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How to derive principles of community dynamics and stability is a central question in 
microbial ecology. Bottom-up experiments, in which a small number of bacterial 
species are mixed, have become popular to address it. However, experimental setups 
are typically limited because co-culture experiments are labor-intensive and species 
are difficult to distinguish. Here, we use a 4-species bacterial community to show that 
information from monoculture growth and inhibitory effects induced by secreted 
compounds can be combined to predict the competitive rank order in the community. 
Specifically, integrative monoculture growth parameters allow building a preliminary 
competitive rank order, which is then adjusted using inhibitory effects from supernatant 
assays. While our procedure worked for two different media, we observed differences 
in species rank orders between media. We then parameterized computer simulations 
with our empirical data to show that higher-order species interactions largely follow the 
dynamics predicted from pairwise interactions with one important exception. The 
impact of inhibitory compounds was reduced in higher-order communities because 
their negative effects were spread across multiple target species. Altogether, we 
formulated three simple rules of how monoculture growth and supernatant assay data 
can be combined to establish a competitive species rank order in an experimental 4-
species community. 
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Introduction 
Microbial communities are diverse in composition and function (1,2). Top-down 
approaches based on 16s rRNA and shot-gun sequencing are commonly used to 
describe community diversity and functional capacities, respectively (3–5). However, 
much less is known about the microbial interactions occurring in these communities. 
This is why bottom-up approaches have become popular, whereby a set of defined 
bacterial species and strains is mixed and their interactions studied under 
experimental conditions (6–12). The power of simple communities is that they are 
tractable and allow for experimental manipulation so that the effect of specific factors 
on community properties can be examined. There is a plethora of bottom-up studies 
that shed light on various ecological aspects of species interactions. Insights from such 
studies include, for example, that harsh environmental conditions seem to be more 
conducive to ecological facilitation (6) and for promoting biodiversity and community 
stability (7). Furthermore, social interactions also appear to be determinants of 
community composition and stability, be it through metabolic cross-feeding between 
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species (8,10) or the secretion of competitive and cooperative secondary metabolites 
(11). 
 
Despite their simplicity, studying experimental communities also comes with several 
challenges. For example, it is often unclear what the key determinants of interactions 
are. This is particularly the case for communities for which no a priori knowledge of 
relevant traits and species characteristics is available. Here, several factors could 
determine species interactions and competitiveness. The first factor is monoculture 
growth performance. In a simple environment that is nutrient-rich with low niche 
diversity, a high growth rate is often taken as a proxy for competitiveness  (13,14), and 
it is expected that fast-growing species have a competitive advantage over slower-
growing ones. The second factor involves secreted compounds that could either 
positively (e.g., amino acids) or negatively (e.g., toxic compounds) affect the growth 
of other species (7,15–18). The third factor entails interactions that can only arise when 
species grow together. They can include physical interference through killing systems 
(e.g., type VI secretion system) as well as niche or metabolic competition whereby 
species reduce or prevent competitors from accessing certain resources (19–21). A 
key challenge is to assess the relative importance of these three factors and how they 
combine to predict species dominance and community dynamics. Further challenges 
arise when considering that species interactions might differ across environments (6,7) 
and that pairwise interactions might not necessarily predict interaction dynamics in 
larger communities (9) due to non-additive effects and new emerging properties. 
 
In our study, we combine experiments and computer simulations on a 4-species 
bacterial consortium to tackle some of these challenges. Our consortium consists of 
four opportunistic human pathogens (Burkholderia cenocepacia [B], Cronobacter 
sakazakii [C], Klebsiella michiganensis [K], Pseudomonas aeruginosa [P]), and has 
been established as a model community in one of our earlier studies (22). With this 
model consortium, we pursue four main aims. First, we ask whether differences in 
monoculture growth performance and interactions based on stimulatory or inhibitory 
molecules secreted by bacteria are good predictors of species interactions in pairwise 
co-culture experiments. Second, we compare whether the observed interaction 
patterns are consistent across two different nutritional environments: Lysogeny broth 
(LB) and Graces’ insect medium (GIM). While LB is a standard laboratory medium, 
GIM mimics the environment found in Lepidoptera larvae, a common host model 
system (23–25). Third, we derive tentative rules to predict pairwise interaction 
outcomes from monoculture growth and supernatant assays and establish rank orders 
for competitiveness for our 4-species community. Finally, we combine experiments 
with 3-species and the 4-species communities and agent-based modeling (26,27) 
(parametrized with our experimental data) to examine whether higher-order 
community interactions recover the competitive rank orders predicted from pairwise 
co-culture experiments. 
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Materials and methods 
Bacterial strains 
For all experiments, we used the following four bacterial species: Pseudomonas 
aeruginosa PAO1 [P] (28), Burkholderia cenocepacia K56-2 [B] (29), Klebsiella 
michiganensis [K], and Cronobacter sakazakii (ATCC29004) [C]. We had established 
this consortium of four gram-negative bacterial species in an earlier study (22), in 
which we were interested in interactions between pathogens with different virulence 
levels in the larvae of the greater wax moth G. mellonella.  
 
Monoculture growth assays  
All media were purchased from Sigma Aldrich, Switzerland, unless indicated 
otherwise. All experiments in this study were carried out in lysogeny broth (LB) and 
Grace’s insect medium (GIM) (Gibco, GIM 1X, supplemented). GIM is a nutrient-rich 
medium and consists of 19 different amino acids, 10 different vitamins (e.g., biotin, 
riboflavin, folic acid), 5 inorganic salts (CaCl2, MgCl2, MgSO4, KCl, NaH2PO4-H2O), 
and several carbon sources (e.g., fructose, glucose, sucrose). Before experiments, 
each species was taken from a 25% glycerol stock stored at -80° C and grown 
overnight in 5 mL LB at 37° C and 170 rpm with aeration (Infors HT, Multitron Standard 
Shaker) until stationary phase. The bacterial cultures were then washed twice with 
0.8% NaCl, centrifuging for 5 min at 7,500 rcf (Eppendorf, tabletop centrifuge MiniSpin 
plus with rotor F-45-12-11). Subsequently, we adjusted the cultures to an optical 
density at 600 nm (OD600) = 1. Then, each well of a 96-well cell culture plate 
(Eppendorf, non-treated, flat bottom) was filled with 190 µL medium (LB or GIM) and 
10 µL individually diluted cell suspensions to reach a starting number of 105 CFU/mL 
(i.e., 2x104 CFU/well). Plate layouts (i.e., positions of species and replicates on plates) 
were randomized between experiments. To minimize evaporation, the outer moat 
space and inter-well spaces of the microplate were filled with 13 mL sterile water. 
Plates were incubated at 37° C in a microplate reader (Tecan, Infinite MPlex) and 
OD600 was measured every 15 min for 36 h with 60 sec shaking before each reading.  

We used the Gompertz function to fit growth curves to the obtained OD600 
trajectories and to extract three different growth parameters: the maximum growth rate 
(µmax), area under the curve (AUC), and inverse of the time to mid-exponential phase 
(1/Tmid). For the latter, we used the inverse of Tmid to ensure that low and high values 
stand for low and high growth, respectively. The parameter 1/Tmid considers the lag 
phase l, µmax, and yield A and was calculated as: 

1
𝑇!"#

=
1

𝐴
2 ∗ µ!$%

+ l
 

 
Supernatant assays 
Cells were prepared as for the monoculture growth assays. Washed cell cultures were 
subsequently inoculated in 10 mL medium within 50 mL Falcon tubes (inoculum size: 
105 CFU/mL). We had 10 replicates (tubes) per species. Tubes were incubated at 37° 
C shaken at 170 rpm with aeration (Infors HT, Multitron Standard Shaker). We 
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harvested supernatants when species had reached the stationary phase, which was 
after 16 hours for C and P, and after 40 h for B and K (Fig. 1). Supernatants from all 
10 replicates of a species were pooled and mixed before filter sterilizing them with a 
0.2 µm filter (GE Healthcare Life Sciences, Whatman filter) and aliquoting and storing 
them in 2 mL Eppendorf tubes at -20° C.  

For the actual supernatant assays, we prepared cells and distributed them on 
microplates as described for the monoculture growth assay. The cells were then 
exposed to three different media: (a) 30% supernatant from another species + 70% 
fresh medium (LB or GIM), (b) 30% NaCl (0.8% solution) + 70% fresh medium, and 
(c) 100% fresh medium. Plates were incubated at 37° C in a microplate reader (Tecan, 
Infinite MPlex) and OD600 was measured every 15 min for 36 h with 60 sec shaking 
before each reading. We fitted Gompertz functions to the growth trajectories and 
extracted µmax, AUC, and 1/Tmid. We then expressed the growth in supernatant relative 
to the two control treatments, (a)/(b) and (a)/(c). We define growth inhibition if (a)/(b) 
< 1, and growth stimulation if (a)/(c) > 1. 

To obtain a comparable species ranking across assays, we calculated an 
integrative supernatant score. We summed up all the relative growth values (a)/(b) that 
the supernatant of one species has on the other three species. The four values (one 
per species) were then centered around 0 and scaled between -1 and +1. Negative 
and positive values stand for stimulatory and inhibitory supernatant effects, 
respectively, and are indicative of a species’ competitiveness.  
 
Co-culture experiments 
Overnight cultures were washed and OD600 was adjusted as described for the 
monoculture growth assays. Next, bacterial species were diluted individually to reach 
similar cell numbers. To obtain 105 CFU/mL per well for pairwise co-cultures (i.e., 
5x104 CFU/mL per species), 25 µL from each of the two species’ dilutions was added 
in each well of a 24-well tissue culture plate (Corning, flat bottom with low evaporation 
lid) filled with 950 µL medium. For 3-species and 4-species communities, the same 
total number of 105 CFU/mL was added per well, with equal amounts of each species. 
Well-plates were incubated at 37° C and 170 rpm for 24 h (Infors HT, Multitron 
Standard Shaker).  

After competition, OD600 was measured to calculate the appropriate dilution for 
plating. Calculations were based on previously established calibration curves, relating 
OD to CFU for each of the four species and averaging the expected CFU between the 
two species in a mix. Cultures were diluted with 0.8% NaCl, and each replicate was 
plated in duplicate on LB-agar plates (1.5% agar). We incubated all plates overnight 
at 37° C and manually counted CFU on the next day. All four species could be 
distinguished from each other based on their different colony morphologies on plates 
(22). Since C colonies turn yellow after a day at room temperature, we left them on the 
bench for an additional day. Plates containing B were incubated at 37° C for two days 
in total because of its slow growth. If one species was much more frequent than the 
other one, we used selective plating (if available) to ensure that we could assess the 
abundance of the low-frequency species. For P, we used Pseudomonas isolation agar. 
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For B, we used LB plus gentamicin (30 µg/mL) due to its inherent resistance to this 
antibiotic. No selective media was available for C, meaning that C could not be counted 
in co-culture with P below a given detection limit.  

For pairwise co-cultures, the relative fitness values of each focal species were 
calculated based on Wrightian fitness from Ross-Gillespie et al. (2007) as follows: 

	𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑓𝑖𝑡𝑛𝑒𝑠𝑠&'()"(*+ 	= 	
(𝐸𝑛𝑑	𝐶𝐹𝑈&'()"(*+ 	× 	𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝐶𝐹𝑈&'()"(*,)
(𝐸𝑛𝑑	𝐶𝐹𝑈&'()"(*, 	× 	𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝐶𝐹𝑈&'()"(*+)

 

We log-transformed the relative fitness data to be able to better compare values across 
species combinations. Relative fitness values > 0 and < 0 indicate that the focal 
species wins or loses in competition with the co-cultured species, respectively. For the 
3-species and 4-species communities, the above formula cannot be applied and we 
thus directly compared CFUs across species after competition. 

For pairwise co-cultures, we calculated an integrative score to obtain a measure 
of competitiveness for each species relative to all other species. Given that each 
relative fitness value can be expressed from the perspective of the winner or the loser 
(resulting in reciprocal values), we followed a stepwise process to avoid double 
counting of fitness values. We started with the weakest species and summed up all its 
relative fitness effects in competition with the three other species. Then we moved to 
the second (and third) weakest species and repeated the procedure leaving out any 
fitness effects that were already accounted for before. For the final two species, we 
only considered their effect on each other. With this approach, opposing fitness effects 
can balance each other out. For example, a species of interest might have a positive 
effect on one species but a negative effect on another species, such that it will take up 
a relatively neutral position in the ranking.   
 
Agent-based model 
We performed agent-based simulations, using our previously developed platform 
(26,27). Microbial simulations take place on a two-dimensional toroidal surface with 
connected edges without boundaries. The surface of the torus is 10,000 μm2 (100 × 
100 μm). Bacteria are modeled as discs with an initial radius of 0.5 μm. Bacteria grow 
through an increase of their radius, according to a growth function, and divide when 
reaching the threshold radius of 1 μm. In our simulations, we assumed that resources 
are not limited. Growth differences emerge solely based on the differences in growth 
rate and interactions between the species. Interactions are modeled via secreted 
molecules. Molecules can be taken up when they physically overlap with a cell and 
can either be growth-stimulating or -inhibitory. Here, we only modeled inhibitory 
molecules (represented by a toxin, because all major supernatant effects were 
negative in GIM, see Fig. 2). Accordingly, the growth of each cell is determined by the 
function 

𝐺- = 	𝑔 ×	(1	 − (.	0!
1"
)2) 	× 𝐺3 , 
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where 𝐺-	denotes the increase in radius per time step, 𝐺3 denotes the default radius 
increase per time step (0.5/1, 200 μm), 𝑔 the species-specific growth rate, and 𝛴𝑇 the 
number of accumulated toxins. Toxins decrease growth and lead to cell death when 
they accumulate beyond the threshold value 𝜃0. The decrease in growth is further 
controlled by the latency parameter 𝜅 = 2, which leads to an exponentially increasing 
(negative) effect on growth, depending on the number of accumulated toxins. If a cell 
divides before the threshold 𝜃0 is reached, the accumulated toxins are shared equally 
among the two daughter cells.  
 Simulations started with 32 cells per species, randomly placed on the 
landscape. Bacteria can disperse on the surface, according to a specific cell diffusion 
coefficient D. Bacteria start to grow and divide until a cell number of 500 is reached. A 
chemostat mechanism is then activated to keep cell numbers constant at around 500 
by randomly removing cells. The chemostat mechanism allows observing strain 
dynamics over extended timespans and prevents surface overgrowth. We ran 
simulations for 30,000-time steps with 20 replicates per parameter and species 
combination. 

To implement differences in growth rates between the four species, we used 
scaled differences in 1/Tmid from monoculture growth in GIM. The specific growth rate 
of each species is  

𝑔 = 	0.5 + 	0.5 × 0!"##
0!"#!

.  

where TmidC and Tmidi are the growth parameters of the best-growing species C and 
the other species, respectively. Accordingly, the species-specific growth rates were C 
= 1, P = 0.84, K = 0.81, and B = 0.68. 

We allowed strains to produce toxins to capture the inhibitory effects observed 
in the supernatant assays in GIM. In practice, the inhibitory effects could be caused 
by other factors than toxins, such as secreted molecules that deplete a specific nutrient 
(e.g. siderophores reducing iron availability) or induce a change in pH (e.g., P 
supernatant slightly increased pH from 6.2 to 6.0 in GIM, Table S1). Thus, the toxin 
implemented here is representative of any type of molecule that negatively affects the 
growth of another species. We only considered effects affecting growth by at least 
20%. This was the case for K inhibiting all other species, and B inhibiting P. To 
calibrate toxin potency  𝜃0 (defined by the number of molecules required to kill a cell), 
we simulated pairwise competitions between all four species across a range of values 
(𝜃0: 750 to 4,500, in steps of 250). The aim was to define the minimal toxin potency 
required to recover the competitive outcomes observed in the co-culture experiments. 
We found this to occur with the following values: K-toxin against C, 𝜃0=1,750; K-toxin 
against B and P, 𝜃0=2,500; B-toxin against P, 𝜃0=2,500 (Fig. S1). Note that low values 
stand for high toxic potency because fewer toxin molecules are needed to kill a cell. 
These simulations were conducted with high cell and molecule diffusion (D = 5 μm2s−1 
and ∂ = 10 μm2s−1 respectively) to match experimental shaken culture conditions.  
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Following calibration, we modeled higher-order competitions between all 4-
species and all possible 3-species combinations. For these simulations, we 
considered environments with different diffusion conditions (low: D = 0.0 μm2s−1, ∂ = 
0.1  μm2s−1, high: D = 5.0 μm2s−1, ∂ = 10.0 μm2s−1). For each replicate, we extracted 
species frequency at each time point, calculated the mean species frequency over 
time, and recorded the per capita toxin uptake per species. 

 
Statistical analyses 
All statistical analyses were conducted with R (version 4.1.1) and RStudio (version 
2021.09.0+351). We built linear mixed models with experimental date as a random 
variable (i.e., experiments were repeated in independent blocks on different days), for 
both the monoculture growth and supernatant assays. We fitted the growth term as 
response variable and species (monoculture) or medium (supernatant) as explanatory 
variable. We used the function “transformTukey” (package “rcompanion” (30)) to find 
the best transformation of the response variable to meet normally distributed residuals. 
To adjust p-values in multiple pairwise comparisons, we used the R function “pairs” 
from the “emmeans” package (31) based on the Tukey method for monoculture growth 
data, and the FDR method for supernatant data. To test whether the relative fitness in 
pairwise competitions is different from the expected log(1) = 0 value (assuming that 
both species perform equally well), we used one-sample two-sided Wilcoxon rank 
tests, since our relative fitness data were not normally distributed. We used Wilcoxon 
signed rank tests for pairwise comparisons in 3- and 4-species communities, adjusting 
p-values with the FDR method. All details of the statistical analyses can be found in a 
separate statistics file. 
 
 
Results 
Monoculture growth parameters as predictors of competitiveness 
In a first experiment, we assessed the growth performance of the four pathogen 
species in monoculture in our two media (LB and GIM) over 36 hours. From the 
obtained growth curves, we estimated the maximum growth rate (µmax), the inverse of 
the time to mid-exponential phase (1/Tmid), and the growth integral (area under the 
curve, AUC). 

All species grew better in GIM than in LB, and growth trajectories differed 
between the four species (Fig. 1A). When focusing on µmax, we observed that C and 
P grew better than B and K, with the differences being larger in GIM than in LB (Fig. 
1B). Next, we looked at 1/Tmid and found that this growth parameter returns C and B 
as the best and worst grower, respectively, but downgrades the performance of P 
relative to µmax because of the relatively long lag phase of P. The AUC dampened the 
differences between species (Fig. 1D). This is expected as the integral gives more 
weight to yield, which is quite similar for all four species.  
 Our analysis reveals that the competitiveness of a species derived from 
monoculture readouts depends on the growth parameter examined. This raises an 
additional challenge, namely which growth parameter to consider. To address this 
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challenge, we conducted correlation analyses (Fig. S2) and found that all three growth 
parameters correlate well with each other in GIM (Pearson correlation coefficients, r = 
0.81 to 0.91). However, this is not the case in LB, where correlations are poor or non-
significant (r = 0.33 to 0.56). The main reason for these mismatches are P with its high 
µmax but low 1/Tmid, and C with an intermediate µmax but high 1/Tmid due to a short lag 
phase (Fig. 1). Since we cannot yet infer which parameter predicts species 
competitiveness best, we estimated all three growth parameters for both media and 
show the species rank order for all of them (Fig. 4). 
 

 
Figure 1. Growth differences of the four bacterial species in two different media: LB medium 
and Grace’s insect medium [GIM].  (A) Growth curves over 36 h in shaken, liquid cultures. 
Shaded areas depict the standard deviation. Boxplots show the (B) maximum growth rate µmax 
as OD600 increase per hour (C) the inverse of the time to mid-exponential phase [1/Tmid], and 
the (D) integral [area under the curve, AUC]. All growth parameters are derived from the 
growth curves in (A) using the Gompertz curve fit.  Different letters above boxplots indicate 
significant growth differences (alpha = 0.05) between bacterial species using linear mixed 
models with experimental block as random factor. Boxplots show the median (line within the 
box) with the first and third quartiles. The whiskers cover 1.5x of the interquartile range or 
extend from the lowest to the highest value if all values fall within the 1.5x interquartile range. 
Data are from 3 independent experiments, each featuring 3-4 replicates per condition, 
resulting in a total of 9-10 replicates per condition.  
 
Effect of secreted compounds as predictors of competitiveness 
We used supernatant assays to assess whether secreted compounds can predict 
competitiveness between interacting species. Supernatants contain molecules (e.g., 
toxins, siderophores, biosurfactants, amino acids) secreted by the producing species 
that can negatively or positively impact the fitness of the receiving species (7,15–18). 
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To test for such effects, we exposed each of our species to the supernatant (30% 
supernatant + 70% fresh medium) of all other species and measured the growth 
effects relative to a control condition (30% NaCl solution [0.8%] + 70% fresh medium). 
In Figure 2, we present the results with the growth parameter 1/Tmid, while the results 
for µmax and AUC are shown in Fig. S3 and Fig. S4, respectively.  

Similar to the monoculture parameters, we found differences in the supernatant 
effects between the two media. While there were 5 negative growth effects out of 12 
in LB (Fig. 2A) and 6 negative effects out of 12 in GIM (Fig. 2B), 9 out of the 12 
interactions changed direction from neutral/positive to negative (or vice versa) 
between media. For example, the supernatant of K was highly inhibitory for B, C, and 
P in GIM but not in LB. Overall, we found that supernatants from one species can have 
strong inhibitory effects on the growth of another species. We also observed positive 
supernatant effects. Such stimulatory effects could be caused by several different 
factors, including nutrient leftovers in the supernatant, or nutrient release and the 
secretion of beneficial compounds such as enzymes by the species producing the 
supernatant. 

To obtain an integrative score of how much our four species influence each 
other’s growth indirectly via their supernatant, we summed up all the effects one 
species has on the others, separately for each of the three growth parameters (i.e., 
from Fig. 2, S3, and S4). This score yielded species rank orders that differ between 
growth parameters and media (Fig. 4). 
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Figure 2. Boxplots show the relative growth of each species in the conditioned medium (30% 
supernatant + 70% fresh medium) of the other species both in (A) LB and (B) GIM medium, 
compared to a control treatment, depicted by the black dashed line (30% NaCl solution [0.8%] 
+ 70% fresh medium) measured across 36 h of growth. For this plot, we used 1/Tmid for growth 
comparisons (see Fig. S3 for absolute readouts). We repeated the same analysis for µmax (Fig. 
S4, S5) and AUC (Fig. S6, S7). Relative growth was calculated by dividing the absolute 1/Tmid, 
(estimates from curve fits) in the supernatant treatments by 1/Tmid in the control treatment. 
Asterisks depict significant differences (alpha = 0.05) of a species’ growth in the particular 
supernatant compared to its growth in the control medium using a linear mixed model with 
experimental block as random factor. Boxplots depict the median (line within the box) with the 
first and third quartiles. The whiskers cover 1.5x of the interquartile range or extend from the 
lowest to the highest value if all values fall within the 1.5x interquartile range. Data are from 3 
independent experiments, each featuring 3-4 replicates per condition, resulting in a total of 9-
10 replicates per condition. The underlying growth curves can be found in the supplementary 
information (Fig. S8).  
 
Competitiveness in co-culture assays 
Next, we carried out co-culture experiments in all pairwise species combinations in 
both media and determined the relative fitness of the competing species after 24 h 
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(Fig. 3). Unlike the previous competition metrics, we found the results to be much more 
consistent between LB (Fig. 3A) and GIM (Fig. 3B). The competitive outcomes only 
changed in 2 out of the 6 comparisons and were pronounced in only one case, in which 
C lost against P in LB but was the clear winner in GIM. An example of consistency is 
B, which was outcompeted by all competitors in both media. Furthermore, we found 
that species coexisted in most cases (Fig. S9, showing the absolute readouts 
underlying the relative fitness measures in Fig. 3). The only exception occurred in LB, 
where P seemed to displace B and C in most replicates. We again used an integrative 
score to obtain a measure of competitiveness for each species (Fig. 4) (see Methods). 
Important to note is that coexistence was assessed after 24 h. By this time, the winning 
species can be identified, but the measured frequencies might not represent a stable 
equilibrium of coexistence. 
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Figure 3. Boxplots show the fitness of the species indicated in the header relative to all other 
species in co-culture assays in (A) LB and (B) GIM medium. Asterisks depict significant 
differences (alpha = 0.05) of a species’ fitness relative to that of a competitor against the null 
hypothesis that none of the two species has an advantage (relative fitness = 0, black dashed 
line) using one-sample two-sided Wilcoxon rank tests. At relative fitness = 0, two species 
coexist at equal frequency. Boxplots show the median (line within the box) with the first and 
third quartiles. The whiskers cover 1.5x of the interquartile range or extend from the lowest to 
the highest value if all values fall within the 1.5x interquartile range. Data are from 6 individual 
experiments with 2 replicates per condition, resulting in a total of 7-12 replicates per condition 
(note in a few cases sample size was <12 because obtaining countable colonies for both 
species in co-culture was very difficult). The corresponding figure with the absolute readouts 
can be found in the supplementary information (Fig. S9). 
 
Deriving tentative rules to predict species competitiveness based on 
monoculture growth and supernatant effects  
In this section, we integrate the competitiveness rankings of the four species across 
all our experiments and ask which metric or combination of metrics is most predictive 
of the observed outcome in co-culture experiments (Fig. 4).  
 Starting with GIM, we find that all monoculture growth parameters positively 
correlate with one another and return the same species ranking: B < K < P < C. This 
species ranking matches the outcome of the co-culture experiments well for three 
species (B < P < C), but not for K. In monoculture, K shows intermediate growth 
performance but is the most competitive species in co-culture experiments. To explain 
this mismatch, we consider the supernatant assay results (Fig. 2) showing that K 
strongly inhibits all other species (based on 1/Tmid and AUC). Thus, we can derive two 
tentative rules to predict competitive outcomes in GIM. Rule 1: take the species rank 
order based on monoculture growth (B < K < P < C). Rule 2: consider the supernatant 
effects and adjust the rank order by moving species that strongly inhibit others further 
up the ranking (B < P < C < K). Interestingly, we find that B (the weakest performer in 
monoculture) strongly inhibits P in the supernatant assay (Fig. 4), but this inhibition did 
not lead to a shift in the species ranking in the co-culture experiments. We can thus 
derive a third tentative rule. Rule 3: inhibitory supernatant effects exerted by slow-
growing species can be ignored probably because their slow growth limits sufficient 
toxic compound production. 
 For LB, we realize that the species rankings are different for all three 
monoculture growth parameters and the corresponding supernatant effects. 
Nonetheless, we applied our three tentative rules to LB and found a good fit when 
using the AUC growth parameter. Rule 1: take the monoculture species rank order. 
For LB (AUC), B < C < K < P. Rule 2: consider the supernatant effect and move species 
that inhibit others further up the ranking (for LB (AUC): first rank: K inhibits B and C / 
second rank: P inhibits C and K). In this case, the supernatant effects do not induce a 
major change in the ranking, but a strong clustering into two inferior and two superior 
species: B ≈ C < P ≈ K. Rule 3: ignore inhibitory supernatant effects of species with 
poor monoculture growth. For LB (AUC), this rule applies to C, which grows poorly yet 
inhibits B. Applying these rules leads to a species ranking for LB co-culture 
competitions that matches our experimental observations. Based on the LB data, we 
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may further derive that more integrative growth measures, such as 1/Tmid and AUC 
might be more informative for competitiveness prediction than growth parameters 
capturing only a single feature of growth dynamics (µmax).  

 
Figure 4. (A) Species rank orders of competitive strength inferred from monoculture growth, 
the ability of a species to affect the growth of competitors in conditioned medium (supernatant), 
and co-culture experiments. All in vitro experiments were conducted in two different media: 
LB and GIM. For monoculture growth and supernatant assays, rank orders are shown for 
maximum growth rate (µmax), the inverse of the time to mid-exponential phase (1/Tmid) and the 
growth integral (area under the curve, AUC). For the supernatant assays, we summed up all 
growth effects a species has on the other species and scaled them across species. To scale 
relative fitness values in co-culture assays, we implemented a stepwise process to avoid 
double-counting of the reciprocal fitness value. We started with the weakest species and 
summed up all its relative fitness values. Then we moved to the second (third) weakest species 
and repeated the procedure leaving out any fitness effects that were already accounted for 
before. For all experiments, we scaled the values from weakest (left) to strongest (right) 
performer. A line demarks the transition from neutral/positive to negative effects on the other 
species. (B) Species rank order from in vivo competition experiments in the larvae of G. 
mellonella 12 hours post-infection from a previous study (22). The latter includes all raw data, 
while Fig. S10 depicts the relative fitness values underlying this figure. The calculation of the 
species rank order was done as for the co-culture assays. Both co-culture and in vivo rank 
order calculations are based on log10(CFU/mL) values. For more information regarding all 
calculations, please refer to the methods and Table S4 in the statistical analysis file. 
 
Can within-host species interactions be predicted from in vitro experiments? 
Competitive metrics obtained from in vitro experiments are often taken as proxies to 
predict interactions in polymicrobial infections. For example, P. aeruginosa typically 
outcompetes Staphylococcus aureus in vitro (32–34), a finding used to explain the 
prevalence of P. aeruginosa in co-infections. Here, we ask whether a direct translation 
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of in vitro results to the host context is warranted. This is possible because we used 
the same pathogens here and in our co-infection study with G. mellonella insect larvae 
(22) (see Fig. S5 for methods and recapitulation of the in-host competition data).  

When focusing on GIM medium, which mimics the nutritional conditions of the 
insect environment, we find a moderate match between the rank orders observed in 
the in vivo and in vitro (Fig. 4). While K and P were among the stronger competitors in 
both environments, the weakest agreements were observed for C and B. In GIM, C 
performed well whereas it was the poorest competitor in the G. mellonella host. 
Conversely, B was the weakest competitor in GIM, yet was competitive against both 
C and K in the host. This comparison suggests that host-pathogen interactions but 
also the host environment itself (e.g. spatial structure, biotic and abiotic factors) matter, 
highlighting that in vitro assays might not be adequate predictors of in vivo dynamics. 
 
Simulating higher-order interactions 
Next, we parameterized an agent-based model with data obtained from monoculture 
growth and supernatant assays to test whether simulated 3- and 4-species community 
interactions yield the competitive rank order inferred from our pairwise co-culture 
experiments. For this, we used 1/Tmid data in GIM and implemented toxins to model 
susceptibility to secreted molecules (see methods for details). 

We simulated the 4-species community for 30,000-time steps in a high diffusion 
environment in which bacterial agents and toxins move readily (mimicking shaken 
liquid conditions), and a low diffusion environment in which bacterial agents do not 
move and toxins diffuse slowly (mimicking surface-attached growth). Our simulations 
revealed competitive rank orders for the low diffusion (B < P = K < C) and high diffusion 
(B < P < K < C) environments (Fig. 5A) that differ from the experimentally predicted 
rank order (B < P < C < K) (Fig. 4A). Notably, C and K swapped places, indicating that 
the toxic compound of K that was so potent to suppress C in experimental pairwise 
competitions showed reduced efficacy in the simulated 4-species community.  

How can this non-additive effect be explained? When looking at the toxin 
uptake rate, we observed that the slow-growing species B and P had the highest per 
capita toxin uptake rate (Fig. 5A). This suggests the presence of a toxin absorption 
effect, whereby B and P detoxify the environment for the fast-growing C. A similar case 
of such an effect has been previously described (35). In our case, the toxin burden is 
distributed across all susceptible species, yet the fast-growing C benefits the most 
because it can dilute the cellular toxin concentration below the killing threshold due to 
its fast replication. In contrast, the slow-growing species reach the toxin threshold and 
die.  

When exploring the 3-species communities (Fig. 5B-E), we found that the 
presence of a single slow-growing species (either P or B) is enough to create the toxin 
absorption effect (Fig. 5B+C). We further observed that the toxin absorption effect can 
be circumvented by higher toxicity, but only when K’s toxin was extremely potent and 
only under high diffusion conditions (Fig. S6). Importantly, toxin absorption had no 
effect in the B+K+P community, where K is the fastest-growing species (Fig. 5D). In 
this community, spatial structure had an important effect by reducing toxin uptake rates 
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and allowing species to coexist. Altogether, our simulations suggest that the toxin 
absorption effect and spatial structure attenuate toxin efficacy in multispecies 
communities. 

 
Figure 5. Bacterial community dynamics simulated with an agent-based model and 
parameterised with experimental growth and inhibition data. Panels show the (1) species 
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fractions over time, (2) mean species fraction over time, (3) per cell toxin uptake for (A) the 4-
species community and (B-E) all combinations of 3-species communities. All simulations were 
carried out under low diffusion (cell diffusion D = 0.0 μm2 s−1, toxin diffusion ∂ = 0.1 μm2 s−1, a 
structured environment) and high diffusion (cell diffusion D = 5.0 μm2 s−1, toxin diffusion ∂ = 
10.0 μm2 s−1, an unstructured environment). In (1), lines show the mean and the standard 
deviation across 20 independent simulations. Boxplots show the median values (line within 
the box) across the 20 simulations with the first and third quartiles. The whiskers cover 1.5x 
of the interquartile range or extend from the lowest to the highest value if all values fall within 
the 1.5x interquartile range. In (2), the shaded boxes depict the simulated mean species 
fraction in the absence of toxins. 
 
Experiments with higher-order communities confirm the competitive rank order 
predicted by simulations  
To validate the simulation results, we conducted co-culture experiments with 4-species 
and 3-species communities in GIM and enumerated CFUs after 24h of competition 
(Fig. 6). Our experiments recovered the order of competitiveness predicted by the 
simulations for all five higher-order communities (compare Fig. 5 to Fig. 6). B is 
weakest, followed by P and K, and C at the top. However, the magnitude of the 
experimental differences was smaller than the ones observed in the simulations. For 
example, while K is in second place behind C in both experiments and simulations, K 
is much closer to C in the experiments than in the simulations. One obvious 
explanation for this difference is that simulations run much longer than the 
experiments, magnifying the difference between the two species. Alternatively, the 
toxin absorption effect may be weaker in experiments as compared to simulations. 
Altogether, our results demonstrate the usefulness of modeling (36) and its power to 
predict bacterial community dynamics. 
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Figure 6. Boxplots show the number of cells of each species in the 4-species and all 3-species 
communities of our bacterial consortium. Different letters above boxplots indicate significant 
differences (alpha = 0.05) between bacterial species using Wilcoxon paired signed rank tests 
for multiple pairwise comparisons with p-value adjustments using the FDR method. Boxplots 
show the median (line within the box) with the first and third quartiles. The whiskers cover 1.5x 
of the interquartile range or extend from the lowest to the highest value if all values fall within 
the 1.5x interquartile range. Data are from 3 individual experiments with 3 replicates per 
condition, resulting in a total of 9 replicates per condition. 
 
 
Discussion 
Bottom-up experimental approaches, in which a small number of bacterial species are 
mixed, have become popular for deriving principles of community dynamics and 
stability (6–12). Although co-culture experiments directly reveal winners and losers, 
they are often challenging to conduct. Specifically, co-culture experiments are often 
labor-intense and require phenotypic (morphological) or genotypic (fluorescence, 
antibiotic) markers to distinguish species, with the latter being often hard to introduce 
and limited in numbers (37–39). To overcome these limitations, we asked whether 
pairwise interaction outcomes and species rank order can be inferred from 
monoculture growth and supernatant assays without the need to mix species. While 
monoculture growth assays provide information on a species’ growth performance, 
supernatant assays provide information on secreted compounds that have inhibitory 
or stimulatory effects on opponents. Using a 4-species community, we found that 
monoculture growth is the most important factor in predicting competition outcomes, 
while supernatant effects allow fine-tuning of the species’ rank order. We further 
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parameterised an agent-based model with our empirical data and conducted co-
culture experiments with 4-species and 3-species communities, to show that dynamics 
in multispecies communities match well the species rank order derived from 
monoculture and supernatant data with one important exception. The effect of 
inhibitory compounds is attenuated in multispecies communities, leading to an even 
higher predictive power of monoculture growth parameters.  

For our community, we derived a set of three simple rules to predict species 
rank orders from monoculture growth and supernatant assays. It starts with the ranking 
of the species according to their monoculture growth performance (rule 1). 
Subsequently, species that show intermediate growth yet produce inhibitory 
compounds for other species are moved up in the ranking (rule 2), while inhibitory 
effects by slow-growing species are ignored (rule 3). The last rule applies because 
inhibitory compounds of slow-growing species do not reach a sufficiently high 
concentration to be effective in co-culture. Moreover, our results suggest that 
integrative growth parameters (1/Tmid and AUC) yield more robust predictions on 
competition outcomes than maximum growth rate. While maximum growth rate or yield 
are often used as fitness parameters (40,41), our findings are in line with other studies, 
showing that single growth parameters cannot adequately capture overall fitness 
across the duration of an experiment (13,38,42–44).  

We do not claim that our rules are generally applicable to all bacterial 
communities, but we believe that our approach could be particularly useful for 
communities grown in batch culture under relatively homogenous conditions. Clearly, 
the applicability of our rules needs to be further tested using (i) media differing in their 
nutrient content, (ii) different environments including liquid and structured 
environments (16,34,45), and (iii) additional bacterial communities including both 
synthetic and natural bacterial assemblies. A key challenge of our approach is rule 2: 
how much should a species that suppresses the growth of others be moved up in the 
ranking? While this question was easy to address in our 4-species community with K 
consistently suppressing all others (in GIM), the situation will become complicated in 
larger communities with a diverse set of inhibitory interactions. In such situations, it 
might no longer be possible to precisely resolve rankings. However, rule 2 might still 
be useful to group species into categories of weak, intermediate, and strong 
competitors (10,31–33,38). 

Our approach to predicting rank orders assumes that monoculture growth and 
supernatant assay data can be combined in an additive way. Whether pairwise 
interaction effects are additive or not will likely depend on the specific community and 
its members. Indeed, while some studies support additive effects (14,43,46), others 
show that non-additive effects in complex communities lead to new emergent 
properties (47–49). While we found most effects to be additive, our simulations 
identified ‘toxin absorption’ as a non-additive effect. Specifically, K is predicted to be 
the most competitive species in our community because it produces an inhibitory 
compound suppressing all other species. However, our simulations and 4-species 
community experiments showed that K is only the second-most competitive species 
after C. The reason for this mismatch is that the slower-growing species B and P show 
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high per capita inhibitory compound uptake rates and thereby detoxified the 
environment for the fast-growing species C. This non-additive effect lowers the 
potency of inhibitory compounds in multispecies communities, and thereby affects the 
relative impact of our rules: they increase the weight of monoculture growth 
performance (rule 1) relative to supernatant effects (rule 2) in predicting competitive 
rank orders in multispecies community.  

Another finding of our work is that competitive rank orders differ across growth 
media and the host. For example, P had a low competitive rank in GIM (3rd place), 
performed well in LB (2nd place), and was the top competitor in G. mellonella larvae 
(Figure 4). Several factors could contribute to such differences. First, each species 
has its nutritional preferences, which are better met in one of the two media. This could 
for example explain the markedly increased growth of C in GIM relative to LB. Second, 
the strength of negative interactions might be increased in medium that allows for 
higher growth because it favors higher production levels of inhibitory compounds. This 
could explain why K supernatant from GIM exerted higher negative effects on the other 
species than supernatant from LB. Third, niche diversity may differ across media, 
whereby lower niche diversity is predicted to intensify metabolic competition and niche 
exclusion. Finally, features of the host environment, such as spatial structure in tissue, 
reduced oxygen availability, and innate immunity can influence bacterial interactions. 
Altogether, our findings are in line with previous studies showing that a change in 
nutritional conditions can alter species interactions from positive to negative 
relationships (6,7,50) and suggest that special care must be taken when in vitro 
interaction data are used to forecast bacterial interactions in infections. 

In conclusion, our work reveals that the combination of monoculture growth 
parameters, strong inhibitory effects from supernatant assays, and computer 
simulations can predict pairwise and multispecies interaction outcomes in a 4-species 
bacterial community. Next, it would be important to test whether our approach applies 
to more diverse bacterial communities and different environmental conditions. 
Moreover, identifying the actual compounds causing growth inhibition in the 
supernatant assays (e.g., toxins, siderophores, biosurfactants, amino acids, or 
molecules affecting environmental parameters such as pH) could further help to 
improve predictive power. 
 
 
Data availability 
All raw data sets 
(https://figshare.com/articles/dataset/RawData_Experiments_Schmitz_etal/25187555
) and simulation data 
(https://figshare.com/articles/dataset/RawData_Simulations_Schmitz_etal_/2518755
8) have been deposited in the Figshare repository. 
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