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Abstract

Nocturnal human sleep consists of 4 — 6 ninety-minute cycles defined as episodes of non-rapid
eye movement (non-REM) sleep followed by an episode of REM sleep. While sleep cycles are
considered fundamental components of sleep, their functional significance largely remains
unclear. One of the reasons for a lack of research progress in this field is the absence of a data-
driven definition of sleep cycles. Here, we proposed to base such a definition on fractal

(aperiodic) neural activity, a well-established marker of arousal and sleep stages.

We explored temporal dynamics of fractal activity during nocturnal sleep using
electroencephalography. Based on the observed pattern of fractal fluctuations, we introduced a
new concept of fractal activity-based cycles of sleep or “fractal cycles” for short, defined as a
time interval during which fractal activity descends from its local maximum to its local minimum
and then leads back to the next local maximum. Next, we assessed correlations between fractal
and classical (i.e., non-REM — REM) sleep cycle durations. We also studied cycles with skipped
REM sleep, i.e., the cycles where the REM phase is expected to appear except that it does not,

being replaced by lightening of sleep.

Regarding the sample, we examined fractal cycles in healthy adults (age range: 18 — 75 years, n
= 205) as well as in children and adolescents (range: 8 — 17 years, n = 21), the group
characterized by deeper sleep and a higher frequency of cycles with skipped REM sleep.
Further, we studied fractal cycles in major depressive disorder (n = 111), the condition

characterized by altered REM sleep (in addition to its clinical symptoms).

We found that fractal and classical cycle durations (89 £ 34 min vs 90 + 25 min) correlated
positively (r = 0.5, p < 0.001). Cycle-to-cycle overnight dynamics showed an inverted U-shape of
both fractal and classical cycle durations and a gradual decrease in absolute amplitudes of the
fractal descents and ascents from early to late cycles. In adults, the fractal cycle duration and
participant’s age correlated negatively (r = -0.2, p = 0.006). Children and adolescents had
shorter fractal cycles compared to young adults (76 £ 34 vs 94 = 32 min, p < 0.001). The fractal

cycle algorithm detected cycles with skipped REM sleep in 91 — 98% of cases. Medicated
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patients with depression showed longer fractal cycles compared to their own unmedicated
state (107 £ 51 min vs 92 + 38 min, p < 0.001) and age-matched controls (104 + 49 vs 88 £ 31
min, p < 0.001).

In conclusion, fractal cycles are an objective, quantifiable, continuous and biologically plausible
way to display sleep neural activity and its cycles. They are useful in healthy adult and pediatric
populations as well as in patients with major depressive disorder. Fractal cycles should be

extensively studied to advance theoretical research on sleep structure.

Keywords: sleep cycles, non-REM-REM sleep cycle, aperiodic activity, temporal dynamics of
aperiodic activity, fractal power component, sleep, EEG, polysomnography, hypnogram, major

depressive disorder, antidepressants, development, children and adolescent sleep.

Highlights

- Fractal activity-based cycles of sleep or “fractal cycles” for short is a new concept based
on cyclic changes in fractal (aperiodic) neural activity during sleep.

- Durations of fractal and classical cycles correlate, and both show an inverted U-shape
when seen from early to late cycles.

- The fractal cycle algorithm is effective in detecting cycles with skipped REM sleep.

- Older healthy adults shower shorter fractal — but not classical — cycle durations.

- Fractal cycle duration is shorter in children and adolescents compared to young adults.

- In major depressive disorder, antidepressant medication is associated with longer fractal

cycles.
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Introduction

The cyclic nature of sleep has long been established with a classical sleep cycle defined as a
time interval that consists of an episode of non-rapid eye movement (non-REM) sleep followed
by an episode of REM sleep (Feinberg & Floid, 1979; Le Bon, 2020). Typically, nocturnal sleep
consists of 4 — 6 such cycles, which last for about 90 minutes each. Every cycle is seen as a
fundamental physiological unit of sleep central to its function (Feinberg, 1974) or a miniature

representation of the sleep process (Le Bon, 2002).

Basic structural organization of normal sleep is rather conservative with some exceptions. Thus,
occasionally, at the beginning of the night in healthy adolescents and young adults, there could
occur cycles with skipped REM sleep, which are also called “skipped” cycles. In skipped cycles, a
REM sleep episode is expected to appear except that it does not and only a “lightening" of sleep
is observed presumably due to too high non-REM pressure (Le Bon, 2020). Likewise, some
alterations of the sleep structure can be observed in sleep disorders, e.g., narcolepsy and
insomnia (Scammell, 2015), and healthy aging (Carrier et al., 2011; Conte et al., 2014). In some
neurological and psychiatric conditions, such as major depressive disorder (MDD), Parkinson’s
and Alzheimer’s diseases, sleep architecture disturbances are further linked to the disease

neuropathology (Courtet & Olié, 2012; Palagini et al., 2013; Pillai & Leverenz, 2017).

While the importance of sleep cycles is indisputable, their function as a unit is poorly
understood and surprisingly under-explored, especially when compared to the extensive
research on sleep stages (either non-REM or REM) or sleep microstructure (e.g., sleep spindles,
slow waves, microarousals). One of the reasons for this striking absence of research progress
might be the lack of proper quantifiable and reliable objective measure from which sleep cycles

could be derived directly (Schneider et al., 2022).

Currently, sleep cycles are defined via a visual inspection of the hypnogram, the graph in which
categorically separated sleep stages are plotted over time. Yet assigning a discrete category to
each sleep stage is rather arbitrary as sleep stages are presumably continuous and thus do not

occur as steep lines of a hypnogram. In addition, visual sleep stage scoring is very time-
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consuming, subjective and error-prone with a relatively low (¥80%) inter-rater agreement. This

results in a low accuracy regarding the sleep cycle definition.

We suggest that a data-driven approach based on a real-valued neurophysiological metric (as
opposed to the categorical one) with a finer quantized scale could forward the understanding
of sleep cycles considerably. Specifically, we propose that research on sleep cycles would
benefit from recent advances in the field of fractal neural activity. In literature, fractal activity is
also called aperiodic, non-oscillatory, 1/f or scale-free activity, being named after the self-
similarity exhibited by patterns of sensor signals across various time scales. Fractal activity is a
distinct type of brain dynamics, which is sometimes seen as a “background” state of the brain,
from which linear, rhythmic (i.e., periodic, oscillatory) dynamics emerge to support active
processing (Buzsaki, 2006; Freeman et al., 2006). Growing evidence confirms that fractal activity
has a rich information content, which opens a window into diverse neural processes associated
with sleep, cognitive tasks, age and disease (Voytek & Knight, 2015; Bddizs et al., 2021; 2024;
Hohn et al., 2022).

Fractal dynamics follow a power-law 1/f function, where power decreases with increasing
frequency (He, 2014). The steepness of this decay is approximated by the spectral exponent,
which is equivalent to the slope of the spectrum when plotted in the log-log space (He, 2014;
Gerster et al., 2022). The fractal signal is not dominated by any specific frequency, rather it
reflects the overall frequency composition within the time series (Horvath et al., 2022) such
that steeper (more negative) slopes indicate that the spectral power is relatively stronger in

slow frequencies and relatively weaker in faster ones (He, 2014).

In terms of mechanisms, it has been suggested that flatter high-band (30 — 50Hz) fractal slopes
reflect a shift in the balance between excitatory and inhibitory neural currents in favour of
excitation while steeper slopes reflect a shift towards inhibition (Gao et al., 2017). Given that
the specific balance between excitation and inhibition defines a specific arousal state and the
conscious experience of an organism (Nir & Tononi, 2010), the introduction of Gao’s model led
to an increased interest in fractal activity. For example, it has been shown that high-band fractal

slopes discriminate between wakefulness, non-REM and REM sleep stages as well as general
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anesthesia or unconsciousness (Gao et al., 2017; Colombo et al.,, 2019; Lendner et al., 2020;

Hohn et al., 2022).

Of note, Gao’s model does not account for the lower part of the spectrum, which is also scale-
free. An alternative model suggests that the broadband 1/f? activity reflects the tendency of the
central nervous system to alternate between UP- (very rapid spiking) and DOWN-
(disfacilitation, no activity) states (Milstein et al., 2009; Baranauskas et al., 2012). Empirical
studies further showed that the broadband (2 — 48Hz) slope is an especially strong indicator of
sleep stages and sleep intensity with low inter-subject variability and sensitivity to age-related
differences (Miskovic et al., 2019; Schneider et al., 2022; Horvath et al., 2022). Taken together,
this literature suggests that fractal slopes can serve as a marker of arousal, sleep stages and
sleep intensity (Lendner et al., 2020; Schneider et al., 2022; Horvath et al., 2022). We expect

that this line of inquiry could be extended to sleep cycles.

On a related note, the reciprocal interaction model of sleep cycles assumes that each sleep
stage involves distinct activation patterns of inhibitory and excitatory neural networks (Pace-
Schott & Hobson, 2002). This model explains alternations between non-REM and REM sleep
stages by the interaction between aminergic and cholinergic neurons of the mesopontine
junction (Pace-Schott & Hobson, 2002). Notably, during REM sleep, acetylcholine plays a major
role in maintaining brain activation, which is expressed as EEG desynchronization, one of the
main features of REM sleep (Nir & Tononi, 2010). This is of special importance in affective
disorders since according to one of the pathophysiological explanations of depression, i.e., the
cholinergic-adrenergic hypothesis, central cholinergic factors play a crucial role in the aetiology
of affective disorders, with depression being a disease of cholinergic dominance (Janowsky et
al.,, 1972). Many antidepressants (e.g., serotonin-norepinephrine reuptake inhibitors, selective
serotonin reuptake inhibitors) suppress REM sleep and thus cause essential alterations in sleep
architecture. Intriguingly, REM sleep suppression is related to the improvement of depression
during pharmacological treatment with antidepressants enhancing monoaminergic

neurotransmission (Vogel et al., 1990; Wichniak et al., 2013).
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Based on this background, we propose that a fractal neural activity-based definition of sleep
cycles has the potential to considerably advance our understanding of the cyclic nature of
sleep, for example, by introducing graduality to the categorical concept of sleep stages. The
current study analyzes the dynamics of nocturnal fluctuations in fractal activity using five
independently collected polysomnographic datasets overall comprising 205 recordings from
healthy adults. Based on the inspection of fractal activity across a night, we introduce a new
concept of fractal activity-based cycles of sleep or “fractal cycles” for short. We describe
differences and similarities between fractal cycles defined by our algorithm and classical (non-
REM — REM) cycles defined by the hypnogram. We hypothesize that the timing and durations of
the fractal cycles would closely correspond to those of classical cycles. We had no prior
hypothesis regarding correspondence between the fractal cycles and classical cycles with

skipped REM sleep, i.e., this analysis was exploratory.

Given the above-mentioned age-related changes in fractal activity (flatter slopes) and sleep
structure (fewer and shorter classical cycles), we also study whether fractal cycle characteristics
change with age. To this end we use 5 healthy adult datasets with the age range of 18 — 75
years (n = 205). Moreover, we add to our study a pediatric polysomnographic dataset (age
range: 8 — 17 years, n = 21) to explore fractal cycles in childhood and adolescence, a life period
accompanied by deepest sleep and massive brain reorganization (Kurth et al., 2012) as well as a

higher frequency of cycles with skipped REM sleep (Jenni & Carskadon, 2004).

Finally, we test the clinical value of the fractal cycles by analyzing polysomnographic data in 111
patients with MDD, a condition characterized by disturbed sleep structure (besides its clinical
symptoms, such as abnormalities of mood and affect). Specifically, we compare fractal cycles of
sleep between medicated MDD patients (three MDD datasets, n = 111) and healthy age-
matched controls (n = 111) as well as in the unmedicated and medicated states within the same
MDD patients (one of the three MDD datasets, n = 38). We hypothesize that the fractal cycle
approach would be more sensitive in detecting differences between typical and atypical sleep

architecture compared to the conventional classical cycles.
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Methods

Healthy participants

We retrospectively analyzed polysomnographic recordings from the following studies (Table 1):

Datasets 1 — 3: 40, 40 and 33 healthy controls from three independent sleep studies in MDD
conducted at the Max Planck Institute of Psychiatry, Germany. These datasets are described in
Rosenblum et al. (2023 a) and Bovy et al. (2022). In addition, these participants are used as

controls in MDD datasets A — C described below.

Dataset 4: 36 healthy participants from a home-based sleep study exploring simultaneous
polysomnographic and EEG wearables conducted at the Donders Institute for Brain, Cognition
and Behavior, the Netherlands (Described as Dataset 2 in Jafarzadeh Esfahani et al., 2023). The
signal was recorded at participants’ homes over three nights with a gap of a week between
each recording. For consistency with other datasets (i.e., to end up with a comparable number
of cycles provided by each participant), we used polysomnography (and not EEG recorded by
wearables) from the first night only since it had the largest sample size (i.e., 5 subjects dropped

out from the study after the first polysomnographic recording).

Dataset 5: 68 healthy controls from previous endocrinological studies conducted at the Max
Planck Institute of Psychiatry, Germany, using only nights with no pharmacological or endocrine

intervention. 60/68 participants are described in Rosenblum et al. (2024 a).

Dataset 6: 21 healthy children and adolescents from previous studies (Furrer et al., 2019; Volk
et al.,, 2019; Jaramillo et al., 2020) conducted at the University Children's Hospital Ziirich,
Switzerland. For the control group to this dataset, we selected all healthy adults from Datasets
1-3,5, 6 (n=205) whose ages lay in the range of 23 — 25 years (the age when the brain
maturation process is supposed to be finished (Giedd & Rapoport, 2010) and no age-related
processes are expected to start). This resulted in 24 subjects with a mean age of 24.8 + 0.9

years.
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The studies were approved by the Ethics committee of the University of Munich (Datasets 1 —3,
5), Radboud University (Dataset 4) and Canton of Ziirich (Dataset 6). All participants (or

participants’ parents for Dataset 6) gave written informed consent.

Patients with MDD

We retrospectively analyzed polysomnographic recordings from our previous studies (Bovy et

al., 2022; Rosenblum et al., 2023 a, Tables 1 — 2):

Dataset A: 40 long-term medicated MDD patients vs 40 age- and gender-matched healthy

controls (Dataset 1 here).

Dataset B: 38 MDD patients in unmedicated and 7-day medicated states vs 40 healthy age and

gender-matched controls (Dataset 2 here).

Dataset C: 33 MDD patients at 7-day and 28-day of medication treatment vs 33 healthy age and

gender-matched controls (Dataset 3 here).

Demographic and sleep characteristics of the patients, medication treatment and
polysomnographic devices are described in our previous works (Bovy et al., 2022; Rosenblum et
al., 2023 a). Here, Table S5 (Supplementary Material) presents medication treatment. In
Rosenblum et al. (2023 a), Datasets A, B and C are referred to as the Replication Dataset 2,
Main Dataset and Replication Dataset 1, respectively; in Bovy et al. (2022), the naming is the
same as here. All studies were approved by the Ethics committee of the University of Munich.

All participants gave written informed consent.

The first part of this study analyzes the data from healthy participants only and labels the
datasets with the numbers 1 — 6. The second part of this study compares patients and controls
and labels the analyzed datasets with the letters A — C. Notably, healthy participants used as

controls in datasets A — C are the same subjects analyzed in Datasets 1 — 3.
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In Supplementary Material, we report how many participants and for what reasons were
excluded from the analysis. An example of one excluded participant is given in Fig.S6 C (S37).
Likewise, we report pilot findings on fractal cycles in patients with psychophysiological
insomnia, using the open access dataset from Rezaei et al., 2017 (Fig.510, Supplementary

Material).

Polysomnography

Information about the studies and polysomnographic devices is reported in Table 1. The
participants slept wearing a polysomnographic device in a sleep laboratory (Datasets 1 -3, 5, 6)
or in the home environment (Dataset 4). In datasets 1 — 3 and 5 all participants had an
adaptation night before the examination night; adaptation night data was not available to be
analyzed and reported here. In dataset 6, all participants had two recording nights: a baseline
and an examination night with auditory stimulation. Here, only the baseline night was analyzed,

which was either the first night (in 50% of cases) or the second night for a given participant.

Sleep stages were previously scored manually by independent experts according to the AASM
standards (AASM, 2014). In the pediatric dataset, we used 20-s epochs, in the rest of the
datasets, we used 30-s epochs. Epochs with EMG and EEG artifacts and channels with more
than 20% artifacts during non-REM sleep were manually excluded by an experienced scorer

before all automatic analyses.

We opted to analyze the F3 and F4 electrodes for maximal consistency between the studies as
these leads were available in 6 out of 7 datasets. Another reason is that in our future studies,
we plan to replicate this work using the data recorded with at-home wearable devices, which
often have only frontal channels (e.g., F7 and F8). We report the topographical analysis over
central, parietal and occipital electrodes (when available) in healthy and clinical datasets in
Tables S1 and S6 of Supplementary Material, respectively, showing comparable results. In Table
S1 of Supplementary Material, we also report correlations between fractal cycle durations

defined using different channels.
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Table 1: Datasets description

Characteristic Dataset 1 Dataset 2 ([Dataset3 Dataset 4 Dataset 5 Dataset 6
(A) (B) (C) (pediatric)
Furrer et al.,
Jafarzadeh 2019; Volk
:fif?r:::‘::u;o Rosenblum et al., 2023 a Esfahani et :Iosgggzu;n et et al., 2019;
& y al., 2023 = Jaramillo et
al., 2020
No. healthy
participants (40 (-2) 40 (-1) 33(-1) 36 (-2) 68 (-6) 21(0)
(-excluded)
0 L
Exclusion | om0 [0 o5 [>25% WASO [>25% WASO | _
reasons . & |wAsO  |NoREM No REM
recording
No. MDD
patients 40 38 33 0 0 0
(none
excluded)
Sleep lab +
Sleep lab + a Sleep lab + Sleep -at S.Ieep lab + MRl before
Study memory home  with|simultaneous
. memory task Sleep lab and after
environment before! tasks EEG and|blood dJeep®
before®? headband measurement’ P
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JE-209A
Comlab 32 arqphﬁer Comla-wb' Comlab 37 Sensor Net
.. (Nihon 32 Digital .. for long-
Digital Sleep Digital  Sleep
. Kohden, Sleep Lab, . term
Lab, Brainlab . . |Lab, Brainlab .
Tokyo, Brainlab V|Somnomedics monitoring
Vv 3.3 Vv 3.3 .
Device Software Japan), 3.3 GmbH, Software (Electrical
’ with 128ch|Software, |Randersacker, ’ Geodesic
Schwarzer, . Schwarzer
BrainCap |Schwarzer|Germany Inc., EGI,
GmbH, GmbH,
Munich (EasyCap |[GmbH, Munich Eugene, OR,
German’ GmbH, Munich, German' USA)
y Herrsching, | Germany y
Germany)
No. channels |4 128 32 24 16 128
(Offline re)-|Contralateral [Average of ,;:/eragea” Contralateral [Contralateral |[Contralateral
referenced to [ mastoid all leads leads mastoid mastoid mastoid
Sample rate,
Hz 250 200 250 256 250 500
Filtering
during 0.3-70 >0.016 0.53-70 (0.2-35 0.3-70 0.01-200
recording, Hz
Fz, F1, F2
Available '
F3, F4, F5,|Fz, F3, F4,
Z:::f;des none F6, F7, F8|F7, F8 F3, F4 F3, F4 F3,F4
F9, F10
Analyzed 1, F3, F4 F3,F4  |F3, F4 F3, F4 F3, F4
electrodes

' _ a procedural memory paradigm (finger tapping task) before sleep, ° — a declarative memory paradigm (word-pair
learning task) before sleep, >_in this study, 4 ml blood were drawn every 20 minutes from the adjacent room, using an
intravenous cannula and a tube extension, *_ an MRI scan was taken in the evening before and in the morning after
the sleep measurement, WASO — wake after sleep onset, REM — rapid eye movement sleep, MDD — major depressive
disorder.
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Fractal power component

Offline EEG data analyses were carried out with MATLAB (version R2021b, The MathWorks,
Inc., Natick, MA), using the Fieldtrip toolbox and custom-made scripts. For each participant, we
averaged the EEG signal over the F3 and F4 electrodes (or C3 and C4 — for Dataset 1 where the
frontal channels were unavailable), calculated its spectral power for every 30 (adult datasets) or
20 (the pediatric dataset) seconds corresponding to the conventionally defined duration of
sleep epochs and differentiated the total power to its fractal (i.e., aperiodic, 1/f, scale-free) and
oscillatory components. Several methods to calculate fractal components exist. We opted to
use the Irregularly Resampled Auto-Spectral Analysis (IRASA; Wen & Liu, 2016) tool embedded
in the Fieldtrip toolbox (Oostenveld et al. 2011), one of the leading open-source EEG softwares,
with the ft_freqanalysis function as described elsewhere (Rosenblum et al., 2023 a; 2023 b). A
side note: slopes calculated with the IRASA strongly correlate (r = |0.9|) with those calculated
using the “fitting oscillations and one over f’ (FOOOF, See Supplementary Material in Schneider
et al., 2022), another useful method used for aperiodic analysis (Donoghue et al., 2020). The
fractal power component (shown in Fig.S1 A of Supplementary Material) was transformed to
log-log coordinates and its slope was calculated to estimate the power-law exponent (the rate
of spectral decay), using the function /ogfit (Lansey, 2020). The loglog data fit is shown in Fig.S1
E of Supplementary Material. The analysis flowchart is depicted in Fig.1 A; outputs of some of

the analysis steps in an example individual are shown in Fig.1 B.
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Figure 1. Analysis. A. Analysis flowchart. IRASA — Irregularly Resampled Auto-Spectral Analysis,
sgolayfilt — Savitzky-Golay filter. B. Outputs of some of the analysis steps in an example healthy
26-year-old individual. From top to bottom: time-frequency representation of the total spectral
power, raw and smoothed time series of the fractal slopes and hypnogram. Frontal spectral
power and its slopes were calculated in the 0.3 — 30 Hz range for each 30 seconds of sleep.

As opposed to the oscillatory component, the fractal component is usually treated as a unity
and, therefore, is filtered in the broadband frequency range (Donoghue et al., 2020; Bddizs et
al., 2021; Gerster et al., 2022). Nevertheless, different studies defined (slightly) differing bands,
e.g., 30 — 50Hz (Gao et al., 2017; Lendner et al., 2020), 3 — 55Hz (Waschke et al., 2021), 0.5 —
35Hz (Miskovic et al., 2019), 1 — 40Hz, 1 — 20Hz and 20 — 40Hz (Colombo et al., 2019), 1 — 45Hz
(Helson et al., 2023), 0.5 — 40Hz (Vinding et al., 2023), 3 — 45Hz and 30 — 45Hz (H6hn et al.,
2022) and 2 — 48Hz (Bddizs et al., 2021; Schneider et al., 2022).

Here, we used the 0.3 — 30Hz range as this is a typical sleep frequency band used in many areas
of sleep research, showing good ability to differentiate between sleep stage as could be seen in
Fig.S1 B (Supplementary Material), which replicates existing literature. Dataset 4 was analyzed
in the 0.3 — 18Hz range since relatively low low-pass filtering was applied to it during the
recording (see Table 1). In Table S2 of Supplementary Material, we also analyze the 1 — 30Hz
band to control for a possible distortion (the so called “knees' of the spectrum) of the linear fit
by excluding low frequencies with strong oscillatory activity (Gao et al., 2017; Bddizs et al.,
2021). We find that the results are similar to those obtained for the 0.3 — 30Hz band reported in
the Main text (probably thanks to the smoothening procedure we applied).

Finally, Fig.S1 D (Supplementary Material) shows aperiodic slopes in the 30 — 48Hz band
averaged over sleep stages for Datasets 1 — 3 and 5. According to literature, REM sleep is
expected to show the steepest (most negative) high-band slopes compared to all other sleep
stages. However, we were able to replicate this finding in Datasets 1 and 5 only. Given poor
differentiation between the stages in 2/4 datasets, this variable was not used in any further

analyses.
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Fractal activity-based cycles of sleep

Fractal activity-based cycles of sleep or “fractal cycles” for short were defined from fractal slope
time series. For this, time series of the fractal slopes were z-normalized (raw values can be seen
in Fig.S1 C, Supplementary Material) within a participant and smoothened with the Savitzky-
Golay filter (Fig.1), the filter highly used in many fields of data processing. We used the Matlab’s
function sgolayfilt(slope_time_series, order, frame_length) with the polynomial order of five
and the frame length of 101. The peaks of the smoothed time series of the fractal slopes were
defined with Matlab’s function findpeaks (slope_time series, 'MinPeakDistance’, 40,
'MinPeakProminence', 0.9) with the minimum peak distance of 20 minutes (i.e., forty 30-second
epochs) and minimum peak prominence of |0.9] z (Fig.2 A — B). The amplitude of the
descending and ascending phases of a cycle was defined to be > |0.9| z, meaning that there is a
probability of p=0.8 that a given fractal slope lies below/above the standard normal

distribution.

Of note, we had no solid a priori theoretical indication for choosing either of the function
settings mentioned above. All settings were chosen a posteriori following an exploratory visual
inspection of the normalized data from one dataset (Dataset 5), which therefore can be
transferred to other datasets. That is, in datasets 1 — 4 and 6, the settings of the sgolayfilt and
findpeaks functions were defined a priori based on the results obtained while inspecting

Dataset 5.

In Table S7 of Supplementary Material, we compare results obtained while using different
thresholds of the abovementioned parameters; namely, longer and shorter smoothing windows

and higher and lower minimum peak prominence.

Classical sleep cycles

Classical sleep cycles were defined manually via the visual inspection of the hypnograms by two

independent scorers according to the criteria originally proposed by Feinberg and Floyd (1979)
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with some adaptations as follows. A cycle typically starts with N1, N2 or sometimes wake and is
followed by N2 or N2 and slow-wave sleep (SWS) > 20 minutes in duration, which can include
wake. The cycle ends with the end of the REM period, which can include wake or short
segments of non-REM sleep. No minimum REM duration criterion was applied (Tarokh et al.,
2012). In some cases (described below), the cycle end was defined at a non-REM sleep stage or
wake. Two examples of hypnograms with marked classical sleep cycles are shown in Fig.2 A — B.

Four more examples are presented in Fig.S2 (Supplementary Material).

The last incomplete (not terminated by the REM sleep phase) cycle at the end of the night was
included in the analysis if its duration was > 50 minutes. The last incomplete cycles < 50

minutes were removed (nevertheless, they are shown in figures when present).

In Supplementary Excel File shared on https://osf.io/gxzyd, we report classical cycle durations

for each participant as scored by two human raters and the automatic algorithm (Blume &
Cajochen, 2021). In Table S8 of Supplementary Material, we report the inter-rater agreement in

number and durations of classical cycles.

Skipped cycles

Given the absence of strict and broadly accepted rules for cycles with skipped REM sleep
definition in literature, here, we tagged a cycle as “skipped” based on the visual inspection of
the hypnogram combined with the criteria proposed by Jenni and Carskadon (2004) and Tarokh
et al. (2012). Specifically, we subdivided a long cycle > 110 minutes into two when: 1) there was
a “lightening of sleep” (i.e., the presence of wake, N1 and N2) in the middle of the long cycle,
when a REM sleep episode was anticipated, 2) a continuous episode of N1, N2, wake or
movement time lasting at least 12 minutes was preceded and followed by slow-wave sleep
(Jenni & Carskadon, 2004); 3) two clear episodes of slow-wave sleep were separated by lighter
non-REM stages (which might include wake) (Campbell et al., 2011; Tarokh et al., 2012). Long
cycles containing skipped cycles were divided into cycles at time of sleep lightening. Examples

of hypnograms with skipped sleep are shown in Fig.S6 and Fig.S9 (Supplementary Material). For
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each dataset, we checked whether the classical cycles with skipped REM sleep had been

detected by the fractal cycle algorithm.

In Supplementary Excel File shared on https://osf.io/gxzyd, we report which classical cycles

were tagged as “skipped” by two human raters. In Supplementary Material, we report the inter-
rater agreement in number of cycles with skipped REM sleep (Table S9). In Supplementary

PowerPoint File shared on https://osf.io/gxzyd, hypnograms of all healthy adult participants are

presented next to fractal cycles with skipped cycles marked individually as assessed by rater 1.

Statistical analysis

The assumption that durations of the fractal and classical cycles come from a standard normal
distribution was tested using the one-sample Kolmogorov-Smirnov test. The result suggested
that this assumption should be rejected (p<0.05); therefore, non-parametric tests were used for

all further analyses.

We correlated fractal and classical cycle durations using Spearman’s correlations in each
dataset separately as well as in all datasets pooled. Given that in some participants (from 34 to
55% in different datasets), the number of the fractal cycles (mean 4.6 £+ 1.0 cycles per
participant) was not equal to the number of the classical cycles (mean 4.7 £ 0.9 cycles per
participant), prior to the correlation analysis, we averaged the duration of the fractal and
classical cycles over each participant. For a subset of the participants (45 — 66% of the
participants in different datasets) with a one-to-one match between the fractal and classical
cycles, we performed an additional correlation without averaging, i.e., we correlated the

durations of individual fractal and classical cycles.

To identify sources of fractal and classical cycle mismatch, we further correlated between the
difference in classical vs fractal sleep cycle durations on the one side and either the amplitude

of fractal descend/ascend (to reflect fractal cycle depth), duration of cycles with skipped REM
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sleep, duration of wake after sleep onset or the REM episode length of a given cycle (to reflect

peak flatness) on the other side (Table 3).

Likewise, we computed person-centered effect sizes, the approach that answers the question,
“How many participants in the study showed the consistent with theoretical expectation
effect?”. This approach helps to reveal data patterns that are missed by traditional statistical
analyses (Grice et al., 2020). We calculated the sample prevalence by counting the number of
significant correlations between fractal and classical cycle duration divided by the total number

of cases (both significant and non-significant).

To assess the population prevalence of the findings with associated uncertainty, we used the
Bayesian prevalence, accounting for the false positive rate of the statistical test (Ince et al.,
2022). This method helps to estimate the proportion of the population that would show the
effect if they were tested in this experiment or, in other words, the population within-
participant replication probability (Ince et al., 2022). As an output, this method provides the
maximum a posterior estimate — the most likely value of the population parameter. To quantify
the uncertainty of this estimate, Bayesian prevalence also provides the highest posterior
density intervals for various levels (we used the 96% probability level) —the range within which
the true population value lies with the specified probability. To perform this analysis we used

an online web application available at https://estimate.prevalence.online.

To compare pediatric and young adult groups (Table S3 in Supplementary Material), MDD
patients and controls (Table 4), MDD patients treated with REM-suppressive antidepressants
and patients treated with REM-non-suppressive antidepressants (Table S5 in Supplementary
Material), we used the non-parametric Mann-Whitney U test. We performed the analyses both
at the cycle level (while pooling the cycles of all participants together) as well as at the subject
level (while averaging the cycles of a given participant). Given that the results of both analyses
were similar, we report only the cycle level analysis for simplicity. To compare medicated and
unmedicated states of the MDD patients (Table 4), we used the paired samples Wilcoxon test.

Effect sizes were calculated with Cohen's d.
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In Supplementary Material, we report autocorrelations and partial autocorrelations of fractal
slope time series (Fig.S11) as well as cross-correlations (Fig.S12) between time series of fractal
slopes vs. time series of non-REM or REM sleep proportion to further model their temporal

relationships.

Data and code sharing

The fractal slope and sleep stage for each 30-second epoch of sleep for healthy adult
participants, Matlab scripts calculating fractal slopes and fractal cycles, Excel file used to
perform all the statistical analyses with the fractal and sleep characteristics for each participant
and PowerPoint file depicting fractal and classical cycles for all participants can be accessed

under https://osf.io/gxzyd.

Results

Fractal cycles in healthy adults

Fig.2 A displays smoothed fractal slope time series and hypnogram for an example subject. Four
additional examples are presented in Fig.S2 (Supplementary Material). Fractal slope time series
and hypnograms for all healthy adult participants are shown in Supplementary PowerPoint File

shared on https://osf.io/gxzyd.

We observed that the slopes of the fractal (aperiodic) power component fluctuate across a
night such that the peaks of the time series largely coincide with REM sleep episodes while the
troughs of the time series for the most part coincide with non-REM sleep episodes. Based on

this observation we propose the following definition:

Definition: The fractal activity-based cycles of sleep or “fractal cycles” for short is a time

interval during which the time series of the fractal slopes descend from the local maximum to
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the local minimum with the amplitudes higher than |0.9| z, and then lead back from that

local minimum to the next local maximum.

Based on this definition, we created an algorithm, which automatically defined the onset and
offset of the fractal cycles (the adjacent peaks of the time series of the fractal slopes) (available

on https://osf.io/gxzyd/). An additional visual inspection showed that the automatic definition

of fractal cycles (Fig.2 A, blue diamonds) was identical to that provided by a human scorer.

Overall, fractal slopes cyclically descend and ascend 4 — 6 times per night and the average
duration of such a descent-ascent cycle is close to 90 minutes. Fig.S3 A (Supplementary
Material) shows the frequency distribution of the fractal cycle durations for each dataset

separately as well as for the pooled dataset.

This observation strikingly resembles what we know about classical sleep cycles: “night sleep
consists of 4 — 6 sleep cycles, which last for about 90 minutes each” (Feinberg & Floid, 1979; Le
Bon, 2020; Fig.S3 A, bottom panel). Further calculations showed that the mean duration of the
fractal cycles averaged over all cycles from all datasets (n = 940) is 89 + 34 minutes while the
mean duration of the classical sleep cycles is 90 £ 25 minutes (Fig.S3 B, Supplementary
Material). The mean durations of the fractal and classical sleep cycles averaged over each

participant correlated in all analyzed datasets (r = 0.4 — 0.5, Table 2, Fig.2 C).

Fig.S7 (Supplementary Material) shows fractal activity across 13-h, including 3 hours before the
sleep onset and 2 hours after awakening. The pattern of fractal fluctuations suggests that

fractal cycles are specific to sleep and are not observed during wake.

Cycle-to-cycle overnight dynamics showed an inverted U-shape of the fractal cycle durations
and a gradual decrease in absolute amplitudes of the fractal descents and ascents from early to

late cycles. This pattern resembled an inverted U-shape of the classical cycle durations (Fig.2 D).
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Figure 2. Fractal cycles in healthy adults. A — B. Individual fractal and classical sleep cycles.
Time series of smoothed z-normalized fractal slopes (bottom) and corresponding hypnograms
(top) observed in two different participants. The duration of the fractal cycle is a time interval
between two successive peaks (blue diamonds). A: S15 from Dataset 3 shows a one-to-one
match between fractal cycles defined by the algorithm and classical (non-REM — REM) cycles
defined by the hypnogram. B: In S22 from dataset 5, the second part of night has many wake
epochs, some of them are identified by the algorithm as local peaks. This results in a higher
number of fractal cycles as compared to the classical ones and a poor match between the
fractal cycles No. 3 — 7 and classical cycles No. 2 — 5. The algorithm does not distinguish
between the wake and REM-related fractal slopes and can define both as local peaks. Since the
duration of the fractal cycles is defined as an interval of time between two adjacent peaks,
more awakenings/arousals during sleep (usually associated with aging, Fig.S5 B) are expected to
result in more peaks and, consequently, more fractal cycles, i.e., a shorter cycle duration. This is
one of the possible explanations for the correlation between the fractal cycle duration and age
(shown in Fig. S5 A). Time series of the fractal slopes and corresponding hypnograms for all
participants are reportedshwon in Supplementary PowerPoint File shared on
https://osf.io/gxzyd. SWS — slow-wave sleep, REM — rapid eye movement. C. Scatterplots: each
dot represents the duration of the cycles averaged over one participant. The durations of the
fractal and classical sleep cycles averaged over each participant correlate in all analyzed
datasets, raw (non-ranked) values are shown, r — Spearman’s correlation coefficient. D. Cycle-
to-cycle overnight dynamics show an inverted U shape of the duration of both fractal and
classical cycles across a night and a gradual decrease in absolute amplitudes of the fractal
descents and ascents from early to late cycles.
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Table 2: Demographic, sleep and fractal characteristics of healthy adults
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Pooled
Characteristic Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4 | Dataset 5
dataset
No. participants
38 39 32 34 62 205
analyzed
Age, years 46.8+10.7 | 31.0£9.9 (45.3+15.9(21.5+3.8|37.4+£15.3(36.7+£15.0
Age range, years 29-65 19-54 22-75 18-35 20-66 18-75
Gender, female, % 53 54 61 68 55 58
Wake, % 6.0 4.9 7.5 7.1 9.1 7.0
Non-REM stage 1, % 7.7 11.9 9.0 3.6 7.5 7.9
Non-REM stage 2, % 48.1 45.9 49.3 34.7 46.1 45.1
Slow-wave sleep, % 19.2 20.3 16.2 34.2 17.2 20.9
REM sleep, % 19.0 16.9 17.9 19.3 19.3 18.6
Total sleep time, min 394 +55 430+26 | 434+37 | 445+62 | 467+38 | 438+51
Classical sleep cycle
86.21+£23.3190.0£21.3|189.0£22.7|92.2+23.7|91.9£29.0/90.1£24.9
duration, min
Fractal sleep cycle
86.4+£35.2190.0£25.5|86.4£31.2|194.7+37.1|189.9£37.1|189.1+34.0
duration, min
Classical-fractal cycles
0.407 0.485 0.498 0.548 0.481 0.488

duration correlation, r
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Classical-fractal cycles
0.011 0.002 0.004 0.001 1075 10713
duration correlation, p
One-to-one match
between classical and
78 88 82 87 77 81
fractal cycles timing
and duration, % cycles
Participants having all
fractal and classical
53 62 66 53 45 54
cycles in a one-to-one
match, % participants
Descent amplitude, z -22+209 | -23+09 | -22+£0.8 | -2.2+0.8| -2.1+0.8| -2.2%£0.8
Ascent amplitude, z 2.1+0.6 2.21+0.6 21+06 | 21+x06 | 20x0.6 | 2.2+0.6
No. fractal cycles 167 171 152 152 298 940
No. classical cycles 171 180 146 161 303 961
No. “skipped” first
5(13%) 7 (18%) 1(3%) 19 (56%) | 15(24%) | 47 (23%)
cycles (%)

+ shows mean and SD, r — Spearman’s correlation coefficient, “skipped” cycle — a cycle where the REM phase is
expected to appear except that it does not, REM — rapid eye movement.
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Correspondence between fractal and classical cycles

Analysis at the individual cycle level revealed that 81% (763/940) of all fractal cycles (77 — 88%
in different datasets) could be matched to a specific classical cycle defined by hypnogram, i.e.,
the timings of fractal and classical cycles approximately coincide. Bayesian prevalence analysis
further revealed that the Bayesian highest posterior density interval with 96% probability level
lies within the 0.77 — 0.83 range (the range within which the true population value lies) and the
maximum a posteriori point estimate prevalence is equal to 0.8, reflecting the most likely
values for the population parameter. This analysis reflects the within-participant replication
probability: the probability of obtaining a significant experimental result if the same experiment

was applied to a new participant randomly selected from the population (Ince et al., 2022).

In 54% (111/205) of the participants (45 — 66% in different datasets), all fractal cycles
approximately coincided with classical cycles (r = 0.5 — 0.8, p < 0.001, Table 2 and Fig.54,
Supplementary Material). Bayesian prevalence analysis revealed that the maximum a posteriori
point estimate prevalence is equal to 0.52 and the Bayesian highest posterior density interval

(the true population level) with 96% probability level lies within the 0.45 — 0.60 range.

In the remaining 46% of the participants, the difference between the fractal and classical cycle
numbers ranged from -2 to 2 with the average of -0.23 = 1.23 cycle. This subgroup had 4.6 + 1.2
fractal cycles per participant, while the number of classical cycles was 4.9 £ 0.7 cycles per
participant. The correlation coefficient between the fractal and classical cycle numbers was
0.280 (p = 0.006) and between the cycle durations — 0.278 (p = 0.006). Still, in these
participants, many — even though not all — fractal cycles could be matched to a specific classical
cycle. Fig.2 B displays such an example in one participant. More examples can be found in Fig.S2
C — D of Supplementary Material and Supplementary PowerPoint File shared on

https://osf.io/gxzyd.
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Sources of fractal and classical cycle mismatches

The timings and correlations between the fractal and classical cycles were not one-to-one (r =
0.6 — 0.8, p < 0.001). We identified two possible sources of a mismatch (Table 3; see also Table

6).

1) REM episode duration. While the fractal cycle end is defined as the local maximum of time
series of fractal slopes, the classical cycle ends with the end of a REM episode. As a
consequence, in some cases, especially for morning cycles that have rather long REM periods (>
20 minutes), the match between fractal and classical cycles can be rather coarse-grained (See,
for example, cycle 3 in S16, Fig.S2 A, Supplementary Material). Yet, in other cases, the match

between fractal and classical cycles might be almost perfect (See Fig.2 A).

To test this visual observation, we correlated the absolute values of the difference in classical vs
fractal sleep cycle durations with the REM episode length within a given cycle. We included in
this analysis only the participants who had an equal number of fractal and classical cycles in
order to match each fractal cycle to a classical cycle individually. We found that longer REM
episodes were associated with a higher difference between classical vs fractal sleep cycle

durations (r=0.36, p < 0.001, n =417 cycles, Table 3).

2) Wake after sleep onset (WASQO) duration. Visual inspection of the data suggested that
participants with more WASO often had more fractal than classical cycles. This might stem from
the fact that both REM- and wake-related smoothed fractal slopes could be defined as local
peaks (Fig.2 A — B, Fig.S1 B, Supplementary Material). More fractal peaks imply more fractal
cycles and thus, possibly, more mismatches between the number and duration of classical and
fractal cycles. To test this hypothesis, we correlated the average difference between the
durations of classical and fractal cycles for each participant with the WASO proportion. We
found that a higher difference in cycle durations was associated with a higher WASO proportion
in 3/5 datasets (r's = 0.36 — 0.49, p < 0.030) as well as in the merged dataset (r =0.23, p = 0.001,
n = 205 participants, Table 3).
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In addition, we correlated the difference in classical vs fractal cycle durations with the fractal

descent or ascent amplitudes (as reflections of fractal cycle depth and possibly sleep quality).

We found that a shallower fractal descent was associated with a higher mismatch between

fractal and classical cycles in 1/5 datasets (r = 0.33, p = 0.02) as well as in the merged dataset (r

=0.15, p = 0.002, n =400 cycles, Table 3).

Table 3: Sources of fractal and classical cycle mismatches

Dataset 1 Dataset 2 Dataset 3 Pooled
Characteristic Dataset 4 Dataset 5
(A) (B) (C) dataset
Classical — fractal cycle duration
13.2+15.9 9.6%+9.1 8.0+11.3 13.0+17.0 11.9+10.2 11.3+12.7
difference, min
WASO, % 6.0+5.6 49+36 7.5+£5.0 71142 9.1+5.7 7.0+5.2
WASO %, r -0.011 0.488 0.377 0.141 0.361 0.226
WASO %, p 0.950 0.002 0.034 0.425 0.004 0.001
Descent amplitude, z -2.3+0.9 -2.5+0.9 -2.3+0.8 -2.0+0.7 -2.1+0.8 -2.2+0.8
Fractal descent, r 0.189 0.327 0.143 0.144 0.149 0.152
Fractal descent, p 0.171 0.002 0.182 0.271 0.135 0.002
Ascent amplitude, z 2.3%0.6 2.1+05 2.2+0.6 2.0+0.6 2.0%0.6 211206
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Fractal ascent, r 0.109 -0.105 -0.103 0.028 -0.010 -0.062
Fractal ascent, p 0.432 0.318 0.339 0.835 0.918 0.217
Skipped cycle lengths/TST,
0.144 0.223 0.139 0.249 0.201 0.206
proportion
Skipped cycle lengths/TST, r 0.098 -0.363 0.384 -0.216 0.374 -0.019
Skipped cycles length/TST, p 0.788 0.303 0.523 0.334 0.066 0.873
23.5+£15.2 | 22.8+13.2 21.8+11.6 26.0£13.9 24.3+15.0 0.251 £ 0.08
REM episode length, min
(72 cycles) (93 cycles) (90 cycles) (60 cycles) (102 cycles) (417 cycles)
REM episode length, r 0.222 0.411 0.400 0.231 0.394 0.358
REM episode length, p 0.061 <0.001 0.001 0.076 <0.001 <0.001

All parameters listed in the first column were correlated with the absolute value of the difference in classical vs fractal sleep
cycle durations. For WASO and skipped cycles, all cycles of a given participant were averaged and the correlations were
performed at the subject level. For the rest of the parameters, fractal and classical cycles were matched one-to-one when
possible ( ~ 50% of all participants) and correlations were performed at the cycle level, r's higher than 0.7 are considered as
strong correlation scores, values lower than 0.3 are considered as weak, r’s values in the range of 0.3 — 0.7 are considered as
moderate scores, REM — rapid eye movement sleep, WASO — wake after sleep onset, TST — total sleep time, r — Spearman
correlation coefficients.

Fractal cycles in children and adolescents

Next, we explored fractal cycles in children and adolescents (mean age: 12.4 £ 3.1 years, n = 21,
Table S3 of Supplementary Material) and compared them with those in young adults (mean
age: 24.8 = 0.9 years, n = 24). Two examples of smoothed fractal slope time series and
hypnograms from the pediatric dataset are shown in Fig.3 A — B. All examples are shown in

Supplementary PowerPoint File shared on https://osf.io/gxzyd.

29



https://doi.org/10.1101/2023.07.04.547323
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.04.547323; this version posted October 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We found that children and adolescents had shorter fractal cycles compared to young adults
with a medium effect size (76 £ 34 vs 94 £ 32 min, p < 0.001, Cohen’s d = -0.57, 112 vs 121
pooled cycles, 5.0 cycles/participant vs 4.4 cycles/participant, Fig.3 C — D, Table S3). Similarly,
children and adolescents showed shorter classical cycles than young adults with a medium
effect size (80 £ 23 vs 90 £ 22 min, p < 0.001, Cohen’s d =-0.42, 112 vs 114 pooled cycles, Fig.3
C-D).

To directly compare the fractal and classical approaches, we performed a Multivariate Analysis
of Variance with fractal and classical cycle durations as dependent variables, the group as an
independent variable and the age as a covariate. We found that fractal cycle durations showed
higher F-values (Fq, 43y = 4.5 vs F(1, 43y = 3.1), adjusted R squared (0.138 vs 0.089) and effect sizes

(partial eta squared 0.18 vs 0.13) than classical cycle durations.

Cycle-to-cycle overnight dynamics further revealed that the first and second fractal — but not
classical — cycles were significantly shorter in the pediatric compared to the control group (Fig.3
E) with medium effect sizes (d = -0.61 —-0.72). At the same time, the overnight classical — but
not fractal — cycle analysis detected a between-group difference for the fourth classical cycle

with a large effect size (d = -1.0, Fig.3 E).
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Figure 3. Fractal cycles in children and adolescents. A — B: Individual cycles: time series of
smoothed z-normalized fractal slopes (bottom) and corresponding hypnograms (top). The
duration of the fractal cycle is a time interval between two successive peaks (blue diamonds)
defined with the Matlab function findpeaks with a minimum peak distance of 20 minutes and
minimum peak prominence of 0.9 z. SWS — slow-wave sleep, REM —rapid eye movement sleep.
A: In this 9.9-year-old participant (from Dataset 6), we split the first 150-minute-long classical
cycle into two cycles according to the definitions of a “skipped” cycle presented in Methods.
The fractal cycle algorithm successfully detected this skipped cycle. B: This 14.9-year-old
participant has a 156-minute-long first classical cycle. Visual inspection shows that it should be
divided into 3 skipped cycles, however, our a priori definition of skipped cycles did not include
an option to subdivide a long cycle into three short cycles; hence, we split it into two short
cycles. The fractal cycle algorithm was sensitive to these sleep lightenings and detected all
three short cycles. Classical cycle 4 looks like a skipped cycle as it has two clear episodes of
slow-wave sleep separated by non-REM stage 2. However, the length of this cycle is shorter
than 110 min (the threshold defined a priori), therefore, we did not split the classical cycle 4
into two cycles. The fractal cycle algorithm was sensitive to this lightening of sleep and defined
two fractal cycles during this period. C. Histograms: The frequency distribution of fractal (left)
and classical (right) cycle durations in children and adolescents (mean age: 12.4 + 3.1 years)
compared to young adults (mean age: 24.8 £ 0.9 years). Kolmogorov-Smirnov’s test rejected the
assumption that cycle duration comes from a standard normal distribution. D. Box plots: in
each box, a vertical central line represents the median, the left and right edges of the box
indicate the 25th and 75th percentiles, respectively, the whiskers extend to the most extreme
data points not considered outliers, and a plus sign represents outliers. Children and
adolescents show shorter fractal cycle duration compared to young adults. E. Overnight
dynamics: cycle-to-cycle dynamics show that the first and the second fractal cycles are shorter
in the pediatric compared to control group, * marks a statistically significant difference
between the groups.

Skipped cycles

We tested whether the fractal cycle algorithm can detect skipped cycles, i.e., the cycles where
an anticipated REM episode is skipped possibly due to too high homeostatic non-REM pressure.
We counted only the first classical cycles (i.e., the first cycle out of the 4 — 6 cycles that each
participant had per night, Fig. 3 A — B) as these cycles coincide with the highest non-REM
pressure. An additional reason to disregard skipped cycles observed later during the night was
our aim to achieve higher between-subject consistency as second — sixth skipped cycles were
observed in only a small number of participants and were not distributed equally across the

datasets.
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The average number of the first skipped cycles for Datasets 1 —5 is reported in Table 2. Table S9
of Supplementary Material further reports the average number of skipped cycles as assessed by
two independent human raters and the inter-rater agreement. Three specific examples of
skipped cycles in young adults are presented in Fig.S6 of Supplementary Material and two
examples in children are shown in Fig.3 A — B. All cycles are marked in Supplementary

PowerPoint File shared on https://osf.io/gxzyd.

Visual inspection of the hypnograms from Datasets 1 — 6 was performed by two independent
researchers. Scorer 1 and Scorer 2 detected that out of 226 first sleep cycles 58 (26%) and 64
(28%), respectively, lacked REM episodes. The agreement on the presence of skipped cycles
between two human raters equaled 91% (58 cycles detected by both raters out of 64 cycles
detected by either one or two scorers). The fractal cycle algorithm detected skipped cycles in 57
out of 58 (98%) cases detected by Scorer 1 with one false positive (which, however, was tagged
as a skipped cycle by Scorer2), and in 58 out of 64 (91%) cases detected by Scorer 2 with no

false positives.

Age and fractal cycles

Next, we tested whether fractal cycle duration changes as a function of age. We found that in
the merged adult dataset (Datasets 1 — 5, n = 205), the mean duration of the fractal cycles
negatively correlated with the age of the participants (r = -0.19, p = 0.006, age range: 18 — 75
years, median: 33.5 years, Fig.S5 A, Supplementary Material). Intriguingly, this correlation
looked like a mirror image of the correlation between the age and wakefulness after sleep
onset (Fig.S5 B). Following this observation, we performed an additional correlation between
the fractal cycle duration and wakefulness proportion and found that it was non-significant (r =
0.01, p = 0.969). Nevertheless, we further performed a partial correlation between the fractal
cycle duration and participant age, while controlling for the effect of wakefulness after the

sleep onset and found that the correlation remained significant (r =-0.18, p = 0.011).
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Given that participant’s age also correlated with REM latency (Fig.S5 D) while REM latency
further correlated with fractal cycle duration (Fig.S5 C), we performed an additional partial
correlation between the fractal cycle duration and age while controlling for REM latency. We
found that it remained significant (r = -0.16, p = 0.025). The partial correlation between the
fractal cycle duration and REM latency adjusted for the participant’s age was non-significant (r =

0, p = 0.746).

Of note, these correlations were significant while analyzing the pooled dataset only, they were
not observed while analyzing each dataset separately. Moreover, when we added to the pooled
adult dataset (Datasets 1 — 5) our pediatric dataset (Dataset 6), the correlation between fractal

cycle duration and age became non-significant.

Interestingly, the mean duration of the classical cycles did not correlate with the age of the
adult participants neither in the merged dataset (r = -0.02, p = 0.751) nor while analyzing each

dataset separately.
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Fractal cycles in MDD

Finally, to assess the clinical relevance of the fractal cycles, we explored them in patients with
MDD. We found that patients at 7- and 28-day of medication treatment as well as long-termed
medicated patients (Datasets A — C) showed a longer fractal cycle duration compared to
controls with medium effect size (Table 4, Fig.4 B). Moreover, in Dataset B, the patients who
took REM-suppressive antidepressants (See Table S5 of Supplementary Material for information
on specific medications taken by the patients) showed longer fractal cycle duration compared
to patients who took REM-non-suppressive antidepressants with medium effect size (70 cycles
of 21 patients vs 63 cycles of 17 patients). In Dataset C, no difference was detected between
these sub-groups. However, it should be noted that in Datasets C, the REM-suppressive and
REM-non-suppressive antidepressant groups were unbalanced (87 cycles of 23 patients vs 35

cycles of 10 patients) and consisted of different medications than Dataset B.

Table 4 and Fig.4 show results calculated over frontal electrodes (or central ones for Dataset A).

The topographical analysis over other areas is reported in Table S6 of Supplementary Material.
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Table 4: Fractal cycles in MDD

Fractal-classical

Classical cycles Fractal cycles cycles
wn
E correlation
D o =3
@ S o )
2 ° k= 2
a © g
s
No. Duration, No. Duration,
p d p d r p
cycles min cycles min
HC (Dataset 1) 38 46.8+10.7 | 171 86+ 23 - - 167 84+ 35 - -—- 0.33 | 0.042
A
long-termed
40 50.1+ 8.6 141 10955 10°% | 0.6 143 97+43 0.001 | 0.3 | 0.51 | 0.001
med. MDD
HC (Dataset 2) 39 31.0£9.9 180 90+ 21 - - 171 90+ 26 - -—- 0.51 | 0.001
unmed. MDD 38 31.3+10.2| 169 92+31 n.s. - 155 92+ 38 n.s. -—- 0.19 n.s.
B
7d med. MDD -—- - 149 102+43 | 0.003 | 0.4 133 107 £51 1074 | 0.5 | 0.68 10
REM-non-
17 31.6£10.4 77 91+ 26 - - 63 95+ 44 - -—- 0.49 | 0.046
suppressive
REM-
21 33.6+11.3 72 103+54 | 0.002* | 0.5* 70 121+55 |[0.003* | 0.5*% | 0.66 | 0.001
suppressive
HC (Dataset 3) 32 45.3+15.9| 146 89+ 23 - - 154 88+ 32 - -—- 0.57 | 0.001
C
7d med. MDD 33 46.2+16.2 | 121 114 £45 1077 | 0.7 122 107 £48 107* | 0.5 | 0.47 | 0.006
28d med. MDD -—- - 117 111+51 1073 0.6 100 106+51 | 0.001 | 0.4 | 042 | 0.018

MDD — major depressive disorder, unmed. — unmedicated, med. — medicated, HC — healthy controls, p — p-values
of the non-parametric test comparing a given group to HC, * — compared to the non-REM suppressive
antidepressant group, r — Pearson’s correlation coefficient.
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Figure 4. Fractal cycles in MDD. A. Individual fractal cycles: time series of smoothed z-
normalized fractal slopes observed in a 22 y.o. MDD patient (Dataset B) in their unmedicated
(top) and 7-day medicated (bottom) states. Peaks (blue diamonds) are defined with the Matlab
function findpeaks with the minimum peak distance of 20 minutes and minimum peak
prominence of 0.9 z. Fractal cycles duration (defined as an interval of time between two
successive peaks) is longer in the medicated compared to unmedicated states, reflecting
shallower fluctuations of fractal (aperiodic) activity. Two additional patients are shown in Fig.S9
(Supplementary Material). B. Box plots: the fractal cycle duration is longer in medicated MDD
patients (red) compared to age and gender-matched healthy controls (black) in all datasets. In
Dataset B, fractal cycles are longer in the medicated vs patients’ own unmedicated state and in
patients who took REM-suppressive vs REM-non-suppressive antidepressants. A vertical central
line represents the median in each box, the left and right edges of the box indicate the 25th and
75th percentiles, respectively, the whiskers extend to the most extreme data points not
considered outliers, and a plus sign represents outliers (individual cycles). C. Frequency
distribution: individual fractal and classical cycles pooled from three MDD datasets (A — C) are
counted separately for medicated MDD patients and HC. D. Overnight dynamics: cycle-to-cycle
dynamics of the duration of both fractal and classical cycles show a gradual decrease in
medicated patients vs an inverted U shape in controls. The between-group difference in cycle
duration is the largest for the first cycle. Patients show flatter fractal descents of the second
cycle and steeper fractal descents of the fourth cycle compared to controls. Contrary to
controls, patients do not show a gradual decrease in absolute amplitudes of the fractal
descents from the second to the fourth cycles. Patients and controls show comparable cycle-to-
cycle dynamics of fractal ascents, * marks a statistically significant difference between the
groups. MDD — major depressive disorder, HC — healthy controls, unmed. — unmedicated, med.
— medicated, SWS — slow-wave sleep, REM - rapid eye movement.

In Dataset B (the only dataset including unmedicated patients), 7-day medicated patients had
longer fractal cycles compared to their own unmedicated state with medium effect size (p =
0.001, Cohen’s d = 0.4, Fig.4 A — B, two additional examples are shown in Fig.S10,
Supplementary Material). Unmedicated patients and controls showed comparable durations of
the fractal cycles. The only difference observed between these groups was a smaller amplitude
of the fractal descent of the first fractal cycles in unmedicated patients compared to controls

with a medium effect size (-3.2 vs -3.6 z, p = 0.040, Cohen’s d = 0.5).

38


https://doi.org/10.1101/2023.07.04.547323
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.04.547323; this version posted October 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In a pooled dataset, medicated patients showed a prolonged duration of fractal cycles
compared to the controls (104 £ 49 vs 88 + 31 min, p < 0.001, Fig.4 C). The between-group
difference was the largest for the first cycle (Fig.4 D). Moreover, cycle-to-cycle overnight
dynamics of the fractal cycle duration showed a gradual decrease in medicated patients vs an

inverted U shape in controls (Fig.4 D).

To test our hypothesis that fractal cycles are more sensitive than classical cycles in detecting
differences between patients and controls, we performed the same analysis as described above
while using the duration of classical cycles as the variable of interest. The results were similar to
those obtained for fractal cycle durations (Table 4, Fig.4 C — D), i.e., our hypothesis was not
confirmed. The comparable outcomes of the two analyses can be explained by the positive
correlations between the durations of fractal and classical cycles observed in all groups of the

medicated MDD patients like that seen in healthy controls (Table 4).
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Discussion

This study introduced the new concept of fractal activity-based cycles of sleep or “fractal
cycles” for short, which is based on temporal fluctuations of the fractal (aperiodic) slopes across
a night. We showed that durations of these fractal cycles correlated with those of classical
(non-REM — REM) sleep cycles defined by hypnograms in five independently collected datasets
counting 205 healthy participants overall as well as in 111 medicated patients with MDD.
Overnight cycle-to-cycle dynamics in healthy adults showed an inverted U-shape for both
fractal and classical cycle durations. The fractal cycle algorithm was effective in detecting cycles
with skipped REM sleep. The findings further revealed that children and adolescents showed
shorter fractal cycles as compared to young healthy adults. In adults, fractal cycle durations
negatively correlated with participants’ age. Medicated patients with MDD showed longer
fractal cycles compared to their own unmedicated state and healthy controls. Below we discuss

these findings in detail.

Fractal cycles: definition and motivation

We observed that the time series of fractal slopes have a cyclical nature, descending and
ascending for about 4 — 6 times per night with a mean duration of approximately 90 minutes for
each such (“fractal”) cycle. This strikingly resembles the description of classical sleep cycles.
Indeed, both the visual inspection and formal correlational analyses revealed that the timing
and duration of the fractal and classical cycles mainly matched. This led us to propose that the
“fractal cycles of sleep” could serve as a new data-driven definition of sleep cycles, i.e., a
means to appreciate quantitatively what has been previously observed only qualitatively using
hypnograms. Notably, we do not claim that fractal cycles are a substitute for the study of the
individual sleep stages or microstructural features of sleep. We want to stress, however, that
currently, sleep research is shifted towards the study of, to use a metaphor, “the atoms” of
sleep, such as individual sleep stages, slow oscillations, spindles, microarousals etc. Yet it is

possible that some important (currently unknown) features of sleep could be explored only at
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the level of sleep cycles, “the molecules of sleep”. (Note, that we use the molecule and atom

concepts only as a metaphor for the macro- and microstructure of sleep.)

Hypothetical functional significance of aperiodic activity and fractal cycles

The decision to incorporate fractal activity analysis in sleep cycle research was based on the
reports that fractal (aperiodic) dynamics may reflect the bistability of the network (the overall
tendency of alternating up and down states) (Baranauskas et al., 2012) and/or alterations in the
balance between neural excitatory and inhibitory currents (Gao et al., 2017). Circumstantial
evidence suggests that fractal activity is a measure of sleep homeostasis or sleep intensity,
reflecting sleep-wake history, sleep stage differences, sleep cycles, age-effects, local sleep and
sleep disorders (Bddizs et al., 2024). Recently, it has been reported that during human sleep,
spectral slopes positively correlate with pupil size, a marker of arousal levels linked to the

activity of the locus coeruleus-noradrenergic system (Carro-Dominguez et al., 2023).

According to the reciprocal-interaction model of sleep cycles, each sleep phase is characterized
by a specific neurochemical mixture. During non-REM sleep, aminergic inhibition decreases and
cholinergic excitation increases such that at REM sleep onset, aminergic inhibition is shut off
and cholinergic excitability reaches its maximum, while other outputs are inhibited (Pace-Schott
& Hobson, 2002). Complex inhibitory and excitatory connections between pontine REM-on and
REM-off neurons are further modulated by such neurotransmitters as GABA, glutamate, nitric
oxide and histamine. Intriguingly, during REM sleep, acetylcholine plays the main role in
maintaining brain activation, which is expressed as EEG desynchronization, one of the main
features of REM sleep, and other systems are silent (Nir & Tononi, 2010). This suggests that
acetylcholine, which fluctuates cyclically across a night as a result of the REM-off — REM-on

interactions, might have a key role in the sleep phase alternation.

Given that the specific neurochemical milieu of the brain produces a specific type of conscious
experience (Nir & Tononi, 2010) and that conscious experience was shown to be related to
fractal activity derived from the human sleep EEG (Colombo et al., 2019), it is tempting to

speculate that fractal activity tracks sleep-related changes in the neurochemical milieu of the
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brain and overall network dynamics. This has not been tested in humans; nevertheless, in rats,
cholinergic nucleus basalis stimulation acutely increased higher to lower frequency cortical LFP
power ratio or in other words, caused flattering of spectral decay (Goard & Dan, 2009). One
can, therefore, speculate that ascending parts and peaks of fractal cycles coincide with
acetylcholine release. The troughs of fractal cycles, in turn, might reflect a higher homeostatic
pressure and even cause feelings of sleepiness and the search for the opportunity of initiating
sleep, as these are periods of the steepest fractal activity, which implies a higher ratio of lower

over higher frequency power in the EEG (Bddizs et al., 2024).

In view of this literature, we speculate that fractal fluctuations may reflect two antagonistic
roles of sleep (Simor et al., 2022). Specifically, fractal cycle troughs might cohere with sensory
disconnection that facilitates restorative properties of sleep while fractal cycle peaks reflect

monitoring of the environment that transiently restores alertness (Table 5).
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Table 5: Hypothetical functional significance of fractal cycles

Hypothetical integration of the

Theory/model Reference fractal cycle concept to the
existing model
Two antagonistic roles of sleep:
. . - . . . - troughs of fractal cycles
1) sensory disconnection that facilitates restorative properties | Simor et al., reflect 1);
of sleep; 2022 - eaks of ,fractal cycles reflect
2) monitoring of the environment that transiently restores g) y
alertness. :
- deeper fractal cycles
. . . . . observed during early-night
Reactive and predictive homeostatic functions of sleep: Simor et al., & y-ng
) . ) . ) sleep reflect 1);
1) intensive restorative processes during early-night sleep; 2023

2) active future-oriented processes during late-night sleep.

- shallower fractal cycles seen
during late-night sleep reflect
2).

- ascents and peaks of fractal

Reciprocal-interaction model of sleep cycles: Pace-Schott cycles reflect acetylcholine
- alternations between non-REM and REM sleep stages | & Hobson, release®;
are explained by the interaction between aminergic | 2002 - descents and troughs of
and cholinergic neurons of the mesopontine junction. fractal cycles coincide with
aminergic activity.
; Osorio-

Noradrenergic neurons Forero et Ascents and peaks of fractal
create a non-reducible timeframe for the NREM-REM sleep cycle al 2023 cycles reflect a cease of
where low noradrenaline levels allow entries into REM sleep. v ’ noradrenaline release.
The Neyronal Transition Probability Model: _ - descending part of the fractal
1) During a move towards deep sleep beta power drops | Merica &
exponentially, delta power rises in an S-curve and sigma power | Fortune, cycle cc?rresponds to1)
peaks while delta is still rising; 2011 - ascending part of the fractal

2) During a move away from deep sleep, delta drops, beta rises.

cycle corresponds to 2).

* this hypothesis is also based on the report that in rats, cholinergic nucleus basalis stimulation caused flattering of

spectral decay (Goard & Dan, 2009).
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Fractal and classical cycles comparison (Table 6)

In this study, in healthy adults, 81% of all fractal cycles defined by our algorithm could be
matched to individual classical cycles defined by hypnograms. Correlations between the
durations of fractal and classical cycles were observed not only in healthy adults but also in
MDD patients who took antidepressants. The results show that displaying sleep data using
fractal activity as a function of time meaningfully adds to the conventionally used hypnograms

thanks to the gradual and objective quality of fractal power.

Thus, in hypnograms, each sleep stage is ascribed with a categorical value (e.g., wake = 0, REM
=-1, N1=-2, N2 =-3 and SWS = -4, Fig.2 A). Yet categorical labeling of sleep stages can induce
information loss and lead to several misinterpretations, such as an implied order of sleep stages
(e.g., “REM sleep is located between wake and N1”) and an implied “attractor state”
conception of sleep stages (e.g., “no inter-stage states”). Likewise, defining the precise
beginning and end of a classical sleep cycle using a hypnogram is often difficult and arbitrary,

for example, in cycles with skipped or interrupted REM sleep or REM sleep without atonia.

In contrast, fractal cycles do not rely on the assignment of categories, being based on a real-
valued metric with known neurophysiological functional significance. This introduces a
biological foundation and a more gradual impression of nocturnal changes compared to the

abrupt changes that are inherent to hypnograms.

Importantly, fractal cycle computation is automatic and thus objective. Even though recently,
there has been a significant surge in sleep analysis incorporating various machine learning
techniques and deep neural network architectures, we should stress that this research line
mainly focused on the automatic classification of sleep stages and disorders almost ignoring the
area of sleep cycles. Here, as the reference method, we used one of the very few available
algorithms for sleep cycle detection (Blume & Cajochen, 2021). We found that automatically
identified classical sleep cycles only moderately correlated with those detected by human
raters (r's = 0.3 — 0.7 in different datasets). These coefficients lay within the range of the

coefficients between fractal and classical cycle durations (r = 0.41 — 0.55, moderate) and
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outside the range of the coefficients between classical cycle durations detected by two human

scorers (r's = 0.7 — 0.9, strong, Supplementary Material, Table S8).

One of the most significant methodological strengths of the fractal cycle algorithm is its ability
to detect cycles with skipped REM sleep common in children, adolescents and young adults.
Our algorithm detected skipped cycles in 91 — 98% of cases. We deduce that the fractal cycle
algorithm detected skipped cycles since a lightening of sleep that replaces a REM episode in
skipped cycles is often expressed as a local peak in fractal slope time series. Based on this, we
further hypothesize that, analogously, fractal cycles might detect REM sleep without atonia
episodes in REM sleep behaviour disorder, the episodes currently often mistaken as non-REM

sleep.

In summary, we expect that fractal cycles could bring insights into (yet) unexplained
phenomena thanks to their gradual and objective quality, and, therefore, have the potential to

induce a paradigm shift in basic and clinical (see below) sleep research.
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on

Fractal cycles by our algorithm

Classical cycles by hypnograms

Definition/detection

Based on a real-valued metric with known

neurophysiological functional significance

Based on categorical values of the cycle
constituents (e.g., wake =0, REM =-1, N1 =-2,
N2 =-3 and SWS =-4)

Gradual changes

Abrupt changes

Automatic computation, objective

Usually based on the visual inspection, time-

consuming, subjective, error-prone

F

indings

Cycles with skipped REM sleep detected in
91 —98% of cases

Inter-rater agreement of 91% on the presence of

cycles with skipped REM sleep

Fractal cycle durations negatively correlated

with the age of adult participants

Classical cycle durations did not correlate with

the age of adult participants

Shorter fractal cycle durations in children vs
adults: higher F-values, R?, effect sizes than

for classical cycles

Shorter classical cycle durations in children vs
adults: lower F-values, R?, effect sizes than for

fractal cycles

Shorter first and second fractal cycles in the

pediatric group

No difference in durations of the first and second

classical cycles in pediatric vs adult groups

No difference in duration of the fourth

fractal cycles in the pediatric group

Shorter duration of the fourth classical cycle in

the pediatric group

Longer fractal cycle duration in medicated
patients with depression: comparable

differences with those on classical cycles

Longer classical cycle duration in medicated
patients with depression: comparable differences

with those on fractal cycles
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Sources of mismatches between fractal and classical cycles

Source Finding Reason

Across night variation in | Longer REM episodes are | The end of a fractal cycle is defined as
REM sleep episode associated with a higher the local maximum of time series of
duration: longer REM | mismatch between fractal fractal slopes, whereas the end of a

episodes towards vs classical cycles classical cycle is defined as the end of

morning the REM episodes

Across subject variation | A higher WASO proportion REM- and wake-related smoothed

in WASO: a higher WASQ | is associated with a higher fractal slopes show close values,
proportion in older mismatch between fractal therefore, both could be defined as
participants vs classical cycles local peaks. More fractal peaks imply

more fractal cycles

REM — rapid eye movement, SWS — slow-wave sleep, WASO — wake after sleep onset

Fractal slopes and SWA: overnight dynamics

Of note, currently, the gold standard marker of many sleep functions (e.g., restorative,
regenerative) with a long-standing use is slow-wave activity (SWA), which, similar to fractal
slopes, is also continuous and objective. SWA, however, has several disadvantages, such as
large variability between individuals, which makes it impossible to set up a given reference
point for healthy sleep (Horvath et al.,, 2022). Interindividual variability of spectral slopes is
much smaller compared to SWA, making it a less individual-specific metric, yet spectral slopes
strongly correlate with SWA (31 — 53% of shared variance throughout the non-REM periods)
(Horvath et al., 2022; Bddizs et al., 2024). In addition, both the literature and our findings show
that while SWA has a cycling nature during the first part of the night, neural dynamics of late-

night’s sleep are not reflected by SWA at all (Fig.S8 in Supplementary Material). Given that SWA

47


https://doi.org/10.1101/2023.07.04.547323
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.04.547323; this version posted October 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

is a primary marker of sleep homeostasis, this pattern possibly reflects the dissipation of a sleep
need over the night (Bddizs et al., 2024). In contrast, fractal slopes show a cycling nature over
the entire night’s sleep (Fig.2 A — B and Fig.S8), suggesting that they are a more suitable means

to reflect the macrostructure of the whole night’s sleep than SWA.

Having said this, we should highlight that characteristics of fractal cycles of sleep do undergo
some overnight changes. Thus, the durations of both fractal and classical cycles in health show
an inverted U-shape across a night and the amplitudes of fractal descents and ascents are
larger during early-night- compared to late-night cycles (Fig.2 D). This is in line with the report
on the flattening of fractal activity from early to late sleep cycles (Horvath et al., 2023). If seen
in the context of the reactive and predictive homeostatic functions of sleep (Simor et al., 2023),
deeper fractal cycles observed during early-night sleep could reflect intensive restorative
processes (which are also reflected by SWA), whereas shallower fractal cycles seen during the
later part of night’s sleep could reflect more active future-oriented processes (which are not
reflected by SWA) with a shift towards neural excitation relative to inhibition expressed as

overall flatter fractal activity (Table 5).

Fractal cycles and age

We found that older healthy participants had shorter fractal cycles compared to the younger
ones while classical cycles did not correlate with the participants’ age. At first glance, it looked
as if this association simply reflected an increased proportion of the wake after the sleep onset
often seen in older adults (Fig.S5 B, Supplementary Material). Indeed, our algorithm does not
discriminate between the smoothened wake- and REM-related fractal slopes and can define
both as local peaks (Fig.2 A — B). This happens because for the most part, wake- and REM sleep-
related smoothed fractal slopes display comparable values, which are also the highest ones
compared to other stages (Fig.S1 B, green squares, Supplementary Material). Since the fractal
cycle duration is defined as an interval of time between two adjacent peaks, more awakenings

during sleep are expected to result in more peaks and, consequently, more fractal cycles per
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total sleep time, i.e., a shorter cycle duration. (It is worth mentioning that unsmoothed wake-
and REM-related slopes differ (Schneider et al., 2022 and Fig.S1 B here (black squares).
However, this is a side notion as raw values were not used in this study since our algorithm

performed poorly on raw time series).

Moreover, a larger difference in classical vs fractal cycle duration was associated with a higher
proportion of wake after sleep onset (WASO) in 3/5 datasets as well as in the merged dataset
(Table 3). On the other hand, the partial correlation between fractal cycle duration and age
remained significant after controlling for the WASO amount. This hints that the association
between fractal cycles and age might reflect more than just a confounding effect of WASO. This
interpretation is in line with literature on age-related changes in aperiodic activity, namely, on
flattering of fractal slopes with age (Voytek et al., 2015; Bddizs et al., 2021; Pathania et al.,
2022), especially during SWS (Schneider et al., 2022). Likewise, aging is associated with shorter
and fewer classical cycles, with a mean of 3.5 cycles per night compared to the usual 4 — 5 in
adults and adolescents (Conte et al., 2014). Our findings suggest that fractal cycles are more
sensitive to these age-related alterations than the classical ones. We further speculate that the
claim that “age affects sleep microstructure more than sleep macrostructure” (Schwarz et al.,

2017) might reflect the lack of a reliable measure of sleep cycles.

Another plausible explanation for longer fractal cycles in younger compared to older adults
could be rooted in increased sleep intensity of the younger adults (Jenni & Carskadon, 2004).
Further, high sleep intensity driven by homeostatic pressure is associated with the delay in the
emergence of the REM sleep phase (Le Bon, 2020; Tarokh et al., 2012). In our dataset, REM
latency also decreased with age. Thus, Fig.S5 D (Supplementary Material) illustrates that young
adults might present with very delayed REM latency, i.e., 200 — 250 minutes after sleep onset,
in line with the notion that younger adults more often show cycles with skipped REM sleep
(Fig.S6). This can be partly explained by the fact that younger people often have a later
chronotype (“night owls”) than older people with puberty linked to delays in the sleep cycle by
up to 2 hours (Randler et al., 2016). Young people also have a longer circadian rhythm (> 24 h)
than older ones (< 24 h, Monk et al., 2005).
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To further strengthen this line of explanations, we performed a supplemental analysis, which
showed that prolonged REM latencies are indeed associated with longer fractal cycles (Fig.S5 C,
Supplementary Material). Nevertheless, the correlation was weak (yet significant) and observed
in the pooled dataset only, i.e., not while analyzing individual datasets. Likewise, the partial
correlation between the fractal cycle duration and REM latency adjusted for the participants’
age was non-significant. Moreover, we found that children and adolescents (the group that has
the longest REM latencies and the highest rate of cycles with skipped REM sleep) showed
shorter fractal cycles compared to young adults, specifically the early-night fractal cycles. In
view of these analyses, our attempt to explain longer fractal cycles in younger compared to
older adults by increased REM sleep latency becomes less convincing. Moreover, given that our
algorithm does not miss cycles with skipped REM sleep, longer REM sleep latencies should not
necessarily be related to longer cycles. To summarize, at this stage, the mechanism underlying
age-related differences in fractal cycle duration is unclear (possibly with some non-linearities)

and future studies are needed to corroborate and further explore it.

Fractal cycles in MDD

In addition, our study shows that deviations from the observed fractal patterns have some
clinical relevance. We found that MDD patients in the medicated state had longer fractal cycles
compared to their own unmedicated state and healthy controls. The largest differences were
observed for the first sleep cycles. Moreover, patients who took REM-suppressive
antidepressants showed prolonged fractal cycles compared to patients who took REM-non-
suppressive antidepressants. Given that the fractal cycle duration was defined as an interval of
time between two adjacent peaks and that the peaks usually coincide with REM sleep (Fig.2 A),
this finding may reflect such aftereffects of antidepressants as delayed onset and reduced
amount of REM sleep (Palagini et al., 2013). In other words, if a patient has fewer REM sleep
episodes, then the time series of their fractal slopes has fewer peaks and the algorithm detects

fewer cycles per total sleep time, i.e., cycle’s duration is longer (Fig.4 A).
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Another explanation considers our previous finding that medicated MDD patients show flatter
average fractal slopes compared to controls and their own unmedicated state during all sleep
stages (Rosenblum et al.,, 2023 a). This might mean that the antidepressant intake results in
shallower fractal fluctuations, which in turn implies that fewer peaks could be detected by our
algorithm as the peak threshold was defined a priori in a healthy — not MDD — sample.
Interestingly, recently, flatter fractal slopes during REM sleep have been also associated with
sustained polyphasic sleep restriction in health (Rosenblum et al.,, 2024 b), whereas flatter
fractal slopes during non-REM sleep were observed in patients with objective insomnia and
sleep state misperception, reflecting an abnormally high level of excitation in line with the
hyperarousal model of insomnia (Andrillon et al., 2020). Our pilot findings have shown that
patient with psychophysiological insomnia have shorter fractal cycles compared to controls

(Fig.S10, Supplementary Material).

Limitations and strengths

The major limitation of this study is its correlational approach, and thus an inability to shed light
on the mechanism underlying sleep cycle generation. Therefore, the question of what
determines the number and duration of cycles per night remains open. Moreover, further work
is needed to determine the mathematically precise and physiologically meaningful model of
fractal cycles. Notably, here, we suggest that fractal cycles are a new tool to study the
macrostructure of sleep; however, they are presumably not a substitute for the study of the
individual sleep stages and microstructural features of sleep (e.g., microarousals, spindles, slow

waves).

Additionally, we explored the effect of developmental changes and aging on fractal cycles using
a cross-sectional observational approach, whereas these factors might be disentangled more
precisely in a longitudinal approach. The age of the pediatric group ranged from 8 — 17 years
old; studying younger children and babies would add crucial information on the influence of

neurodevelopmental changes on fractal cycles.
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The strengths of this study are its large sample size, scripts and data sharing and self-
replications in several clinical and healthy datasets of participants in a broad age range,
affirming the overall robustness of the phenomena of fractal cycles. Another strength of this
work is its generalizability as it has shown that the studies conducted in different experimental
environments (including one study conducted at home) using different EEG devices provide

comparable results.

To summarize, the large sample and self-replication performed in this study suggest that the
“fractal cycle” is a universal concept that should be extensively studied. Displaying the data in
the format of fractal cycles provides an intuitive and biologically plausible way to present
whole-night sleep neural activity and also adds some graduality to the purely categorical
concept of sleep stages that comprise a hypnogram. In future studies, this graduality might help
to illuminate differences in sleep architecture across different species, advance our
understanding of the role of sleep in neurocognitive development in infants and adolescents as

well as in neurodegenerative processes and other fields of neuroscience.

Conclusion

We observed that the slopes of the fractal (aperiodic) spectral power descend and ascend
cyclically across a night such that the peaks of the time series of the fractal slopes coincide with
REM sleep or sleep lightening while the troughs of these time series coincide with non-REM
sleep. Based on this observation, we introduced a new concept of fractal activity-based cycles
of sleep or “fractal cycles” for short, defining it as a time interval between two adjacent local
peaks of the fractal time series. We have shown that fractal cycles defined by our algorithm
largely coincide with classical (non-REM — REM) sleep cycles defined by a hypnogram and
replicated our findings in several independently collected healthy and clinical datasets.
Moreover, we found that the fractal cycle algorithm reliably detected cycles with skipped REM

sleep. In addition, we observed that fractal cycle duration changes as a non-linear function of
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age, being shorter in children and adolescents compared to young adults as well as in older
compared to younger adults. To this end, we conclude that the fractal cycle is an objective,
quantifiable and universal concept that could be used to define sleep cycles and display the
whole-night sleep neural activity in a more intuitive and biologically plausible way as compared
to the conventionally used hypnograms. Having shown that the fractal cycles are prolonged in
medicated patients with MDD, we suggest that fractal cycles are a useful tool to study the
effects of antidepressants on sleep. Possibly, fractal cycles also will be able to serve as a means
to explore sleep architecture alterations in different clinical populations (e.g., to detect REM
sleep without atonia) and during neurocognitive development. In summary, this study shows
that the fractal cycles of sleep are a promising research tool relevant in health and disease that

should be extensively studied.
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