorithm We executed a genetic algorithm
with a population size of 100. In each generation, the top
20 individuals were selected. From each of these 20 in-
dividuals, four mutated offspring were generated, result-
ing in a total of 100 individuals for the next generation,
including the original parents. The mutation process in-
volved introducing new values to each element of (J,θ)
with a probability of 0.05. The new values were sampled
from a uniform distribution in the range of [−1, 1].
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FIG. 7. (a). Typical examples of GRNs (top) and the corresponding differentiation diagram (bottom) evolved under δ =
0.05, 0.4. Under δ = 0.4, in this example, there are two genes (gene 1 and 5, drawn in green) which interact little with any other
gene. Here, auto-regulations (Jii) are drawn in gray arrows. Mutual regulations (Jij) are drawn in blue if positive and in red

if negative. The widths of the arrows for mutual regulations are proportional to J̃ij = Jij/Jii. J̃ij(i̸=j) ≤ 0.1 are omitted for
visual clarity. (b). The distribution of the number of peripheral genes of networks with fitness = 20. Here, Peripheral genes are

defined as those with an interaction value of 0.2 or less for any other gene (i.e., (J̃ij(j ̸=i) ≤ 0.2) for all j ̸= i). (c).The difference
between core and peripheral genes in a three-dimensional example. The colors of the planes correspond to those of the nodes
in the GRN. The differentiation diagram of this example is shown in the lower right corner. (d). The state space, GRN, and
differentiation diagram when the peripheral gene ‘3’ in (c) is excluded. By comparing it with (c), it can be observed that the
state space formed by core genes is being replicated by the peripheral gene. (e). Distribution of the probability whether or not
a single differentiation changes the expression state of each type of gene. In the case of differentiation to the precursor state,
peripheral genes are slightly more likely to be involved. However, in the case to the terminally differentiated state, core genes
are more likely to change, while peripheral genes change only rarely. (f). The correlation between depth of the diagram and
the number of peripheral genes. Note that all samples presented here has fitness=20. We used multicanonical Monte Carlo
method to collect 10000 samples for each δ.
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Multicanonical Markov chain Monte Carlo method
This approach facilitates the effective sampling of rare
events, including low-energy states, while avoiding en-
trapment in local minima. For both advantages of an
optimization algorithm (energy minimization) and un-
biased random sampling (energy distribution calcula-
tion), this method has been applied beyond the field
of physics [34, 51, 52]. Notably, this method has also
found utility in the context of the evolution of GRN [53–
55]. In our study, we consider the Markov chain sam-
pling process for (J,θ) states, represented as (J,θ) →
(J ′,θ′) → · · · . Here, the new candidate state (J ′,θ′)
is generated by mutating elements of the former state
(J,θ), based on the same algorithm used in the GA.
Specifically, we assigned a mutation probability of 0.05
for each element of (J,θ), with new values sampled
from a uniform distribution in the range of [−1, 1].
The transition from (J,θ) to (J ′,θ′) is determined by
the transition probability function Πf(J,θ)→f(J′,θ′) =
min (1, w(f(J ′,θ′))/w(f(J,θ))), which decides whether
to accept or reject the candidate state based on its fitness-
dependent weight function w. If an sufficient amount of
samples has been collected, the sampled fitness distribu-
tion Peq(f(J,θ)) follows the detailed balance condition
Πf→f ′Peq(f(J,θ)) = Πf ′→fPeq(f

′(J ′,θ′)). Apparently,
this distribution Peq(f) depends on the weight func-
tion w. In multicanonical sampling, the multicanonical
weight w(f) ∝ 1/Ω(f) is used. This leads to a uniform
marginal distribution h(f) ∝ w(f)Ω(f) = const., which
indicates a sampled histogram of the fitness approaches
asymptotically to a uniform distribution. Hence, within

the framework of multicanonical sampling, the Markov
chain-generated sequence of (J,θ) can be regarded as a
random walk in the fitness space, enabling the efficient
sampling of rare events (i.e., high-fitness states) without
becoming trapped in local minima.

To calculate the multicanonical weight required for ob-
taining a flat histogram with respect to fitness, we employ
the Wang-Landau algorithm [56] in advance. In this al-
gorithm, it is necessary to predefine and discretize the
range of the cost function f . In this study, we set the
range to [1, 20] with a bin width of 1. Furthermore, this
algorithm includes an operation to assess the “flatness”
of the obtained fitness histograms. Here, as the criterion
for flatness, we considered the histogram to be “suffi-
ciently flat” when the counts of all bins exceed 90% of
the expected value for a perfectly flat histogram.

ACKNOWLEDGMENTS

This work was supported by RIKEN Junior Research
Associate Program (to YTN), the Japan Society for
Promotion of Science (JSPS) KAKENHI (17H06389,
22K21344 to CF; 22K15069, 22H05403 to YH), Japan
Science and Technology Agency (JST) ERATO (JPM-
JER1902 to CF), and Cooperative Study Program of
Exploratory Research Center on Life and Living Sys-
tems (ExCELLS; program No. 20-102, 21-102 to NS).
We thank Y. Uchida, S. Tsuru and T. Kohsokabe for
stimulating discussion.

[1] L. Wolpert, C. Tickle, and A. M. Arias, Principles of
development (Oxford University Press, USA, 2019) pp.
333–396.

[2] B. K. Tusi, S. L. Wolock, C. Weinreb, Y. Hwang, D. Hi-
dalgo, R. Zilionis, A. Waisman, J. R. Huh, A. M. Klein,
and M. Socolovsky, Population snapshots predict early
haematopoietic and erythroid hierarchies, Nature 555,
54 (2018).

[3] D. E. Wagner, C. Weinreb, Z. M. Collins, J. A.
Briggs, S. G. Megason, and A. M. Klein, Single-cell
mapping of gene expression landscapes and lin-
eage in the zebrafish embryo, Science 360, 981 (2018),
https://www.science.org/doi/pdf/10.1126/science.aar4362.

[4] J. A. Briggs, C. Weinreb, D. E. Wagner, S. Megason,
L. Peshkin, M. W. Kirschner, and A. M. Klein, The
dynamics of gene expression in vertebrate embryogene-
sis at single-cell resolution, Science 360, eaar5780 (2018),
https://www.science.org/doi/pdf/10.1126/science.aar5780.

[5] M. Plass, J. Solana, F. A. Wolf, S. Ayoub, A. Mi-
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