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ABSTRACT 

Current research on metabolic disorders such as type 2 diabetes relies on animal models because 

multi-organ diseases cannot be well studied with the standard in vitro assays. Here, we connect 

models of key metabolism organs, pancreas and liver, on a microfluidic chip to enable diabetes 

research in a human-based preclinical system. Aided by mechanistic mathematical modelling, we 

developed a two-organ microphysiological system (MPS) that replicates clinically-relevant 
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phenotypes of diabetic dysregulation both in the liver and pancreas compartments. Exposure to 

hyperglycemia and high cortisone created a diseased pancreas-liver MPS which displayed beta-

cell dysfunction, steatosis, elevated ketone-body secretion, increased glycogen storage, and 

upregulated gluconeogenic machinery. In turn, normoglycemia and physiological cortisone 

concentration maintained glucose tolerance and stable liver and beta-cell functions. This method 

was evaluated for repeatability in two laboratories and was effective in multiple pancreatic islet 

donors. The model also provides a platform to identify new therapeutic targets as demonstrated 

with a liver-secreted IL-1R2 protein that induced islet proliferation. 

 

 

INTRODUCTION 

The growing epidemic of type 2 diabetes (T2D) is one of the major medical challenges today. T2D 

is characterized by hyperglycemia which is caused by dysfunctional communication between 

several glucose-regulating organs. Understanding the mechanisms of glucose dysregulation is 

essential for discovering and evaluating effective treatments to prevent or to cure T2D. In healthy 

individuals, pancreatic beta cells respond to increased blood glucose concentration by secreting 

insulin. Within minutes, insulin induces the uptake and storage of glucose in the liver and other 

target organs to restore the normoglycemic glucose concentration in blood1 (Fig. 1A). Especially, 

the liver has a central role in glucose homeostasis because it stores glucose in form of glycogen or 

lipids (de novo lipogenesis) during hyperglycemia and produces glucose during hypoglycemia by 

gluconeogenesis to normalize the glucose concentration2. Glucose dysregulation occurs when the 

target organs become increasingly resistant to insulin and fail to control the blood glucose 

concentration properly (Fig. 1B). Insulin resistance, in turn, evokes increased insulin secretion to 

compensate for the impaired insulin sensitivity (beta-cell adaptation) and may ultimately result in 

pancreatic beta-cell failure and overt T2D3 (Fig. 1C). As T2D is a multi-organ disease, preclinical 

studies of disease progression mechanisms are currently only possible in animal models. However, 

animal models used in diabetes research are genetically and physiologically different from humans 

leading to inaccurate translation4. Animal models are, for example, not suitable for studying 

human-specific new therapeutic modalities5 because such drugs directly inhibit disease-causing 

genes and can have low cross-reaction to the corresponding genes in animals6. 

The recent advancements in microphysiological systems (MPS) or organ-on-chip models have 

enabled human in vitro studies of physiological organ crosstalk, disease development, and 

pharmacological effects7,8. Since the pancreas and the liver are central organs in blood glucose 

regulation, we and others have shown that functional coupling of pancreatic and liver organ models 

on chip can recapitulate human-relevant pancreas-liver axis9-11. In these two-organ models, human 

islet microtissues (InSphero)9,11 (Fig. 1D) or human induced pluripotent stem cell (hiPSC)-derived 

islet organoids10 secrete insulin into the circulating co-culture medium. Secreted insulin was shown 

to stimulate glucose utilization in the liver model, composed of HepaRG hepatocytes and human 

hepatic stellate cells (HHSteC)9,11 or hiPSC-derived liver organoids10. Simultaneously, as the 

glucose concentration in the co-culture medium fell from the initial hyperglycemic level to the 

normoglycemic range, insulin secretion subsided demonstrating a physiological feedback loop 

between the liver and the pancreas compartments. We have further shown that the capacity of 

HepaRG/HHSteC liver spheroids to utilize glucose from hyperglycemic co-culture medium 

decreased over time indicating the development of glucose dysregulation9,11 (exemplified in Fig. 
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1E). This suggests that the pancreas-liver MPS could be used as a model to study the development 

of insulin resistance in vitro.  

Here, we adapted this approach to develop a method for investigating diabetic glucose 

dysregulation on chip. We asked if our pancreas-liver MPS can represent an insulin resistance 

phenotype in the liver compartment and beta-cell adaptation/failure in the pancreas compartment. 

Due to the complex and dynamic nature of organ crosstalk, we combined the in vitro model with 

in silico modelling for hypothesis testing, data analysis, and informed decision-making. First, we 

resolved the elements responsible for the induction of glucose dysregulation. We investigated two 

medium supplements, glucose and glucocorticoid hydrocortisone (HCT), for their suspected 

influence on insulin sensitivity and beta-cell function. For this evaluation, we applied our recently 

developed mechanistic mathematical model11 to support the experimental design and to predict 

glucose and insulin responses in the pancreas-liver chip co-culture. By comparing computational 

predictions and experimental results, we identified HCT as a key factor inducing insulin resistance 

and beta-cell failure in the pancreas-liver MPS. Next, we demonstrated that our diseased two-organ 

model reflects several pathological alterations seen in patients suffering from glucocorticoid-

induced diabetes. As we had observed signs of beta-cell adaptation in co-cultured islets, we 

hypothesized that these might be associated with factors secreted by the HepaRG/HHSteC liver 

spheroids that can induce beta-cell proliferation. Using combined transcriptome and proteome 

analysis, hit validation, and carrying out single-islet cultures, we showed that a liver spheroid-

derived protein, IL-1R2, modulates islet proliferation. To test the repeatability, robustness, and 

transferability of the pancreas-liver MPS, and the inter-donor variability, we performed the MPS 

studies in two different laboratories using several different islet donors.  

 
 

RESULTS  

In silico supported experimental design  

Previously, we suspected that the main driver for the glucose dysregulation observed in our 

pancreas-liver MPS9,11 is the high glucose concentration (11 mM) of the co-culture medium 

because hyperglycemia is a known inducer of insulin resistance both in vitro12 and in vivo13. 

Therefore, we asked whether adapting the glycemic level to a normal blood glucose concentration 

(5.5 mM) could improve insulin sensitivity and, hence, maintain glucose utilization in the pancreas-

liver model. However, when comparing normoglycemic and hyperglycemic conditions11 (Fig. 1E), 

we saw comparable glucose utilization during an in vitro adjusted glucose tolerance test (GTT)9 

indicating that normoglycemia alone might not improve insulin resistance and glucose regulation. 

However, insulin concentrations during the GTT were lower in normoglycemia compared to 

hyperglycemia. Therefore, higher insulin resistance in the hyperglycemic condition might have 

been masked by a higher insulin secretion. This compensatory beta-cell adaptation might have led 

to comparable glucose utilization by the liver in the hyperglycemic and normoglycemic conditions. 

Based on these observations, we formed two hypotheses that could explain the development of 

insulin resistance in the pancreas-liver co-culture. The first hypothesis (H1; Fig. 2A, left graph) 

assumes that insulin resistance is caused by hyperglycemia alone, while the second hypothesis (H2; 

Fig 2A, right graph) assumes that insulin resistance is caused by a combination of hyperglycemia 

and an additional diabetogenic factor. 
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To study these hypotheses, we applied a computational hypothesis-testing approach (Fig. 2B; see 

Methods for details) using our recently described mathematical model of glucose and insulin 

interplay in the pancreas-liver co-culture11 (Fig. S1A). We designed a 15-day study involving 

sequential experimental and modelling iterations that would allow us to differentiate between the 

two hypotheses by spiking a defined amount of insulin to the co-culture medium on day 13 (Fig. 

2C). The insulin dose is thereby selected based on the predictions of the mathematical model and 

would result in different glucose tolerance curves for hypothesis 1 and 2 (H1 and H2). To select 

the insulin dose, we first constructed mathematical models for both H1 and H2 (Fig. S1B). Next, 

we exposed the pancreas-liver co-cultures to either hyperglycemic or normoglycemic conditions 

for 13 days (Fig. 2C). Then, we calibrated the mathematical models for donor-dependent variations 

in the insulin secretion by feeding the models with recorded glucose and insulin concentrations at 

the beginning (GTT day 1-3) and in the middle (GTT day 7-9) of the co-culture study. Both H1 

and H2 provided acceptable agreement with the experimental data (Fig. 2D and E, left graphs) 

according to a statistical c2 test (see Methods for details). Next, we used the calibrated mathematical 

models to select an insulin dose that, when spiked to the co-culture medium, would yield different 

predictions for glucose metabolism for hypotheses H1 and H2 (Fig. S2). When performing the 

GTT with the suggested insulin dose (24 nM), we saw similar utilization of an 11 mM glucose dose 

in both hyperglycemic and normoglycemic conditions (Fig. 2D and E, right graphs). Comparing 

the experimental data with the model predictions, we did not find a statistically acceptable 

agreement for H1 (Fig. 2D, right graphs) and therefore rejected the hypothesis that insulin 

resistance was induced by hyperglycemia alone. In contrast, H2 agreed with the experimental data 

(Fig. 2E, right graphs) according to c2 statistics. Therefore, we further investigated the hypothesis 

that insulin resistance was induced by a combination of hyperglycemia and an additional 

diabetogenic factor.  

 

Hydrocortisone and hyperglycemia drive insulin resistance on chip 

As the computational hypothesis testing approach suggested that an additional diabetogenic factor 

is involved in the development of insulin resistance in the pancreas-liver co-culture, we suspected 

that an unphysiological HCT concentration may play a role. The standard HepaRG culture medium 

is supplemented with a high concentration of HCT14, a glucocorticoid that has an essential role in 

the differentiation and function of the liver15. However, glucocorticoids are known inducers of 

whole-body insulin resistance16 leading to a condition called glucocorticoid–induced or ‘steroid’ 

diabetes. In the liver, glucocorticoids have been reported to increase glucose production via 

gluconeogenesis17 and to promote hepatic lipid accumulation (steatosis)18 which is suspected to 

induce insulin resistance19. The HCT concentration in our original co-culture medium (50 µM)9 

was several orders of magnitude higher than the free human plasma cortisol concentration (about 

5.5-39 nM)20. Therefore, we hypothesized that the used HCT concentration in the co-culture 

medium might induce a diabetic phenotype in our pancreas-liver co-culture similar to that seen in 

patients suffering from steroid diabetes. Conversely, this means that reducing the HCT 

concentration to its physiological level might sustain insulin sensitivity by preventing the induction 

of gluconeogenesis and steatosis in the liver spheroids.  

Glucocorticoids do not only affect the liver but have also been shown to impair the insulin secretion 

of beta cells in vitro16,21 and in vivo in patients susceptible to beta-cell dysfunction16,21,22. Therefore, 

we first studied whether HCT has a direct negative effect on glucose-stimulated insulin secretion 

(GSIS) of the islets in our normoglycemic co-culture medium. We saw an inhibitory effect on 
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insulin secretion already at 50 nM HCT (Fig. 3A) while a concentration of 5 nM HCT (near the 

physiological level) showed no difference to the untreated control. Next, we investigated whether 

a lower, physiological concentration of HCT in the co-culture medium would, first, maintain liver 

functions and improve insulin secretion in the pancreas-liver co-culture and, second, improve 

insulin sensitivity in the liver compartment, and the overall glucose regulation in the system. To 

study all variables, we maintained pancreas-liver co-cultures for two weeks in four different 

medium conditions using either high HCT (50 µM) or low HCT (10 nM) concentrations and either 

hyperglycemic or normoglycemic glucose concentrations (Fig. 3B). 

First, we analysed the HepaRG/HHSteC liver spheroids’ functionality by following albumin 

secretion over time and measured mRNA expression of key markers of liver health. Here, we 

observed a stable albumin secretion at low HCT conditions while a high HCT concentration 

increased albumin secretion over time (Fig. 3C). This increase might be an initial sign of 

developing insulin resistance as patients with elevated serum albumin concentrations have an 

increased risk of developing T2D23. The expression levels of HNF4A, ALB, AHSG, and MRP2 

were not relevantly affected by lower HCT concentrations (Fig. 3D) while the expression of 

CYP3A4 mRNA, a major drug-metabolism enzyme, CPS1 mRNA, an enzyme participating in urea 

production, and ABCB11 encoding BSEP, the major bile-acid transporter, were reduced at the low 

HCT conditions. This was not unexpected as glucocorticoids are known inducers of cytochrome 

P450 enzymes 24, the urea cycle (e.g., CPS)25, and hepatic bile acid transport26. Furthermore, the 

expression of ACTA2 encoding alpha-smooth muscle actin was increased, suggesting the 

proliferation of HHSteCs when hydrocortisone concentration is reduced. This was also expected, 

as glucocorticoids are known for their anti-fibrotic effects27. In general, albumin secretion and the 

expression of liver-specific genes were preserved at the low HCT concentration, but some 

metabolic functions might be reduced compared to co-cultures maintained at high HCT 

concentrations.  

Second, we studied the effect of different HCT and glucose concentrations on islets by analysing 

the GSIS after a dynamic co-culture or a static mono-culture. As demonstrated in three independent 

studies with individual islet donors, media with high HCT concentration resulted in a significant 

decrease in glucose-stimulated insulin secretion as compared to low HCT concentration in both 

hyper- and normoglycemia (Fig. 3E). Basal insulin secretion and stimulation index are reported in 

Supplementary Fig. S3. Interestingly, the hyperglycemic low HCT condition had a superior 

glucose-stimulated insulin secretion compared to the normoglycemic low HCT condition in all 

three co-culture studies but not in the corresponding static mono-culture studies. In addition, 

hyperglycemia increased insulin secretion in co-cultures exposed to high HCT concentration in 

studies 2 and 3, while this increase was not seen in the static mono-cultures. This effect is similar 

to the enhanced glucose-stimulated insulin secretion observed in healthy and prediabetic 

individuals as a response to a continuously rising blood glucose concentration16,21,22. Thus, our co-

culture model might reflect this typical beta-cell adaptation mechanism. When comparing the three 

studies, we also found high variability in the donors’ ability to increase beta-cell function and, 

hence, adapt to developing insulin resistance. Indeed, islets from different individuals are known 

to have varying abilities for beta-cell adaptation28 as well as varying susceptibility for beta-cell 

failure through diabetogenic factors such as glucocorticoids21. In summary, the reduction of HCT 

concentration to a physiological level improved the glucose-stimulated insulin secretion showing 

that the effect of a high HCT concentration is in line with the beta-cell failure observed in patients 

suffering from steroid diabetes22. 
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To further evaluate whether a lower HCT concentration or normoglycemic glucose concentration, 

or these together, would lead to improved glucose regulation, beta-cell function, and insulin 

sensitivity during the co-culture, we performed a GTT in the pancreas-liver co-culture on day 1-3 

(only hyperglycemic conditions) and on day 13-15 (all four conditions). To determine if the 

measured glucose and insulin responses could be explained by our hypothesis, we applied the 

following approach. First, we calibrated the computational model corresponding to hypothesis H2 

using the experimental measurements from co-cultures exposed to high HCT (Fig. 4A). Then, we 

used the calibrated model to predict the expected insulin and glucose responses assuming that the 

lower HCT concentration would not affect insulin sensitivity, and the insulin secretion capacity 

would be maintained (Fig. 4B). By comparing these predictions to our experimental data, we found 

that the computational model can explain the measured responses indicating that low HCT 

concentration can indeed maintain the insulin sensitivity and beta-cell function in the pancreas-

liver co-culture. This resulted in a maintained glucose tolerance as seen by stable glucose area 

under the curves (AUCs) over the culture time while these were increased at high HCT 

concentration (Fig. 4C). Confirming these findings, we saw similar responses in a repeated co-

culture study with a difference that the glucose tolerance was only maintained in the low HCT-

normoglycemic condition (Fig. S4). 

Altogether, we show that a ‘healthy’ pancreas-liver co-culture with stable liver function, beta-cell 

function, and glucose tolerance is achieved in a condition with low HCT concentration and 

normoglycemic glucose level. In contrast, a ‘diseased’ co-culture for representing impaired glucose 

tolerance accompanied by beta-cell dysfunction can be generated by using a high HCT-

hyperglycemic medium. Therefore, we next focused on these two co-culture conditions as these 

are reflecting the healthy and diseased plasma concentrations of hydrocortisone and glucose 

observed in vivo. Data on the two intermediary conditions can be found in the supplementary 

material (Figs. S5-S8). 

 

Hepatic phenotype reflects glucocorticoid-induced diabetes 

In patients with glucocorticoid-induced diabetes, hepatic insulin resistance is one factor 

contributing to dysbalanced glucose regulation and hyperglycemia22. Glucocorticoids increase 

endogenous glucose production by inducing the transcription of genes encoding gluconeogenic 

enzymes (e.g. glucose-6-phosphatase)18,29. Moreover, glucocorticoids induce glycogen synthesis30 

which increases the liver’s capacity to produce glucose. Furthermore, chronic elevation of 

glucocorticoid concentration has been linked to the development of a steatotic ‘fatty’ liver by 

increasing the gene transcription of several enzymes involved in de novo lipogenesis (including the 

fatty acid synthase)18. Excess fatty acids are partly converted to ketone bodies leading to elevated 

ketone levels in plasma18,31.  

To analyse how our liver model reflects the glucocorticoid-induced diabetic phenotype, we first 

looked at gene expression profiles of enzymes involved in glucose metabolism (Fig. 5A), 

ketogenesis (Fig. 5B), and lipid metabolism (Fig. 5C) in the co-cultured HepaRG/HHSteC 

spheroids. The diseased condition induced gene expression of glycogen synthase (GYS2) involved 

in glycogen synthesis, glucose-6-phosphatase (G6PC) involved in gluconeogenesis, HMG-CoA 

lyase (HMGCL) involved in ketogenesis, and fatty acid synthase (FASN) involved in de novo 

lipogenesis. Next, we confirmed these findings by performing separate analyses to evaluate 

glycogen storage, ketone body production, and lipid metabolism in the co-cultured 

HepaRG/HHSteC liver spheroids. Liver spheroids in the diseased co-cultures exhibited higher 
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amounts of glycogen stores as shown by periodic acid-Schiff (PAS) staining (Fig. 5D), secreted 

2.6-fold more 3-hydroxybutyrate (Fig. 5E), a diagnostic measure of diabetic ketoacidosis32, and 

accumulated more intracellular lipids as visualized by Nile Red staining (Fig. 5F) when comparing 

to spheroids in the healthy condition. These data indicate that the diseased liver model reflects 

several pathological alterations seen in patients suffering from steroid diabetes suggesting that the 

co-cultured HepaRG/HHSteC liver spheroids develop glucocorticoid-induced insulin resistance.  

 

Evaluation of liver-derived effects on islet functions  

Individuals with insulin resistance do not necessarily develop glucose dysregulation and diabetes 

as beta-cells can compensate for the increased insulin demand by either increasing in number 

(proliferation or transdifferentiation) or enhancing their secretory output, or both33. Previously, 

several studies have demonstrated that organs, including the liver, secrete proteins into the 

bloodstream which stimulate insulin secretion and proliferation of islets34. To evaluate whether the 

observed improvement in insulin secretion in the co-culture as compared to the static mono-culture 

(Fig. 3E) could be explained by an increased islet cell number, we developed a robust cell 

proliferation assay using 5-ethynyl-2’-deoxyuridine (EdU) incorporation, automated high-

throughput confocal microscope imaging, and automated image analysis (Fig. S9). When the islets 

were cultured in the disease condition, proliferation did not differ between the chip co-culture and 

static mono-culture (Fig. 6A) suggesting that other beta-cell adaptation mechanisms than increased 

cell mass contribute to the improved insulin secretion capacity seen in co-cultures (Fig. 3E). 

Instead, in the healthy condition proliferation was significantly increased in co-cultured islets as 

compared to the mono-cultured islets.  

Therefore, we performed exploratory transcriptome and proteome analyses evaluating the 

influences of hyperglycemia and normoglycemia on liver-secreted proteins in the chip co-cultures. 

When combining RNA sequence analysis of co-cultured HepaRG/HHSteC liver spheroids and 

proteomics analysis of supernatants at the end of the chip co-culture, IL-1R2 was the most 

upregulated protein in the hyperglycemic condition (Fig. 6B). IL-1R2 is a decoy receptor for IL-

1beta which is an inflammatory cytokine associated with diabetes and especially beta-cell 

dysfunction35, thus a target for diabetes therapies. In in vitro studies, animal models, and clinical 

trials, inhibition of interleukin-1 receptor (IL-1r) has been shown to enhance beta-cell survival and 

function36-39. Therefore, we hypothesized that IL-1R2 could have a similar effect on islets by 

reducing the detrimental free IL-1beta concentration. To test this, we first quantified secreted IL-

1R2 in the chip co-cultures over time and noticed a significant upregulation in IL-1R2 secretion in 

the disease condition (Fig. 6C). To confirm that IL-1R2 is solely produced by the liver 

compartment, we analysed IL-1R2 secretion in static mono-cultured islets and saw no secretion 

(Fig. S10A). Next, we treated islets in static mono-culture with 30 ng/mL or 0.3 ng/mL of IL-1R2 

mimicking the measured levels in the diseased and healthy condition, respectively. Compared to 

untreated control, we observed a 4.9-fold increase in proliferation measured as a proportion of 

EdU-positive cells in islets treated with 0.3 ng/mL of IL-1R2 (Fig. 6D). In contrast, 30 ng/mL of 

IL-1R2 did not affect proliferation. These results suggest that liver-derived IL-1R2 may be one 

factor impacting islet proliferation in the healthy pancreas-liver co-culture (Fig. 6A). Interestingly, 

it has been reported that low, but not high, IL-1beta concentration has beneficial effects on islet 

functionality40. Therefore, we hypothesize that the low IL-1R2 concentration in the healthy 

condition might have reduced the IL-1beta concentration to a beneficial range while the high IL-

1R2 concentrations resulted in ineffectively low IL-1beta concentrations. In line with an earlier 
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observation that proliferating beta cells have an impaired insulin response41, we observed reduced 

glucose-stimulated insulin secretion at low IL-1R2 concentration (Fig. S10B).  

 

 

DISCUSSION 

Preclinical T2D studies rely on animal models because the standard in vitro single-cell or single-

organ cultures cannot replicate organ-to-organ crosstalk essential for multisystem disorders. 

However, the animal models are genetically and physiologically different from humans4, and more 

accurate human-based preclinical models are therefore needed. Here, we describe a diseased 

pancreas-liver MPS model that can replicate hallmark features of diabetic dysregulation both in the 

liver and pancreas compartments.   

We applied computational modelling to guide hypothesis testing, experimental design, and data 

interpretation and showed that the pancreas-liver MPS exhibits a diabetic phenotype including 

glucose dysregulation, insulin resistance, and beta-cell dysfunction when the chips are exposed to 

a medium reflecting diabetic glucose and glucocorticoid concentrations. This experimental-

computational hybrid approach is important for the correct interpretation of multi-organ MPS data 

as cross-organ feedback loops are hard or even impossible to unravel by pure reasoning. Notably, 

computational modelling also allows in vitro–to–in vivo translation. We recently showed that 

pancreas-liver MPS results can be translated to humans by using mechanistic mathematical 

modelling even if some of the MPS characteristics do not reflect human physiology, such as cell-

to-liquid ratio and the flow rate, since these can be corrected in the mathematical models11. 

By using the described pancreas-liver MPS, we demonstrated that the diseased condition with 

hyperglycemic glucose level and high hydrocortisone concentration reflected several pathological 

alterations seen in patients suffering from glucocorticoid-induced diabetes. In the liver 

compartment, these included steatosis, diminished glucose utilization as well as increased ketone-

body production, and beta-cell dysfunction in the islet model. We evaluated the model in two 

laboratories and observed low inter-experimental and inter-laboratory variation. We also showed 

that the method is effective in three pancreatic islet donors. Therefore, the pancreas-liver model 

offers a human-based system to study diabetic glucose dysregulation as an alternative to animal 

models. Importantly, the inter-donor comparison between different islet productions allows the 

investigation of varying susceptibilities for beta-cell damage by diabetogenic factors as well as 

their varying ability for beta-cell adaptation which is not possible in animal models due to their 

monogenetic background. To accommodate studies on inter-donor variability also for the liver part, 

we are currently developing a pancreas-liver MPS method with primary human hepatocytes. 

Additionally, the model could be used to study long-term drug exposures, for example 

glucocorticoids, as such studies are not feasible in human volunteers due to the risk of irreversible 

negative effects21.  

Rodent islets are known to have higher beta-cell adaptation capacity via proliferation as compared 

to humans42,43 and, thus, they are not an ideal model for finding human-relevant targets. Having 

observed that islets cultured in the pancreas-liver model have enhanced proliferation as compared 

to the islet in static cultures, we explored liver-derived proteins that might be responsible for the 

stimulation. We showed that IL-1R2, secreted from the liver compartment, can modulate islet 

proliferation. These findings did not only confirm that the liver and pancreas compartments exhibit 

disease-relevant crosstalk on-chip but also further amplifies that the described multi-organ model 

can be used to study new targets and therapies for diabetic patients. 
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Our current multi-organ MPS would benefit from having another target tissue for insulin action 

such as an adipose-tissue model. While the liver plays a central role in controlling the glucose 

metabolism, adipose tissue modulates glucose and lipid metabolism via releasing free fatty acids, 

adipokines, and proinflammatory cytokines44. Patients on corticosteroids have reduced glucose 

uptake and increased lipolysis in the adipose tissue leading to both elevated glucose and fatty-acid 

levels in plasma22. However, translational in vitro models of adipose tissue are not trivial to 

establish45, especially because the adipose tissue is highly heterogeneous46. Recently, Slaughter et 

al. successfully coupled liver and adipose models on chip with functional adipokine signalling for 

14 days47. Pancreas-liver-adipose MPS would reflect insulin resistance pathophysiology more 

broadly and allow investigations of emerging therapies targeting adipose tissue48. Furthermore, the 

use of hiPSC-derived organ models could reflect the highly heterogenous disease progression and 

allow the testing of treatment options on a patient-derived diabetes model on-a-chip. 

Together, the pancreas-liver in vitro and in silico hybrid model for glucose dysregulation enables 

diabetes research in a human-based preclinical system. A partnership of advanced cell models and 

computing is a necessity for studies on multisystem diseases with complex organ-to-organ 

communication. The model should facilitate drug discovery by serving as a platform for studies on 

disease mechanisms, target identification, and candidate drug evaluation.  

 

 

MATERIALS AND METHODS 

Liver spheroid formation  

All cell cultures were maintained at 37 °C and 5% CO2 and conducted according to good cell 

culture practice49. We used terminally differentiated human HepaRG cells as a hepatocyte model 

as their gene expression profiles, regulatory pathways, and functional glucose machinery and lipid 

metabolism are similar to that in primary human hepatocytes50-52. Furthermore, a functional insulin 

responsiveness was described for HepaRG cells51 which is further improved in a three-dimensional 

spheroid culture9. Before liver spheroid formation, differentiated HepaRG hepatocyte-like cells 

(HPR116080, Biopredic, Lot HPR116NS080003 and HPR116239-TA08 or NSHPRG, Lonza, Lot 

HNS1014) were pre-cultured as previously described with a modification to medium composition9. 

Glucose and insulin concentration of the pre-culture medium were adjusted to physiological levels 

resulting in the following composition: Williams’ medium E (P04-29050S4, PAN-Biotech, w/o 

glucose, w/o L-glutamine, w/o phenol red) supplemented with 10% foetal bovine serum (FBS; 35-

079-CV, Corning or 10270-106, Gibco), 5.5 mM glucose (25-037-CIR, Corning or 072397, 

Fresenius Kabi), 1 nM insulin (P07-4300, PAN-Biotech or 12585-014, Gibco), 2 mM GlutaMax 

(35050-061, Gibco), 50 µM hydrocortisone hemisuccinate (H4881, VWR or H2270, Sigma 

Aldrich), 50 µg/ml gentamycin sulphate (30-005-CR, Corning or 15710-049, Gibco) and 0.25 

µg/mL amphotericin B (30-003-CF, Corning). 

Primary human hepatic stellate cells (HHSteC, S00354, BioIVT, Lot PFP) were expanded in 

Stellate Cell Medium (5301, ScienCell) supplemented with Stellate Cell Growth Supplement, 2% 

FBS and 1% penicillin/streptomycin, and cryopreserved in FBS with 10% DMSO (23500.297, 

VWR). The HHSteCs (p3-4) were thawed at least two days before spheroid formation and pre-

cultured in stellate cell medium until spheroid formation. 

Liver spheroids were formed for 3 days in 384-well spheroid microplates (3830, Corning) with 

24,000 differentiated HepaRG hepatocytes and 1,000 HHSteCs per spheroid as described 
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previously9. Once compact spheroids had formed, 40 spheroids were collected into a 24-well ultra-

low attachment plate (3473, Corning) for each co-culture replicate, and incubated in 1 mL pre-

culture medium overnight on a 3D rotator (PS-M3D; Grant-bio) before transfer to the islet-liver 

co-culture. 

 

Pre-culture of pancreatic islets  

We used commercially available human pancreatic islet microtissues (MT-04-002-0, InSphero) as 

a pancreatic islet model. The microtissues are manufactured from a dissociated human pancreatic 

islet suspension and have a defined cell number. After arrival, the pancreatic islet microtissues 

(termed islets throughout the manuscript) were maintained for 5 days in Akura™ 96 Spheroid 

Microplate (CS-09-004-01, InSphero) according to the manufacturer’s instructions. Medium was 

exchanged every 2-3 days with 70 µL of Human Islet Maintenance Medium (CS-07-005-02; 

InSphero). Donor for the hypothesis testing study was male, 52 years, with BMI of 29.6 and HbA1c 

of 5.4%. Donor for study 1 was male, 29 years, with BMI of 22.2 and HbA1c of 5.5%. Donor for 

study 2 was male, 26 years, with BMI of 24.1 and HbA1c of 5.1%. Donor for study 3 was male, 

55 years, with BMI of 30.9 and HbA1c of 5.6%.  

 

Pancreas-liver chip co-culture  

We performed co-cultures with islets and liver spheroids on a commercially available multi-organ-

chip Chip2 (TissUse) platform (Fig. 1D). This MPS has two culture compartments for the 

integration of spatially separated organ models. The culture compartments are interconnected by a 

microfluidic channel. An on-chip micropump drives a pulsatile flow supporting long-term 

perfusion and communication between the organ models. Design and fabrication of the Chip2 were 

described previously (Schimek, 2013, Wagner, 2013). 

Three days before insertion of the organ models, the chips were prepared for cultivation by 

replacing the storage buffer with 300 µL co-culture medium in each culture compartment (total 

volume per circulation was 605 µL). The chips were connected via air tubes to the control unit 

(HUMIMIC Starter) operating the on-chip micropump. The control unit was set to 0.45 Hz, 500 

mbar pressure and –500 mbar vacuum resulting in an average volumetric flow rate of 4.94 µL/min 

between the culture compartments. 

On the day of organ model transfer, the liver spheroids were washed twice with PBS to remove 

insulin from pre-culture medium. Subsequently, the liver spheroids were equilibrated for at least 2 

hours in an insulin-free co-culture medium composing of Williams’ medium E (w/o glucose, w/o 

L-glutamine, w/o phenol red), 10% FBS, 2 mM GlutaMax, 50 µg/mL gentamycin sulphate, and 

0.25 µg/mL amphotericin B. Glucose concentration was 5.5 mM in the normoglycemic condition 

and 11 mM in the hyperglycemic condition, and hydrocortisone concentration was either 10 nM or 

50 µM (indicated in each study and condition). The islets were similarly equilibrated in the co-

culture medium for at least 2 hours. After equilibration, 40 liver spheroids and 10 pancreatic islets 

were transferred to their respective culture compartment with 300 µL of fresh co-culture medium. 

Liver spheroids were collected using a wide-bore filter tip (T-205-WB-C-R-S, Corning), and 

carefully transferred into the liver compartment. In parallel, 10 islets were collected into a 1.5 mL 

microtube and pelleted by a brief centrifugation (1 min, 200 g) and transferred to the pancreas 

compartment. Alternatively, the islets were collected using an electronic single-channel pipette 

(Xplorer plus, Eppendorf) and directly transferred into the chips. The co-cultures were dynamically 
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incubated at 37 °C and 5% CO2 using the same settings in the control unit as described above. The 

co-culture medium in both culture compartments was exchanged completely after 24 hours 

(adaptation time to the dynamic culture) and subsequently every 48 hours for a total co-culture 

duration of 15 days. 

In studies 1, 2, and 3, some islets were statically cultured in parallel to the chip co-cultures. The 

islets were kept in Akura™ 96 Spheroid Microplate and medium was exchanged according to the 

co-culture study design.  

 

IL-1R2 treatment 

Islets in Akura™ 96 Spheroid Microplate were treated with 0.3 ng/mL or 30 ng/mL of human 

recombinant IL-1R2 protein (10111-H08H, Sino Biological) for 16 days. Medium with IL-1R2 

was renewed three times a week. For the last five days of culture, medium was also supplemented 

with 10 µM EdU for proliferation analysis. Islets cultured in Human Islet Maintenance Medium 

served as an untreated control and islets cultured in insulin-free co-culture medium with 11 mM 

glucose and 10 nM hydrocortisone served as a positive control in the proliferation assay. After 

finishing the culture, the islets were analysed for their glucose-stimulated insulin secretion and 

proliferation using EdU incorporation assay as described below. The islet donor was a female, 32 

years with BMI of 25.6 and HbA1c of 5.1%. 

 

Glucose tolerance test  

We performed GTT as described previously9 at different timepoints during the co-culture. Briefly, 

we exchanged the co-culture medium in both culture compartments with a co-culture medium 

containing 11 mM glucose (-300 µL, +315 µL) and collected 15 µL of supernatant samples at 0, 8, 

24, and 48 h to monitor glucose and insulin concentrations. To obtain sufficient sample volumes 

for the analysis, samples from the liver and pancreas compartments were pooled. For optimal 

sample recovery, samples were stored in 96-well PCR plates (30133358, Eppendorf) and sealed 

using aluminium foil to minimize evaporation during storage. Samples were stored at -80 °C until 

glucose and insulin measurements. 

 

Glucose-stimulated insulin secretion 

To assess functionality of the islets after the co-culture, we extracted islets from the chips, 

transferred into Akura™ 96 Spheroid Microplate, and performed GSIS on individual islets. The 

islets were first washed twice with 70 µL of Krebs-Ringer solution containing 2.8 mM glucose 

(low glucose solution), followed by equilibration in 70 µL of low glucose solution for 1-2 hours. 

Next, the islets were washed twice with 70 µL of low glucose solution and incubated for 2 hours 

in 50 µL of low glucose solution to measure basal insulin secretion. Following this, the islets were 

washed once with 70 µL of Krebs-Ringer solution containing 16.8 mM glucose (high glucose 

solution) and subsequently incubated in 50 µL of high glucose solution for 2 hours to measure the 

glucose-stimulated insulin secretion. Basal and glucose-stimulated samples were collected after 

incubations and stored at -80 °C until insulin measurement. 
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Analysis of soluble markers 

Supernatants of cell culture medium collected during medium exchanges were analysed for 

albumin (10242, Diagnostic Systems) and 3-beta-hydroxybutyrate (Autokit 3-HB, Fujifilm Wako) 

on an Indiko Plus chemical analyzer (Thermo Fisher Scientific) according to the manufacturer’s 

instructions. IL-1R2 concentrations were determined in culture supernatants by an ELISA assay 

(EHIL1R2, Thermo Scientific) according to the manufacturer’s instructions. Samples taken during 

the GTT were analysed for glucose (1070-500, Stanbio Laboratory) and insulin (10-1113-10, 

Mercodia) according to the manufacturer’s instructions. 

 

Computational models 

Hypothesis testing using computational modelling 

We used mathematical modelling as a tool to test mechanistic hypotheses on experimental data. A 

mechanistic hypothesis corresponds to a formulation of causal mechanisms key to produce the 

observed behaviour in the data. Hypothesis testing via mathematical modelling is an iterative 

approach (Fig. 2B). In the first step, the existing hypotheses are translated into a set of mathematical 

equations (i.e., corresponding mathematical models). We considered two hypotheses for the 

observed glucose and insulin responses in the pancreas-liver MPS: H1, “Insulin resistance is caused 

by hyperglycemia alone”, and H2, “Insulin resistance is caused by a combination of hyperglycemia 

and an additional diabetogenic factor”.  

The second step involves the acquisition of experimental data and fitting the mathematical models 

to these data by optimization of the model parameters. The hypotheses are initially evaluated based 

on the outcome of this optimization. If the mathematical model cannot provide an acceptable 

agreement with the data, according to statistical analyses, then the corresponding hypothesis is 

rejected and must be revised. On the other hand, if the model can provide an acceptable agreement 

with data, the corresponding hypothesis is not rejected. The non-rejected models can then be used 

to generate uniquely identified predictions with uncertainty53, that allow for designing new 

experiments that could distinguish between the remaining hypotheses. The experiments are 

performed, and the predictions are compared against the new experimental data. If the model 

predictions agree with the experimental data, the corresponding hypothesis is accepted. On the 

contrary, if the predictions do not agree with the experimental data, the model is rejected and a new 

iteration in the hypothesis testing cycle is performed. Several iterations can be performed until a 

final model has been found.  

In the following, we describe the modelling process, the mathematical model with its equations, 

and the hypothesis testing procedure. 

 

A computational model for glucose metabolism in the pancreas-liver co-culture 

We used our previously developed computational model11 as a basis to implement the hypotheses 

studied in this paper. The model describes glucose metabolism in the pancreas-liver co-culture 

(Fig. S2B). More specifically, it describes crucial biological processes underlying glucose 

regulation on a short-term basis (meal response), as well as long-term changes in physiological 

variables related to impaired glucose homeostasis, such as insulin resistance and beta cell 
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adaptation. This model was constructed based on experimental data from seven independent studies 

corresponding to seven different islet donors11.  

The computational model is formulated using ordinary differential equations (ODEs), which have 

the following general structure: 

𝑑

𝑑𝑡
𝑥⃗(𝑡) = 𝑓(𝑥⃗(𝑡), 𝑝⃗, 𝑢⃗⃗(𝑡)) 

x⃗⃗(0) = 𝑥0⃗⃗⃗⃗⃗ 

𝑦⃗(𝑡) = 𝑔(𝑥⃗(𝑡), 𝑝⃗, 𝑢⃗⃗(𝑡)) 

where 𝑥⃗(𝑡) is the state vector describing the dynamics of concentrations or amounts and 𝑝⃗ are the 

parameters, which here correspond to kinetic rate constants. 𝑢⃗⃗(𝑡) is a vector containing the external 

inputs. x⃗⃗(0) contains the initial conditions, i.e., the values of the states at t=0. 𝑦⃗(𝑡) are the simulated 

model outputs, which correspond to the measured experimental signals. 𝑓 and 𝑔 are non-linear 

smooth functions that describe a set of mechanistic assumptions. 

 

Derivation of the computational model 

The computational model is based on the interplay between two components corresponding to 

different time scales: fast (hours) and slow (weeks). The fast model describes glucose and insulin 

dynamics between medium exchanges, which take place every 48 hours. The slow model describes 

the dynamics of long-term variables representing disease progression, such as the development of 

insulin resistance in the liver spheroids and beta-cell adaptation in the islets. The interplay between 

these two models allows short-term variables to impact long-term disease progression (e.g., impact 

of daily glucose levels on insulin resistance and beta cell volume) and vice versa. The model 

includes two compartments, each of them representing a specific culture compartment in the MPS 

(liver or pancreas) comprising a corresponding organoid and co-culture medium. The 

compartments are connected in a closed loop, with circulating medium determined by a flow rate 

parameter. The model equations are described in detail previously11 and summarized below. 

Glucose content in the co-culture medium within the liver compartment varies with glucose dosing 

to the system, endogenous glucose production and glucose uptake by the liver spheroids, as well 

as glucose inflow from and outflow to the pancreas compartment: 

𝑑𝑁𝐺𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑑𝑡
= 𝐺𝑑(𝑡) + 𝑉𝐻𝑒𝑝𝑎𝑅𝐺,𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑𝑠 ∙ 𝐸𝐺𝑃(𝑡)

− 𝑉𝐻𝑒𝑝𝑎𝑅𝐺,𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑𝑠 (𝐸𝐺0 + 𝑆𝐼(𝑡) ∙
𝑁𝐼𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
)
𝑁𝐺𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
+ 𝑄

∙
𝑁𝐺𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝑉𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠
− 𝑄 ∙

𝑁𝐺𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
 (
𝑚𝑚𝑜𝑙

ℎ
) 

where 𝑁𝐺𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡) and 𝑁𝐺𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡) are the number of glucose molecules (mmol) in the culture 

medium corresponding to the liver and pancreas compartments, respectively, and 𝑁𝐼𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡) is 

the number of insulin molecules in the co-culture medium within the liver compartment (mIU). 

The glucose input rate 𝐺𝑑(𝑡) (mmol/h) defines glucose variations due to media exchanges, and 

𝐸𝐺𝑃(𝑡) describes endogenous glucose production in the liver spheroids (mmol/L/h). 𝐸𝐺𝑃(𝑡) was 
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set to zero based on the observed decline in glucose levels below normoglycemia (5.5 mM) in our 

system. Glucose uptake by the liver spheroids accounts for both insulin-independent uptake, 

determined insulin-independent glucose disposal rate 𝐸𝐺0 (1/h), and an insulin-dependent uptake 

regulated by the insulin sensitivity of the liver spheroids 𝑆𝐼(𝑡) (L/mIU/h). The parameters 

describing the flow rate between culture compartments (𝑄 (L/h)), the total volume of HepaRG cells 

in the liver spheroids (𝑉𝐻𝑒𝑝𝑎𝑅𝐺,𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑𝑠 (L))  and the volume of co-culture medium in the liver and 

pancreas compartments (𝑉𝑚,𝑙𝑖𝑣𝑒𝑟 and 𝑉𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠 (L), respectively) account for the operating 

conditions in the MPS. 

In the computational model, insulin sensitivity of the liver spheroids 𝑆𝐼(𝑡) decreases progressively 

from its initial value at the beginning of the co-culture 𝑆𝐼0 (L/mIU/h), as the liver spheroids are 

exposed to hyperglycemic concentrations (i.e. above normoglycemia) over time. This decrease is 

determined by the maximal fractional reduction 𝐼𝑚𝑎𝑥,𝑆𝑖, and with half of the maximal fractional 

reduction occurring at 𝐸𝐶50𝑆𝑖  (mmol∙h/L). The hyperglycemic periods are quantified by the 

integral of excess glucose 𝐺𝑖𝑛𝑡(𝑡): 

𝑑𝐺𝑖𝑛𝑡(𝑡)

𝑑𝑡
=

{
 
 

 
 
𝑁𝐺𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
− 𝐺𝑛𝑜𝑟𝑚𝑜        

𝑁𝐺𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
− 𝐺𝑛𝑜𝑟𝑚𝑜 ≥ 0

0                                           
𝑁𝐺𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
− 𝐺𝑛𝑜𝑟𝑚𝑜 < 0

                                 

 

𝑆𝐼(𝑡) = 𝑆𝐼0 ∙ (1 −
𝐼𝑚𝑎𝑥,𝑆𝑖 ∙ 𝐺𝑖𝑛𝑡(𝑡)

𝐸𝐶50𝑆𝑖 + 𝐺𝑖𝑛𝑡(𝑡)
) (𝐿/𝑚𝐼𝑈/ℎ). 

Glucose content in the pancreas compartment is described as: 

𝑑𝑁𝐺𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝑑𝑡
= 𝐺𝑑(𝑡) +  𝑄 ∙

𝑁𝐺𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
− 𝑄 ∙

𝑁𝐺𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝑉𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠
 (𝑚𝑚𝑜𝑙/ℎ) 

Insulin content in the pancreas compartment depends on the release of insulin from beta cells in 

the islets, and insulin inflow from and outflow to the liver compartment. Insulin release from the 

beta cells was modelled as a combination of the volume of beta cells in the islets (𝑉𝛽,𝑖𝑠𝑙𝑒𝑡𝑠(𝑡) (L)), 

the insulin secretion capacity per unit volume of beta cells (denoted 𝜎(𝑡) (mIU/L/h)), and the 

glucose concentration resulting in half-of-maximum response to insulin (denoted 𝐸𝐶50𝐼 
(mmol/L)). The full equation describing insulin content in the pancreas compartment then 

becomes: 

𝑑𝑁𝐼𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝑑𝑡
= 𝑉𝛽,𝑖𝑠𝑙𝑒𝑡𝑠(𝑡) ∙ 𝜎(𝑡) ∙

(
𝑁𝐺𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝑉𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠
)
2

𝐸𝐶50𝐼
2 + (

𝑁𝐺𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝑉𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠
)
2 

 

+𝑄
𝑁𝐼𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
− 𝑄

𝑁𝐼𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝑉𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠
 (𝑚𝐼𝑈/ℎ)  
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where 𝑁𝐼𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡) and 𝑁𝐼𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡) are the number of insulin molecules (mIU) in the pancreas 

and the liver compartment, respectively.  

Furthermore, the insulin secretion capacity of the b cells was modelled as a decreasing function of 

time, determined by the parameter 𝛼 (h2): 

𝜎(𝑡) = 𝜎𝑚𝑎𝑥 ∙ (1 −
𝑡2

𝛼 + 𝑡2
) (𝑚𝐼𝑈/𝐿/ℎ) 

where 𝜎𝑚𝑎𝑥 (mIU/L/h) represents the maximal insulin secretion rate of the beta cells (i.e. at the 

beginning of the co-culture). 

The variable 𝑉𝛽,𝑖𝑠𝑙𝑒𝑡𝑠(𝑡) (L) describes the changes in volume of beta cells in the pancreatic islets 

over the co-culture time, according to the following equation: 

𝑑𝑉𝛽,𝑖𝑠𝑙𝑒𝑡𝑠(𝑡)

𝑑𝑡
= 𝑘𝑣(−𝑑0 + 𝑟1𝐺𝑠𝑙𝑜𝑤,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡) − 𝑟2𝐺𝑠𝑙𝑜𝑤,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

2) ∙ 𝑉𝛽,𝑖𝑠𝑙𝑒𝑡𝑠(𝑡)  (𝐿/ℎ) 

where 𝑑0 is the death rate at zero glucose (h-1), 𝑟1 = 𝑟1,𝑟 + 𝑟1,𝑎 (L/mmol/h) and 𝑟2 = 𝑟2,𝑟 + 𝑟2,𝑎 

(L2/mmol2/h), where  𝑟1,𝑟, 𝑟1,𝑎 (L/mmol/h), 𝑟2,𝑟, 𝑟2,𝑎 (L2/mmol2/h) are parameters that determine 

the dependence on glucose of the replication and apoptosis rates. The parameter 𝑘𝑣 was introduced 

to account for potential differences in behaviour between islets in our in vitro system and rodent 

islets in the model of Topp et al.54. 

The variable 𝐺𝑠𝑙𝑜𝑤,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡) (mmol/L) represents the long-term average (i.e. daily) glucose 

concentration in the co-culture medium as given by: 

𝑑𝐺𝑠𝑙𝑜𝑤,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝑑𝑡
=
𝐺𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡) − 𝐺𝑠𝑙𝑜𝑤,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝜏𝑠𝑙𝑜𝑤
 (𝑚𝑚𝑜𝑙/𝐿/ℎ) 

 

Insulin content in the liver compartment decreases over time due to insulin clearance by the liver 

spheroids (𝐶𝐿𝐼,𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑𝑠 (1/h)): 

𝑑𝑁𝐼𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑑𝑡
= 𝑄 ∙

𝑁𝐼𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝑉𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠
− 𝑄 ∙

𝑁𝐼𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
− 𝑉𝐻𝑒𝑝𝑎𝑅𝐺,𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑𝑠 ∙ 𝐶𝐿𝐼,𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑𝑠

∙
𝑁𝐼𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
 (𝑚𝐼𝑈/ℎ) 

The concentrations of glucose and insulin in each compartment were calculated by dividing the 

insulin and glucose content, respectively, by the volume of co-culture medium in the compartment: 

𝐺𝑙𝑖𝑣𝑒𝑟(𝑡) =
𝑁𝐺𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
  (mmol/L) 

𝐺𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡) =
𝑁𝐺𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝑉𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠
    (mmol/L) 
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𝐼𝑙𝑖𝑣𝑒𝑟(𝑡) =
𝑁𝐼𝑚,𝑙𝑖𝑣𝑒𝑟(𝑡)

𝑉𝑚,𝑙𝑖𝑣𝑒𝑟
    (mIU/L) 

𝐼𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡) =
𝑁𝐼𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡)

𝑉𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠
    (mIU/L) 

Glucose and insulin samples in the co-culture studies were obtained by pooling samples from both 

the liver and the pancreas compartment. Therefore, the resulting glucose and insulin measurements 

(𝐺(𝑡) and 𝐼(𝑡), respectively), were computed as: 

𝐺(𝑡) =
𝐺𝑙𝑖𝑣𝑒𝑟(𝑡) ∙ 𝑉𝑠𝑎𝑚𝑝𝑙𝑒,𝑙𝑖𝑣𝑒𝑟 + 𝐺𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡) ∙ 𝑉𝑠𝑎𝑚𝑝𝑙𝑒,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠

(𝑉𝑠𝑎𝑚𝑝𝑙𝑒,𝑙𝑖𝑣𝑒𝑟 + 𝑉𝑠𝑎𝑚𝑝𝑙𝑒,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠)
⁄  

(mmol/L) 

 

𝐼(𝑡) =
𝐼𝑙𝑖𝑣𝑒𝑟(𝑡) ∙ 𝑉𝑠𝑎𝑚𝑝𝑙𝑒,𝑙𝑖𝑣𝑒𝑟 + 𝐼𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(𝑡) ∙ 𝑉𝑠𝑎𝑚𝑝𝑙𝑒,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠

(𝑉𝑠𝑎𝑚𝑝𝑙𝑒,𝑙𝑖𝑣𝑒𝑟 + 𝑉𝑠𝑎𝑚𝑝𝑙𝑒,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠)
⁄     

(mIU/L) 

where 𝑉𝑠𝑎𝑚𝑝𝑙𝑒,𝑙𝑖𝑣𝑒𝑟 and 𝑉𝑠𝑎𝑚𝑝𝑙𝑒,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠 are the volumes of co-culture media collected from the 

liver and pancreas compartment, respectively, in each sample (15 µl). 

The initial conditions for the model states are listed below: 

𝑁𝐺𝑚,𝑙𝑖𝑣𝑒𝑟(0) = (𝐺𝑑𝑜𝑠𝑒 +  Δ𝐺𝑑1) ∙  𝑉𝑚,𝑙𝑖𝑣𝑒𝑟 (mmol) 

𝑁𝐺𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(0) = (𝐺𝑑𝑜𝑠𝑒 +  Δ𝐺𝑑1) ∙  𝑉𝑚,𝑖𝑠𝑙𝑒𝑡𝑠(mmol) 

𝑁𝐼𝑚,𝑙𝑖𝑣𝑒𝑟(0) = Δ𝐼𝑑1 ∙  𝑉𝑚,𝑙𝑖𝑣𝑒𝑟 (mIU) 

𝑁𝐼𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(0) = Δ𝐼𝑑1 ∙  𝑉𝑚,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠 (mIU) 

𝑡(0) = 0 (h) 

𝐺𝑖𝑛𝑡(0) = 0 (mmol∙h/L) 

𝐺𝑠𝑙𝑜𝑤,𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠(0) = 5.5 (mmol/L) 

𝑉𝛽,𝑖𝑠𝑙𝑒𝑡𝑠(0) = 8.8 ∙ 10−9 (L) 

where Δ𝐺𝑑1 (mmol/L), Δ𝐼𝑑1 (𝑚𝐼𝑈/𝐿) are offset parameters that account for experimental errors 

related to the medium exchange performed on day 1. The experimental errors in the glucose 

concentration at 0 h can be due to varying co-culture medium volumes in the culture compartments, 

varying  glucose concentration in the co-culture medium, or glucose assay-dependent variations. 

Values of insulin concentration different from zero at t=0 h could be due to co-culture medium 

remaining in the chip (both in the culture compartments and the microfluidic channel) during the 

medium exchange corresponding to the first GTT. Similarly, the  model 

parameters (Δ𝐺𝑑13, Δ𝐼𝑑13) account for errors in glucose and insulin concentrations, respectively, 

during the medium exchanges performed on day 13. 
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Hypothesis testing to unravel the origin of insulin resistance in the pancreas-liver MPS 

We tested two hypotheses that could explain the glucose and insulin responses observed in the 

MPS (Fig. 1E). The first hypothesis (H1) assumes that insulin resistance is caused by 

hyperglycemia alone, while the second hypothesis (H2) assumes that insulin resistance is caused 

by hyperglycemia and an additional diabetogenic factor. The model described in Casas et al.11 

implements hypothesis H1. Therefore, we created a second computational model implementing 

hypothesis H2, by including an equation to model the effect of an additional diabetogenic factor 

on insulin sensitivity. This effect was modelled as a sigmoidal function of time, with maximal 

fractional reduction 𝐼𝑚𝑎𝑥,𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙, and with half of the maximal fractional reduction occurring at 

𝐸𝐶50𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 (mmol∙h/L): 

 
Each computational model was calibrated against the experimental data of glucose and insulin from 

the pancreas-liver co-culture. To perform this calibration, the model parameters were estimated 

using nonlinear optimization, by finding parameter values that provided an acceptable agreement 

with the experimental data according to the following cost function: 

𝑉(𝑝) =∑∑
(𝑦𝑖(𝑡) − 𝑦̂𝑖(𝑡, 𝑝))

2

𝑆𝐸𝑀𝑖(𝑡)2
𝑡𝑖

 

where i is summed over the number of experimental time-series for the given experiment 𝑦𝑖(𝑡) and 

𝑦𝑖̂(𝑡, 𝑝) represents the model simulations and p the model parameters. SEM denotes the standard 

error of the mean and t the measured time points in each time-series. To handle uncertainty in the 

estimation, we used a simulated annealing approach55 to find the set of acceptable parameters that 

provided an acceptable agreement with the experimental data according to a statistical χ2 test53,56 

with a significance level of 0.05. 

 

We found a good visual agreement with the experimental data for both models corresponding to 

H1 and H2 (Fig. 2 C and E). This visual agreement was statistically supported by the fact that both 

models passed a 𝜒2 test at a significance level α = 0.05, with a value of the cost for the optimal 

parameter set 𝑝𝑜𝑝𝑡 lower than the 𝜒2-threshold (𝑉(𝑝𝑜𝑝𝑡,𝐻1) =  21.62 <  37.65, 𝑉(𝑝𝑜𝑝𝑡,𝐻2) =

 28.32 <  37.65).  
 

To be able to discriminate between H1 and H2, we performed predictions of glucose and insulin 

responses for different doses of added insulin to the co-culture medium, and selected an insulin 

dose that would provide detectable differences between the glucose responses for these hypotheses 

(i.e., differences larger than the average SEM across samples in the experimental data). The model 

predictions were made for the entire set of acceptable parameters. To visualize these predictions, 

we simulated model responses for the maximal and minimal values of each parameter within the 

set of acceptable parameters. We then calculated the boundaries of the prediction by computing the 

maximal and minimal value of the prediction for each time point and visualized the area between 

these boundaries (Fig. 2C and D). We performed the corresponding experiments for the calculated 

insulin dose (23 nM) and computed the model prediction. No acceptable agreement with the 
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experimental data was found for H1, and this hypothesis was therefore rejected (Fig. 2D). H2, on 

the other hand, showed good visual agreement with the experimental data (Fig. 2E), which was 

also confirmed with a 𝜒2 test at significance level α = 0.05 (𝑉(𝑝𝑜𝑝𝑡,𝐻2) =  3.45 <  12.59). 

 

Simulating the effect HCT concentration in the pancreas-liver MPS 

In the computational model, the effect of high HCT on the pancreas-liver MPS was modelled as a 

decrease in both the insulin sensitivity of the liver spheroids 𝑆𝐼(𝑡) and the insulin secretion capacity 

of the 𝛽 cells 𝜎(𝑡) over time, as follows: 

𝜎(𝑡) = 𝜎𝑚𝑎𝑥 ∙ (1 −
𝑡2

𝛼 + 𝑡2
) (𝑚𝐼𝑈/𝐿/ℎ) 

represents the effect of high HCT𝑆𝐼(𝑡). where the term 

 

To model the effect of low HCT levels on the pancreas-liver MPS, we omitted the terms 

corresponding to these decreases in 𝑆𝐼(𝑡) and 𝜎(𝑡), leading to the following equations: 

𝑆𝐼(𝑡) = 𝑆𝐼0 ∙ (1 −
𝐼𝑚𝑎𝑥,𝑆𝑖 ∙ 𝐺𝑖𝑛𝑡(𝑡)

𝐸𝐶50𝑆𝑖 + 𝐺𝑖𝑛𝑡(𝑡)
) 

𝜎(𝑡) = 𝜎𝑚𝑎𝑥 ∙ (1 −
𝑡2

𝛼 + 𝑡2
) (𝑚𝐼𝑈/𝐿/ℎ) 

To predict the glucose and insulin responses in the pancreas-liver MPS under low HCT 

concentrations, we first calibrated the computational model using experimental data under high 

HCT levels from two GTT experiments, a GTT starting at day 1 (GTT day 1-3) and a GTT starting 

at day 13 (GTT day 13-15) (Fig. 4 A, high HCT).  With the optimal parameter values obtained 

from this estimation as a start guess, we then optimized the parameters representing insulin 

sensitivity at the beginning of the co-culture 𝑆𝐼0 and the insulin secretion capacity of the beta cells 

using data under low HCT levels from a GTT starting at day 1 (Fig 4A, low HCT). We used this 

parameter set to predict the glucose and insulin responses under low HCT levels. In doing so, we 

omitted the decreases in 𝑆𝐼(𝑡) and 𝜎(𝑡) over time, as previously described. 

 

Data pre-processing 

Given the small number of replicate platforms in the MPS studies (two to six), we assume that the 

SEM values measured experimentally are an underestimation of the true uncertainty in the data. 

We considered SEM values below 5% of the corresponding mean to be unrealistic and corrected 

for possible measurement errors by setting these SEM values to the largest measured SEM value 

across all data points in the experimental dataset. Furthermore, we accounted for experimental 
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errors in glucose and insulin measurements due to media-exchanges by including measured offsets 

in concentrations at the beginning of GTTs (t=0 within a given GTT) as an additional contribution 

to the total SEM for all data points corresponding to the given GTT. The resulting SEM values are 

given as error bars in all figures. 

 

Software 

Computations were carried out in MATLAB R2022b (The Mathworks Inc., Natick, Massachusetts, 

USA) using IQM tools (IntiQuan GmbH, Basel, Switzerland) and the MATLAB Global 

Optimization toolbox, as well as in Python (v 3.9.13). Figures 1A-C, 1E, 2A-C, and Figure S1 were 

prepared using BioRender (https://biorender.io/). 

 

Gene expression analysis 

RNA isolation and quantitative real-time PCR 

After the co-culture, liver spheroids in the culture compartments were washed three times with 

PBS and the spheroids were removed using a sterile blunt end needle (9180117, B.Braun) for RNA 

isolation. Spheroids were transferred into PCR-clean 1.5 mL microtubes with 100 µL of lysis buffer 

(LB1 from Macherey-Nagel or 700 µL of Buffer RLT (79216, Qiagen). Lysates were snap-frozen 

and stored at −80 °C. RNA was isolated using the NucleoSpin® RNA Plus XS kit (740990.50, 

Macherey-Nagel) or RNeasy Mini Kit (74104, Qiagen). cDNA was synthesized using TaqMan® 

Reverse Transcription Kit (Thermo Fisher Scientific). Real-time PCR was performed using the 

SensiFAST SYBR Lo-ROX Kit (BIO-94020, Bioline). Primers are shown in Supplementary Table 

1. Relative gene expression was determined using the comparative CT (∆∆Ct) method with TBP 

as endogenous control gene. 

 

RNA sequencing 

The quantity and quality of RNA samples was assessed using the standard sensitivity RNA 

fragment analysis kit on Fragment Analyzer (Agilent Technologies). All samples had an RNA 

integrity number >8 and were deemed of sufficient quantity and quality for RNA-seq analysis. 

Samples were diluted to a final quantity of 150 ng/sample of total RNA. The KAPA mRNA 

HyperPrep kit (Roche) was used for reverse transcription, generation of double stranded cDNA 

and subsequent library preparation and indexing to facilitate multiplexing (Illumina TruSeq). All 

libraries were quantified with the Fragment Analyzer using the standard sensitivity NGS kit 

(Agilent Technologies) and pooled in equimolar concentrations and quantified with a Qubit 

Fluorometer (Thermo Fisher Scientific) with the DNA HS kit (Thermo Fisher Scientific). The 

library pool was further diluted to 2.2 pM and sequenced at >20M paired end reads/sample using 

the High Output regent kit to 150 cycles on an Illumina NextSeq500. RNASeq data was analysed 

using bcbio (version 1.1.0) and differential analysis was performed with DESeq2 (version 1.18.1). 
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Proteomic analysis 

Sample preparation for proteomic analysis  

For proteomic analysis, the co-cultures were incubated in FBS-free co-culture medium for the last 

four days (d11-15). After finishing the culture, supernatants were collected from both pancreas and 

liver compartments and combined in a 1.5 mL microtube. Samples were first centrifuged at 300xg 

for 10 min at RT, to remove any remaining cells, and then supernatants were transferred into new 

tubes for centrifugation at 10,000xg for 10 min at 4 °C. The supernatants were stored at -80 °C 

until sample preparation for nano-scale liquid chromatographic tandem mass spectrometry (nLC-

MS/MS) performed on two MPS media experiments and MS instruments, Q Exactive™ HF 

Orbitrap or Fusion™ Lumos™ Tribrid™ (Thermo Fisher Scientific). 

 

Sample preparation, peptide labelling and fractionation for Q Exactive™ HF analysis  

Equal volumes of the cell culture supernatants from each condition was concentrated on nanosep 

10k omega filters (Pall Corporation, Port Washington, NY, USA) prerinsed with 50 mM 

triethylammonium bicarbonate (TEAB, Sigma-Aldrich) and was washed twice in the filter with 

500 µL 50 mM TEAB, by spinning at 14,000g for 20 min at 4 °C. Proteins were reduced on the 

filters using 100 µL 10mM TCEP (77720, Bond-Breaker™ TCEP solution, Thermo Scientific) in 

50mM TEAB at 55 °C for 45 min followed by a 10 min spin at 14,000g, 20°C. Free cysteine 

residues were modified using 100 µL freshly prepared 15 mM iodoacetamide (IAA, Sigma-

Aldrich) in 50 mM TEAB and incubated for 20 min at room temperature in the dark. The IAA 

solution was removed by washing with 10% acetonitrile (ACN) in 50 mM TEAB followed by 

centrifugation and filters transferred to new LoBind Eppendorf tubes.  Tryptic digestion was 

performed by adding 1.6 µg of trypsin (V5111, Promega, sequencing grade modified trypsin) in 

40 µl 10% ACN in 50 mM TEAB and incubated at 37 °C under humid conditions. Next day 

digested peptides were collected after spinning and then rinsing the filters with 60 µL 10% 

acetonitrile in 50 mM TEAB followed by a final centrifugation at 14,000g, which collected all 

tryptic peptides in the LoBind tube.  

An equal amount (54 µg, determined by Pierce Quantitative Fluorometric peptide assay, 23275, 

Thermo Scientific) of peptides from each sample was subjected to isobaric labelling using Tandem 

Mass Tag (TMT-10plex) reagents (90110, Lot RG234662, Thermo Fischer Scientific) according 

to the manufacturer’s instructions. The labelled samples were combined into one pooled sample, 

concentrated using vacuum centrifugation and separated into eight fractions using Pierce™ High 

pH Reversed-Phase Peptide Fractionation Kit (84868, Thermo Scientific) according to the 

manufacturer’s instructions for TMT-labelled peptides. After vacuum centrifugation of peptide 

fraction to dryness, the peptides were resuspended in 0.2% Formic Acid (FA) in 3% ACN.  

 

nLC-MS/MS with Q Exactive HF 

The TMT-labelled peptide samples were analysed with an Easy-nLC1200 liquid chromatography 

system combined with Q Exactive HF mass spectrometer (Thermo Scientific)  using a 136 min 

gradient. The separation was performed using an Acclaim PepMap precolumn (75 µM ID by 20 

mm) connected to a 75 µM by 150 mm analytical Easy Spray PepMap RSLC C18 column (2µm 

particles, 100 A˚ pore size; Thermo Scientific) using a gradient from 5% solvent B to 15% solvent 

B over 47 min, then up to 25% B the next 58 min and up to 50% B in 20 min followed by an 
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increase to 98% solvent B for 1 min, and 98% solvent B for 9 min at a flow of 280 nL/min. Solvent 

A was 0.1% formic acid and solvent B was 80% acetonitrile, 0.1% formic acid. MS scans were 

performed at 120 000 resolution, m/z range 350-1400. MS/MS analysis was performed in a data-

dependent experiment, with top 15 of the most intense doubly or multiply positive charged 

precursor ions selected. Precursor ions were isolated in the quadrupole with a 1.2 m/z isolation 

window and 0.2 m/z offset, with dynamic exclusion set to a duration of 30 seconds. Isolated 

precursor ions were subjected to collision induced dissociation (CID) at 32 collision energy 

(arbitrary unit) with a maximum injection time of 100 ms. Produced MS2 fragment ions were 

detected at 60 000 resolutions, with a fixed first mass of 120 m/z and a  scan range of 200-2000 

m/z.  

 

Proteomic Data Analysis of Q Exactive™ HF data 

The data files were merged for identification and relative quantification using Proteome Discoverer 

version 2.1.1.21 (Thermo Fisher Scientific). Swiss-Prot Human database was used for the database 

search, using the Mascot search engine v. 2.5.1 (Matrix Science, London, UK) with MS peptide 

tolerance of 6 ppm and fragment ion tolerance of 0.02 Da. Tryptic peptides were accepted with 1 

missed cleavage and methionine oxidation was set as a variable modification. Carbamidomethyl 

on cysteines and TMT on peptide N-termini and on lysine side chains were set as fixed 

modifications. Percolator was used for PSM validation with the strict FDR threshold of 1%. 

Quantification was performed in Proteome Discoverer 2.1.1.21. The TMT reporter ions were 

identified with 20 ppm mass tolerance in the MS2 spectra and the TMT reporter S/N values for 

each sample were normalized within Proteome Discoverer on the total peptide amount. 

Quantitative results were only based on unique peptide sequences with a co-isolation threshold of 

50 and an average S/N threshold of 10 for the protein quantification. 

 

Sample preparation, peptide labelling and fractionation for Fusion™ Lumos™ Tribrid™ analysis  

Each sample was mixed with sodium dodecyl sulphate (SDS), triethylammonium bicarbonate 

(TEAB) and DL-dithiothreitol (DTT) to concentrations of 0.5% SDS, 50 mM TEAB, 100 mM 

DTT and incubated at 95 °C for 5 min for denaturation and reduction. The reduced samples were 

processed using the modified filter-aided sample preparation (FASP) method57. In short, the 

reduced samples were diluted to 1:4 by 8 M urea solution, transferred onto Nanosep 10k Omega 

filters (Pall Corporation, Port Washington, NY, USA) and washed repeatedly with 8 M urea and 

once with digestion buffer (0.5% sodium deoxycholate (SDC) in 50 mM TEAB). Free cysteine 

residues were modified using 10 mM methyl methanethiosulfonate (MMTS) solution in digestion 

buffer for 20 min at RT and the filters were washed twice with 100 µL of digestion buffer. One µg 

Pierce trypsin protease (MS Grade, Thermo Fisher Scientific) in digestion buffer was added and 

the samples were incubated at 37 °C for 3 hours. An additional portion of trypsin was added and 

incubated overnight. 

The peptides were collected by centrifugation and isobaric labelling was performed using Tandem 

Mass Tag (TMT-10plex) reagents (Thermo Fischer Scientific) according to the manufacturer’s 

instructions. The labelled samples were combined into one pooled sample, concentrated using 

vacuum centrifugation, and SDC was removed by acidification with 10% TFA and subsequent 

centrifugation. The labelled pooled sample was treated with Pierce peptide desalting spin columns 

(Thermo Fischer Scientific) according to the manufacturer’s instructions.  
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Each purified desalted sample was pre-fractionated into 40 primary fractions with basic reversed-

phase chromatography (bRP-LC) using a Dionex Ultimate 3000 UPLC system (Thermo Fischer 

Scientific). Peptide separations were performed using a reversed-phase XBridge BEH C18 column 

(3.5 μm, 3.0x150 mm, Waters Corporation) and a linear gradient from 3% to 40% solvent B over 

18 min followed by an increase to 100% solvent B over 5 min and 100% solvent B for 5 min at a 

flow of 400 µL/min. Solvent A was 10 mM ammonium formate buffer at pH 10.0 and solvent B 

was 90% acetonitrile, 10% 10 mM ammonium formate at pH 10.0. The fractions were concatenated 

into 20 fractions, dried and reconstituted in 3% acetonitrile, 0.2% formic acid.  

 

nLC-MS/MS with Fusion™ Lumos™ Tribrid™ 

The fractions were analysed on an orbitrap Fusion™ Lumos™ Tribrid™ mass spectrometer 

interfaced with Easy-nLC1200 liquid chromatography system (Thermo Fisher Scientific). Peptides 

were trapped on an Acclaim Pepmap 100 C18 trap column (100 μm x 2 cm, particle size 5 μm, 

Thermo Fischer Scientific) and separated on an in-house packed analytical column (75 μm x 35 

cm, particle size 3 μm, Reprosil-Pur C18, Dr. Maisch) using a gradient from 5% solvent B to 33% 

solvent B over 77 min followed by an increase to 100% solvent B for 3 min, and 100% solvent B 

for 10 min at a flow of 300 nL/min. Solvent A was 0.2% formic acid and solvent B was 80% 

acetonitrile, 0.2% formic acid. MS scans were performed at 120 000 resolution, m/z range 375-

1375. MS/MS analysis was performed in a data-dependent experiment, with top speed cycle of 3 s 

for the most intense doubly or multiply charged precursor ions. Precursor ions were isolated in the 

quadrupole with a 0.7 m/z isolation window, with dynamic exclusion set to 10 ppm and duration 

of 45 seconds. Isolated precursor ions were subjected to collision induced dissociation (CID) at 35 

collision energy (arbitrary unit) with a maximum injection time of 50 ms. Produced MS2 fragment 

ions were detected in the ion trap followed by multinotch (simultaneous) isolation of the top 10 

most abundant fragment ions for further fragmentation (MS3) by higher-energy collision 

dissociation (HCD) at 65% and detection in the Orbitrap at 50 000 resolutions, m/z range 100-500.  

 

Proteomic Data Analysis of Fusion™ Lumos™ Tribrid™ data 

The data files were merged for identification and relative quantification using Proteome Discoverer 

version 2.4 (Thermo Fisher Scientific). Swiss-Prot Human database was used for the database 

search, using the Mascot search engine v. 2.5.1 (Matrix Science, London, UK) with MS peptide 

tolerance of 5 ppm and fragment ion tolerance of 0.2 Da. Tryptic peptides were accepted with 0 

missed cleavage and methionine oxidation was set as a variable modification. Cysteine 

methylthiolation and TMT on peptide N-termini and on lysine side chains were set as fixed 

modifications. Percolator was used for PSM validation with the strict FDR threshold of 1%. 

Quantification was performed in Proteome Discoverer 2.4. The TMT reporter ions were identified 

with 3 mmu mass tolerance in the MS3 HCD spectra and the TMT reporter S/N values for each 

sample were normalized within Proteome Discoverer 2.4 on the total peptide amount. Only the 

quantitative results for the unique peptide sequences with the minimum SPS match % of 40 and 

the average S/N above 10 were included for the protein quantification. 

Proteomic data was compared to RNASeq results by pairing log2 fold-changes at the gene level 

and plotted in Fig. 6B. Data was plotted with R version 4.0.2 with ggplot2 version (3.3.5). 
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Lipid vesicle staining 

Liver spheroids in the culture compartments were fixed with 4% methanol-free paraformaldehyde 

(PFA;  28908, Thermo Scientific) at 4 °C overnight. On the following day, the spheroids were 

washed three times with PBS and then stored in PBS at 4 °C until use. Fixed spheroids were stained 

with 2 µM Nile Red (72485, Sigma-Aldrich) and 16 µM Hoechst 33342 (Invitrogen) in PBS. 

Samples were first incubated at 37 °C for 2 hours, followed by an overnight incubation at RT. Next, 

the staining solution was removed, and the compartments were washed three times with PBS. 

Fluorescence imaging was performed using confocal laser scanning microscope (LSM880 

Airyscan Zeiss,) and image processing and reconstruction were carried out using ZEN 3.2 software 

(Zeiss).  

 

Glycogen staining 

Liver compartments were washed with 0.1% BSA in PBS and the liver spheroids were detached 

from the bottom of the culture compartment using a sharp needle. The spheroids were transferred 

into 1.5 ml microtubes using wide-bore pipette tips for fixation using 4% methanol-free PFA at 4 

°C overnight. The spheroids were then washed three times with PBS and stored at 4 °C until use. 

PAS staining to visualize the storage of glycogen was performed by Histocenter (Mölndal, 

Sweden). Briefly, after standard paraffin embedding and sectioning, the sections were sequentially 

treated with 0.5% periodic acid, water, Schiff reagent, water, Weigert’s iron haematoxylin solution, 

water, hydrochloric acid, water, and 95% ethanol. Imaging was carried out using an inverted 

microscope (Axiovert 40 CFL, Zeiss).  

 

Cell proliferation analysis by EdU incorporation 

We developed a method to quantify cell proliferation in pancreatic islets by using EdU 

incorporation, automated HT imaging, optical slicing, and automated image analysis (Fig. S8A). 

To test robustness of the method, islets were cultured in Akura™ 96 Spheroid Microplate for 4 

days, either in Human Islet Maintenance Medium (untreated control) or in the presence of 10 µM 

of the MST1 kinase inhibitor 4-(5-amino-6-(1-oxo-1,2,3,4-tetrahydroisoquinolin-6-yl)pyrazin-2-

yl)-N-cyclopropyl-N-methylbenzenesulfonamide58 (CAS 1396771-17-7) which was used as a 

positive control. To label proliferating cells, media were supplemented with 10 µM EdU. Donor 

for the robustness analysis study was a male, 45 years with BMI of 29.8 and HbA1c of 5.10%.  

Fixation, permeabilization, and EdU staining were performed in Akura™ 96 Spheroid Microplates. 

The islets were fixed with 4% PFA at RT for 2 hours, washed twice with 0.1% BSA in PBS, and 

permeabilized with 1x BD Perm/Wash buffer (554723, BD Biosciences) for 1 hour at RT. Next, 

the islets were stained with Click-iT EdU reaction cocktail (C10638, Click-iT® Plus EdU Alexa 

Fluor® 555 Imaging Kit, Molecular Probes), for 2 hours at RT in dark. After removal of the 

reaction cocktail, islets were washed once with 1x BD Perm/Wash buffer and transferred into 

Akura™ 384 Spheroid Microplate (CS-09-003-02, InSphero). Finally, a sorbitol-based clearing 

reagent Scale S4(0)59 (40 (w/v)% D-(-)-Sorbitol (S3889, Sigma-Aldrich), 10(w/v)% Glycerol 

(G9012, Sigma-Aldrich), 4 M Urea (U0631, Sigma-Aldrich), 15-25(v/v)% DMSO) containing 3.0-

3.9 μM SiR-DNA60 (Spirochrome) for nuclear staining was added, and the plate was incubated 
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overnight at RT. The plate was then centrifuged at 700xg for 1 min to remove bubbles and collect 

islets in the middle of wells, and stored at 4 °C until imaging.  

Images were acquired on a CellVoyager 7000 high-throughput spinning disc confocal microscope 

(Yokogawa). All microwells were first screened using a 10X 0.16NA objective at 2x2 binning (Fig. 

S8B). A MATLAB-based Search First script (Wako Software Suite; Wako Automation) was used 

for automated detection of islet position in each micro-well. Then, high-resolution z-stacks of 200 

µm from well bottom were acquired for each islet at its exact position, using a 40X 0.75NA 

objective at 2x2 binning in 2 fluorescence channels – EdU-positive nuclei (Click-iT EdU Alexa 

Flour 555; 561 nm laser) and nuclei (SiR-DNA far-red DNA stain; 640 nm laser) (Fig. S8C). Using 

optical clearing in combination with 561 nm and 640 nm laser allowed for penetration of laser light 

and acquisition of fluorescent signal from throughout the islets, which usually have a diameter of 

100 - 150 µm. Analysis of total number of nuclei and EdU-positive nuclei was performed using 

Columbus™ Image Data Storage and Analysis system (ver. 2.8.1, Perkin Elmer). 

We observed that the percentage of EdU positive cells is largely independent of optical sampling 

distance in the range of 0.4-20 µM (Fig. S8D). Islets treated with the MST1 kinase inhibitor showed 

a significantly higher number of EdU positive cells as compared to the untreated control islets (Fig. 

S8E) demonstrating that the developed method can reliably separate different study groups.  

In the pancreas-liver co-cultures, 10 µM EdU was added into co-culture medium for the last 5 days 

to label proliferating cells. After finishing a co-culture, islets were first transferred from chips into 

individual wells of an Akura™ 96 Spheroid Microplate followed by fixation, permeabilization, 

staining, and imaging as described above. 

 

Statistical analysis 

GraphPad Prism software (Version 8) was used to plot the data and perform comparative analysis 

between the means of different conditions. For comparing two unpaired means of normal 

distributed data with homogenous variance, a two-tailed Student’s t-test or a multiple t-test using 

the Holm-Sidak method (in case of several independent comparisons e.g., for comparing gene 

expression of multiple genes between two conditions) was performed. Normality was tested using 

the Shapiro-Wilk normality test and equality of variance was tested using the F-test. A p value < 

0.05 was considered statistically significant. 

For comparing three or more means of normal distributed data with homogenous variance, a one-

way ANOVA was performed. Normality was tested using the Shapiro-Wilk normality test and 

equality of variance was tested using the Brown-Forsythe test. Bonferroni’s multiple comparison 

post-hoc test was used to compare the means of several conditions to a control mean and Sidak’s 

multiple comparison post-hoc test was used to compare the mean of selected pairs of conditions. 

A p value < 0.05 was considered statistically significant. 

Fold changes of gene expression in Fig. 3 and 5 and GSIS data in Fig. 3E were log-transformed for 

normality. The area under the glucose and insulin GTT curves was calculated with Prism using the 

trapezoidal method. 
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FIGURES 
 

 
 

Fig. 1. Pancreas-liver MPS for investigation of diabetic glucose dysregulation. (A) Healthy 

glucose regulation. Pancreatic islets prevent long-term hyperglycemia by secreting insulin which 

promotes glucose uptake and storage as well as de novo lipogenesis() and inhibits glucose release 

() from insulin-sensitive tissues including the liver, muscle, and adipose tissue. (B) Glucose 

regulation in the insulin-resistant state. Insulin resistance causes decreased glucose uptake and 

storage ( ) as well as increased glucose release ( ) while insulin-stimulated lipogenesis remains 

unaffected (). Adaptive insulin secretion () prevents hyperglycemia by normalizing glucose 

uptake and storage () and the inhibition of glucose release (). (C) Glucose regulation in type 

2 diabetes (T2D). Long-term hyperglycemia develops due to a reduced insulin secretion () which 
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reduces glucose uptake and storage () and increases glucose release (). (D) Schematic of the 

pancreas-liver co-culture in the Chip2 microphysiological system. Brightfield images show 40 

HepaRG/HHSteC liver spheroids in the outer culture compartment and 10 islets in the inner culture 

compartment of one Chip2 circuit on day 1 of co-culture. (E) Graphical illustrations of 

representative, previously reported, glucose and insulin responses in the pancreas-liver co-culture11 

visualize the development of insulin-resistance over time. Arrows indicate medium exchange. 

GTT; Glucose tolerance test. 
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Fig. 2. In silico supported experimental design for informed decision making. (A, B) 

Schematic representation of the hypothesis testing framework to unravel the cause of insulin 
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resistance in the pancreas-liver MPS. (A) Here, we considered two competing hypotheses (H1, H2) 

for the development of insulin resistance in the pancreas-liver MPS. Hypothesis H1 (A, left graph) 

assumes that insulin resistance is caused by hyperglycemia alone, while hypothesis H2 (A, right 

graph) assumes that insulin resistance is caused by hyperglycemia in combination with an 

additional diabetogenic factor. (B) Hypothesis testing is an iterative process, where mathematical 

models constructed from experimental data are used to test and reject hypotheses. (C) In silico 

guided experimental design to test the proposed hypotheses. The computational model was first 

calibrated for donor-dependent variations using data from a glucose tolerance test (GTT) on days 

1-3 and 7-9. Next, the computational model was used to select an insulin dose that was added to 

the co-cultures on day 13. This experimental design would lead to different glucose tolerances on 

day 13-15 and allow differentiation between H1 and H2. (D,E) Comparison between experimental 

data (dots) and model simulations (lines) in calibration phase (blue areas) and validation phase 

(green areas). The shaded areas (red and yellow) represent the model uncertainty. Both H1 and H2 

agree with calibration data for glucose (top) and insulin (below) but only H2 predicts glucose 

response during the validation step on days 13-15. Data in panels D, E are presented as mean ± 

SEM, n= 3. 
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Fig. 3. Hydrocortisone-induced insulin resistance and beta-cell dysfunction. (A) 

Hydrocortisone (HCT)-concentration dependent inhibition of glucose-stimulated insulin secretion 

(GSIS) of islets cultured in a normoglycemic co-culture medium. Model fitted to data using 

nonlinear regression. Differences to the control (no HCT, represented by dotted line) were 

evaluated by one-way ANOVA using Bonferroni’s multiple comparisons post-hoc test, **p < 0.01, 

****p < 0.0001. LGS; Low-glucose stimulation with 2.8 mM glucose (triangles). HGS; High-

glucose stimulation with 16.8 mM glucose (circles). (B) Overview of the four different 

experimental conditions studied in the pancreas-liver MPS. (C) Liver spheroid functionality shown 

by albumin secretion over the chip co-culture time. Symbols represent replicates from three 

independent studies. (D) Relative mRNA expression of key liver markers in the liver spheroids at 
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the end of co-culture. Symbols represent replicates from two independent studies, total n = 8. Data 

shown as fold changes to the high HCT hyperglycemic condition. Differences between high and 

low HCT concentration for the same glucose concentration were evaluated by one-way ANOVA 

using Sidak’s multiple comparisons post-hoc test, * < 0.05, **p < 0.01, *** < 0.001, ****p < 

0.0001. (E) GSIS response after high-glucose stimulation in islets cultured for 15 days in static or 

in chip co-culture. Data shown as a fold change to static islets cultured in the supplier's maintenance 

medium that served as a control. Symbols represent individual islets. An individual donor was used 

for each study. Differences between selected pairs were evaluated by one-way ANOVA using 

Sidak’s multiple comparisons post-hoc test, asterisks (*) show comparison between high and low 

HCT concentrations for the same glucose concentration, hashtags (#) show comparison between 

hyper- and normoglycemia for the same HCT concentration, ns = not significant, **p < 0.01, ****p 

< 0.0001, ## < 0.01, ### < 0.001, #### < 0.0001. Data was log-transformed for normality. 
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Fig. 4. Glucose tolerance of the pancreas-liver co-culture. (A) The mathematical model was 

calibrated using experimental data measured in pancreas-liver co-cultures exposed to a high HCT 

concentration. Experimental measurements of glucose (dots, top row) and insulin (dots, bottom 

row) were acquired during GTTs on days 1-3 and 13-15 under normo- and hyperglycemic glucose 

concentrations. (B) The calibrated model was used to predict glucose (top row) and insulin 

responses (bottom row) at physiological HCT concentration. These predictions were compared to 

the corresponding experimental measurements (dots) from GTTs on day 1-3 (left) and 13-15 

(right). Data points depicted with an X are used for baseline correction of insulin sensitivity and 

insulin secretion capacity. The shaded areas in panels a-b represent the model uncertainty, and the 
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data are presented as mean ± SEM, n=4-6. (c) Area under the curve (AUC) for glucose (left) and 

insulin (right). Symbols represent individual pancreas-liver co-cultures from one study. 

Differences between selected pairs of conditions (day 13-15 compared to day 1-3) were evaluated 

by one-way ANOVA using Sidak’s multiple comparisons post-hoc test, ns = not significant, **p < 

0.01, ***p < 0.001, ****p < 0.0001. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.03.547412doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.03.547412
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Page 38 of 41 

 

 

Fig. 5. Insulin resistance-associated phenotype of HepaRG/HHSteC liver spheroids. (A, B, C) 

Gene expression of enzymes involved in hepatic glucose metabolism (A), ketone-body synthesis 

(B), and lipid metabolism (C). Data shown as fold change between diseased (11 mM glucose, 50 
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µM HCT) and healthy conditions (5.5 mM glucose, 10 nM HCT) in a box-whisker plot with 

geometric mean and min-max values. Symbols represent replicates from two independent studies, 

total n = 8. Differences between the diseased and the healthy condition were evaluated by multiple 

t-tests using the Holm-Sidak method for multiple comparisons without assuming a consistent 

standard deviation. (D) Glycogen storage visualized by periodic acid-Schiff (PAS) staining. Scale 

bar, 50 µm. (E) Ketone-body synthesis represented by 3-hydroxybutyrate concentration in the co-

culture supernatants. Symbols represent co-culture replicates from three independent studies. 

Differences between day 3 and day 13 were evaluated by multiple t-tests using the Holm-Sidak 

method for multiple comparisons without assuming a consistent standard deviation. (F) 

Intracellular lipid vesicles visualized by Nile Red staining (amber colour). Blue denotes DAPI-

stained nuclei. Scale bar, 50 µm. 
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Fig. 6. Evaluation of liver-derived effects on islet functions. (A) Proliferation of islets in the 

diseased (11 mM glucose, 50 µM HCT) and healthy (5.5 mM glucose, 10 nM HCT) conditions at 

the end of the culture as analysed by the percentage EdU-positive cells. Squares (study 2) and 

triangles (study 3) represent individual islets from two independent co-culture studies. Differences 

between the static and the co-culture were evaluated by a two-tailed unpaired t-test, ns = not 

significant, ****p < 0.0001. (B) Multi-omics analysis on the effect of hyperglycemia vs. 

normoglycemia on liver-secreted proteins. Data from RNASeq (HepaRG/HHSteC spheroids) and 

proteomics (co-culture supernatants) were merged at the gene level. Point colour indicate 

significance of change (FDR<0.05 and p<0.05 for RNASeq and proteomics data, respectively). 

Gene names are marked for genes with RNASeq and proteomic log2 fold-changes > 1. 

Transcriptomics data is from three independent studies and proteomics data from four independent 
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studies. (C) Secretion of IL-1R2 in the co-cultures over time. Squares (study 2) and triangles (study 

3) represent individual islets from two independent co-culture studies, total n = 8. (D) IL-1R2 

stimulates cell proliferation at low dose (0.3 ng/mL) but not at the high dose (30 ng/mL) in islets 

mono-cultured in static condition in Human Islet Maintenance Medium (InSphero). Control, 0 

ng/mL IL-1R2. Positive control, low hydrocortisone-normoglycemic (healthy) co-culture medium. 

Symbols represent individual islets. Differences to the control were evaluated by one-way ANOVA 

using Dunnett’s multiple comparisons post-hoc test, ns = not significant, ***p < 0.001. 
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