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Abstract 

Nocturnal human sleep consists of 4 – 6 ninety-minute cycles defined as episodes of non-rapid 

eye movement (non-REM) sleep followed by an episode of REM sleep. While sleep cycles are 

considered fundamental components of sleep, their functional significance largely remains 

unclear. One of the reasons for a lack of research progress in this field is the absence of a data-

driven definition of sleep cycles. Here, we proposed to base such a definition on fractal 

(aperiodic) neural activity, a well-established marker of arousal and sleep stages.  

We explored temporal dynamics of fractal activity during nocturnal sleep using 

electroencephalography. Based on the observed pattern of fractal fluctuations, we introduced a 

new concept of fractal activity-based cycles of sleep or “fractal cycles” for short, defined as a 

time interval during which fractal activity descends from its local maximum to its local minimum 

and then leads back to the next local maximum. Next, we assessed correlations between fractal 

and classical (i.e., non-REM – REM) sleep cycle durations. We also studied cycles with skipped 

REM sleep, i.e., the cycles where the REM phase is expected to appear except that it does not, 

being replaced by lightening of sleep. 

Regarding the sample, we examined fractal cycles in healthy adults (age range: 18 – 75 years, n 

= 205) as well as in children and adolescents (range: 8 – 17 years, n = 21), the group 

characterized by deeper sleep and a higher frequency of cycles with skipped REM sleep. 

Further, we studied fractal cycles in major depressive disorder (n = 111), the condition 

characterized by altered REM sleep (in addition to its clinical symptoms).  

We found that fractal and classical cycle durations (89 ± 34 min vs 90 ± 25 min) correlated 

positively (r = 0.5, p < 0.001). Cycle-to-cycle overnight dynamics showed an inverted U-shape of 

both fractal and classical cycle durations and a gradual decrease in absolute amplitudes of the 

fractal descents and ascents from early to late cycles. In adults, the fractal cycle duration and 

participant’s age correlated negatively (r = -0.2, p = 0.006). Children and adolescents had 

shorter fractal cycles compared to young adults (76 ± 34 vs 94 ± 32 min, p < 0.001). The fractal 

cycle algorithm detected cycles with skipped REM sleep in 91 – 98% of cases. Medicated 
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patients with depression showed longer fractal cycles compared to their own unmedicated 

state (107 ± 51 min vs 92 ± 38 min, p < 0.001) and age-matched controls (104 ± 49 vs 88 ± 31 

min, p < 0.001).  

In conclusion, fractal cycles are an objective, quantifiable, continuous and biologically plausible 

way to display sleep neural activity and its cycles. They are useful in healthy adult and pediatric 

populations as well as in patients with major depressive disorder. Fractal cycles should be 

extensively studied to advance theoretical research on sleep structure. 

 

Keywords: sleep cycles, non-REM-REM sleep cycle, aperiodic activity, temporal dynamics of 

aperiodic activity, fractal power component, sleep, EEG, polysomnography, hypnogram, major 

depressive disorder, antidepressants, development, children and adolescent sleep. 

 

Highlights  

- Fractal activity-based cycles of sleep or “fractal cycles” for short is a new concept based 

on cyclic changes in fractal (aperiodic) neural activity during sleep. 

- Durations of fractal and classical cycles correlate, and both show an inverted U-shape 

when seen from early to late cycles.  

- The fractal cycle algorithm is effective in detecting cycles with skipped REM sleep. 

- Older healthy adults shower shorter fractal – but not classical – cycle durations. 

- Fractal cycle duration is shorter in children and adolescents compared to young adults. 

- In major depressive disorder, antidepressant medication is associated with longer fractal 

cycles. 
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Introduction 

The cyclic nature of sleep has long been established with a classical sleep cycle defined as a 

time interval that consists of an episode of non-rapid eye movement (non-REM) sleep followed 

by an episode of REM sleep (Feinberg & Floid, 1979; Le Bon, 2020). Typically, nocturnal sleep 

consists of 4 – 6 such cycles, which last for about 90 minutes each. Every cycle is seen as a 

fundamental physiological unit of sleep central to its function (Feinberg, 1974) or a miniature 

representation of the sleep process (Le Bon, 2002).  

Basic structural organization of normal sleep is rather conservative with some exceptions. Thus, 

occasionally, at the beginning of the night in healthy adolescents and young adults, there could 

occur cycles with skipped REM sleep, which are also called “skipped” cycles. In skipped cycles, a 

REM sleep episode is expected to appear except that it does not and only a “lightening" of sleep 

is observed presumably due to too high non-REM pressure (Le Bon, 2020). Likewise, some 

alterations of the sleep structure can be observed in sleep disorders, e.g., narcolepsy and 

insomnia (Scammell, 2015), and healthy aging (Carrier et al., 2011; Conte et al., 2014). In some 

neurological and psychiatric conditions, such as major depressive disorder (MDD), Parkinson’s 

and Alzheimer’s diseases, sleep architecture disturbances are further linked to the disease 

neuropathology (Courtet & Olié, 2012; Palagini et al., 2013; Pillai & Leverenz, 2017). 

While the importance of sleep cycles is indisputable, their function as a unit is poorly 

understood and surprisingly under-explored, especially when compared to the extensive 

research on sleep stages (either non-REM or REM) or sleep microstructure (e.g., sleep spindles, 

slow waves, microarousals). One of the reasons for this striking absence of research progress 

might be the lack of proper quantifiable and reliable objective measure from which sleep cycles 

could be derived directly (Schneider et al., 2022).  

Currently, sleep cycles are defined via a visual inspection of the hypnogram, the graph in which 

categorically separated sleep stages are plotted over time. Yet assigning a discrete category to 

each sleep stage is rather arbitrary as sleep stages are presumably continuous and thus do not 

occur as steep lines of a hypnogram. In addition, visual sleep stage scoring is very time-
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consuming, subjective and error-prone with a relatively low (~80%) inter-rater agreement. This 

results in a low accuracy regarding the sleep cycle definition. 

We suggest that a data-driven approach based on a real-valued neurophysiological metric (as 

opposed to the categorical one) with a finer quantized scale could forward the understanding 

of sleep cycles considerably. Specifically, we propose that research on sleep cycles would 

benefit from recent advances in the field of fractal neural activity. In literature, fractal activity is 

also called aperiodic, non-oscillatory, 1/f or scale-free activity, being named after the self-

similarity exhibited by patterns of sensor signals across various time scales. Fractal activity is a 

distinct type of brain dynamics, which is sometimes seen as a “background” state of the brain, 

from which linear, rhythmic (i.e., periodic, oscillatory) dynamics emerge to support active 

processing (Buzsaki, 2006; Freeman et al., 2006). Growing evidence confirms that fractal activity 

has a rich information content, which opens a window into diverse neural processes associated 

with sleep, cognitive tasks, age and disease (Voytek & Knight, 2015; Bódizs et al., 2021; 2024; 

Höhn et al., 2022). 

Fractal dynamics follow a power-law 1/f function, where power decreases with increasing 

frequency (He, 2014). The steepness of this decay is approximated by the spectral exponent, 

which is equivalent to the slope of the spectrum when plotted in the log-log space (He, 2014; 

Gerster et al., 2022). The fractal signal is not dominated by any specific frequency, rather it 

reflects the overall frequency composition within the time series (Horváth et al., 2022) such 

that steeper (more negative) slopes indicate that the spectral power is relatively stronger in 

slow frequencies and relatively weaker in faster ones (He, 2014). 

In terms of mechanisms, it has been suggested that flatter high-band (30 – 50Hz) fractal slopes 

reflect a shift in the balance between excitatory and inhibitory neural currents in favour of 

excitation while steeper slopes reflect a shift towards inhibition (Gao et al., 2017). Given that 

the specific balance between excitation and inhibition defines a specific arousal state and the 

conscious experience of an organism (Nir & Tononi, 2010), the introduction of Gao’s model led 

to an increased interest in fractal activity. For example, it has been shown that high-band fractal 

slopes discriminate between wakefulness, non-REM and REM sleep stages as well as general 
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anesthesia or unconsciousness (Gao et al., 2017; Colombo et al., 2019; Lendner et al., 2020; 

Höhn et al., 2022). 

Of note, Gao’s model does not account for the lower part of the spectrum, which is also scale-

free. An alternative model suggests that the broadband 1/f² activity reflects the tendency of the 

central nervous system to alternate between UP- (very rapid spiking) and DOWN- 

(disfacilitation, no activity) states (Milstein et al., 2009; Baranauskas et al., 2012). Empirical 

studies further showed that the broadband (2 – 48Hz) slope is an especially strong indicator of 

sleep stages and sleep intensity with low inter-subject variability and sensitivity to age-related 

differences (Miskovic et al., 2019; Schneider et al., 2022; Horváth et al., 2022). Taken together, 

this literature suggests that fractal slopes can serve as a marker of arousal, sleep stages and 

sleep intensity (Lendner et al., 2020; Schneider et al., 2022; Horváth et al., 2022). We expect 

that this line of inquiry could be extended to sleep cycles.  

On a related note, the reciprocal interaction model of sleep cycles assumes that each sleep 

stage involves distinct activation patterns of inhibitory and excitatory neural networks (Pace-

Schott & Hobson, 2002). This model explains alternations between non-REM and REM sleep 

stages by the interaction between aminergic and cholinergic neurons of the mesopontine 

junction (Pace-Schott & Hobson, 2002). Notably, during REM sleep, acetylcholine plays a major 

role in maintaining brain activation, which is expressed as EEG desynchronization, one of the 

main features of REM sleep (Nir & Tononi, 2010). This is of special importance in affective 

disorders since according to one of the pathophysiological explanations of depression, i.e., the 

cholinergic-adrenergic hypothesis, central cholinergic factors play a crucial role in the aetiology 

of affective disorders, with depression being a disease of cholinergic dominance (Janowsky et 

al., 1972). Many antidepressants (e.g., serotonin-norepinephrine reuptake inhibitors, selective 

serotonin reuptake inhibitors) suppress REM sleep and thus cause essential alterations in sleep 

architecture. Intriguingly, REM sleep suppression is related to the improvement of depression 

during pharmacological treatment with antidepressants enhancing monoaminergic 

neurotransmission (Vogel et al., 1990; Wichniak et al., 2013).  
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Based on this background, we propose that a fractal neural activity-based definition of sleep 

cycles has the potential to considerably advance our understanding of the cyclic nature of 

sleep, for example, by introducing graduality to the categorical concept of sleep stages. The 

current study analyzes the dynamics of nocturnal fluctuations in fractal activity using five 

independently collected polysomnographic datasets overall comprising 205 recordings from 

healthy adults. Based on the inspection of fractal activity across a night, we introduce a new 

concept of fractal activity-based cycles of sleep or “fractal cycles” for short. We describe 

differences and similarities between fractal cycles defined by our algorithm and classical (non-

REM – REM) cycles defined by the hypnogram. We hypothesize that the timing and durations of 

the fractal cycles would closely correspond to those of classical cycles. We had no prior 

hypothesis regarding correspondence between the fractal cycles and classical cycles with 

skipped REM sleep, i.e., this analysis was exploratory.  

Given the above-mentioned age-related changes in fractal activity (flatter slopes) and sleep 

structure (fewer and shorter classical cycles), we also study whether fractal cycle characteristics 

change with age. To this end we use 5 healthy adult datasets with the age range of 18 – 75 

years (n = 205). Moreover, we add to our study a pediatric polysomnographic dataset (age 

range: 8 – 17 years, n = 21) to explore fractal cycles in childhood and adolescence, a life period 

accompanied by deepest sleep and massive brain reorganization (Kurth et al., 2012) as well as a 

higher frequency of cycles with skipped REM sleep (Jenni & Carskadon, 2004).  

Finally, we test the clinical value of the fractal cycles by analyzing polysomnographic data in 111 

patients with MDD, a condition characterized by disturbed sleep structure (besides its clinical 

symptoms, such as abnormalities of mood and affect). Specifically, we compare fractal cycles of 

sleep between medicated MDD patients (three MDD datasets, n = 111) and healthy age-

matched controls (n = 111) as well as in the unmedicated and medicated states within the same 

MDD patients (one of the three MDD datasets, n = 38). We hypothesize that the fractal cycle 

approach would be more sensitive in detecting differences between typical and atypical sleep 

architecture compared to the conventional classical cycles. 
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Methods 

Healthy participants 

We retrospectively analyzed polysomnographic recordings from the following studies (Table 1): 

Datasets 1 – 3: 40, 40 and 33 healthy controls from three independent sleep studies in MDD 

conducted at the Max Planck Institute of Psychiatry, Germany. These datasets are described in 

Rosenblum et al. (2023 a) and Bovy et al. (2022). In addition, these participants are used as 

controls in MDD datasets A – C described below. 

Dataset 4: 36 healthy participants from a home-based sleep study exploring simultaneous 

polysomnographic and EEG wearables conducted at the Donders Institute for Brain, Cognition 

and Behavior, the Netherlands (Described as Dataset 2 in Jafarzadeh Esfahani et al., 2023). The 

signal was recorded at participants’ homes over three nights with a gap of a week between 

each recording. For consistency with other datasets (i.e., to end up with a comparable number 

of cycles provided by each participant), we used polysomnography (and not EEG recorded by 

wearables) from the first night only since it had the largest sample size (i.e., 5 subjects dropped 

out from the study after the first polysomnographic recording). 

Dataset 5: 68 healthy controls from previous endocrinological studies conducted at the Max 

Planck Institute of Psychiatry, Germany, using only nights with no pharmacological or endocrine 

intervention. 60/68 participants are described in Rosenblum et al. (2024 a).  

Dataset 6: 21 healthy children and adolescents from previous studies (Furrer et al., 2019; Volk 

et al., 2019; Jaramillo et al., 2020) conducted at the University Children's Hospital Zürich, 

Switzerland. For the control group to this dataset, we selected all healthy adults from Datasets 

1 – 3, 5, 6 (n = 205) whose ages lay in the range of 23 – 25 years (the age when the brain 

maturation process is supposed to be finished (Giedd & Rapoport, 2010) and no age-related 

processes are expected to start). This resulted in 24 subjects with a mean age of 24.8 ± 0.9 

years.  
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The studies were approved by the Ethics committee of the University of Munich (Datasets 1 – 3, 

5), Radboud University (Dataset 4) and Canton of Zürich (Dataset 6). All participants (or 

participants’ parents for Dataset 6) gave written informed consent. 

 

Patients with MDD 

We retrospectively analyzed polysomnographic recordings from our previous studies (Bovy et 

al., 2022; Rosenblum et al., 2023 a, Tables 1 – 2):  

Dataset A: 40 long-term medicated MDD patients vs 40 age- and gender-matched healthy 

controls (Dataset 1 here). 

Dataset B: 38 MDD patients in unmedicated and 7-day medicated states vs 40 healthy age and 

gender-matched controls (Dataset 2 here). 

Dataset C: 33 MDD patients at 7-day and 28-day of medication treatment vs 33 healthy age and 

gender-matched controls (Dataset 3 here). 

Demographic and sleep characteristics of the patients, medication treatment and 

polysomnographic devices are described in our previous works (Bovy et al., 2022; Rosenblum et 

al., 2023 a). Here, Table S5 (Supplementary Material) presents medication treatment. In 

Rosenblum et al. (2023 a), Datasets A, B and C are referred to as the Replication Dataset 2, 

Main Dataset and Replication Dataset 1, respectively; in Bovy et al. (2022), the naming is the 

same as here. All studies were approved by the Ethics committee of the University of Munich. 

All participants gave written informed consent. 

The first part of this study analyzes the data from healthy participants only and labels the 

datasets with the numbers 1 – 6. The second part of this study compares patients and controls 

and labels the analyzed datasets with the letters A – C. Notably, healthy participants used as 

controls in datasets A – C are the same subjects analyzed in Datasets 1 – 3.  
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In Supplementary Material, we report how many participants and for what reasons were 

excluded from the analysis. An example of one excluded participant is given in Fig.S6 C (S37). 

Likewise, we report pilot findings on fractal cycles in patients with psychophysiological 

insomnia, using the open access dataset from Rezaei et al., 2017 (Fig.S10, Supplementary 

Material).  

 

Polysomnography 

Information about the studies and polysomnographic devices is reported in Table 1. The 

participants slept wearing a polysomnographic device in a sleep laboratory (Datasets 1 – 3, 5, 6) 

or in the home environment (Dataset 4). In datasets 1 – 3 and 5 all participants had an 

adaptation night before the examination night; adaptation night data was not available to be 

analyzed and reported here. In dataset 6, all participants had two recording nights: a baseline 

and an examination night with auditory stimulation. Here, only the baseline night was analyzed, 

which was either the first night (in 50% of cases) or the second night for a given participant. 

Sleep stages were previously scored manually by independent experts according to the AASM 

standards (AASM, 2014). In the pediatric dataset, we used 20-s epochs, in the rest of the 

datasets, we used 30-s epochs. Epochs with EMG and EEG artifacts and channels with more 

than 20% artifacts during non-REM sleep were manually excluded by an experienced scorer 

before all automatic analyses. 

We opted to analyze the F3 and F4 electrodes for maximal consistency between the studies as 

these leads were available in 6 out of 7 datasets. Another reason is that in our future studies, 

we plan to replicate this work using the data recorded with at-home wearable devices, which 

often have only frontal channels (e.g., F7 and F8). We report the topographical analysis over 

central, parietal and occipital electrodes (when available) in healthy and clinical datasets in 

Tables S1 and S6 of Supplementary Material, respectively, showing comparable results. In Table 

S1 of Supplementary Material, we also report correlations between fractal cycle durations 

defined using different channels. 
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Table 1: Datasets description  

Characteristic 
Dataset 1 

(A) 

Dataset 2 

(B) 

Dataset 3  

(C) 
Dataset 4 Dataset 5 

Dataset 6 

(pediatric) 

Reference to 

original study 
Rosenblum et al., 2023 a 

Jafarzadeh 
Esfahani et 
al., 2023 

Rosenblum et 
al., 2024 a 

Furrer et al., 
2019; Volk 
et al., 2019; 
Jaramillo et 
al., 2020 

No. healthy 

participants  

(-excluded) 

40 (-2) 40 (-1) 33 (-1) 36 (-2) 68 (-6) 21 (0) 

Exclusion 

reasons 

>25% WASO 
<150-min 
recording 

<150-min 
recording 
  

>25% 
WASO 

>25% WASO 
No REM 

>25% WASO 
No REM 

— 

No. MDD 

patients 

(none 

excluded) 

40 38 33 0 0 0 

Study 

environment 

Sleep lab + a 
memory task 
before1 

Sleep lab + 
memory 
tasks 
before1, 2 

Sleep lab 

Sleep at 
home with 
EEG and 
headband 

Sleep lab + 
simultaneous 
blood 
measurement3 

Sleep lab + 
MRI before 
and after 
sleep4 
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Device 

Comlab 32 
Digital Sleep 
Lab, Brainlab 
V 3.3 
Software, 
Schwarzer, 
GmbH, 
Munich, 
Germany 

JE-209A 
amplifier 
(Nihon 
Kohden, 
Tokyo, 
Japan), 
with 128ch 
BrainCap 
(EasyCap 
GmbH, 
Herrsching, 
Germany) 

Comlab 
32 Digital 
Sleep Lab, 
Brainlab V 
3.3 
Software, 
Schwarzer 
GmbH, 
Munich, 
Germany 

Somnomedics 
GmbH, 
Randersacker, 
Germany 

Comlab 32 
Digital Sleep 
Lab, Brainlab 
V 3.3 
Software, 
Schwarzer 
GmbH, 
Munich, 
Germany 

Sensor Net 
for long-
term 
monitoring 
(Electrical 
Geodesic 
Inc., EGI, 
Eugene, OR, 
USA) 
  

No. channels 4 128 32 24 16 128 

(Offline re)-

referenced to 

Contralateral 
mastoid 

Average of 
all leads 

Average 
of all 
leads 

Contralateral 
mastoid 

Contralateral 
mastoid 

Contralateral 
mastoid 

Sample rate, 

Hz 
250 200 250 256 250 500 

Filtering 

during 

recording, Hz 

0.3 – 70 > 0.016 0.53 – 70 0.2 – 35 0.3 – 70 0.01 – 200 

Available 

frontal 

electrodes  

none 

Fz, F1, F2, 
F3, F4, F5, 
F6, F7, F8, 
F9, F10  

Fz, F3, F4, 
F7, F8 

F3, F4 F3, F4 F3, F4 

Analyzed 

electrodes 
C3, C4 F3, F4 F3, F4 F3, F4 F3, F4 F3, F4 

1
 – a procedural memory paradigm (finger tapping task) before sleep, 

2
 – a declarative memory paradigm (word-pair 

learning task) before sleep, 
3 

– in this study, 4 ml blood were drawn every 20 minutes from the adjacent room, using an 

intravenous cannula and a tube extension, 
4 

– an MRI scan was taken in the evening before and in the morning after 

the sleep measurement, WASO – wake after sleep onset, REM – rapid eye movement sleep, MDD – major depressive 

disorder. 
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Fractal power component 

Offline EEG data analyses were carried out with MATLAB (version R2021b, The MathWorks, 

Inc., Natick, MA), using the Fieldtrip toolbox and custom-made scripts. For each participant, we 

averaged the EEG signal over the F3 and F4 electrodes (or C3 and C4 – for Dataset 1 where the 

frontal channels were unavailable), calculated its spectral power for every 30 (adult datasets) or 

20 (the pediatric dataset) seconds corresponding to the conventionally defined duration of 

sleep epochs and differentiated the total power to its fractal (i.e., aperiodic, 1/f, scale-free) and 

oscillatory components. Several methods to calculate fractal components exist. We opted to 

use the Irregularly Resampled Auto-Spectral Analysis (IRASA; Wen & Liu, 2016) tool embedded 

in the Fieldtrip toolbox (Oostenveld et al. 2011), one of the leading open-source EEG softwares, 

with the ft_freqanalysis function as described elsewhere (Rosenblum et al., 2023 a; 2023 b). A 

side note: slopes calculated with the IRASA strongly correlate (r = |0.9|) with those calculated 

using the “fitting oscillations and one over f” (FOOOF, See Supplementary Material in Schneider 

et al., 2022), another useful method used for aperiodic analysis (Donoghue et al., 2020). The 

fractal power component (shown in Fig.S1 A of Supplementary Material) was transformed to 

log-log coordinates and its slope was calculated to estimate the power-law exponent (the rate 

of spectral decay), using the function logfit (Lansey, 2020). The loglog data fit is shown in Fig.S1 

E of Supplementary Material. The analysis flowchart is depicted in Fig.1 A; outputs of some of 

the analysis steps in an example individual are shown in Fig.1 B.  
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Figure 1. Analysis. A. Analysis flowchart. IRASA – Irregularly Resampled Auto-Spectral Analysis, 
sgolayfilt – Savitzky-Golay filter. B. Outputs of some of the analysis steps in an example healthy 
26-year-old individual. From top to bottom: time-frequency representation of the total spectral 
power, raw and smoothed time series of the fractal slopes and hypnogram. Frontal spectral 
power and its slopes were calculated in the 0.3 – 30 Hz range for each 30 seconds of sleep. 

 

 

As opposed to the oscillatory component, the fractal component is usually treated as a unity 

and, therefore, is filtered in the broadband frequency range (Donoghue et al., 2020; Bódizs et 

al., 2021; Gerster et al., 2022). Nevertheless, different studies defined (slightly) differing bands, 

e.g., 30 – 50Hz (Gao et al., 2017; Lendner et al., 2020), 3 – 55Hz (Waschke et al., 2021), 0.5 – 

35Hz (Miskovic et al., 2019), 1 – 40Hz, 1 – 20Hz and 20 – 40Hz (Colombo et al., 2019), 1 – 45Hz 

(Helson et al., 2023), 0.5 – 40Hz (Vinding et al., 2023), 3 – 45Hz and 30 – 45Hz (Höhn et al., 

2022) and 2 – 48Hz (Bódizs et al., 2021; Schneider et al., 2022).  

Here, we used the 0.3 – 30Hz range as this is a typical sleep frequency band used in many areas 

of sleep research, showing good ability to differentiate between sleep stage as could be seen in 

Fig.S1 B (Supplementary Material), which replicates existing literature. Dataset 4 was analyzed 

in the 0.3 – 18Hz range since relatively low low-pass filtering was applied to it during the 

recording (see Table 1). In Table S2 of Supplementary Material, we also analyze the 1 – 30Hz 

band to control for a possible distortion (the so called “knees'' of the spectrum) of the linear fit 

by excluding low frequencies with strong oscillatory activity (Gao et al., 2017; Bódizs et al., 

2021). We find that the results are similar to those obtained for the 0.3 – 30Hz band reported in 

the Main text (probably thanks to the smoothening procedure we applied).  

Finally, Fig.S1 D (Supplementary Material) shows aperiodic slopes in the 30 – 48Hz band 

averaged over sleep stages for Datasets 1 – 3 and 5. According to literature, REM sleep is 

expected to show the steepest (most negative) high-band slopes compared to all other sleep 

stages. However, we were able to replicate this finding in Datasets 1 and 5 only. Given poor 

differentiation between the stages in 2/4 datasets, this variable was not used in any further 

analyses. 
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Fractal activity-based cycles of sleep 

Fractal activity-based cycles of sleep or “fractal cycles” for short were defined from fractal slope 

time series. For this, time series of the fractal slopes were z-normalized (raw values can be seen 

in Fig.S1 C, Supplementary Material) within a participant and smoothened with the Savitzky-

Golay filter (Fig.1), the filter highly used in many fields of data processing. We used the Matlab’s 

function sgolayfilt(slope_time_series, order, frame_length) with the polynomial order of five 

and the frame length of 101. The peaks of the smoothed time series of the fractal slopes were 

defined with Matlab’s function findpeaks (slope_time_series, 'MinPeakDistance', 40, 

'MinPeakProminence', 0.9) with the minimum peak distance of 20 minutes (i.e., forty 30-second 

epochs) and minimum peak prominence of |0.9| z (Fig.2 A – B). The amplitude of the 

descending and ascending phases of a cycle was defined to be > |0.9| z, meaning that there is a 

probability of p=0.8 that a given fractal slope lies below/above the standard normal 

distribution. 

Of note, we had no solid a priori theoretical indication for choosing either of the function 

settings mentioned above. All settings were chosen a posteriori following an exploratory visual 

inspection of the normalized data from one dataset (Dataset 5), which therefore can be 

transferred to other datasets. That is, in datasets 1 – 4 and 6, the settings of the sgolayfilt and 

findpeaks functions were defined a priori based on the results obtained while inspecting 

Dataset 5.   

In Table S7 of Supplementary Material, we compare results obtained while using different 

thresholds of the abovementioned parameters; namely, longer and shorter smoothing windows 

and higher and lower minimum peak prominence. 

 

Classical sleep cycles 

Classical sleep cycles were defined manually via the visual inspection of the hypnograms by two 

independent scorers according to the criteria originally proposed by Feinberg and Floyd (1979) 
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with some adaptations as follows. A cycle typically starts with N1, N2 or sometimes wake and is 

followed by N2 or N2 and slow-wave sleep (SWS) > 20 minutes in duration, which can include 

wake. The cycle ends with the end of the REM period, which can include wake or short 

segments of non-REM sleep. No minimum REM duration criterion was applied (Tarokh et al., 

2012). In some cases (described below), the cycle end was defined at a non-REM sleep stage or 

wake. Two examples of hypnograms with marked classical sleep cycles are shown in Fig.2 A – B. 

Four more examples are presented in Fig.S2 (Supplementary Material). 

The last incomplete (not terminated by the REM sleep phase) cycle at the end of the night was 

included in the analysis if its duration was > 50 minutes. The last incomplete cycles < 50 

minutes were removed (nevertheless, they are shown in figures when present).  

In Supplementary Excel File shared on https://osf.io/gxzyd, we report classical cycle durations 

for each participant as scored by two human raters and the automatic algorithm (Blume & 

Cajochen, 2021). In Table S8 of Supplementary Material, we report the inter-rater agreement in 

number and durations of classical cycles. 

 

Skipped cycles 

Given the absence of strict and broadly accepted rules for cycles with skipped REM sleep 

definition in literature, here, we tagged a cycle as “skipped” based on the visual inspection of 

the hypnogram combined with the criteria proposed by Jenni and Carskadon (2004) and Tarokh 

et al. (2012). Specifically, we subdivided a long cycle > 110 minutes into two when: 1) there was 

a “lightening of sleep” (i.e., the presence of wake, N1 and N2) in the middle of the long cycle, 

when a REM sleep episode was anticipated, 2) a continuous episode of N1, N2, wake or 

movement time lasting at least 12 minutes was preceded and followed by slow-wave sleep 

(Jenni & Carskadon, 2004); 3) two clear episodes of slow-wave sleep were separated by lighter 

non-REM stages (which might include wake) (Campbell et al., 2011; Tarokh et al., 2012). Long 

cycles containing skipped cycles were divided into cycles at time of sleep lightening. Examples 

of hypnograms with skipped sleep are shown in Fig.S6 and Fig.S9 (Supplementary Material). For 
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each dataset, we checked whether the classical cycles with skipped REM sleep had been 

detected by the fractal cycle algorithm.  

In Supplementary Excel File shared on https://osf.io/gxzyd, we report which classical cycles 

were tagged as “skipped” by two human raters. In Supplementary Material, we report the inter-

rater agreement in number of cycles with skipped REM sleep (Table S9). In Supplementary 

PowerPoint File shared on https://osf.io/gxzyd, hypnograms of all healthy adult participants are 

presented next to fractal cycles with skipped cycles marked individually as assessed by rater 1. 

 

Statistical analysis 

The assumption that durations of the fractal and classical cycles come from a standard normal 

distribution was tested using the one-sample Kolmogorov-Smirnov test. The result suggested 

that this assumption should be rejected (p<0.05); therefore, non-parametric tests were used for 

all further analyses.  

We correlated fractal and classical cycle durations using Spearman’s correlations in each 

dataset separately as well as in all datasets pooled. Given that in some participants (from 34 to 

55% in different datasets), the number of the fractal cycles (mean 4.6 ± 1.0 cycles per 

participant) was not equal to the number of the classical cycles (mean 4.7 ± 0.9 cycles per 

participant), prior to the correlation analysis, we averaged the duration of the fractal and 

classical cycles over each participant. For a subset of the participants (45 – 66% of the 

participants in different datasets) with a one-to-one match between the fractal and classical 

cycles, we performed an additional correlation without averaging, i.e., we correlated the 

durations of individual fractal and classical cycles.  

To identify sources of fractal and classical cycle mismatch, we further correlated between the 

difference in classical vs fractal sleep cycle durations on the one side and either the amplitude 

of fractal descend/ascend (to reflect fractal cycle depth), duration of cycles with skipped REM 
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sleep, duration of wake after sleep onset or the REM episode length of a given cycle (to reflect 

peak flatness) on the other side (Table 3).     

Likewise, we computed person-centered effect sizes, the approach that answers the question, 

“How many participants in the study showed the consistent with theoretical expectation 

effect?”. This approach helps to reveal data patterns that are missed by traditional statistical 

analyses (Grice et al., 2020). We calculated the sample prevalence by counting the number of 

significant correlations between fractal and classical cycle duration divided by the total number 

of cases (both significant and non-significant).  

To assess the population prevalence of the findings with associated uncertainty, we used the 

Bayesian prevalence, accounting for the false positive rate of the statistical test (Ince et al., 

2022). This method helps to estimate the proportion of the population that would show the 

effect if they were tested in this experiment or, in other words, the population within-

participant replication probability (Ince et al., 2022). As an output, this method provides the 

maximum a posterior estimate – the most likely value of the population parameter. To quantify 

the uncertainty of this estimate, Bayesian prevalence also provides the highest posterior 

density intervals for various levels (we used the 96% probability level) – the range within which 

the true population value lies with the specified probability. To perform this analysis we used 

an online web application available at https://estimate.prevalence.online.  

To compare pediatric and young adult groups (Table S3 in Supplementary Material), MDD 

patients and controls (Table 4), MDD patients treated with REM-suppressive antidepressants 

and patients treated with REM-non-suppressive antidepressants (Table S5 in Supplementary 

Material), we used the non-parametric Mann-Whitney U test. We performed the analyses both 

at the cycle level (while pooling the cycles of all participants together) as well as at the subject 

level (while averaging the cycles of a given participant). Given that the results of both analyses 

were similar, we report only the cycle level analysis for simplicity. To compare medicated and 

unmedicated states of the MDD patients (Table 4), we used the paired samples Wilcoxon test. 

Effect sizes were calculated with Cohen's d.  
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In Supplementary Material, we report autocorrelations and partial autocorrelations of fractal 

slope time series (Fig.S11) as well as cross-correlations (Fig.S12) between time series of fractal 

slopes vs. time series of non-REM or REM sleep proportion to further model their temporal 

relationships.   

 

Data and code sharing 

The fractal slope and sleep stage for each 30-second epoch of sleep for healthy adult 

participants, Matlab scripts calculating fractal slopes and fractal cycles, Excel file used to 

perform all the statistical analyses with the fractal and sleep characteristics for each participant 

and PowerPoint file depicting fractal and classical cycles for all participants can be accessed 

under https://osf.io/gxzyd.   

 

Results 

Fractal cycles in healthy adults 

Fig.2 A displays smoothed fractal slope time series and hypnogram for an example subject. Four 

additional examples are presented in Fig.S2 (Supplementary Material). Fractal slope time series 

and hypnograms for all healthy adult participants are shown in Supplementary PowerPoint File 

shared on https://osf.io/gxzyd.  

We observed that the slopes of the fractal (aperiodic) power component fluctuate across a 

night such that the peaks of the time series largely coincide with REM sleep episodes while the 

troughs of the time series for the most part coincide with non-REM sleep episodes. Based on 

this observation we propose the following definition: 

Definition: The fractal activity-based cycles of sleep or “fractal cycles” for short is a time 

interval during which the time series of the fractal slopes descend from the local maximum to 
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the local minimum with the amplitudes higher than |0.9| z, and then lead back from that 

local minimum to the next local maximum. 

Based on this definition, we created an algorithm, which automatically defined the onset and 

offset of the fractal cycles (the adjacent peaks of the time series of the fractal slopes) (available 

on https://osf.io/gxzyd/). An additional visual inspection showed that the automatic definition 

of fractal cycles (Fig.2 A, blue diamonds) was identical to that provided by a human scorer. 

Overall, fractal slopes cyclically descend and ascend 4 – 6 times per night and the average 

duration of such a descent-ascent cycle is close to 90 minutes. Fig.S3 A (Supplementary 

Material) shows the frequency distribution of the fractal cycle durations for each dataset 

separately as well as for the pooled dataset.   

This observation strikingly resembles what we know about classical sleep cycles: “night sleep 

consists of 4 – 6 sleep cycles, which last for about 90 minutes each” (Feinberg & Floid, 1979; Le 

Bon, 2020; Fig.S3 A, bottom panel). Further calculations showed that the mean duration of the 

fractal cycles averaged over all cycles from all datasets (n = 940) is 89 ± 34 minutes while the 

mean duration of the classical sleep cycles is 90 ± 25 minutes (Fig.S3 B, Supplementary 

Material). The mean durations of the fractal and classical sleep cycles averaged over each 

participant correlated in all analyzed datasets (r = 0.4 – 0.5, Table 2, Fig.2 C).  

Fig.S7 (Supplementary Material) shows fractal activity across 13-h, including 3 hours before the 

sleep onset and 2 hours after awakening. The pattern of fractal fluctuations suggests that 

fractal cycles are specific to sleep and are not observed during wake. 

Cycle-to-cycle overnight dynamics showed an inverted U-shape of the fractal cycle durations 

and a gradual decrease in absolute amplitudes of the fractal descents and ascents from early to 

late cycles. This pattern resembled an inverted U-shape of the classical cycle durations (Fig.2 D).  
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Figure 2. Fractal cycles in healthy adults. A – B. Individual fractal and classical sleep cycles. 
Time series of smoothed z-normalized fractal slopes (bottom) and corresponding hypnograms 
(top) observed in two different participants. The duration of the fractal cycle is a time interval 
between two successive peaks (blue diamonds). A: S15 from Dataset 3 shows a one-to-one 
match between fractal cycles defined by the algorithm and classical (non-REM – REM) cycles 
defined by the hypnogram. B: In S22 from dataset 5, the second part of night has many wake 
epochs, some of them are identified by the algorithm as local peaks. This results in a higher 
number of fractal cycles as compared to the classical ones and a poor match between the 
fractal cycles No. 3 – 7 and classical cycles No. 2 – 5. The algorithm does not distinguish 
between the wake and REM-related fractal slopes and can define both as local peaks. Since the 
duration of the fractal cycles is defined as an interval of time between two adjacent peaks, 
more awakenings/arousals during sleep (usually associated with aging, Fig.S5 B) are expected to 
result in more peaks and, consequently, more fractal cycles, i.e., a shorter cycle duration. This is 
one of the possible explanations for the correlation between the fractal cycle duration and age 
(shown in Fig. S5 A). Time series of the fractal slopes and corresponding hypnograms for all 
participants are reportedshwon in Supplementary PowerPoint File shared on 
https://osf.io/gxzyd. SWS – slow-wave sleep, REM – rapid eye movement. C. Scatterplots: each 
dot represents the duration of the cycles averaged over one participant. The durations of the 
fractal and classical sleep cycles averaged over each participant correlate in all analyzed 
datasets, raw (non-ranked) values are shown, r – Spearman’s correlation coefficient. D. Cycle-
to-cycle overnight dynamics show an inverted U shape of the duration of both fractal and 
classical cycles across a night and a gradual decrease in absolute amplitudes of the fractal 
descents and ascents from early to late cycles.  
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Table 2: Demographic, sleep and fractal characteristics of healthy adults 

Characteristic Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 
Pooled 

dataset 

No. participants 

analyzed 
38 39 32 34 62 205 

Age, years 46.8 ± 10.7 31.0 ± 9.9 45.3 ± 15.9 21.5 ± 3.8 37.4 ± 15.3 36.7 ± 15.0 

Age range, years 29 – 65 19 – 54 22 – 75 18 – 35 20 – 66 18 – 75 

Gender, female, % 53 54 61 68 55 58 

Wake, % 6.0 4.9 7.5 7.1 9.1 7.0 

Non-REM stage 1, % 7.7 11.9 9.0 3.6 7.5 7.9 

Non-REM stage 2, % 48.1 45.9 49.3 34.7 46.1 45.1 

Slow-wave sleep, % 19.2 20.3 16.2 34.2 17.2 20.9 

REM sleep, % 19.0 16.9 17.9 19.3 19.3 18.6 

Total sleep time, min 394 ± 55 430 ± 26 434 ± 37 445 ± 62 467 ± 38 438 ± 51 

Classical sleep cycle 

duration, min 
86.2 ± 23.3 90.0 ± 21.3 89.0 ± 22.7 92.2 ± 23.7 91.9 ± 29.0 90.1 ± 24.9 

Fractal sleep cycle 

duration, min 
86.4 ± 35.2 90.0 ± 25.5 86.4 ± 31.2 94.7 ± 37.1 89.9 ± 37.1 89.1 ± 34.0 

Classical-fractal cycles 

duration correlation, r 
0.407 0.485 0.498 0.548 0.481 0.488 
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Classical-fractal cycles 

duration correlation, p 
0.011 0.002 0.004 0.001 10

�� 10
��� 

One-to-one match 

between classical and 

fractal cycles timing 

and duration, % cycles 

78 88 82 87 77 81 

Participants having all 

fractal and classical 

cycles in a one-to-one 

match, % participants 

53 62 66 53 45 54 

Descent amplitude, z -2.2 ± 0.9 -2.3 ± 0.9 -2.2 ± 0.8 -2.2 ± 0.8 -2.1 ± 0.8 -2.2 ± 0.8 

Ascent amplitude, z 2.1 ± 0.6 2.2 ± 0.6 2.1 ± 0.6 2.1 ± 0.6 2.0 ± 0.6 2.2 ± 0.6 

No. fractal cycles 167 171 152 152 298 940 

No. classical cycles 171 180 146 161 303 961 

No. “skipped” first 

cycles (%) 
5 (13%) 7 (18%) 1 (3%) 19 (56%) 15 (24%) 47 (23%) 

± shows mean and SD, r – Spearman’s correlation coefficient, “skipped” cycle – a cycle where the REM phase is 

expected to appear except that it does not, REM – rapid eye movement. 
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Correspondence between fractal and classical cycles 

Analysis at the individual cycle level revealed that 81% (763/940) of all fractal cycles (77 – 88% 

in different datasets) could be matched to a specific classical cycle defined by hypnogram, i.e., 

the timings of fractal and classical cycles approximately coincide. Bayesian prevalence analysis 

further revealed that the Bayesian highest posterior density interval with 96% probability level 

lies within the 0.77 – 0.83 range (the range within which the true population value lies) and the 

maximum a posteriori point estimate prevalence is equal to 0.8, reflecting the most likely 

values for the population parameter. This analysis reflects the within-participant replication 

probability: the probability of obtaining a significant experimental result if the same experiment 

was applied to a new participant randomly selected from the population (Ince et al., 2022). 

In 54% (111/205) of the participants (45 – 66% in different datasets), all fractal cycles 

approximately coincided with classical cycles (r = 0.5 – 0.8, p < 0.001, Table 2 and Fig.S4, 

Supplementary Material). Bayesian prevalence analysis revealed that the maximum a posteriori 

point estimate prevalence is equal to 0.52 and the Bayesian highest posterior density interval 

(the true population level) with 96% probability level lies within the 0.45 – 0.60 range. 

In the remaining 46% of the participants, the difference between the fractal and classical cycle 

numbers ranged from -2 to 2 with the average of -0.23 ± 1.23 cycle. This subgroup had 4.6 ± 1.2 

fractal cycles per participant, while the number of classical cycles was 4.9 ± 0.7 cycles per 

participant. The correlation coefficient between the fractal and classical cycle numbers was 

0.280 (p = 0.006) and between the cycle durations – 0.278 (p = 0.006). Still, in these 

participants, many – even though not all – fractal cycles could be matched to a specific classical 

cycle. Fig.2 B displays such an example in one participant. More examples can be found in Fig.S2 

C – D of Supplementary Material and Supplementary PowerPoint File shared on 

https://osf.io/gxzyd.  
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Sources of fractal and classical cycle mismatches 

The timings and correlations between the fractal and classical cycles were not one-to-one (r = 

0.6 – 0.8, p < 0.001). We identified two possible sources of a mismatch (Table 3; see also Table 

6). 

1) REM episode duration. While the fractal cycle end is defined as the local maximum of time 

series of fractal slopes, the classical cycle ends with the end of a REM episode. As a 

consequence, in some cases, especially for morning cycles that have rather long REM periods (> 

20 minutes), the match between fractal and classical cycles can be rather coarse-grained (See, 

for example, cycle 3 in S16, Fig.S2 A, Supplementary Material). Yet, in other cases, the match 

between fractal and classical cycles might be almost perfect (See Fig.2 A).  

To test this visual observation, we correlated the absolute values of the difference in classical vs 

fractal sleep cycle durations with the REM episode length within a given cycle. We included in 

this analysis only the participants who had an equal number of fractal and classical cycles in 

order to match each fractal cycle to a classical cycle individually. We found that longer REM 

episodes were associated with a higher difference between classical vs fractal sleep cycle 

durations (r = 0.36, p < 0.001, n = 417 cycles, Table 3).     

2) Wake after sleep onset (WASO) duration. Visual inspection of the data suggested that 

participants with more WASO often had more fractal than classical cycles. This might stem from 

the fact that both REM- and wake-related smoothed fractal slopes could be defined as local 

peaks (Fig.2 A – B, Fig.S1 B, Supplementary Material). More fractal peaks imply more fractal 

cycles and thus, possibly, more mismatches between the number and duration of classical and 

fractal cycles. To test this hypothesis, we correlated the average difference between the 

durations of classical and fractal cycles for each participant with the WASO proportion. We 

found that a higher difference in cycle durations was associated with a higher WASO proportion 

in 3/5 datasets (r’s = 0.36 – 0.49, p < 0.030) as well as in the merged dataset (r = 0.23, p = 0.001, 

n = 205 participants, Table 3).  
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In addition, we correlated the difference in classical vs fractal cycle durations with the fractal 

descent or ascent amplitudes (as reflections of fractal cycle depth and possibly sleep quality). 

We found that a shallower fractal descent was associated with a higher mismatch between 

fractal and classical cycles in 1/5 datasets (r = 0.33, p = 0.02) as well as in the merged dataset (r 

= 0.15, p = 0.002, n = 400 cycles, Table 3). 

 

Table 3: Sources of fractal and classical cycle mismatches 

Characteristic 
Dataset 1 

(A) 

Dataset 2 

(B) 

Dataset 3 

(C) 
Dataset 4 Dataset 5 

Pooled 

dataset 

Classical – fractal cycle duration 

difference, min 
13.2 ± 15.9 9.6 ± 9.1 8.0 ± 11.3 13.0 ± 17.0 11.9 ± 10.2 11.3 ± 12.7 

WASO, % 6.0 ± 5.6 4.9 ± 3.6 7.5 ± 5.0 7.1 ± 4.2 9.1 ± 5.7 7.0 ± 5.2 

WASO %, r -0.011 0.488 0.377 0.141 0.361 0.226 

WASO %, p 0.950 0.002 0.034 0.425 0.004 0.001 

Descent amplitude, z -2.3 ± 0.9 -2.5 ± 0.9 -2.3 ± 0.8 -2.0 ± 0.7 -2.1 ± 0.8 -2.2 ± 0.8 

Fractal descent, r 0.189 0.327 0.143 0.144 0.149 0.152 

Fractal descent, p 0.171 0.002 0.182 0.271 0.135 0.002 

Ascent amplitude, z 2.3 ± 0.6 2.1 ± 0.5 2.2 ± 0.6 2.0 ± 0.6 2.0 ± 0.6 2.1 ± 0.6 
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Fractal ascent, r 0.109 -0.105 -0.103 0.028 -0.010 -0.062 

Fractal ascent, p 0.432 0.318 0.339 0.835 0.918 0.217 

Skipped cycle lengths/TST, 

proportion 
0.144 0.223 0.139 0.249 0.201 0.206 

Skipped cycle lengths/TST, r 0.098 -0.363 0.384 -0.216 0.374 -0.019 

Skipped cycles length/TST, p 0.788 0.303 0.523 0.334 0.066 0.873 

REM episode length, min 
23.5 ± 15.2 

(72 cycles) 

22.8 ± 13.2 

(93 cycles) 

21.8 ± 11.6 

(90 cycles) 

26.0 ± 13.9 

(60 cycles) 

24.3 ± 15.0 

(102 cycles) 

0.251 ± 0.08 

(417 cycles) 

REM episode length, r 0.222 0.411 0.400 0.231 0.394 0.358 

REM episode length, p 0.061 < 0.001 0.001 0.076 < 0.001 < 0.001 

All parameters listed in the first column were correlated with the absolute value of the difference in classical vs fractal sleep 

cycle durations. For WASO and skipped cycles, all cycles of a given participant were averaged and the correlations were 

performed at the subject level. For the rest of the parameters, fractal and classical cycles were matched one-to-one when 

possible ( ~ 50% of all participants) and correlations were performed at the cycle level, r’s higher than 0.7 are considered as 

strong correlation scores, values lower than 0.3 are considered as weak, r’s values in the range of 0.3 – 0.7 are considered as 

moderate scores, REM – rapid eye movement sleep, WASO – wake after sleep onset, TST – total sleep time, r – Spearman 

correlation coefficients. 

 

Fractal cycles in children and adolescents 

Next, we explored fractal cycles in children and adolescents (mean age: 12.4 ± 3.1 years, n = 21, 

Table S3 of Supplementary Material) and compared them with those in young adults (mean 

age: 24.8 ± 0.9 years, n = 24). Two examples of smoothed fractal slope time series and 

hypnograms from the pediatric dataset are shown in Fig.3 A – B. All examples are shown in 

Supplementary PowerPoint File shared on https://osf.io/gxzyd.  
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We found that children and adolescents had shorter fractal cycles compared to young adults 

with a medium effect size (76 ± 34 vs 94 ± 32 min, p < 0.001, Cohen’s d = -0.57, 112 vs 121 

pooled cycles, 5.0 cycles/participant vs 4.4 cycles/participant, Fig.3 C – D, Table S3). Similarly, 

children and adolescents showed shorter classical cycles than young adults with a medium 

effect size (80 ± 23 vs 90 ± 22 min, p < 0.001, Cohen’s d = -0.42, 112 vs 114 pooled cycles, Fig.3 

C – D). 

To directly compare the fractal and classical approaches, we performed a Multivariate Analysis 

of Variance with fractal and classical cycle durations as dependent variables, the group as an 

independent variable and the age as a covariate. We found that fractal cycle durations showed 

higher F-values (F(1, 43)  = 4.5 vs F(1, 43) = 3.1), adjusted R squared (0.138 vs 0.089) and effect sizes 

(partial eta squared 0.18 vs 0.13) than classical cycle durations. 

Cycle-to-cycle overnight dynamics further revealed that the first and second fractal – but not 

classical – cycles were significantly shorter in the pediatric compared to the control group (Fig.3 

E) with medium effect sizes (d = -0.61 – -0.72). At the same time, the overnight classical – but 

not fractal – cycle analysis detected a between-group difference for the fourth classical cycle 

with a large effect size (d = -1.0, Fig.3 E).   
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Figure 3. Fractal cycles in children and adolescents. A – B: Individual cycles: time series of 
smoothed z-normalized fractal slopes (bottom) and corresponding hypnograms (top). The 
duration of the fractal cycle is a time interval between two successive peaks (blue diamonds) 
defined with the Matlab function findpeaks with a minimum peak distance of 20 minutes and 
minimum peak prominence of 0.9 z. SWS – slow-wave sleep, REM – rapid eye movement sleep. 
A: In this 9.9-year-old participant (from Dataset 6), we split the first 150-minute-long classical 
cycle into two cycles according to the definitions of a “skipped” cycle presented in Methods. 
The fractal cycle algorithm successfully detected this skipped cycle. B: This 14.9-year-old 
participant has a 156-minute-long first classical cycle. Visual inspection shows that it should be 
divided into 3 skipped cycles, however, our a priori definition of skipped cycles did not include 
an option to subdivide a long cycle into three short cycles; hence, we split it into two short 
cycles. The fractal cycle algorithm was sensitive to these sleep lightenings and detected all 
three short cycles. Classical cycle 4 looks like a skipped cycle as it has two clear episodes of 
slow-wave sleep separated by non-REM stage 2. However, the length of this cycle is shorter 
than 110 min (the threshold defined a priori), therefore, we did not split the classical cycle 4 
into two cycles. The fractal cycle algorithm was sensitive to this lightening of sleep and defined 
two fractal cycles during this period. C. Histograms: The frequency distribution of fractal (left) 
and classical (right) cycle durations in children and adolescents (mean age: 12.4 ± 3.1 years) 
compared to young adults (mean age: 24.8 ± 0.9 years). Kolmogorov-Smirnov’s test rejected the 
assumption that cycle duration comes from a standard normal distribution. D. Box plots: in 
each box, a vertical central line represents the median, the left and right edges of the box 
indicate the 25th and 75th percentiles, respectively, the whiskers extend to the most extreme 
data points not considered outliers, and a plus sign represents outliers. Children and 
adolescents show shorter fractal cycle duration compared to young adults. E. Overnight 

dynamics: cycle-to-cycle dynamics show that the first and the second fractal cycles are shorter 
in the pediatric compared to control group, * marks a statistically significant difference 
between the groups.  

 

Skipped cycles 

We tested whether the fractal cycle algorithm can detect skipped cycles, i.e., the cycles where 

an anticipated REM episode is skipped possibly due to too high homeostatic non-REM pressure. 

We counted only the first classical cycles (i.e., the first cycle out of the 4 – 6 cycles that each 

participant had per night, Fig. 3 A – B) as these cycles coincide with the highest non-REM 

pressure. An additional reason to disregard skipped cycles observed later during the night was 

our aim to achieve higher between-subject consistency as second – sixth skipped cycles were 

observed in only a small number of participants and were not distributed equally across the 

datasets.  
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The average number of the first skipped cycles for Datasets 1 – 5 is reported in Table 2. Table S9 

of Supplementary Material further reports the average number of skipped cycles as assessed by 

two independent human raters and the inter-rater agreement. Three specific examples of 

skipped cycles in young adults are presented in Fig.S6 of Supplementary Material and two 

examples in children are shown in Fig.3 A – B. All cycles are marked in Supplementary 

PowerPoint File shared on https://osf.io/gxzyd. 

Visual inspection of the hypnograms from Datasets 1 – 6 was performed by two independent 

researchers. Scorer 1 and Scorer 2 detected that out of 226 first sleep cycles 58 (26%) and 64 

(28%), respectively, lacked REM episodes. The agreement on the presence of skipped cycles 

between two human raters equaled 91% (58 cycles detected by both raters out of 64 cycles 

detected by either one or two scorers). The fractal cycle algorithm detected skipped cycles in 57 

out of 58 (98%) cases detected by Scorer 1 with one false positive (which, however, was tagged 

as a skipped cycle by Scorer2), and in 58 out of 64 (91%) cases detected by Scorer 2 with no 

false positives. 

 

Age and fractal cycles 

Next, we tested whether fractal cycle duration changes as a function of age. We found that in 

the merged adult dataset (Datasets 1 – 5, n = 205), the mean duration of the fractal cycles 

negatively correlated with the age of the participants (r = -0.19, p = 0.006, age range: 18 – 75 

years, median: 33.5 years, Fig.S5 A, Supplementary Material). Intriguingly, this correlation 

looked like a mirror image of the correlation between the age and wakefulness after sleep 

onset (Fig.S5 B). Following this observation, we performed an additional correlation between 

the fractal cycle duration and wakefulness proportion and found that it was non-significant (r = 

0.01, p = 0.969). Nevertheless, we further performed a partial correlation between the fractal 

cycle duration and participant age, while controlling for the effect of wakefulness after the 

sleep onset and found that the correlation remained significant (r = -0.18, p = 0.011).  
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Given that participant’s age also correlated with REM latency (Fig.S5 D) while REM latency 

further correlated with fractal cycle duration (Fig.S5 C), we performed an additional partial 

correlation between the fractal cycle duration and age while controlling for REM latency. We 

found that it remained significant (r = -0.16, p = 0.025). The partial correlation between the 

fractal cycle duration and REM latency adjusted for the participant’s age was non-significant (r = 

0, p = 0.746). 

Of note, these correlations were significant while analyzing the pooled dataset only, they were 

not observed while analyzing each dataset separately. Moreover, when we added to the pooled 

adult dataset (Datasets 1 – 5) our pediatric dataset (Dataset 6), the correlation between fractal 

cycle duration and age became non-significant.  

Interestingly, the mean duration of the classical cycles did not correlate with the age of the 

adult participants neither in the merged dataset (r = -0.02, p = 0.751) nor while analyzing each 

dataset separately. 
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Fractal cycles in MDD 

Finally, to assess the clinical relevance of the fractal cycles, we explored them in patients with 

MDD. We found that patients at 7- and 28-day of medication treatment as well as long-termed 

medicated patients (Datasets A – C) showed a longer fractal cycle duration compared to 

controls with medium effect size (Table 4, Fig.4 B). Moreover, in Dataset B, the patients who 

took REM-suppressive antidepressants (See Table S5 of Supplementary Material for information 

on specific medications taken by the patients) showed longer fractal cycle duration compared 

to patients who took REM-non-suppressive antidepressants with medium effect size (70 cycles 

of 21 patients vs 63 cycles of 17 patients). In Dataset C, no difference was detected between 

these sub-groups. However, it should be noted that in Datasets C, the REM-suppressive and 

REM-non-suppressive antidepressant groups were unbalanced (87 cycles of 23 patients vs 35 

cycles of 10 patients) and consisted of different medications than Dataset B.  

Table 4 and Fig.4 show results calculated over frontal electrodes (or central ones for Dataset A). 

The topographical analysis over other areas is reported in Table S6 of Supplementary Material.   
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Table 4: Fractal cycles in MDD 

D
a
t
a
s
e
t
 

G
r
o
u
p
 

N
o
. 
p
a
r
t
ic
ip
a
n
t
s
 

A
g
e
 

Classical cycles Fractal cycles 

Fractal-classical 

cycles 

correlation 

No. 

cycles 

Duration, 

min 
p d 

No. 

cycles 

Duration, 

min 
p d r p 

A 

 

HC (Dataset 1) 38 46.8 ± 10.7 171 86 ± 23 --- --- 167 84 ± 35 --- --- 0.33 0.042 

long-termed 

med. MDD 
40 50.1 ± 8.6 141 109 ± 55 10

�� 0.6 143 97 ± 43 0.001 0.3 0.51 0.001 

B 

 

 

HC (Dataset 2) 39 31.0 ± 9.9 180 90 ± 21 --- --- 171 90 ± 26 --- --- 0.51 0.001 

unmed. MDD 38 31.3 ± 10.2 169 92 ± 31 n.s. --- 155 92 ± 38 n.s. --- 0.19 n.s. 

7d med. MDD --- --- 149 102 ± 43 0.003 0.4 133 107 ± 51 10
�� 0.5 0.68 10

�� 

REM-non-

suppressive 
17 31.6 ± 10.4 77 91 ± 26 --- --- 63 95 ± 44 --- --- 0.49 0.046 

REM-

suppressive 
21 33.6 ± 11.3 72 103 ± 54 0.002* 0.5* 70 121 ± 55 0.003* 0.5* 0.66 0.001 

C 

 

HC (Dataset 3) 32 45.3 ± 15.9 146 89 ± 23 --- --- 154 88 ± 32 --- --- 0.57 0.001 

7d med. MDD 33 46.2 ± 16.2 121 114 ± 45 10
�� 0.7 122 107 ± 48 10

�� 0.5 0.47 0.006 

28d med. MDD --- --- 117 111 ± 51 10
�� 0.6 100 106 ± 51 0.001 0.4 0.42 0.018 

MDD – major depressive disorder, unmed. – unmedicated, med. – medicated, HC – healthy controls, p – p-values 

of the non-parametric test comparing a given group to HC, * – compared to the non-REM suppressive 

antidepressant group, r – Pearson’s correlation coefficient. 
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Figure 4. Fractal cycles in MDD. A. Individual fractal cycles: time series of smoothed z-

normalized fractal slopes observed in a 22 y.o. MDD patient (Dataset B) in their unmedicated 

(top) and 7-day medicated (bottom) states. Peaks (blue diamonds) are defined with the Matlab 

function findpeaks with the minimum peak distance of 20 minutes and minimum peak 

prominence of 0.9 z. Fractal cycles duration (defined as an interval of time between two 

successive peaks) is longer in the medicated compared to unmedicated states, reflecting 

shallower fluctuations of fractal (aperiodic) activity. Two additional patients are shown in Fig.S9 

(Supplementary Material). B. Box plots: the fractal cycle duration is longer in medicated MDD 

patients (red) compared to age and gender-matched healthy controls (black) in all datasets. In 

Dataset B, fractal cycles are longer in the medicated vs patients’ own unmedicated state and in 

patients who took REM-suppressive vs REM-non-suppressive antidepressants. A vertical central 

line represents the median in each box, the left and right edges of the box indicate the 25th and 

75th percentiles, respectively, the whiskers extend to the most extreme data points not 

considered outliers, and a plus sign represents outliers (individual cycles). C. Frequency 

distribution: individual fractal and classical cycles pooled from three MDD datasets (A – C) are 

counted separately for medicated MDD patients and HC.  D. Overnight dynamics: cycle-to-cycle 

dynamics of the duration of both fractal and classical cycles show a gradual decrease in 

medicated patients vs an inverted U shape in controls. The between-group difference in cycle 

duration is the largest for the first cycle. Patients show flatter fractal descents of the second 

cycle and steeper fractal descents of the fourth cycle compared to controls. Contrary to 

controls, patients do not show a gradual decrease in absolute amplitudes of the fractal 

descents from the second to the fourth cycles. Patients and controls show comparable cycle-to-

cycle dynamics of fractal ascents, * marks a statistically significant difference between the 

groups. MDD – major depressive disorder, HC – healthy controls, unmed. – unmedicated, med. 

– medicated, SWS – slow-wave sleep, REM – rapid eye movement. 

 

 

In Dataset B (the only dataset including unmedicated patients), 7-day medicated patients had 

longer fractal cycles compared to their own unmedicated state with medium effect size (p = 

0.001, Cohen’s d = 0.4, Fig.4 A – B, two additional examples are shown in Fig.S10, 

Supplementary Material). Unmedicated patients and controls showed comparable durations of 

the fractal cycles. The only difference observed between these groups was a smaller amplitude 

of the fractal descent of the first fractal cycles in unmedicated patients compared to controls 

with a medium effect size (-3.2 vs -3.6 z, p = 0.040, Cohen’s d = 0.5). 
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In a pooled dataset, medicated patients showed a prolonged duration of fractal cycles 

compared to the controls (104 ± 49 vs 88 ± 31 min, p < 0.001, Fig.4 C). The between-group 

difference was the largest for the first cycle (Fig.4 D). Moreover, cycle-to-cycle overnight 

dynamics of the fractal cycle duration showed a gradual decrease in medicated patients vs an 

inverted U shape in controls (Fig.4 D). 

To test our hypothesis that fractal cycles are more sensitive than classical cycles in detecting 

differences between patients and controls, we performed the same analysis as described above 

while using the duration of classical cycles as the variable of interest. The results were similar to 

those obtained for fractal cycle durations (Table 4, Fig.4 C – D), i.e., our hypothesis was not 

confirmed. The comparable outcomes of the two analyses can be explained by the positive 

correlations between the durations of fractal and classical cycles observed in all groups of the 

medicated MDD patients like that seen in healthy controls (Table 4). 
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Discussion 

This study introduced the new concept of fractal activity-based cycles of sleep or “fractal 

cycles” for short, which is based on temporal fluctuations of the fractal (aperiodic) slopes across 

a night. We showed that durations of these fractal cycles correlated with those of classical 

(non-REM – REM) sleep cycles defined by hypnograms in five independently collected datasets 

counting 205 healthy participants overall as well as in 111 medicated patients with MDD. 

Overnight cycle-to-cycle dynamics in healthy adults showed an inverted U-shape for both 

fractal and classical cycle durations. The fractal cycle algorithm was effective in detecting cycles 

with skipped REM sleep. The findings further revealed that children and adolescents showed 

shorter fractal cycles as compared to young healthy adults. In adults, fractal cycle durations 

negatively correlated with participants’ age. Medicated patients with MDD showed longer 

fractal cycles compared to their own unmedicated state and healthy controls. Below we discuss 

these findings in detail. 

 

Fractal cycles: definition and motivation 

We observed that the time series of fractal slopes have a cyclical nature, descending and 

ascending for about 4 – 6 times per night with a mean duration of approximately 90 minutes for 

each such (“fractal”) cycle. This strikingly resembles the description of classical sleep cycles. 

Indeed, both the visual inspection and formal correlational analyses revealed that the timing 

and duration of the fractal and classical cycles mainly matched. This led us to propose that the 

“fractal cycles of sleep” could serve as a new data-driven definition of sleep cycles, i.e., a 

means to appreciate quantitatively what has been previously observed only qualitatively using 

hypnograms. Notably, we do not claim that fractal cycles are a substitute for the study of the 

individual sleep stages or microstructural features of sleep. We want to stress, however, that 

currently, sleep research is shifted towards the study of, to use a metaphor, “the atoms” of 

sleep, such as individual sleep stages, slow oscillations, spindles, microarousals etc. Yet it is 

possible that some important (currently unknown) features of sleep could be explored only at 
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the level of sleep cycles, “the molecules of sleep”. (Note, that we use the molecule and atom 

concepts only as a metaphor for the macro- and microstructure of sleep.) 

Hypothetical functional significance of aperiodic activity and fractal cycles 

The decision to incorporate fractal activity analysis in sleep cycle research was based on the 

reports that fractal (aperiodic) dynamics may reflect the bistability of the network (the overall 

tendency of alternating up and down states) (Baranauskas et al., 2012) and/or alterations in the 

balance between neural excitatory and inhibitory currents (Gao et al., 2017). Circumstantial 

evidence suggests that fractal activity is a measure of sleep homeostasis or sleep intensity, 

reflecting sleep-wake history, sleep stage differences, sleep cycles, age-effects, local sleep and 

sleep disorders (Bódizs et al., 2024). Recently, it has been reported that during human sleep, 

spectral slopes positively correlate with pupil size, a marker of arousal levels linked to the 

activity of the locus coeruleus-noradrenergic system (Carro-Domínguez et al., 2023).  

According to the reciprocal-interaction model of sleep cycles, each sleep phase is characterized 

by a specific neurochemical mixture. During non-REM sleep, aminergic inhibition decreases and 

cholinergic excitation increases such that at REM sleep onset, aminergic inhibition is shut off 

and cholinergic excitability reaches its maximum, while other outputs are inhibited (Pace-Schott 

& Hobson, 2002). Complex inhibitory and excitatory connections between pontine REM-on and 

REM-off neurons are further modulated by such neurotransmitters as GABA, glutamate, nitric 

oxide and histamine. Intriguingly, during REM sleep, acetylcholine plays the main role in 

maintaining brain activation, which is expressed as EEG desynchronization, one of the main 

features of REM sleep, and other systems are silent (Nir & Tononi, 2010). This suggests that 

acetylcholine, which fluctuates cyclically across a night as a result of the REM-off – REM-on 

interactions, might have a key role in the sleep phase alternation.  

Given that the specific neurochemical milieu of the brain produces a specific type of conscious 

experience (Nir & Tononi, 2010) and that conscious experience was shown to be related to 

fractal activity derived from the human sleep EEG (Colombo et al., 2019), it is tempting to 

speculate that fractal activity tracks sleep-related changes in the neurochemical milieu of the 
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brain and overall network dynamics. This has not been tested in humans; nevertheless, in rats, 

cholinergic nucleus basalis stimulation acutely increased higher to lower frequency cortical LFP 

power ratio or in other words, caused flattering of spectral decay (Goard & Dan, 2009). One 

can, therefore, speculate that ascending parts and peaks of fractal cycles coincide with 

acetylcholine release. The troughs of fractal cycles, in turn, might reflect a higher homeostatic 

pressure and even cause feelings of sleepiness and the search for the opportunity of initiating 

sleep, as these are periods of the steepest fractal activity, which implies a higher ratio of lower 

over higher frequency power in the EEG (Bódizs et al., 2024). 

In view of this literature, we speculate that fractal fluctuations may reflect two antagonistic 

roles of sleep (Simor et al., 2022). Specifically, fractal cycle troughs might cohere with sensory 

disconnection that facilitates restorative properties of sleep while fractal cycle peaks reflect 

monitoring of the environment that transiently restores alertness (Table 5).  
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Table 5: Hypothetical functional significance of fractal cycles 

Theory/model Reference 

Hypothetical integration of the 

fractal cycle concept to the 

existing model 

Two antagonistic roles of sleep: 

1) sensory disconnection that facilitates restorative properties 

of sleep; 

2) monitoring of the environment that transiently restores 

alertness. 

Simor et al., 

2022 

  

- troughs of fractal cycles 

reflect 1); 

- peaks of fractal cycles reflect 

2). 

Reactive and predictive homeostatic functions of sleep: 

1) intensive restorative processes during early-night sleep; 

2) active future-oriented processes during late-night sleep.  

Simor et al., 

2023 

  

- deeper fractal cycles 

observed during early-night 

sleep reflect 1); 

- shallower fractal cycles seen 

during late-night sleep reflect 

2). 

Reciprocal-interaction model of sleep cycles: 

- alternations between non-REM and REM sleep stages 

are explained by the interaction between aminergic 

and cholinergic neurons of the mesopontine junction. 

Pace-Schott 

& Hobson, 

2002 

  

- ascents and peaks of fractal 

cycles reflect acetylcholine 

release*; 

- descents and troughs of 

fractal cycles coincide with 

aminergic activity. 

Noradrenergic neurons 

create a non-reducible timeframe for the NREM-REM sleep cycle 

where low noradrenaline levels allow entries into REM sleep. 

Osorio-

Forero et 

al., 2023. 

  

Ascents and peaks of fractal 

cycles reflect a cease of 

noradrenaline release. 

The Neuronal Transition Probability Model: 

1) During a move towards deep sleep beta power drops 

exponentially, delta power rises in an S-curve and sigma power 

peaks while delta is still rising; 

2) During a move away from deep sleep, delta drops, beta rises.  

Merica & 

Fortune, 

2011 

- descending part of the fractal 

cycle corresponds to 1);  

- ascending part of the fractal 

cycle corresponds to 2). 

* this hypothesis is also based on the report that in rats, cholinergic nucleus basalis stimulation caused flattering of 

spectral decay (Goard & Dan, 2009). 
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Fractal and classical cycles comparison (Table 6) 

In this study, in healthy adults, 81% of all fractal cycles defined by our algorithm could be 

matched to individual classical cycles defined by hypnograms. Correlations between the 

durations of fractal and classical cycles were observed not only in healthy adults but also in 

MDD patients who took antidepressants. The results show that displaying sleep data using 

fractal activity as a function of time meaningfully adds to the conventionally used hypnograms 

thanks to the gradual and objective quality of fractal power.  

Thus, in hypnograms, each sleep stage is ascribed with a categorical value (e.g., wake = 0, REM 

= -1, N1 = -2, N2 = -3 and SWS = -4, Fig.2 A). Yet categorical labeling of sleep stages can induce 

information loss and lead to several misinterpretations, such as an implied order of sleep stages 

(e.g., “REM sleep is located between wake and N1”) and an implied “attractor state” 

conception of sleep stages (e.g., “no inter-stage states”). Likewise, defining the precise 

beginning and end of a classical sleep cycle using a hypnogram is often difficult and arbitrary, 

for example, in cycles with skipped or interrupted REM sleep or REM sleep without atonia.   

In contrast, fractal cycles do not rely on the assignment of categories, being based on a real-

valued metric with known neurophysiological functional significance. This introduces a 

biological foundation and a more gradual impression of nocturnal changes compared to the 

abrupt changes that are inherent to hypnograms.  

Importantly, fractal cycle computation is automatic and thus objective. Even though recently, 

there has been a significant surge in sleep analysis incorporating various machine learning 

techniques and deep neural network architectures, we should stress that this research line 

mainly focused on the automatic classification of sleep stages and disorders almost ignoring the 

area of sleep cycles. Here, as the reference method, we used one of the very few available 

algorithms for sleep cycle detection (Blume & Cajochen, 2021). We found that automatically 

identified classical sleep cycles only moderately correlated with those detected by human 

raters (r’s = 0.3 – 0.7 in different datasets). These coefficients lay within the range of the 

coefficients between fractal and classical cycle durations (r = 0.41 – 0.55, moderate) and 
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outside the range of the coefficients between classical cycle durations detected by two human 

scorers (r’s = 0.7 – 0.9, strong, Supplementary Material, Table S8). 

One of the most significant methodological strengths of the fractal cycle algorithm is its ability 

to detect cycles with skipped REM sleep common in children, adolescents and young adults. 

Our algorithm detected skipped cycles in 91 – 98% of cases. We deduce that the fractal cycle 

algorithm detected skipped cycles since a lightening of sleep that replaces a REM episode in 

skipped cycles is often expressed as a local peak in fractal slope time series. Based on this, we 

further hypothesize that, analogously, fractal cycles might detect REM sleep without atonia 

episodes in REM sleep behaviour disorder, the episodes currently often mistaken as non-REM 

sleep.  

In summary, we expect that fractal cycles could bring insights into (yet) unexplained 

phenomena thanks to their gradual and objective quality, and, therefore, have the potential to 

induce a paradigm shift in basic and clinical (see below) sleep research.  
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Table 6: Fractal and classical cycle comparison 

Fractal cycles by our algorithm Classical cycles by hypnograms 

Definition/detection 

Based on a real-valued metric with known 

neurophysiological functional significance 

Based on categorical values of the cycle 

constituents (e.g., wake = 0, REM = -1, N1 = -2, 

N2 = -3 and SWS = -4) 

Gradual changes Abrupt changes 

Automatic computation, objective Usually based on the visual inspection, time-

consuming, subjective, error-prone 

Findings 

Cycles with skipped REM sleep detected in 

91 – 98% of cases 

Inter-rater agreement of 91% on the presence of 

cycles with skipped REM sleep 

Fractal cycle durations negatively correlated 

with the age of adult participants 

Classical cycle durations did not correlate with 

the age of adult participants 

Shorter fractal cycle durations in children vs 

adults: higher F-values, R², effect sizes than 

for classical cycles 

Shorter classical cycle durations in children vs 

adults: lower F-values, R², effect sizes than for 

fractal cycles 

Shorter first and second fractal cycles in the 

pediatric group 

No difference in durations of the first and second 

classical cycles in pediatric vs adult groups 

No difference in duration of the fourth 

fractal cycles in the pediatric group 

Shorter duration of the fourth classical cycle in 

the pediatric group 

Longer fractal cycle duration in medicated 

patients with depression: comparable 

differences with those on classical cycles 

Longer classical cycle duration in medicated 

patients with depression: comparable differences 

with those on fractal cycles 
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Sources of mismatches between fractal and classical cycles 

Source Finding Reason 

Across night variation in 

REM sleep episode 

duration: longer REM 

episodes towards 

morning 

Longer REM episodes are 

associated with a higher 

mismatch between fractal 

vs classical cycles 

The end of a fractal cycle is defined as 

the local maximum of time series of 

fractal slopes, whereas the end of a 

classical cycle is defined as the end of 

the REM episodes 

Across subject variation 

in WASO: a higher WASO 

proportion in older 

participants 

A higher WASO proportion 

is associated with a higher 

mismatch between fractal 

vs classical cycles  

REM- and wake-related smoothed 

fractal slopes show close values, 

therefore, both could be defined as 

local peaks. More fractal peaks imply 

more fractal cycles 

REM – rapid eye movement, SWS – slow-wave sleep, WASO – wake after sleep onset 

 

Fractal slopes and SWA: overnight dynamics  

Of note, currently, the gold standard marker of many sleep functions (e.g., restorative, 

regenerative) with a long-standing use is slow-wave activity (SWA), which, similar to fractal 

slopes, is also continuous and objective. SWA, however, has several disadvantages, such as 

large variability between individuals, which makes it impossible to set up a given reference 

point for healthy sleep (Horváth et al., 2022). Interindividual variability of spectral slopes is 

much smaller compared to SWA, making it a less individual-specific metric, yet spectral slopes 

strongly correlate with SWA (31 – 53% of shared variance throughout the non-REM periods) 

(Horváth et al., 2022; Bódizs et al., 2024). In addition, both the literature and our findings show 

that while SWA has a cycling nature during the first part of the night, neural dynamics of late-

night’s sleep are not reflected by SWA at all (Fig.S8 in Supplementary Material). Given that SWA 
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is a primary marker of sleep homeostasis, this pattern possibly reflects the dissipation of a sleep 

need over the night (Bódizs et al., 2024). In contrast, fractal slopes show a cycling nature over 

the entire night’s sleep (Fig.2 A – B and Fig.S8), suggesting that they are a more suitable means 

to reflect the macrostructure of the whole night’s sleep than SWA. 

Having said this, we should highlight that characteristics of fractal cycles of sleep do undergo 

some overnight changes. Thus, the durations of both fractal and classical cycles in health show 

an inverted U-shape across a night and the amplitudes of fractal descents and ascents are 

larger during early-night- compared to late-night cycles (Fig.2 D). This is in line with the report 

on the flattening of fractal activity from early to late sleep cycles (Horváth et al., 2023). If seen 

in the context of the reactive and predictive homeostatic functions of sleep (Simor et al., 2023), 

deeper fractal cycles observed during early-night sleep could reflect intensive restorative 

processes (which are also reflected by SWA), whereas shallower fractal cycles seen during the 

later part of night’s sleep could reflect more active future-oriented processes (which are not 

reflected by SWA) with a shift towards neural excitation relative to inhibition expressed as 

overall flatter fractal activity (Table 5). 

 

Fractal cycles and age 

We found that older healthy participants had shorter fractal cycles compared to the younger 

ones while classical cycles did not correlate with the participants’ age. At first glance, it looked 

as if this association simply reflected an increased proportion of the wake after the sleep onset 

often seen in older adults (Fig.S5 B, Supplementary Material). Indeed, our algorithm does not 

discriminate between the smoothened wake- and REM-related fractal slopes and can define 

both as local peaks (Fig.2 A – B). This happens because for the most part, wake- and REM sleep-

related smoothed fractal slopes display comparable values, which are also the highest ones 

compared to other stages (Fig.S1 B, green squares, Supplementary Material). Since the fractal 

cycle duration is defined as an interval of time between two adjacent peaks, more awakenings 

during sleep are expected to result in more peaks and, consequently, more fractal cycles per 
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total sleep time, i.e., a shorter cycle duration. (It is worth mentioning that unsmoothed wake- 

and REM-related slopes differ (Schneider et al., 2022 and Fig.S1 B here (black squares). 

However, this is a side notion as raw values were not used in this study since our algorithm 

performed poorly on raw time series). 

Moreover, a larger difference in classical vs fractal cycle duration was associated with a higher 

proportion of wake after sleep onset (WASO) in 3/5 datasets as well as in the merged dataset 

(Table 3). On the other hand, the partial correlation between fractal cycle duration and age 

remained significant after controlling for the WASO amount. This hints that the association 

between fractal cycles and age might reflect more than just a confounding effect of WASO. This 

interpretation is in line with literature on age-related changes in aperiodic activity, namely, on 

flattering of fractal slopes with age (Voytek et al., 2015; Bódizs et al., 2021; Pathania et al., 

2022), especially during SWS (Schneider et al., 2022). Likewise, aging is associated with shorter 

and fewer classical cycles, with a mean of 3.5 cycles per night compared to the usual 4 – 5 in 

adults and adolescents (Conte et al., 2014). Our findings suggest that fractal cycles are more 

sensitive to these age-related alterations than the classical ones. We further speculate that the 

claim that “age affects sleep microstructure more than sleep macrostructure” (Schwarz et al., 

2017) might reflect the lack of a reliable measure of sleep cycles. 

Another plausible explanation for longer fractal cycles in younger compared to older adults 

could be rooted in increased sleep intensity of the younger adults (Jenni & Carskadon, 2004). 

Further, high sleep intensity driven by homeostatic pressure is associated with the delay in the 

emergence of the REM sleep phase (Le Bon, 2020; Tarokh et al., 2012). In our dataset, REM 

latency also decreased with age. Thus, Fig.S5 D (Supplementary Material) illustrates that young 

adults might present with very delayed REM latency, i.e., 200 – 250 minutes after sleep onset, 

in line with the notion that younger adults more often show cycles with skipped REM sleep 

(Fig.S6). This can be partly explained by the fact that younger people often have a later 

chronotype (“night owls”) than older people with puberty linked to delays in the sleep cycle by 

up to 2 hours (Randler et al., 2016). Young people also have a longer circadian rhythm (> 24 h) 

than older ones (< 24 h, Monk et al., 2005). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2024. ; https://doi.org/10.1101/2023.07.04.547323doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547323
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 

To further strengthen this line of explanations, we performed a supplemental analysis, which 

showed that prolonged REM latencies are indeed associated with longer fractal cycles (Fig.S5 C, 

Supplementary Material). Nevertheless, the correlation was weak (yet significant) and observed 

in the pooled dataset only, i.e., not while analyzing individual datasets. Likewise, the partial 

correlation between the fractal cycle duration and REM latency adjusted for the participants’ 

age was non-significant. Moreover, we found that children and adolescents (the group that has 

the longest REM latencies and the highest rate of cycles with skipped REM sleep) showed 

shorter fractal cycles compared to young adults, specifically the early-night fractal cycles. In 

view of these analyses, our attempt to explain longer fractal cycles in younger compared to 

older adults by increased REM sleep latency becomes less convincing. Moreover, given that our 

algorithm does not miss cycles with skipped REM sleep, longer REM sleep latencies should not 

necessarily be related to longer cycles. To summarize, at this stage, the mechanism underlying 

age-related differences in fractal cycle duration is unclear (possibly with some non-linearities) 

and future studies are needed to corroborate and further explore it.  

 

Fractal cycles in MDD 

In addition, our study shows that deviations from the observed fractal patterns have some 

clinical relevance. We found that MDD patients in the medicated state had longer fractal cycles 

compared to their own unmedicated state and healthy controls. The largest differences were 

observed for the first sleep cycles. Moreover, patients who took REM-suppressive 

antidepressants showed prolonged fractal cycles compared to patients who took REM-non-

suppressive antidepressants. Given that the fractal cycle duration was defined as an interval of 

time between two adjacent peaks and that the peaks usually coincide with REM sleep (Fig.2 A), 

this finding may reflect such aftereffects of antidepressants as delayed onset and reduced 

amount of REM sleep (Palagini et al., 2013). In other words, if a patient has fewer REM sleep 

episodes, then the time series of their fractal slopes has fewer peaks and the algorithm detects 

fewer cycles per total sleep time, i.e., cycle’s duration is longer (Fig.4 A).  
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Another explanation considers our previous finding that medicated MDD patients show flatter 

average fractal slopes compared to controls and their own unmedicated state during all sleep 

stages (Rosenblum et al., 2023 a). This might mean that the antidepressant intake results in 

shallower fractal fluctuations, which in turn implies that fewer peaks could be detected by our 

algorithm as the peak threshold was defined a priori in a healthy – not MDD – sample. 

Interestingly, recently, flatter fractal slopes during REM sleep have been also associated with 

sustained polyphasic sleep restriction in health (Rosenblum et al., 2024 b), whereas flatter 

fractal slopes during non-REM sleep were observed in patients with objective insomnia and 

sleep state misperception, reflecting an abnormally high level of excitation in line with the 

hyperarousal model of insomnia (Andrillon et al., 2020). Our pilot findings have shown that 

patient with psychophysiological insomnia have shorter fractal cycles compared to controls 

(Fig.S10, Supplementary Material).  

 

Limitations and strengths 

The major limitation of this study is its correlational approach, and thus an inability to shed light 

on the mechanism underlying sleep cycle generation. Therefore, the question of what 

determines the number and duration of cycles per night remains open. Moreover, further work 

is needed to determine the mathematically precise and physiologically meaningful model of 

fractal cycles. Notably, here, we suggest that fractal cycles are a new tool to study the 

macrostructure of sleep; however, they are presumably not a substitute for the study of the 

individual sleep stages and microstructural features of sleep (e.g., microarousals, spindles, slow 

waves).  

Additionally, we explored the effect of developmental changes and aging on fractal cycles using 

a cross-sectional observational approach, whereas these factors might be disentangled more 

precisely in a longitudinal approach. The age of the pediatric group ranged from 8 – 17 years 

old; studying younger children and babies would add crucial information on the influence of 

neurodevelopmental changes on fractal cycles.  
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The strengths of this study are its large sample size, scripts and data sharing and self-

replications in several clinical and healthy datasets of participants in a broad age range, 

affirming the overall robustness of the phenomena of fractal cycles. Another strength of this 

work is its generalizability as it has shown that the studies conducted in different experimental 

environments (including one study conducted at home) using different EEG devices provide 

comparable results. 

 

To summarize, the large sample and self-replication performed in this study suggest that the 

“fractal cycle” is a universal concept that should be extensively studied. Displaying the data in 

the format of fractal cycles provides an intuitive and biologically plausible way to present 

whole-night sleep neural activity and also adds some graduality to the purely categorical 

concept of sleep stages that comprise a hypnogram. In future studies, this graduality might help 

to illuminate differences in sleep architecture across different species, advance our 

understanding of the role of sleep in neurocognitive development in infants and adolescents as 

well as in neurodegenerative processes and other fields of neuroscience.  

 

Conclusion 

We observed that the slopes of the fractal (aperiodic) spectral power descend and ascend 

cyclically across a night such that the peaks of the time series of the fractal slopes coincide with 

REM sleep or sleep lightening while the troughs of these time series coincide with non-REM 

sleep. Based on this observation, we introduced a new concept of fractal activity-based cycles 

of sleep or “fractal cycles” for short, defining it as a time interval between two adjacent local 

peaks of the fractal time series. We have shown that fractal cycles defined by our algorithm 

largely coincide with classical (non-REM – REM) sleep cycles defined by a hypnogram and 

replicated our findings in several independently collected healthy and clinical datasets. 

Moreover, we found that the fractal cycle algorithm reliably detected cycles with skipped REM 

sleep. In addition, we observed that fractal cycle duration changes as a non-linear function of 
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age, being shorter in children and adolescents compared to young adults as well as in older 

compared to younger adults. To this end, we conclude that the fractal cycle is an objective, 

quantifiable and universal concept that could be used to define sleep cycles and display the 

whole-night sleep neural activity in a more intuitive and biologically plausible way as compared 

to the conventionally used hypnograms. Having shown that the fractal cycles are prolonged in 

medicated patients with MDD, we suggest that fractal cycles are a useful tool to study the 

effects of antidepressants on sleep. Possibly, fractal cycles also will be able to serve as a means 

to explore sleep architecture alterations in different clinical populations (e.g., to detect REM 

sleep without atonia) and during neurocognitive development. In summary, this study shows 

that the fractal cycles of sleep are a promising research tool relevant in health and disease that 

should be extensively studied. 

 

Data and code availability 

The original contributions presented in the study are available under https://osf.io/gxzyd/. Further inquiries can be directed to the 

corresponding author. 
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