bioRxiv preprint doi: https://doi.org/10.1101/2023.07.03.547502; this version posted March 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Predicting bacterial interaction outcomes from monoculture growth
and supernatant assays
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How to derive principles of community dynamics and stability is a central question in
microbial ecology. Bottom-up experiments, in which a small number of bacterial
species are mixed, have become popular to address it. However, experimental setups
are typically limited because co-culture experiments are labor-intensive and species
are difficult to distinguish. Here, we use a 4-species bacterial community to show that
information from monoculture growth and inhibitory effects induced by secreted
compounds can be combined to predict the competitive rank order in the community.
Specifically, integrative monoculture growth parameters allow building a preliminary
competitive rank order, which is then adjusted using inhibitory effects from supernatant
assays. While our procedure worked for two different media, we observed differences
in species rank orders between media. We then parameterized computer simulations
with our empirical data to show that higher-order species interactions largely follow the
dynamics predicted from pairwise interactions with one important exception. The
impact of inhibitory compounds was reduced in higher-order communities because
their negative effects were spread across multiple target species. Altogether, we
formulated three simple rules of how monoculture growth and supernatant assay data
can be combined to establish a competitive species rank order in an experimental 4-
species community.
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Introduction

Microbial communities are diverse in composition and function (1,2). Top-down
approaches based on 16s rRNA and shot-gun sequencing are commonly used to
describe community diversity and functional capacities, respectively (3-5). However,
much less is known about the microbial interactions occurring in these communities.
This is why bottom-up approaches have become popular, whereby a set of defined
bacterial species and strains is mixed and their interactions studied under
experimental conditions (6—12). The power of simple communities is that they are
tractable and allow for experimental manipulation so that the effect of specific factors
on community properties can be examined. There is a plethora of bottom-up studies
that shed light on various ecological aspects of species interactions. Insights from such
studies include, for example, that harsh environmental conditions seem to be more
conducive to ecological facilitation (6) and for promoting biodiversity and community
stability (7). Furthermore, social interactions also appear to be determinants of
community composition and stability, be it through metabolic cross-feeding between
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species (8,10) or the secretion of competitive and cooperative secondary metabolites

(11).

Despite their simplicity, studying experimental communities also comes with several
challenges. For example, it is often unclear what the key determinants of interactions
are. This is particularly the case for communities for which no a priori knowledge of
relevant traits and species characteristics is available. Here, several factors could
determine species interactions and competitiveness. The first factor is monoculture
growth performance. In a simple environment that is nutrient-rich with low niche
diversity, a high growth rate is often taken as a proxy for competitiveness (13,14), and
it is expected that fast-growing species have a competitive advantage over slower-
growing ones. The second factor involves secreted compounds that could either
positively (e.g., amino acids) or negatively (e.g., toxic compounds) affect the growth
of other species (7,15-18). The third factor entails interactions that can only arise when
species grow together. They can include physical interference through killing systems
(e.g., type VI secretion system) as well as niche or metabolic competition whereby
species reduce or prevent competitors from accessing certain resources (19-21). A
key challenge is to assess the relative importance of these three factors and how they
combine to predict species dominance and community dynamics. Further challenges
arise when considering that species interactions might differ across environments (6,7)
and that pairwise interactions might not necessarily predict interaction dynamics in
larger communities (9) due to non-additive effects and new emerging properties.

In our study, we combine experiments and computer simulations on a 4-species
bacterial consortium to tackle some of these challenges. Our consortium consists of
four opportunistic human pathogens (Burkholderia cenocepacia [B], Cronobacter
sakazakii [C], Klebsiella michiganensis [K], Pseudomonas aeruginosa [P]), and has
been established as a model community in one of our earlier studies (22). With this
model consortium, we pursue four main aims. First, we ask whether differences in
monoculture growth performance and interactions based on stimulatory or inhibitory
molecules secreted by bacteria are good predictors of species interactions in pairwise
co-culture experiments. Second, we compare whether the observed interaction
patterns are consistent across two different nutritional environments: Lysogeny broth
(LB) and Graces’ insect medium (GIM). While LB is a standard laboratory medium,
GIM mimics the environment found in Lepidoptera larvae, a common host model
system (23-25). Third, we derive tentative rules to predict pairwise interaction
outcomes from monoculture growth and supernatant assays and establish rank orders
for competitiveness for our 4-species community. Finally, we combine experiments
with 3-species and the 4-species communities and agent-based modeling (26,27)
(parametrized with our experimental data) to examine whether higher-order
community interactions recover the competitive rank orders predicted from pairwise
co-culture experiments.
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Materials and methods

Bacterial strains

For all experiments, we used the following four bacterial species: Pseudomonas
aeruginosa PAO1 [P] (28), Burkholderia cenocepacia K56-2 [B] (29), Klebsiella
michiganensis [K], and Cronobacter sakazakii (ATCC29004) [C]. We had established
this consortium of four gram-negative bacterial species in an earlier study (22), in
which we were interested in interactions between pathogens with different virulence
levels in the larvae of the greater wax moth G. mellonella.

Monoculture growth assays
All media were purchased from Sigma Aldrich, Switzerland, unless indicated
otherwise. All experiments in this study were carried out in lysogeny broth (LB) and
Grace’s insect medium (GIM) (Gibco, GIM 1X, supplemented). GIM is a nutrient-rich
medium and consists of 19 different amino acids, 10 different vitamins (e.g., biotin,
riboflavin, folic acid), 5 inorganic salts (CaCl2, MgClz2, MgSO4, KCI, NaH2PO4-H20),
and several carbon sources (e.g., fructose, glucose, sucrose). Before experiments,
each species was taken from a 25% glycerol stock stored at -80° C and grown
overnightin 5mL LB at 37° C and 170 rpm with aeration (Infors HT, Multitron Standard
Shaker) until stationary phase. The bacterial cultures were then washed twice with
0.8% NaCl, centrifuging for 5 min at 7,500 rcf (Eppendorf, tabletop centrifuge MiniSpin
plus with rotor F-45-12-11). Subsequently, we adjusted the cultures to an optical
density at 600 nm (ODsoo) = 1. Then, each well of a 96-well cell culture plate
(Eppendorf, non-treated, flat bottom) was filled with 190 yL medium (LB or GIM) and
10 pL individually diluted cell suspensions to reach a starting number of 10° CFU/mL
(i.e., 2x10* CFU/well). Plate layouts (i.e., positions of species and replicates on plates)
were randomized between experiments. To minimize evaporation, the outer moat
space and inter-well spaces of the microplate were filled with 13 mL sterile water.
Plates were incubated at 37° C in a microplate reader (Tecan, Infinite MPlex) and
ODeoo was measured every 15 min for 36 h with 60 sec shaking before each reading.

We used the Gompertz function to fit growth curves to the obtained ODeoo
trajectories and to extract three different growth parameters: the maximum growth rate
(umax), area under the curve (AUC), and inverse of the time to mid-exponential phase
(1/Tmia). For the latter, we used the inverse of Tmiq to ensure that low and high values
stand for low and high growth, respectively. The parameter 1/Tmia considers the lag
phase A, ymax, and yield A and was calculated as:

1 1
~ A

2 % Wmax

Tmid + A

Supernatant assays

Cells were prepared as for the monoculture growth assays. Washed cell cultures were
subsequently inoculated in 10 mL medium within 50 mL Falcon tubes (inoculum size:
10° CFU/mL). We had 10 replicates (tubes) per species. Tubes were incubated at 37°
C shaken at 170 rpm with aeration (Infors HT, Multitron Standard Shaker). We
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harvested supernatants when species had reached the stationary phase, which was
after 16 hours for C and P, and after 40 h for B and K (Fig. 1). Supernatants from all
10 replicates of a species were pooled and mixed before filter sterilizing them with a
0.2 um filter (GE Healthcare Life Sciences, Whatman filter) and aliquoting and storing
them in 2 mL Eppendorf tubes at -20° C.

For the actual supernatant assays, we prepared cells and distributed them on
microplates as described for the monoculture growth assay. The cells were then
exposed to three different media: (a) 30% supernatant from another species + 70%
fresh medium (LB or GIM), (b) 30% NaCl (0.8% solution) + 70% fresh medium, and
(c) 100% fresh medium. Plates were incubated at 37° C in a microplate reader (Tecan,
Infinite MPlex) and ODeoo was measured every 15 min for 36 h with 60 sec shaking
before each reading. We fitted Gompertz functions to the growth trajectories and
extracted pmax, AUC, and 1/Tmia. We then expressed the growth in supernatant relative
to the two control treatments, (a)/(b) and (a)/(c). We define growth inhibition if (a)/(b)
<1, and growth stimulation if (a)/(c) > 1.

To obtain a comparable species ranking across assays, we calculated an
integrative supernatant score. We summed up all the relative growth values (a)/(b) that
the supernatant of one species has on the other three species. The four values (one
per species) were then centered around 0 and scaled between -1 and +1. Negative
and positive values stand for stimulatory and inhibitory supernatant effects,
respectively, and are indicative of a species’ competitiveness.

Co-culture experiments

Overnight cultures were washed and ODeoo Was adjusted as described for the
monoculture growth assays. Next, bacterial species were diluted individually to reach
similar cell numbers. To obtain 10° CFU/mL per well for pairwise co-cultures (i.e.,
5x10* CFU/mL per species), 25 uL from each of the two species’ dilutions was added
in each well of a 24-well tissue culture plate (Corning, flat bottom with low evaporation
lid) filled with 950 yL medium. For 3-species and 4-species communities, the same
total number of 10° CFU/mL was added per well, with equal amounts of each species.
Well-plates were incubated at 37° C and 170 rpm for 24 h (Infors HT, Multitron
Standard Shaker).

After competition, ODsoo was measured to calculate the appropriate dilution for
plating. Calculations were based on previously established calibration curves, relating
OD to CFU for each of the four species and averaging the expected CFU between the
two species in a mix. Cultures were diluted with 0.8% NaCl, and each replicate was
plated in duplicate on LB-agar plates (1.5% agar). We incubated all plates overnight
at 37° C and manually counted CFU on the next day. All four species could be
distinguished from each other based on their different colony morphologies on plates
(22). Since C colonies turn yellow after a day at room temperature, we left them on the
bench for an additional day. Plates containing B were incubated at 37° C for two days
in total because of its slow growth. If one species was much more frequent than the
other one, we used selective plating (if available) to ensure that we could assess the
abundance of the low-frequency species. For P, we used Pseudomonas isolation agar.
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For B, we used LB plus gentamicin (30 ug/mL) due to its inherent resistance to this
antibiotic. No selective media was available for C, meaning that C could not be counted
in co-culture with P below a given detection limit.

For pairwise co-cultures, the relative fitness values of each focal species were
calculated based on Wrightian fitness from Ross-Gillespie et al. (2007) as follows:
(End CFUspecies1 X Starting CFUspecies?)

(End CFUspeciesz X Starting CFUSpea-esl)

We log-transformed the relative fithess data to be able to better compare values across
species combinations. Relative fithess values > 0 and < 0O indicate that the focal
species wins or loses in competition with the co-cultured species, respectively. For the
3-species and 4-species communities, the above formula cannot be applied and we
thus directly compared CFUs across species after competition.

For pairwise co-cultures, we calculated an integrative score to obtain a measure
of competitiveness for each species relative to all other species. Given that each
relative fitness value can be expressed from the perspective of the winner or the loser
(resulting in reciprocal values), we followed a stepwise process to avoid double
counting of fitness values. We started with the weakest species and summed up all its
relative fitness effects in competition with the three other species. Then we moved to
the second (and third) weakest species and repeated the procedure leaving out any
fitness effects that were already accounted for before. For the final two species, we
only considered their effect on each other. With this approach, opposing fithess effects
can balance each other out. For example, a species of interest might have a positive
effect on one species but a negative effect on another species, such that it will take up
a relatively neutral position in the ranking.

Relative fitnesSgpecies1 =

Agent-based model
We performed agent-based simulations, using our previously developed platform
(26,27). Microbial simulations take place on a two-dimensional toroidal surface with
connected edges without boundaries. The surface of the torus is 10,000 um? (100 x
100 um). Bacteria are modeled as discs with an initial radius of 0.5 ym. Bacteria grow
through an increase of their radius, according to a growth function, and divide when
reaching the threshold radius of 1 ym. In our simulations, we assumed that resources
are not limited. Growth differences emerge solely based on the differences in growth
rate and interactions between the species. Interactions are modeled via secreted
molecules. Molecules can be taken up when they physically overlap with a cell and
can either be growth-stimulating or -inhibitory. Here, we only modeled inhibitory
molecules (represented by a toxin, because all major supernatant effects were
negative in GIM, see Fig. 2). Accordingly, the growth of each cell is determined by the
function

&

Ge = g X (1_(9T)K) X Gy,
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where G, denotes the increase in radius per time step, G, denotes the default radius
increase per time step (0.5/1, 200 ym), g the species-specific growth rate, and XT the
number of accumulated toxins. Toxins decrease growth and lead to cell death when
they accumulate beyond the threshold value 6;. The decrease in growth is further
controlled by the latency parameter k = 2, which leads to an exponentially increasing
(negative) effect on growth, depending on the number of accumulated toxins. If a cell
divides before the threshold 6; is reached, the accumulated toxins are shared equally
among the two daughter cells.

Simulations started with 32 cells per species, randomly placed on the
landscape. Bacteria can disperse on the surface, according to a specific cell diffusion
coefficient D. Bacteria start to grow and divide until a cell number of 500 is reached. A
chemostat mechanism is then activated to keep cell numbers constant at around 500
by randomly removing cells. The chemostat mechanism allows observing strain
dynamics over extended timespans and prevents surface overgrowth. We ran
simulations for 30,000-time steps with 20 replicates per parameter and species
combination.

To implement differences in growth rates between the four species, we used
scaled differences in 1/Tmig from monoculture growth in GIM. The specific growth rate
of each species is

g= 05+ 0-5X§Tn—?£-
where Tmidc and Tmid; are the growth parameters of the best-growing species C and
the other species, respectively. Accordingly, the species-specific growth rates were C
=1,P=0.84, K=0.81, and B = 0.68.

We allowed strains to produce toxins to capture the inhibitory effects observed
in the supernatant assays in GIM. In practice, the inhibitory effects could be caused
by other factors than toxins, such as secreted molecules that deplete a specific nutrient
(e.g. siderophores reducing iron availability) or induce a change in pH (e.g., P
supernatant slightly increased pH from 6.2 to 6.0 in GIM, Table S1). Thus, the toxin
implemented here is representative of any type of molecule that negatively affects the
growth of another species. We only considered effects affecting growth by at least
20%. This was the case for K inhibiting all other species, and B inhibiting P. To
calibrate toxin potency 6; (defined by the number of molecules required to kill a cell),
we simulated pairwise competitions between all four species across a range of values
(67: 750 to 4,500, in steps of 250). The aim was to define the minimal toxin potency
required to recover the competitive outcomes observed in the co-culture experiments.
We found this to occur with the following values: K-toxin against C, 68,=1,750; K-toxin
against B and P, 6,=2,500; B-toxin against P, 6,:=2,500 (Fig. S1). Note that low values
stand for high toxic potency because fewer toxin molecules are needed to kill a cell.
These simulations were conducted with high cell and molecule diffusion (D =5 uym?s™
and 9 = 10 um?s~" respectively) to match experimental shaken culture conditions.
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Following calibration, we modeled higher-order competitions between all 4-
species and all possible 3-species combinations. For these simulations, we
considered environments with different diffusion conditions (low: D = 0.0 um?s™, 9 =
0.1 um?s™, high: D = 5.0 ym?s™', @ = 10.0 ym?s™"). For each replicate, we extracted
species frequency at each time point, calculated the mean species frequency over
time, and recorded the per capita toxin uptake per species.

Statistical analyses

All statistical analyses were conducted with R (version 4.1.1) and RStudio (version
2021.09.0+351). We built linear mixed models with experimental date as a random
variable (i.e., experiments were repeated in independent blocks on different days), for
both the monoculture growth and supernatant assays. We fitted the growth term as
response variable and species (monoculture) or medium (supernatant) as explanatory
variable. We used the function “transformTukey” (package “rcompanion” (30)) to find
the best transformation of the response variable to meet normally distributed residuals.
To adjust p-values in multiple pairwise comparisons, we used the R function “pairs”
from the “emmeans” package (31) based on the Tukey method for monoculture growth
data, and the FDR method for supernatant data. To test whether the relative fitness in
pairwise competitions is different from the expected log(1) = 0 value (assuming that
both species perform equally well), we used one-sample two-sided Wilcoxon rank
tests, since our relative fithess data were not normally distributed. We used Wilcoxon
signed rank tests for pairwise comparisons in 3- and 4-species communities, adjusting
p-values with the FDR method. All details of the statistical analyses can be found in a
separate statistics file.

Results

Monoculture growth parameters as predictors of competitiveness

In a first experiment, we assessed the growth performance of the four pathogen
species in monoculture in our two media (LB and GIM) over 36 hours. From the
obtained growth curves, we estimated the maximum growth rate (umax), the inverse of
the time to mid-exponential phase (1/Tmid¢), and the growth integral (area under the
curve, AUC).

All species grew better in GIM than in LB, and growth trajectories differed
between the four species (Fig. 1A). When focusing on pmax, we observed that C and
P grew better than B and K, with the differences being larger in GIM than in LB (Fig.
1B). Next, we looked at 1/Tmid and found that this growth parameter returns C and B
as the best and worst grower, respectively, but downgrades the performance of P
relative to umax because of the relatively long lag phase of P. The AUC dampened the
differences between species (Fig. 1D). This is expected as the integral gives more
weight to yield, which is quite similar for all four species.

Our analysis reveals that the competitiveness of a species derived from
monoculture readouts depends on the growth parameter examined. This raises an
additional challenge, namely which growth parameter to consider. To address this
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challenge, we conducted correlation analyses (Fig. S2) and found that all three growth
parameters correlate well with each other in GIM (Pearson correlation coefficients, r =
0.81 to 0.91). However, this is not the case in LB, where correlations are poor or non-
significant (r = 0.33 to 0.56). The main reason for these mismatches are P with its high
Mmax but low 1/Tmig¢, and C with an intermediate pmax but high 1/Tmi¢ due to a short lag
phase (Fig. 1). Since we cannot yet infer which parameter predicts species
competitiveness best, we estimated all three growth parameters for both media and
show the species rank order for all of them (Fig. 4).
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Figure 1. Growth differences of the four bacterial species in two different media: LB medium
and Grace’s insect medium [GIM]. (A) Growth curves over 36 h in shaken, liquid cultures.
Shaded areas depict the standard deviation. Boxplots show the (B) maximum growth rate pmax
as ODeno increase per hour (C) the inverse of the time to mid-exponential phase [1/Tmig], and
the (D) integral [area under the curve, AUC]. All growth parameters are derived from the
growth curves in (A) using the Gompertz curve fit. Different letters above boxplots indicate
significant growth differences (alpha = 0.05) between bacterial species using linear mixed
models with experimental block as random factor. Boxplots show the median (line within the
box) with the first and third quartiles. The whiskers cover 1.5x of the interquartile range or
extend from the lowest to the highest value if all values fall within the 1.5x interquartile range.
Data are from 3 independent experiments, each featuring 3-4 replicates per condition,
resulting in a total of 9-10 replicates per condition.

Effect of secreted compounds as predictors of competitiveness

We used supernatant assays to assess whether secreted compounds can predict
competitiveness between interacting species. Supernatants contain molecules (e.g.,
toxins, siderophores, biosurfactants, amino acids) secreted by the producing species
that can negatively or positively impact the fitness of the receiving species (7,15-18).
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To test for such effects, we exposed each of our species to the supernatant (30%
supernatant + 70% fresh medium) of all other species and measured the growth
effects relative to a control condition (30% NaCl solution [0.8%] + 70% fresh medium).
In Figure 2, we present the results with the growth parameter 1/Tmid, while the results
for ymax and AUC are shown in Fig. S3 and Fig. S4, respectively.

Similar to the monoculture parameters, we found differences in the supernatant
effects between the two media. While there were 5 negative growth effects out of 12
in LB (Fig. 2A) and 6 negative effects out of 12 in GIM (Fig. 2B), 9 out of the 12
interactions changed direction from neutral/positive to negative (or vice versa)
between media. For example, the supernatant of K was highly inhibitory for B, C, and
P in GIM but not in LB. Overall, we found that supernatants from one species can have
strong inhibitory effects on the growth of another species. We also observed positive
supernatant effects. Such stimulatory effects could be caused by several different
factors, including nutrient leftovers in the supernatant, or nutrient release and the
secretion of beneficial compounds such as enzymes by the species producing the
supernatant.

To obtain an integrative score of how much our four species influence each
other’'s growth indirectly via their supernatant, we summed up all the effects one
species has on the others, separately for each of the three growth parameters (i.e.,
from Fig. 2, S3, and S4). This score yielded species rank orders that differ between
growth parameters and media (Fig. 4).
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Figure 2. Boxplots show the relative growth of each species in the conditioned medium (30%
supernatant + 70% fresh medium) of the other species both in (A) LB and (B) GIM medium,
compared to a control treatment, depicted by the black dashed line (30% NaCl solution [0.8%]
+ 70% fresh medium) measured across 36 h of growth. For this plot, we used 1/Tmiq for growth
comparisons (see Fig. S3 for absolute readouts). We repeated the same analysis for pmax (Fig.
S4, S5) and AUC (Fig. S6, S7). Relative growth was calculated by dividing the absolute 1/Tmiq,
(estimates from curve fits) in the supernatant treatments by 1/Tmiq in the control treatment.
Asterisks depict significant differences (alpha = 0.05) of a species’ growth in the particular
supernatant compared to its growth in the control medium using a linear mixed model with
experimental block as random factor. Boxplots depict the median (line within the box) with the
first and third quartiles. The whiskers cover 1.5x of the interquartile range or extend from the
lowest to the highest value if all values fall within the 1.5x interquartile range. Data are from 3
independent experiments, each featuring 3-4 replicates per condition, resulting in a total of 9-
10 replicates per condition. The underlying growth curves can be found in the supplementary
information (Fig. S8).

Competitiveness in co-culture assays
Next, we carried out co-culture experiments in all pairwise species combinations in
both media and determined the relative fitness of the competing species after 24 h
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(Fig. 3). Unlike the previous competition metrics, we found the results to be much more
consistent between LB (Fig. 3A) and GIM (Fig. 3B). The competitive outcomes only
changed in 2 out of the 6 comparisons and were pronounced in only one case, in which
C lost against P in LB but was the clear winner in GIM. An example of consistency is
B, which was outcompeted by all competitors in both media. Furthermore, we found
that species coexisted in most cases (Fig. S9, showing the absolute readouts
underlying the relative fithess measures in Fig. 3). The only exception occurred in LB,
where P seemed to displace B and C in most replicates. We again used an integrative
score to obtain a measure of competitiveness for each species (Fig. 4) (see Methods).
Important to note is that coexistence was assessed after 24 h. By this time, the winning
species can be identified, but the measured frequencies might not represent a stable
equilibrium of coexistence.
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Figure 3. Boxplots show the fithess of the species indicated in the header relative to all other
species in co-culture assays in (A) LB and (B) GIM medium. Asterisks depict significant
differences (alpha = 0.05) of a species’ fitness relative to that of a competitor against the null
hypothesis that none of the two species has an advantage (relative fitness = 0, black dashed
line) using one-sample two-sided Wilcoxon rank tests. At relative fitness = 0, two species
coexist at equal frequency. Boxplots show the median (line within the box) with the first and
third quartiles. The whiskers cover 1.5x of the interquartile range or extend from the lowest to
the highest value if all values fall within the 1.5x interquartile range. Data are from 6 individual
experiments with 2 replicates per condition, resulting in a total of 7-12 replicates per condition
(note in a few cases sample size was <12 because obtaining countable colonies for both
species in co-culture was very difficult). The corresponding figure with the absolute readouts
can be found in the supplementary information (Fig. S9).

Deriving tentative rules to predict species competitiveness based on
monoculture growth and supernatant effects

In this section, we integrate the competitiveness rankings of the four species across
all our experiments and ask which metric or combination of metrics is most predictive
of the observed outcome in co-culture experiments (Fig. 4).

Starting with GIM, we find that all monoculture growth parameters positively
correlate with one another and return the same species ranking: B < K < P < C. This
species ranking matches the outcome of the co-culture experiments well for three
species (B < P < C), but not for K. In monoculture, K shows intermediate growth
performance but is the most competitive species in co-culture experiments. To explain
this mismatch, we consider the supernatant assay results (Fig. 2) showing that K
strongly inhibits all other species (based on 1/Tmig and AUC). Thus, we can derive two
tentative rules to predict competitive outcomes in GIM. Rule 1: take the species rank
order based on monoculture growth (B < K < P < C). Rule 2: consider the supernatant
effects and adjust the rank order by moving species that strongly inhibit others further
up the ranking (B < P < C < K). Interestingly, we find that B (the weakest performer in
monoculture) strongly inhibits P in the supernatant assay (Fig. 4), but this inhibition did
not lead to a shift in the species ranking in the co-culture experiments. We can thus
derive a third tentative rule. Rule 3: inhibitory supernatant effects exerted by slow-
growing species can be ignored probably because their slow growth limits sufficient
toxic compound production.

For LB, we realize that the species rankings are different for all three
monoculture growth parameters and the corresponding supernatant effects.
Nonetheless, we applied our three tentative rules to LB and found a good fit when
using the AUC growth parameter. Rule 1: take the monoculture species rank order.
For LB (AUC), B < C <K < P. Rule 2: consider the supernatant effect and move species
that inhibit others further up the ranking (for LB (AUC): first rank: K inhibits B and C /
second rank: P inhibits C and K). In this case, the supernatant effects do not induce a
major change in the ranking, but a strong clustering into two inferior and two superior
species: B = C < P = K. Rule 3: ignore inhibitory supernatant effects of species with
poor monoculture growth. For LB (AUC), this rule applies to C, which grows poorly yet
inhibits B. Applying these rules leads to a species ranking for LB co-culture
competitions that matches our experimental observations. Based on the LB data, we
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may further derive that more integrative growth measures, such as 1/Tmiq and AUC
might be more informative for competitiveness prediction than growth parameters
capturing only a single feature of growth dynamics (Umax)-
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Figure 4. (A) Species rank orders of competitive strength inferred from monoculture growth,
the ability of a species to affect the growth of competitors in conditioned medium (supernatant),
and co-culture experiments. All in vitro experiments were conducted in two different media:
LB and GIM. For monoculture growth and supernatant assays, rank orders are shown for
maximum growth rate (umax), the inverse of the time to mid-exponential phase (1/Tmiq) and the
growth integral (area under the curve, AUC). For the supernatant assays, we summed up all
growth effects a species has on the other species and scaled them across species. To scale
relative fithess values in co-culture assays, we implemented a stepwise process to avoid
double-counting of the reciprocal fithess value. We started with the weakest species and
summed up all its relative fithess values. Then we moved to the second (third) weakest species
and repeated the procedure leaving out any fitness effects that were already accounted for
before. For all experiments, we scaled the values from weakest (left) to strongest (right)
performer. A line demarks the transition from neutral/positive to negative effects on the other
species. (B) Species rank order from in vivo competition experiments in the larvae of G.
mellonella 12 hours post-infection from a previous study (22). The latter includes all raw data,
while Fig. S10 depicts the relative fitness values underlying this figure. The calculation of the
species rank order was done as for the co-culture assays. Both co-culture and in vivo rank
order calculations are based on log10(CFU/mL) values. For more information regarding all
calculations, please refer to the methods and Table S4 in the statistical analysis file.

Can within-host species interactions be predicted from in vitro experiments?

Competitive metrics obtained from in vitro experiments are often taken as proxies to
predict interactions in polymicrobial infections. For example, P. aeruginosa typically
outcompetes Staphylococcus aureus in vitro (32-34), a finding used to explain the
prevalence of P. aeruginosa in co-infections. Here, we ask whether a direct translation
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of in vitro results to the host context is warranted. This is possible because we used
the same pathogens here and in our co-infection study with G. mellonella insect larvae
(22) (see Fig. S5 for methods and recapitulation of the in-host competition data).
When focusing on GIM medium, which mimics the nutritional conditions of the
insect environment, we find a moderate match between the rank orders observed in
the in vivo and in vitro (Fig. 4). While K and P were among the stronger competitors in
both environments, the weakest agreements were observed for C and B. In GIM, C
performed well whereas it was the poorest competitor in the G. mellonella host.
Conversely, B was the weakest competitor in GIM, yet was competitive against both
C and K in the host. This comparison suggests that host-pathogen interactions but
also the host environment itself (e.g. spatial structure, biotic and abiotic factors) matter,
highlighting that in vitro assays might not be adequate predictors of in vivo dynamics.

Simulating higher-order interactions

Next, we parameterized an agent-based model with data obtained from monoculture
growth and supernatant assays to test whether simulated 3- and 4-species community
interactions yield the competitive rank order inferred from our pairwise co-culture
experiments. For this, we used 1/Tmig data in GIM and implemented toxins to model
susceptibility to secreted molecules (see methods for details).

We simulated the 4-species community for 30,000-time steps in a high diffusion
environment in which bacterial agents and toxins move readily (mimicking shaken
liquid conditions), and a low diffusion environment in which bacterial agents do not
move and toxins diffuse slowly (mimicking surface-attached growth). Our simulations
revealed competitive rank orders for the low diffusion (B < P = K < C) and high diffusion
(B < P <K < C) environments (Fig. 5A) that differ from the experimentally predicted
rank order (B < P < C <K) (Fig. 4A). Notably, C and K swapped places, indicating that
the toxic compound of K that was so potent to suppress C in experimental pairwise
competitions showed reduced efficacy in the simulated 4-species community.

How can this non-additive effect be explained? When looking at the toxin
uptake rate, we observed that the slow-growing species B and P had the highest per
capita toxin uptake rate (Fig. 5A). This suggests the presence of a toxin absorption
effect, whereby B and P detoxify the environment for the fast-growing C. A similar case
of such an effect has been previously described (35). In our case, the toxin burden is
distributed across all susceptible species, yet the fast-growing C benefits the most
because it can dilute the cellular toxin concentration below the killing threshold due to
its fast replication. In contrast, the slow-growing species reach the toxin threshold and
die.

When exploring the 3-species communities (Fig. 5B-E), we found that the
presence of a single slow-growing species (either P or B) is enough to create the toxin
absorption effect (Fig. 5B+C). We further observed that the toxin absorption effect can
be circumvented by higher toxicity, but only when K’s toxin was extremely potent and
only under high diffusion conditions (Fig. S6). Importantly, toxin absorption had no
effect in the B+K+P community, where K is the fastest-growing species (Fig. 5D). In
this community, spatial structure had an important effect by reducing toxin uptake rates
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and allowing species to coexist. Altogether, our simulations suggest that the toxin
absorption effect and spatial structure attenuate toxin efficacy in multispecies
communities.
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Figure 5. Bacterial community dynamics simulated with an agent-based model and
parameterised with experimental growth and inhibition data. Panels show the (1) species
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fractions over time, (2) mean species fraction over time, (3) per cell toxin uptake for (A) the 4-
species community and (B-E) all combinations of 3-species communities. All simulations were
carried out under low diffusion (cell diffusion D = 0.0 um? s™", toxin diffusion = 0.1 um?s™, a
structured environment) and high diffusion (cell diffusion D = 5.0 um? s™, toxin diffusion 8 =
10.0 ym? s™', an unstructured environment). In (1), lines show the mean and the standard
deviation across 20 independent simulations. Boxplots show the median values (line within
the box) across the 20 simulations with the first and third quartiles. The whiskers cover 1.5x
of the interquartile range or extend from the lowest to the highest value if all values fall within
the 1.5x interquartile range. In (2), the shaded boxes depict the simulated mean species
fraction in the absence of toxins.

Experiments with higher-order communities confirm the competitive rank order
predicted by simulations

To validate the simulation results, we conducted co-culture experiments with 4-species
and 3-species communities in GIM and enumerated CFUs after 24h of competition
(Fig. 6). Our experiments recovered the order of competitiveness predicted by the
simulations for all five higher-order communities (compare Fig. 5 to Fig. 6). B is
weakest, followed by P and K, and C at the top. However, the magnitude of the
experimental differences was smaller than the ones observed in the simulations. For
example, while K is in second place behind C in both experiments and simulations, K
is much closer to C in the experiments than in the simulations. One obvious
explanation for this difference is that simulations run much longer than the
experiments, magnifying the difference between the two species. Alternatively, the
toxin absorption effect may be weaker in experiments as compared to simulations.
Altogether, our results demonstrate the usefulness of modeling (36) and its power to
predict bacterial community dynamics.
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Figure 6. Boxplots show the number of cells of each species in the 4-species and all 3-species
communities of our bacterial consortium. Different letters above boxplots indicate significant
differences (alpha = 0.05) between bacterial species using Wilcoxon paired signed rank tests
for multiple pairwise comparisons with p-value adjustments using the FDR method. Boxplots
show the median (line within the box) with the first and third quartiles. The whiskers cover 1.5x
of the interquartile range or extend from the lowest to the highest value if all values fall within
the 1.5x interquartile range. Data are from 3 individual experiments with 3 replicates per
condition, resulting in a total of 9 replicates per condition.

Discussion

Bottom-up experimental approaches, in which a small number of bacterial species are
mixed, have become popular for deriving principles of community dynamics and
stability (6—12). Although co-culture experiments directly reveal winners and losers,
they are often challenging to conduct. Specifically, co-culture experiments are often
labor-intense and require phenotypic (morphological) or genotypic (fluorescence,
antibiotic) markers to distinguish species, with the latter being often hard to introduce
and limited in numbers (37-39). To overcome these limitations, we asked whether
pairwise interaction outcomes and species rank order can be inferred from
monoculture growth and supernatant assays without the need to mix species. While
monoculture growth assays provide information on a species’ growth performance,
supernatant assays provide information on secreted compounds that have inhibitory
or stimulatory effects on opponents. Using a 4-species community, we found that
monoculture growth is the most important factor in predicting competition outcomes,
while supernatant effects allow fine-tuning of the species’ rank order. We further
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parameterised an agent-based model with our empirical data and conducted co-
culture experiments with 4-species and 3-species communities, to show that dynamics
in multispecies communities match well the species rank order derived from
monoculture and supernatant data with one important exception. The effect of
inhibitory compounds is attenuated in multispecies communities, leading to an even
higher predictive power of monoculture growth parameters.

For our community, we derived a set of three simple rules to predict species
rank orders from monoculture growth and supernatant assays. It starts with the ranking
of the species according to their monoculture growth performance (rule 1).
Subsequently, species that show intermediate growth yet produce inhibitory
compounds for other species are moved up in the ranking (rule 2), while inhibitory
effects by slow-growing species are ignored (rule 3). The last rule applies because
inhibitory compounds of slow-growing species do not reach a sufficiently high
concentration to be effective in co-culture. Moreover, our results suggest that
integrative growth parameters (1/Tmid and AUC) yield more robust predictions on
competition outcomes than maximum growth rate. While maximum growth rate or yield
are often used as fithess parameters (40,41), our findings are in line with other studies,
showing that single growth parameters cannot adequately capture overall fitness
across the duration of an experiment (13,38,42—-44).

We do not claim that our rules are generally applicable to all bacterial
communities, but we believe that our approach could be particularly useful for
communities grown in batch culture under relatively homogenous conditions. Clearly,
the applicability of our rules needs to be further tested using (i) media differing in their
nutrient content, (ii) different environments including liquid and structured
environments (16,34,45), and (iii) additional bacterial communities including both
synthetic and natural bacterial assemblies. A key challenge of our approach is rule 2:
how much should a species that suppresses the growth of others be moved up in the
ranking? While this question was easy to address in our 4-species community with K
consistently suppressing all others (in GIM), the situation will become complicated in
larger communities with a diverse set of inhibitory interactions. In such situations, it
might no longer be possible to precisely resolve rankings. However, rule 2 might still
be useful to group species into categories of weak, intermediate, and strong
competitors (10,31-33,38).

Our approach to predicting rank orders assumes that monoculture growth and
supernatant assay data can be combined in an additive way. Whether pairwise
interaction effects are additive or not will likely depend on the specific community and
its members. Indeed, while some studies support additive effects (14,43,46), others
show that non-additive effects in complex communities lead to new emergent
properties (47—-49). While we found most effects to be additive, our simulations
identified ‘toxin absorption’ as a non-additive effect. Specifically, K is predicted to be
the most competitive species in our community because it produces an inhibitory
compound suppressing all other species. However, our simulations and 4-species
community experiments showed that K is only the second-most competitive species
after C. The reason for this mismatch is that the slower-growing species B and P show
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high per capita inhibitory compound uptake rates and thereby detoxified the
environment for the fast-growing species C. This non-additive effect lowers the
potency of inhibitory compounds in multispecies communities, and thereby affects the
relative impact of our rules: they increase the weight of monoculture growth
performance (rule 1) relative to supernatant effects (rule 2) in predicting competitive
rank orders in multispecies community.

Another finding of our work is that competitive rank orders differ across growth
media and the host. For example, P had a low competitive rank in GIM (3rd place),
performed well in LB (2nd place), and was the top competitor in G. mellonella larvae
(Figure 4). Several factors could contribute to such differences. First, each species
has its nutritional preferences, which are better met in one of the two media. This could
for example explain the markedly increased growth of C in GIM relative to LB. Second,
the strength of negative interactions might be increased in medium that allows for
higher growth because it favors higher production levels of inhibitory compounds. This
could explain why K supernatant from GIM exerted higher negative effects on the other
species than supernatant from LB. Third, niche diversity may differ across media,
whereby lower niche diversity is predicted to intensify metabolic competition and niche
exclusion. Finally, features of the host environment, such as spatial structure in tissue,
reduced oxygen availability, and innate immunity can influence bacterial interactions.
Altogether, our findings are in line with previous studies showing that a change in
nutritional conditions can alter species interactions from positive to negative
relationships (6,7,50) and suggest that special care must be taken when in vitro
interaction data are used to forecast bacterial interactions in infections.

In conclusion, our work reveals that the combination of monoculture growth
parameters, strong inhibitory effects from supernatant assays, and computer
simulations can predict pairwise and multispecies interaction outcomes in a 4-species
bacterial community. Next, it would be important to test whether our approach applies
to more diverse bacterial communities and different environmental conditions.
Moreover, identifying the actual compounds causing growth inhibition in the
supernatant assays (e.g., toxins, siderophores, biosurfactants, amino acids, or
molecules affecting environmental parameters such as pH) could further help to
improve predictive power.

Data availability

All raw data sets
(https://ffigshare.com/articles/dataset/RawData_Experiments_Schmitz_etal/25187555
) and simulation data
(https://ffigshare.com/articles/dataset/RawData_Simulations_Schmitz_etal /2518755
8) have been deposited in the Figshare repository.
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Supplementary information is available online.
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