

1

2 **Lack of detection of SARS-CoV-2 in Wildlife from Kerala, 3 India in 2020-21**

4 Arun Zachariah¹, Sajesh P Krishnankutty², Jishnu Manazhi¹, Vishnu Omanakuttan¹, Sam Santhosh⁴,
5 Adam Blanchard³, Rachael Tarlinton^{3*}

6

7 1. Kerala Forests and Wildlife Department, Kerala, India

8 2. GeneSpec Pvt Ltd Kakkanad, Cochin, Kerala, India

9 3. School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington UK

10 4. SciGenom Research Foundation ,Kerala ,India

11

12 *Corresponding author: Rachael Tarlinton Rachael.tarlinton@nottingham.ac.uk

13

14

15

16

17 **1.1 Keywords**

18 *Coronavirus, Wildlife, SARS-CoV-2*

19

20 **1.2 Repositories:**

21

22

23

24

25

26

27

28

29

30 2. Abstract

31 Spill over of SARs-CoV-2 into a variety of wild and domestic animals has been an ongoing feature of
32 the human pandemic. The establishment of a new reservoir in white tailed deer in North America
33 and increasing divergence of the viruses circulating in them from those circulating in the human
34 population has highlighted the ongoing risk this poses for global health. Some parts of the world
35 have seen more intensive monitoring of wildlife species for SARS-CoV-2 and related coronaviruses
36 but there are still very large gaps in geographical and species-specific information. This paper reports
37 negative results for SARS-CoV-2 PCR based testing using a pan coronavirus end point RDRP PCR and a
38 Sarbecovirus specific E gene qPCR on lung and or gut tissue from wildlife from the Indian State of
39 Kerala. These animals included: 121 *Rhinolophus rouxii* (Rufous Horseshoe Bat), 6 *Rhinolophus*
40 *bedomei* (Lesser Woolly Horseshoe Bat), 15 *Rossetta leschenaultii* (Fulvous Fruit Bat), 47 *Macaca*
41 *radiata* (Bonnet macaques), 35 *Paradoxurus hermaphroditus* (Common Palm Civet), 5 *Viverricula*
42 *indica* (Small Indian Civet), 4 *Herpestes edwardsii* (Common Mongoose), 10 *Panthera tigris* (Bengal
43 Tiger), 8 *Panthera pardus fusca* (Indian Leopard), 4 *Prionailurus bengalensis* (Leopard cats), 2 *Felis*
44 *chaus* (Jungle cats), 2 *Cuon alpinus* (Wild dogs) and 1 *Melursus ursinus* (sloth bear).

45 3. Introduction

46 There have been numerous reports of SARS-CoV-2 spill over from the human pandemic into multiple
47 species. Prominent events with large numbers of animals in multiple sites and spill over back into
48 the human population include domestic cats (*Felis Cattus*) (Piewbang, Poonsin et al. 2022, Tyson,
49 Jones et al. 2023), farmed American mink (*Neogale vison*) (Wasniewski, Boué et al. 2023) (Oude
50 Munnink, Sikkema et al. 2021) and Syrian hamsters (*Mesocricetus auratus*) (Kok, Wong et al. 2022,
51 Yen, Sit et al. 2022). SARS-CoV-2 has also established ongoing transmission in wild white-tailed deer
52 (*Odocoileus virginianus*) in the USA, with infection back into the human population confirmed.
53 Worryingly the variants found in the deer population have begun to significantly diverge from those
54 in the human population creating an unpredictable reservoir of novel variants (Pickering, Lung et al.
55 2022, Caserta, Martins et al. 2023, McBride, Garushyants et al. 2023). It would also appear from
56 laboratory studies that the range of species able to be infected by SARS-CoV-2 is very dependent on
57 the strain of virus and it is likely that as it continues to evolve in people that the species range of
58 susceptibility will not be stable (Halfmann, Iida et al. 2022, Thakur, Gallo et al. 2022).

59 There have been a very large number of reports of other species either able to be infected
60 experimentally or with infection detected in sporadic case reports. These are reviewed in (Nielsen,
61 Alvarez et al. 2023) but include a large number of cricetid rodents, felids, mustelids, other small
62 carnivores and primates. Many of these reports have been from animals held in zoological collections
63 where they are in close contact with humans, and it is not clear whether these species in their
64 natural environment are at risk or not. Indeed there is a marked contrast in disease transmission
65 between farmed mink at high population density, with almost 100% of animals infected in a very
66 short period of time in some outbreaks (Boklund, Hammer et al. 2021) and the sporadic reports,
67 despite intense monitoring, in wild animals, which are largely solitary (Aguiló-Gisbert, Padilla-Blanco
68 et al. 2021, Shriner, Ellis et al. 2021, Sikkema, Begeman et al. 2022, Villanueva-Saz, Giner et al. 2022).
69 These behavioural considerations may be as important as biological barriers in which species the
70 virus establishes in.

71 In addition, we also still have very large gaps in knowledge of the distribution of sarbecoviruses in
72 bats from the Rhinolophoidea; horseshoe bats and roundleaf bats, their natural hosts. There has

73 been intensive sampling of bats in SE Asia, driven by the original SARS-CoV outbreak in 2006 (Wong,
74 Li et al. 2019). This effort has established that Sarbecoviruses (SARS like betacoronaviruses) are
75 largely only found in Rhinolophoid bats. There are however about 180 species of these bats spread
76 across Eurasia and Africa with coronaviruses detected in about 30 of them (Muylaert, Kingston et al.
77 2022). Central and South Asia alongside Sub-Saharan Africa are notable absences in *Sarbecovirus*
78 detection studies (Cohen, Fagre et al. 2023) with that gap only just beginning to be filled
79 (Geldenhuys, Mortlock et al. 2021, Kamauf, Ergunay et al. 2022, Kettenburg, Kistler et al. 2022,
80 Ntumvi, Ndze et al. 2022, Meta Djomsi, Lacroix et al. 2023).

81 There has been remarkably little study of SARS-CoV-2 in animals in India despite the countries
82 devastating human pandemic (Wani, Menon et al. 2023). One study in Gujarat (a north western
83 state) of 413 domestic animals of a variety of species reported 23.79% of animals qPCR positive on
84 nasal or rectal swabs, the positive animals being dogs, cattle and buffalo with sequence confirmation
85 of one canine isolate (Kumar, Antiya et al. 2022). Sequencing effort was targeted in areas with large
86 number of human cases potentially explaining the very high qPCR positivity in this study. A
87 serological study of 320 captive Bengal tigers, Asiatic lions and leopards from 8 Indian states
88 demonstrated that 48 (15%) of these animals had seroconverted to SARS-CoV-2 by October 2021. A
89 small number of Indian Elephants (24) and 40 spotted and swamp deer were all seronegative
90 (Borkakoti, Karikalan et al. 2023). There have also been reports of PCR positive Asiatic lions in zoos
91 (Karikalan, Chander et al. 2022) with 2/18 animals in Uttar Pradesh (Northern India) and 1/20 in
92 Rajasthan (North West India) qPCR positive on nasal or rectal swabs, with sequence confirmation of
93 the isolates, other felids housed at these institutions did not test positive. Four out of 24 Asiatic lions
94 in Chennai (Tamil Nadu state, South East India) were also found to be qPCR positive and sequence
95 confirmed in a zoo (Mishra, Kumar et al. 2021), two of these animals died. The only report in a wild
96 animal in India is a solitary juvenile Asiatic leopard found dead in Uttar Pradesh with qPCR positivity
97 and sequence confirmation in (Mahajan, Karikalan et al. 2022), this was the only animal out of more
98 than 500 qPCR screened samples positive. In all these cases the felid infections were consistent with
99 the circulating human variants at the time.

100 India's size and number of climate zones mean that biodiversity is very high with pressures from the
101 world's largest human population and known problems with illegal wildlife trade and human/wildlife
102 conflict contributing to multiple zoonotic disease outbreaks (Walsh and Hossain 2020, Goodale,
103 Mammides et al. 2022, Rana and Kumar 2023). The western ghats rainforest along the west coast of
104 India is a biodiversity hotspot with 133 mammal species recorded. It is also an area of intense human
105 wildlife interaction and conflict, with large species such as tigers and elephants causing considerable
106 destruction in human settlements. Consequent to this zoonotic disease outbreaks are frequent with
107 the Kyasanur forest and its eponymous virus part of this ecosystem. Surveillance systems and
108 monitoring in this region are however seriously under-resourced with little systematic surveillance of
109 either animals or their viruses (Walsh and Hossain 2020).

110 This study sought to partially bridge these gaps with targeted trapping and testing of Rhinolophus
111 bats and opportunistic testing of carnivore and primate species either found dead (road kill) or culled
112 as part of nuisance animal control activities in the state of Kerala in South West India.

113

114 **4. Methods**

115 **4.1 Sample collection**

116 A total of 260 animals from 13 species (Table 1) were targeted for coronavirus monitoring. For the
117 two horseshoe bat species, palm civets and common mongoose, the targeted numbers were
118 calculated in Epitools (Epitools 2020), 2 stage sampling for demonstration of disease freedom (cluster
119 size unknown) based on assumption of 5% prevalence of Coronavirus and 50% of populations
120 affected. Prior assumptions were based on previous studies of rodent coronaviruses in wild
121 populations (Tsoleridis and Ball 2020). This gave an estimate of 7 clusters with 17 individuals in each
122 cluster to be samples (119 animals per species). The species targeted were the two most common
123 horseshoe bats in this environment (others are rare) and the most common small carnivore
124 predators of bats in these sites.

125 Bats were trapped using mist or harp nets, Subject to inhalational anaesthesia with isoflurane with
126 throat and cloacal swabs collected. Later bats were euthanized by extending the anaesthesia and
127 tissue samples were collected by necropsy. Samples were stored in RNAlater for nucleic acid
128 extraction. Small carnivores (common palm civet, small Indian civet, common mongoose, leopard
129 cat, jungle cat), bonnet macaques and larger carnivores (Bengal tiger, leopard, sloth bear and wild
130 dog), samples were collected as part of routine necropsy procedures from dead animals in the study
131 area. All the carcasses were fresh (within 12 hours of death) and samples were preserved in RNA
132 later and stored in -80 degree Celsius. All procedures were conducted under the supervision of an
133 experienced wildlife veterinarian.

134 Ethical approval was granted by the University of Nottingham School of Veterinary Medicine and
135 Science Committee for Animal Research and Ethics (CARE). Permission for Field work in Forest Areas
136 for Scientific Research and sample collection was as per the permit number KFDHQ- 1979/ 2021-
137 CWW / WL 10 issued by the Chief Wildlife Warden, Kerala state, India.

138

139 Table 1: Species and Sample Type Screened for SARS-CoV-2

Species	Lung sample	Gut sample	Total number of animals	Number of sites	Sample collection dates
bats					
Rufous horseshoe bat	121	98	121	13	May 2021- June 2022
Lesser woolly horseshoe bat	6	-	6	4	May 2021- June 2022
Fulvous fruit bat	15	-	15	3	May 2021- June 2022
Primates					
Bonnet Macaque	47	-	47	22	Feb 2019 - Feb 2022
Carnivores					
Common Palm Civet	35	-	35	19	Feb 2018 - May 2021

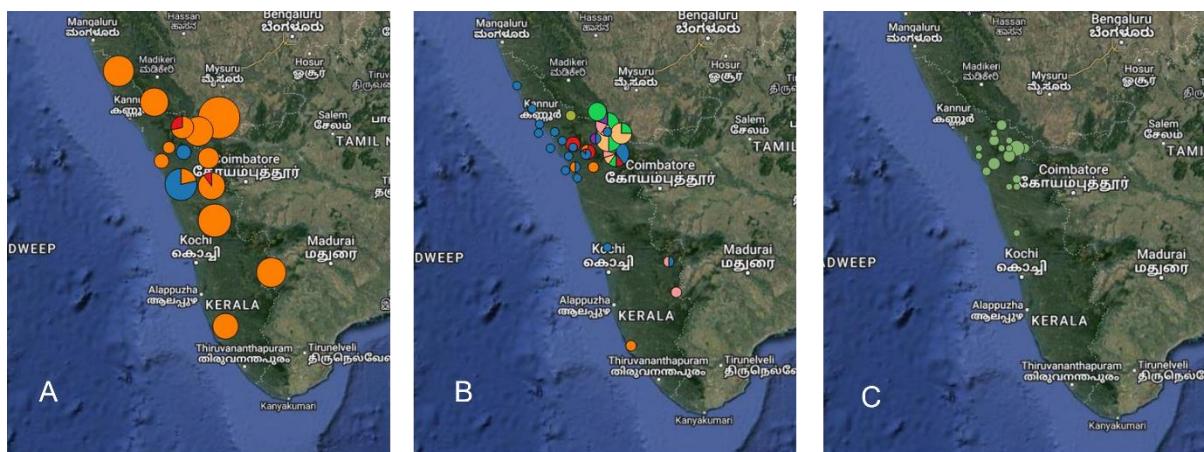
Small Indian Civet	5	-	5	4	March 2018 - March 2020
Common Mongoose	5	-	4	4	Sep 2021 - March 2022
Tiger	10	-	10	5	April 2020 - April 2022
Leopard	8	-	8	6	January 2019 - March 2022
Leopard Cat	4	-	4	4	January 2021 - January 2022
Jungle Cat	2	-	2	2	September - May 2021
Wild Dog	2	-	2	2	May 2019 - Nov 2021
Sloth	1	-	1	1	Archive sample
Total			402		

140

141 **4.2 RNA extraction, reverse transcriptase (RT) and RNA-dependent RNA polymerase (RDRP) gene**
142 **coronaviruses generic conventional PCR**

143 All sample processing and PCR was performed in India at the Kerala State forest department and
144 SciGenom labs, Kerala.

145 RNA extraction from lung tissue, faecal samples, rectal and oronasal swabs, and cell culture
146 supernatant as positive control, was carried out using the Invitrogen Viral RNA extraction kit as per
147 manufacturer's instructions. The positive control sample used throughout this study was cDNA from
148 the OC43 Coronavirus ATCC strain VR1558. RT was performed with the Applied Biosystems cDNA
149 reverse transcription kit as per manufacturer's instructions. All cDNA products were stored at -20 °C
150 for conventional PCR. An endpoint SARS-CoV-2 Specific PCR assay (Poon, Chu et al. 2005, Tsolieridis
151 and Ball 2020) was used to amplify the RDRP gene with the Takara R050 A PrimeSTAR GXL taq
152 according to manufacturer's instructions.


153 RNA and cDNA quality control was assessed via partial amplification of 108 bp of the beta actin gene
154 using a published conventional PCR protocol (Fischer, Freuling et al. 2014). Primers were F:
155 CAGCACAAATGAAGATCAAGATCATC and R: CGGACTCATCGTACTCCTGCTT

156

157 **5. Results**

158 No animal sample tested positive for SARS-CoV-2. Locations of samples are shown in Figure 1.

159

160

161

162 Figure 1 a) locations of bat samples, orange= rufous horseshoe bad red = lesser woolly horseshoe
163 bat, blue = fulvous fruit bat, pie chart sizes are proportional to the number of animals at each
164 location b) locations of carnivore samples, blue=common palm civet, red=small Indian civet, orange =
165 common mongoose, bright green=tiger, yellow=leopard, pink = leopard cat, purple= jungle cat, light
166 green = wild dog, grey= sloth bear pie chart sizes are proportional to the number of animals at each
167 location, c) locations of bonnet macaque samples, circles are proportional to the number of animals
168 at each location (Maps drawn in QGIS v 3.3.1.)

169 6. Discussion

170 This study found no evidence of widespread circulation of SARs-CoV-2 or related coronaviruses in
171 Indian wildlife. Some of the species tested here, such as bonnet macaques, palm civets and
172 mongoose are very commonly found in and around human habitation and represent significant pest
173 or nuisance species in terms of aggressive interactions with humans and potential zoonoses or cross
174 species transmission to and from domestic animals (Sato, Kabeya et al. 2013, Balasubramaniam,
175 Marty et al. 2020, Kadam, Karikalan et al. 2022). These species are high risk for SARS-CoV-2 spill over
176 and it is at least reassuring that these animals tested negative. Though with the large caveats that
177 sampling was PCR based, a small number of animals and could easily have missed infections. Follow
178 up work with serological testing for SARS-CoV-2 antibody (indicating previous infection) would be an
179 extremely useful follow up to this project, with of course the caveat that widely available serological
180 assays have not been validated for these species, making results difficult to interpret (Borkakoti,
181 Karikalan et al. 2023).

182 Studies of felids in zoo (captive) populations in India have demonstrated a high rate of
183 seroconversion (Borkakoti, Karikalan et al. 2023) and PCR positive animals have been detected in
184 zoos (Mishra, Kumar et al. 2021, Karikalan, Chander et al. 2022) and in one wild leopard (Mahajan,
185 Karikalan et al. 2022). Our results here, while a small number of opportunistic samples add to
186 evidence that SARS-CoV-2 is not a widespread issue in Wild Indian Felids (Mahajan, Karikalan et al.
187 2022).

188 A completely negative finding in the two horseshoe bat species was unexpected, particularly as these
189 species are the natural hosts of SARs-like viruses and the PCR assays used in this study should have
190 detected known horseshoe bat sarbecoviruses. Our similar study of UK horseshoe bats did however
191 demonstrate that presence or absence of sarbecoviruses can be very species specific with lesser

192 horseshoe bats having a 44 % positivity rate on faecal or rectal swab samples but no detection at all
193 in greater horseshoe bats (Apaa, Withers et al. 2023). Studies in SE Asia present with very different
194 results with high positivity rates and sarbecoviruses detected in multiple species (Wu, Han et al.
195 2022). Of note the species in which SARS-CoV-2 like sarbecoviruses and recombinant viruses are
196 commonly found *R. sinicus*, *R. ferrumequinum*, *R. pusillus*, and *R. affinis* are either rare (*R. pusillus*) or
197 not found in Kerala. These species are all cave roosting bats that form large colonies which may be a
198 key factor in facilitating sarbecovirus diversity and cross species transmission.

199 Our sampling numbers and targets should have been able to detect sarbecoviruses in rufous
200 horseshoe bats where target numbers were achieved. Target numbers were not achieved in other
201 species, primarily due to extreme adverse weather conditions (flooding) in Kerala during the
202 sampling period. Most known roost sites for the lesser woolly horseshoe bat (which frequently roosts
203 in sites such as drain covers) were found abandoned. Trapping success rates for small carnivores
204 were also less than optimal. Nonetheless we present our negative results in the interest of providing
205 the only data to date on Indian horseshoe bat populations. This adds to data indicating that
206 sarbecovirus spill-over out of the horseshoe bat population may be a distinctly regional (SE Asian)
207 phenomena (Muylaert, Kingston et al. 2022, Wu, Han et al. 2022).

208

209

210

211 **7. Author statements**

212

213 **7.1 Conflicts of interest**

214 The authors declare that there are no conflicts of interest

215 **7.2 Funding information**

216 This work was funded by the Biotechnology and Biosciences Research Council (BBSRC) grant number
217 BB/W009501/1. During this period, the Otter Project was supported by funding from the
218 Environment Agency, and by the Waterloo Foundation. The badger post mortem study was funded
219 by DEFRA as part of their ongoing Tuberculosis monitoring

220 **7.3 Ethical approval**

221 Ethical approval was granted by the University of Nottingham School of Veterinary Medicine and
222 Science Committee for Animal Research and Ethics (CARE), and the University of Sussex Animal
223 Welfare and Ethical Review Board.

224 **7.4 Acknowledgements**

225 **8. References**

226 Aguiló-Gisbert, J., M. Padilla-Blanco, V. Lizana, E. Maiques, M. Muñoz-Baquero, E. Chillida-Martínez, J.
227 Cardells and C. Rubio-Guerri (2021). "First Description of SARS-CoV-2 Infection in Two Feral American
228 Mink (*Neovison vison*) Caught in the Wild." *Animals (Basel)* **11**(5).

229 Apaa, T., A. J. Withers, S. Staley, A. Blanchard, M. Bennett, S. Bremner-Harrison, E. A. Chadwick, F.
230 Hailer, S. W. R. Harrison, M. Loose, F. Mathews and R. Tarlinton (2023). "Sarbecoviruses of British
231 Horseshoe Bats; Sequence Variation and Epidemiology." *BioRxiv preprint*.
232 Balasubramaniam, K. N., P. R. Marty, S. Samartino, A. Sobrino, T. Gill, M. Ismail, R. Saha, B. A. Beisner,
233 S. S. K. Kaburu, E. Bliss-Moreau, M. E. Arlet, N. Ruppert, A. Ismail, S. A. M. Sah, L. Mohan, S. K. Rattan,
234 U. Kodandaramaiah and B. McCowan (2020). "Impact of individual demographic and social factors on
235 human-wildlife interactions: a comparative study of three macaque species." *Sci Rep* **10**(1): 21991.
236 Boklund, A., A. S. Hammer, M. L. Quaade, T. B. Rasmussen, L. Lohse, B. Strandbygaard, C. S.
237 Jørgensen, A. S. Olesen, F. B. Hjerpe, H. H. Petersen, T. K. Jensen, S. Mortensen, F. F. Calvo-Artavia, S.
238 K. Lefèvre, S. S. Nielsen, T. Halasa, G. J. Belsham and A. Bøtner (2021). "SARS-CoV-2 in Danish Mink
239 Farms: Course of the Epidemic and a Descriptive Analysis of the Outbreaks in 2020." *Animals (Basel)*
240 **11**(1).
241 Borkakoti, R., M. Karikalan, S. K. Nehul, H. R. Jogi, K. Sharma, S. Nautiyal, R. Mishra, S. Mahajan, S. K.
242 Biswas, S. Nandi, V. Chander, A. Pawde, G. Saikumar, K. P. Singh and G. K. Sharma (2023). "A
243 retrospective study showing a high rate of seropositivity against SARS-CoV-2 in wild felines in India."
244 *Arch Virol* **168**(4): 109.
245 Caserta, L. C., M. Martins, S. L. Butt, N. A. Hollingshead, L. M. Covaleda, S. Ahmed, M. R. R. Everts, K.
246 L. Schuler and D. G. Diel (2023). "White-tailed deer (*Odocoileus virginianus*) may serve as a wildlife
247 reservoir for nearly extinct SARS-CoV-2 variants of concern." *Proc Natl Acad Sci U S A* **120**(6):
248 e2215067120.
249 Cohen, L. E., A. C. Fagre, B. Chen, C. J. Carlson and D. J. Becker (2023). "Coronavirus sampling and
250 surveillance in bats from 1996-2019: a systematic review and meta-analysis." *Nat Microbiol* **8**(6):
251 1176-1186.
252 Epitools. (2020). "Epitools sample size calculation ", from
253 <https://epitools.ausvet.com.au/samplesize?page=SampleSize>.
254 Fischer, M., C. M. Freuling, T. Müller, A. Wegelt, E. A. Kooi, T. B. Rasmussen, K. Voller, D. A. Marston,
255 A. R. Fooks, M. Beer and B. Hoffmann (2014). "Molecular double-check strategy for the identification
256 and characterization of European Lyssaviruses." *J Virol Methods* **203**: 23-32.
257 Geldenhuys, M., M. Mortlock, J. H. Epstein, J. T. Pawęska, J. Weyer and W. Markotter (2021).
258 "Overview of Bat and Wildlife Coronavirus Surveillance in Africa: A Framework for Global
259 Investigations." *Viruses* **13**(5).
260 Goodale, E., C. Mammides, W. Mtemi, Y. F. Chen, R. Barthakur, U. M. Goodale, A. Jiang, J. Liu, S.
261 Malhotra, M. Meegaskumbura, M. K. Pandit, G. Qiu, J. Xu, K. F. Cao and K. S. Bawa (2022). "Increasing
262 collaboration between China and India in the environmental sciences to foster global sustainability."
263 *Ambio* **51**(6): 1474-1484.
264 Halfmann, P. J., S. Iida, K. Iwatsuki-Horimoto, T. Maemura, M. Kiso, S. M. Scheaffer, T. L. Darling, A.
265 Joshi, S. Loeber, G. Singh, S. L. Foster, B. Ying, J. B. Case, Z. Chong, B. Whitener, J. Moliva, K. Floyd, M.
266 Ujie, N. Nakajima, M. Ito, R. Wright, R. Uraki, P. Warang, M. Gagne, R. Li, Y. Sakai-Tagawa, Y. Liu, D.
267 Larson, J. E. Osorio, J. P. Hernandez-Ortiz, A. R. Henry, K. Ciudeleris, K. R. Florek, M. Patel, A. Odle, L.
268 R. Wong, A. C. Bateman, Z. Wang, V. V. Edara, Z. Chong, J. Franks, T. Jeevan, T. Fabrizio, J.
269 DeBeauchamp, L. Kercher, P. Seiler, A. S. Gonzalez-Reiche, E. M. Sordillo, L. A. Chang, H. van Bakel, V.
270 Simon, D. C. Douek, N. J. Sullivan, L. B. Thackray, H. Ueki, S. Yamayoshi, M. Imai, S. Perlman, R. J.
271 Webby, R. A. Seder, M. S. Suthar, A. García-Sastre, M. Schotsaert, T. Suzuki, A. C. M. Boon, M. S.
272 Diamond and Y. Kawaoka (2022). "SARS-CoV-2 Omicron virus causes attenuated disease in mice and
273 hamsters." *Nature* **603**(7902): 687-692.
274 Kadam, R. G., M. Karikalan, C. M. Siddappa, K. Mahendran, G. Srivastava, K. K. Rajak, Y. Bhardwaj, R.
275 Varshney, Z. A. War, R. Singh, M. Ghosh, V. Beena, A. M. Pawde, K. P. Singh and A. K. Sharma (2022).
276 "Molecular and pathological screening of canine distemper virus in Asiatic lions, tigers, leopards,
277 snow leopards, clouded leopards, leopard cats, jungle cats, civet cats, fishing cat, and jaguar of
278 different states, India." *Infect Genet Evol* **98**: 105211.

279 Kamau, J., K. Ergunay, P. W. Webala, S. A. Justi, B. P. Bourke, M. W. Kamau, J. Hassell, M. N. Chege, D.
280 K. Mwaura, C. Simiyu, S. Kibiwot, S. Onyuok, L. Caicedo-Quiroga, T. Li, D. M. Zimmerman and Y. M.
281 Linton (2022). "A Novel Coronavirus and a Broad Range of Viruses in Kenyan Cave Bats." *Viruses*
282 **14**(12).

283 Karikalan, M., V. Chander, S. Mahajan, P. Deol, R. K. Agrawal, S. Nandi, S. K. Rai, A. Mathur, A. Pawde,
284 K. P. Singh and G. K. Sharma (2022). "Natural infection of Delta mutant of SARS-CoV-2 in Asiatic lions
285 of India." *Transbound Emerg Dis* **69**(5): 3047-3055.

286 Kettenburg, G., A. Kistler, H. C. Ranaivoson, V. Ahyong, A. Andrianaina, S. Andry, J. L. DeRisi, A.
287 Gentles, V. Raharinosy, T. H. Randriambolamanantsoa, N. A. F. Ravelomanantsoa, C. M. Tato, P.
288 Dussart, J. M. Heraud and C. E. Brook (2022). "Full Genome Nobecovirus Sequences From Malagasy
289 Fruit Bats Define a Unique Evolutionary History for This Coronavirus Clade." *Front Public Health* **10**:
290 786060.

291 Kok, K. H., S. C. Wong, W. M. Chan, L. Wen, A. W. Chu, J. D. Ip, L. K. Lee, I. T. Wong, H. W. Lo, V. C.
292 Cheng, A. Y. Ho, B. H. Lam, H. Tse, D. Lung, K. N. H. Ng, A. K. Au, G. K. Siu and K. Y. Yuen (2022). "Co-
293 circulation of two SARS-CoV-2 variant strains within imported pet hamsters in Hong Kong." *Emerg
294 Microbes Infect* **11**(1): 689-698.

295 Kumar, D., S. P. Antiya, S. S. Patel, R. Pandit, M. Joshi, A. K. Mishra, C. G. Joshi and A. C. Patel (2022).
296 "Surveillance and Molecular Characterization of SARS-CoV-2 Infection in Non-Human Hosts in
297 Gujarat, India." *Int J Environ Res Public Health* **19**(21).

298 Mahajan, S., M. Karikalan, V. Chander, A. M. Pawde, G. Saikumar, M. Semmaran, P. S. Lakshmi, M.
299 Sharma, S. Nandi, K. P. Singh, V. K. Gupta, R. K. Singh and G. K. Sharma (2022). "Detection of SARS-
300 CoV-2 in a free ranging leopard (*Panthera pardus fusca*) in India." *Eur J Wildl Res* **68**(5): 59.

301 McBride, D., S. Garushyants, J. Franks, A. Magee, S. Overend, D. Huey, A. Williams, S. Faith, A.
302 Kandeil, S. Trifkovic, L. Miller, T. Jeevan, A. Patel, J. Nolting, M. Tonkovich, J. T. Genders, A. Montoney,
303 K. Kasnyik, T. Linder, S. Bevins, J. Lenoch, J. Chandler, T. DeLiberto, E. Koonin, M. Suchard, P. Lemey, R.
304 Webby, M. Nelson and A. Bowman (2023). "Accelerated evolution of SARS-CoV-2 in free-ranging
305 white-tailed deer." *Res Sq.*

306 Meta Djomsi, D., A. Lacroix, A. K. Soumah, E. Kinganda Lusamaki, A. Mesdour, R. Raulino, A. Esteban,
307 I. Ndong Bass, F. A. Mba Djonzo, S. Goumou, S. P. Ndimbo-Kimugu, G. Lempu, P. Mbala Kingebeni, D.
308 M. Bamuleka, J. Likofata, J. J. Muyembe Tamfum, A. Toure, E. Mpoudi Ngole, C. Kouanfack, E.
309 Delaporte, A. K. Keita, S. Ahuka-Mundeke, A. Ayouba and M. Peeters (2023). "Coronaviruses Are
310 Abundant and Genetically Diverse in West and Central African Bats, including Viruses Closely Related
311 to Human Coronaviruses." *Viruses* **15**(2).

312 Mishra, A., N. Kumar, S. Bhatia, A. Aasdev, S. Kanniappan, A. T. Sekhar, A. Gopinadhan, R.
313 Silambarasan, C. Sreekumar, C. K. Dubey, M. Tripathi, A. A. Raut and V. P. Singh (2021). "SARS-CoV-2
314 Delta Variant among Asiatic Lions, India." *Emerg Infect Dis* **27**(10): 2723-2725.

315 Muylaert, R. L., T. Kingston, J. Luo, M. H. Vancine, N. Galli, C. J. Carlson, R. S. John, M. C. Rulli and D. T.
316 S. Hayman (2022). "Present and future distribution of bat hosts of sarbecoviruses: implications for
317 conservation and public health." *Proc Biol Sci* **289**(1975): 20220397.

318 Nielsen, S. S., J. Alvarez, D. J. Bicout, P. Calistri, E. Canali, J. A. Drewe, B. Garin-Bastuji, J. L. Gonzales
319 Rojas, C. Gortázar, M. Herskin, V. Michel, M. Miranda Chueca, B. Padalino, P. Pasquali, H. C. Roberts,
320 H. Spoolder, A. Velarde, A. Viltrop, C. Winckler, C. Adlhoch, I. Aznar, F. Baldinelli, A. Boklund, A.
321 Broglia, N. Gerhards, L. Mur, P. Nannapaneni and K. Ståhl (2023). "SARS-CoV-2 in animals:
322 susceptibility of animal species, risk for animal and public health, monitoring, prevention and
323 control." *Efsa j* **21**(2): e07822.

324 Ntumvi, N. F., V. N. Ndze, A. Gillis, J. Le Doux Diffo, U. Tamoufe, J. M. Takuo, M. M. M. Mouiche, J.
325 Nwobegahay, M. LeBreton, A. W. Rimoin, B. S. Schneider, C. Monagin, D. J. McIver, S. Roy, J. A.
326 Ayuketkong, K. E. Sailors, D. O. Joly, N. D. Wolfe, E. M. Rubin and C. E. Lange (2022). "Wildlife in
327 Cameroon harbor diverse coronaviruses, including many closely related to human coronavirus 229E."
328 *Virus Evol* **8**(1): veab110.

329 Oude Munnink, B. B., R. S. Sikkema, D. F. Nieuwenhuijse, R. J. Molenaar, E. Munger, R. Molenkamp, A.
330 van der Spek, P. Tolsma, A. Rietveld, M. Brouwer, N. Bouwmeester-Vincken, F. Harders, R. Hakze-van
331 der Honing, M. C. A. Wegdam-Blans, R. J. Bouwstra, C. GeurtsvanKessel, A. A. van der Eijk, F. C.
332 Velkers, L. A. M. Smit, A. Stegeman, W. H. M. van der Poel and M. P. G. Koopmans (2021).
333 "Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans."
334 *Science* **371**(6525): 172-177.

335 Pickering, B., O. Lung, F. Maguire, P. Kruczakiewicz, J. D. Kotwa, T. Buchanan, M. Gagnier, J. L. Guthrie,
336 C. M. Jardine, A. Marchand-Austin, A. Massé, H. McClinchey, K. Nirmalarajah, P. Aftanas, J. Blais-
337 Savoie, H. Y. Chee, E. Chien, W. Yim, A. Banete, B. D. Griffin, L. Yip, M. Goolia, M. Suderman, M.
338 Pinette, G. Smith, D. Sullivan, J. Rudar, O. Vernygora, E. Adey, M. Nebroski, G. Goyette, A. Finzi, G.
339 Laroche, A. Ariana, B. Vahkal, M. Côté, A. J. McGeer, L. Nituch, S. Mubareka and J. Bowman (2022).
340 "Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission." *Nat*
341 *Microbiol*.

342 Piewbang, C., P. Poonsin, P. Lohavicharn, S. W. Wardhani, W. Dankaona, J. Puenpa, Y. Poovorawan and
343 S. Techangamsuwan (2022). "SARS-CoV-2 Transmission from Human to Pet and Suspected
344 Transmission from Pet to Human, Thailand." *J Clin Microbiol* **60**(11): e0105822.

345 Poon, L. L., D. K. Chu, K. H. Chan, O. K. Wong, T. M. Ellis, Y. H. Leung, S. K. Lau, P. C. Woo, K. Y. Suen, K.
346 Yuen, Y. Guan and J. S. Peiris (2005). "Identification of a novel coronavirus in bats." *J Virol* **79**(4):
347 2001-2009.

348 Rana, A. K. and N. Kumar (2023). "Current wildlife crime (Indian scenario): major challenges and
349 prevention approaches." *Biodivers Conserv* **32**(5): 1473-1491.

350 Sato, S., H. Kabeya, Y. Shigematsu, H. Sentsui, Y. Une, M. Minami, K. Murata, G. Ogura and S.
351 Maruyama (2013). "Small Indian mongooses and masked palm civets serve as new reservoirs of
352 Bartonella henselae and potential sources of infection for humans." *Clin Microbiol Infect* **19**(12):
353 1181-1187.

354 Shriner, S. A., J. W. Ellis, J. J. Root, A. Roug, S. R. Stopak, G. W. Wiscomb, J. R. Zierenberg, H. S. Ip, M.
355 K. Torchetti and T. J. DeLiberto (2021). "SARS-CoV-2 Exposure in Escaped Mink, Utah, USA." *Emerg*
356 *Infect Dis* **27**(3): 988-990.

357 Sikkema, R. S., L. Begeman, R. Janssen, W. J. Wolters, C. Geurtsvankessel, E. de Bruin, R. W. Hakze-van
358 der Honing, P. Eblé, W. H. M. van der Poel, J. M. A. van den Brand, R. Slaterus, M. La Haye, M. P. G.
359 Koopmans, F. Velkers and T. Kuiken (2022). "Risks of SARS-CoV-2 transmission between free-ranging
360 animals and captive mink in the Netherlands." *Transbound Emerg Dis* **69**(6): 3339-3349.

361 Thakur, N., G. Gallo, J. Newman, T. P. Peacock, L. Biasetti, C. N. Hall, E. Wright, W. Barclay and D.
362 Bailey (2022). "SARS-CoV-2 variants of concern alpha, beta, gamma and delta have extended ACE2
363 receptor host ranges." *J Gen Virol* **103**(4).

364 Tsoleridis, T. and J. K. Ball (2020). "Discovery of Novel Coronaviruses in Rodents." *Methods Mol Biol*
365 **2203**: 33-40.

366 Tyson, G. B., S. Jones, N. Logan, M. McDonald, L. Marshall, P. R. Murcia, B. J. Willett, W. Weir and M.
367 J. Hosie (2023). "SARS-CoV-2 Seroprevalence and Cross-Variant Antibody Neutralization in Cats,
368 United Kingdom." *Emerg Infect Dis* **29**(6): 1223-1227.

369 Villanueva-Saz, S., J. Giner, A. M. Palomar, M. A. Gómez, M. Pödra, M. D. C. Aranda, M. Jiménez, P.
370 Lizarraga, R. Hernández, A. Portillo, J. A. Oteo, I. Ruíz-Arrondo, M. D. Pérez, A. P. Tobajas, M. Verde, D.
371 Lacasta, D. Marteles, R. Hurtado-Guerrero, L. Santiago, H. Ruíz and A. Fernández (2022). "No
372 Evidence of SARS-CoV-2 Infection in Wild Mink (*Mustela lutreola* and *Neogale vison*) from Northern
373 Spain during the First Two Years of Pandemic." *Animals (Basel)* **12**(15).

374 Walsh, M. G. and S. Hossain (2020). "Population structure and diet generalism define a preliminary
375 ecological profile of zoonotic virus hosts in the Western Ghats, India." *Epidemics* **33**: 100416.

376 Wani, H., S. Menon, D. Desai, N. D'Souza, Z. Bhathena, N. Desai, J. B. Rose and S. Shrivastava (2023).
377 "Wastewater-Based Epidemiology of SARS-CoV-2: Assessing Prevalence and Correlation with Clinical
378 Cases." *Food Environ Virol* **15**(2): 131-143.

379 Wasniewski, M., F. Boué, C. Richomme, E. Simon-Lorière, S. Van der Werf, F. Donati, V. Enouf, Y.
380 Blanchard, V. Beven, E. Leperchois, B. Leterrier, S. Corbet, M. Le Gouil, E. Monchatre-Leroy and E.
381 Picard-Meyer (2023). "Investigations on SARS-CoV-2 and other coronaviruses in mink farms in France
382 at the end of the first year of COVID-19 pandemic." *bioRxiv*.
383 Wong, A. C. P., X. Li, S. K. P. Lau and P. C. Y. Woo (2019). "Global Epidemiology of Bat Coronaviruses."
384 *Viruses* **11**(2).
385 Wu, Z., Y. Han, Y. Wang, B. Liu, L. Zhao, J. Zhang, H. Su, W. Zhao, L. Liu, S. Bai, J. Dong, L. Sun, Y. Zhu, S.
386 Zhou, Y. Song, H. Sui, J. Yang, J. Wang, S. Zhang, Z. Qian and Q. Jin (2022). "A comprehensive survey
387 of bat sarbecoviruses across China in relation to the origins of SARS-CoV and SARS-CoV-2." *National
388 Science Review*.
389 Yen, H. L., T. H. C. Sit, C. J. Brackman, S. S. Y. Chuk, H. Gu, K. W. S. Tam, P. Y. T. Law, G. M. Leung, M.
390 Peiris and L. L. M. Poon (2022). "Transmission of SARS-CoV-2 delta variant (AY.127) from pet hamsters
391 to humans, leading to onward human-to-human transmission: a case study." *Lancet* **399**(10329):
392 1070-1078.

393