

1 **Structure-guided engineering of biased-agonism in the human niacin receptor via single
2 amino acid substitution**

3 Manish K. Yadav^{1#}, Parishmita Sarma^{1#}, Manisankar Ganguly¹, Sudha Mishra¹, Jagannath
4 Maharana¹, Nashrah Zaidi¹, Annu Dalal¹, Vinay Singh¹, Sayantan Saha¹, Gargi Mahajan¹, Saloni
5 Sharma¹, Mohamed Chami¹, Ramanuj Banerjee^{1*} and Arun K. Shukla^{1*}

6 #Joint 1st author

7 ¹Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur
8 208016, India; ²BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland.

9 *Corresponding authors (ramanujb@iitk.ac.in or arshukla@iitk.ac.in)

10 **Keywords:** GPCRs, G-proteins, dyslipidemia, biased-agonism, drug discovery

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 **Abstract**

31 The Hydroxycarboxylic acid receptor 2 (HCA2), also known as the niacin receptor or GPR109A, is
32 a prototypical G protein-coupled receptor that plays a central role in the inhibition of lipolytic and
33 atherogenic activities in our body. Interestingly, GPR109A activation also results in vasodilation that
34 is linked to the side-effect of flushing associated with dyslipidemia drugs such as niacin. This
35 receptor continues to be a key target for developing novel pharmacophores and lead compounds
36 as potential therapeutics in dyslipidemia with minimized flushing response, however, the lack of
37 structural insights into agonist-binding and receptor activation has limited the efforts. Here, we
38 present five different cryo-EM structures of the GPR109A-G-protein complexes with the receptor
39 bound to dyslipidemia drugs, niacin or acipimox, non-flushing agonists, MK6892 or GSK256073,
40 and recently approved psoriasis drug, monomethyl fumarate (MMF). These structures allow us to
41 visualize the binding mechanism of agonists with a conserved molecular interaction network, and
42 elucidate the previously lacking molecular basis of receptor activation and transducer-coupling.
43 Importantly, cellular pharmacology experiments, guided by the structural framework determined
44 here, elucidate pathway-selective biased signaling elicited by the non-flushing agonists. Finally,
45 taking lead from the structural insights, we successfully engineered receptor mutants via single
46 amino acid substitutions that either fail to elicit agonist-induced transducer-coupling or exhibits G-
47 protein signaling bias. Taken together, our study provides previously lacking structural framework
48 to understand the agonist-binding and activation of GPR109A, and opens up the possibilities of
49 structure-guided novel drug discovery targeting this therapeutically important receptor.

50

51

52

53

54

55

56

57

58

59 **Introduction**

60 The Hydroxycarboxylic acid receptor 2 (HCA2), also known as the niacin receptor or GPR109A,
61 belongs to the superfamily of G protein-coupled receptors (GPCRs), and it is expressed primarily in
62 the adipose tissues¹⁻³, keratinocytes⁴, immune cells such as neutrophils and Langerhans cells⁵ in
63 our body. Upon activation by agonists, GPR109A couples to G_{ai} sub-family of heterotrimeric G-
64 proteins leading to lowering of cAMP response⁶⁻⁹. In addition, activated GPR109A also recruits β -
65 arrestins¹⁰, which are multifunctional proteins involved in GPCR desensitization, trafficking and
66 downstream signaling¹¹. Interestingly, GPR109A was identified as the molecular target for the
67 action of nicotinic acid (aka, niacin), an effective drug prescribed for lowering the triglycerides,
68 almost two decades ago¹². Moreover, GPR109A activation also mediates the lowering of LDL (aka,
69 bad cholesterol), enhancing the levels of HDL (aka, good cholesterol)¹³. Furthermore, monomethyl
70 fumarate (MMF), the active metabolite of a psoriasis drug, Fumaderm, and also a therapeutic
71 agent for the treatment of relapsing forms of multiple sclerosis, has also been identified as an
72 agonist of GPR109A¹⁴⁻¹⁶. However, activation of GPR109A is also responsible for driving the
73 troublesome side effect of flushing response associated with niacin, acipimox and MMF^{10,13,16-19}.
74 This represents a potential limitation with their therapeutic usage, and therefore, additional small
75 molecule agonists targeting GPR109A remains a key focus area^{7,19-21}.

76 Several non-flushing agonists, such as MK6892 and GSK256073 with high affinity for
77 GPR109A have been developed and characterized using *in-vitro* and animal studies although none
78 of these compounds is yet approved for clinical usage^{22,23}. In addition, a comprehensive study has
79 also demonstrated that the side effect of niacin-induced flushing response in mouse is driven
80 primarily by β -arrestin-mediated downstream signaling, and therefore, G-protein-biased agonists of
81 GPR109A may represent improved therapeutics compared to niacin¹⁰ (**Figure 1A**). In the same
82 study, a previously developed agonist MK0354 was reported to maintain the anti-lipolytic effect with
83 significant reduction in flushing response, and it was further characterized as a G-protein-biased
84 agonist¹⁰. Still however, direct structural visualization and molecular mechanism of agonist-binding
85 and activation of GPR109A remain primarily elusive and represent an important knowledge gap to
86 efficiently target this receptor for therapeutic benefits.

87 Here, we present five different cryo-EM structures of GPR109A-G-protein complexes where
88 the receptor is activated either by niacin, acipimox, MK6892, GSK256073 and MMF. Comparison
89 of these structural snapshots provides the molecular basis of ligand recognition, activation, and
90 transducer-coupling by GPR109A. Importantly, the structural insights allow us to rationally design
91 receptor mutants harbouring single amino acid substitution that either render the receptor
92 completely inactive with respect to transducer-coupling, or, impart significant transducer-coupling
93 bias. Our study not only illuminates the structural pharmacology of GPR109A ligands and paves
94 the way for structure-guided discovery of novel therapeutics but also offers a framework to
95 leverage the structural information to rationally encode signaling-bias in GPCRs.

96 **Results**

97 **GPR109A agonists used for structural analysis**

98 In order to visualize the molecular framework of ligand recognition and receptor activation, we
99 selected five different ligands namely, niacin, acipimox, MK6892, GSK256073 and MMF (**Figure**
100 **1B**). Of these, niacin and acipimox are clinically prescribed drugs to treat dyslipidemia, while
101 MK6892 and GSK256073 have been developed as non-flushing agonists of GPR109A. MK6892 is
102 a biaryl cyclohexene carboxylic acid derivative that was reported to exhibit high affinity for
103 GPR109A without significant off-target profile, and also displayed reduced vasodilation in animal
104 studies while maintaining free fatty acid reduction similar to niacin²². GSK256073 was reported to
105 display robust specificity for GPR109A over the other hydroxycarboxylic acid receptor subtypes,
106 maintain the ability to lower the levels of non-esterified fatty acids in pre-clinical animal studies with
107 reduced flushing response, and even promising outcomes in healthy male subjects²³. MMF on the
108 other hand, is the active metabolite of psoriasis drug, Fumaderm, and is also used as a therapeutic
109 agent in multiple sclerosis^{14,15,24}. Our selection of these ligands was based on their diverse
110 chemical structures, therapeutic profile, and associated side effects with the goal to understand
111 their interaction with GPR109A and potentially link the structural insights with their therapeutic
112 profile.

113 We measured the pharmacological profile of acipimox, MK6892, GSK250673 and MMF
114 with niacin as a reference agonist of GPR109A in G-protein response and β -arrestin recruitment
115 assays (**Figure 1C-E**). We observed that acipimox behaved as a full agonist but with lower potency

116 in G-protein dissociation, cAMP response, and β -arrestin recruitment assay (**Figure 1C**). Moreover,
117 MK6892 exhibited higher efficacy in G-protein response and similar efficacy but lower potency in β -
118 arrestin recruitment compared to niacin (**Figure 1D**). In the case of GSK256073, we observed a
119 higher response in G-protein dissociation but similar efficacy in cAMP response, and it also
120 displayed higher efficacy in β -arrestin recruitment as compared to niacin (**Figure 1D**). On the other
121 hand, MMF behaved as a full agonist in both G-protein and β -arrestin recruitment assay with
122 similar efficacy as niacin but slightly weaker potency in β -arrestin assays (**Figure 1E**). Analysis of
123 these pharmacology data and calculation of the bias factor suggest that MK6892 acts as a G-
124 protein biased agonist at GPR109A (**Figure 1F**). In these cellular assays, the surface expression of
125 GPR109A was measured using a previously described whole cell-based ELISA method with mock-
126 transfected cells as negative control (**Supplementary Figure 1**).

127 **Overall structure of agonist-GPR109A-G-protein complexes**

128 We reconstituted the agonist-GPR109A-G-protein complexes using purified components following
129 state-of-the-art methodology successfully applied to other GPCR-G-protein complexes (REF). We
130 determined the cryo-EM structures of these complexes at estimated resolutions of 3.37 Å, 3.45 Å,
131 3.45 Å, 3.26 Å and 3.56 Å respectively, for the niacin, acipimox, MK6892, GSK256073 and MMF-
132 bound receptor (**Figure 2A-E, Supplementary Figure 2-10**). The unambiguous densities of the
133 coulombic maps enabled us to assign nearly the entire transmembrane domain of the receptor
134 although the first seven residues at the N-terminus of the receptor and the last forty-five residues at
135 the carboxyl-terminus were not resolved in the structures potentially due to their inherent flexibility
136 (**Supplementary Figure 11**). Still however, in each of these complexes, the ligand densities were
137 clearly discernible, allowing us to visualize ligand-receptor interactions, and the high map quality at
138 the receptor-G-protein interface facilitated the identification of residue level interactions driving G-
139 protein coupling to the receptor (**Supplementary Figure 12**). The precise sequence of the
140 components resolved in these structures is listed in **Supplemental Figure 11**. The overall
141 structures of GPR109A in all five complexes are highly similar with an RMSD of 0.6-1.0 Å² along
142 the C α of the receptor interface (**Figure 3A**) and the key differences are observed in the ligand-
143 receptor interaction as outlined in the sections below.

144

145 **An extracellular lid in GPR109A**

146 Structural analysis of the receptor component in these structures uncovered several interesting
147 features. For example, the N-terminus of the receptor in all five structures adopts a twisted β -
148 hairpin structure that positions itself above the extracellular opening of the receptor (**Figure 3B**).
149 Moreover, the Ile169-Leu176 segment in the ECL2 adopts a twisted antiparallel β -hairpin confor-
150 mation while Ser178^{4.51}-Ser181^{5.31} dips down into the core of the TM bundle to form part of the or-
151 thosteric binding pocket (**Figure 3C, D**). Interestingly, the ECL2 hairpin interacts with the β -hairpin
152 formed by the N-terminal residues Leu11-Cys18 to form a “lid-like” architecture that covers the ex-
153 tracellular opening of the receptor (**Figure 3E**). This observation can be attributed to the presence
154 of three disulfide bridges (N-terminus Cys18 with Cys183 of ECL2, N-terminus Cys19 with Cys266
155 of TM7, and Cys177 of ECL2 with Cys100 of TM3) which helps to further stabilize the N-terminus-
156 ECL2 lid (**Figure 3E**). These disulfide bonds might impose additional constraints towards the flexi-
157 bility of the lid, and facilitate docking of the ligand within the orthosteric pocket of the receptor. It is
158 interesting to note that a similar “lid-like” conformation adopted by the N-terminus and ECL2 has
159 been previously reported for several GPCRs such as b2AR and CXCR4, removal of the disulfide
160 constraints resulting in either complete loss or decreased agonist affinity in the receptors (REF).

161 **Agonist-receptor interaction in the orthosteric binding pocket**

162 The ligand binding site in GPR109A is positioned approximately 20 Å deep in the receptor core
163 (measured from N-terminal Phe21 to Phe244^{6.48}) (**Figure 3F**), and all five agonists share a
164 common interaction interface, at least in part, on the receptor where chemically similar moieties of
165 the ligands are positioned (**Figure 3F**). An array of aromatic residues namely, Phe276^{7.35},
166 Phe277^{7.36}, Trp91^{ECL1}, Phe180^{ECL2} and Phe193^{5.43}, and hydrophobic residues namely, Leu83^{2.60},
167 Leu104^{3.29} and Leu107^{3.32} are found lining the orthosteric pocket of the receptor, and together, they
168 form the microenvironment for the binding of the ligands. The interactions between niacin,
169 acipimox, MK6892, GSK256073 and MMF with the receptor are mainly ionic, hydrophobic, and
170 aromatic, including residues predominantly from TM2, TM3, TM7 and ECL2, and a complete list of
171 interactions are listed in **Supplementary Figure 12**.

172 The comparison of the ligand binding pocket in all five structures reveals that Arg111^{3.36}
173 forms the most important residue for binding to the negatively charged carboxyl group of ligands,

174 niacin, acipimox, GSK256073, MK6892 and MMF through hydrogen bond (**Figure 3G**). Previous
175 studies have suggested that this carboxyl group is critical for receptor activation, and substitution
176 with an amide group abolishes GPR109A activity, and our structural snapshots provide a
177 mechanistic basis for these functional observations (REF). Three more pairs of hydrogen bonds
178 can be observed, one between the carboxyl moiety of niacin (or acipimox, GSK256073 and MMF)
179 with the side chain Tyr284^{7.43}, two between the chloride moiety of GSK256073 with the side chain
180 Ser179^{45.52} and backbone N-atom of Phe180^{ECL2} (**Figure 3G**) and one between oxo-group at
181 position 4 of MMF with Ser179^{45.52}. Furthermore, activation of GPR109A appears to require a
182 hydrophobic environment within the orthosteric pocket, and several hydrophobic contacts can be
183 found to stabilize niacin and acipimox within the ligand binding pocket mediated by hydrophobic
184 residues namely, Leu83^{2.60}, Leu104^{3.29}, Leu107^{3.32}, Phe180^{ECL2}, Phe277^{3.36}, and Leu280^{7.39} (**Figure**
185 **3I and Supplementary Figure 12**). Similarly, hydrophobic residues such as Leu30^{1.35}, Trp91^{ECL1},
186 Leu107^{3.32}, and Phe180^{ECL2} forms extensive interactions with GSK256073 (**Figure 3I**). Although
187 niacin, acipimox and GSK256073 exhibit hydrophilic, hydrophobic, and charged properties that
188 largely match with those of the ligand binding pocket (**Supplementary Figure 12**), slight
189 conformational variation can be observed within the binding pocket for the niacin or acipimox and
190 GSK256073 complexes. These conformational shifts can be attributed to the presence of the extra
191 Cl moiety in GSK256073.

192 Like niacin, acipimox and GSK256073, the carboxyl group of MK6892 makes similar
193 contacts with the surrounding polar and hydrophobic residues within the orthosteric binding pocket
194 (**Figure 3G, H**). MK6892 has a relatively extended chemical structure compared to the other three
195 agonists and therefore, it engages several additional residues in the receptor. For example, the
196 extended moieties in MK6892 i.e., dimethyl, oxadiazole, and pyridyl groups interact with Gln112^{3.37},
197 His189^{5.39} and Met192^{5.42} in an extended binding pocket in the receptor (**Figure 3J**). Interestingly,
198 several conformational rearrangements in the side-chains of Arg111^{3.36}, Gln112^{3.37}, Ser179^{45.52}, and
199 Tyr284^{7.43} are also observed compared to the other agonists in order to accommodate the bulky
200 extended group of MK6892 (**Figure 3K**). Furthermore, an upward rotameric transition of His189^{5.39}
201 and an outward shift of Met192^{5.42} is also observed within the extended binding pocket to prevent

202 steric clashes with the extended chain of MK6892 (**Figure 3J**). These additional interactions of
203 MK6892 with the GPR109A are similar to those observed in a recent study^{25,26}.

204 **Agonist-induced activation of GPR109A**

205 When compared to the recently determined inactive state crystal structure of GPR109A, the niacin-
206 activated GPR109A displayed the known conformational changes i.e., the cytoplasmic side of TM6
207 exhibits an outward movement of ~4 Å (measured from the Cα of Lys227) and 5.5 Å inward
208 movement of TM5 towards the extracellular side (measured from the Cα of His189^{5,39}) and about
209 4.5 Å outward movement towards the cytoplasmic side (measured from the Cα of Arg218^{ICL3})
210 (**Figure 4A-C**). The agonist-bound structures of GPR109A exhibit the typical hallmark movements
211 of receptor activation as reflected by the conserved motifs and microswitches. For example, the “P-
212 I-F motif” consisting of Pro200^{5,50}, Ile115^{3,40} and Phe240^{6,44} forms an interface at the base of the
213 ligand binding pocket, and it undergoes conformational rearrangements upon receptor activation.
214 The rearrangements include: (i) rotameric shift of Pro200^{5,50}, (ii) rotameric flip of Ile115^{3,40} and (iii)
215 large transition of Phe240^{6,44}, thus opening the cytoplasmic core of the receptor for the interaction
216 with the α5 residues of Gαo (**Figure 4D**). Similar conformational changes can be observed with
217 respect to the “D-R-Y” and “NPxxY” microswitches as well. Asp124^{3,49}, Arg125^{3,50} and Tyr126^{3,51} in
218 TM3 is a highly conserved motif where Asp124^{3,49} forms a salt bridge with Arg125^{3,50}, thus locking
219 the receptor in an inactive conformation. A rotameric shift of Arg125^{3,50} can be observed in the
220 ligand-bound structures, facilitating the breaking of the salt-bridge/ionic lock and transition to its
221 active conformation (**Figure 4D**). A variant of the “NPxxY” motif is present in GPR109A, where
222 Asn290^{7,49} is substituted with Asp290^{7,49} in TM7. Upon activation, the lower portion of TM7 moves
223 inwards towards the receptor core combined with a rotation of Tyr294^{7,53} along the helical axis
224 (**Figure 4D**).

225 **The interface of GPR109A-G-protein interaction**

226 As mentioned earlier, significant movements of TM5, TM6 and TM7 create an opening on the
227 cytoplasmic surface of the receptor that allows the docking of the α5 helix of Gαo leading to
228 coupling of G-proteins with the activated receptor (**Figure 5A, C, E, G, I**). Expectedly, we observe
229 a large buried surface area at the interface of the receptor and G-protein nearing almost 2000 Å²
230 as typically observed in GPCR-G-protein complexes, and this is almost identical in all five

231 structures of GPR109A reported here (**Figure 5A, C, E, G, I**). The GPR109A-G-protein interface is
232 stabilized by extensive hydrophobic and polar interactions between the TM2, TM3, ICL2, ICL3,
233 TM6, TM7 and H8 in the receptor and the α 5 helix of Gao (**Figure 5B, D, F, H, J**). Specifically,
234 Tyr354 at the carboxyl-terminus of Gao forms a key residue that is positioned in pocket on the
235 cytoplasmic side of the receptor lined by Lys225^{6.25}, Ile226^{6.30} and Pro299^{8.48} (**Figure 5B**). In
236 addition, several hydrogen bonds between Asp341, Asn347 and Gly352 of Gao with Arg218^{ICL3},
237 Arg128^{3.53} and Ser297^{7.56} of the GPR109A, respectively, further stabilize the interaction (**Figure**
238 **5B, D, F, H**). Finally, the stretch from Ala135 to Lys138 in the ICL2 of the receptor adopts a one-
239 turn helix where His133 interacts with Thr340 and Ile342 which lie within a hydrophobic pocket
240 formed by the residues from α 5 helix, α N- β 1 loop and β 2- β 3 loop of Gao (**Figure 5F**). The
241 receptor-G protein interface is further stabilized by residues of ICL3 with α 5 C-terminal loop and
242 α 4- β 6 loop of Gao, viz. Arg218^{ICL3} forms extensive interactions with Thr340, Asp341 and Ile344 of
243 Gao (**Figure 5B, D, F, H**). A list of ligands bound-GPR109A residues interacting with Gao is
244 presented in **Figure 5K-L**, which underscores a largely conserved interface for G-protein
245 interaction although some ligand-specific interactions are also observed. A comprehensive detail of
246 the interactions between GPR019A and G-proteins are listed in **Supplementary Figure S13**.

247 **Structure-guided design of receptor inactivation and biased-agonism**

248 As mentioned above, there were two key interactions in the ligand binding pocket namely the
249 Arg111 in TM3 and Ser179 in ECL2 that appeared to be conserved in all five structures involved in
250 a direct hydrogen bonding with the ligands (**Figure 6A**). Therefore, we generated Arg111^{3.36}Ala and
251 Ser179^{ECL2}Ala mutants of the receptor and measured niacin-induced G-protein and β -arrestin-
252 coupling vis-à-vis the wild-type receptor. These mutants expressed at comparable levels as the
253 wild-type receptor (**Supplementary Figure 14**). Interestingly, we observed that R111^{3.36}A mutant
254 exhibited complete loss of G-protein activation as measured using G-protein dissociation and
255 cAMP assay, and agonist-induced β -arrestin recruitment (**Figure 6B-D**). This may reflect a near-
256 complete loss of niacin binding to the receptor mutant as reported previously using a radioligand
257 binding assay². On the other hand, S179^{ECL2}A mutation resulted in a significant reduction in β -
258 arrestin recruitment in terms of Emax (1.61 fold vs. 1.47 fold for WT and S179^{ECL2}A) and EC50
259 (32.0 \pm 4.90 nM vs. 3.05 \pm 65 nM for WT and S179^{ECL2}A) (**Figure 6D**), while exhibiting slightly

260 improved G-protein-coupling (Emax 38% vs. 53%, EC50 58.7±1.68 nM vs 9.90±1.42 nM for WT
261 and S179^{ECL2}A in Go dissociation assay, **Figure 6B**; Emax 25.78 vs. 64.95 in EC50 2.59±125 nM
262 vs. 9.90±1.42 nM for WT and S179^{ECL2}A in cAMP response assay, **Figure 6C**). Therefore,
263 GPR109A^{Ser179Ala} mutant represents a G-protein-biased construct (**Figure 6E-F**), and it may be a
264 useful tool to further probe ligand-bias at this receptor. Taken together, these data demonstrate the
265 feasibility of structure-guided engineering of receptor inactivation and biased agonism at the
266 transducer-coupling response, which may facilitate a framework to better understand the
267 mechanistic aspects of biased agonism going forward.

268 **Discussion**

269 GPR109A continues to be an important drug target for developing therapeutic agents for
270 dyslipidemia with properties superior to the commonly prescribed drug, niacin, especially in terms
271 of reducing the side-effect of flushing response. While niacin, acipimox and MMF bind in a similar
272 pose in the orthosteric binding pocket and make nearly-identical interactions, GSK256073 and
273 MK6892 make additional contacts in the ligand binding pocket as expected based on their
274 extended chemical structures. Interestingly, both GSK256073 and MK6892 appear to exhibit
275 enhanced G-protein-coupling compared to niacin. However, GSK256073 is slightly more
276 efficacious and potent in β-arrestin recruitment assay while MK6892 is slightly weaker than niacin
277 in β-arrestin recruitment assay. Based on these data, it is tempting to speculate that additional
278 contacts engaged by MK6892 make it a more potent and efficacious agonist of GPR109A
279 compared to niacin, although follow-up experimentation would be required to test this hypothesis.
280 As mentioned earlier, a previous study had reported the β-arrestin-mediated signaling to be the
281 driver of flushing response for niacin while G-protein signaling is responsible for the lipid lowering
282 effect. The G-protein-bias of MK6892 in β-arrestin recruitment assay therefore likely explains its
283 non-flushing properties as reported earlier. However, the transducer-coupling profile of GSK256073
284 does not align with the same hypothesis, suggesting that the segregation of lipolysis vs. flushing
285 response through GPR109A may involve additional fine-tuning that remains to be explored further.

286 Our mutagenesis studies guided by structural visualization of the key interactions between
287 the agonists and the receptor yield a mutant that fails to elicit any transducer-coupling, and another
288 mutant that maintains G-protein-coupling but loses β-arrestin binding. Although we have tested the

289 effects of these mutations on only niacin-induced receptor activation and signaling, considering
290 their conserved nature in terms of interaction with other agonists, it is likely that such mutants will
291 exhibit a similar pattern for other agonists as well. It is intriguing that Ser179Ala mutation in ECL2
292 results in impaired β -arrestin recruitment as the site is closer to the orthosteric binding pocket in
293 the receptor and significantly away from the interface of β -arrestin coupling to prototypical GPCRs.
294 Therefore, it is tempting to speculate that the effect observed for Ser179^{45,52}Ala mutation imparts a
295 reduction in β -arrestin interaction through an allosteric mechanism as reported for other GPCRs
296 previously^{27,28}. In addition, the experimental framework established here should also facilitate the
297 structure determination of other subtypes namely, HCA1 and HCA3, and a complete structural
298 coverage of all three receptor subtypes should allow us to better understand the sub-type
299 selectivity for niacin and other ligands.

300 In summary, the structural snapshots of GPR109A presented here elucidate the molecular
301 details of the interaction of chemically-diverse agonists, and also uncover the mechanism of
302 activation of this therapeutically important receptor. Our findings should pave the way for rational
303 therapeutic design targeting GPR109A, and they also provide a framework to impart signaling bias
304 in GPCRs guided by structural insights that may help deconvolute the mechanism of biased
305 agonism going forward.

306 **Data availability statement**

307 All the data are included in the manuscript and any additional information required to reanalyze the
308 data reported in this paper is available from the corresponding author upon reasonable request.

309 **Acknowledgements**

310 Research in A.K.S.'s laboratory is supported by the Senior Fellowship of the DBT Wellcome Trust
311 India Alliance (IA/S/20/1/504916) awarded to A.K.S., Science and Engineering Research Board
312 (IPA/2020/000405), Young Scientist Award from Lady Tata Memorial Trust, and IIT Kanpur. Cryo-
313 EM was performed at BioEM lab of the Biozentrum at the University of Basel, and we thank Carola
314 Alampi and David Kalbermatter for their excellent technical assistance.

315 **Authors' contribution**

316 MKY expressed and purified GPR109A, and reconstituted the receptor-G-protein complexes with
317 help from VS and GM; PS carried out the pharmacological and cellular assays on GPR109A with

318 help from SM, AD and NZ; SS purified mini-Gao and ScFv16 with help from SaS, RB performed
319 negative-staining EM, processed the cryo-EM data, prepared and deposited the coordinates with
320 help from JM, and drafted the figures together with MG; MC screened the samples and collected
321 cryo-EM data; AKS supervised and managed the overall project; all authors contributed to data
322 analysis, interpretation and manuscript writing.

323 **Conflict of interest**

324 The authors declare that they have no competing interests.

325 **Accession number**

326 The cryo-EM maps and structures have been deposited in the EMDB and PDB with accession
327 numbers 8IYP and EMD-35817 for niacin-GPR109A-Go, 8JER and EMD-36193 for acipimox-
328 GPR109A-Go, 8IYW and EMD-35831 for GSK256073-GPR109A-Go, 8IYH and EMD-35822 for
329 MK6892-GPR109A-Go and EMD-36280, PDB ID: 8JHN for MMF-GPR109A-Go complex.

330 **Materials and methods**

331 **General reagents, plasmids, and cell culture**

332 The majority of standard reagents were purchased from Sigma Aldrich unless mentioned.
333 Dulbecco's Modified Eagle's Medium (DMEM), Phosphate Buffer Saline (PBS), Trypsin-EDTA,
334 Fetal-Bovine Serum (FBS), Hank's Balanced Salt Solution (HBSS), and Penicillin-Streptomycin
335 solution were purchased from Thermo Fisher Scientific. HEK-293 cells were purchased from ATCC
336 and maintained in 10% (v/v) FBS (Gibco, Cat. no. 10270-106) and 100U ml⁻¹ penicillin and 100 µg
337 ml⁻¹ streptomycin (Gibco, Cat. no. 15140122) supplemented DMEM (Gibco, Cat. no. 12800-017) at
338 37 °C under 5% CO₂. The cDNA coding region of GPR109A^{WT}, GPR109A^{Y87A}, GPR109A^{R111A},
339 GPR109A^{S179A}, and GPR109A^{Y284A} with a HA signal sequence, a FLAG tag followed by the N-
340 terminal region of M4 receptor (2-23 residues) at the N-terminus was cloned into pcDNA3.1 vector.
341 For GloSensor assay, luciferase-based 22F cAMP biosensor construct was purchased from
342 Promega. For the constructs used in NanoBiT assay, SmBiT was fused at the C-terminus of the
343 receptor, and the LgBiT-βarr1/2 construct was the same as previously described²⁹. All DNA
344 constructs were verified by sequencing from Macrogen. Niacin was purchased from Himedia (Cat.
345 no. TC157), acipimox and MMF were purchased from Sigma Aldrich (Cat. no: 92571 and Cat. no:

346 651419), respectively. GSK256073 and MK9862 were purchased from MedChemExpress (Cat. no:
347 HY10680 and HY119222, respectively).

348 **GPR109A purification**

349 Codon-optimized human GPR109A was cloned in the pVL1393 vector with an N-terminal HA signal
350 sequence followed by a FLAG tag and M4 receptor N-terminal sequence for increased expression.
351 The receptor was expressed and purified from *Spodoptera frugiperda* (Sf9) cells using a
352 baculovirus-mediated expression system. For receptor purification, insect cells were infected with
353 recombinant baculovirus for 72 hrs at 27 °C and harvested by high-speed centrifugation. Post-
354 harvest, insect cells were sequentially dounced in hypotonic buffer (20 mM HEPES, pH 7.4, 20 mM
355 KCl, 10 mM MgCl₂, 1 mM PMSF, and 2 mM Benzamidine), hypertonic buffer (20 mM HEPES, pH
356 7.4, 1 M NaCl, 20 mM KCl, 10 mM MgCl₂, 1 mM PMSF, and 2 mM Benzamidine) and lysis buffer
357 (20 mM HEPES, pH 7.4, 450 mM NaCl, 1 mM PMSF, and 2 mM Benzamidine). Lysed cells were
358 solubilized by continuous stirring in 1% L-MNG (Anatrace, Cat. no. NG310) for two hours at 4 °C in
359 the presence of 0.01% cholestryl hemisuccinate (Sigma, Cat. no. C6512). To prevent receptor
360 aggregation, 2 mM Iodoacetamide was added to the solution. Post-solubilization, salt concentration
361 was lowered to 150 mM with dilution buffer (20 mM HEPES, pH 7.4, 2 mM CaCl₂, 1 mM PMSF,
362 and 2 mM Benzamidine), and cell debris was separated by high-speed centrifugation, and the
363 receptor was enriched on M1-anti FLAG columns. Non-specific proteins were removed by three
364 washes of low salt buffer (20 mM HEPES, pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.01% MNG, 0.01%
365 CHS, and 2 mM CaCl₂) alternating with two washes of high salt buffer (20 mM HEPES, pH 7.4, 350
366 mM NaCl, 0.01% MNG, and 2 mM CaCl₂). The bound receptor was eluted with FLAG peptide-
367 containing buffer (20 mM HEPES, pH 7.4, 150 mM NaCl, 2 mM EDTA, and 250 µg ml⁻¹ flag
368 peptide). The purified receptor was treated with two rounds of 2 mM Iodoacetamide, followed by
369 one round of 2 mM cysteine treatment to remove free Iodoacetamide. The purified receptor was
370 concentrated using a 30 kDa MWCO concentrator (Cytiva, Cat no. 28932361) and stored at -80 °C
371 with a 10% final glycerol concentration. 1 µM of niacin, acipimox, MK6892, GSK256073 or MMF
372 was kept throughout the purification.

373 **Purification of Gβ1γ2 dimer**

374 N terminal 6X His tagged G β 1 and G γ 2 subunits were cloned in the Dual pVL1392 vector and
375 expressed in the Sf9 cell using a baculovirus-based expression system. For purification, insect
376 cells were infected with the recombinant virus for 72 hrs and harvested with high-speed
377 centrifugation. Cells were lysed by douncing in lysis buffer (50 mM Tris-Cl, pH 8.0, 150 mM NaCl, 1
378 mM PMSF, and 2 mM Benzamidine) and pelleted by centrifugation at 20,000 rpm for 20 min. The
379 cell pellet was re-dissolved and dounced in solubilization buffer (50 mM Tris-Cl, pH 8.0, 150 mM
380 NaCl, 5 mM β -mercaptoethanol, 1% DDM (Anatrace, Cat. no. D310), 1 mM PMSF, and 2 mM
381 Benzamidine). Lysed cells were solubilized for two hrs at 4 °C with constant stirring. Cell debris
382 was separated by high-speed centrifugation, and protein was passed through the Ni-NTA column
383 using gravity flow. Non-specific proteins were removed by a one-column wash with buffer (50 mM
384 Tris-Cl, pH 8.0, 150 mM NaCl, 0.01% MNG), and protein was eluted with 250 mM Imidazole (50
385 mM Tris-Cl, pH 8.0, 150 mM NaCl, 0.01% MNG, 250 mM Imidazole). Eluted protein was
386 concentrated with a 10 kDa MWCO concentrator (Cytiva Cat. no. 28932360) and stored with 10%
387 final glycerol concentration.

388 **Mini G α o purification**

389 The gene encoding miniG α o was designed as described previously^{30,31} and cloned into pET-15b
390 (+) vector with 6X His tag at the N-terminal followed by TEV protease cleavage site. The
391 recombinant construct was transformed into *E. coli* BL21(DE3) cells. A 5 ml starter culture, grown
392 for 6-8h at 37 °C, was inoculated into a 50 ml primary culture media supplemented with 0.2%
393 glucose and allowed to grow at 30 °C for 16-18 hrs. 1.5 litre of TB (Terrific Broth) media was
394 inoculated with 15 ml of primary culture and grown at 30 °C. At O.D₆₀₀ 0.8, cells were induced with
395 50 μ M IPTG (isopropylthio- β -galactoside) and allowed to grow for an additional 18–20 hrs. Cells
396 were pelleted down and first lysed by lysozyme in lysis buffer (40 mM HEPES, pH 7.4, 100 mM
397 NaCl, 10 mM Imidazole, 10% Glycerol, 5 mM MgCl₂, 1 mM PMSF, 2 mM Benzamidine, 50 μ M
398 GDP, 100 μ M DTT, and 1 mg ml⁻¹ lysozyme), followed by disruption by ultrasonication. Cell debris
399 was pelleted by high-speed centrifugation at 4 °C, and protein was enriched on the Ni-NTA column.
400 Non-specifically bound proteins were removed by extensive washing with wash buffer (20 mM
401 HEPES, pH 7.4, 500 mM NaCl, 40 mM Imidazole, 10% Glycerol, 50 μ M GDP, and 1 mM MgCl₂),
402 and protein was eluted with 500 mM Imidazole (in 20 mM HEPES, pH 7.4, 100 mM NaCl, and 10%

403 Glycerol). His tag was cleaved by overnight TEV treatment at room temperature (1:20, TEV:
404 protein), and untagged protein was recovered by size exclusion chromatography on Hi-Load
405 Superdex 200 PG 16/600 column (Cytiva, Cat. no. 17517501). Fractions corresponding to cleaved
406 protein were pooled, analyzed on SDS-PAGE, and stored at -80 °C with 10% glycerol.

407 **ScFv16 purification**

408 The gene encoding ScFv16 was cloned in pET-42a (+) vector downstream of 10X His tagged MBP
409 gene with a TEV protease cleavage site between them and overexpressed in the *E. coli* Rosetta
410 (DE3) strain³². A single colony from a freshly transformed plate was inoculated in 50 ml of 2XYT
411 media and allowed to grow overnight at 37 °C. 1-litre 2XYT media supplemented with 0.5%
412 glucose and 5 mM MgSO₄ was inoculated with overnight primary culture and induced with 250 µM
413 IPTG at O. D₆₀₀ of 0.8–1.0. The culture was allowed to grow for 16–18 hrs at 18 °C. Post-harvest,
414 cells were resuspended in 20 mM HEPES, pH 7.4, 200 mM NaCl, 30 mM Imidazole, 1 mM PMSF,
415 and 2 mM Benzamidine buffer and incubated at 4 °C for 40 min with constant stirring. Cells were
416 lysed by sonication, and cell debris was removed with high-speed centrifugation at 4 °C. Protein
417 was captured on the Ni-NTA column using gravity flow, and non-specific proteins were removed by
418 extensive washing with 20 mM HEPES, pH 7.4, 200 mM NaCl, and 50 mM Imidazole. Bound
419 ScFv16 was eluted with 300 mM imidazole-containing buffer (20 mM HEPES, pH 7.4, 200 mM
420 NaCl) and was re-passed through amylose resins, and after one column wash with 20 mM HEPES,
421 pH 7.4, 200 mM NaCl buffer, bound protein was eluted with 10 mM maltose (prepared in 20 mM
422 HEPES, pH 7.4, 200 mM NaCl). To obtain tag-free ScFv16, the eluted protein was overnight
423 digested with TEV, and His-MBP was removed by passing the digested protein through the Ni-NTA
424 column. Eluted protein was further cleaned by size exclusion chromatography on Hi-Load
425 Superdex 200 PG 16/600 column. Eluted protein was analyzed on SDS-PAGE and stored at -
426 80 °C with 10% glycerol.

427 **Reconstitution of GPR109A-G protein-ScFv16 complexes**

428 Purified GPR109A was mixed with a 1.2 molar excess of miniGo, Gβ_y, and ScFv16 in the presence
429 of 25 mU ml⁻¹ apyrase (NEB, Cat. no. M0398S) and 1 µM of individual ligand, and complexing was
430 allowed for two hours at room temperature. The receptor complex was concentrated with a 100
431 kDa MWCO (Cytiva, Cat. no. GE28-9323-19) concentrator and separated from the unbound

432 component by size exclusion chromatography on Superose 6 increase 10/300 GL column (Cytiva,
433 Cat. no. 29091596). The SEC eluate was analyzed on 12% SDS-PAGE, and complex fractions
434 were concentrated to ~10 mg ml⁻¹ and stored at -80 °C.

435 **Negative stain electron microscopy**

436 Homogeneity of the purified protein complexes was determined through negative staining with
437 uranyl formate prior to data collection under cryogenic conditions following the protocols described
438 previously^{33,34}. 3.5 µl of the purified complexes were dispensed onto fresh glow discharged
439 carbon/formvar coated 300 mesh Cu grids (PELCO, *Ted Pella*) at a concentration of 0.02 mg ml⁻¹
440 and incubated for 1 min at room temperature. This was followed by blotting of the excess samples
441 from the grids using filter paper. The grid containing the adhered sample was touched onto a first
442 drop of freshly prepared 0.75% uranyl formate stain and immediately blotted off by touching the
443 edge of the grid onto a filter paper. The grid was then touched and incubated on a second drop of
444 uranyl formate for 30s and left on the bench in a Petri plate for air drying. Data collection was
445 performed on a FEI Tecnai G2 12 Twin TEM (LaB6) operating at 120 kV and equipped with a
446 Gatan CCD camera (4k x 4k) at 30,000x magnification. Data processing of the collected
447 micrographs was performed with Relion³⁵ 3.1.2 version. More than 10,000 particles were
448 autopicked with the gaussian blob picker, extracted and subjected to reference-free 2D
449 classification.

450 **Cryo-EM sample preparation and data collection**

451 3 µl of the individual complexes were applied onto glow-discharged Quantifoil holey carbon grids
452 (Cu R2/1 or R2/2) and vitrified in liquid ethane (-181 °C) using a Leica GP plunger (Leica
453 Microsystems, Austria) maintained at 90% humidity and 10 °C. CryoEM movies were acquired on a
454 TFS Glacios microscope operating at 200 kV and equipped with Gatan K3 direct electron detector
455 (Gatan Inc.). Images were collected automatically with SerialEM software in counting mode at a
456 nominal magnification of 46,000x and pixel size of 0.878 Å over a defocus range of 0.5-2.5 µm. An
457 accumulated dose of 55 e/A² was fractionated into a movie stack consisting of 40 frames.

458 **Cryo-EM data processing**

459 All data processing steps were performed with cryoSPARC³⁶ v4.0 unless otherwise stated. Dose
460 fractionated movie stacks were subjected to beam-induced motion correction using Patch motion
461 correction (multi) followed by estimation of contrast transfer function parameters with Patch CTF
462 estimation (multi).

463 For the Niacin-GPR109A-Go dataset, 11,070 dose weighted, motion-corrected micrographs
464 were selected for downstream processing. Auto-picking yielded 7,027,107 particles which were
465 subjected to several rounds of reference-free 2D classification to eliminate particles with poor
466 features. 1,737,725 particle projections corresponding to the 2D averages with clear secondary
467 features were selected and subjected to Ab-initio reconstruction with 3 classes. Subsequent
468 heterogeneous refinement yielded a model with features of a typical GPCR-G protein complex
469 containing 1,011,301 particle projections which accounted for 75% of the particles used for
470 heterogeneous refinement. This particle stack was subjected to non-uniform refinement, followed
471 by local refinement with mask excluding the noise outside the molecule, yielding a coulombic map
472 with an indicated global resolution of 3.37 Å at 0.143 FSC cut-off.

473 For the MK6892-GPR109A-Go dataset, 90,683,101 particles were autopicked from 10,753
474 motion corrected micrographs which were extracted with a box size of 360 px (fourier cropped to
475 64 px) and subjected to multiple rounds of reference-free 2D classification. 2D class averages
476 consisting of 1,829,840 particles with clear secondary features and resembling conformation of
477 protein complexes were re-extracted with a box size of 360 px and fourier cropped to 288 px.
478 These particle stacks from the extraction job were subsequently subjected to Ab-initio
479 reconstruction, followed by heterogeneous refinement yielding 4 models. 1,200,513 particle
480 projections (accounting for 66% of the total particles) from the best 3D class were selected and
481 subjected to non-uniform refinement, followed by local refinement, which yielded a map with an
482 overall resolution of 3.26 Å using the 0.143 FSC criterion.

483 For the GSK256073-GPR109A-Go dataset, 5,761,414 particles were automatically picked
484 from 10,574 motion-corrected micrographs. These particle projections were extracted with a box
485 size of 360 px (fourier cropped to 64 px) and subjected to iterative rounds of reference-free 2D
486 classification to discard noisy particles. 1,601,694 particles corresponding to the 2D classes with

487 evident features of protein complexes were selected and re-extracted with a box size of 360 px and
488 fourier cropped to 288 px. These selected particle projections were used to generate 3 maps for
489 heterogeneous refinement. One of the 3D classes with 523,816 particles showing all the features
490 of a GPCR-G protein complex was subjected to 3D non-uniform refinement, reaching a nominal
491 resolution of 3.45 Å.

492 For the Acipimox-GPR109A-Go dataset, 9,115,816 particles were autopicked from 11,263
493 micrographs, extracted with a box size of 360 px (fourier cropped to 64 px) followed by 2D
494 classification to obtain classes with clear secondary features. 166,548 particles corresponding to
495 the clean classes were re-extracted with a box size of 360 px (fourier cropped to 288) and
496 subjected to ab-initio reconstruction and heterogenous refinement to generate 4 classes.
497 1,059,994 particles from the best 3D class were selected and subjected to non-uniform refinement
498 followed by local refinement with mask to yield a final reconstruction at a resolution of 3.45 Å.

499 For the MMF-GPR109A-Go dataset, autopicking was performed with the blob-picker
500 subprogram which yielded 9,029,435 particles. Particles were extracted with a box size of 360 px
501 (fourier cropped to 64 px) and pared down to 183,241 particles after reference-free 2D
502 classification. The clean particle stack was then re-extracted with a box size of 360 px (fourier
503 cropped to 288 px). Two rounds of ab initio and subsequent hetero-refinement (using four models)
504 were then performed to further refine the particle stack to 678,286 particles. Non-uniform
505 refinement and successive local refinement resulted in a map with an estimated global resolution
506 of 3.56 Å.

507 Local resolution estimation of all maps was determined using the Blocres subprogram
508 within cryoSPARC with the corresponding half maps. Sharpening of all maps was performed with
509 “Autosharpen maps” within the Phenix suite^{37,38} to enhance features for model building.

510 **Model building and refinement**

511 Coordinates from an AlphaFold model of GPR109A (AF-Q8TDS4-F1) was used to dock into the
512 EM density map of niacin-GPR109A-Go using Chimera^{39,40}. Similarly, coordinates of Gαo, Gβy and
513 ScFv16 were obtained from a previously solved structure of C5aR1 in complex with Gαo (PDB:
514 8HPT). The combined model so obtained containing all the components was subjected to “all atom

515 “refine” sub-module within COOT⁴¹, followed by manual rebuilding of the residues and the ligand.
516 The rebuilt model was subjected to real space refinement in Phenix^{37,38} to obtain a model with
517 97.13% of the residues in the most favoured region and 2.77% in the allowed region of the
518 Ramachandran plot. Validation of all the models was performed with Molprobity⁴² within Phenix.

519 The ligand free model of niacin-GPR109A-Go complex (PDB: 8IY9) was fitted into the
520 density maps of acipimox-GPR109A-Go and MMF-GPR109A-Go in Chimera followed by flexible
521 fitting of the coordinates with the “all atom refine” module in COOT. After several rounds of manual
522 adjustments, the generated model was automatically refined with Phenix_refine. The final refined
523 models of acipimox-GPR109A-Go and MMF-GPR109A-Go showed good Ramachandran statistics
524 with 96.86% and 97.31% in the most favored regions of the Ramachandran plot, respectively.

525 The ligand-free model of niacin-GPR109A-Go complex (PDB: 8IY9) was fitted into the
526 density maps of acipimox-GPR109A-Go and MMF-GPR109A-Go in Chimera followed by flexible
527 fitting of the coordinates with the “all atom refine” module in COOT. After several rounds of manual
528 adjustments, the generated model was automatically refined with Phenix_refine. The final refined
529 models of acipimox-GPR109A-Go and MMF-GPR109A-Go showed good Ramachandran statistics
530 with 96.86% and 97.31% in the most favored regions of the Ramachandran plot, respectively.

531 Likewise, the ligand-free model of niacin-GPR109A-Go complex (PDB: 8IY9) was used to
532 dock into the coulombic maps of MK6892-GPR109A-Go and GSK256073-GPR109A-Go using
533 Chimera. The docked model and the corresponding maps were then imported into COOT and fitted
534 into the respective maps with the “all atom refine” module. The poorly fitted regions were manually
535 adjusted in COOT followed by iterative refinement of the coordinates against the maps using
536 Phenix_refine. The final refined models of MK6892-GPR109A-Go and GSK256073-GPR109A-Go
537 contained residues in 97.67% and 97.14% of the most favored regions of the Ramachandran plot
538 with no outliers. Data collection, processing and model refinement statistics are provided in
539 **Supplementary Figure 8**. All figures included in the manuscript have been prepared with Chimera
540 and ChimeraX software.

541 **GloSensor-based cAMP assay**

542 cAMP response upon ligand stimulation was measured by GloSensor assay⁴³. Briefly, HEK-293
543 cells were transiently transfected with 2 µg of GPR109A construct together with 5 µg 22F cAMP

544 plasmid using the transfection reagent polyethyleneimine (PEI) linear (Polysciences, Cat. no.
545 23966) at DNA: PEI ratio of 1:3. After 16-18hrs of transfection, cells were harvested followed by
546 resuspension of the cell pellet in assay buffer composed of 1X HBSS, 20 mM of 4-(2-
547 hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.4 and D-luciferin (0.5 mg ml⁻¹)
548 (GoldBio, Cat. no.: LUCNA-1G). Harvested cells were then seeded in an opaque flat bottom white
549 96 well cell culture plate (SPL life sciences, Cat. no. 30196) at a density of 2x10⁵ cells well⁻¹. After
550 seeding, cells were incubated at 37 °C for 90 min and 30 min at room temperature. After 120 min
551 of incubation basal level luminescence was recorded using a multi-mode plate reader
552 (Lumistar/Fluostar microplate reader, BMG Labtech). In order to record ligand-induced cAMP
553 decrease as a readout of Gi activation, cellular cAMP level was increased by adding 5 µM
554 forskolin, and 7-8 cycles luminescence was recorded until the signal got saturated. Once the
555 luminescence signal got stabilized cells were stimulated with corresponding ligands, and
556 luminescence values were recorded for 20 cycles. For stimulation, ligand concentrations ranging
557 from 100 pM to 10 µM were prepared by serial dilution in the buffer constituted of 1X HBSS, 20
558 mM HEPES pH 7.4. Nicotinic acid, acipimox, GSK256073, MK6892 and MMF of different
559 concentrations were added to the corresponding wells. Baseline corrected data were normalized
560 with respect to the luminescence signal of minimal concentration of each ligand as 100% and
561 plotted using nonlinear regression analysis in GraphPad Prism v 9.5.0 software.

562 **Surface expression assay**

563 Plasma membrane expression of receptors in respective assays was measured by whole cell-
564 based surface ELISA as previously discussed⁴⁴. Briefly, transfected cells were seeded at a density
565 of 2x10⁵ cells well⁻¹ in 0.01% poly-D-Lysine pre-treated 24-well plate and incubated for 24 h at 37
566 °C. Post incubation, growth media was aspirated, and cells were washed with ice-cold 1X TBS for
567 once, followed by fixation with 4% PFA (w/v in 1X TBS) on ice for 20 min. Post fixation, cells were
568 washed three times with 1X TBS (400 µl in each wash) followed by blocking with 1% BSA (w/v in
569 1X TBS) at room temperature for 90 min. After blocking with 1% BSA, 200 µl anti-FLAG M2-HRP
570 was added and incubated for 90 min (prepared in 1% BSA, 1:10,000) (Sigma, Cat. no. A8592).
571 Post antibody incubation, to remove unbound antibodies, cells were washed with 1% BSA
572 (prepared in 1X TBS) three times, followed by the development of signal by treating cells with 200

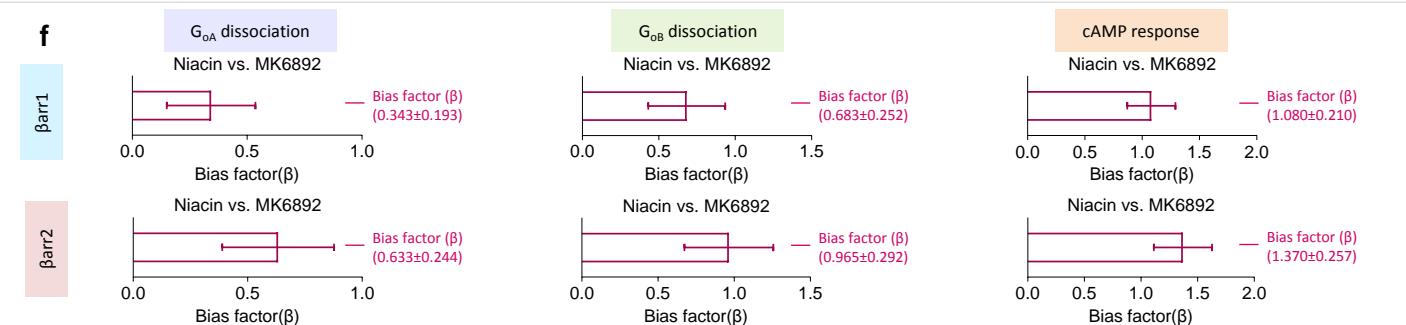
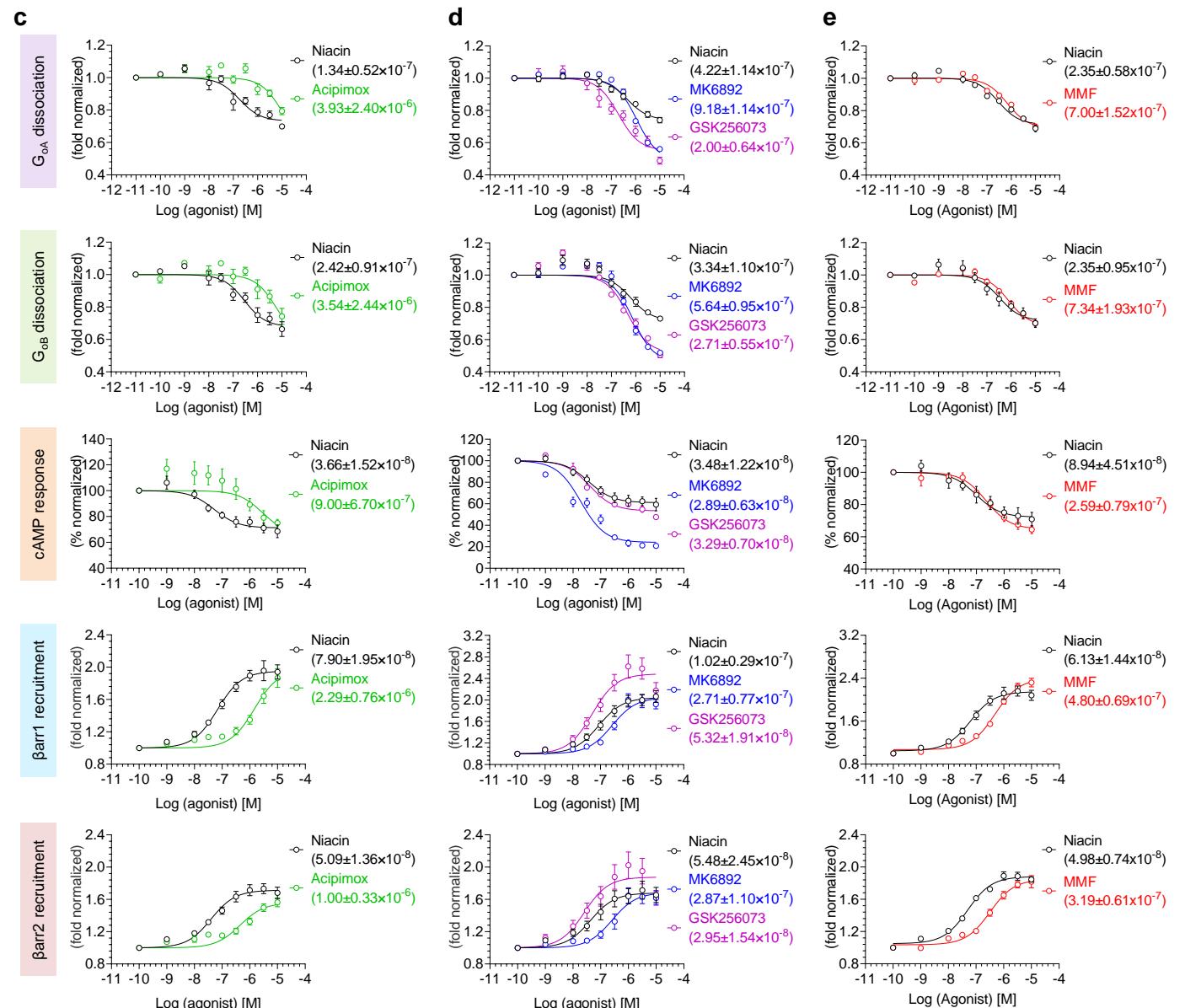
573 μ l TMB-ELISA (Thermo Scientific, Cat no. 34028) until the light blue colour appeared. Signal was
574 quenched by transferring the light blue-coloured solution to a 96-well plate containing 100 μ l 1M
575 H_2SO_4 . The absorbance of the signal was measured at 450 nm using a multi-mode plate reader.
576 Next, cells were incubated with 0.2% Janus Green (Sigma; Cat. no. 201677) w/v for 15 min after
577 removal of TMB-ELISA by washing once with 1X TBS. Afterwards, Janus Green was aspirated
578 followed by washing with distilled water to remove the excess stain. After washing, 800 μ l of 0.5 N
579 HCl was added to elute the stain. 200 μ l of the eluate was transferred to a 96-well plate, and at 595
580 nm absorbance was recorded. For analysis, data were analyzed by calculating the ratio of
581 absorbance at 450/595 followed by normalizing the value of pcDNA transfected cells reading as 1.
582 Normalized values were plotted using GraphPad Prism v 9.5.0 software.

583 **NanoBiT-based β arr recruitment assay**

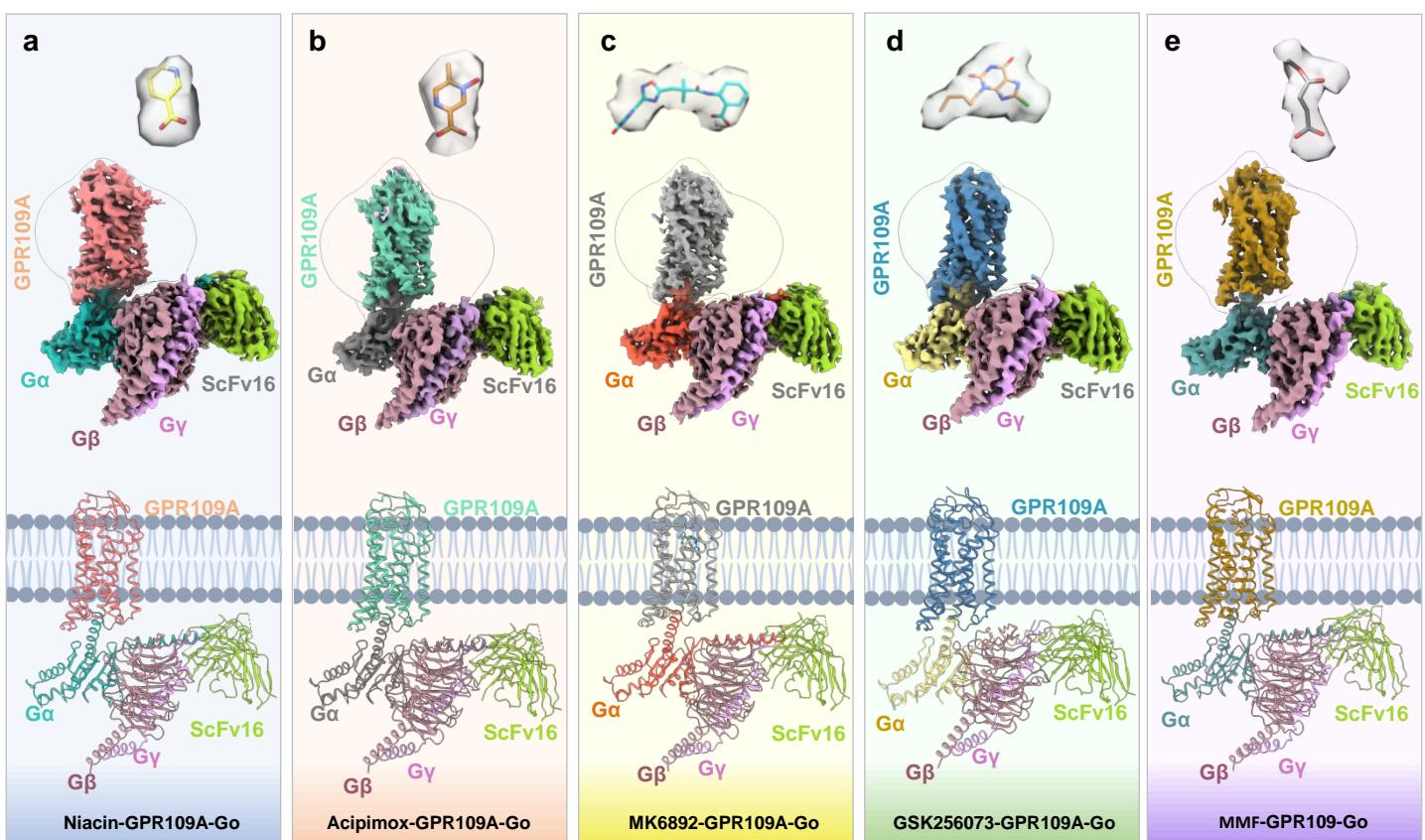
584 Plasma membrane localization of β arr upon stimulation of GPR109A with respective ligands was
585 measured by luminescence-based enzyme-linked complement assay (NanoBiT-based assay)
586 following the protocol described earlier^{29,33,45}. Briefly, a receptor harbouring SmBiT at the carboxy-
587 terminus (3.5 μ g) and β arr1/2 constructs (3.5 μ g) with N-terminally fused LgBiT were co-
588 transfected in HEK-293 cells using the transfection reagent polyethyleneimine (PEI) linear at DNA:
589 PEI ratio of 1:3. Post 16-18 hr of transfection, cells were trypsinized, and resuspended in the
590 NanoBiT assay buffer containing 1X HBSS, 0.01% BSA, 5 mM HEPES pH 7.4, and 10 μ M
591 coelenterazine (GoldBio, Cat. no. CZ05). Cells were then seeded in opaque flat bottom white 96
592 well plate at a density of 1×10^5 cells well⁻¹ and incubated for 120 min (90 min at 37 °C, followed by
593 30 min at room temperature). Post incubation, basal level luminescence readings were taken,
594 followed by ligand addition. A series of ligand concentrations, spanning from 10 pM to 10 μ M, were
595 prepared using a buffer solution composed of 1X HBSS and 5 mM HEPES at pH 7.4.
596 Subsequently, cells were stimulated with different doses of the specified ligands. Luminescence
597 upon stimulation was recorded up to 20 cycles by a multi-mode plate reader. For analysis,
598 stimulated readings were normalized with respect to the signal of minimal ligand concentration as 1
599 and plotted using nonlinear regression analysis in GraphPad Prism v 9.5.0 software.

600 **NanoBiT-based G-protein dissociation assay**

601 Agonist-induced G-protein activation was measured by a nanoBiT-based G-protein dissociation
602 assay described previously³³. Briefly, HEK-293 cells were transfected with 1 µg of LgBiT-tagged
603 G α subunit, 4 µg of SmBiT-tagged G γ 2 subunit, 4 µg of untagged G β 1 subunit along with 1 µg of
604 untagged receptor construct using transfection reagent PEI at DNA: PEI ratio of 1:3. Post
605 transfection, cells were harvested and seeded in a 96 well plate at a density of 1x10⁵ cells well-1.
606 Cells were seeded in buffer containing 1X HBSS, 0.01% BSA, 5 mM HEPES pH 7.4, and 10 µM
607 coelenterazine and incubated for 120 min (90 min at 37 °C and 30 min at room temperature). Post
608 incubation, 3 cycles of basal level luminescence readings were recorded using a multi-mode plate
609 reader. After that, cells were stimulated with varying ligand concentrations ranging from 10 pM to
610 10 µM. After stimulation, 20 cycles of luminescence were recorded. For data analysis, values after
611 15 min of stimulation were used and normalized with respect to the signal at the minimal ligand
612 concentration of 100%. Normalized values were plotted using nonlinear regression analysis in
613 GraphPad Prism v 9.5.0 software.



614 **References**

- 615 1. Soga, T. et al. Molecular identification of nicotinic acid
616 receptor. *Biochem Biophys Res Commun* **303**, 364-9 (2003).
- 617 2. Tunaru, S., Lattig, J., Kero, J., Krause, G. & Offermanns, S.
618 Characterization of determinants of ligand binding to the
619 nicotinic acid receptor GPR109A (HM74A/PUMA-G). *Mol Pharmacol*
620 **68**, 1271-80 (2005).
- 621 3. Wise, A. et al. Molecular identification of high and low
622 affinity receptors for nicotinic acid. *J Biol Chem* **278**, 9869-
623 74 (2003).
- 624 4. Hanson, J. et al. Nicotinic acid- and monomethyl fumarate-
625 induced flushing involves GPR109A expressed by keratinocytes
626 and COX-2-dependent prostanoid formation in mice. *J Clin
627 Invest* **120**, 2910-9 (2010).
- 628 5. Maciejewski-Lenoir, D. et al. Langerhans cells release
629 prostaglandin D-2 in response to nicotinic acid. *Journal of
630 Investigative Dermatology* **126**, 2637-2646 (2006).
- 631 6. Offermanns, S. et al. International Union of Basic and
632 Clinical Pharmacology. LXXXII: Nomenclature and
633 Classification of Hydroxy-carboxylic Acid Receptors (GPR81,
634 GPR109A, and GPR109B). *Pharmacol Rev* **63**, 269-90 (2011).
- 635 7. Blad, C.C., Ahmed, K., AP, I.J. & Offermanns, S. Biological
636 and pharmacological roles of HCA receptors. *Adv Pharmacol* **62**,
637 219-50 (2011).
- 638 8. Richman, J.G. et al. Nicotinic acid receptor agonists
639 differentially activate downstream effectors. *Journal of
640 Biological Chemistry* **282**, 18028-18036 (2007).


- 641 9. Tang, Y.T. et al. Enhancement of arachidonic acid signaling
642 pathway by nicotinic acid receptor HM74A. *Biochemical and*
643 *Biophysical Research Communications* **345**, 29-37 (2006).
- 644 10. Walters, R.W. et al. beta-Arrestin1 mediates nicotinic acid-
645 induced flushing, but not its antilipolytic effect, in mice.
646 *J Clin Invest* **119**, 1312-21 (2009).
- 647 11. Reiter, E. & Lefkowitz, R.J. GRKs and beta-arrestins: roles
648 in receptor silencing, trafficking and signaling. *Trends*
649 *Endocrinol Metab* **17**, 159-65 (2006).
- 650 12. Tunaru, S. et al. PUMA-G and HM74 are receptors for nicotinic
651 acid and mediate its anti-lipolytic effect. *Nat Med* **9**, 352-5
652 (2003).
- 653 13. Pike, N.B. Flushing out the role of GPR109A (HM74A) in the
654 clinical efficacy of nicotinic acid. *Journal of Clinical*
655 *Investigation* **115**, 3400-3403 (2005).
- 656 14. Tang, H., Lu, J.Y.L., Zheng, X.M., Yang, Y.H. & Reagan, J.D.
657 The psoriasis drug monomethylfumarate is a potent nicotinic
658 acid receptor agonist. *Biochemical and Biophysical Research*
659 *Communications* **375**, 562-565 (2008).
- 660 15. Berger, A.A. et al. Monomethyl Fumarate (MMF, Bafiertam) for
661 the Treatment of Relapsing Forms of Multiple Sclerosis (MS).
662 *Neurol Int* **13**, 207-223 (2021).
- 663 16. Hanson, J., Gille, A. & Offermanns, S. Role of HCA(2)
664 (GPR109A) in nicotinic acid and fumaric acid ester-induced
665 effects on the skin. *Pharmacol Ther* **136**, 1-7 (2012).
- 666 17. Benyo, Z. et al. GPR109A (PUMA-G/HM74A) mediates nicotinic
667 acid-induced flushing. *J Clin Invest* **115**, 3634-40 (2005).
- 668 18. Benyo, Z., Gille, A., Bennett, C.L., Clausen, B.E. &
669 Offermanns, S. Nicotinic acid-induced flushing is mediated by
670 activation of epidermal langerhans cells. *Mol Pharmacol* **70**,
671 1844-9 (2006).
- 672 19. Offermanns, S. Heating up the cutaneous flushing response.
673 *Arterioscler Thromb Vasc Biol* **34**, 1122-3 (2014).
- 674 20. Dubrall, D. et al. Do dimethyl fumarate and nicotinic acid
675 elicit common, potentially HCA(2) -mediated adverse
676 reactions? A combined epidemiological-experimental approach.
677 *Br J Clin Pharmacol* **87**, 3813-3824 (2021).
- 678 21. Bodor, E.T. & Offermanns, S. Nicotinic acid: an old drug with
679 a promising future. *Br J Pharmacol* **153 Suppl 1**, S68-75
680 (2008).
- 681 22. Shen, H.C. et al. Discovery of a Biaryl Cyclohexene
682 Carboxylic Acid (MK-6892): A Potent and Selective High
683 Affinity Niacin Receptor Full Agonist with Reduced Flushing
684 Profiles in Animals as a Preclinical Candidate. *Journal of*
685 *Medicinal Chemistry* **53**, 2666-2670 (2010).
- 686 23. Sprecher, D. et al. Discovery and characterization of
687 GSK256073, a non-flushing hydroxy-carboxylic acid receptor 2
688 (HCA2) agonist. *European Journal of Pharmacology* **756**, 1-7
689 (2015).
- 690 24. van Veldhoven, J.P.D. et al. Structure-activity relationships
691 of trans-substituted-propenoic acid derivatives on the
692 nicotinic acid receptor HCA2 (GPR109A). *Bioorganic &*
693 *Medicinal Chemistry Letters* **21**, 2736-2739 (2011).

- 694 25. Yang, Y. et al. Structural insights into the human niacin
695 receptor HCA2-G(i) signalling complex. *Nat Commun* **14**, 1692
696 (2023).
- 697 26. Xin Pan, F.Y., Peiruo Ning, Zhiyi Zhang, Binghao Zhang, Geng
698 Chen, Wei Gao, Chen Qiu, Zhangsong Wu, Kaizheng Gong,
699 Jiancheng Li, Jiang Xia, Yang Du. Structural insights into
700 ligand recognition and selectivity of the human
701 hydroxycarboxylic acid receptor HCAR2. *bioRxiv*
702 2023.03.28.534513 (2023).
- 703 27. Ma, N., Nivedha, A.K. & Vaidehi, N. Allosteric communication
704 regulates ligand-specific GPCR activity. *FEBS J* **288**, 2502-
705 2512 (2021).
- 706 28. Nivedha, A.K. et al. Identifying Functional Hotspot Residues
707 for Biased Ligand Design in G-Protein-Coupled Receptors. *Mol*
708 *Pharmacol* **93**, 288-296 (2018).
- 709 29. Kawakami, K. et al. Heterotrimeric Gq proteins act as a
710 switch for GRK5/6 selectivity underlying beta-arrestin
711 transducer bias. *Nat Commun* **13**, 487 (2022).
- 712 30. Carpenter, B. & Tate, C.G. Expression, Purification and
713 Crystallisation of the Adenosine A(2A) Receptor Bound to an
714 Engineered Mini G Protein. *Bio Protoc* **7**(2017).
- 715 31. Nehme, R. et al. Mini-G proteins: Novel tools for studying
716 GPCRs in their active conformation. *PLoS One* **12**, e0175642
717 (2017).
- 718 32. Hong, C. et al. Structures of active-state orexin receptor 2
719 rationalize peptide and small-molecule agonist recognition
720 and receptor activation. *Nat Commun* **12**, 815 (2021).
- 721 33. Pandey, S. et al. Intrinsic bias at non-canonical, beta-
722 arrestin-coupled seven transmembrane receptors. *Mol Cell* **81**,
723 4605-4621 e11 (2021).
- 724 34. Ghosh, E. et al. Conformational Sensors and Domain Swapping
725 Reveal Structural and Functional Differences between beta-
726 Arrestin Isoforms. *Cell Rep* **28**, 3287-3299 e6 (2019).
- 727 35. Zivanov, J. et al. New tools for automated high-resolution
728 cryo-EM structure determination in RELION-3. *Elife* **7**(2018).
- 729 36. Punjani, A., Rubinstein, J.L., Fleet, D.J. & Brubaker, M.A.
730 cryoSPARC: algorithms for rapid unsupervised cryo-EM
731 structure determination. *Nat Methods* **14**, 290-296 (2017).
- 732 37. Liebschner, D. et al. Macromolecular structure determination
733 using X-rays, neutrons and electrons: recent developments in
734 Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877 (2019).
- 735 38. Adams, P.D. et al. PHENIX: a comprehensive Python-based
736 system for macromolecular structure solution. *Acta*
737 *Crystallogr D Biol Crystallogr* **66**, 213-21 (2010).
- 738 39. Pettersen, E.F. et al. UCSF ChimeraX: Structure visualization
739 for researchers, educators, and developers. *Protein Sci* **30**,
740 70-82 (2021).
- 741 40. Pettersen, E.F. et al. UCSF Chimera--a visualization system
742 for exploratory research and analysis. *J Comput Chem* **25**,
743 1605-12 (2004).
- 744 41. Emsley, P. & Cowtan, K. Coot: model-building tools for
745 molecular graphics. *Acta Crystallogr D Biol Crystallogr* **60**,
746 2126-32 (2004).

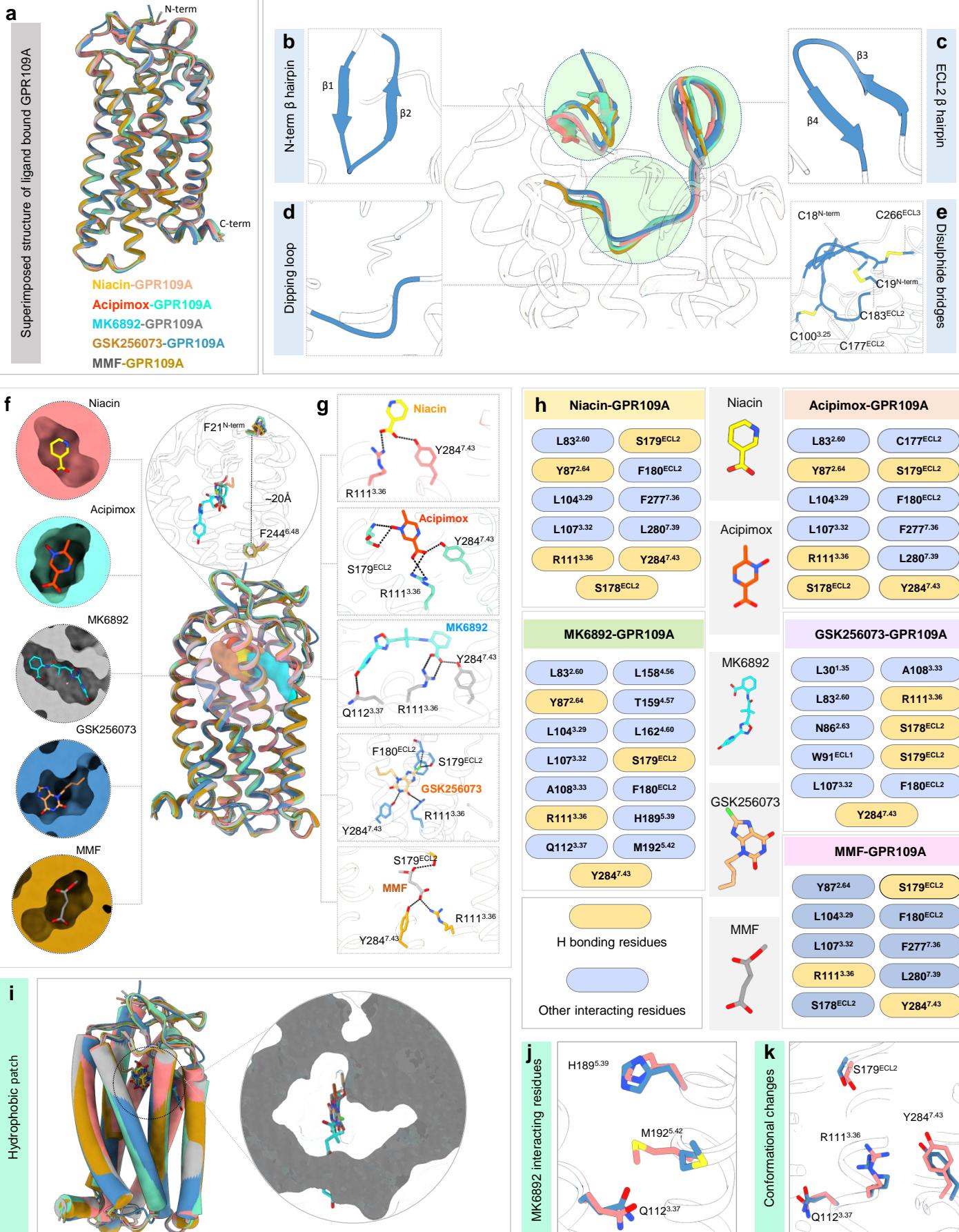

- 747 42. Chen, V.B. et al. MolProbity: all-atom structure validation
748 for macromolecular crystallography. *Acta Crystallogr D Biol*
749 *Crystallogr* **66**, 12-21 (2010).
750 43. Baidya, M. et al. Allosteric modulation of GPCR-induced beta-
751 arrestin trafficking and signaling by a synthetic intrabody.
752 *Nat Commun* **13**, 4634 (2022).
753 44. Pandey, S., Roy, D. & Shukla, A.K. Measuring surface
754 expression and endocytosis of GPCRs using whole-cell ELISA.
755 *Methods Cell Biol* **149**, 131-140 (2019).
756 45. Maharana, J. et al. Structural snapshots uncover a key
757 phosphorylation motif in GPCRs driving beta-arrestin
758 activation. *Mol Cell* (2023).
759

Figure 1: Pharmacological profiling of niacin, acipimox, MK6892, GSK256073 and MMF on GPR109A. **a**, Chemical structure of four GPR109A ligands used in the current study. **b**, Diagrammatic illustration of GPR109A activation and downstream signalling outcomes. **c**, G-protein activation and β arr recruitment downstream of GPR109A in response to acipimox with niacin as a reference ligand. First and second panel showing G_{oA} and G_{oB} dissociation studied by nanoBiT-based G-protein dissociation assay (Receptor+LgBiT- $G\alpha_{oA}$ / $G\alpha_{oB}$ +G β +SmBiT-G γ) (mean \pm SEM ; n=4 ; fold normalized with the minimum concentration for each ligand as 1). Forskolin induced cAMP decrease measured by GloSensor assay is shown in the third panel (mean \pm SEM ; n=4 ; % normalized with the minimum concentration for each ligand as 100). β arr recruitment was studied by nanoBiT-based assay (Receptor-SmBiT+LgBiT- β arr) and is shown in fourth and fifth panel (mean \pm SEM ; n=4 and n=5 for fourth and fifth panel respectively ; fold normalized with the minimum concentration for each ligand as 1). **d**, G-protein activation and β arr recruitment downstream of GPR109A in response to MK6892 and GSK256073 with niacin as a reference ligand. First and second panel showing G_{oA} and G_{oB} dissociation (mean \pm SEM ; n=4 ; fold normalized with the minimum concentration for each ligand as 1). Forskolin induced cAMP response is shown in the third panel (mean \pm SEM ; n=4 ; % normalized with the minimum concentration for each ligand as 100). Fourth and fifth panel showing β arr1 and 2 recruitment respectively (mean \pm SEM ; n=6 ; fold normalized with the minimum concentration for each ligand as 1). **e**, G-protein activation and β arr recruitment downstream of GPR109A in response to monomethyl fumarate (MMF) with niacin as a reference ligand. First and second panel showing G_{oA} and G_{oB} dissociation (mean \pm SEM ; n=3 ; fold normalized with the minimum concentration for each ligand as 1). Forskolin induced cAMP response is shown in the third panel (mean \pm SEM ; n=4 ; % normalized with the minimum concentration for each ligand as 100). Fourth and fifth panel showing β arr1 and 2 recruitment respectively (mean \pm SEM ; n=4 ; fold normalized with the minimum concentration for each ligand as 1). **f**, Bias factor was calculated using the software <https://biasedcalculator.shinyapps.io/calc/>. During bias factor calculation Niacin stimulated response was considered as reference and observed G-protein biased with MK6892.

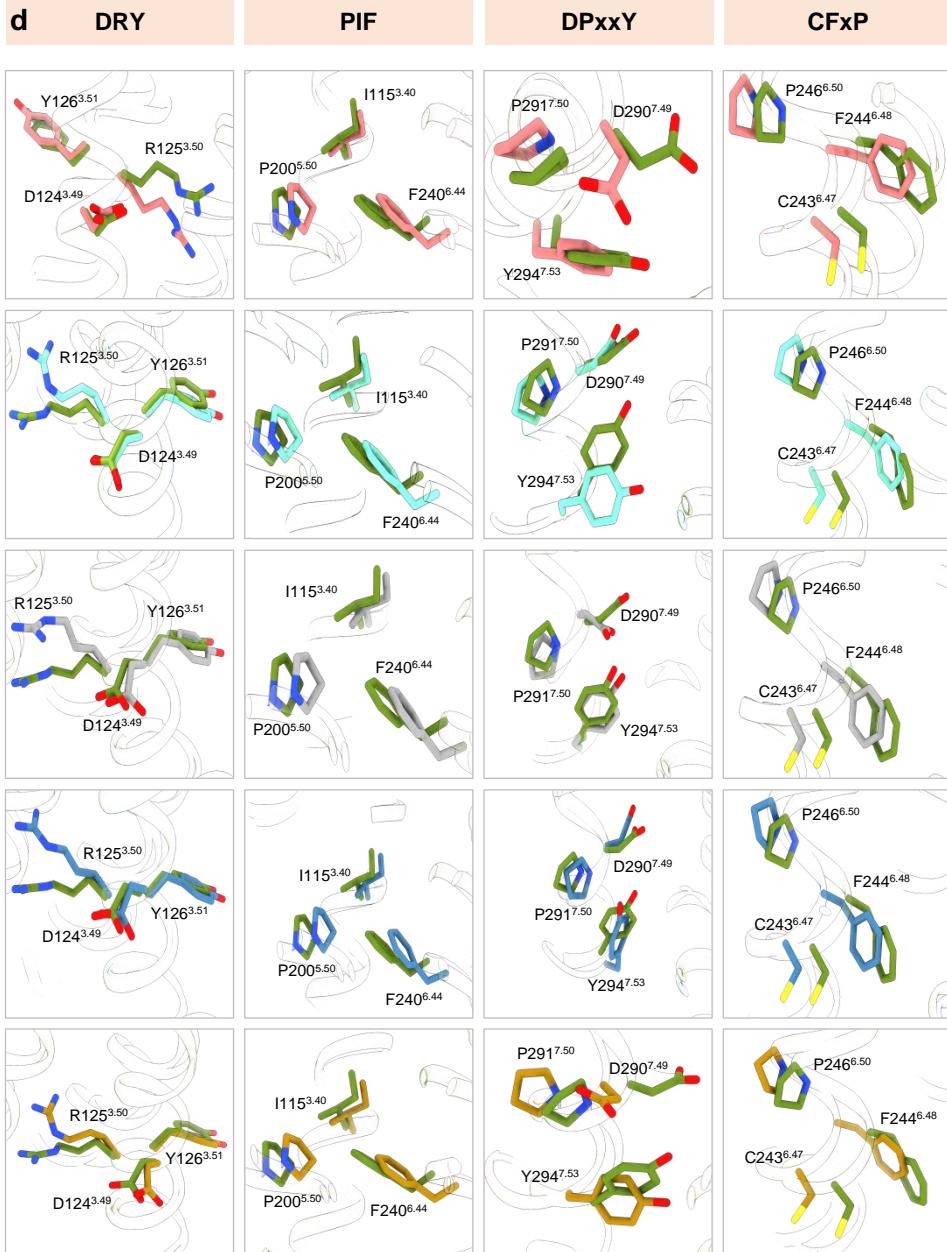
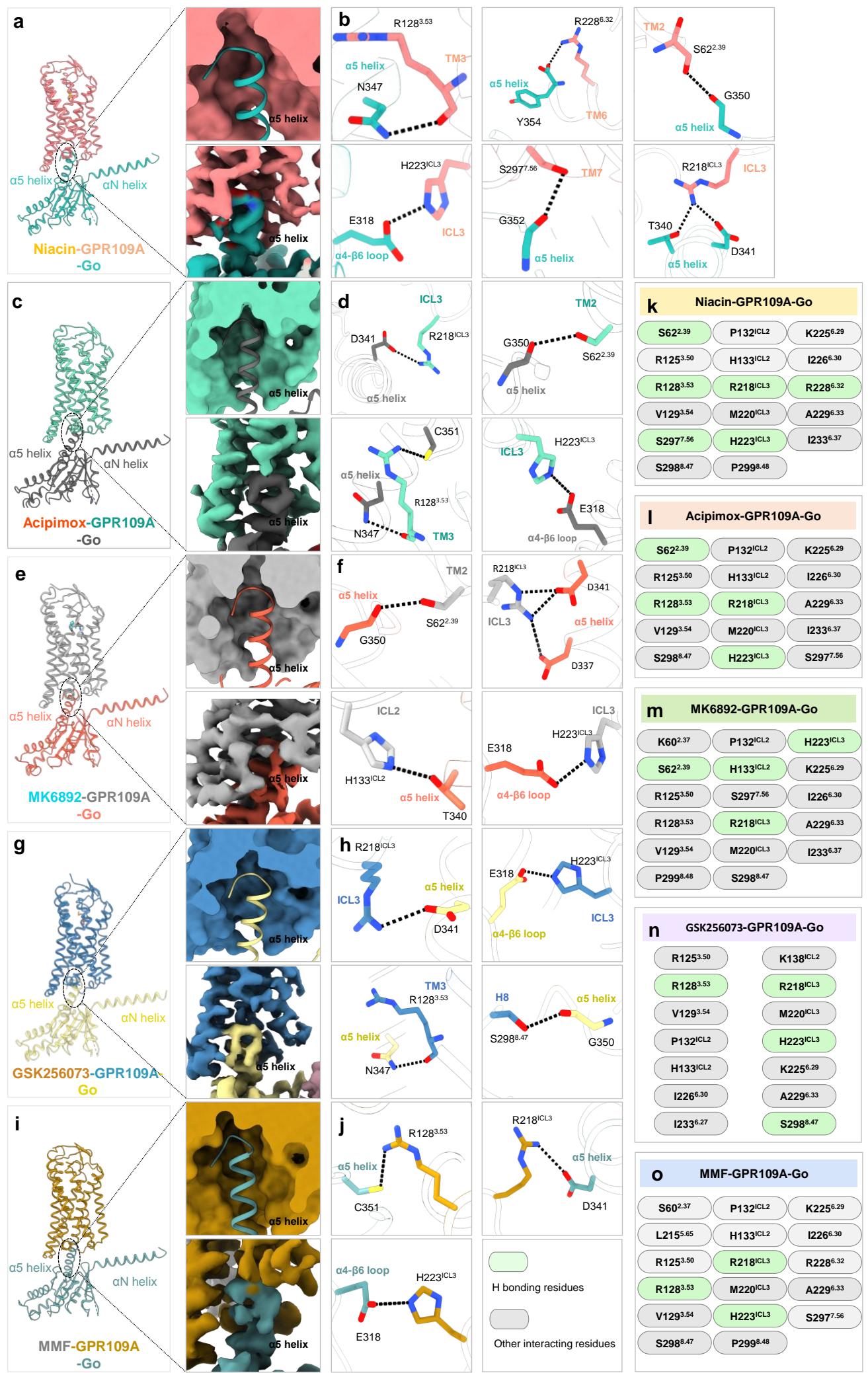
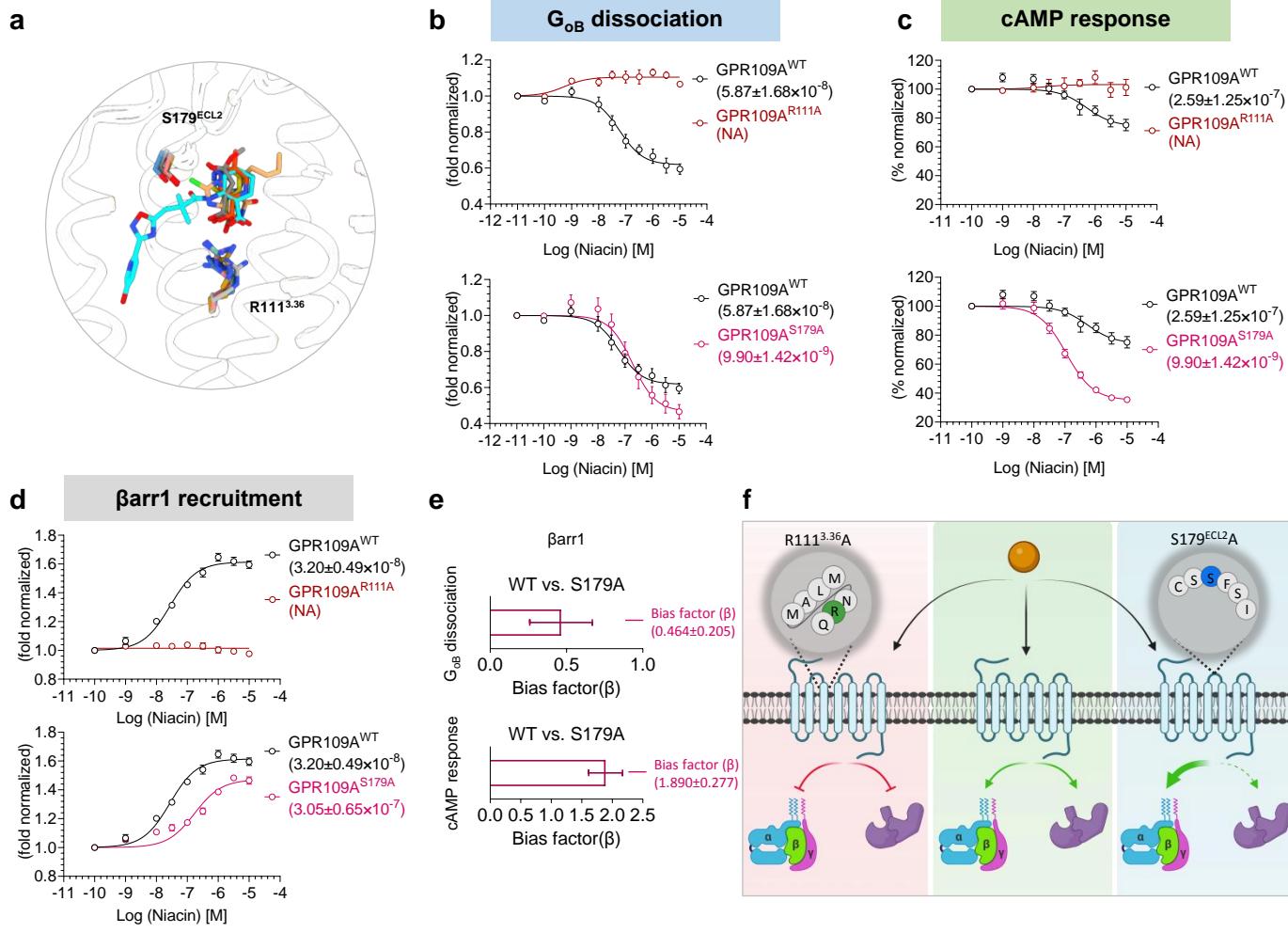



Figure 2: Overall architecture of Niacin, Acipimox, MK6892, GSK256073 and MMF bound GPR109A-G protein complexe. Map and ribbon diagram of the ligand-bound GPR109A-Go complexes (front view) and the cryo-EM densities of the ligands (sticks) are depicted as transparent surface representations. **a, niacin-GPR109A-Go:** Light coral: GPR109A, light sea green: miniGα, rosy brown: Gβ1, orchid: Gγ2, yellow green: ScFv16, **b, acipimox-GPR109A-Go:** medium aquamarine: GPR109A, gray: miniGα, rosy brown: Gβ1, orchid: Gγ2, yellow green: ScFv16, **c, MK6892-GPR109A-Go:** Dark gray: GPR109A, tomato: miniGα, rosy brown: Gβ1, orchid: Gγ2, yellow green: ScFv16, **d, GSK256073-GPR109A-Go:** Steel blue: GPR109A, khaki: miniGα, rosy brown: Gβ1, orchid: Gγ2, yellow green: ScFv16, **e, MMF-GPR109A-Go:** Dark golden rod: GPR109A, cadet blue: miniGα, rosy brown: Gβ1, orchid: Gγ2, yellow green: ScFv16.


Figure 3:Ligand binding pocket of GPR109A.

a, Structure superposition of niacin, acipimox, MK6892, GSK256073 and MMF bound GPR109A. **b**, Structural features of Ligand(GSK256073) bound-GPR109A, N terminal β -hairpin (left upper panel), **c**, Close-up view of ECL2 dipping into the orthosteric pocket (left lower panel), **d**, ECL2 β -hairpin (upper right panel) and **e**, Ribbon diagram of disulfide bridges. **f**, Superposed niacin, acipimox, MK6892, GSK256073 and MMF bound GPR109A structures highlighting the orthosteric binding pocket (Left panel, cross-sections of GPR109A bound to the individual ligand. **g**, GPR109A ligand binding pocket highlighting the major interactions of the individual ligand. **h**, List of GPR109A residues interaction with ligands. **i**, Cross-section of GPR109A orthosteric sites depicting the hydrophobic patch surrounding the individual ligand. **j**, Interacting residues of GPR109A with the extended part of MK6892. **k**, Conformational changes of GPR109A residues interacting with MK6892 with respect to niacin.

a


Figure 4. Major conformational changes on GPR109A activation.

a, Superimposition of inactive GPR109A with receptor bound to niacin, acipimox, MK6892, GSK256073, and MMF. **b, c**, Displacements of TM5, TM6 upon GPR109A activation in the structures of niacin, acipimox, MK6892, GSK256073, and MMF bound GPR109A respectively. **d**, Conformational changes in the conserved microswitches (DRY, PIF, N/DPxxY, CW/FxP) in the active structure of GPR109A.

Figure 5: GPR109A-G-protein interacting interface.

a, c, e, g, i, Representation of α 5 helix of Gao docking into the cytoplasmic core of GPR109A bound to niacin, acipimox, MK6892, GSK256073 and monomethyl fumarate (MMF) respectively. **b, d, f, h, j,** Key interactions between Gao residues and residues of the cytoplasmic core of GPR109A. Black dotted line represents the H-bond. **k-o,** Illustration of residues contact between GPR109A and Gao in niacin, acipimox, MK6892, GSK256073, and monomethyl fumarate (MMF) bound structures.

Figure 6. Structure guided bias signaling.

a, Cartoon representation of residues interacting via H-bond with niacin (yellow), acipimox (orange red), MK6892 (cyan), GSK256073 (sandy brown), and monomethyl fumarate (MMF) (grey). **b,c**, G-protein activation downstream of GPR109A^{WT}, GPR109A^{R111A}, and GPR109A^{S179A} in response to niacin was studied by nanoBiT-based G-protein dissociation assay (Receptor+LgBiT-G α _{oB}+G β +SmBiT-G γ) (panel b) (mean \pm SEM ; n=3 ; fold normalized with the minimum concentration for each ligand as 1) and forskolin-induced cAMP level decay by GloSensor assay (panel c) (mean \pm SEM ; n=3 ; % normalized with the minimum concentration for each ligand as 100). **d**, β arr recruitment downstream of GPR109A^{WT}, GPR109A^{R111A}, and GPR109A^{S179A} in response to niacin was studied by nanoBiT-based assay (Receptor-SmBiT+LgBiT- β arr) (mean \pm SEM; n=4 ; fold normalized with the minimum concentration for each ligand as 1). **e**, Bias factor for the mutant GPR109A^{S179A} was calculated using the software <https://biasedcalculator.shinyapps.io/calc/>. During bias factor calculation GPR109A^{WT} was considered as reference and observed G-protein biased with GPR109A^{S179A} upon stimulation with niacin. **f**, Schematic depicting the effect of the two mutants GPR109A^{R111A} and GPR109A^{S179A} on G-protein activation and β arr recruitment in response to niacin.