

1 **A RabGAP-Rab GTPase pair regulates plant autophagy and immunity**

2
3 Enoch Lok Him Yuen¹, Alexandre Y Leary¹, Marion Clavel^{2,3}, Yasin Tumtas¹, Azadeh Mohseni²,

4 Lorenzo Picchianti², Mostafa Jamshidiha¹, Pooja Pandey¹, Cian Duggan¹, Ernesto Cota¹, Yasin Dagdas^{2,*},

5 Tolga O Bozkurt^{1,*}

6
7 **Affiliation**

8 ¹: Department of Life Sciences, Imperial College London, London, UK.

9 ²: The Gregor Mendel Institute of Molecular Plant Biology, Vienna Biocenter, Vienna, Austria.

10 ³: Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany.

11

12 *Correspondence to: o.bozkurt@imperial.ac.uk (T.O.B.), yasin.dagdas@gmi.oeaw.ac.at (Y.D.)

13

14 **Abstract**

15

16 Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain
17 cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking
18 is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as an
19 important membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses
20 autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase
21 essential for autophagosome formation and defense-related secretion. Rab3GAPL from *Nicotiana*
22 *benthamiana*, but not its mutated form deficient in ATG8 binding, reduced autophagic flux in *N.*
23 *benthamiana* and *Arabidopsis*. Furthermore, *Rab3GAPL*-knockout mutants of the liverwort *Marchantia*
24 *polymorpha* exhibited enhanced autophagic flux under both normal and heat stress conditions,
25 suggesting that Rab3GAPL's negative regulatory role in autophagy is conserved in land plants. Beyond
26 autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen
27 *Phytophthora infestans* by preventing defense-related secretion. Altogether, our results suggest that
28 Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by
29 restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and
30 ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy
31 and immunity.

32

33

34

35

36

37 **Introduction**

38

39 Plants face various environmental stresses such as temperature fluctuations, drought, and nutrient
40 deficiencies on a daily basis. To effectively cope with such challenges and thrive in diverse
41 environments, plants rely on autophagy, a catabolic process that aids in maintaining cellular
42 homeostasis (1, 2). Autophagy facilitates the degradation of unwanted or harmful cellular components
43 via the lytic compartments of the cells known as lysosomes or vacuoles. Importantly, autophagy also
44 plays a vital role in plant immunity, although the specific underlying mechanisms are still under debate
45 (3). For instance, autophagy can sequester pathogen molecules and even viruses for degradation (4, 5).
46 On the contrary, plant pathogens have evolved strategies to evade or manipulate antimicrobial
47 autophagy, underscoring its significance in plant defense (6).

48

49 Autophagy is a multistep process initiated by the induction of an isolation membrane that expands and
50 closes, forming the mature autophagosomes — atypical vesicles with double membranes (7). The
51 process of autophagy is orchestrated by a set of highly conserved autophagy-related (ATG) proteins that
52 coordinate the biogenesis and maturation of autophagosomes (8). Studies in the last decade have
53 revealed that autophagy is not only a bulk degradation process that is triggered during starvation, but
54 also encompasses selective pathways that recycle specific cellular components via dedicated cargo
55 receptors, adaptors, or modulators (9). At the heart of the autophagy machinery lies the ubiquitin-like
56 protein ATG8, which functions as a hub to recruit autophagy cargo receptors and modulatory proteins.
57 Once ATG8 undergoes lipid modification by the autophagy initiation complex, it becomes embedded
58 within the inner and outer leaflets of the autophagosomal membranes. This localization of lipidated
59 ATG8 is pivotal in coordinating the formation, transport, and fusion events of autophagosomes (10, 11).
60 ATG8-interacting proteins contain short linear motifs termed ATG8-interacting motifs (AIMs, also
61 known as LC3-interacting regions (LIRs) (12)). The canonical AIM sequence ([W,Y,F][X][X][L,I,V])
62 consists of an aromatic amino acid followed by any two amino acids and a hydrophobic residue, which
63 are docked onto the W and L pockets on ATG8 (13). The discovery of proteins that carry functional AIMs
64 is crucial for elucidating various aspects of autophagy. We have recently developed an AI-guided
65 pipeline, utilizing AlphaFold2-multimer (AF2-M), for prediction of both canonical and non-canonical
66 AIM residues, enabling fast-forward discovery of autophagy receptors and modulators (14).

67

68 Intriguingly, pathogens can also exploit ATG8 as a hub to either subvert antimicrobial autophagy or tap
69 into nutrient sources of their host cells (15, 16). Previously, we have shown that the Irish potato famine
70 pathogen *Phytophthora infestans* secretes the effector protein PexRD54 which carries a canonical AIM
71 that is required to subvert defense-related autophagy (17, 18). PexRD54 also promotes autophagosome
72 formation by mimicking starvation conditions. These pathogen-induced autophagic vesicles are
73 subsequently diverted to the host-pathogen interface, possibly as nutrient resources (15). Notably,

74 PexRD54 acts as a scaffold between ATG8 compartments and vesicles labeled by the small GTPase
75 Rab8a, likely to channel host lipid sources to stimulate autophagosome biogenesis (15). This further
76 underscores the dynamic relationship between vesicle trafficking and autophagy.
77

78 Rab GTPases (Rabs), key components that regulate vesicle formation, transport, tethering and fusion
79 events, have been identified to participate in different stages of autophagy (19-21). For instance, yeast
80 and plant Rab1 members are crucial for early autophagosome formation (22, 23), while mammalian and
81 plant Rab8a members have also been implicated in autophagy (15, 24). Rabs function as molecular
82 switches that dynamically transit between an active GTP-bound state and an inactive GDP-bound state.
83 These switches are tightly regulated by guanine nucleotide exchange factors (GEFs) that promote GTP
84 binding and GTPase-activating proteins (GAPs) that catalyze GTP hydrolysis. RabGAPs, in particular,
85 deactivate their Rab substrates, thereby determining their localization and function (25). Recently,
86 mammalian TBC (Tre2/Bub2/Cdc16) domain-containing RabGAPs have been discovered to carry
87 functional AIMs and modulate autophagy (26). However, the role of TBC-free RabGAPs in autophagy has
88 not yet been demonstrated. Furthermore, the Rab substrate of RabGAPs, the trafficking pathways they
89 govern, and the extent to which they regulate autophagy remain unknown in plants.
90

91 Here, we identified a TBC-free RabGAP protein, Rab3GAPL, as a key regulator of vesicle trafficking that
92 interacts with ATG8 and Rab8a to suppress plant autophagy. Rab3GAPL also modulates the immune
93 response against *P. infestans* by perturbing Rab8a vesicle dynamics and impairing defense-related
94 secretion towards the pathogen interface. We uncovered an intricate interplay between a RabGAP
95 protein, its Rab substrate, and the core autophagy receptor ATG8, underscoring their vital roles in
96 regulating membrane trafficking processes essential for both autophagy and immunity.
97

98

99

100

101

102

103

104

105

106

107

108

109

110

111 **Results**

112

113 **1. A plant RabGAP, Rab3GAPL, directly interacts with ATG8CL through its C-terminal AIM**

114 To uncover the roles of endomembrane trafficking in plant autophagy, we set out to identify vesicle
115 transport regulators that associate with the autophagy machinery. We used our recently established
116 Alphafold2-multimer (AF2-M)-assisted approach (14) to identify candidate trafficking components
117 from our previous proteomics screen of ATG8CL interactors in the solanaceous model plant *Nicotiana*
118 *benthamiana* (27). Through AF2-M-assisted re-analysis of the ATG8CL proteome, we identified a Rab
119 GTPase-activating protein that carries specific domains to govern both vesicle trafficking and
120 autophagy. Specifically, this RabGAP comprises the conserved Rab3GAP-like catalytic subunit at its core
121 (Rab3GAPL hereafter), flanked by two helix-bundles and an N-terminal alpha-helix, alongside a C-
122 terminal AIM (WTIV) that is predicted by AF2-M to bind to the AIM docking site on ATG8CL (Fig. 1A-B
123 and S1A). The predicted structure reveals a stable interaction interface between Rab3GAPL AIM and
124 ATG8CL AIM docking sites (Fig. 1B and S1A).

125

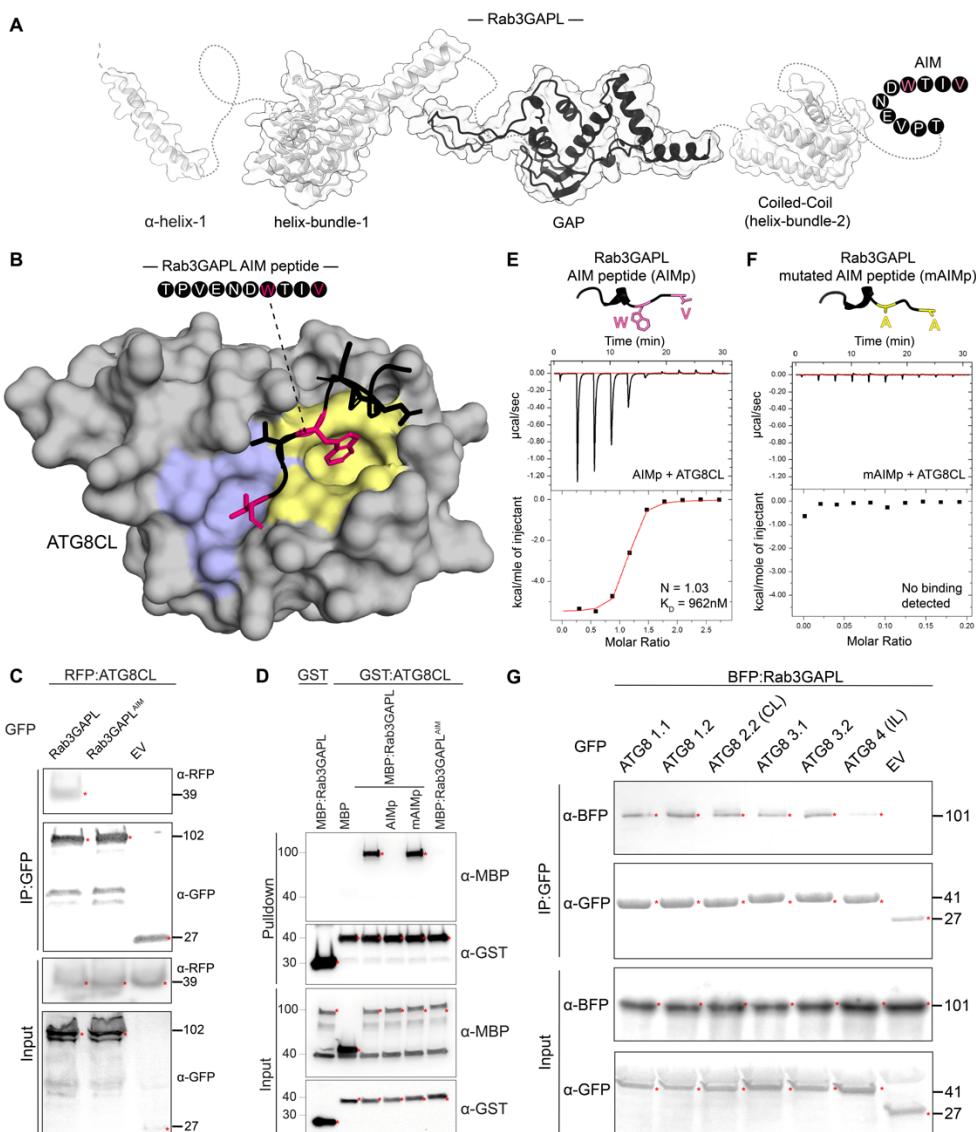
126 To confirm the AIM as the mediator of the interaction between Rab3GAPL and ATG8CL, we substituted
127 the key AIM residues tryptophan and valine with alanines (WTIV > ATIA) and performed co-
128 immunoprecipitation (co-IP) assays. We generated N-terminal green fluorescent protein (GFP) fusions
129 of wild-type (WT) Rab3GAPL and its AIM mutant (Rab3GAPL^{AIM}) and investigated their interaction with
130 ATG8CL. In contrast to GFP:Rab3GAPL, neither the GFP:Rab3GAP^{AIM} mutant nor the GFP control were
131 able to pull down RFP:ATG8CL from *N. benthamina* protein extracts in the co-IP experiments (Fig. 1C).
132 This observation demonstrates the specificity of the interaction between Rab3GAPL and ATG8CL, which
133 is dependent on the presence of the C-terminal AIM as predicted by AF2-M (Fig. 1B-C). Importantly, the
134 loss of ATG8CL-Rab3GAPL^{AIM} interaction cannot be attributed to altered localization or reduced stability
135 of the AIM mutant, given the comparable protein levels and cytoplasmic localization patterns of both
136 GFP:Rab3GAP and GFP:Rab3GAP^{AIM} constructs (Fig. 1C and S1B). These findings validate that Rab3GAPL
137 interacts with ATG8CL through its C-terminal AIM, indicating a potential physical interaction between
138 the two proteins.

139

140 To further investigate the potential AIM-mediated physical interaction between Rab3GAPL and ATG8CL,
141 we performed *in vitro* glutathione S-transferase (GST) pull-down assays using MBP fusions of Rab3GAPL
142 and Rab3GAPL^{AIM} in combination with GST:ATG8CL or GST (negative control) expressed in *Escherichia*
143 *coli*. Consistent with AF2-M predictions and *in planta* co-IP assays, GST:ATG8CL specifically pulled down
144 Rab3GAPL but not its AIM mutant Rab3GAPL^{AIM}. Moreover, Rab3GAPL-ATG8CL interaction was
145 abolished in the presence of the AIM peptide (AIMp) derived from the pathogen effector PexRD54 that
146 binds ATG8CL, but not with the mutated AIM peptide (mAIMp), providing further support for the AIM-
147 mediated physical binding of Rab3GAPL and ATG8CL (Fig. 1D).

148

149 To strengthen our findings, we conducted isothermal titration calorimetry (ITC) assays using a synthetic
150 Rab3GAPL AIM peptide (Rab3GAPL-AIMp), which consists of the last 10 amino acid residues of
151 Rab3GAPL that contains the AIM region. The Rab3GAPL-AIMp bound to ATG8CL with high affinity and
152 in a one-to-one ratio ($K_D = 962$ nM and $N = 1.03$ based on ITC) (Fig. 1E). In contrast, we did not detect
153 any association between the mutated AIM peptide of Rab3GAPL and ATG8CL (Fig. 1F). These results
154 conclusively show that Rab3GAPL's C-terminal AIM is both necessary and sufficient to directly bind
155 ATG8CL.


156

157 In plants, ATG8 has diversified into multiple isoforms (ATG8A-I), forming distinct ATG8 clades that
158 potentially coordinate different selective autophagy pathways (27, 28). Therefore, we next set out to
159 determine the specificity of the binding between Rab3GAPL and other solanaceous ATG8 isoforms. In
160 co-IP assays using plant extracts, we observed that Rab3GAPL interacts with various potato ATG8
161 members exhibiting comparable affinities. Notably, the interaction between Rab3GAPL and the ATG8IL
162 isoform appeared relatively weaker (Fig. 1G). This finding suggests that Rab3GAPL may have a broader
163 functional role in autophagy by interacting with multiple ATG8 isoforms. All in all, these results show
164 Rab3GAPL binds to the core autophagy protein ATG8 via a canonical C-terminal AIM.

165

166

167

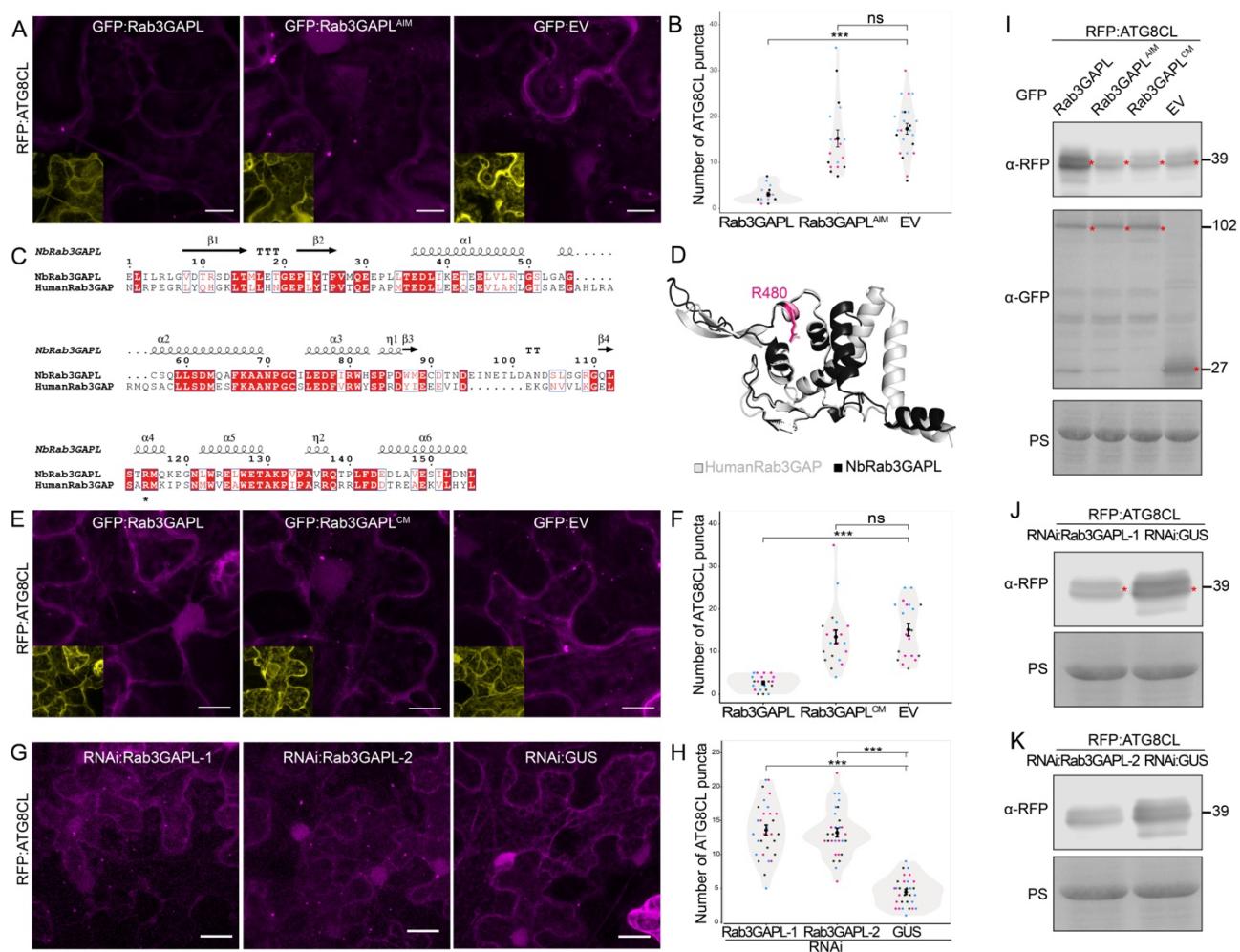
168

169 **Figure 1. Rab3GAPL binds ATG8CL through a canonical AIM.** (A) AF2 model of Rab3GAPL showing
170 different regions (from N-terminal to C-terminal): A long alpha-helix (α-helix-1); a helix-bundle (helix-
171 bundle-1) upstream of the conserved Rab3GAPL catalytic subunit; a coiled-coil region with a 4-helix
172 bundle (helix-bundle-2), and a C-terminal AIM region. (B) AF2-M predicted structural model of
173 Rab3GAPL and ATG8CL interaction displaying the docking of the Rab3GAPL-AIM peptide to the ATG8CL
174 AIM pocket. Yellow and blue regions highlight W and L pockets on ATG8CL, respectively. (C) Rab3GAPL
175 binds to ATG8CL via its AIM *in planta*. RFP:ATG8CL was transiently co-expressed with either
176 GFP:Rab3GAPL, GFP:Rab3GAPL^{AIM}, or GFP:EV. IPs were obtained with anti-GFP antiserum. Total protein
177 extracts were immunoblotted. Red asterisks indicate expected band sizes. (D) *In vitro* GST pull-down
178 assay shows Rab3GAPL-ATG8CL physical interaction is AIM-dependent. Bacterial lysates containing
179 recombinant proteins were mixed and pulled down with glutathione magnetic agarose beads. Input and
180 bound proteins were visualized by immunoblotting with anti-GST and anti-MBP antibodies. A peptide
181 derivative (AIMp) of the pathogen effector PexRD54's AIM region depleted Rab3GAPL from ATG8CL
182 complexes, whereas the mutated AIM peptide (mAIMp) had no effect. (E) The AIM peptide of Rab3GAPL

183 (Rab3GAPL-AIMp) directly binds to ATG8CL *in vitro*. The binding affinity of Rab3GAPL-AIMp to ATG8CL
184 was determined using isothermal titration calorimetry (ITC). The upper panel shows heat differences
185 upon injection of Rab3GAPL-AIMp into ATG8CL and the bottom panel shows integrated heats of
186 injection and the best fit line to a single site binding model using MicroCal Origin. $K_D = 962$ nM, $N = 1.03$.
187 (F) No binding was detected between the mutated AIM peptide of Rab3GAPL (Rab3GAPL-mAIMp) and
188 ATG8CL using ITC. (G) Rab3GAPL binds to different ATG8 isoforms that are transiently expressed in *N.*
189 *benthamiana*. BFP:Rab3GAPL was transiently co-expressed with either GFP:ATG8 1.1, GFP:ATG8 1.2,
190 GFP:ATG8 2.2 (CL), GFP:ATG8 3.1, GFP:ATG8 3.2, GFP:ATG8 4 (IL) or GFP:EV. IPs were obtained with
191 anti-GFP antiserum. Total protein extracts were immunoblotted. Red asterisks indicate expected band
192 sizes.
193

194 **2. Rab3GAPL negatively regulates autophagy in an AIM and GAP-dependent manner**

195 Having established the physical interaction of Rab3GAPL and ATG8CL, we next investigated the role of
196 Rab3GAPL in autophagy. We first investigated the impact of Rab3GAPL on autophagic puncta using
197 confocal laser scanning microscopy (CLSM). To this end, we imaged cells transiently expressing
198 GFP:Rab3GAPL, the AIM mutant GFP:Rab3GAPL^{AIM}, or a GFP control alongside the autophagosome
199 marker RFP:ATG8CL and quantified autophagosome numbers. In cells expressing GFP:Rab3GAPL we
200 observed a greater than two-fold reduction in RFP:ATG8CL puncta compared to cells expressing a GFP
201 control. In contrast, GFP:Rab3GAPL^{AIM}-expressing cells did not show any significant difference in the
202 relative amount of RFP:ATG8CL puncta (Fig. 2A-B). The observed decrease in the quantity of autophagic
203 puncta caused by overexpression of Rab3GAPL, but not its AIM mutant, signals at the possibility that
204 Rab3GAPL negatively regulates autophagy, which relies on its ability to bind ATG8.
205


206 To determine the extent to which Rab3GAPL modulates autophagy, we next sought to determine
207 whether the reduction in autophagosome numbers caused by Rab3GAPL overexpression is dependent
208 on the GAP activity of Rab3GAPL. Previously, it was shown that the GAP function of human Rab3GAP
209 was compromised by the mutation of the conserved arginine finger, which typically establishes
210 connections with the γ -phosphate of the GTP nucleotide (29). The structural alignment of the Rab3GAPL
211 and human Rab3GAP protein sequences revealed that the catalytic arginine finger in the human
212 Rab3GAP is conserved in *N. benthamiana* (R480) with the consensus sequence of LSxRM (Fig. 2C). The
213 AF2 predictions of the GAP domains of human and *N. benthamiana* Rab3GAPL showed a high level of
214 structural conservation of the GAP domain architecture with a root-mean-square deviation (RMSD)
215 value of 0.486. Additionally, the catalytic arginine finger was positioned consistently in both predicted
216 structures (Fig. 2D and S2A). Based on these observations, we generated the catalytic mutant of the *N.*
217 *benthamiana* Rab3GAPL (Rab3GAP^{CM} hereafter) by mutating the conserved arginine at position 480 to
218 alanine (R480A). Unlike GFP:Rab3GAPL which reduces autophagosome numbers (Fig. 2A-B, E-F),
219 GFP:Rab3GAPL^{CM} did not significantly alter the amount of RFP:ATG8CL-labeled autophagosomes

220 compared to the GFP control (Fig. 2E-F). Comparing the AF2 models of Rab3GAPL and Rab3GAPCM did
221 not reveal any global structural alterations resulting from the point mutation (Fig. S2B). To further
222 ensure that Rab3GAPL^{CM} is stably expressed and that its overall structure is not disrupted, we tested its
223 stability as well as its ability to associate with ATG8CL *in vivo*. In these assays, we also used a dual mutant
224 of Rab3GAPL (Rab3GAPL^{CM/AIM}) carrying both the AIM and GAP mutations as an additional control.
225 Western blots of the plant protein extracts (input) and pull-down assays (output) showed that
226 GFP:Rab3GAPL^{CM} was stably expressed and was able to interact with RFP:ATG8CL, whereas the negative
227 control GFP:Rab3GAP^{CM/AIM} dual mutant did not associate with ATG8CL (Fig. S2C). These results
228 substantiate structural predictions that the overall protein architecture of Rab3GAPL^{CM} is not perturbed.
229 We conclude that the GAP activity of Rab3GAP is required for its ability to suppress ATG8CL-
230 autophagosome numbers.

231
232 Next, we determined the effect of *Rab3GAPL* silencing on autophagy by quantifying the number of
233 RFP:ATG8CL-autophagosomes. In contrast to the overexpression results, silencing *Rab3GAPL* with two
234 independent hairpin RNA interference (RNAi) constructs—one targeting the coding region
235 (RNAi:Rab3GAPL-1) and the second one targeting the three prime untranslated region (3'UTR) of
236 *Rab3GAPL* (RNAi:Rab3GAPL-2)—increased the amount of RFP:ATG8CL puncta by greater than two-fold
237 compared to a β-glucuronidase silencing control (RNAi:GUS) (Fig. 2G-H, S2D). These results suggest that
238 Rab3GAPL suppresses autophagy via the AIM and GAP domains.

239
240 The potential reason for the reduction in autophagy puncta resulting from the overexpression of
241 Rab3GAPL may be attributed to a decrease in autophagosome formation or an increase in
242 autophagosome degradation. To address this, we conducted autophagic flux assays upon
243 overexpression or silencing of Rab3GAPL. We first investigated the impact of Rab3GAPL overexpression
244 on the protein levels of ATG8CL in *N. benthamiana*. To measure autophagic flux, we extracted proteins
245 from *N. benthamiana* leaves co-expressing RFP:ATG8CL in combination with GFP:Rab3GAPL,
246 GFP:Rab3GAPL^{AIM}, GFP:Rab3GAPL^{CM} or an empty vector control at four days post transient expression
247 and performed western blotting. In three independent experiments, overexpression of GFP:Rab3GAPL
248 led to increased relative protein levels of RFP:ATG8CL, whereas overexpression of GFP:Rab3GAPL^{AIM},
249 GFP:Rab3GAPL^{CM} or GFP vector control did not show the same effect (Fig. 2I and S2E). These results are
250 in line with our findings that only Rab3GAPL, and not its AIM or GAP mutants, modifies the quantity of
251 autophagosomes (Fig. 2A-B, E-F). In accordance with the overexpression assays, the attenuation of
252 Rab3GAPL gene expression through RNAi:Rab3GAPL-1 and RNAi:Rab3GAPL-2 resulted in a decrease in
253 RFP:ATG8CL levels relative to an RNA interference construct that targeted GUS (Fig. 2J-K and S2F).
254 These results suggest that Rab3GAPL negatively regulates autophagy at the autophagosome biogenesis
255 stage.

256

257

258 **Figure 2. Rab3GAPL suppresses autophagy in an AIM and catalytic activity-dependent manner.**
259 (A-B) Rab3GAPL reduces the number of ATG8CL autophagosomes in an AIM-dependent manner. (A) Confocal micrographs of *N. benthamiana* leaf epidermal cells transiently expressing RFP:ATG8CL with GFP:Rab3GAPL, GFP:Rab3GAPL^{AIM} or GFP:EV. Images shown are maximal projections of 17 frames with 1.3 μ m steps. Scale bars represent 10 μ m. (B) Rab3GAPL expression significantly reduces ATG8CL autophagosomes (2, N = 18 images) compared to EV control (17, N = 18 images), while Rab3GAPL^{AIM} expression has no significant effect on the number of ATG8CL autophagosomes (13, N = 18 images) compared to EV control. Statistical differences were analyzed by Mann-Whitney U test in R. Measurements were highly significant when p<0.001 (***)�. (C) Amino acid alignment of the GAP domains of human Rab3GAP and *N. benthamiana* Rab3GAPL proteins. * denotes the conserved catalytic arginine finger. (D) Structural alignment of the GAP domains of human Rab3GAP and *N. benthamiana* Rab3GAPL. Structural predictions were obtained via AF2. The model shows conservation of the positioning of the catalytic arginine finger. (E-F) Rab3GAPL reduces the number of ATG8CL autophagosomes in a catalytic activity-dependent manner. (E) Confocal micrographs of *N. benthamiana* leaf epidermal cells transiently expressing RFP:ATG8CL with GFP:Rab3GAPL, GFP:Rab3GAPL^{CM} or GFP:EV. Images shown are maximal projections of 17 frames with 1.5 μ m steps. Scale bars represent 10 μ m. (F) Rab3GAPL expression significantly reduces ATG8CL autophagosomes (3, N = 20 images) compared to EV control. Statistical differences were analyzed by Mann-Whitney U test in R. Measurements were highly significant when p<0.001 (***)�. (G) Confocal micrographs of RFP:ATG8CL with RNAi:Rab3GAPL-1, RNAi:Rab3GAPL-2, and RNAi:GUS. Scale bars are present in each panel. (H) Dot plot of ATG8CL puncta number. Y-axis: Number of ATG8CL puncta (0-25). X-axis: RNAi:Rab3GAPL-1, RNAi:Rab3GAPL-2, GUS. Statistical significance: *** p < 0.001." data-bbox="25 519 907 903"/>

275 compared to EV control (14.5, N = 20 images), while Rab3GAPL^{CM} expression has no significant effect
276 on the number of ATG8CL autophagosomes (12, N = 20 images) compared to EV control. Statistical
277 differences were analyzed by Mann-Whitney U test in R. Measurements were highly significant when
278 p<0.001 (**). (G-H) RNAi-mediated silencing of Rab3GAPL increases the number of ATG8CL
279 autophagosomes. (G) Confocal micrographs of *N. benthamiana* leaf epidermal cells transiently
280 expressing RNAi:Rab3GAPL-1, RNAi:Rab3GAPL-2 or RNAi:GUS. Images shown are maximal projections
281 of 24 frames with 1.3 μ m steps. Scale bars represent 10 μ m. (H) Silencing Rab3GAPL-1 (13, N = 30
282 images) or Rab3GAPL-2 (13, N = 30 images) significantly increases the number of ATG8CL
283 autophagosomes compared to GUS silencing control (4.5, N = 30 images). Statistical differences were
284 analyzed by Welch's T-test in R. Measurements were highly significant when p<0.001 (**). (I-K)
285 Rab3GAPL suppresses autophagic flux in an AIM and catalytic activity-dependent manner. (I) Western
286 blot shows depletion of RFP:ATG8CL is reduced by GFP:Rab3GAPL compared to GFP:Rab3GAPL^{AIM},
287 GFP:Rab3GAPL^{CM}, or EV control. Total protein extracts were prepared 4 days post agroinfiltration and
288 immunoblotted. Red asterisks show expected band sizes. (J-K) Western blots show depletion of
289 RFP:ATG8CL is increased by silencing Rab3GAPL using either of the two silencing constructs (J)
290 RNAi:Rab3GAPL-1, or (K) RNAi:Rab3GAPL-2 compared to the GUS silencing control. Total protein
291 extracts were prepared 4 days post agroinfiltration and immunoblotted. Red asterisks show expected
292 band sizes.

293

294 **3. The negative regulatory role of Rab3GAPL in autophagy is broadly conserved in land plants**

295 We next investigated whether the regulatory function of Rab3GAPL in autophagy is conserved in other
296 plant species. To test this, we analyzed Rab3GAPL sequences from phylogenetically diverse plants,
297 including wheat, *Arabidopsis*, *N. benthamiana*, potato, and the liverwort *Marchantia polymorpha*. Our
298 analysis of Rab3GAPL sequences revealed that the GAP domain was conserved across all plant species
299 (Fig. S3A). Likewise, the AIM is highly conserved among all tested plant species, with *Arabidopsis* being
300 the exception. *Arabidopsis* Rab3GAPL has a deletion in the key AIM residue W, along with upstream
301 negatively charged residues that are known to be essential for interactions with positively charged
302 surface residues of the AIM pocket (Fig. 3A and S3A).

303

304 The absence of the key AIM residues in Rab3GAPL of *Arabidopsis* (AtRab3GAPL) raised the question of
305 whether it can bind to ATG8. To investigate this further, we used AF2-M to predict ATG8s in complex
306 with Rab3GAPL sequences used in the MUSCLE analysis. Consistent with the multiple sequence
307 alignment findings, the predicted models revealed that all tested Rab3GAPL proteins possess functional
308 AIMs that occupy the AIM pockets on their respective ATG8 proteins, with the exception of AtRab3GAPL
309 (Fig. 3B and S3B). These results suggest that while the regulatory function of Rab3GAPL in autophagy is
310 largely conserved, it may not be present in certain plant species, including *Arabidopsis*.

311

312 To gain additional insights, we performed a BLAST search of the Rab3GAPL protein sequence against
313 the Brassicales order of flowering plants, which includes *Arabidopsis* as well as economically important
314 crops such as cabbage, broccoli, mustard, and papaya. Interestingly, while the papaya (Caricaceae)
315 Rab3GAPL carries an intact AIM, Rab3GAPLs from the Brassicaceae and Cleomaceae families, which
316 diverged over 40 million years ago (30), had deletions in their AIM residues as in the case of *Arabidopsis*
317 (Fig. 3A and S3C). Considering our results that Rab3GAPL's AIM residues are critical for autophagy
318 suppression (Fig. 2), these findings suggest that the regulation of autophagy by Rab3GAPL may vary
319 among different plant species. Further investigations are required to explore the impact of the loss of
320 AIM in Rab3GAPLs from Brassicaceae and Cleomaceae.

321

322 Next, we investigated the potential of heterologous expression of Rab3GAPL from *N. benthamiana*
323 (NbRab3GAPL) to inhibit autophagy in *Arabidopsis*. To assess this, we stably expressed
324 GFP:NbRab3GAPL or GFP:NbRab3GAPL^{AIM} in *Arabidopsis* lines that express mCherry:ATG8e and
325 measured the autophagic flux by analyzing the cleavage of mCherry (free mCherry) from
326 mCherry:ATG8e fusion protein through western blotting (31, 32). We analyzed the impact of Rab3GAPL
327 overexpression on basal autophagy and autophagy induced by carbon starvation by comparing the
328 mCherry signal ratios in the GFP:Rab3GAPL/mCherry:ATG8e and GFP:Rab3GAPL^{AIM}/mCherry:ATG8e
329 lines, alongside the *atg5-1* autophagy deficient mutants that we used as a negative control. As expected,
330 protein extracts from *atg5-1* lines showed lower mCherry/mCherry:ATG8e ratios in both carbon
331 starvation and control conditions, indicating reduced autophagic flux across three independent
332 experiments (Fig. 3C and S3D). Similarly, plants overexpressing GFP:Rab3GAPL exhibited reduced
333 mCherry/mCherry:ATG8e ratios in both conditions, suggesting decreased autophagic degradation (Fig.
334 3C and S3D). In contrast, the GFP:Rab3GAPL^{AIM} mutant did not show any reduction in the autophagic
335 degradation of mCherry:ATG8e, consistent with the autophagic flux assays in *N. benthamiana* (Fig. 2I-
336 K). These results provide evidence that Rab3GAPL from *N. benthamiana* can suppress autophagy in
337 *Arabidopsis*.

338

339 The conservation of the AIM and GAP domain in liverworts implies their significance in Rab3GAPL
340 function throughout land plants, dating back at least 400 million years. Having observed the
341 interference of Rab3GAPL with autophagic flux in two dicot models, we investigated whether the
342 negative regulation of autophagy by Rab3GAPL is maintained in liverworts. To perform autophagic flux
343 assays, we first generated two independent *M. polymorpha* Rab3GAPL CRISPR knockout mutants,
344 designated as *Mp-rab3gapl-1* and *Mp-rab3gapl-2*, in a GFP:ATG8b background (Fig. S3E). We then
345 compared the GFP/GFP:ATG8b protein signal ratios in the WT and mutant genotypes under both control
346 and heat stress conditions across three independent experiments. The GFP/GFP:ATG8b ratios were
347 consistently higher in the *Mp-rab3gapl* mutant lines than in the control plants, indicating increased

348 ATG8 autophagic flux in *M. polymorpha* (Fig. 3D and S3F). These findings demonstrate that the knockout
349 of *Rab3GAPL* enhances ATG8 autophagic flux in *M. polymorpha*.

350

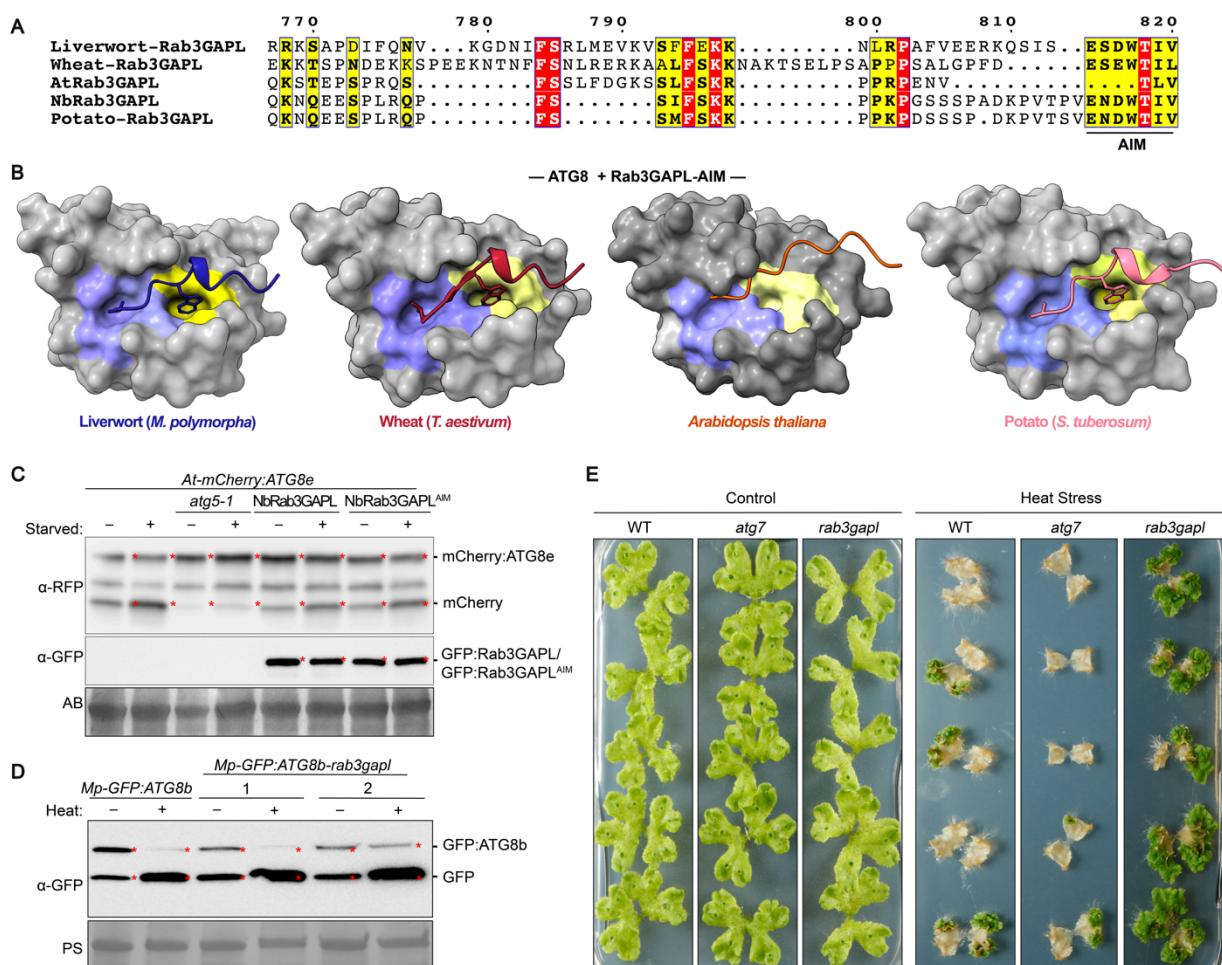
351 Given the well-established beneficial impact of autophagy on heat stress tolerance and recovery (33-
352 36), we next investigated whether enhanced autophagic flux observed in *Mp-rab3gapl* mutant lines can
353 boost recovery from heat stress. To assess this, we compared the survival rates of WT plants, *Mp-*
354 *rab3gapl* mutant lines, and *atg7* mutants deficient in autophagy functionality under heat stress
355 conditions at 37°C, prior to recovery. We observed a notable recuperation from heat stress in the *Mp-*
356 *rab3gapl* mutant plants compared to WT plants (Fig. 3E). In contrast, the autophagy-deficient *atg7*
357 control lines exhibited reduced recovery from heat stress (Fig. 3E). These results are consistent with
358 the studies which showed genetic interference of selective autophagy receptors lead to compromised
359 heat tolerance due to the accumulation of protein aggregates that were highly ubiquitinated under heat
360 stress (34, 35, 37, 38). However, further evidence is needed to conclude that enhanced recovery from
361 heat stress in *M. polymorpha* is caused by enhanced autophagic activity in the absence of Rab3GAPL.
362 Nevertheless, our results align with the beneficial impact of autophagy in stress tolerance and the role
363 of Rab3GAPL as a negative regulator of autophagy conserved across different plant lineages.

364

365

366

367


368

369

370

371

372

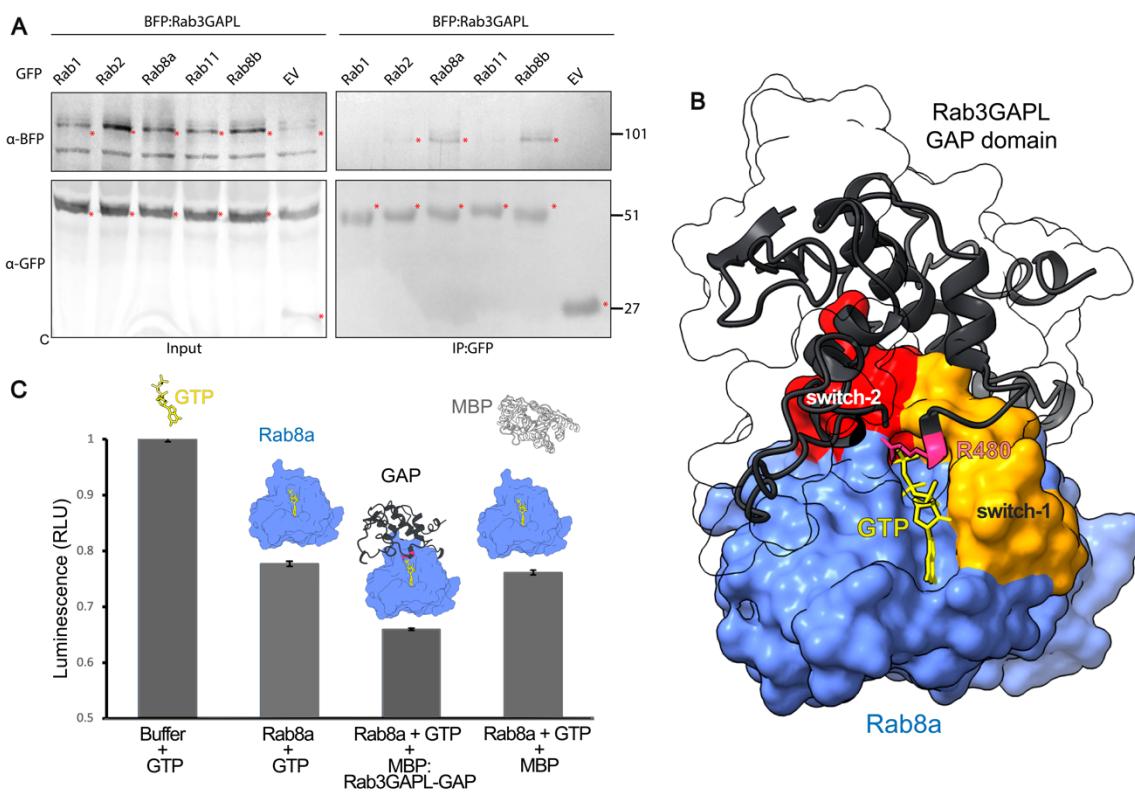
373

374 **Figure 3. Rab3GAPL suppression of autophagic flux is widely conserved in land plants. (A).**
375 Pairwise sequence alignment comparisons of the N-terminals of Rab3GAPL in wheat, Arabidopsis, *N.*
376 *benthamiana*, potato, and the liverwort *Marchantia polymorpha*. Alignments were obtained using the
377 MUSCLE algorithm and were visualized and color-coded via ESPript 3.0 (39). The AIM is illustrated using
378 a solid line. (B) AF2-M predictions of ATG8s with Rab3GAPL AIM sequences from liverwort (*M.*
379 *polymorpha*), wheat (*Triticum aestivum*), *A. thaliana* and potato (*S. tuberosum*). Predicted models
380 suggest AIM docking sites (W and L pockets, colored yellow and blue, respectively) on ATG8CL are
381 associated with all tested AIMs except for the Arabidopsis Rab3GAPL AIM sequence. (C) *Arabidopsis*
382 *thaliana* lines that overexpress Rab3GAPL have reduced ATG8 autophagic flux. Autophagic flux is
383 measured as the ratio of free mCherry to full size mCherry:ATG8e. GFP:Rab3GAPL expression leads to
384 reduced mCherry/mCherry:ATG8e protein signal ratio in both carbon starvation and control conditions
385 compared to the control plants. Protein extracts were prepared using 6-day-old seedlings and
386 immunoblotted. (D) *Marchantia polymorpha* Rab3GAPL-KO mutants have increased ATG8 autophagic
387 flux. Autophagic flux analysis of WT and Rab3GAPL-KO mutants in MpEF::GFP:ATG8b background after
388 6 hours of heat stress treatment following 2 hours recovery. Flux is estimated as the ratio of free GFP to
389 full size GFP:ATG8b. Both Rab3GAPL-KO mutants showed increased GFP/GFP:ATG8b protein signal
390 ratio under heat stress and control conditions compared to the control plants. Protein extracts were
391 prepared using 14-day-old thalli and immunoblotted. (E) *Mp-Rab3GAPL*-KO mutant showed enhanced

392 recovery from heat stress compared to WT control plants. ATG7-KO plants were used as an autophagy-
393 deficient control, which showed reduced recovery from heat stress compared to WT control plants.
394 Transgenic plants were incubated either in normal condition (22°C) or heat stress condition (37°C).
395

396 **4. Rab8a, a GTPase implicated in autophagy and immunity, is a substrate of Rab3GAPL**

397 We next sought to identify the Rab GTPase partner of Rab3GAPL in autophagy regulation. We tested the
398 interaction of Rab3GAPL with a panel of candidate Rabs from solanaceous plants—Rab1, Rab2, Rab8a,
399 Rab8b—identified from our earlier autophagy interactome studies (15, 17, 27). As an additional control,
400 we also included a *N. benthamiana* Rab11 member in the interaction assays, as mammalian Rab11 has
401 been implicated in autophagy (40). The results from our co-IP assays indicate that Rab3GAPL strongly
402 interacts with Rab8 members and weakly with Rab2. However, we did not observe any association
403 between Rab3GAPL and Rab1, Rab11, or the GFP vector control (Fig. 4A). These results suggest that
404 Rab8 members are candidate substrates of Rab3GAPL in autophagy regulation. Consistent with this
405 notion, we have previously shown that Rab8a associates with ATG8CL and positively regulates
406 autophagy by potentially facilitating the transport of lipids to the phagophore assembly sites (PAS)
407 required for autophagosome biogenesis (15).


408

409 To gain further insights into the Rab3GAPL-Rab8a association, we utilized AF2-M. The predicted AF2
410 model suggests that the catalytic arginine (R480) of Rab3GAPL is located across the guanine nucleotide
411 binding pocket flanking switch-1 and switch-2 regions on potato Rab8a (Fig. 4B and S4A), suggesting
412 that Rab8a could be a substrate of Rab3GAPL in plants. Potato Rab8a displayed a high degree of protein
413 sequence conservation, with 68% amino acid identity, and a high degree of structural similarity, with
414 an RMSD value of 0.8, when compared to human Rab8a (Fig. S4B-C). Leveraging this structural
415 conservation, we performed AF2-guided *ab initio* molecular replacement to obtain potato Rab8a bound
416 to GTP. We replaced the crystal structure of human Rab8a bound to GTP (PDB:6WHE) (41) with the AF2
417 model of the potato Rab8a (Fig. S4C-D). The resulting Rab3GAPL-Rab8a-GTP model demonstrated that
418 the catalytic arginine finger of Rab3GAPL is positioned to engage with the GTP-binding pocket of the
419 potato Rab8a and makes contacts with the conserved glutamine from DTAGQ motif of the switch-2
420 region of Rab8a (Fig. 4B and S4D-E). Such interactions between the catalytic arginine and the switch-2
421 glutamate typically facilitate the nucleophilic attack by a water molecule on the γ -phosphate of GTP,
422 leading to GTP hydrolysis and the subsequent release of inorganic phosphate (42) (Fig. S4E).

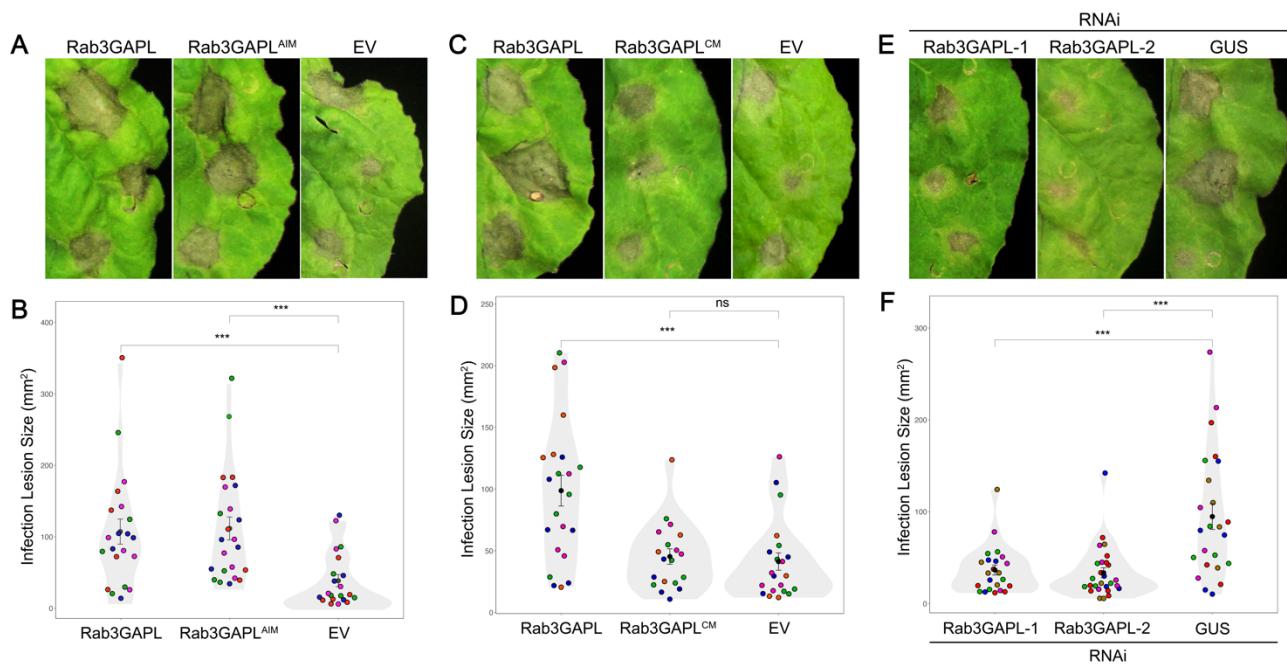
423

424 Based on these findings, we further investigated the interplay between Rab8a and Rab3GAPL by
425 performing biochemical assays. We conducted *in vitro* GAP assays to determine whether Rab3GAPL
426 enhances the GTP hydrolysis activity of Rab8a using proteins purified from *E. coli*. The titration of 5 μ M
427 of purified Rab8a into the GTP reaction buffer led to a significant reduction in free GTP levels compared
428 to the buffer control (Fig. 4C), approving the functionality of purified Rab8a protein. When Rab8a was

429 incubated together with the purified GAP domain of Rab3GAPL, we noted a more pronounced reduction
430 in free GTP levels in the buffer compared to Rab8a alone or using maltose binding protein (MBP) control
431 (Fig. 4C). These results indicate that Rab3GAPL promotes the GTP hydrolysis activity of Rab8a and that
432 Rab3GAPL can function as a conventional GAP for Rab8a. In conjunction with our previous findings
433 demonstrating the association between Rab8a and ATG8CL in autophagy activation (15), these results
434 support the notion that Rab3GAPL targets Rab8a as a GAP substrate to regulate autophagy. Since
435 Rab3GAPL suppresses autophagy in a manner that relies on its GAP and ATG8-binding activities (Fig.
436 2A-B, E-F), we suggest that Rab3GAPL could regulate autophagy by switching off Rab8a at
437 autophagosome biogenesis sites, where ATG8 proteins are actively recruited (43).
438
439

440
441 **Figure 4. Rab3GAPL interacts with Rab8a and stimulates its GTP hydrolysis activity.** (A) Rab3GAPL binds to Rab2 and Rab8 families of small GTPases *in planta*. BFP:Rab3GAPL was transiently
442 co-expressed with either GFP:Rab1, GFP:Rab2, GFP:Rab8a, GFP:Rab11, GFP:Rab8b, or GFP:EV. IPs were
443 obtained with anti-GFP antiserum. Total protein extracts were immunoblotted. Red asterisks indicate
444 expected band sizes. (B) Predicted AF2-M model of Rab8a in complex with the GAP domain of
445 Rab3GAPL. The catalytic arginine residue, R480 (magenta), of Rab3GAPL is positioned across the GTP
446 binding pocket of Rab8a. (C) The GAP domain of Rab3GAPL stimulates GTPase activity of Rab8a. A
447 luciferase-based GTPase assay was used to measure the amount of GTP over 120 minutes at room
448 temperature. Bar graph shows the effect of purified MBP:Rab3GAPL GAP domain or MBP control on the
449 GTPase activity of Rab8a across 3 repeats.
450
451

452 **5. Rab3GAPL increases susceptibility to *Phytophthora infestans* independent of its autophagy**
453 **suppression activity**


454 Given the recent findings supporting the positive role of Rab8a in autophagy and immunity against *P.*
455 *infestans* (15, 17), we next investigated whether Rab3GAPL has any impact on pathogen resistance.
456 Firstly, we tested if Rab3GAPL affects immunity to *P. infestans* in an autophagy-dependent manner by
457 overexpressing the WT Rab3GAPL or its AIM mutant. In four independent experiments, infected leaf
458 patches expressing GFP:Rab3GAPL or GFP:Rab3GAPL^{AIM} showed enhanced disease symptoms with
459 significant increases in infection lesion sizes compared to the GFP control (Fig. 5A-B). We validated
460 these results by performing infection assays using a red fluorescent strain of *P. infestans*, 88609td, which
461 allows measurement of pathogen biomass through imaging of hyphal threads via fluorescent
462 microscopy. Consistently, *P. infestans* hyphal growth was significantly higher in leaf patches
463 overexpressing GFP:Rab3GAPL or GFP:Rab3GAPL^{AIM} compared to GFP control samples (Fig. S5A-B).
464 Intriguingly, the overexpression of Rab3GAPL^{AIM} mutant, which is impaired in autophagy suppression
465 and ATG8 binding, promoted infection to levels comparable to that of WT Rab3GAPL (Fig. 5A-B and S5A-
466 B). These results indicate that Rab3GAPL negatively regulates immunity independent of its function in
467 autophagy.

468

469 Secondly, we explored whether enhanced susceptibility phenotype caused by overexpression of
470 Rab3GAPL requires its GAP activity. Notably, overexpression of the GAP mutant (GFP:Rab3GAPL^{CM}) did
471 not cause any difference in *P. infestans* infection lesion sizes compared to the GFP control, unlike the WT
472 GFP:Rab3GAPL construct which enhanced disease symptoms (Fig. 5C-D). These findings indicate that
473 the enhanced pathogen growth phenotype caused by Rab3GAPL overexpression is reliant on its GAP
474 activity, suggesting a potential negative regulation of immunity through the restriction of Rab-mediated
475 trafficking.

476

477 Thirdly, we conducted infection assays upon downregulation of Rab3GAPL expression. To achieve this,
478 we employed silencing constructs RNAi:Rab3GAPL-1 and RNAi:Rab3GAPL-2, designed to specifically
479 target *Rab3GAPL* in *N. benthamiana* (Fig. S2D). In agreement with our overexpression assays, which
480 suggested a negative role of Rab3GAPL in immunity (Fig. 5A-D), the silencing of Rab3GAPL using either
481 RNAi:Rab3GAPL constructs significantly enhanced *P. infestans* infection lesion size and hyphal growth
482 compared to the control construct RNAi:GUS (Fig. 5E-F and S5C-D). These results show that Rab3GAPL
483 acts as a susceptibility factor in a catalytic activity-dependent, but AIM-independent manner.
484 Collectively, these findings suggest that the negative regulatory function of Rab3GAPL in defense against
485 *P. infestans* is independent of autophagy, highlighting its involvement in alternative mechanisms of
486 immune regulation.

487

488 **Figure 5. Rab3GAPL increases susceptibility to *Phytophthora infestans* in a catalytic activity-
489 dependent, AIM-independent manner.** (A-B) Rab3GAPL increases susceptibility to *P. infestans* in an
490 AIM-independent manner. (A) *N. benthamiana* leaves expressing Rab3GAPL, Rab3GAPL^{AIM} or EV control
491 were infected with *P. infestans*, and pathogen growth was calculated by measuring infection lesion size
492 7 days post-inoculation. (B) Both Rab3GAPL expression (107.3, N = 21 spots) and Rab3GAPL^{AIM}
493 expression (111.8, N = 23 spots) significantly increase *P. infestans* lesion sizes compared to EV control
494 (39.0, N = 21 spots). Statistical differences were analyzed by Mann-Whitney U test in R. Measurements
495 were highly significant when p<0.001 (***)�. (C-D) Rab3GAPL increases susceptibility to *P. infestans* in a
496 catalytic activity-dependent manner. (C) *N. benthamiana* leaves expressing Rab3GAPL, Rab3GAPL^{CM} or
497 EV control were infected with *P. infestans*, and pathogen growth was calculated by measuring infection
498 lesion size 7 days post-inoculation. (D) Rab3GAPL expression (98.8, N = 22 spots) significantly increases
499 *P. infestans* lesion sizes compared to EV control (45.4, N = 19 spots), whereas Rab3GAPL^{CM} expression
500 (41.3, N = 21 spots) has no significant effect compared to EV control. Statistical differences were
501 analyzed by Mann-Whitney U test in R. Measurements were highly significant when p<0.001 (***)�. (E-
502 F) Silencing Rab3GAPL reduces susceptibility to *P. infestans*. (E) *N. benthamiana* leaves expressing
503 RNAi:Rab3GAPL-1, RNAi:Rab3GAPL-2 or RNAi:GUS control were infected with *P. infestans*, and
504 pathogen growth was calculated by measuring infection lesion size 8 days post-inoculation. (F) Both
505 RNAi:Rab3GAPL-1 expression (36.6, N = 23 spots) and RNAi:Rab3GAPL-2 expression (33.5, N = 27
506 spots) significantly reduce *P. infestans* lesion sizes compared to RNAi:GUS control (94.8, N = 24 spots).
507 Statistical differences were analyzed by Mann-Whitney U test in R. Measurements were highly
508 significant when p<0.001 (***)�.

509

510

511

512 **6. Rab3GAPL antagonizes Rab8a-mediated defense vesicle dynamics and secretion**

513 Recent studies have revealed the contribution of Rab8a in defense-related secretion and basal immunity
514 against *P. infestans*. Additionally, pathogen effectors specifically target Rab8a to undermine its immune
515 functions, including the secretion of pathogenesis related protein-1 (PR-1) into the apoplast (15, 44).
516 Given the immunosuppressive role of Rab3GAPL, which is dependent on its GAP activity but not its
517 interaction with ATG8 (Fig. 5), we hypothesized that Rab3GAPL negatively regulates defense-related
518 secretion mediated by Rab8a. To test this, we first assessed the impact of Rab3GAPL on defense-related
519 secretory responses by examining its effect on PR-1 secretion. To stimulate endogenous PR-1 induction,
520 we challenged the leaf patches expressing Rab3GAPL and controls with *P. infestans* extract, serving as a
521 pathogen-associated molecular pattern (PAMP) cocktail. The secretion of PR-1 to the apoplast was
522 drastically reduced in samples expressing Rab3GAPL or Rab3GAPL^{AIM} compared to the GFP vector
523 control. However, the apoplastic levels of PR-1 were unaffected by the catalytic mutant, Rab3GAPL^{CM}
524 (Fig. 6A). While apoplastic PR-1 levels were reduced in samples overexpressing Rab3GAPL and
525 Rab3GAPL^{AIM}, cytoplasmic PR-1 levels reciprocally increased, suggesting that the decrease in apoplastic
526 PR-1 was not due to impaired PR-1 expression (Fig. 6A).

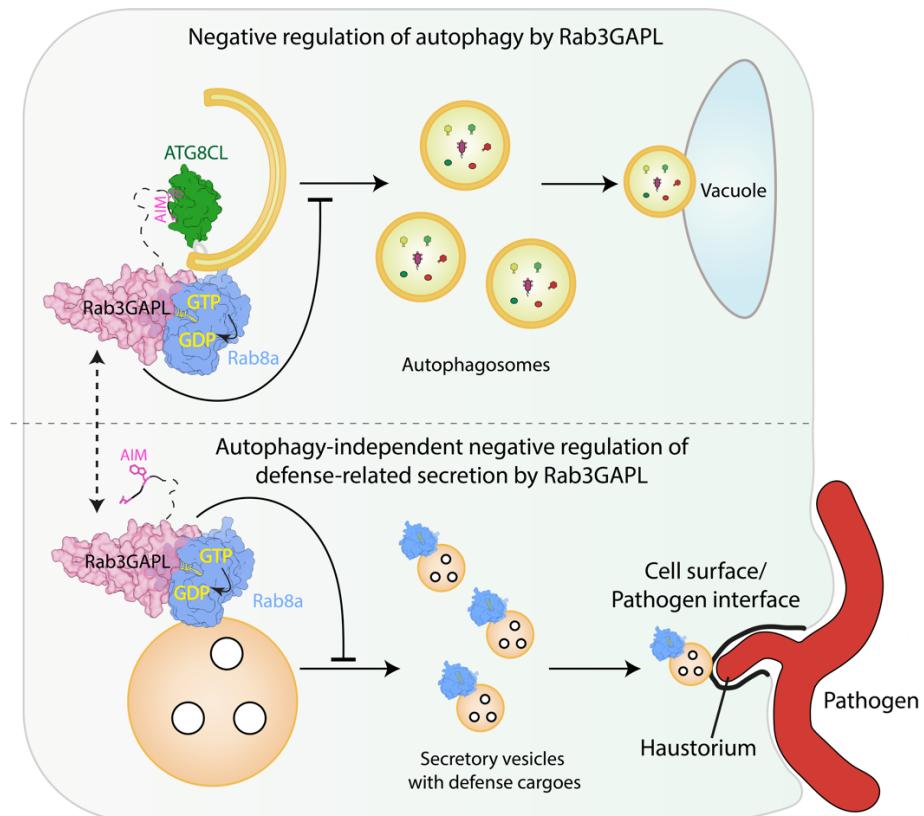

527

528 Our previous work revealed that Rab8a-labeled vesicle-like structures are deposited around the
529 extrahaustorial membrane (EHM) that envelopes the *P. infestans* haustorium (15). We reasoned that
530 these Rab8a vesicles could deliver defense compounds to restrict pathogen invasion, whereas
531 Rab3GAPL plays an antagonistic role in regulating Rab8a-mediated transport pathways. Supporting this
532 notion, we observed a notable reduction in the abundance of Rab8a-labeled vesicles around the
533 haustorium interface upon Rab3GAPL overexpression compared to the vector control (Fig. 6B-C). We
534 observed a similar decrease in Rab8a vesicle abundance around haustoria when we overexpressed
535 Rab3GAPL^{AIM}. In contrast, expression of Rab3GAPL^{CM} did not affect abundance of Rab8a puncta around
536 haustoria, behaving similarly to the vector control (Fig. 6B-C). Collectively, our findings provide
537 evidence that Rab3GAPL negatively regulates secretory defenses dependent on Rab8a during the
538 immune response to *P. infestans*. These results also suggest that Rab3GAPL could antagonize focal
539 immune responses targeted to the pathogen interface.

540

541 Following up, we examined the potential impact of Rab3GAPL on plant focal immunity. Specifically, we
542 explored whether Rab3GAPL influences callose deposition surrounding *P. infestans* haustoria. Callose
543 deposits play a crucial role in the immune response, especially when pathogens establish specialized
544 host-pathogen interfaces like haustoria for invading host cells (45-47). We observed around 40%
545 reduction in the occurrence of haustoria with callose deposits upon Rab3GAPL overexpression
546 compared to the vector control. We observed a similar decrease in haustoria with callose deposits when
547 Rab3GAPL^{AIM} was overexpressed, but not when Rab3GAPL^{CM} was overexpressed (Fig. 7D-E). These
548 findings, combined with our earlier observations of Rab3GAPL's disruption of Rab8a vesicle dynamics

549 around haustoria, suggest that Rab3GAPL negatively regulates the secretory pathways that are locally
550 deployed at pathogen penetration sites. Moreover, these results provide insights into the potential
551 mechanisms underlying the increased susceptibility phenotype observed towards *P. infestans* upon
552 overexpression of Rab3GAPL and its AIM mutant, Rab3GAPL^{AIM} (Fig. 5A-B).
553


554 **Figure 6. Rab3GAPL suppresses defense-related secretion in a catalytic activity-dependent**
555 **manner.** (A) Western blot shows Rab3GAPL and Rab3GAPL^{AIM}, but not Rab3GAPL^{CM}, reduces
556 antimicrobial PR-1 secretion to the apoplast compared to EV control. *N. benthamiana* leaves were
557 infiltrated to express GFP:Rab3GAPL, GFP:Rab3GAPL^{AIM}, GFP:Rab3GAPL^{CM} or GFP:EV. The leaves were
558 then challenged with *P. infestans* extract at 3 dpi and proteins were extracted from the apoplast and leaf
559 tissue at 4 dpi and immunoblotted. Red asterisks show expected band sizes. (B-C) Rab3GAPL reduces
560 the number of Rab8a vesicles around haustoria in a catalytic activity-dependent manner. (B) Confocal
561 micrographs of *N. benthamiana* leaf epidermal cells transiently expressing GFP:Rab8a and
562 RFP:Remorin1.3 with HA:Rab3GAPL, HA:Rab3GAPL^{AIM}, HA:Rab3GAPL^{CM} or HA:EV. Images shown are
563 maximal projections of 12 frames with 1.2 μm steps. Scale bars represent 10 μm. (C) Rab3GAPL
564 expression (3, N = 42 haustoria) or Rab3GAPL^{AIM} expression (4, N = 31 haustoria) significantly reduce
565

566 number of Rab8a vesicles around haustoria compared to EV control (11.5, N = 30 haustoria), while
567 Rab3GAP^{CM} expression (12, N = 29 haustoria) has no significant effect compared to EV control. Statistical
568 differences were analyzed by Mann-Whitney U test in R. Measurements were highly significant when
569 p<0.001 (***)�. (D-E) Rab3GAPL reduces callose deposition at *P. infestans* haustoria in a catalytic activity-
570 dependent manner. (D) Confocal micrographs of *N. benthamiana* leaf epidermal cells transiently
571 expressing RFP:Remorin1.3 with GFP:Rab3GAPL, GFP:Rab3GAPL^{AIM}, GFP:Rab3GAPL^{CM} or GFP:EV. The
572 leaves were infected with *P. infestans* spores at 1 dpi, and stained with aniline blue to visualize callose
573 at 4 dpi. Images shown are single plane images. White arrows indicate haustoria. Scale bars represent
574 10 μ m. (E) Bar graphs showing Rab3GAPL expression (28.8%, N = 118 haustoria) or Rab3GAPL^{AIM}
575 expression (30.8%, N = 143 haustoria) significantly reduce the frequency of callose deposition around
576 haustoria compared to EV control (51.1%, N = 92 haustoria), while Rab3GAPL^{CM} expression (47.8%, N
577 = 186 haustoria) has no significant effect compared to EV control. Statistical differences were analyzed
578 by chi-squared test in R. Measurements were significant when p<0.05 (*).
579

580 Discussion

581
582 In this study, we investigated the membrane trafficking processes involved in plant autophagy and
583 immunity. Our findings revealed the role of Rab3GAPL as a regulator of vesicle transport that carries a
584 canonical AIM to interact with ATG8 and suppress plant autophagy (Fig. 1-2 and S1-2). Although the
585 Rab3GAPL AIM is broadly conserved in land plants, some plants in the Brassicales order exhibit
586 mutations in their Rab3GAPL AIM residues, suggesting potential diversification in autophagy regulation
587 (Fig. 3A-B and S3A-C). We also discovered that Rab3GAPL targets Rab8a, an important GTPase involved
588 in autophagy activation and immunity. By stimulating Rab8a's GTPase activity, Rab3GAPL effectively
589 suppresses autophagy (Fig. 4).
590

591 Interestingly, our findings extend beyond autophagy regulation, as we have uncovered an additional
592 role of Rab3GAPL in negatively modulating immunity towards *P. infestans* that is independent of its
593 ATG8-binding activity (Fig. 5-6). This modulation relies on the GAP function of Rab3GAPL and involves
594 the inhibition of Rab8a-mediated trafficking diverted towards the pathogen interface (Fig. 6B-E). Our
595 results suggest a model in which Rab3GAPL impedes Rab8a-mediated vesicle trafficking by promoting
596 Rab8a's GTP-to-GDP switch. While Rab8a-mediated trafficking is crucial for autophagy (15), Rab3GAPL
597 suppresses this process at autophagosome biogenesis sites where ATG8 is enriched. Additionally,
598 Rab3GAPL can subvert defense-related secretion mediated by Rab8a, possibly to mitigate auto-immune
599 responses and to adjust appropriate resource allocation (Fig.7).
600

623 **Materials and Methods**

624

625 **Molecular Cloning**

626 Molecular clonings of Rab3GAPL, Rab3GAPL^{AIM}, Rab3GAPL^{CM}, Rab3GAPL^{CM/ AIM}, Rab1, Rab2, Rab8b and
627 Rab11 were performed using Gibson Assembly as described previously (17, 48). The vector backbone is
628 a pK7WGF2 derivative domesticated for Gibson Assembly. Plasmids were constructed using primers
629 and transformed into DH5 α chemically-competent *E. coli* by heat shock. Plasmids were then amplified
630 and extracted by PureYieldTM Plasmid Miniprep System (Promega), and electroporated into
631 *Agrobacterium tumefaciens* GV3101 electrocompetent cells. Sequencing was performed by Eurofins.
632 RNA interference silencing constructs (RNAi:Rab3GAPL-1 and RNAi:Rab3GAPL-2) were made using an
633 intron-containing hairpin RNA vector for RNA interference in plants (pRNAi-GG), based on Golden Gate
634 cloning as described previously (49). RNAi:Rab3GAPL-1 targeted the region between 999 and 1301 bp
635 of *Rab3GAPL*, while RNAi:Rab3GAPL-2 targeted the 3' UTR region of *Rab3GAPL*. After amplifying the
636 target fragments using designed primers, the fragments were inserted into the pRNAi-GG vector both in
637 sense and anti-sense orientation using the overhangs left by Bsal cleavage. The resulting plasmid leads
638 to expression of a construct that folds back onto itself forming the silencing hairpin structure. The
639 subsequent steps of *E. coli* transformation, Miniprep, sequencing and agrotransformation were the same
640 as overexpression constructs. All primers used in this study are detailed in **Table S1**. Constructs used
641 in this study are detailed in **Table S2**.

642

643 **Plant material**

644 Wildtype and transgenic *Nicotiana benthamiana* plants were grown in a controlled growth chamber at
645 24 $^{\circ}$ C in a mixture of organic soil (3:1 ratio of Levington's F2 with sand and Sinclair's 2-5 mm
646 vermiculite). The plants were exposed to high light intensity and subjected to a long day photoperiod
647 consisting of 16 hours of light and 8 hours of darkness. Experiments were conducted using plants that
648 were 4-5 weeks old.

649

650 *Marchantia polymorpha* MpEF1:MpATG8b-GFP plants expressed in Takaragaike-1 (TAK-1, male) were
651 used. The plants were grown on half-strength Gamborg's B5 containing 1 % agar under 50-60 mmol m $^{-2}$ s $^{-1}$ of white light at 22 $^{\circ}$ C (50).

653

654 ***Phytophthora infestans* growth and infection assays**

655 WT and tdTomato-expressing *Pytophthora infestans* 88069 isolates were grown on rye sucrose agar
656 (RSA) media in the dark at 18 $^{\circ}$ C for 10 - 15 days before harvesting zoospores (51). Zoospore solution
657 was collected by adding 4 $^{\circ}$ C cold water to the media and incubated at 4 $^{\circ}$ C for 90 minutes. For infection
658 assay, 10 μ l droplets of zoospore solution at 50,000 spores/ml were added to the abaxial side

659 (underside) of agroinfiltrated leaves (52). Leaves were then kept in humid conditions. Microscopy of
660 infected leaves was conducted 3 days post infection. Daylight and fluorescent images were taken at 7 -
661 8 days post infection, which lesion sizes and hyphal growth were measured in ImageJ.

662

663 **Confocal microscopy**

664 Confocal microscopy analyses were carried out 3 days post agroinfiltration. Leaf discs for microscopy
665 were taken using size 4 cork borer, live-mounted on glass slides, and submerged in wells of dH₂O using
666 Carolina observation gel (Carolina Biological Supply Company). The slides were imaged using Leica TCS
667 SP8 resonant inverted confocal microscope with 40x water immersion objective lens. The abaxial side
668 of leaf tissue was imaged. The laser excitations for BFP, GFP and RFP tags are Diode 405 nm, Argon 488
669 nm and DPSS 561 nm respectively. Sequential scanning between lines was performed to prevent
670 spectral mixing from different fluorophores when imaging samples with more than one tag. Confocal
671 images, including Z-stack and single plane images, were analysed in ImageJ.

672

673 **Structural and sequence analyses**

674 AF2-multimer was utilized through a subscription to the Google Colab in accordance with their
675 guidelines (53). The align command in UCSF Chimera (version 1.17) was employed to superimpose the
676 AF2 predictions onto known structures and to show the confidence score of the AF2 predictions using
677 the local distance difference test (pLDDT) scores on the IDDT- $\text{C}\alpha$ metric (54). The scoring scale ranges
678 from 0 to 100, where 100 corresponds to the highest confidence values. Sequence alignment was
679 performed using the MUSCLE algorithm (55), and the resulting alignments were visualized and color-
680 coded via ESPript 3.0 (39) The proteins and sequences used for AF2 are detailed in **Table S3**.

681

682 **Agrobacterium-mediated transient gene expression in *N. benthamiana***

683 Agrobacterium-mediated transient gene expression was conducted using agroinfiltration as previously
684 described (56). *Agrobacterium tumefaciens* containing the desired plasmid was washed in water and
685 resuspended in agroinfiltration buffer (10 mM MES, 10 mM MgCl₂, pH 5.7). BioPhotometer
686 spectrophotometer (Eppendorf) was used to measure the OD₆₀₀ of the bacterial suspension. This
687 suspension was adjusted to a desired OD₆₀₀ depending on the construct and the experiment, and then
688 infiltrated into 3 to 4-week-old *N. benthamiana* leaf tissue using needleless 1ml Plastipak syringe.

689

690 **RNA isolation, cDNA synthesis, and RT-PCR**

691 For RNA extraction, 56 mg of leaf tissue was frozen in liquid nitrogen. RNA was extracted using TRIzol
692 RNA Isolation Reagent (Invitrogen) according to the user manual. RNA concentration was measured
693 using NanoDrop Lite Spectrophotometer (Thermo Scientific). 2 μ g of extracted RNA was treated with
694 RQ1 RNase-Free DNase (Promega), then used for cDNA synthesis using SuperScript IV Reverse

695 Transcriptase (Invitrogen). cDNA was amplified using Phusion High-Fidelity DNA Polymerase (New
696 England Biolabs). GAPDH level was used as a transcriptional control.

697

698 **Callose staining**

699 Callose staining was performed as described previously (56). *N. benthamiana* leaf discs from infected
700 tissue expressing the proteins of interest were collected and rinsed twice in 50% ethanol. They were
701 then rinsed in a sodium phosphate buffer (0.07 M, pH 9.0) for 30 minutes at room temperature. The leaf
702 discs were then incubated with 0.05% w/v aniline blue solution in the phosphate buffer for 60 minutes
703 in the dark at room temperature. Confocal microscopy was followed afterwards.

704

705 **Co-immunoprecipitation and immunoblot analyses**

706 Proteins were transiently expressed by agroinfiltration in *N. benthamiana* leaves and harvested 3 days
707 post agroinfiltration. For western blotting experiments, 6 leaf discs were excised using size 4 cork borer
708 (42 mg). For co-immunoprecipitation experiments, 2 g of leaf tissues were used. Protein extraction,
709 purification and immunoblot analysis were performed as described previously (17, 56). Monoclonal
710 anti-GFP produced in rat (Chromotek), polyclonal anti-GFP produced in rabbit (Chromotek),
711 monoclonal anti-RFP produced in mouse (Chromotek), polyclonal anti-tBFP produced in rabbit
712 (Evrogen) were used as primary antibodies. Anti-mouse antibody (Sigma-Aldrich), anti-rabbit antibody
713 (Sigma-Aldrich), anti-rat antibody (Sigma-Aldrich) were used as secondary antibodies. Information of
714 antibodies is detailed in **Table S4**.

715

716 **Apoplast extraction**

717 Apoplastic proteins were extracted as described previously (57). Infiltrated *N. benthamiana* leaves were
718 detached and washed in distilled water, then rolled up and inserted in a needleless syringe filled with
719 distilled water. The whole leaves were then infiltrated with the water by creating a negative pressure
720 environment inside the syringe. The leaves were then centrifuged for 10 minutes at 1000g in a Falcon
721 tube. Apoplastic washing fluid was collected at the bottom of the tube and snap-frozen in liquid nitrogen.
722 Leaf tissue was collected from the remaining leaf for immunoblotting analysis.

723

724 ***Arabidopsis thaliana* carbon starvation assays and protein extraction**

725 *Arabidopsis* seedlings of the indicated genotypes were surface sterilized and added to 3 ml of liquid ½
726 MS + 1% sucrose, stratified for 24 hours, and grown under constant light with gentle shaking for six
727 days. Seedlings were then washed twice in 3 ml of ½ MS medium with or without 1% sucrose, then left
728 to grow in either ½ MS + 1% sucrose under constant light or in ½ MS without sucrose wrapped in
729 aluminum foil for 24 hours. Proteins were extracted in 2x Laemmli buffer (100mM Tris-HCl pH 6.8, 4%
730 SDS, 20% glycerol, 0.01% bromophenol blue, 1.5% β -mercaptoethanol), treated at 95°C for 5 minutes

731 and quantified using amido black precipitation. For each replicate, 20 µg of total protein were loaded
732 per sample.

733

734 ***Marchantia polymorpha* heat stress assays and protein extraction**

735 Two-week old plants on Gamborg's B5 medium containing 1% agar were transformed to 37°C room for
736 6 hours. After 2 hours recovery, samples were collected in liquid nitrogen. GTEN buffer (10% glycerol,
737 50 mM Tris/HCl pH7.5, 1 mM EDTA, 300 mM NaCl, 1 mM DTT, 0.1% [v/v] Nonidet P-40/Igepal, Roche
738 cOmplete™ protease inhibitor) was added to grinded-frozen samples. After vortex, samples were
739 centrifuged at max speed for 15 minutes at 4°C for clearing the lysates. Proteins were extracted in 4x
740 Laemmli Buffer (116 mM Tris-HCl pH 6.8, 8% SDS, 4.9% glycerol, 0.01% bromophenol blue, 10 mM
741 DTT) and denatured at 95°C for 5 minutes. Protein concentration was equally adjusted using amido
742 black precipitation. 10 µg of total protein were loaded per sample.

743

744 **ATG8CL expression and purification**

745 DNA encoding ATG8CL was amplified from GFP:ATG8CL and cloned into the vector pOPINF, generating
746 a cleavable N-terminal 6xHis-tag with ATG8CL. Recombinant proteins were produced using *E. coli* strain
747 BL21 (DE3) grown in lysogeny broth at 37°C to an OD₆₀₀ of 0.6 followed by induction with 1 mM IPTG
748 and overnight incubation at 18°C. Pelleted cells were resuspended in buffer A (50 mM Tris-HCl pH 8,
749 500 mM NaCl and 20 mM imidazole) and lysed by sonication. The clarified cell lysate was applied to a
750 Ni2+- NTA column connected to an AKTA Xpress system. ATG8CL was step-eluted with elution buffer
751 (buffer A containing 500 mM imidazole) and directly injected onto a Superdex 75 26/600 gel filtration
752 column pre-equilibrated in buffer C (20 mM HEPES pH 7.5, 150 mM NaCl). The fractions containing
753 ATG8CL were pooled and concentrated (concentration determined using a calculated molar extinction
754 coefficient of 7680 M⁻¹cm⁻¹ for ATG8CL).

755

756 **Rab8a and Rab3GAPL-GAP expression and purification**

757 Recombinant proteins were produced using *E. coli* strain Rosetta2 (DE3) pLysS grown in 2xTY media at
758 37°C to an OD600 of 0.4 – 0.6 followed by induction with 300 µM IPTG and overnight incubation at 18°C.
759 Pelleted cells were resuspended in lysis buffer (100 mM sodium phosphate pH 7.2, 300 mM NaCl, 1 mM
760 DTT) containing Roche cOmplete™ protease inhibitor and sonicated. The clarified lysate was first
761 purified by affinity, by using HisTrap FF (GE HealthCare) columns. The proteins were eluted with a lysis
762 buffer containing 250 mM Imidazole. The proteins were separated by Size Exclusion Chromatography
763 with HiLoad® 16/600 Superdex 200 pg or HiLoad 16/600 Superdex 75 pg, which were previously
764 equilibrated in 50 mM sodium phosphate pH 7.0, 100 mM NaCl. The proteins were concentrated using
765 Vivaspin concentrators (10000 or 30000 MWCO). Protein concentration was calculated from the UV
766 absorption at 280 nm by DS-11 FX+ Spectrophotometer (DeNovix).

767

768 **GST pull-down assays**

769 Pulldown experiments were performed with *E. coli* lysates as previously described (58). Briefly,
770 recombinant proteins were produced using *E. coli* strain Rosetta™ 2(DE3) pLysS grown in 2x TY media
771 at 37°C to an OD₆₀₀ of 0.4 – 0.6 followed by induction with 300 μM IPTG and overnight incubation at
772 room temperature. Pelleted cells were resuspended in lysis buffer (100 mM sodium phosphate pH 7.2,
773 300 mM NaCl, 1 mM DTT) containing Roche cOmplete™ protease inhibitor and sonicated. 5 μl of
774 glutathione magnetic agarose beads (Pierce Glutathione Magnetic Agarose Beads, Thermo Fisher) were
775 equilibrated with wash buffer (100 mM sodium phosphate pH 7.2, 300 mM NaCl, 1 mM DTT, 0.01% (v/v)
776 IGEPAL). Clarified *E. coli* lysates were mixed with the washed beads and incubated on an end-over-end
777 rotator for 1 hour at 4°C. Beads were washed five times with 1 ml wash buffer. Bound proteins were
778 eluted by adding 50 μl Laemmli buffer. Samples were analyzed by immunoblotting analyses.

779

780 **Isothermal titration calorimetry (ITC)**

781 Calorimetry experiments were carried out at 15°C in 20 mM HEPES pH 7.5, 500 mM NaCl, using an
782 iTC200 instrument (MicroCal Inc.). For protein:peptide interactions, the calorimetric cell was filled with
783 90 μM ATG8CL and titrated with 1 mM Rab3GAPL-AIMp (TPVENDWTIV) or Rab3GAPL-mAIMp peptide
784 (TPVENDATIA) from the syringe. A single injection of 0.5 μl of peptide was followed by 19 injections of
785 2 μl each. Injections were made at 150 seconds intervals with a stirring speed of 750 rpm. For the heats
786 of dilution control experiments, equivalent volumes of Rab3GAPL-AIMp or Rab3GAPL-mAIMp peptide
787 were injected into the buffer using the parameters above. The titrations were performed at 25°C, but
788 otherwise as above. The raw titration data were integrated and fitted to a one-site binding model using
789 the MicroCal Origin software.

790

791 **GTPase activity assay**

792 To analyze the effect of Rab3GAPL on the GTPase activity of Rab8a, we used a luciferase-based GTPase
793 assay (GTPase-Glo™ Assay Kit by Promega). The assay was carried out as per manufacturer's
794 instructions. 12.5 μl of 2X GTP-GAP solution was prepared containing 5 μM GTP and 1 mM DTT in
795 GTPase/GAP buffer. The solution was mixed with purified MBP:Rab3GAPL GAP domain. 12.5 μl of 5 μM
796 Rab8a was added to each well. The GTPase reaction was initiated by adding 12.5 μl of the 2X GTP-GAP
797 solution to each well. The reaction was incubated for 120 minutes at RT with shaking. 25 μl of
798 reconstituted GTPase-Glo™ Reagent was added to the completed GTPase reaction, which the remaining
799 GTP was converted to ATP. Plate was incubated for 30 minutes at RT with shaking. Then, 50 μl of
800 Detection Reagent was added to all the wells, and incubated for 10 minutes at RT. Finally, luminescence
801 was measured using BioTek Synergy4 plate reader.

802

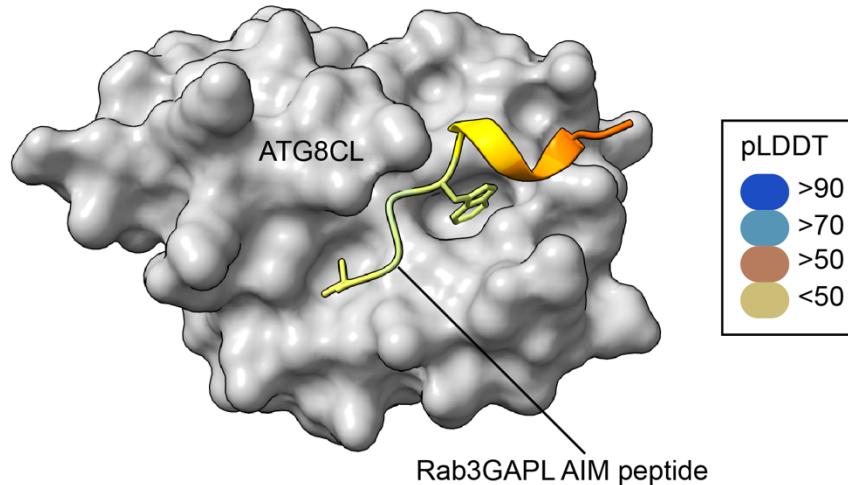
803

804

805 **CRISPR/Cas9 construct design in *Marchantia polymorpha***

806 Two sgRNAs were designed based on target sequence (Fig. S3E). Both sgRNAs were cloned into
807 pMpGE_04 entry vector flanked by attL1 and attL2 sequences (59). Transformants were sequenced and
808 inserted into the pMpGE010 destination vector by LR Clonase II Enzyme Mix. This vector was
809 incorporated into *A. tumefaciens* GV3101+pSoup, which was used to transform GFP-ATG8b-TAK1.
810 Transformants were selected on 10 µM hygromycin (50), genotyped and sequenced to verify mutations.
811

812 **Image processing and data analysis**


813 Confocal microscopy images were processed with Leica LAS AF software and ImageJ. Confocal images
814 can be single plane images or Z-stack images depending on the experiment, which is detailed in the
815 figure legends. To quantify autophagosome punctate structures in one channel, the Z stacks were
816 separated into individual images using ImageJ and analyzed. The counting procedure was based on the
817 maxima function in ImageJ to avoid cytoplasmic noises. Violin plots were generated using R, bar graphs
818 were generated using Microsoft Excel. Statistical differences were conducted in R using Student's t-test,
819 Welch's t-test, Mann-Whitney U test or chi-squared test depending on the experiment, based on
820 statistical normality and variance. Measurements were significant when $p < 0.05$ (*), $p < 0.01$ (**) and
821 highly significant when $p < 0.001$ (***)�. All statistical calculations are detailed in **Table S5**.
822

823 **Accession numbers:**

824 Rab3GAPL (Nbe.v1.s00030g03060); StRab1(RabD2a) (PGSC0003DMP400023158); StRab2 (RABB1b)
825 (PGSC0003DMP400022392); NbRab8b (cloned from cDNA, similar to Niben101Scf02606g00015.1);
826 NbRab11 (Nbe.v1.s00040g37530)
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

842 **Supplementary Information**

843

844

845 **Figure S1A. AF2-M predicted structural model of Rab3GAPL and ATG8CL interaction displaying**
846 **the docking of the AIM peptide of Rab3GAPL to the AIM pocket of ATG8CL.** The colors of Rab3GAPL
847 AIM peptide are based on the AF2-calculated prediction confidence score (pLDDT) as indicated in the
848 rectangular box.

849

850

851

852

853

854

855

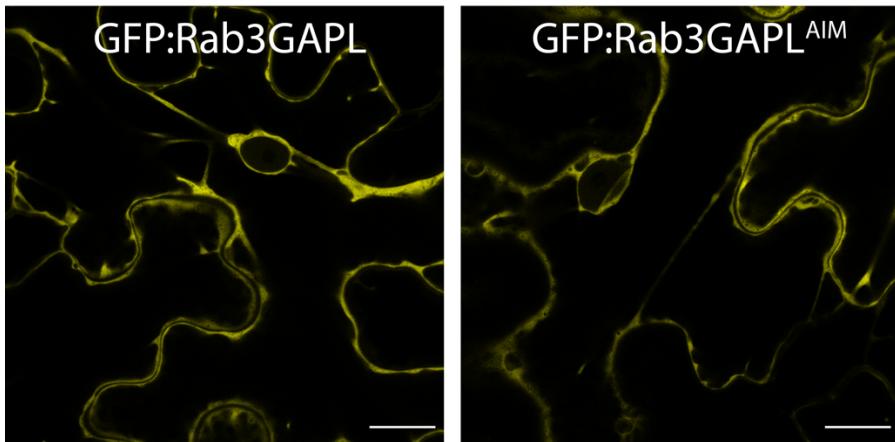
856

857

858

859

860


861

862

863

864

865

866

867 **Figure S1B. Rab3GAPL and Rab3GAPL^{AIM} show nucleus-excluded cytoplasmic localisation.**

868 Confocal micrographs of *N. benthamiana* leaf epidermal cells transiently expressing GFP:Rab3GAPL or
869 GFP:Rab3GAPL^{AIM}. Images shown are single plane images. Scale bars, 10 μ m.

870

871

872

873

874

875

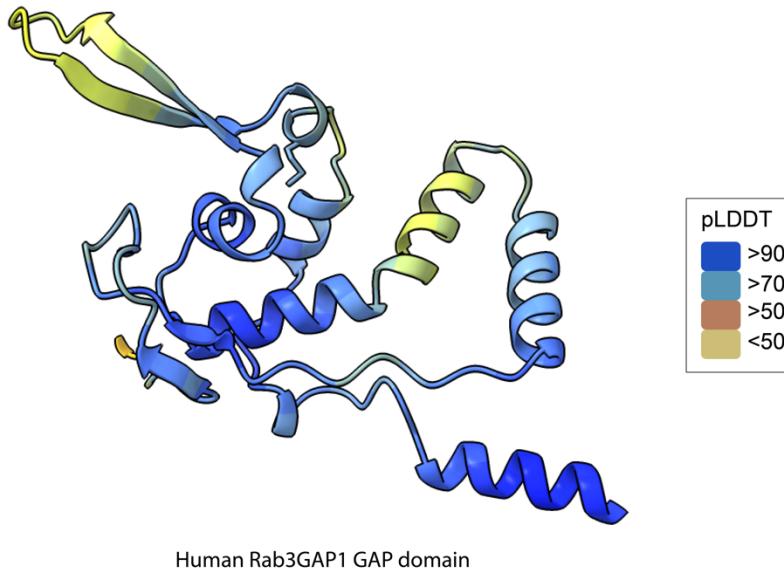
876

877

878

879

880


881

882

883

884

885

Human Rab3GAP1 GAP domain

886

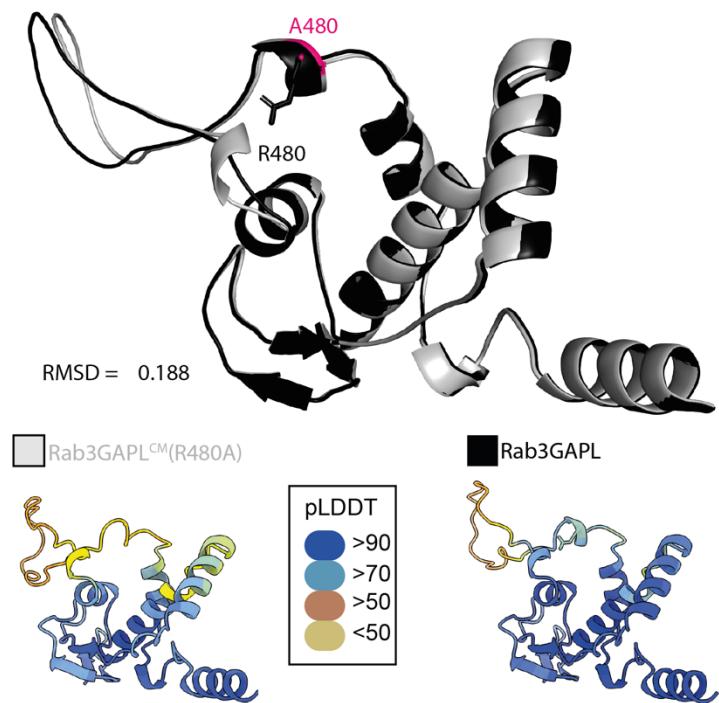
887 **Figure S2A. AF2 structure of the GAP domain of human Rab3GAP1.** The colors of the human
888 Rab3GAP1 GAP domain are based on the AF2-calculated prediction confidence score (pLDDT) as
889 indicated in the rectangular box.

890

891

892

893


894

895

896

897

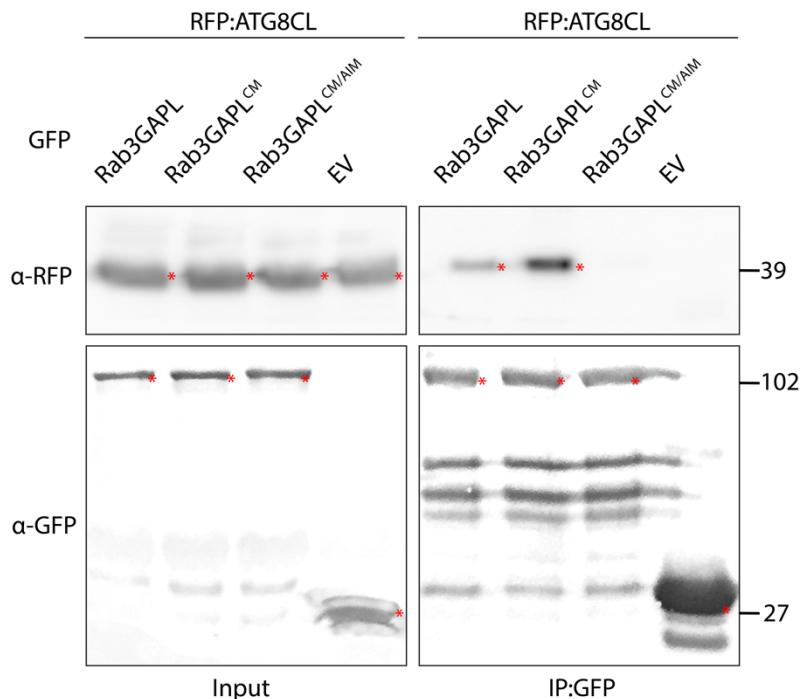
898

899

900 **Figure S2B. Structural alignment of Rab3GAPL and its catalytic mutant Rab3GAPLCM.** Structural
901 predictions were obtained via AF2. Model shows conservation of the overall protein structure. The
902 colors of Rab3GAPL and Rab3GAPLCM are based on the AF2-calculated prediction confidence score
903 (pLDDT) as indicated in the rectangular box.

904

905


906

907

908

909

910

911

912 **Figure S2C. Rab3GAPL and Rab3GAPL^{CM} bind to ATG8CL via its AIM in planta.** RFP:ATG8CL was
913 transiently co-expressed with either GFP:Rab3GAPL, GFP:Rab3GAPL^{CM}, GFP:Rab3GAPL^{CM/AIM} or GFP:EV.
914 IPs were obtained with anti-GFP antiserum. Total protein extracts were immunobotted. Red asterisks
915 indicate expected band sizes.

916

917

918

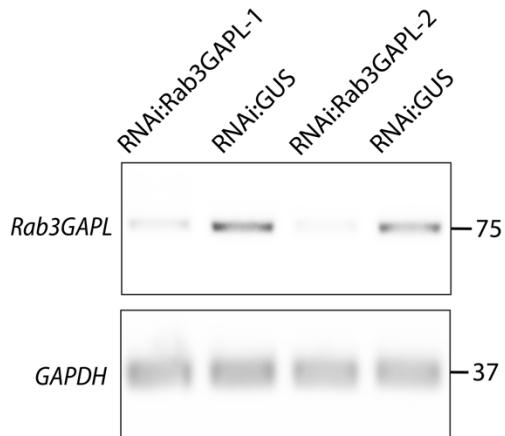
919

920

921

922

923


924

925

926

927

928

929

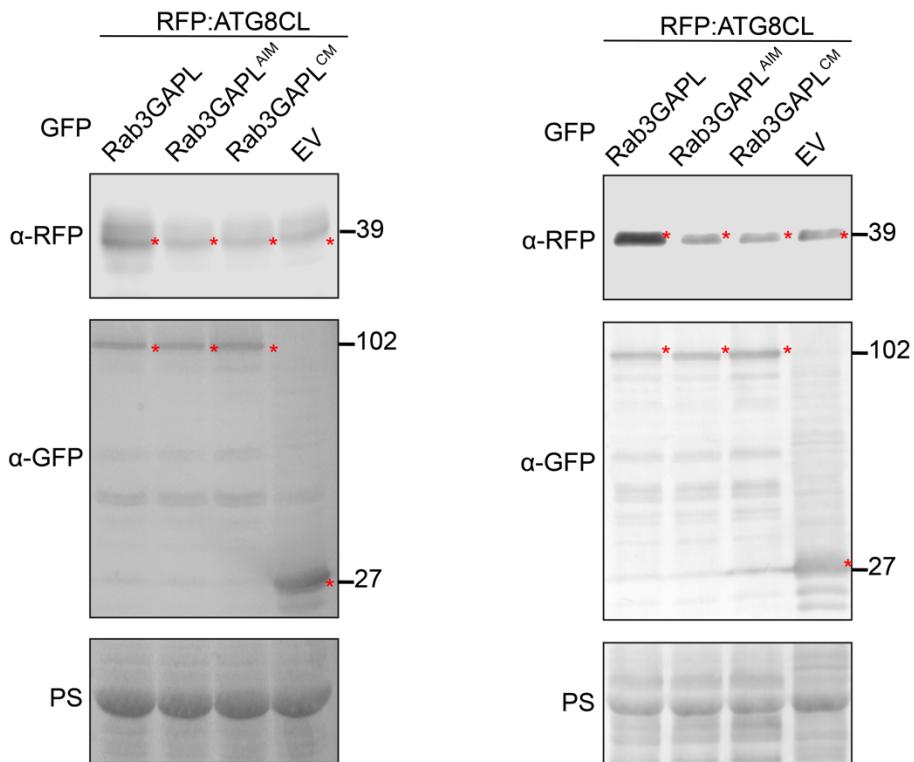
930 **Figure S2D. Validation of *Rab3GAPL* silencing by RNAi:Rab3GAPL-1 and RNAi:Rab3GAPL-2.**

931 Constructs carrying hairpin plasmids (pRNAi-GG) targeting Rab3GAPL-1, Rab3GAPL-2 or GUS reporter
932 gene were infiltrated to *N. benthamiana* leaves. The expression of targeted genes was assessed by RT-
933 PCR at 4 days post agroinfiltration. RT-PCR confirmed efficient gene silencing of *Rab3GAPL* using both
934 RNAi:Rab3GAPL-1 and RNAi:Rab3GAPL-2 constructs. Glyceraldehyde 3-phosphate dehydrogenase
935 (GAPDH) was used as an internal control. cDNA was synthesized using total RNA.

936

937

938


939

940

941

942

943

944

945 **Figure S2E. Western blots showing depletion of RFP:ATG8CL is reduced by GFP:Rab3GAPL**
946 **compared to GFP:Rab3GAPL^{AIM}, GFP:Rab3GAPL^{CM}, or EV control (additional repeats for Figure**
947 **2I).** Total protein extracts were prepared 4 days post agroinfiltration and immunoblotted. Red asterisks
948 show expected band sizes.

949

950

951

952

953

954

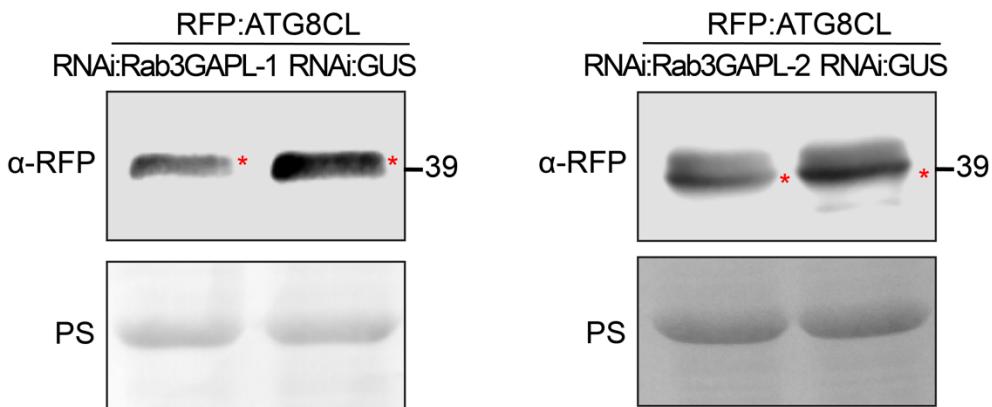
955

956

957

958

959


960

961

962

963

964

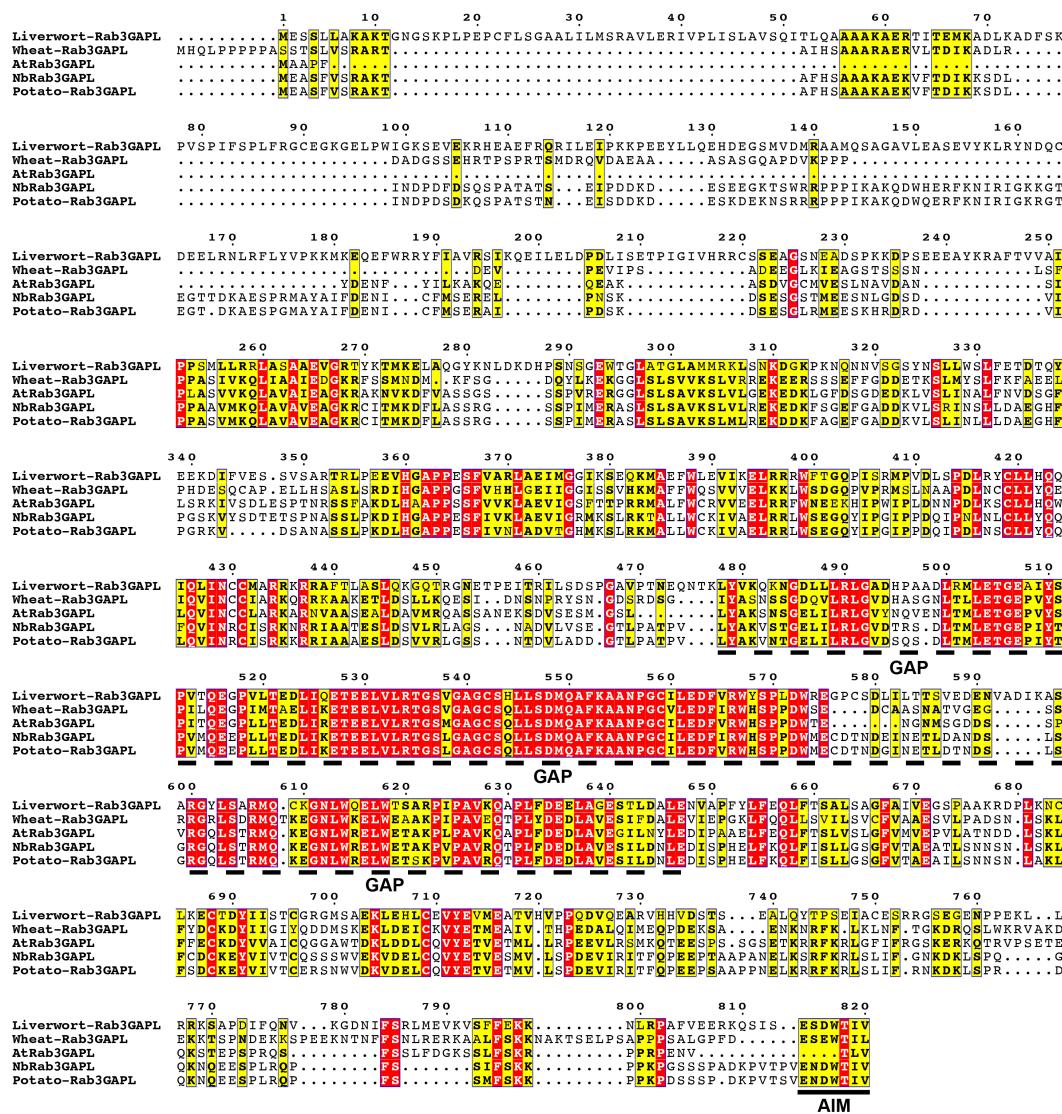
965

966 **Figure S2F. Western blots showing depletion of RFP:ATG8CL is increased by silencing Rab3GAPL-
967 1 and -2 compared to GUS silencing control (additional repeats for Figure 2J and 2K).** Total protein
968 extracts were prepared 4 days post agroinfiltration and immunoblotted. Red asterisks show expected
969 band sizes.

970

971

972


973

974

975

976

977

978
979 **Figure S3A. Pairwise sequence alignment comparisons of Rab3GAPLs in wheat, Arabidopsis, *N.*
980 *benthamiana*, potato, and the liverwort *Marchantia polymorpha*.** Alignments were obtained using
981 the MUSCLE algorithm and were visualized and color-coded via ESPript 3.0 (39). The GAP domain and
982 the AIM are illustrated using dotted and straight lines, respectively.

983

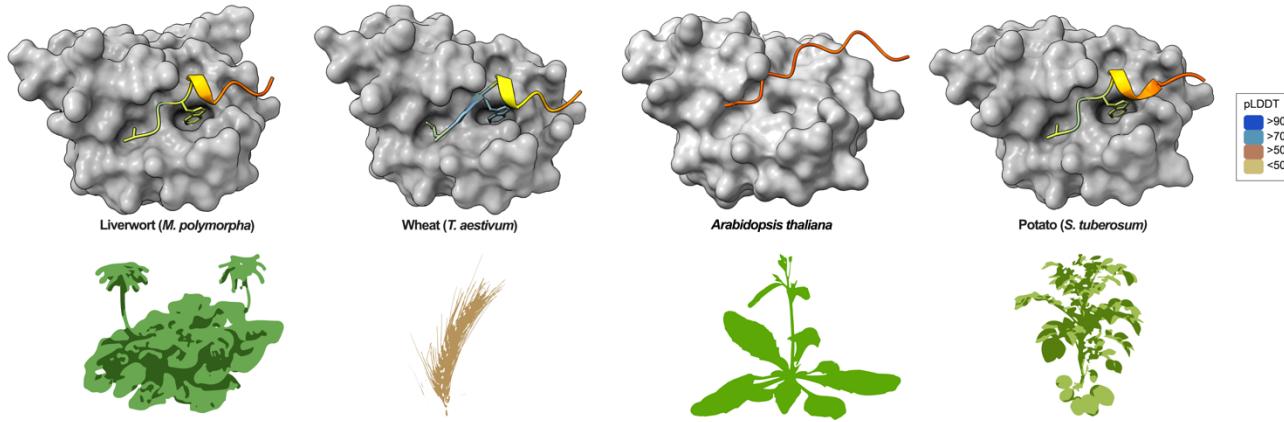
984

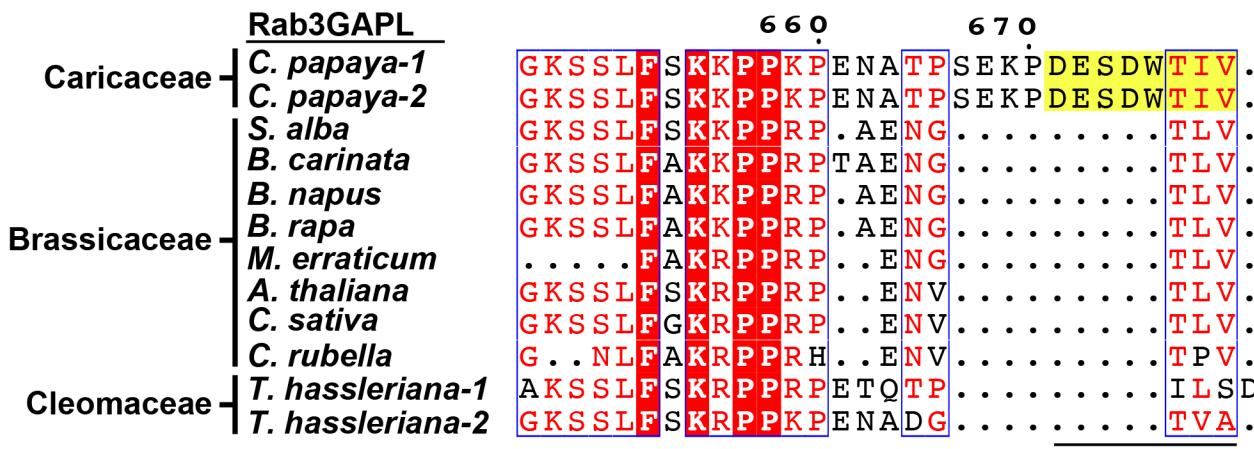
985

986

987

988


989


990

991

992

993

015

016 **Figure S3C. Pairwise sequence alignment comparisons of the AIMs of Rab3GAPLs in the**
017 **Brassicales order of flowering plants, including the families Caricaceae, Brassicaceae and**
018 **Cleomaceae.** While plants in Caricaceae carry an intact AIM, plants in Brassicaceae and Cleomaceae had
019 **deletions in their AIM residues. Alignments were obtained using the MUSCLE algorithm and were**
020 **visualized and color-coded via ESPript 3.0 (39).**

021

022

023

024

025

026

027

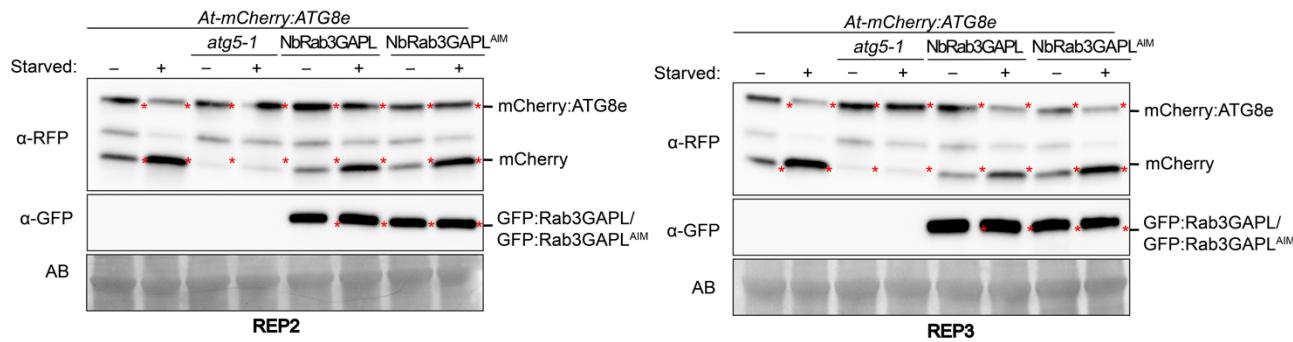
028

029

030

031

032


033

034

035

036

037

038

039 **Figure S3D. *Arabidopsis thaliana* Rab3GAPL expression mutants have reduced ATG8 autophagic**

040 flux (additional repeats for Figure 3C). Autophagic flux is measured as the ratio between free

041 mCherry to full size mCherry:ATG8e. GFP:Rab3GAPL expression leads to reduced

042 mCherry/mCherry:ATG8e protein signal ratio in both carbon starvation and control conditions

043 compared to control plants. Protein extracts were prepared using 6-day-old seedlings and

044 immunoblotted.

045

046

047

048

049

050

051

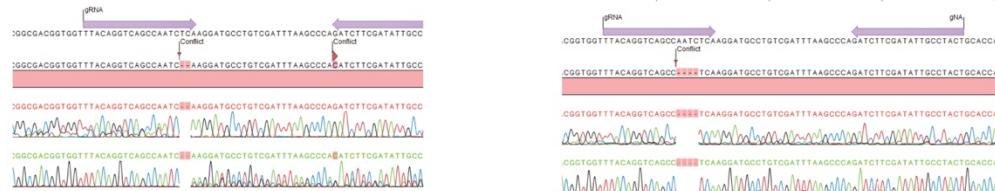
052

053

054

055

056


057

058

059

WT: ACGGTGGTTACAGGTAGCCAATCTAAGGATGCCTGTCGATTTAAGCCC
#1-2 nt deletion: ACGGTGGTTACAGGTAGCCAATC - AAGGATGCCTGTCGATTTAAGCCC

WT: ACGGTGGTTACAGGTAGCCAATCTAAGGATGCCTGTCGATTTAAGCCC
#2-4 nt deletion: ACGGTGGTTACAGGTAGCC - - TCAAGGATGCCTGTCGATTTAAGCCC

#1 - 2 nt deletion

Mp-rab3gapl-1

#2 - 4 nt deletion

Mp-rab3gapl-2

060

061 **Figure S3E. Generation of two independent *M. polymorpha* *Rab3GAPL* CRISPR knockout mutants,**
062 **designated as *Mp-rab3gapl-1* and *Mp-rab3gapl-2*, in a GFP:ATG8b background.** The top panel
063 illustrates a comparison between wild-type (WT) and *Mp-rab3gapl-1* and -2 mutations. The bottom
064 panel displays chromatograms depicting the sequencing results of the WT and mutant plants.

065

066

067

068

069

070

071

072

073

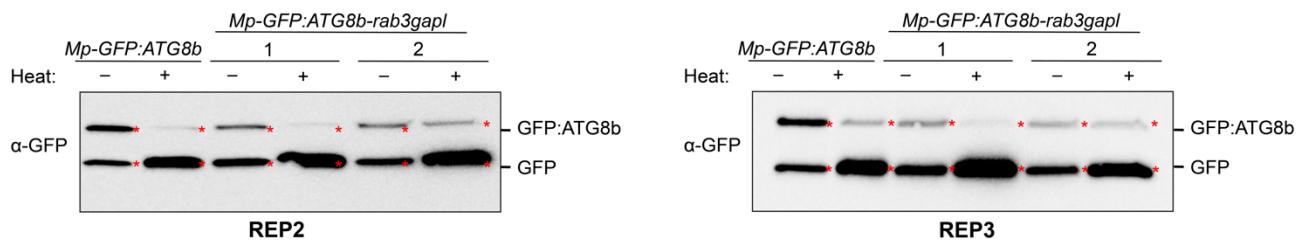
074

075

076

077

078


079

080

081

082

083

084

085 **Figure S3F. *Marchantia polymorpha* Rab3GAPL-KO mutants have increased ATG8 autophagic flux**
086 **(additional repeats for Figure 3D).** Autophagic flux analysis of WT and Rab3GAPL-KO mutants in
087 *MpEF::GFP:ATG8b* background after 6 hours of heat stress treatment following 2 hours recovery. Flux
088 is estimated as a measure of ratio between free GFP to full size GFP:ATG8b. Both Rab3GAPL-KO mutants
089 showed increased GFP/GFP:ATG8b protein signal ratio under heat stress and control conditions
090 compared to the control plants. Protein extracts were prepared using 14-day-old thalli and
091 immunoblotted.

092

093

094

095

096

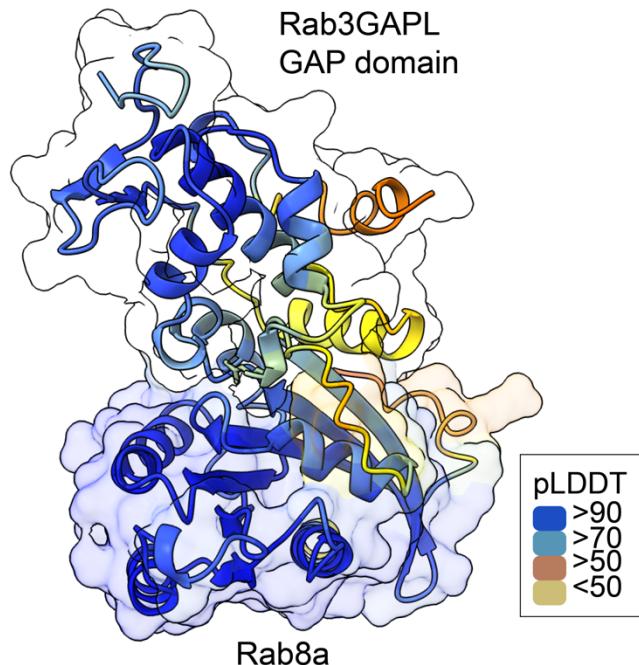
097

098

099

100

101


102

103

104

105

106

107

108 **Figure S4A. AF2-M predicted model of Rab8a in complex with Rab3GAPL GAP domain.** The colors
109 of Rab3GAPL GAP domain and Rab8a represent the confidence score (pLDDT) calculated by AF2, as
110 indicated in the rectangular box.

111

112

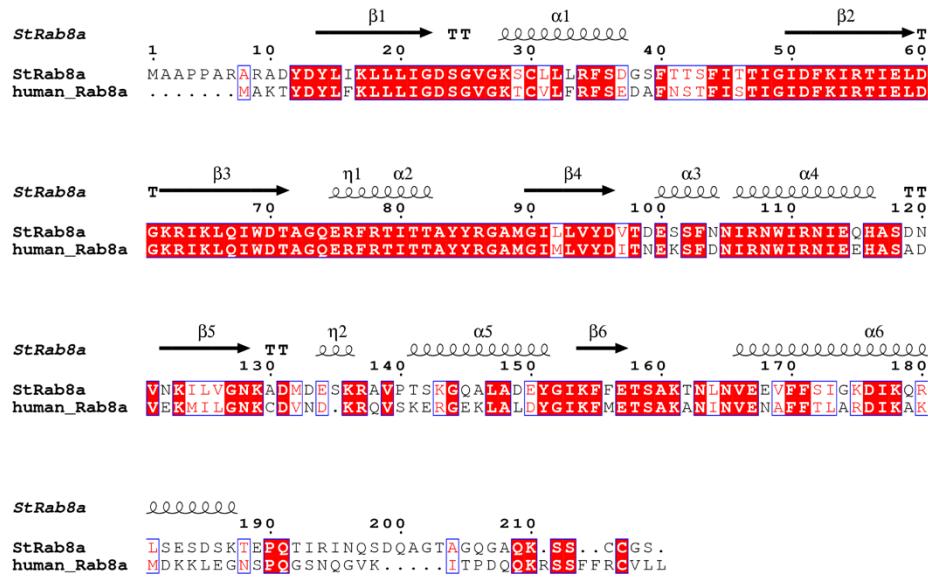
113

114

115

116

117


118

119

120

121

122

123

124 **Figure S4B. Pairwise sequence alignment of potato Rab8a and human Rab8a.** Alignments were
125 obtained using the MUSCLE algorithm and were visualized and color-coded via ESPript 3.0 (39). The
126 Rab8a displayed a high degree of protein sequence conservation with 68% amino acid identity.

127

128

129

130

131

132

133


134

135

136

137

138

139

140 **Figure S4C, D. AF2-guided *ab initio* molecular replacement of GTP-bound human Rab8a with the**
141 **potato Rab8a. (C)** Superposition of experimentally determined structure of human Rab8a (black)

142 bound to GTP (yellow) (PDB:6WHE) with AF2 prediction of potato Rab8a (blue) structure. Following

143 superimposition, human Rab8a structure was removed, resulting in potato Rab8a bound to GTP in the

144 nucleotide binding pocket. **(D)** Side-by-side surface views of human Rab8a (PDB:6WHE) and potato

145 Rab8a AF2-model with GTP-bound conformations.

146

147

148

149

150

151

152

153

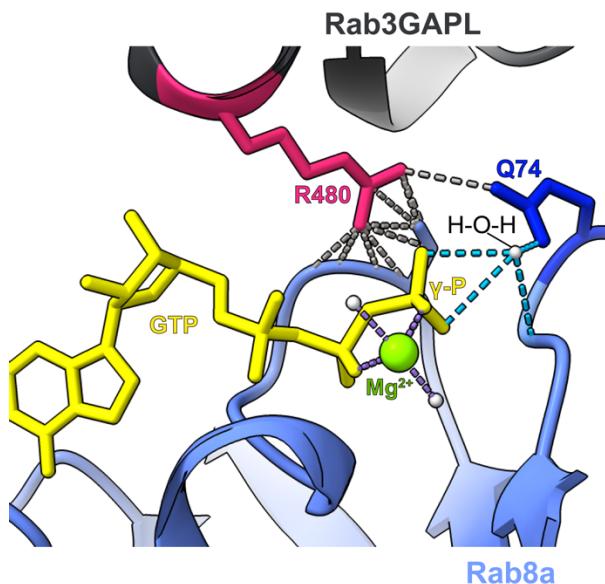
154

155

156

157

158


159

160

161

162

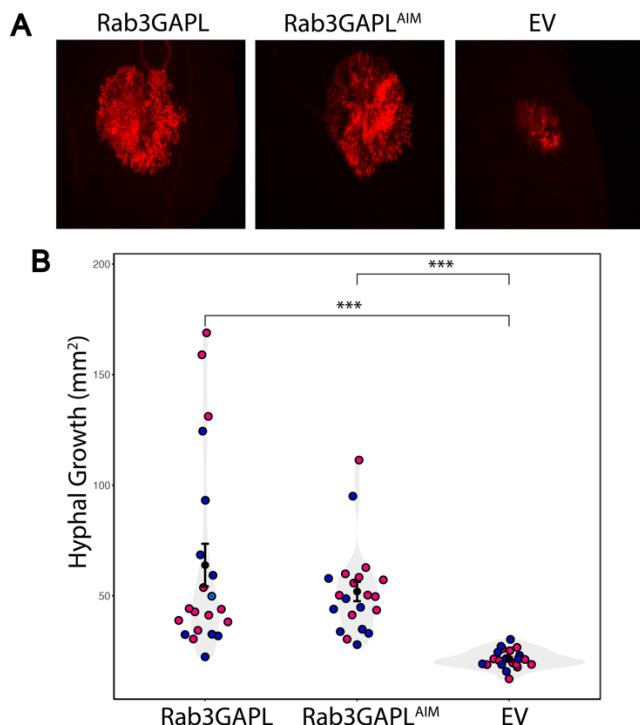
163

164

165 **Figure S4E. Predicted AF2-M model of Rab8a in complex with the GAP domain of Rab3GAPL.** The
166 catalytic arginine residue, R480 (magenta), of Rab3GAPL is located in close proximity to the GTP binding
167 pocket of Rab8a. R480 forms contacts with the switch-2 glutamate (Q74, depicted in dark blue) of Rab8a.
168 Q74 forms hydrogen bonds with the nucleophilic water molecule that act on gamma-phosphate (γ -P) of
169 the GTP molecule (yellow).

170

171

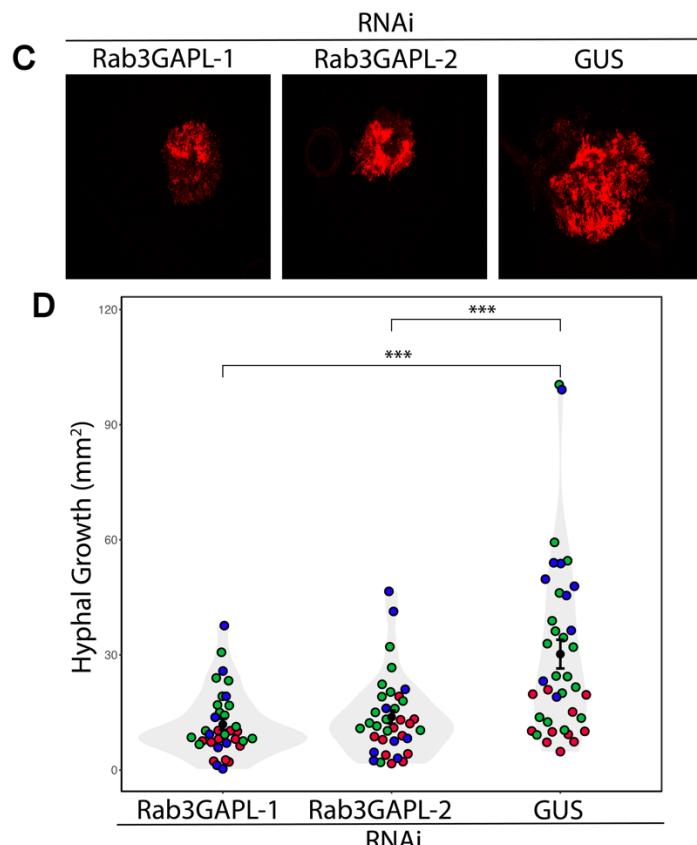

172

173

174

175

176



177

178 **Figure S5A, B. Rab3GAPL increases hyphal growth of *P. infestans* in an AIM-independent manner.**

179 (A) *N. benthamiana* leaves expressing Rab3GAPL, Rab3GAPL^{AIM} or EV control were infected with
180 tdTomato-expressing *P. infestans*, and pathogen growth was calculated by measuring hyphal growth of
181 pathogen using fluorescence stereomicroscope at 5 days post infection. (B) Both Rab3GAPL expression
182 (63.9, N = 21 spots) and Rab3GAPL^{AIM} expression (51.9, N = 21 spots) significantly increases *P. infestans*
183 hyphal growth compared to EV control (21.4, N = 21 spots). Statistical differences were analyzed by
184 Mann-Whitney U test in R. Measurements were highly significant when p<0.001 (***)�

185

186

187 **Figure S5C, D. Silencing *Rab3GAPL* significantly reduces hyphal growth of *P. infestans*.** (C) *N. benthamiana* leaves expressing RNAi:Rab3GAPL-1, RNAi:Rab3GAPL-2 or RNAi:GUS control were 188 infected with tdTomato-expressing *P. infestans*, and pathogen growth was calculated by measuring 189 hyphal growth of pathogen using fluorescence stereomicroscope at 5 days post infection. (D) Both 190 RNAi:Rab3GAPL-1 expression (11.9, N = 35 spots) and RNAi:Rab3GAPL-2 expression (13.8, N = 36 191 spots) significantly reduces *P. infestans* hyphal growth compared to RNAi:GUS control (30.2, N = 38 192 spots). Statistical differences were analyzed by Mann-Whitney U test in R. Measurements were highly 193 significant when p<0.001 (***)�. 194

195

196

197

198

199

200

201

202

203

204

205

206

207 **Table S1. Primers used in this work**

208

209 **Table S2. Details of constructs used**

210

211 **Table S3. Proteins and sequences used for AF2**

212

213 **Table S4. Details of antibodies used**

214

215 **Table S5. Summary of statistics**

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240 **Acknowledgments**

241

242 We acknowledge and thank the Imperial College FILM facility for their technical expertise and the use
243 of their microscopy equipment. We would also like to thank Vienna Biocenter Core Facilities for plant
244 sciences, bio-optics, molecular biology, and protein technology core facilities. We also express our
245 gratitude to the members of the Bozkurt, Dagdas and Kamoun groups for their suggestions and
246 productive discussion.

247

248 **Funding**

249 E.L.H.Y. is funded by the Imperial College London UKRI BBSRC Impact Acceleration Fund
250 BB/X511055/1. T.O.B. and Y.T. are funded by BBSRC grant BB/T006102/1. P.P. was funded by BBSRC
251 (BB/M002462/1). C. D. was funded by BBSRC (BB/M011224/1). Research in Y.D. lab is funded by the
252 Austrian Academy of Sciences, Austrian Science Fund (FWF, P 34944), Austrian Science Fund (FWF- SFB
253 F79), Vienna Science and Technology Fund (WWTF, LS21-009), European Research Council Grant
254 (Project number: 101043370). M.C. acknowledges funding from the VIP2-Marie Curie CoFund program.

255

256 **Author contributions**

257 Conceptualization: T.O.B., Y.D. Methodology: E.L.H.Y., A.Y.L., M.C., A.M., L.P., T.O.B. Validation: E.L.H.Y.,
258 A.Y.L., M.C., A.M., L.P. Formal Analysis: E.L.H.Y., A.Y.L., M.C., Y.T., A.M., L.P. Investigation: E.L.H.Y., A.Y.L.,
259 M.C., Y.T., A.M., L.P., M.J., P.P., C.D., T.O.B. Data Curation: E.L.H.Y., T.O.B. Visualization: E.L.H.Y., A.Y.L., M.C.,
260 A.M., L.P., T.O.B. Writing – Original Draft: E.L.H.Y., A.Y.L., T.O.B. Writing – Review & Editing: E.L.H.Y., Y.D.,
261 T.O.B. Supervision: C.D., E.C., Y.D., T.O.B. Funding Acquisition: Y.D., T.O.B.

262

263 **Competing Interest Statement**

264 T.B. and C.D. receive funding from industry on NLR biology. T.B. and C.D. are founders and shareholders
265 at Resurrect Bio Ltd. The remaining authors have no conflicts of interest to declare.

266

267 **Data and Materials Availability**

268 All relevant study data are included in the article, and in the Supplementary Materials files. AF2-
269 multimer predictions are uploaded to the public repository Figshare and is available at
270 <https://doi.org/10.6084/m9.figshare.23587575>.

271

272

273

274

275

276

277 **References**

278 1. Y. Bao, W.-M. Song, P. Wang, X. Yu, B. Li, C. Jiang, S.-H. Shiu, H. Zhang, D. C. Bassham, COST1
279 regulates autophagy to control plant drought tolerance. *Proceedings of the National Academy of*
280 *Sciences* **117**, 7482-7493 (2020).

281 2. K. Yoshimoto, Y. Ohsumi, Unveiling the molecular mechanisms of plant autophagy—from
282 autophagosomes to vacuoles in plants. *Plant and Cell Physiology* **59**, 1337-1344 (2018).

283 3. A. Y. Leary, Z. Savage, Y. Tumtas, T. O. Bozkurt, Contrasting and emerging roles of autophagy in
284 plant immunity. *Current opinion in plant biology* **52**, 46-53 (2019).

285 4. J. X. Leong, M. Raffeiner, D. Spinti, G. Langin, M. Franz-Wachtel, A. R. Guzman, J. G. Kim, P.
286 Pandey, A. E. Minina, B. Macek, A bacterial effector counteracts host autophagy by promoting
287 degradation of an autophagy component. *The EMBO journal* **41**, e110352 (2022).

288 5. A. Hafrén, J.-L. Macia, A. J. Love, J. J. Milner, M. Drucker, D. Hofius, Selective autophagy limits
289 cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and
290 particles. *Proceedings of the National Academy of Sciences* **114**, E2026-E2035 (2017).

291 6. A. Y. Leary, N. Sanguankiatthichai, C. Duggan, Y. Tumtas, P. Pandey, M. E. Segretin, J. Salguero
292 Linares, Z. D. Savage, R. J. Yow, T. O. Bozkurt, Modulation of plant autophagy during pathogen
293 attack. *Journal of experimental Botany* **69**, 1325-1333 (2018).

294 7. Y. Liu, D. C. Bassham, Autophagy: pathways for self-eating in plant cells. *Annual review of plant*
295 *biology* **63**, 215-237 (2012).

296 8. C. Chang, L. E. Jensen, J. H. Hurley, Autophagosome biogenesis comes out of the black box.
297 *Nature cell biology* **23**, 450-456 (2021).

298 9. G. Zaffagnini, S. Martens, Mechanisms of selective autophagy. *Journal of molecular biology* **428**,
299 1714-1724 (2016).

300 10. H. Nakatogawa, S. Ohbayashi, M. Sakoh-Nakatogawa, S. Kakuta, S. W. Suzuki, H. Kirisako, C.
301 Kondo-Kakuta, N. N. Noda, H. Yamamoto, Y. Ohsumi, The autophagy-related protein kinase
302 Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to
303 facilitate autophagosome formation. *Journal of Biological Chemistry* **287**, 28503-28507 (2012).

304 11. A. M. Taherbhoy, S. W. Tait, S. E. Kaiser, A. H. Williams, A. Deng, A. Nourse, M. Hammel, I.
305 Kurinov, C. O. Rock, D. R. Green, Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2
306 architecture and mechanism in the autophagy pathway. *Molecular cell* **44**, 451-461 (2011).

307 12. T. Johansen, T. Lamark, Selective autophagy: ATG8 family proteins, LIR motifs and cargo
308 receptors. *Journal of molecular biology* **432**, 80-103 (2020).

309 13. A. Maqbool, R. K. Hughes, Y. F. Dagdas, N. Tregidgo, E. Zess, K. Belhaj, A. Round, T. O. Bozkurt, S.
310 Kamoun, M. J. Banfield, Structural Basis of Host Autophagy-related Protein 8 (ATG8) Binding
311 by the Irish Potato Famine Pathogen Effector Protein PexRD54*♦. *Journal of Biological*
312 *Chemistry* **291**, 20270-20282 (2016).

313 14. T. Ibrahim, V. Khandare, F. G. Mirkin, Y. Tumtas, D. Bubeck, T. O. Bozkurt, AlphaFold2-multimer
314 guided high-accuracy prediction of typical and atypical ATG8-binding motifs. *PLoS Biology* **21**,
315 e3001962 (2023).

316 15. P. Pandey, A. Y. Leary, Y. Tumtas, Z. Savage, B. Dagvadorj, C. Duggan, E. L. H. Yuen, N.
317 Sanguankiattichai, E. Tan, V. Khandare, A. J. Connerton, T. Yunusov, M. Madalinski, F. G. Mirkin,
318 S. Schornack, Y. Dagdas, S. Kamoun, T. O. Bozkurt, An oomycete effector subverts host vesicle
319 trafficking to channel starvation-induced autophagy to the pathogen interface. *Elife* **10**,
320 (2021).

321 16. E. L. H. Yuen, S. Shepherd, T. O. Bozkurt, Traffic Control: Subversion of Plant Membrane
322 Trafficking by Pathogens. *Annual Review of Phytopathology* **61**, (2023).

323 17. Y. F. Dagdas, K. Belhaj, A. Maqbool, A. Chaparro-Garcia, P. Pandey, B. Petre, N. Tabassum, N.
324 Cruz-Mireles, R. K. Hughes, J. Sklenar, J. Win, F. Menke, K. Findlay, M. J. Banfield, S. Kamoun, T.
325 O. Bozkurt, An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo
326 receptor. *Elife* **5**, (2016).

327 18. Y. F. Dagdas, P. Pandey, Y. Tumtas, N. Sanguankiattichai, K. Belhaj, C. Duggan, A. Y. Leary, M. E.
328 Segretn, M. P. Contreras, Z. Savage, Host autophagy machinery is diverted to the pathogen
329 interface to mediate focal defense responses against the Irish potato famine pathogen. *Elife* **7**,
330 e37476 (2018).

331 19. X. Ao, L. Zou, Y. Wu, Regulation of autophagy by the Rab GTPase network. *Cell Death &*
332 *Differentiation* **21**, 348-358 (2014).

333 20. Q. Lu, P.-S. Wang, L. Yang, Golgi-associated Rab GTPases implicated in autophagy. *Cell &*
334 *Bioscience* **11**, 1-9 (2021).

335 21. Y. Zeng, B. Li, Y. Lin, L. Jiang, The interplay between endomembranes and autophagy in plants.
336 *Current opinion in plant biology* **52**, 14-22 (2019).

337 22. M. Bansal, S. C. Moharir, S. P. Sailasree, K. Sirohi, C. Sudhakar, D. P. Sarathi, B. J. Lakshmi, M.
338 Buono, S. Kumar, G. Swarup, Optineurin promotes autophagosome formation by recruiting the
339 autophagy-related Atg12-5-16L1 complex to phagophores containing the Wipi2 protein.
340 *Journal of Biological Chemistry* **293**, 132-147 (2018).

341 23. F. Carlos Martín Zoppino, R. Damián Militello, I. Slavin, C. Alvarez, M. I. Colombo,
342 Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites.
343 *Traffic* **11**, 1246-1261 (2010).

344 24. V. Vaibhava, A. Nagabhushana, M. L. S. Chalasani, C. Sudhakar, A. Kumari, G. Swarup, Optineurin
345 mediates a negative regulation of Rab8 by the GTPase-activating protein TBC1D17. *Journal of*
346 *cell science* **125**, 5026-5039 (2012).

347 25. A. Itzen, R. S. Goody, in *Seminars in cell & developmental biology*. (Elsevier, 2011), vol. 22, pp.
348 48-56.

349 26. A. Longatti, C. A. Lamb, M. Razi, S.-i. Yoshimura, F. A. Barr, S. A. Tooze, TBC1D14 regulates
350 autophagosome formation via Rab11-and ULK1-positive recycling endosomes. *Journal of Cell
351 Biology* **197**, 659-675 (2012).

352 27. E. K. Zess, C. Jensen, N. Cruz-Mireles, J. C. De la Concepcion, J. Sklenar, M. Stephani, R. Imre, E.
353 Roitinger, R. Hughes, K. Belhaj, K. Mechtler, F. L. H. Menke, T. Bozkurt, M. J. Banfield, S. Kamoun,
354 A. Maqbool, Y. F. Dagdas, N-terminal beta-strand underpins biochemical specialization of an
355 ATG8 isoform. *PLoS Biol* **17**, e3000373 (2019).

356 28. R. Kellner, J. C. De la Concepcion, A. Maqbool, S. Kamoun, Y. F. Dagdas, ATG8 expansion: a driver
357 of selective autophagy diversification? *Trends in plant science* **22**, 204-214 (2017).

358 29. A. Clabecq, J.-P. Henry, F. o. Darchen, Biochemical characterization of Rab3-GTPase-activating
359 protein reveals a mechanism similar to that of Ras-GAP. *Journal of Biological Chemistry* **275**,
360 31786-31791 (2000).

361 30. W. M. Cardinal-McTeague, K. J. Sytsma, J. C. Hall, Biogeography and diversification of
362 Brassicales: a 103 million year tale. *Molecular Phylogenetics and Evolution* **99**, 204-224 (2016).

363 31. D. C. Bassham, Methods for analysis of autophagy in plants. *Methods* **75**, 181-188 (2015).

364 32. S. R. Yoshii, N. Mizushima, Monitoring and measuring autophagy. *International journal of
365 molecular sciences* **18**, 1865 (2017).

366 33. H. Hanaoka, T. Noda, Y. Shirano, T. Kato, H. Hayashi, D. Shibata, S. Tabata, Y. Ohsumi, Leaf
367 senescence and starvation-induced chlorosis are accelerated by the disruption of an
368 Arabidopsis autophagy gene. *Plant Physiol* **129**, 1181-1193 (2002).

369 34. J. Zhou, J. Wang, Y. Cheng, Y.-J. Chi, B. Fan, J.-Q. Yu, Z. Chen, NBR1-mediated selective autophagy
370 targets insoluble ubiquitinated protein aggregates in plant stress responses. *PLoS genetics* **9**,
371 e1003196 (2013).

372 35. J. Zhou, J. Wang, J.-Q. Yu, Z. Chen, Role and regulation of autophagy in heat stress responses of
373 tomato plants. *Frontiers in Plant Science* **5**, 174 (2014).

374 36. V. P. Thirumalaikumar, M. Gorka, K. Schulz, C. Masclaux-Daubresse, A. Sampathkumar, A.
375 Skirycz, R. D. Vierstra, S. Balazadeh, Selective autophagy regulates heat stress memory in
376 Arabidopsis by NBR1-mediated targeting of HSP90. 1 and ROF1. *Autophagy* **17**, 2184-2199
377 (2021).

378 37. J. Zhou, Z. Wang, X. Wang, X. Li, Z. Zhang, B. Fan, C. Zhu, Z. Chen, Dicot-specific ATG8-interacting
379 ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress
380 responses. *Autophagy* **14**, 487-504 (2018).

381 38. J. Zhou, Y. Zhang, J. Qi, Y. Chi, B. Fan, J.-Q. Yu, Z. Chen, E3 ubiquitin ligase CHIP and NBR1-
382 mediated selective autophagy protect additively against proteotoxicity in plant stress
383 responses. *PLoS genetics* **10**, e1004116 (2014).

384 39. X. Robert, P. Gouet, Deciphering key features in protein structures with the new ENDscript
385 server. *Nucleic acids research* **42**, W320-W324 (2014).

386 40. C. Puri, M. Vicinanza, A. Ashkenazi, M. J. Gratian, Q. Zhang, C. F. Bento, M. Renna, F. M. Menzies,
387 D. C. Rubinsztein, The RAB11A-positive compartment is a primary platform for
388 autophagosome assembly mediated by WIPI2 recognition of PI3P-RAB11A. *Developmental cell*
389 **45**, 114-131. e118 (2018).

390 41. D. Waschbüsch, E. Purlyte, A. R. Khan, Dual arginine recognition of LRRK2 phosphorylated Rab
391 GTPases. *Biophysical Journal* **120**, 1846-1855 (2021).

392 42. J. Cherfils, M. Zeghouf, Regulation of small gtpases by gefs, gaps, and gdis. *Physiological reviews*
393 **93**, 269-309 (2013).

394 43. T. Shpilka, H. Weidberg, S. Pietrokovski, Z. Elazar, Atg8: an autophagy-related ubiquitin-like
395 protein family. *Genome biology* **12**, 1-11 (2011).

396 44. T. Li, G. Ai, X. Fu, J. Liu, H. Zhu, Y. Zhai, W. Pan, D. Shen, M. Jing, A. Xia, A Phytophthora capsici
397 RXLR effector manipulates plant immunity by targeting RAB proteins and disturbing the
398 protein trafficking pathway. *Molecular Plant Pathology* **23**, 1721-1736 (2022).

399 45. T. O. Bozkurt, A. Richardson, Y. F. Dagdas, S. Mongrand, S. Kamoun, S. Raffaele, The Plant
400 Membrane-Associated REMORIN1.3 Accumulates in Discrete Perihaustral Domains and
401 Enhances Susceptibility to Phytophthora infestans. *Plant Physiol* **165**, 1005-1018 (2014).

402 46. M.-C. Caillaud, L. Wirthmueller, J. Sklenar, K. Findlay, S. J. Piquerez, A. M. Jones, S. Robatzek, J. D.
403 Jones, C. Faulkner, The plasmodesmal protein PDLP1 localises to haustoria-associated
404 membranes during downy mildew infection and regulates callose deposition. *PLoS pathogens*
405 **10**, e1004496 (2014).

406 47. C. O. Micali, U. Neumann, D. Grunewald, R. Panstruga, R. O'Connell, Biogenesis of a specialized
407 plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria.
408 *Cellular microbiology* **13**, 210-226 (2011).

409 48. C. Duggan, E. Moratto, Z. Savage, E. Hamilton, H. Adachi, C. H. Wu, A. Y. Leary, Y. Tumtas, S. M.
410 Rothery, A. Maqbool, S. Nohut, T. R. Martin, S. Kamoun, T. O. Bozkurt, Dynamic localization of a
411 helper NLR at the plant-pathogen interface underpins pathogen recognition. *Proc Natl Acad Sci
412 USA* **118**, (2021).

413 49. P. Yan, W. Shen, X. Gao, X. Li, P. Zhou, J. Duan, High-throughput construction of intron-
414 containing hairpin RNA vectors for RNAi in plants. *PLoS One* **7**, e38186 (2012).

415 50. A. Kubota, K. Ishizaki, M. Hosaka, T. Kohchi, Efficient Agrobacterium-mediated transformation
416 of the liverwort *Marchantia polymorpha* using regenerating thalli. *Biosci Biotechnol Biochem*
417 **77**, 167-172 (2013).

418 51. P. van West, A. J. de Jong, H. S. Judelson, A. M. Emons, F. Govers, The ipiO gene of Phytophthora
419 infestans is highly expressed in invading hyphae during infection. *Fungal Genet Biol* **23**, 126-
420 138 (1998).

421 52. A. Chaparro-Garcia, R. C. Wilkinson, S. Gimenez-Ibanez, K. Findlay, M. D. Coffey, C. Zipfel, J. P.
422 Rathjen, S. Kamoun, S. Schornack, The receptor-like kinase SERK3/BAK1 is required for basal

423 resistance against the late blight pathogen *Phytophthora infestans* in *Nicotiana benthamiana*.
424 *PloS one* **6**, e16608 (2011).

425 53. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R.
426 Bates, A. Žídek, A. Potapenko, Highly accurate protein structure prediction with AlphaFold.
427 *Nature* **596**, 583-589 (2021).

428 54. V. Mariani, M. Biasini, A. Barbato, T. Schwede, IDDT: a local superposition-free score for
429 comparing protein structures and models using distance difference tests. *Bioinformatics* **29**,
430 2722-2728 (2013).

431 55. R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput.
432 *Nucleic acids research* **32**, 1792-1797 (2004).

433 56. T. O. Bozkurt, S. Schornack, J. Win, T. Shindo, M. Ilyas, R. Oliva, L. M. Cano, A. M. Jones, E.
434 Huitema, R. A. van der Hoorn, S. Kamoun, *Phytophthora infestans* effector AVRblb2 prevents
435 secretion of a plant immune protease at the haustorial interface. *Proc Natl Acad Sci U S A* **108**,
436 20832-20837 (2011).

437 57. B. M. O'Leary, A. Rico, S. McCraw, H. N. Fones, G. M. Preston, The infiltration-centrifugation
438 technique for extraction of apoplastic fluid from plant leaves using *Phaseolus vulgaris* as an
439 example. *J Vis Exp*, (2014).

440 58. L. Picchianti, V. Sanchez de Medina Hernandez, N. Zhan, N. A. Irwin, R. Groh, M. Stephani, H.
441 Hornegger, R. Beveridge, J. Sawa-Makarska, T. Lendl, N. Grujic, C. Naumann, S. Martens, T. A.
442 Richards, T. Clausen, S. Ramundo, G. E. Karagoz, Y. Dagdas, Shuffled ATG8 interacting motifs
443 form an ancestral bridge between UFMylation and autophagy. *EMBO J*, e112053 (2023).

444 59. S. S. Sugano, R. Nishihama, M. Shirakawa, J. Takagi, Y. Matsuda, S. Ishida, T. Shimada, I. Hara-
445 Nishimura, K. Osakabe, T. Kohchi, Efficient CRISPR/Cas9-based genome editing and its
446 application to conditional genetic analysis in *Marchantia polymorpha*. *PLoS One* **13**, e0205117
447 (2018).

448