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Highlights

e Lexical production (LP) relies on the interplay between domain-general and semantic
processes throughout life.

e DMN (Default Mode Network) suppression cooperates with FPN (Fronto-Parietal
Network) integration to maintain LP performance at a minimal cost.

e Midlife marks a neurocognitive shift, with reduced DMN suppression prompting a more

cost-efficient compensatory strategy that prioritizes homeostasis over LP performance.

SENECA model of Neurocognitive Aging
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Abstract

Healthy aging is associated with a heterogeneous decline across cognitive functions, typically
observed between language comprehension and language production (LP). Examining resting-
state fMRI and neuropsychological data from 628 healthy adults (age 18-88) from the CamCAN
cohort, we performed state-of-the-art graph theoretical analysis to uncover the neural
mechanisms underlying this variability. At the cognitive level, our findings suggest that LP is
not an isolated function but is modulated throughout the lifespan by the extent of inter-cognitive
synergy between semantic and domain-general processes. At the cerebral level, we show that
DMN (Default Mode Network) suppression coupled with FPN (Fronto-Parietal Network)
integration is the way for the brain to compensate for the effects of dedifferentiation at a
minimal cost, efficiently mitigating the age-related decline in LP. Relatedly, reduced DMN
suppression in midlife could compromise the ability to manage the cost of FPN integration.
This may prompt older adults to adopt a more cost-efficient compensatory strategy that
maintains global homeostasis at the expense of LP performances. Taken together, we propose
that midlife represents a critical neurocognitive juncture that signifies the onset of LP decline,
as older adults gradually lose control over semantic representations. We summarize our findings
in a novel SENECA model (Synergistic, Economical, Nonlinear, Emergent, Cognitive Aging),

integrating connectomic and cognitive dimensions within a complex system perspective.
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1. Introduction

The crucial need to comprehend the mechanisms that uphold normal cognitive functioning
during aging arises from the significant increase in the proportion of older individuals (United
Nations, 2023). A gradual decline in cognitive abilities typically accompanies aging. However,
this decline is heterogeneous across cognitive functions, and some of them, such as language,
semantic memory, and vocabulary, tend to be preserved longer (Loaiza, 2024). Therefore, this
study aims to shed light on the neural mechanisms that underpin this variability, jointly
exploring the functional brain architecture at rest and language-related performance.
Specifically, we hypothesize that changes in language function across the lifespan are subserved
by the reorganization of the language neurocognitive architecture within the framework of an

inter-cognitive interaction between language, long-term memory, and executive functions.

From a cognitive standpoint, language decline under the effect of age is not uniform (Baciu et
al., 2021). Although overall language performances tend to be preserved, some linguistic
operations may be impaired with age (Ramscar et al., 2014; Wlotko et al., 2010). Indeed, while
language comprehension (LC) demonstrates higher resilience to the effects of aging (Diaz et
al., 2016; Rossi & Diaz, 2016), language production (LP), which involves lexical retrieval and
generation (Baciu et al., 2016, 2021), tends to be more significantly impaired with age (Evrard,
2002; Ramscar et al., 2014). This is particularly obvious in tip-of-the-tongue situations, where
individuals experience knowing the meaning of a word but struggle to recall and produce the
word form (Burke et al., 1991; Condret-Santi et al., 2013). This discrepancy between LC and
LP during aging can be attributed to the advantages of semantic context and the accumulation
of semantic knowledge throughout the lifespan (Jongman & Federmeier, 2022; Salthouse,

2019).
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From a cerebral perspective, brain networks interact with one another, reflecting how language
adapts to socio-communicative contexts by drawing memories, knowledge, and beliefs from
long-term memory (Duff & Brown-Schmidt, 2012; Horton, 2007) under the control of
executive functions (Corballis, 2019; Hertrich et al., 2020). While long-term memory provides
‘traffic’ content and coherency, executive functioning provides top-down flexibility and
coordination to focus, plan, accomplish tasks, and control emotions. In a previous teamwork
(Roger, Banjac, et al., 2022), our team proposed a theoretical framework that conceptualizes
the inter-cognitive synergy between language, long-term memory, and executive functions at
the cognitive level, LUM (i.e., Language/union/Memory), and suggested that functional

connectivity-based interactions may implement this synergy at the neural level.

Indeed, a data-driven analysis highlighted that the language neurocognitive architecture based
on extrinsic brain activity (Roger, Rodrigues De Almeida, et al., 2022) comprises four spatially
non-overlapping subsystems, each probabilistically mapping onto known resting-state brain
networks (i.e., RSNs; Ji et al., 2019): core Language (Netl), Control-Executive (Net2),
Conceptual (Net3), and Sensorimotor (Net4). Interestingly, these findings indicate that age-
related decline in language production impacts extra-linguistic components (Net2 and Net3)
beyond the typical core language network (Hertrich et al., 2020). This suggests that language
performances in older adults could be determined by synergistic processing (Gatica et al.,
2021), that is the cooperation between control-executive and conceptual/associative processes.
In line with (Luppi et al., 2024), we refer to synergistic processing as the joint information that
exceeds the sum of each subsystem’s functional connectivity changes. In light of the effect that
the reorganization of the language connectome has on language function, we also proposed
adopting a ‘cognitomic’ perspective (Roger et al., 2018), emphasizing the constraints that

connectomic architecture places on cognitive performances across the lifespan.
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Within this perspective, graph theory (Bullmore & Sporns, 2009; Bullmore & Bassett, 2011,
Rubinov & Sporns, 2010) is appropriate to describe the connectomic underpinnings of
language. Specifically, the brain network can be characterized in terms of integration and
segregation properties (Cohen & D’Esposito, 2016; Genon et al., 2018) at different topological
levels (i.e., whole-brain/system-level, modular/subsystem-level, and region/nodal-level)
(Farahani et al., 2019; Fornito et al., 2016). Across the lifespan, cognitive efficiency is
supported by a balance between integrated and modular information processing (Bullmore &
Sporns, 2012; Meunier et al., 2010; van den Heuvel & Sporns, 2013). In other words, optimal
coordination of neural activity is based on global homeostasis — the ability to adapt and maintain
stability in the face of changing conditions (see also the notion of metastability: Naik et al.,

2017; Tognoli & Kelso, 2014).

In line with our previous findings (Roger, Rodrigues De Almeida, et al., 2022), a recent
systematic review of resting-state data studies reported that reduced local efficiency at the
system level, along with reduced segregation and enhanced integration within and between
RSNs at the subsystem level, are the connectomic fingerprints of healthy aging with an
inflection point in midlife (Deery et al., 2023). However, a crucial challenge resides in
understanding the neural mechanisms that bridge reduced segregation with enhanced
integration (Stumme et al., 2020), and how these mechanisms induce a neurocognitive dynamic

that reflects the changes in cognitive performance as age advances.

Indeed, studies report contradictory findings depending on the topological level of analysis. At
a system level, age-related enhanced integration (Battaglia et al., 2020) would be generally
associated with a dedifferentiated system that fails to alternate efficiently between integrative
and segregation states of connectivity (Chan et al., 2014; Chan et al., 2017), thus highlighting

a maladaptive process. At a subsystem or brain network level, brain regions would undergo
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similar dedifferentiation processes translating to reduced functional specialization (Goh et al.,
2010; Park et al., 2004). This is primarily reflected by reduced segregation and enhanced
integration in the sensorimotor and higher-order associative and control networks (Deery et al.,
2023; Wig, 2017). However, in contrast with the system level, enhanced integration has been
shown to be compensatory (Cabeza et al., 2018) with direct benefits for cognitive efficiency
(Bertolero et al., 2015; Meunier et al., 2010). Specifically, increased coupling between default-
mode (DMN) and fronto-parietal (FPN) networks correlated with better global cognitive
performance (Spreng et al., 2018; Spreng & Turner, 2019). Moreover, it appears that the ability
to deactivate DMN regions may be a key ingredient of cognitive resilience (capacity to mitigate
the deleterious effect of dedifferentiation) across the lifespan (Deery et al., 2023; Grady et al.,
2016; Singh-Manoux et al., 2012; Varangis et al., 2019). Indeed, older adults show reduced
DMN deactivation (Spreng & Turner, 2019), potentially impacting the interaction between
semantic and control-executive processes, as observed for LP (Baciu et al., 2021) and verbal

fluency (Muller et al., 2016; Whiteside et al., 2016).

The main objective of this study is to investigate how the age-related reorganization of the
language connectome explains the discrepancy between LC and LP performances across the
lifespan. By assuming that language is a complex function working in synergy with long-term
memory and executive processes, we aimed to model the neural mechanisms that support this
inter-cognitive functioning. To address this objective, we leveraged a population-based resting-
state fMRI dataset from the CamCAN cohort (Cam-CAN et al., 2014) and applied graph theory
analyses to evaluate the reorganization of the language connectome in terms of integration and

segregation properties at multiple topological scales of analysis.
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2. Materials & Methods

2.1. Participants

We included 652 healthy adults from the Cambridge Center for Ageing and Neuroscience
project cohort (Cam-CAN et al., 2014). Further recruitment information can be found in Taylor
et al. (2017). Our analysis focused exclusively on functional fMRI brain data obtained during
a resting state period. After careful examination, we excluded 24 participants and had a final
sample size of 628 participants (age range: 18-88; 320 females; 208 males). The 24 participants
were excluded from the analysis for various reasons, including missing functional imaging data
(N = 4), incomplete volume acquisition (N = 4; however, one of the four subjects has been
retained with 74% (194/261) of the total number of volumes), unreliable CSF mask (N = 9),
and having 10% or more outlying volumes after preprocessing (M = 13.6, SD = 3.2, N = 8).
We chose eight cognitive tasks for brain-cognition analyses to span a continuous spectrum from
a high to a low degree of synergy between language, long-term memory, and executive
functions (Table 1). The sample of 628 participants was further reduced to 613 due to missing
cognitive data. Specifically, we excluded participants with more than 3 missing
neuropsychological scores (N = 15). Then, we replaced any missing score of the remaining 613

participants with the appropriate median of their age decile.
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Cognitive Task Processes involved
(from high to low amount of inter-cognitive synergy)

Naming Language (phonological access & semantic memory)
(Clarke et al., 2013)
Verbal Fluency Language (phonological, semantic) & Executive function (EF)
(Lezak et al., 2012)
Proverb comprehension EF (abstraction) & Language (comprehension)
(Huppert et al., 1994)
Tip-of-the-tongue Language (retrieval) & EF (error monitoring)
(R. Brown & McNeill, 1966)
Hotel task EF (planning & multitasking)
(Shallice & Burgess, 1991)
Cattell task EF (Fluid intelligence)
(Cattell & Cattell, 1960)
Story recall Long-term memory
(Tulsky et al., 2003)
Sentence comprehension Language (syntactic, semantic)

(Rodd et al., 2010)

Table 1. General presentation of the eight cognitive tasks. A detailed description of each task is presented in Table
S1 and Appendix S1.

2.2. MR acquisition

For information regarding the MR acquisition and the resting state protocol applied in this
study, please refer to Appendix S1. Further details are provided by Cam-CAN et al. (2014), as

the data was sourced from the Cambridge Center for Ageing and Neuroscience project cohort.

2.3. Resting-state fMRI data analysis

2.3.1. Data Preprocessing

The rs-fMRI data underwent preprocessing using SPM12 (Welcome Department of Imaging

Neuroscience, UK, http://www:.fil.ion.ucl.ac.uk/spm/) within MATLAB R2020b (MathWorks

Inc., Sherborn, MA, USA). We employed a standard preprocessing pipeline (including
realignment, reslicing, co-registration, segmentation, normalization, and smoothing) similar to
that described in our previous work (see Roger et al., 2020) with specific details mentioned in

Appendix S1.
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2.3.2. Cerebral parcellation: the LANG connectome atlas

The LANG connectome atlas, referred to as the LANG atlas, comprises a collection of 131
regions of interest (ROI) derived from a panel of 13 language fMRI tasks (see Roger, Rodrigues
De Almeida, et al., 2022). Each ROI is represented by a spherical region with a diameter of 6
mm, centered on the MNI coordinates proposed by Power et al. (2011). To transform the LANG
atlas, which is based on extrinsic fMRI activation, into a resting-state LANG (rs-LANG) atlas
consisting of ROIls derived from the intrinsic activity, we labeled all LANG regions according
to their primary resting-state network (RSN) based on the Cole-Anticevic Brainwide Net
Partition (CAB-NP; Ji et al., 2019). We utilized a publicly available volumetric version of the
CAB-NP that was converted to standard MNI space. By overlaying the volumetric RSN map
onto the 131 regions (see Banjac et al., 2021), we determined the number of voxels overlapping
each region and each RSN. This approach ensured accurate voxel-based labeling of each region
to their primary RSN (see Appendix S3 for detailed results). When examining the modular
organization of rs-LANG (see Figure 1), the RSN composition of a given subsystem was
weighted by the mean percentage of overlap between each region and their primary RSN. This

improvement led to a 12% increase in mean accuracy.

2.3.3. Resting-state LANG connectomes

Using the CONN toolbox (version 21.a; Nieto-Castanon, 2020), we conducted an ROI-to-ROI
analysis and generated a connectivity matrix of dimensions 131x131 for each participant using
Fisher-transformed bivariate correlation coefficients. These connectivity matrices were
subsequently employed for network analysis. We disregarded negative correlations by setting
them to zero, consistent with previous studies (Chong et al., 2019; Martin et al., 2022; Wang et
al., 2011). Additionally, we applied thresholding to each matrix at five sparsity levels (10, 12,

15, 17, and 20%). This step aimed to reduce the presence of spurious connections and was based

10
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on the most likely sparsity levels known to produce a small-world organization (see Appendix
S2), as outlined by Achard and Bullmore (2007). Correspondingly, the thresholded matrices

were binarized to generate five undirected graphs for each participant.

2.4. Resting-state LANG network analysis

The network or graph analysis measured the information flow within each connectome
(Rubinov & Sporns, 2010). Specifically, we assessed (i) the balance between functional
integration and segregation at the system level, (ii) the modularity at the subsystem level, and

(ii1) the information transfer at the nodal level by evaluating the topological role of each region.

2.4.1. System-level analysis: integration vs. segregation balance assessment

Using the Brain Connectivity Toolbox (BCT) implemented in MATLAB 2020b and available

at https://www.nitrc.org/projects/bct/ (Bullmore & Sporns, 2009), we extracted three key graph

metrics: (1) global efficiency (Egion), (2) local efficiency (Eioc), and (3) clustering coefficient
(Clustcoerf). Globally, Egion Was calculated as the inverse of the shortest path lengths or the
average of unweighted efficiencies across all pairs of nodes (Latora & Marchiori, 2001). This
metric quantifies the efficiency of parallel information transmission across the global network
(Bullmore & Bassett, 2011). Locally, Eioc is similar to Egion but on node neighborhoods. When
averaged at the system level, it illustrates the segregation property of a network in processing
information (Latora & Marchiori, 2001). For each node, the clustering coefficient (Clustcoetr)
was calculated as the fraction of a node’s neighbors that are also neighbors of each other
(Rubinov & Sporns, 2010), and averaged at the system level. We visually inspected Egion and
Clustcoetr across the five sparsity levels and determined that the optimal threshold that balances
integrated and modular processing was 15% (Figure S3, Appendix S2). We further ensured that
this threshold was optimal by repeating the procedure for each age decile. Following this, we

reduced all graphs to a fixed number of edges by retaining the top 15% (2554 edges).

11


https://www.nitrc.org/projects/bct/
https://doi.org/10.1101/2023.07.04.547510
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.04.547510; this version posted February 8, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Additionally, we verified that the reduced connectomes maintained full connectivity and were
sufficiently devoid of isolated nodes, meaning that the largest connected component (LCC)
included at least 80% of all nodes. After thresholding at 15%, we characterized the balance
between functional integration and segregation at the system level by determining the relative
predominance of global (Egion) Versus local efficiency (Eioc). A higher balance reflects a higher
predominance of integration or higher integrative/global efficiency.

Eglob - Eloc

System — level balance (integration vs. segregation) = E TF
glob loc

2.4.2. Subsystem-level analysis: modularity assessment

To examine the modular organization of rs-LANG, we employed the Louvain community
detection algorithm (Blondel et al., 2008) with a resolution parameter set to y = 1.295, aiming
to align with the RSNs identified in the CAB-NP Atlas (Ji et al., 2019). As different runs of the
algorithm can yield varying optimal partitions, we implemented a consensus clustering
approach (Lancichinetti & Fortunato, 2012). This approach involves iteratively clustering co-
assignment matrices until convergence, aggregating the frequency of node assignments to the
same module. To reduce spurious node assignments, we applied a threshold of T = 0.5 to the
co-assignment matrices (Jiang et al., 2021). If a node did not consistently belong to the same
module in at least 50% of the iterations, its co-assignment weight was set to zero. We executed
the algorithm 1000 times for each subject and repeated the entire process 1000 times to generate
a group-level consensus partition based on the subject-level partitions. We ensured that this
consensus partition accurately represented all individuals across different ages, confirming its

suitability for statistical analysis (refer to Appendix S2 for further information).

2.4.3. Nodal-level analysis: topological roles

12
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At the nodal level, we investigated the topological reorganization of each connectome by
defining four distinct topological roles: Connector, Provincial, Satellite, and Peripheral
(Bertolero et al., 2015; Guimera & Amaral, 2005). Therefore, the composition of each
individual’s language connectome is represented by four percentages which add up to 100%.
To assign each role to a node (i.e., a region), we employed two graph metrics: (i) the Within-
Module Z-score (WMZ; Latora & Marchiori, 2001), which quantifies connectivity within
subsystems (short-range), and (ii) the normalized Participation Coefficient (PC; Pedersen et al.,
2019) which measures connectivity between subsystems (long-range) while removing the bias
associated with the number of nodes in each module. Consistent with prior research (Roger,
Rodrigues De Almeida, et al., 2022; Schedlbauer & Ekstrom, 2019), we standardized both
metrics (WMZ and zPCnorm) for each individual and assigned a topological role to each node.
In relation to the entire set of 131 regions, a Connector node displays a high proportion of both
short- and long-range connections (zPCnorm >= 0, WMZ >= 1e-5). A Provincial node displays
a high proportion of short-range connections (zPCnorm < 0, WMD >= 1e-5). A Satellite node
displays a high proportion of long-range connections (zPCnorm >= 0, WMZ < 1e-5). A
Peripheral node, on the other hand, is functionally withdrawn from the network (zPCnorm <0,

WMZ < 1e-5).

2.5. Statistics

We conducted statistical analysis in two steps. First, at a connectomic level, we examined the
evolution of the relative proportion of topological roles across the lifespan (i.e., quantitative
analysis). Subsequently, we modeled the neural mechanisms driving this evolution using a
probabilistic framework (i.e., qualitative analysis). This approach allowed us to uncover the
patterns and principles governing the age-related connectivity changes in the language

connectome. Second, at a neurocognitive level, we employed canonical correlation analysis

13
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(CCA) to examine the many-to-many relationships between these neural mechanisms and the
changes in cognitive performances across the lifespan. We controlled for mean FC, gender, and
total intracranial volume in all models (Eikenes et al., 2023). Mean FC was calculated by

averaging the positive weights of the unthresholded upper triangular connectivity matrix.
2.5.1. Connectomic dynamic across the lifespan

To evaluate the age-related topological changes of the language connectome, we examined how
the relative proportions of four topological roles (connector, provincial, satellite, peripheral)
evolve across the lifespan. Due to the inherent limitations of percentage-based statistics (which
sum up to 100%), namely, high correlation and dependence on pairwise covariance — we
applied a log-based transformation to the data (Smith et al., 2016). This transformation,
analogous to a log odds transformation, removes the lower (0%) and upper (100%) boundaries
of the original metric (i.e., removing the unit-sum constraint), thus remaining relatively easy to
interpret:

X
Log — based metric = log <m)

Here, X represents the percentage-based proportion of either Connector, Provincial, Satellite,
or Peripheral nodes. To handle undefined logarithms for zero entries, we imputed percentages
using Bayesian non-parametric multiplicative replacement with the package zCompositions in

R (Martin-Fernandez, 2003; Palarea-Albaladejo & Martin-Fernandez, 2015).

Quantitative analysis. Following this transformation, the effect of age was examined using
generalized additive models (GAM; mgcv package in R; Wood, 2006, 2017) at a system and
subsystem level, using a 3-knot spline to mitigate overfitting concerns. Factor-smooth
interactions were applied at a subsystem level, and p values were corrected at the False

Discovery Rate (g < 0.05).

14
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Qualitative analysis. To elucidate the neural mechanisms driving quantitative topological
changes in the language connectome, we identified the most likely topological role that a region
may occupy within younger (18-44), middle-aged (45-55), and older (>55) individuals. We

chose these age groups to stay consistent with the quantitative results reported in section 3.2.

This involved 3 steps. (i) First, we determined the frequency at which each region is assigned
each topological role for each age group. For example, among younger adults, a region may be
considered a connector node for 75% of participants but a satellite node for the remaining 25%.
(1) Second, we took the outer product of all the younger and middle-aged frequency values to
calculate the probability of all 16 possible trajectories between roles. For example, if a region
has a 75% probability of being a provincial node in younger adults and 30% a connector node
in middle-aged adults, then the resulting provincial-to-connector trajectory has an occurrence
probability of 22.5% (0.75*0.3). (iii) Third, we repeated this calculation between these 16

trajectories and the frequency values and the older age group (16*4 = 64 trajectories in total).

Finally, we selected the most likely trajectory of a region as the one with the highest probability
(e.g., provincial-to-connector-to-connector). To account for the inter-individual variability
within each age group, we also included the trajectories whose probability fell within a 5%
range from the highest one for each region. Using this approach, we captured the most likely
transitions of topological roles between age groups for each region while also considering the

variability within each age group.

2.5.2. Neurocognitive Dynamic: Canonical Correlation Analysis

To identify the many-to-many relationships between brain functional connectivity changes and
neuropsychological scores, we conducted a canonical correlation analysis (CCA). CCA works
by finding the linear combinations within the brain and cognitive set of variables that maximize

the correlation between the two sets (Wang et al., 2020).
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CCA setup. We organized the data into a brain-functional (X) and cognitive (Y) matrix to set
up the CCA. For X and Y, scores were z-scored. Additionally, we prepended two orthogonal
contrasts in the cognitive dataset that we set between three age groups: (contrast #1) 56-60 >
45-50 + 51-55, (contrast #2) 51-55 > 45-50. These contrasts ensured that the model could also
account for nonlinear relationships with age reported in section 3.2. CCA analysis produces as
many canonical functions as the number of variables within the smaller set (i.e., 8 cognitive
scores + 2 age contrasts). Each canonical function is composed of a cognitive and a brain variate
comparable to latent variables (Sherry & Henson, 2005). The robustness of the results was

assessed using a 10-fold cross-validation with 1,000 bootstrap resamples.

CCA interpretation. At a cognitive level, we report CCA results using structure coefficients (r)
— the correlation between an observed variable and its corresponding variate. Thus, the higher
the correlation, the greater the contribution of said variable to said variate. At a neurocognitive
level, given that the neural mechanisms represent our unit of interest, we computed the
difference between the structure coefficients associated with each variable of a given
mechanism. Considering a reconfiguration from a provincial to a connector role as an example,
we subtracted the provincial variable's structure coefficient from the connector one.
Importantly, we reported the cross-correlations between the brain variables and the cognitive
variates. The resulting coefficient served as a proxy for the correlation between said mechanism
and said cognitive variate, providing an intuitive understanding of how a neural mechanism

affects age-related cognitive performance.
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3. Results

3.1. Modular organization of the Language connectome at rest (rs-LANG)

Applying modularity analysis to the resting-state Language connectome (rs-LANG) uncovered
four main subsystems. Figure 1 provides a visual representation of these subsystems. Appendix
S2 provides a detailed comparison with the task-based modular organization of the same

connectome, described by Roger, Rodrigues De Almeida, et al. (2022).

Considering the composition, the largest subsystem, RS NET1 (40 regions), comprises 66.4%
of DMN regions involved in higher-level cognitive function and can thus be regarded as the
associative subsystem. The second largest subsystem, RS NET2 (34 regions), is saturated by
sensorimotor regions (SMN; 77.1%) along with contributions from CON regions (15.3%) and
can thus be regarded as the sensorimotor subsystem. The third largest subsystem, RS NET3 (32
regions), engages the cingulo-opercular network (CON; 56.4%), which can thus be regarded as
the bottom-up attentional subsystem (Dosenbach et al., 2024; Wallis et al., 2015). The smallest
subsystem, RS NET4 (22 regions), is saturated by FPN regions (63.1%), with nontrivial
contributions from CON regions as well (17.2%), and can thus be regarded as the top-down
control-executive subsystem. Interestingly, all 11 regions of the conventional language network
defined by Ji et al. (2019) coalesce with the associative (5 regions) and bottom-up attentional
subsystems (4 regions) while the remaining 2 regions form crucial short-range connections with
the top-down control-executive subsystem. This suggests that core language processing at rest
is functionally clustered with subsystems that support both semantic access and top-

down/bottom-up cognitive control (see Appendix S3 for details).
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Figure 1. lllustration of the modular organization of the language connectome at rest. Each RS NET is a subsystem
obtained from the consensus clustering procedure (see the method section 2.4.2). An additional 3-region module
(black) associated with the VMM (Ventral Multi-Modal) network was also identified but not considered for
analysis due to its instability as a stand-alone module across the lifespan. Abbreviations: LH (left hemisphere); RH
(right hemisphere); RS NET1 (40 regions, red), RS NET2 (34 regions, orange), RS NET3 (32 regions, yellow),
RS NET4 (22 regions, blue). DMN (Default Mode Network); FPN (Fronto-Parietal Network); CON (Cingulo-
Opercular Network); SMN (Sensorimotor Network). Brain visualization was done with the package ggseg in R
(Mowinckel & Vidal-Pifieiro, 2020) and projected on a multimodal cortical (HCP_MMP1.0; Glasser et al., 2016)
and subcortical parcellation (Fischl et al., 2002). For details, please refer to Figure S1 and S2 in Appendix S2, and
Appendix S3.

3.2. Connectomic dynamics of the language connectome

Quantitative changes. At the system level, we found that healthy aging is associated with
reduced local efficiency (t=-10.08, p <.001, 17, = .15, 95% CI [.11; Inf]) and preserved global
efficiency (p = .53), which tilts the balance between integration and segregation towards a
higher integrative efficiency as age increases (t = 9.4, p <.001, n,, = .13, 95% CI [.09; Inf])
(Figure 2A). We also found that healthy aging is associated with a decrease in the proportion
of provincial nodes (b = -0.08 95% CI [-0.1; -0.05]; F(1, 624) = 47.2; p < .001; 5 = .07) and
satellite nodes (b = -0.02 95% CI [-0.03; -0.01]; F(1, 624) = 4.7; p = .03; n; = .01), which is

contrasted by an increase in the proportion of connector nodes (b = 0.05 95% CI [0.03; 0.06];

18


https://doi.org/10.1101/2023.07.04.547510
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.04.547510; this version posted February 8, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

F(1, 624) = 27.9; p <.001; n; = .04) and peripheral nodes (b = 0.03 95% CI [0.02; 0.05]; F(1,

624) = 16.8; p < .001; n3 = .03) (Figure 2B).

At the subsystem level (Figure 2C), we found two patterns of coordinated changes between
subsystems: (i) First, we observed that a major loss of satellite nodes in RS NET1 was
coordinated with a major loss of provincial nodes in RS NET4 (F = 22.05/28, p < .001/.001,
edf = 1/1), and conversely with more moderate losses (F = 6.07/3, p = .015/.042, edf =
1.29/1.32). Of note, we also found a moderate loss of provincial nodes in RS NET2 (F =6.8, p
=.009, edf = 1). (ii) Second, we observed coordinated nonlinear changes in the proportion of
connector (u-shape) and peripheral nodes (inverted u-shape) in RS NET1 with an inflection
point at age 55 (F = 3.61/3.8, p = .02/.02, edf = 1.88/1.87). Interestingly, we found the same
anticorrelation pattern in RS NET2 (F = 2.7/2.8, p = .047/.045, edf = 1.78/1.79) but this pattern
was mirrored compared to the one observed in RS NET1 and highlighted an inflection point at

age 60.

Of note, several tendential associations with age suggest that some mechanisms could be
underpinned by (unmodeled) age-invariant factors: a linear decrease of satellite nodes in RS
NET2 (p = .23); a coordinated pattern between connector (p = .08) and provincial/peripheral
nodes in RS NET3 (p = .13/.09); a linear increase and decrease respectively in connector (p =

.12) and peripheral nodes (p =.18) in RS NET4.
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Figure 2. System-level topological dynamics across the lifespan. (A) Illustrates normalized efficiencies (y-axis)
as a function of age (x-axis). Eloc = Local efficiency; Eglob = Global efficiency; Balance = dominance of global
efficiency calculated as (Eglob — Eloc) / (Eglob + Eloc). (B and C) Evolution of the relative proportion of
topological roles (y-axis) with age (x-axis). For the subsystem level (Panel C), changes with a tendential statistical
significance are indicated by a star next to the label. Abbreviations: RS NET (subsystems of the language
connectome at rest); RS NET1 (Associative); RS NET2 (Sensorimotor); RS NET3 (Bottom-up attentional); RS
NET4 (Top-down control-executive). Please refer to Figure 1 for the composition of each RS NET. Connector
(High integration/High segregation); Provincial (Low integration/High segregation); Satellite (High
integration/Low Segregation); Peripheral (Low integration/Low segregation).

In sum, analyses at the system and subsystem level revealed that midlife is a critical period for
functional brain reorganization of the language connectome. Specifically, changes in RS NET1
are pivotal: (i) the loss of satellite nodes in RS NETL1 is coupled with the loss of provincial
nodes in RS NET4; (ii) the amount of connector and peripheral nodes are anticorrelated within
a given subsystem, and this anticorrelation pattern tends to be mirrored between RS NET1 and

the other subsystems (see Figure 2C).

Qualitative changes. To clarify the mechanisms driving the topological changes reported
above, we conducted a probabilistic analysis. Overall, we found that 35.1% (46 regions) of the

language connectome undergoes a topological reorganization, suggesting that some regions
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occupy different roles throughout life. Across subsystems, 50% of RS NET4, 50% of RS NET2,
and 34% of RS NET1 regions reconfigure, whereas regions in RS NET3 are more inflexible
(24.3%). A web app is available to explore the reconfiguration cross-sectionally: https://Ipnc-

lang.shinyapps.io/seneca/. To account for inter-individual variability, we consider 17 additional

trajectories (see section 2.5.1 for details on the calculations), which amounts to 63 (46 regions

that reconfigure + 17) trajectories.

In line with the previous results, healthy aging was associated with a substantial gain of
connector (53.9% of all reconfigurations; 34 regions) and peripheral nodes (19%; 12 regions).
We observed that this topological reorganization was achieved in two ways: either (i)
reallocating short-range connections within subsystems or (ii) reallocating long-range
connections between subsystems. Figure 3 depicts these two dynamics. Table S1 and S2 in

Appendix S2 summarize the following results.

On the one hand, we observed a dynamic governed by the loss and gain of new short-range
connections via provincial-to-peripheral (9.5% of all trajectories; 6 regions) and satellite-to-
connector reconfigurations (20.6%: 13 regions). From early to middle adulthood, we observed
that RS NET1 (right MTG; 92% FPN, right BA44; 72% DMN) and RS NET4 (left MFG; 99%
FPN) are the most likely to lose these connections, while from middle to older adulthood, this
impacted RS NET2 (right SMA; SMN, left paracentral lobule; 74% DMN) and RS NET1 (left
insula; 72% DMN). Interestingly, we note that the integration of these short-range connections
occurs mainly from middle to older adulthood (69.2%; 9 out 13 regions) within all subsystems:
in the left middle cingulate cortex (RS NET1; 11.1%), left supramarginal gyrus and left
postcentral area (RS NET2; 22.2%), left superior temporal gyrus (RS NET3; 11.1%), and left
precentral/middle frontal regions in RS NET4 (22.2%). Additionally, we noticed the key role

of subcortical areas (33.3%; left/right thalamus, left putamen; RS NET3) which also undergo
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unique peripheral-to-connector reconfigurations (left and right putamen) from middle to older
adulthood. Given that changes in peripheral/connector proportions in RS NET3 were only
tendentially related to age in the previous section, this suggests that integration via these

subcortical regions could also be dependent on age-invariant factors.

On the other hand, we found a dynamic governed by the loss and gain of long-range connections
via satellite-to-peripheral (9.5% of trajectories; 6 regions) and provincial-to-connector
reconfigurations (30.1%: 19). While the integration is driven by FPN regions in RS NET 4
(45%) and in left frontal/precentral/postcentral regions (SMN) in RS NET2 (55%) from early
to middle adulthood, we noticed that it is almost exclusively implemented by RS NET2 from
middle to older adulthood (SMN: SMA and pre/post-central regions). Interestingly, this
coincides with our previous observation that some FPN regions in RS NET4, which integrate
long-range connections in early adulthood, shift to short-range connections in older adulthood
(i.e., left MFG and left precentral). Interestingly, this shift co-occurs with a similar transition in
RS NET 1 in middle age (age 45-55). Indeed, while RS NET1 undergoes a “deactivation”
process (i.e., satellite-to-peripheral) from early to middle adulthood, losing long-range
connections (left fusiform area DAN/DMN; left paracentral lobule DMN; left pCC DMN;

83.3% of all deactivations), it begins integrating connections from middle to older adulthood.

Our results also show that short-range connections may become increasingly more scarce as
age increases, compromising both dynamics of integration. Indeed, we observed that (i) regions
in RS NET1 (left IFG DMN; left aCC CON/DMN), RS NET2 (left SFG CON/SMN; right
Rolandic Op SMN/CON), and RS NET 4 (left insula FPN/CON) are likely to lose the short-
range connections integrated earlier in life (i.e., connector-to-satellite reconfigurations), but

also that (ii) the number of provincial-to-satellite reconfiguration increases, showing that the
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older adult brain is less likely to maintain connector properties especially in right superior

frontal areas in RS NET1 (DMN) and left parahippocampal lobule in RS NET2 (SMN).
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Figure 3. Probabilistic topological model of age-related integration. Two dynamics of integration across the
lifespan are proposed: (i) “energy-costly” dynamic based on long-range connections between subsystems,
highlighting the flexible DMN-FPN coupling in younger adulthood, and (ii) “energy-efficient” dynamic based on
short-range connections within subsystems, highlighting a less flexible DMN-FPN coupling in older adulthood.
Abbreviations: RS NET (subsystems of the language connectome at rest); RS NET1 (Associative); RS NET2
(Sensorimotor); RS NET3 (Bottom-up attentional); RS NET4 (Top-down control-executive). Please refer to Figure
1 for the composition of each RS NET. Connector (High integration/High segregation); Provincial (Low
integration/High segregation); Satellite (High integration/Low Segregation); Peripheral (Low integration/Low
segregation). DMN (Default Mode Network); FPN (Fronto-Parietal Network); CON (Cingulo-Opercular
Network); SMN (Sensorimotor Network). Labels under brain illustrations are the names of the regions following
the labeling proposed by Glasser et al. (2016). Brain visualization was done with the package ggseg in R
(Mowinckel & Vidal-Pifieiro, 2020) and projected on a multimodal cortical (HCP_MMP1.0; Glasser et al., 2016)
and subcortical parcellation (Fischl et al., 2002).

In sum, our observations suggest that the shift reported in midlife (45-55) is triggered by a
reduced deactivation in RS NET1 (i.e., satellite-to-peripheral) coupled with a reduced

integration of long-range connections in RS NET4 (i.e., provincial-to-connector).
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3.3. Neurocognitive Dynamics: Canonical Correlation Analysis

To evaluate the neural mechanisms that support healthy cognitive aging, we employed
canonical correlation analysis (CCA). CCA yielded two significant canonical functions, each
composed of a cognitive and brain variate that maximize the correlation between the brain and
cognitive set of variables (Wilks’ A = .68, R.; =.33; R.;2 = 11%, p <.001; Wilks’ A = .76, R,
=.27; R.,* = 7%, p = .04). Below, we first describe the results at a cognitive level and then at

a neurocognitive level.

Cognitive level. Figures 4A & 4C show that Variate | was associated with a steady decline with
age (F = 388.7, p < .001, edf = 1.51; r_constrastoider > middle + younger = -.71, r_constrastmiddie >
younger = -.49). This primarily impacted performances in language-related tasks recruiting
executive functions such as multitasking (r = .56), lexical production (.49), fluid intelligence
(i.e., Cattell = .48), verbal fluency (.48), tip-of-the-tongue (.38) and semantic abstraction (i.e.,
proverb task = .34) (see Figure 4A and 4B). Variate Il was nonlinearly associated with age (F
=90.1, p < .001, edf = 1.99; constrastmiddie > younger = .62), marked by a transition in midlife in
line with our previous findings. Interestingly, this correlated with better overall semantic
performances (semantic abstraction = .43; sentence comprehension = .21), which was also
associated with better naming (.40) and marginally better verbal fluency (.11). These changes
were also proportional to increased fluid-related challenges (-.32), suggesting that heightened
semantic knowledge in midlife could help maintain lexical production abilities in the face of

fluid processing decline.

Lexical production (naming) was highly correlated with both variates (see Figure 4C). Verbal
fluency and semantic abstraction were also highly correlated with both variates, although the
former was preferentially correlated with cognitive control (Variate 1) and the latter with

semantic performance (Variate Il). This suggests that age-related decline in these tasks (see
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Table 1, section 2.1) stems from cognitive control and semantic cognition (i.e., semantic

control).
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Figure 4. Age-related neurocognitive dynamics of language. (A and B) Illustrate the age-related trajectory of the
cognitive variate and the corresponding neural mechanisms according to the results. The bar above the x-axis
reports age points with a significant second-order derivative for most trajectories, reflecting a neurocognitive
transition in midlife. (C and D) Illustrate the structure coefficients with the cognitive variates, the correlations
(cognitive variable-cognitive variate), or cross-correlations (brain mechanism-cognitive variate). The red star
indicates that naming and DMN suppression are highly covariant with each variate, thus showing that DMN

suppression underpins naming performances during healthy aging.

Neurocognitive level. Functional deactivation (i.e., gain in peripheral nodes) and functional
integration (i.e., gain in connector nodes) were largely anticorrelated with Variate 1. This
suggests that the dynamics of integration based on the reallocation of long or short-range

connections may help mitigate executive function deficits as age increases.

We also found that the joint trajectory of DMN deactivation and FPN integration fit the

predicted trajectory of naming performances (t(611) = 245.15, p <.001):

(i) The loss of long-range connections of RS NET1 regions (i.e., DMN deactivation) was both

anticorrelated with Variate | (-.20) and correlated with Variate 11 (.12), indicating that this
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mechanism is crucial for mitigating fluid processing decline with heightened semantic
representations as age increases. Considering the cognitive changes reported above, this
certainly contributes to delaying the onset of difficulties in naming, verbal fluency, and
semantic abstraction. In line with this, from middle to older adulthood (see Figure 4B & 4D),
high correlation with Variate 11 (i.e., above the median) confirms that reduced deactivation
(0.14), and correspondingly enhanced functional integration of long-range connections in RS
NET1 (-0.09), compromises the ability to compensate fluid processing decline (-.32) with
semantic knowledge (i.e., reduced semantic abstraction; proverb task = .43), with implications

on naming performances (.40).

(1) The integration of long-range connections in RS NET4 (i.e., FPN regions) had a comparable
effect. Nonetheless, it was preferentially correlated with executive function mitigation (Variate
I: -.22; Variate 1l: .06). Considering the cognitive changes reported above, this mechanism may
primarily enhance verbal fluency and the cognitive control component of lexical production

(naming).

Additionally, increased peripheral-to-connector reconfigurations in RS NET3 (0.23) were
mostly associated with Variate 1l (.23). In line with our probabilistic results, this mechanism
peaked slightly after midlife (see Figure 4B). This suggests that, despite reduced DMN
deactivation, integration in the bottom-up attentional system (RS NET3), specifically in the
bilateral thalamus and left putamen (please refer to section 3.2), could promote semantic

abstraction in addition to the semantic component of lexical production (naming).
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4. Discussion

Healthy aging is associated with a heterogeneous decline across cognitive functions, including
language. Specifically, language production (LP) declines more rapidly than language
comprehension (LC). The neural mechanisms underlying this variability still need to be
understood. In this study, we leveraged resting-state fMRI and neuropsychological data from
the population-based CamCAN cohort (Cam-CAN et al., 2014) to investigate the functional
reorganization of the language connectome and its association with age-related cognitive
variability. Employing state-of-the-art graph theoretical analysis, we developed a data-driven
pipeline that integrates both cerebral and cognitive dimensions of analysis. Our findings can be

summarized at two levels: brain and cognitive.

At a brain level, we show that aging is associated with a large-scale reorganization of the
language connectome based on simultaneous reduced functional specialization, increased
integration, and deactivation of several subnetworks. These changes enhance the overall
efficiency of language processing while minimizing the brain’s energy expenditure. At a
neurocognitive level, we show that LP can be characterized as an inter-cognitive function
influenced by the dynamic interaction between domain-general and language-specific (i.e.,
semantic) processes. Furthermore, our findings unveil that the emergence of LP decline during
midlife may result from a decreased ability to reduce DMN activity. This reduction could
impact older adults' ability to retrieve semantic representations in a goal-directed manner,
leading to difficulties suppressing irrelevant semantic associations during LP. Accordingly, our
findings can be formalized as a novel model titled SENECA (Synergistic, Economical,
Nonlinear, Emergent, Cognitive Aging), integrating connectomic (SE) and cognitive (CA)

dimensions within a complex system perspective (NE) (Hancock et al., 2022).
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From a connectomic perspective, our results align with previous work (Roger, Rodrigues De
Almeida, et al., 2022), suggesting that language processes at rest depend on a large network
composed of associative (RS NET1), sensorimotor (RS NET2), bottom-up attentional (RS
NET3), and top-down control-executive (RS NET4) subnetworks. Within a lifespan
perspective, we replicate previous findings showing that reduced segregation, reflected by a
reduction of provincial nodes (Guimera & Amaral, 2005), in control-executive, associative, and
sensorimotor subnetworks (M. Y. Chan et al., 2014; Grady et al., 2016; R. Pedersen et al.,
2021), can be considered a hallmark of aging, with a critical inflection point in midlife. Thus,
this study confirms that midlife is a pivotal period for brain functional reorganization of the

language connectome (Irwin et al., 2018; Lachman, 2015; Park & Festini, 2016).

Our results shed light on the neural mechanisms underlying lifespan functional changes.
Specifically, we found that as individuals age, dedifferentiation, involving the over-recruitment
of brain regions and reduced specialization (Fornito et al., 2015; Park et al., 2004), is
consistently associated with enhanced functional integration and functional deactivation, which

may constitute a compensatory strategy.

First, enhanced functional integration within the fronto-parietal (FPN) control network can be
related to improved information transfer (Bagarinao et al., 2020), task processing flexibility
(Bertolero et al., 2015; Tang et al., 2023), and overall better cognitive performance (Deery et
al., 2023; Setton et al., 2021; Stanford et al., 2022). Through their precise adjustments of
connectivity among adjacent regions (Bertolero et al., 2018), connector hubs imbue the network
with integrative and flexible properties, thereby offsetting any decrease in specialization (as
suggested by Cabeza et al., 2018). Consistent with this compensation account, our findings
prove that the age-related integration of the FPN is not detrimental, as noted by Wu & Hoffman

(2023). Instead, it serves as a beneficial mechanism, mitigating declines in executive functions
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during demanding cognitive tasks, particularly bolstering performance in multitasking, fluid
intelligence, and language processing. Our study supports the idea that recruiting additional
neural resources may represent a scaffolding response, actively fostering resilience in language
processing throughout the lifespan (Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Park, 2023).
This also emphasizes that network dedifferentiation and compensatory integration are

interrelated across the lifespan (Deery et al., 2023; Stumme et al., 2020).

Secondly, as individuals age, the increase in functional efficiency provided by integration
appears to be closely intertwined with deactivation — the functional withdrawal of specific brain
areas, including the left paracentral lobule, fusiform, posterior cingulate area (pCC), insula, and
right IFG of the default-mode network (DMN; Alves et al., 2019; Menon, 2023). This
deactivation or suppression of the DMN is a label given to the accumulation of peripheral nodes
and has been well-established as an indicator of externally oriented attention, supporting
demanding tasks by suppressing internal distractions like mind-wandering (Anticevic et al.,
2012) and, more broadly, reducing task-irrelevant processes (Buckner & DiNicola, 2019).
Specifically, the PCC has been emphasized as a hub between the DMN and FPN (Leech &
Sharp, 2014), especially in tasks requiring controlled semantic access (Krieger-Redwood et al.,
2016). Similarly, the right IFG has been linked with studies on age-related semantic fluency
(Martin, Williams, et al., 2022; Meinzer et al., 2009, 2012). Thus, DMN suppression could
mitigate age-related decline in goal-directed behavior, especially the semantic retrieval

processes necessary for LP.

Our findings indicate the synergistic relationship between DMN suppression and FPN
integration in the aging brain, reflecting a trade-off between functional efficiency and
reorganization cost (Barabasi et al., 2023; Barbey, 2018). This aligns with the brain’s wiring

economy principle (Achard & Bullmore, 2007; Bullmore & Sporns, 2012; Shine & Poldrack,
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2018), aiming to maximize the benefits of compensatory functional integration while
minimizing energy expenditure through deactivation. In this context, our study proposed a
probabilistic model to elucidate the functional mechanisms responsible for this "economic"

reorganization throughout the lifespan, as illustrated in Figure 3.

Overall, our model shows a transition occurring in midlife within the language connectome,
that is a shift from a more "energy-intensive™" (costly) dynamic of compensation to a more
"energy-efficient" one. Indeed, our research indicates that younger adults are more capable of
accommodating the metabolic demands associated with sustaining long-range neural
connections (Lietal., 2023; Liang et al., 2013; Tomasi et al., 2013). In comparison, older adults
seem to adopt a more "energy-efficient” approach, substituting the reallocation of long-range
connections between subsystems with short-range connections within subsystems, thus
lowering the metabolic demands needed to achieve compensatory integration. This joins
previous evidence showing reduced functional connectivity of long-range connections in older
adults (Sala-Llonch et al., 2014) and may offer a metabolic explanation for the onset of
cognitive decline observed in midlife in most cognitively demanding tasks (e.g., see Ceballos

et al., 2024 for a study on the costs of brain dynamics).

At a brain network level, this shift is driven by a reduced synergy between DMN suppression
and FPN integration as shown in Figure 4B. Indeed, compared to older adults, we found that
younger adults capitalize on the cooperation or synergy between the DMN and FPN to enhance
cognitive efficiency (Luppi et al., 2024; Xia et al., 2022). This is consistent with studies
suggesting that the communication between higher-order networks on the sensorimotor-
associative hierarchy, such as the DMN and FPN (Margulies et al., 2016), is more efficient at
handling the high metabolic demands associated with long-range or rich club connectivity

(Ceballos et al., 2024; Roy et al., 2017). Relatedly, our results are also consistent with the
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DECHA model (Spreng & Turner, 2019), proposing that reduced DMN suppression may result
in a more inflexible modulation of the connectivity between the DMN and FPN in response to
task challenges, a fortiori mediating cognitive decline in older adults, especially in lexical

production.

While previous studies agree that DMN suppression is a vital element for regulating task-
relevant dynamics (Leonards et al., 2023), as reflected by an increased metabolic response
during tasks (Stiernman et al., 2021), the link between reduced DMN suppression and inflexible
DMN-FPN coupling in older adults remains unclear. In this context, our study may bring
elements of response by suggesting that reduced DMN suppression may raise the metabolic
costs of maintaining long-range connectivity in the brain and that the inflexible DMN-FPN

coupling is the consequence of older adults dealing with this increased cost.

Supporting this, previous research showed that flexibly allocating attentional resources from
DMN to control regions, especially to the dIPFC as observed in our study (i.e., BA45 and
inferior frontal sulcus areas), promotes fluid-related performances (Lu et al., 2022) maintaining
a state of “global energy homeostasis” (Ramchandran et al., 2019), that is offsetting the cost of
FPN integration as observed in our study. Consequently, reduced DMN suppression in older
adults could raise the cost of FPN integration, momentarily disrupting this homeostasis. In
response, older adults may thus prioritize allocating attentional resources through low-
cost/short-range connections to restore the brain's homeostatic balance, further supporting the
shift from an “energy-costly” to a more "energy-efficient” integration around midlife.
Interestingly, Ramchandran et al. (2019) also noted that homeostasis may be secured through
“local cost-efficiency trade-offs,” thus being consistent with the discrepancy between a
declining local efficiency but a preserved global efficiency across the lifespan (Cao et al., 2014;

Song et al., 2014).
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From a neurocognitive perspective, our results offer specific insights into the brain functional
dynamics that uphold inter-cognitive functioning, specifically considering lexical production
(LP), verbal fluency, and semantic abstraction. The main message is that the synergistic
relationship between DMN suppression and FPN integration, characterized by flexible
allocation of attentional resources via long-range connections, is a compensatory strategy that
upholds inter-cognitive functioning in the aging brain. This compensatory dynamic aligns with
a recent study suggesting that a youth-like network architecture that successfully balances
integrative and segregation properties offers core resilience within the DMN and FPN networks
(Stanford et al., 2022), translating to better semantic word-retrieval abilities (Krieger-Redwood

et al., 2016; Martin, Williams, et al., 2022).

Importantly, our results show that LP (mainly lexical generation) is subserved by two distinct
components, one Domain-General (DG) and one Language-Specific (LS), as posited by the
LARA model (Lexical Access and Retrieval in Aging; Baciu et al., 2021). This confirms that
LP can be viewed as an inter-cognitive function and the product of intra-(LS) and extra-(DG)
linguistic processes (Gordon et al., 2018; Roger, Banjac, et al., 2022; Roger, Rodrigues De

Almeida, et al., 2022).

On the one hand, the DG component, underpinned by multitasking, LP, and fluid-related
abilities, was anti-correlated with DMN suppression and FPN integration across the lifespan.
At a cognitive level, this aligns well with evidence linking the speed of retrieval and the
generation of lexical predictions to fluid processing abilities (Brothers et al., 2017; Strijkers et
al., 2011), further confirming that LP is a demanding task. At a neurocognitive level, this shows
that reduced DMN suppression in older adults may compromise the ability to allocate resources

from DMN to FPN regions cost-effectively, as discussed previously.
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On the other hand, the LS component, underpinned by semantic performances and DMN
suppression, peaked around midlife before declining in late life. While this confirms that
individuals tend to accumulate semantic knowledge over their lives (Salthouse, 2019), this
highlights that reduced DMN suppression in older adults also negatively impacts semantic
abstraction performances, which is the ability to generalize semantic knowledge for efficient
prediction (Moran et al., 2014), with implications for LP. Specifically, the increase in semantic
performances in LS was proportional to the decline in fluid abilities. Given the constraint fluid
processing places on LP, such accrual of semantic knowledge from younger to middle
adulthood could represent a compensatory "semantic strategy" that maintains LP performance

as fluid processing declines (Baciu et al., 2021; Wu & Hoffman, 2023).

Crucially, our results indicate that DMN suppression may capture the interplay between DG
and LS as it covaries with both components. A reduction of this interplay could reflect how
reduced DMN suppression in older adults compromises the ability to retrieve semantic
knowledge in a goal-directed manner, manifesting at a cognitive level the difficulties in
managing the cost of flexibly allocating attentional resources through long-range connections.
Said differently, DMN suppression could index the controlled search and retrieval of semantic
knowledge necessary for LP (i.e., DG-LS interplay) (Krieger-Redwood et al., 2019; Martin,
Saur, et al., 2022). This is consistent with the notion that semantic cognition depends on both
representational and control neural systems (Hoffman & MacPherson, 2022; Wu & Hoffman,
2023), with top-down processes regulating access to semantic representations (i.e., the DG-LS
interplay; see also the Controlled Semantic Cognition framework proposed by Ralph et al.

(2017).

As mentioned earlier, we suggested that the decrease in DMN suppression signifies a transition

from a more "energy-costly" state to an "energy-efficient™ one to maintain a global homeostatic
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balance within the brain. This transition aligns well with the lower control demands usually
associated with the higher prevalence of "semanticized" cognition in older adults (Spreng &
Turner, 2021). This also aligns with intriguing results revealing that older adults up until age

70 could continue to allocate (low-level) attentional resources, further delaying LP difficulties.

Indeed, after reduced DMN suppression in midlife, additional recruitment of the thalamus and
the left putamen led to better semantic abstraction and LP performance (see Figure 4B). This is
in line with studies showing that thalamic circuitry (Wolff et al., 2021; Wolff & Vann, 2019)
facilitates functional interactions between multiple cortical networks (Badke D’Andrea et al.,
2023; Gordon et al., 2022; Greene et al., 2020; Hwang et al., 2017), specifically maintaining
stable representations at the semantic-lexical interface (Crosson, 2021). Importantly, both the
thalamus and putamen showed high spatial concordance with the cingulo-opercular network
(CON), whose benefits for word recognition have been emphasized in prior work (Vaden et al.,
2013). This benefit could be attributable to the distinct role FPN and CON regions play in
cognitive control (Sestieri et al., 2014; Wallis et al., 2015): the former managing externally
guided/top-down control, selecting sensory cues from the environment, and the latter managing
memory-guided/bottom-up control, providing sufficient flexibility for comparing sensory
inputs to long-term memory traces (R. M. Brown et al., 2022). Thus, a synergy between CON
and DMN connectivity changes could contribute to the more “energy-efficient” dynamic

observed in older adulthood (Dosenbach et al., 2024; Han et al., 2023).

SENECA: a novel integrative and connectomic model

To synthesize, our study extends theoretical accounts on neurocognitive aging, revealing that
(i) LP draws from domain-general and language-specific processes; and (ii) the synergistic
coupling between DMN suppression and FPN integration upholds inter-cognitive functioning

across the lifespan while minimizing the brain’s energy expenditure.
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As Livneh (2023) suggests, we combine the connectomic and cognitive levels of analysis within
a single integrative model: SENECA. The SE-NE-CA model articulates a connectomic (SE)
and cognitive (CA) dimension, which embraces a complex system perspective (NE). We
borrow the name from the Seneca effect, generally found in complex systems, and describe "a
slow rise followed by an abrupt decline” (Bardi, 2017), thus reflecting the dynamic of inter-

cognitive functioning across the lifespan.

Along the connectomic dimension (S-synergistic; E-economical), we show that the synergistic
relationship between DMN suppression and FPN integration provides the efficiency and
flexibility necessary to compensate for reduced specialization while remaining economical —
preserving global energy homeostasis. Along the cognitive dimension (C-cognitive; A-aging),
we show that the onset of LP difficulties in midlife stems from reduced semantic control — the
ability to exert control on accumulated semantic knowledge in a goal-directed manner — which
may translate into poorer filtering of irrelevant semantic associations (Badre & Wagner, 2007,

Barba et al., 2010; Jefferies, 2013).

Unifying both dimensions (N-nonlinear; E-emergent), reduced DMN suppression compromises
the ability to manage the cost of FPN integration, prompting older adults to adopt a more
"energy-efficient” strategy that preserves homeostasis at the expense of inter-cognitive
functioning. This emphasizes that midlife is the turning point of a nonlinear and emergent
neurocognitive dynamic marked by (i) a shift towards an increasingly semantic cognition to
meet executive function decline (Spreng & Turner, 2021), and (ii) a shift towards a less
synergistic coupling between DMN and FPN regions (Spreng & Turner, 2019). Importantly,
SENECA aligns with a recent framework for cognition, suggesting that integration can be
considered synergistic or redundant (Luppi et al., 2024; Mediano et al., 2022). Synergistic

integration may correspond to “integration-as-cooperation™ between networks as observed up
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to midlife (i.e., "energy-costly,” flexible DMN-FPN coupling). Redundant integration may
correspond to "integration-as-oneness™ within each network as observed beyond midlife (i.e.,

"energy-efficient,” inflexible DMIN-FPN coupling).

In terms of clinical perspective, the SENECA model provides insights into the potential use of
age-related neural mechanisms as biomarkers in midlife for predicting late-life
neurodegenerative pathologies. Two hypotheses may be proposed: (i) Pathological word-
finding difficulties before midlife may indicate increased maintenance cost of long-range
connections, making them vulnerable to damage, as seen in pathological aging (Crossley et al.,
2014). (ii) Beyond midlife, these difficulties may reflect challenges in securing a more "energy-

efficient” compensatory integration strategy, compromising the brain's homeostatic balance.

Limitations of the study

Our study has several limitations: (A) Cross-sectional data & Inter-individual variability: The
neural mechanisms identified in this study rely on probabilities derived from cross-sectional
data, limiting their ability to account for inter-individual variability, especially in older
adulthood (Stumme et al., 2020). Longitudinal studies would therefore be more appropriate to
capture all the regions potentially underlying each mechanism. Future research should also
investigate age-invariant mechanisms associated with high cognitive reserve for a more
graceful language processing decline as age advances (Brosnan et al., 2023; Oosterhuis et al.,
2023; Wen & Dong, 2023; Wulff et al., 2022). Further studies should specify the factors
associated with the recruitment of subcortical structures, like the bilateral thalamus and left
putamen, in late adulthood. (B) Higher-order interactions: Current graph theory methods
assume dyadic relationships capture functional connectivity patterns of interest, but complex
cognitive functions, such as language processing, involve higher-order interactions (Gazzaniga

et al., 2019; Giusti et al., 2016). Modeling these interactions should be considered given the
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robust statistical and topological evidence (Schneidman et al., 2006; Yu et al., 2011; Gardner
et al.,, 2021; Giusti et al., 2015). While SENECA does not explicitly address higher-order
interactions, its predictions align with theoretical and empirical works showing age-related
changes in synergistic interactions and their impact on cognitively demanding tasks (Gatica et
al., 2021; Luppi et al., 2022; Rosas et al., 2022; Varley et al., 2023). (C) Density thresholding
& Atlas selection: Sophisticated techniques are needed to account for the diversity of
neuroimaging datasets and reduce intra-individual variability while preserving
neurobiologically meaningful edges (Jiang et al., 2023). Proportional thresholding may exclude
weaker edges, warranting exploration of data-driven filtering schemes like OMST (Orthogonal
Minimum Spanning Tree; Dimitriadis et al., 2017) in understanding how older adults balance
cognitive efficiency and reorganization cost. The SENECA model of neurocognitive aging
pertains to the language connectome, but further investigation with whole-brain atlases is
crucial, considering the impact of parcellations on reproducibility (Jiang et al., 2023; Ran et al.,

2020).

5. Conclusion

This study aimed to elucidate the brain’s functional mechanisms responsible for the variation
observed in language-related tasks as individuals age. Our findings highlight that, compared to
language comprehension, the maintenance of lexical production (LP) depends on the
synergistic relationship between suppression within the Default Mode Network (DMN) and
integration within the Fronto-Parietal Network (FPN) in the language connectome. This
relationship extends to support inter-cognitive tasks that draw upon both domain-general and
semantic processes. Crucially, we propose that midlife represents a critical neurocognitive
juncture that signifies the onset of LP decline, as older adults gradually lose exert control over

semantic representations. This transition could stem from reduced DMN suppression which
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compromises the ability to manage the cost of FPN integration, prompting older adults to adopt
a more cost-efficient compensatory strategy that maintains global homeostasis at the expense
of LP performances. In summary, we encapsulate these findings in a novel integrative and
connectomic model called SENECA, which articulates both cerebral (S- synergistic E-
economical) and cognitive (C- cognitive A- aging) dimensions within the framework of

complex systems (N- nonlinear E- emergent).
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