

Glioblastoma Mesenchymal Transition and Invasion are Dependent on a NF- κ B/BRD2 Chromatin Complex

3 Raghavendra Vadla¹, Shunichiro Miki¹, Brett Taylor¹, Daisuke Kawauchi¹, Brandon M
4 Jones¹, Nidhi Nathwani¹, Philip Pham¹, Jonathan Tsang², David A. Nathanson², Frank
5 B. Furnari¹

6 ¹Division of Regenerative Medicine, Department of Medicine, University of California
7 San Diego, La Jolla, CA 92093, USA.

8 ² Departments of Molecular and Medical Pharmacology, University of California, Los
9 Angeles, California 90095, United States

10 Corresponding author: ffurnari@health.ucsd.edu (F.B.F.)

11 **Running title: NF- κ B/BRD2 complex drives mesenchymal transition in GBM**

12
13
14
15
16
17
18
19
20
21
22

23 **Abstract**

24 Glioblastoma (GBM) represents the most aggressive subtype of glioma, noted for its
25 profound invasiveness and molecular heterogeneity. The mesenchymal (MES)
26 transcriptomic subtype is frequently associated with therapy resistance, rapid
27 recurrence, and increased tumor-associated macrophages. Notably, activation of the
28 NF- κ B pathway and alterations in the *PTEN* gene are both associated with this
29 malignant transition. Although *PTEN* aberrations have been shown to be associated
30 with enhanced NF- κ B signaling, the relationships between *PTEN*, NF- κ B and MES
31 transition are poorly understood in GBM. Here, we show that *PTEN* regulates the
32 chromatin binding of bromodomain and extraterminal (BET) family proteins, BRD2 and
33 BRD4, mediated by p65/RelA localization to the chromatin. By utilizing patient-derived
34 glioblastoma stem cells and CRISPR gene editing of the *RELA* gene, we demonstrate a
35 crucial role for RelA lysine 310 acetylation in recruiting BET proteins to chromatin for
36 MES gene expression and GBM cell invasion upon *PTEN* loss. Remarkably, we found
37 that BRD2 is dependent on chromatin associated acetylated RelA for its recruitment to
38 MES gene promoters and their expression. Furthermore, loss of BRD2 results in the
39 loss of MES signature, accompanied by an enrichment of proneural signature and
40 enhanced therapy responsiveness. Finally, we demonstrate that disrupting the NF- κ B/BRD2
41 interaction with a brain penetrant BET-BD2 inhibitor reduces mesenchymal
42 gene expression, GBM invasion, and therapy resistance in GBM models. This study
43 uncovers the role of hitherto unexplored *PTEN*-NF- κ B-BRD2 pathway in promoting
44 MES transition and suggests inhibiting this complex with BET-BD2 specific inhibitors as
45 a therapeutic approach to target the MES phenotype in GBM.

46 **Introduction**

47 Glioblastoma (GBM), the most aggressive and malignant form of glioma, is particularly
48 notorious for its ability to invade healthy brain tissue beyond the visible tumor margins
49 (1). This invasion is mediated by a complex interplay of molecular signaling pathways
50 and cellular interactions between tumor cells and the surrounding microenvironment (2).
51 A central issue confounding successful treatment is the heterogeneous nature of this
52 aggressive tumor. Multi-omics analyses identified three transcriptomic subtypes in

53 IDHwt GBM, classical (CL), mesenchymal (MES), and proneural (PN), with individual
54 tumors typically harboring mixtures of all three subtypes (3,4). The mesenchymal
55 subtype is associated with therapy resistance, increased invasion, and presence of
56 tumor associated macrophages (TAMs) (5). Recent studies have shown that IDHwt
57 tumors with a mesenchymal recurrence exhibited a significantly shorter surgical interval
58 compared with those with non-mesenchymal recurrence(6). These characteristics
59 highlight a need to better understand the factors that drive mesenchymal transition in
60 GBM.

61 Activation of the NF- κ B pathway plays a crucial role in promoting MES transition by
62 upregulating the expression of several key mesenchymal genes and also by stimulating
63 the expression of various cytokines, chemokines, and growth factors, thereby further
64 contributing to the mesenchymal phenotype in GBM cells (7,8). PTEN, an important
65 negative regulator of the NF- κ B pathway is frequently altered in GBM and its deletion or
66 mutation in GBM has been associated with MES transition (9). How PTEN functions
67 upstream of NF- κ B pathway to promote MES transition is not well understood in GBM.

68 The Bromodomain and Extra Terminal (BET) (including BRD2, BRD3, BRD4, and
69 BRDT) family of proteins function as readers for histone lysine acetylation and play a
70 critical role as coactivators in oncogenic transcriptional programs in cancer (10). BRD4
71 has been shown to bind to acetylated RelA on lysine310 to promote transcription of
72 inflammatory genes in many diseases (11,12). Although BRD2 and BRD4 are
73 overexpressed in GBM (13), their specific role in promoting NF- κ B mediated gene
74 expression remains unclear. Due to great interest in the development of BET protein
75 bromodomain specific inhibitors that cross the blood-brain barrier (BBB) (14,15), an
76 improved understanding of the RelA/BET complex and its function in GBM is important
77 to design effective therapeutics.

78 The NF- κ B pathway is under the control of two proteins with opposing functions: PTEN
79 and BET proteins. This interplay implies a potential direct influence of PTEN on the
80 functional modulation of BET proteins within the context of GBM. Here, using patient-
81 derived glioblastoma stem cells (GSCs) and CRISPR gene editing of the RELA gene,
82 we show that RelA is crucial for ECM gene expression and GBM cell invasion

83 associated with MES transition in the context of PTEN loss. Of the BET family proteins,
84 we discovered that BRD2 is dependent on RelA acetylation to be recruited to the
85 promoters of ECM genes and its loss is sufficient to abrogate GBM invasion. Further,
86 we translated our study therapeutically *in vivo* by using a brain penetrant BET-BD2
87 inhibitor to block mesenchymal gene expression and invasion in mice engrafted with
88 GBM models. These findings reveal a novel mechanism by which loss of PTEN through
89 BRD2 modulates the TME to promote MES transition. Our findings may have important
90 implications for using BD2 specific inhibitors as potent drugs for targeting the MES
91 phenotype in GBM.

92

93 **Results**

94 **PTEN negatively regulates chromatin deposition of BRD2 and BRD4 via its**
95 **phosphatase activity.** We previously showed that NF- κ B/BRD4-mediated transcription
96 of IL6 and BIRC5 presents a pathway of resistance to tyrosine kinase inhibitors (TKIs) in
97 heterogenous GBM models (16). Here, we investigated the regulation of BRD2 and
98 BRD4 by PTEN as both have been implicated in NF- κ B transcription (12). We
99 overexpressed PTEN in patient derived GSCs lacking PTEN expression and assessed
100 chromatin binding of BRD2 and BRD4, which is crucial for their function, by fractionating
101 the nuclear lysate into soluble nuclear extract (SNE) and chromatin bound (CB)
102 fractions. In all GBM cell lines, overexpression of PTEN resulted in the depletion of
103 BRD2 and BRD4 from chromatin, while there was minimal or no change in protein
104 levels observed in SNE fractions (**Figure 1A**). Conversely, knockout of PTEN in a PTEN
105 expressing GBM line (TS576) resulted in an increase in BRD2 and BRD4 on chromatin
106 (**Figure 1B**), suggesting that PTEN regulates the chromatin deposition of these
107 bromodomain proteins in GBM. Phosphatase activity of PTEN is critical for its tumor-
108 suppressive function in multiple cancers (17), including GBM (18,19). To investigate
109 whether the phosphatase activity of PTEN is crucial for its ability to downregulate BRD2
110 and BRD4 chromatin deposition, we introduced wildtype or a phosphatase dead mutant
111 PTEN (G129R) into U87 cells. Immunoblot analysis revealed an increase in BRD2 and
112 BRD4 levels on chromatin in cells expressing PTEN-G129R compared to those

113 expressing wildtype PTEN (**Figure 1C**), indicating that regulation of BRD2 and BRD4 by
114 PTEN is dependent on its phosphatase activity. PTEN mutations or deletions in GBM
115 and other cancer types lead to the activation of the oncogenic PI3K-AKT pathway (18).
116 To investigate whether the activation of AKT downstream of PTEN loss influences the
117 chromatin binding of BET proteins, we treated U87 cells with an AKT inhibitor and
118 observed decreased chromatin binding of BRD2 and BRD4. These results suggest that
119 AKT activation downstream of PTEN loss regulates the chromatin deposition of BRD2
120 and BRD4 in GBM (**Figure 1D**).

121 **Lysine 310 acetylated RelA is crucial for BRD2 and BRD4 chromatin deposition in**
122 **the absence of PTEN.**

123 Our previous data showed the NF- κ B complex protein, RelA/p65, recruits BRD4 to
124 promoters of inflammatory genes to facilitate their transcription (16). In GBM, PTEN can
125 regulate the nuclear translocation and transcription of NF- κ B (20). Hence, we
126 hypothesized that RelA deposition on chromatin upon PTEN loss may potentially recruit
127 BRD2 and BRD4 to chromatin. To investigate this, we initially evaluated the levels of
128 RelA on chromatin in cells with PTEN deletion and upon PTEN overexpression. Here,
129 we observed increased chromatin associated RelA in PTEN deficient cells, whereas
130 PTEN expression led to downregulation of RelA on chromatin (**Figure 2A**). We also
131 observed increased RelA chromatin binding in cells expressing PTEN-G129R compared
132 to WT-PTEN (**Figure S1A**). Further AKT inhibitor treatment downregulated RelA
133 chromatin levels similar to that observed for BET proteins in Fig.1D (**Figure S1B**). RelA
134 undergoes various post-translational modifications that can impact its stability,
135 subcellular localization, and interactions with other proteins (21). Acetylation of lysine
136 310 residue on RelA is associated with recruitment of BET proteins to the super
137 enhancers and promoter regions of NF- κ B target genes to promote transcription (22).
138 Therefore, we hypothesized that this RelA post-translational modification would facilitate
139 the recruitment of BRD2 and BRD4 proteins to chromatin through their acetylated
140 lysine-binding bromodomains (BD1 and BD2). In support of our hypothesis, we
141 observed an increase in RelA lysine 310 acetylation levels in PTEN deleted cells
142 (**Figure 2B**). To further understand the significance of RelA K310 acetylation in GBM in

143 the context of PTEN loss, we generated an endogenous knock-in at the *RELA* gene by
144 mutating lysine 310 to non-acetylatable arginine (K310R) (**Figure 2C**), here on referred
145 to as RelA-MUT. This mutation caused a modest decrease in RelA protein levels in
146 mutant cells compared to wildtype cells (**Figure 2D**), which might be due to the reported
147 role of K310 acetylation in promoting RelA stability (23). To confirm that K310R
148 mutation does not alter NF- κ B function, we assessed RelA-MUT nuclear translocation,
149 activation of a NF- κ B reporter, and inhibition by I κ B α in response to TNF- α stimulation,
150 which were all confirmed to be equivalent to RelA-WT cells (**Figure 2E** and **S1C**).
151 However, chromatin deposition of BRD2 and BRD4 in RelA-MUT cells was attenuated
152 when compared to RelA-WT cells (**Figure 2F**). In contrast, we did not observe any
153 significant change in the levels of RelA chromatin deposition in mutant cells, suggesting
154 that chromatin bound K310 acetylated protein recruits BRD2 and BRD4 to chromatin in
155 the context of PTEN loss. To identify specific pathway genes that are affected by the
156 disruption of RelA K310 acetylation, we conducted RNA-seq analysis. Surprisingly, the
157 single amino acid change resulted in 8,263 differentially expressed genes in mutant
158 cells when compared to wildtype cells ($p_{adj} < 0.05$, Benjamini-Hochberg (BH) correction).
159 There were more downregulated (1300, 2-fold decrease, $p_{adj} < 0.05$) than upregulated
160 (668, 2-fold increase, $p_{adj} < 0.05$) genes in RelA MUT cells (**Figure 2G**). Importantly,
161 RelA binding motifs were enriched on the promoters of downregulated genes,
162 suggesting that these genes were under the regulatory control of NF- κ B in complex
163 with BRD2 and/or BRD4 (**Figure S1D**). Gene ontology (GO) analysis performed on
164 downregulated genes in RelA-MUT cells identified biological processes related to
165 extracellular matrix organization (ECM) as genes associated with the top pathway
166 (**Figure 2H**), which overlaps with and is functionally related to the MES gene signature
167 in GBM(24). To confirm that K310 acetylation of RelA is linked to MES gene signature,
168 we assessed CD44 (MES marker) (7) expression and found it downregulated in RelA-
169 MUT cells compared to RelA-WT cells (**Figure S1E**). Further, GSEA enrichment
170 analysis revealed RelA-WT cells were enriched in MES signature whereas RelA-MUT
171 cells were enriched in a PN signature (**Figure 2I**), suggesting that the inhibition of RelA
172 K310 acetylation in the context of PTEN loss could potentially reverse PN to MES
173 transition in GBM. We also assessed the downregulation of MES associated ECM

174 genes (25) by real-time qPCR and observed decreased expression in RelA-MUT cells
175 (**Figure S1F**). Endogenous RelA K310R knock-in mutation in another GSC line (TS576
176 PTEN KO) displayed similar downregulation of ECM genes by GO analysis (**Figure**
177 **S1G**). To further support the conclusion that K310 acetylation on RelA is critical for
178 ECM associated gene expression in GBM, we interrogated CBP/P300, known to
179 mediate RelA K310 acetylation (26). Treatment with the CBP/P300 inhibitor, A-485,
180 resulted in a similar enrichment of downregulated ECM genes as observed with RelA-
181 MUT cells (**Figure S1H**), further supporting that acetylation of RelA is a critical
182 regulatory posttranslational modification required for MES gene expression in GBM.
183 This finding is of particular interest since numerous ECM genes have been found to be
184 upregulated in GBM and are associated with a poor prognosis (27).

185

186 **RelA lysine 310 acetylation promotes BRD2 binding to promoters of ECM genes.**
187 To investigate if downregulation of ECM genes in RelA-MUT cells is a result of loss of
188 BET protein recruitment to their promoter regions, we performed ChIP-qPCR assays for
189 RelA, BRD2 and BRD4 co-localization at a series of ECM gene promoters. We
190 observed BRD2 and BRD4 deposition at these promoters (**Figure 3A**) in RelA-WT cells
191 while RelA-MUT ablated BRD2 but not BRD4 deposition, suggesting that BRD2 is
192 dependent on RelA K310 acetylation for recruitment to promoters of ECM genes.
193 Interestingly, we noticed increased RelA-MUT binding at these promoters, which might
194 be due to inefficient removal of RelA from these promoters by IKK due to loss of K310
195 acetylation (28). However, despite the elevated presence of RelA, we observed a
196 decrease in the RNA expression of the corresponding genes (**Figure S1F**), suggesting
197 BRD2 recruitment to these promoters is crucial for their expression. This dependency
198 on BRD2 deposition to gene regulatory elements occupied by RelA might be important
199 for enhanced transcription of genes where BRD4 is already localized for steady state
200 expression (29). To confirm the role of BRD2 for ECM gene expression, we depleted
201 BRD2 by shRNA knockdown and assessed gene expression by RT-qPCR (**Figure 3B**),
202 which further illustrated a BRD2 dependent ECM gene signature. Furthermore, RNA-
203 seq analysis indicated a greater number of genes were downregulated in cells with
204 BRD2 knockdown as compared to control cells (**Figure S2A**), with GO analysis

205 revealing genes related to MES phenotype, such as ECM, migration and wound
206 healing, being predominantly affected (**Figure 3C**). We also determined overlapping
207 genes affected by RelA-MUT and BRD2 knockdown and found 213 genes shared in
208 these datasets (**Figure 3D**). GO analysis of this intersection revealed ECM associated
209 genes were the top downregulated genes (**Figure 3E**). This finding provides additional
210 evidence supporting the regulatory role of RelA/BRD2 in controlling the expression of
211 genes associated with MES phenotype. Further, we performed GSEA and observed an
212 enrichment of the PN signature in BRD2 knockdown cells, whereas control shRNA cells
213 displayed an enrichment of a MES signature (**Figure 3F**). Taken together, these
214 findings suggest that BRD2 is a crucial chromatin regulator for MES gene expression in
215 GBM. Consequently, its loss leads to an enrichment of the PN phenotype, underscoring
216 the dynamic nature of cellular states in GBM and the pivotal role of RelA/BRD2 complex
217 in these transitions.

218

219 **Decreased invasion of RelA mutant cells is phenocopied by BRD2
220 downregulation.**

221 ECM plays an important role in promoting the migration of glioma cells (29). Invasive
222 GSCs associated with MES subtype express high ECM gene expression and have been
223 linked to poor GBM patient survival (24). We sought to evaluate the invasive properties
224 of the RelA mutant GSCs. Accordingly, we performed a matrigel invasion assay to
225 compare the migration of RelA-MUT and RelA-WT GSCs. RelA-MUT GSCs exhibited
226 significantly reduced invasion compared to parental cells in response to growth factors
227 (**Figure 4A**). *In vitro* growth assays revealed GSC11 RelA-MUT cells displayed slower
228 growth compared to wildtype cells (**Figure S3A**). To evaluate the tumor forming
229 capacity of these mutant GSCs *in vivo*, we orthotopically engrafted RelA-WT or RelA-
230 MUT cell lines into mice. Surprisingly, RelA mutant GSC11 failed to initiate tumor
231 growth *in vivo* (data not shown). In contrast, GSC TS576 with *PTEN* KO and RelA
232 K310R mutation exhibited comparable *in vitro* growth rates when compared to RelA
233 wildtype cells (**Figure S3B**). The variation in cell growth properties observed in RelA-
234 MUT cells could potentially stem from differences in their genomic alterations. Although
235 the isogenic TS576 lines had comparable *in vitro* growth rates, RelA-MUT cells had

236 notably smaller tumors than RelA-WT cells upon orthotopic engraftment (**Figure 4B**).
237 These differences in proliferation within an *in vivo* environment may be due to an
238 interaction between the RelA-MUT cancer cells and the microenvironment. Tumor
239 associated macrophages/microglia (TAMs) have been associated with promoting tumor
240 invasion in GBM (30). To determine if reduced invasion and growth of RelA-MUT cells
241 resulted from a decrease in TAM infiltration, we conducted immunohistochemistry (IHC)
242 analysis on tumor sections. IHC revealed a higher number of IBA1⁺ invasive GBM cells
243 at the tumor periphery, accompanied by elevated levels of TAMs in RelA-WT cells
244 compared to RelA-MUT cells (**Figure 4C**). Subsequently, we evaluated if the depletion
245 of BRD2 phenocopies RelA K310R mutation and observed reduced invasion of BRD2
246 knockdown cells compared to control shRNA cells (**Figure 4D and S3C**), with a modest
247 effect on the proliferation of TS576 *PTEN* KO cells (**Figure S3D-E**). Since the MES
248 gene signature is associated with therapeutic resistance in GBM (31), we assessed
249 whether depletion of BRD2 sensitizes GSCs to temozolomide (TMZ) and found that
250 BRD2 knockdown cells were more sensitive to TMZ compared to control GSCs (**Figure**
251 **4E and S3F**). Overall, these data suggests that RelA/BRD2 promotes a MES phenotype
252 in GBM.

253

254 **BET-BD2 specific inhibition downregulates ECM gene expression and attenuates**
255 **invasion of GSCs.**

256 Pan-BET family inhibitors have been shown to have significant toxicity in clinical studies
257 (32). In contrast, BD2-specific inhibitors, selectively targeting the second bromodomain
258 of BET proteins, have been found to be less toxic in preclinical studies (29,33). BRD4
259 has been associated with ECM expression in diverse fibrotic diseases (34). Based on
260 this finding, a recently developed BET-BD2 inhibitor has advanced to clinical trials for
261 the treatment of myelofibrosis (NCT04454658). Therefore, we hypothesized that BD2
262 specific inhibition might be effective in downregulating ECM expression and MES
263 signature in GBM with less toxicity. To initially assess whether a BD2 inhibitor (BD2i)
264 could displace BET family proteins from chromatin, we treated cells with GSK620 (29)
265 and analyzed chromatin bound fractions for BET family proteins and observed reduced
266 chromatin deposition of BRD2, but not BRD3 or BRD4, when compared to vehicle

267 treatment (**Figure 5A**). Chromatin bound RelA levels remained unchanged with BD2i
268 treatment indicating drug specificity (**Figure 5A**). Next, to explore genes that were
269 differentially regulated in BD2i treated cells, we conducted RNA-seq analysis and found
270 a total of 3,048 significantly differentially expressed genes ($p_{adj} < 0.05$, **Figure 5B**).
271 Furthermore, GO analysis of downregulated genes revealed ECM pathway genes were
272 the top differentially expressed genes (**Figure 5C**). Importantly, RelA regulatory
273 elements were enriched on the promoters of downregulated genes, suggesting that
274 these genes were under the regulatory control of NF- κ B (**Figure S4A**). A second GSC
275 line displayed similar downregulation of ECM genes by GO analysis (**Figure S4B**). To
276 determine genes similarly affected by RelA-MUT and by BD2i treatment, we analyzed
277 the intersection of both conditions and identified approximately 50% of the genes
278 downregulated in BD2i treatment were shared with RelA-MUT cells (127 genes total)
279 (**Figure 5D**). GO analysis of shared genes revealed ECM and multiple oncogenic
280 pathways associated with GBM, such as angiogenesis and PI3K signaling, were also
281 enriched across shared significantly decreased genes (**Figure 5E**). Furthermore, RT-
282 qPCR analysis confirmed downregulation of many MES genes with BD2i treatment
283 (**Figure 5F**). A second BD2i, ABBV-774(33) similarly downregulated MES gene
284 expression (**Figure S4C**). GSEA enrichment analysis revealed control cells were
285 enriched in MES signature compared to BD2i treated cells (**Figure 5G**), suggesting that
286 ECM gene downregulation led to loss of MES transition. Interestingly, unlike other
287 perturbation conditions, BD2i treated cells are not enriched in the proneural
288 transcriptional subtype despite the loss of mesenchymal gene expression (**Figure S4D**).
289 To confirm whether BRD2 levels on the promoters of ECM genes were downregulated
290 with BD2i treatment, we performed ChIP-qPCR and observed significant BRD2
291 depletion from chromatin (**Figure 5H**). In contrast, we did not observe any changes in
292 BRD4 levels on these promoters, suggesting that GSK620 specifically displaces BRD2
293 from these promoters (**Figure S4E**). Furthermore, by matrigel invasion assay we
294 detected attenuated invasion for BD2i treated cells when compared to DMSO (**Figure 5I**
295 and **S4F**).
296

297 **Treatment with BET-BD2 inhibitor reduces MES phenotype *in vivo***

298 We evaluated the effect of GSK620 on cell proliferation by treating GSCs with
299 increasing doses of GSK620. We observed GSC11 cells displayed decreased cell
300 proliferation at 1 μ M dose (**Figure 6A**). However, another cell line GSC23, did not
301 exhibit any changes in cell proliferation even at higher doses of GSK620 (**Figure S5A**),
302 suggesting the differential sensitivities of GSCs to BD2i *in vitro*. Subsequently, we
303 explored whether GSK620 could enhance the sensitivity of the resistant GSC23 cells to
304 ionizing radiation (IR). We pre-treated GSC23 cells for 24h with vehicle or GSK620 and
305 exposed to one dose of IR (4Gy) and assessed the growth of these cells for a period of
306 5 days. We observed a significant reduction in the proliferation of GSK620-treated
307 GSC23 cells subjected to IR compared to the control group that received only IR
308 treatment (**Figure 6B**). This suggests that the inhibition of MES gene expression in
309 these cells with BD2i could have increased their sensitivity to IR. Next, to determine the
310 ability of GSK620 to traverse the BBB and hence its candidacy for *in vivo* use,
311 pharmacokinetic (PK) analysis was performed on mice administered GSK620 by oral
312 gavage. Analysis of the brain/plasma ratio revealed an AUC_{0-24hr} of 27.2% and plasma
313 t_{1/2} of 1.05 hrs (**Figure S5B**) which is comparable to TMZ kinetics (35), suggesting that
314 GSK620 has adequate CNS penetration. Next, to assess whether targeting the ECM
315 gene expression in GBM models *in vivo* leads to loss of the MES phenotype, we
316 orthotopically engrafted tumor cells into mice. Following tumor establishment, as
317 assessed by near infrared imaging (36), mice were treated with vehicle or GSK620 for
318 alternative days and monitored for tumor burden. Tumors from moribund mice were
319 assessed for invasion and TAMs, both of which are associated with the MES phenotype
320 (37) (**Figure 6C**). We did not detect any differences in tumor volume between vehicle
321 and BD2i treated mice (**Figure 6D**). IHC analysis of sectioned brains showed tumors
322 with diffuse infiltration into the surrounding brain parenchyma for vehicle treated animals
323 (**Figure 6E**), while BD2i treatment was associated with less diffuse and more localized
324 tumor growth (**Figure 6E**). Gliomas invade most notably along white matter tracts,
325 perivascular spaces, and meninges, which stand out as key clinicopathological features
326 of these aggressive tumors (38). We assessed the corpus callosum region which
327 contained invading cells into the contralateral hemisphere (**Figure 6F**) (38). We also

328 observed that MES-like invasive regions with closely aligned bundled cells with TAMs
329 were significantly reduced in GSK620 treated mice compared to vehicle (**Figure 6F**),
330 suggesting that BD2i inhibited a MES like phenotypic growth pattern with high TAMs *in*
331 *vivo*. Lastly, to assess whether our findings of PTEN regulation of BET proteins levels *in*
332 *vitro* are also observed in patient GBM samples, we analyzed recently published GBM
333 patient proteomic data (39). Interestingly, our Pearson correlation analysis displayed a
334 significant inverse correlation between PTEN and BRD2 ($P = 0.0023$) but not with BRD3
335 and BRD4 proteins in GBM patients (**Figure S5C**). These results support our conclusion
336 that BRD2 is a key effector BET protein to promote MES transition downstream of
337 PTEN loss in GBM (**Figure 7**).

338 **Discussion**

339 GBM is a highly aggressive brain tumor characterized by its infiltrative nature and
340 resistance to conventional therapies. The TME plays a crucial role in GBM
341 pathogenesis, with the interaction between cellular and non-cellular components being
342 a major determinant of treatment outcomes (40). ECM, a non-cellular component
343 constitutes a complex structural network that provides support and facilitates cellular
344 growth, survival, maturation, differentiation, and migration. Here, we report the role of
345 the PTEN-NF- κ B-BRD2 axis in regulating ECM gene expression and MES transition
346 leading to invasiveness of GBM cells. Our findings revealed that NF- κ B is a key player
347 downstream of PTEN loss in promoting ECM gene expression by regulating the
348 recruitment of BRD2 to the promoters of these genes through its lysine 310 acetylation
349 (**Figure 7**).

350 Dysregulation of ECM genes in GBM promotes the infiltration of tumor cells into the
351 surrounding brain parenchyma, resulting in nonresectable tumors that subsequently
352 lead to tumor recurrence (1,27). Recent findings on ECM gene regulation in GBM
353 underscore the significance of targeting ECM components as a potential therapeutic
354 approach for treating this malignancy (25,27,41). Previous research has shown that in
355 the context of pulmonary fibrosis, BRD4 regulates the expression of NF- κ B dependent
356 EMT genes (42), suggesting that a similar mechanism could be at play in tumors as
357 well. Nonetheless, a recent study utilizing a CRISPR screen found BRD2, rather than

358 BRD3 or BRD4, promotes EMT in lung cancer models (43). Aligning with these findings,
359 our data show that BRD2 and BRD4 are localized at the promoters of NF- κ B targeted
360 mesenchymal genes. Remarkably, we found that mere downregulation of BRD2 is
361 sufficient to attenuate expression of ECM genes and invasion in GBM.

362 Recent studies highlighted the role of targeting ECM in GBM. One study showed that
363 invasive regions associated with MES like cells, oncostreams, are enriched with ECM
364 genes. This study also showed that targeting the COL1A1 protein led to loss of
365 oncostream characteristics and prolonged survival in mouse GBM models (44). Another
366 study reported the association of MES transition with ECM gene expression with a
367 negative prognostic value at recurrence, suggesting a link between ECM expression
368 and invasion with therapy resistance in recurrent GBM (45). We demonstrate that the
369 inhibition of BRD2 deposition on ECM gene promoters by RELA K310R mutation,
370 knockdown or using BET-BD2-specific inhibitors led to loss of ECM gene expression,
371 MES transition and invasion of GBM cells, ultimately resulting in decreased
372 macrophage infiltration in *in vivo* GBM models. This is particularly significant given the
373 association between PTEN deletion and increased TAM infiltration, which contributes to
374 the mesenchymal phenotype in GBM (9,46). Our study also highlights the need to
375 define how BRD2 regulate chromatin and transcription in processes such as cell-fate
376 transitions and reprogramming in GBM, since BRD2 has been shown to play a role in
377 chromatin organization (47,48) and its mutations have been associated with other CNS
378 disorders (49).

379 Although it is widely accepted that NF- κ B is aberrantly activated in GBM and drives
380 MES transition, direct targeting of NF- κ B has been challenging due to the lack of
381 inhibitors that selectively block its function without affecting other crucial cellular
382 pathways. Our data reveals a previously unknown mechanism in which acetylation of
383 RelA at K310 modulates the MES transition by regulating ECM genes through BET
384 proteins. Intriguingly, we observed that RelA-MUT GSC11, a recurrent PDX model,
385 loses MES expression and gains PN expression, suggesting that the MES transition is
386 linked to epigenetic alterations as seen in other tumor types (50). These RelA-MUT
387 GSC11 lines failed to initiate tumor growth *in vivo*, highlighting its reliance on NF- κ B

388 signaling. Another PDX line, TS576 engineered with *PTEN* knockout made significantly
389 smaller tumors *in vivo* in the context of the RelA K310R mutation. These differences
390 between the cell lines could be due to different additional genomic alterations in these
391 PDX lines; however, invasion and ECM gene expression were the core common
392 pathways downregulated between these two lines, suggesting the acetylation of
393 RelA/p65 plays a key regulatory switch in these GBM processes.

394 We did not find any survival benefit using BET-BD2 inhibitor alone in PDX models.
395 Since MES tumors are resistant to therapy (31), we anticipate combining BD2i with
396 chemo or radiation therapy may result in a survival benefit. Indeed, our *in vitro*
397 experiments showed that BRD2 knockdown cells become more responsive to TMZ and
398 BD2i sensitized GSCs to IR therapy.

399 Overall, our study highlights the potential of targeting the PTEN-NF- κ B-BRD2 axis using
400 BET-BD2 inhibitors as a novel therapeutic strategy for targeting MES transition in GBM.
401 This approach may be especially effective in tumors with non-functional PTEN, as it
402 might overcome the limitations of immune checkpoint inhibitors and enhance anti-tumor
403 immunity by modulating the immunosuppressive TME (29,33). Further research is
404 warranted to evaluate the safety and efficacy of BET-BD2 inhibitors in GBM patients
405 with inactivated PTEN and to optimize treatment strategies for this devastating disease.

406

407 **Materials and methods**

408 **Cell culture**

409 Parental U87MG were obtained and cultured as described previously (51,52). PDX
410 sphere lines were cultured in DMEM/F12 medium supplemented with B27 (GIBCO/Life
411 Technologies) and 20 ng/ mL human recombinant EGF, 20 ng/mL bFGF. GSC11 was
412 provided by Frederick Lang (M.D. Anderson Cancer Center); TS576 was provided by
413 Cameron Brennan (Memorial Sloan Kettering Cancer Center). All cells were incubated
414 at 37°C, 5% CO₂, and 100% relative humidity in low-attachment flasks. PDX cell lines
415 were dissociated with Accutase (Stemcell Technologies). GSK620 and A-485 were
416 purchased from MedChem Express. ABBV-744 was provided by Andrew Shiu

417 (UCSD). The near-infrared fluorescent protein iRFP720 cDNA construct was from (53).
418 pLV-IkB-SR vector was a gift from Inder Verma (Salk Institute). The pGL4.32[Luc2P/ NF-
419 kB-RE/Hygro] vector for NF- κ B luciferase reporter assays was purchased from
420 Promega. shRNA constructs targeting BRD2 were purchased from Sigma (Mission
421 shRNA).

422 **Protein subcellular fractionation and western blotting**

423 Cultured cells were pelleted, and the supernatant was discarded, leaving the cells as
424 dry as possible. Thermo Scientific Subcellular Protein Fractionation Kit for Cultured
425 Cells was employed to separate different protein cell compartments. Cytoplasmic,
426 nuclear and chromatin-bound proteins were extracted according to manufacturer's
427 instructions (#78840). For whole cell lysates, cells were lysed in RIPA buffer. Extracts
428 were separated using gel electrophoresis and transferred via wet transfer onto a PVDF
429 membrane. The membrane was blocked with 5% milk in TBST and probed with primary
430 antibodies in 5% BSA at 1:1,000 dilution overnight at 4°C and secondary HRP
431 antibodies in 5% milk at 1:10,000 for 1 hour at RT. Signal was assessed via
432 chemiluminescence with the SuperSignal West Pico PLUS substrate (Thermo Fisher,
433 #34580) and visualized on a ChemiDoc MP system (Bio-Rad). The following antibodies
434 were used, anti-BRD2 (Cell Signaling Technology, #5848), anti-RelA/p65 (Cell Signaling
435 Technology, #8242), anti-BRD4 (Cell Signaling Technology, #13440), anti-GAPDH (Cell
436 Signaling Technology, #2118), anti-TBP (Cell Signaling Technology, #44059), PTEN
437 (Millipore, #04-035), H3 (Novus Biologicals, #NBP1-61519), AKT (Cell Signaling
438 Technology, #9272), anti-phospho-AKT Thr308 (Cell Signaling Technology, #9275),
439 anti-acetyl-NF- κ B p65 (Cell Signaling Technology, #3045) , anti-BRD3 (Santa Cruz
440 Biotechnology, #sc-81202).

441 **Generation of CRISPR engineered cell lines.**

442 pSpCas9(BB)-2A-GFP (px458) plasmid was a gift from Feng Zhang (Addgene plasmid
443 #48138). The designated sgRNA sequences for each of the targeted genes were cloned
444 into px458 using combinations of top and bottom oligonucleotides listed below.

445 PTEN – guide 1-top: 5' – CACCGGAATTACGCTATACGGAC – 3'

446 PTEN – guide 1-bottom: 5' – AACCGTCCGTATAGCGTAAATTCCC -3'
447 PTEN – guide 2-top: 5' – CACCGAACAAAGATCTGAAGCTCTAC – 3'
448 PTEN – guide 2-bottom: 5' – AACCGTAGAGCTTCAGATCTTGTTC – 3'
449 RELA-K310R-top: 5' – CACCGCTTCTTCATGATGCTCTTGA – 3'
450 RELA-K310R-bottom: 5' – AACTCAAGAGCATCATGAAGAAGC - 3'
451 Each pair of top and bottom oligonucleotides were phosphorylated and annealed by
452 incubating 10 μ M of each with 1 \times T4 DNA ligase buffer (New England Biolabs), 5U T4
453 polynucleotide kinase (New England Biolabs) at 37 °C for 30 min, 95 °C for 5 min and
454 by cooling down to 25 °C at 0.1 °C/s using a thermocycler. Annealed oligonucleotides
455 were cloned into px458 by incubating 25 ng px458, 1 μ M annealed oligonucleotides, 1 \times
456 CutSmart buffer (New England Biolabs), 1 mM ATP (New England Biolabs), 10U BBSI-
457 HF (New England Biolabs) and 200U T4 ligase (New England Biolabs) at 37 °C for 5
458 minutes, 23 °C for 5 min for 30 cycles. Correct cloning of each sgRNA sequence was
459 confirmed by Sanger sequencing using U6 sequencing primer: 5'-
460 GATACAAGGCTGTTAGAGAGATAATT-3'.
461 A single-stranded oligo DNA nucleotides (ssODNs) listed below was used to introduce
462 the point mutation into the RELA gene.
463 RELA-K310R-ssODN
464 5' -
465 CCTTACTTCCCAGACGATCGTCACCGGATTGAGGAGAACGTAAAAGGACATATG
466 AGACATTCCGCAGCATCATGAAGAAGAGTCCTTCAGCGGTGAGATGGGGACTGG
467 GAAAGCCAGAGAGGAA - 3'
468 GSCs were dissociated to single cells using Accutase (Innovative Cell Technologies).
469 The dissociated GSCs (1×10^6 cells) were resuspended in 100 μ l of supplemented
470 solution of the Human Stem Cell Nucleofector Kit 1 (Lonza) containing a combination of
471 the px458 plasmid targeting each gene and the ssODN and then electroporated using
472 B-016 program of Nucleofector 2b (Lonza). The electroporated GSCs were cultured for
473 48 h followed by Single cell sorting of GFP-positive cells (SH800, SONY) into 96-well

474 plates. For screening duplicated 96-well plates were lysed using QuickExtract DNA
475 Extraction Solution (Epicenter) and the following primers were used to confirm the
476 edited GSCs.

477 RELA – forward: 5' – GGACATATGAGACCTTCCGC – 3'

478 RELA – reverse: 5' – AGGGCTAGGTCAGTTCTCAG – 3'

479 **Immunofluorescence**

480 GSC11 cells expressing wildtype or mutant RelA were seeded on coverslips to ~70-
481 80% confluency was allowed to attach for 12 hr followed by TNF- α (20ng/ml) treatment
482 for 20 minutes and washed with PBS. Cells were then washed in cold PBS and fixed in
483 4% PFA for 15 min at RT followed by permeabilization with 0.3% Triton X-100 for 10
484 min at RT. Coverslips were then blocked by incubation in 2% BSA in PBS at RT for 30
485 min followed by 5% donor bovine serum (ThermoFisher Scientific) for 20 min. Blocked
486 coverslips were then probed with antibodies detecting RelA (Cell Signaling Technology)
487 in PBS containing 2% BSA and incubated in a humified chamber overnight at 4C. Next,
488 fluorochrome-conjugated secondary antibody (Invitrogen, #A32731) working
489 concentration in PBS containing 2% BSA was added to the coverslips and incubated for
490 2 hrs at RT in the dark. Coverslips were mounted with Fluoro-Gel II with DAPI (Electron
491 Microscopy Sciences). Imaging was conducted using a Keyence microscope at 20X or
492 40X magnification.

493 **RNA-seq data analysis**

494 RNA sequencing was performed by Novogene Corporation Inc, Sacramento, CA (read
495 length: paired end 150). Analysis was performed as previously described (54). Fastq file
496 quality was ensured with FastQC, and reads were aligned to the hg38 index using
497 STAR. After alignment, the quality of the alignment was confirmed by assessing the
498 final log output of STAR. Index and bigwig files were generated from the BAM files with
499 samtools and bamCoverage, respectively. Each sample was uploaded to IGV to assess
500 the quality and features of the reads mapping to the genome. The Subread package
501 was used to generate count files, and these raw counts were used as input files for
502 differential gene expression (DEG) analysis. Genes with less than 50 total counts

503 across all samples were filtered out for DEG analysis. All above packages were
504 downloaded and maintained with Conda package manager.

505 In R, DESeq2, pheatmap, and EnhancedVolcano packages were used for DEG
506 analysis, hierarchical clustering visualized in heatmaps, and volcano plots, respectively.
507 Volcano plotted genes by log-fold change and p-values. Initial DEGs were determined
508 with a p_{adj} value of < 0.05 (BH correction). For Gene Ontology (GO) analysis, DEGs
509 were further filtered to be decreased by at least 2-fold. GO analysis was done using
510 Metascape (55). The gene list Venn diagram was generated using the online tool found
511 at <https://www.bioinformatics.org/gvenn/index.html>. Lastly, the Gene Set Enrichment
512 Analysis (GSEA) software was used to enrichment analysis for GBM subtypes (56–58).
513 Input gene list files were generated with DESeq2 in R according to their GSEA
514 documentation.

515 **Chromatin immunoprecipitation-qPCR**

516 Chromatin immunoprecipitation was performed according to manufacturer instructions
517 (Active motif) with the following modifications. Chromatin was sheared in diluted lysis
518 buffer to 200 to 500 bp using a Covaris M220 Focused-Ultrasonicator with the following
519 parameters: 3 minutes, peak incident power 75, duty factor 10%, 200 cycles/burst.
520 Antibodies for ChIP were obtained from commercially available sources: anti-BRD2
521 (Cell Signaling Technology, #5848), anti-RelA/p65 (Cell Signaling Technology, #8242),
522 anti-BRD4 (Cell Signaling Technology, #13440). Five percent of the chromatin was not
523 exposed to antibody and was used as control (input). For ChIP-qPCR analysis, DNA
524 quantity for each ChIP sample was normalized against input DNA.

525 **Quantitative real-time PCR**

526 RNA was extracted with the RNeasy Plus kit (Qiagen, #74134) according to the
527 manufacturer's instructions. Reverse transcription of mRNA was performed using 3-5 μ g
528 RNA with RNA to cDNA EcoDry Premix (Takara, #639549). For real-time PCR analysis,
529 1 μ L of cDNA (10 ng of starting RNA) was amplified per reaction using the iTaq
530 Universal SYBR Green Supermix (Bio-Rad, #1725124) and the Bio-Rad CFX96 qPCR
531 system.

532 **shRNA mediated knockdown**

533 For lentivirus production, 293T cells were transfected with BRD2 shRNA (sigma),
534 psPAX2 and pMD2.G packaging constructs using TransIT-VirusGEN (Mirus).
535 Supernatants containing high titer lentiviruses were collected at 48 and 72 hr after
536 transfection and were filtered through a 0.45 μ m cellulose acetate filters before use.
537 Viral preparations were then purified by LentiX concentrator (Takara Bio). GSCs were
538 infected with lentivirus and after 24 hours of incubation at 37°C, the supernatant
539 containing virus was replaced by fresh culture media. Infected cells were selected by
540 puromycin.

541 **Matrigel invasion Assay**

542 GSCs (1 \times 10⁵ cells) were suspended in serum-free culture medium and seeded into 24-
543 well Transwell inserts (8.0 mm). Medium with indicated factors was added to the
544 remaining receiver wells. After 16 - 24 h, the invaded GSCs were fixed and stained with
545 crystal violet (0.05%, Sigma), and then counted as cells per field of view under
546 microscope (Keyence BZ-X700).

547 **Intracranial injection**

548 Animal research experiments were conducted under the regulations of the UCSD
549 Animal Care Program, protocol number S00192M. A total of 1 \times 10⁵ cells in a 5- μ L
550 volume was injected intracranially into 4- to 5-wk-old athymic nude mice using a
551 stereotactic system. Tumors were allowed to establish for indicated weeks before any
552 treatment, and engraftment of tumors was quantitatively confirmed via FMT signal
553 intensity at the onset of neurological symptoms in the control groups. Tumor growth was
554 monitored using the FMT 2500 fluorescence tomography system (PerkinElmer). For
555 drug treatment studies, vehicle (DMSO) or 10 mg/kg GSK620 resuspended in vehicle
556 was administered once every 2 days to mice via oral gavage. Mice were euthanized in
557 accordance with our institutional guidelines for animal welfare and experimental conduct
558 at University of California at San Diego.

559

560 **Immunohistochemistry**

561 Formalin-fixed, paraffin-embedded (FFPE) tissue sections were prepared by the
562 Histology Core Facility at UCSD pathology. Immunohistochemistry was performed
563 according to standard procedures. Antigen was retrieved by boiling slides in 0.01 M of
564 sodium citrate (pH 6.0) in a microwave for 15 min. Sections were incubated with primary
565 antibody at 4°C overnight, followed by incubation with biotinylated secondary antibodies
566 at room temperature for 30 min. Representative images from each immunostained
567 section were taken with a Keyence BZ-X700 microscope and analyzed with BZ-X
568 Analyzer Keyence software.

569 **Cell Growth Assay**

570 5 replicates were plated in each well of black-walled, clear-bottom 96-well plates. Cell
571 growth was analyzed using ATPlite 1step assay kit (PerkinElmer 6016731) following the
572 manufacturer's instructions.

573 **Pharmacokinetic studies**

574 Whole blood from mice was centrifuged to isolate plasma. GSK620 was isolated by
575 liquid-liquid extraction from plasma: 50 µL plasma was added to 2 µL internal standard
576 and 3-fold volume acetonitrile. Mouse brain tissue was washed with 2 mL cold PBS and
577 homogenized using a sonicator with fresh 2 mL cold PBS. GSK620 was then isolated
578 and reconstituted in a similar manner by liquid-liquid extraction: 100 µL brain
579 homogenate was added to 2 µL internal standard and 3-fold volume acetonitrile. After
580 vortex mixing, the samples was centrifuged. The supernatant was removed and
581 evaporated by a rotary evaporator and reconstituted in 100 µL 50:50:0.1
582 water:acetonitrile:formic acid.

583 **GSK620 detection**

584 Chromatographic separations were performed on a 100 x 2.1 mm Phenomenex Kinetex
585 C18 column (Kinetex) using the 1290 Infinity LC system (Agilent). The mobile phase
586 was composed of solvent A: 0.1% formic acid in Milli-Q water, and B: 0.1% formic acid
587 in acetonitrile. Analytes were eluted with a gradient of 5-95% B (1-15 min), 95% B (15-

588 20 min), and then returned to 5% B for 5 min to re-equilibrate between injections.
589 Injections of 20 μ L into the chromatographic system were used with a solvent flow rate
590 of 0.10 mL/min.

591 Mass spectrometry was performed on the 6460 triple quadrupole LC/MS system
592 (Agilent). Ionization was achieved by using electrospray in the positive mode and data
593 acquisition was made in multiple reactions monitoring (MRM) mode. Two MRM
594 transitions were used for GSK620: m/z 325 \rightarrow 169 and 325 \rightarrow 247 with fragmentor
595 voltage of 85V, and collision energy of 17 and 5 eV, respectively. Analyte signal was
596 normalized to the internal standard and concentrations were determined by comparison
597 to the calibration curve (0.5, 5, 50, 250, 500, 2000 nM). GSK620 brain concentrations
598 were adjusted by 1.4% of the mouse brain weight for the residual blood in the brain
599 vasculature as described by Dai et al.(59).

600 **Statistical Analyses**

601 Statistical analyses were performed using GraphPad Prism 9 software. Data sets were
602 analyzed by unpaired t-test or multiple comparisons by one-way ANOVA or two-way
603 ANOVA according to the experiment. In figures, a single asterisk indicates $P < 0.05$,
604 double asterisks indicate $P < 0.001$, and triple asterisks indicate $P < 0.0001$.

605 **Acknowledgments**

606 We are grateful to Dr. Andrew Shiao for GSK620. We thank Dr. Krishna Bhat for GBM-
607 PDX neurospheres, Dr. Antonio Iavarone and Dr. Simona Migliozzi for assistance in bio-
608 informatic analysis, Dr. Donald Pizzo for IHC sections. This work was supported by
609 R01NS080939, R56NS080939, and R01CA258248 to F.B.F., the Japan Society for the
610 Promotion of Science Overseas Research Fellowship to S.M., and the Kurland Family
611 Foundation and P50CA211015 to D.A.N

612 **Author contributions:** R.V and F.F. conceived and designed the study. R.V., S.M.,
613 B.T., D.K., B.M.J., N.N. and P.P. conducted the experiments. R.V. analyzed and
614 interpreted the data. F.F. supervised all aspects of the study. R.V. and F.F. wrote the
615 manuscript with input from other authors.

616 **Data availability**

617 All data will be available upon request.

618

619 **Figure legends**

620 **Figure 1: PTEN negatively regulates chromatin deposition of BRD2 and BRD4.**

621 Immunoblot analysis of indicated proteins in the soluble nuclear extract (SNE),
622 chromatin bound extract (CBE) and whole cell lysates (WCL) of **A**) GSC11, GSC23 and
623 U87 cells with stably transfected empty vector or PTEN-WT. **B**) TS576 and TS576
624 PTEN knock out cells. **C**) U87 cells stably expressing wildtype PTEN or phosphatase
625 dead (G129R) PTEN. **D**) GSC11 cells treated with DMSO or Ipatasertib (AKTi, 1uM for
626 24h). TBP, H3 and GAPDH were used as loading controls for SNE, CBE and WCL
627 extracts respectively.

628 **Figure 2: RelA Lysine 310 acetylation recruits BRD2 to BRD4 to chromatin in the**

629 **absence of PTEN.** Immunoblot analysis of **A**) RelA in SNE and CBE fractions of TS576
630 and GSC11 cells with PTEN deletion or overexpression, respectively; **B**) RelA lysine
631 310 acetylation in TS576 and TS576 PTEN KO cells. **C**) Schematic for generation of
632 CRISPR knock-in mutation of RELA gene in GBM cell lines. **D**) Immunoblot analysis of
633 RelA in wildtype and mutant GSCs. **E**) Confocal Immunofluorescence images of
634 endogenous RelA nuclear translocation in response to DMSO or TNF- α in GSC11 and
635 GSC11 Rel-MUT cells. Scale bar indicates 20uM. **F**) Immunoblot analysis of indicated
636 proteins in the SNE and CBE fractions of GSC11 RelA-WT and GSC11 RelA-MUT cells.
637 **G**) Volcano plot showing the differential gene expression profiles of GSC11 RelA-WT vs
638 GSC11 RelA-MUT cells. Fold change was plotted as log2(fold change) for each gene
639 relative to its false discovery rate (-log2[FDR]). **H**) GO analysis of genes that are
640 downregulated in RelA mutant cells. **I**) GSEA enrichment plots of GSC11 RelA-WT and
641 GSC11 RelA-MUT gene lists versus queried gene lists are shown. TBP and H3 were
642 used as loading controls for SNE and CBE extracts respectively.

643 **Figure 3: Expression of ECM genes is dependent on BRD2 chromatin binding but**

644 **not BRD4. A)** ChIP-qPCR with anti-BRD2, BRD4 and RelA on the promoters of ECM

645 genes in GSC11 RelA-WT and GSC11 RelA-MUT cells. For ChIP assays, bar graphs
646 indicate fold enrichment of BRD2, BRD4 and RelA over the input (n=3 biological
647 samples with three replicates each). Data represents mean \pm SD. **B)** Immunoblot
648 analysis of BRD2 expression in control shRNA or BRD2 shRNA expressing GSC11
649 cells (top panel). RT-qPCR analysis of ECM genes in control shRNA or BRD2 shRNA
650 expressing GSC11 cells. Data represents mean \pm SD. **C)** GO analysis of genes that are
651 downregulated in BRD2 shRNA expressing cells. **D)** Venn diagram showing shared
652 genes that are downregulated in GSC11 RelA-MUT cells and GSC11 BRD2 knockdown
653 cells. **E)** GO analysis of shared downregulated genes in Fig.3D. **F)** GSEA enrichment
654 plots of GSC11 BRD2 shRNA and GSC11 control shRNA gene lists versus queried
655 gene lists are shown.

656 **Figure 4: MES phenotype is dependent on K310 acetylated RelA recruitment of**
657 **BRD2 to chromatin. A)** Matrigel cell invasion of RelA-WT and RelA-MUT cells were
658 examined by trans well-chamber assays. The number of invading tumor cells that
659 penetrated through the Matrigel was counted using 5 randomly selected fields and
660 expressed as relative percentage. Data represents mean \pm SD. **B)** Immunostaining
661 showing *in vivo* growth of RelA-WT and RelA-MUT GSCs. Glioma cells (NM95; purple)
662 **C)** Immunostaining showing *in vivo* invasion of RelA-WT and RelA-MUT GSCs. Glioma
663 cells (NM95; purple) and macrophages/microglia (IBA1; green). Enlarged images of
664 Figure C with quantification of IBA+ cells surrounding GBM cells. **D)** Matrigel invasion
665 assay of GSC11 control shRNA or BRD2 shRNA expressing cells. Quantification was
666 performed as in A. **E)** Control or BRD2 expressing GSC11 cells were treated with
667 100uM TMZ for 24 h and cell viability was assessed by ATPlite assay. Values represent
668 mean of 3 experiments \pm SD. All Data represents mean \pm SD.

669 **Figure 5 BET-BD2 inhibitors mimic RelA K310R mutant in regulating ECM genes**
670 **expression and invasion. A)** Immunoblot analysis of indicated proteins in SNE and
671 CBE fractions of GSC11 cells treated with DMSO or 0.5uM of GSK620 (BD2i) for 24h.
672 **B)** Volcano plot showing the differential gene expression profiles of DMSO or BD2i (0.5
673 uM/24h) treated GSC11 cells. Fold change was plotted as log2(fold change) for each
674 gene relative to its false discovery rate (-log2[FDR]). **C)** GO analysis of genes that are

675 downregulated in BD2i treated cells compared to DMSO treated GSC11 cells. **D)** Venn
676 diagram showing shared genes downregulated in GSC11 RelA-MUT cells and BD2i
677 treated GSC11 cells. **E)** GO analysis of shared downregulated genes in Fig.5D. **F)** RT-
678 qPCR analysis of mesenchymal genes in BD2i treated cells. GSEA enrichment plots of
679 DMSO or BD2i gene lists versus MES gene expression is shown. **G)** GSEA enrichment
680 enrichment plots of DMSO or BD2i gene lists versus MES gene expression is shown. **H)**
681 ChIP-qPCR with anti-BRD2 on the promoters of ECM genes in DMSO and BD2i treated
682 GSC11 cells. For ChIP assays, bar graphs indicate fold enrichment of BRD2 over the
683 input (n=3 biological samples with three replicates each). **I)** Matrigel cell invasion of
684 GSC11 cells treated with DMSO or BD2i for 24h were examined by transwell-chamber
685 assays. The number of invading tumor cells that penetrated through the Matrigel was
686 counted using 5 randomly selected fields and expressed as relative percentage. Values
687 represent the means of 3 experiments \pm SD.

688 **Figure 6: BD2i treatment attenuates glioma invasion *in vivo*.** **A)** Effect of GSK620
689 on GSC11 *in vitro* cell growth by ATPlite assay. **B)** GSC23 cells pre-treated with DMSO
690 or GSK620 (2 μ M) for 24h were exposed to one dose of IR (4Gy) and assessed for cell
691 growth for 5 days by ATPlite assay. **C)** Experimental drug trial design: Mice were
692 orthotopically transplanted with iRFP-720-labelled GSC11 cells (1×10^5 cells). Tumor
693 burden was assessed by FMT imaging and mice were randomly assigned to vehicle or
694 GSK620 treatment. **D)** FMT images showing tumor burden in vehicle or GSK620 treated
695 mice. n = 5. **E)** Immunostaining showing invasive growth of GSC11 tumors in mice
696 treated with vehicle or BD2i (NM95; purple for human nuclei). **F)** Immunostaining
697 showing invading cells along the white matter tracts (corpus callosum) with TAMs in
698 vehicle or BD2i treated mice (NM95; IBA1; green for TAMs).

699 **Figure 7:** Schematic of PTEN-NF κ B-BRD2 axis in driving mesenchymal transition in
700 GBM

701

702

703

704

705

706 **References**

- 707 1. Claes A, Idema AJ, Wesseling P. Diffuse glioma growth: a guerilla war. *Acta Neuropathol.* 2007;114:443–58.
- 708 2. Andersen BM, Faust Akl C, Wheeler MA, Chiocca EA, Reardon DA, Quintana FJ. Glial and myeloid heterogeneity in the brain tumour microenvironment. *Nat Rev Cancer.* 2021;21(12):786-802.
- 709 3. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated Genomic 710 Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in 711 PDGFRA, IDH1, EGFR, and NF1. *Cancer Cell.* 2010;17:98–110.
- 712 4. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An Integrative Model of Cellular 713 States, Plasticity, and Genetics for Glioblastoma. *Cell.* 2019;178:835-849.e21.
- 714 5. Kim Y, Varn FS, Park SH, Yoon BW, Park HR, Lee C, et al. Perspective of mesenchymal 715 transformation in glioblastoma. *Acta Neuropathol Commun.* 2021;9:1–20.
- 716 6. Varn FS, Johnson KC, Martinek J, Huse JT, Nasrallah MP, Wesseling P, et al. Glioma progression is 717 shaped by genetic evolution and microenvironment interactions. *Cell.* 2022;185:2184-2199.e16.
- 718 7. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. 719 Mesenchymal Differentiation Mediated by NF- κ B Promotes Radiation Resistance in Glioblastoma. 720 *Cancer Cell.* 2013;24:331–46.
- 721 8. Soubannier V, Stifani S. NF- κ B Signalling in Glioblastoma. *Biomedicines.* 2017;9;5(2):29.
- 722 9. Chen P, Zhao D, Li J, Liang X, Li J, Chang A, et al. Symbiotic Macrophage-Glioma Cell Interactions 723 Reveal Synthetic Lethality in PTEN-Null Glioma. *Cancer Cell.* 2019;35:868-884.e6.
- 724 10. Belkina AC, Denis G V. BET domain co-regulators in obesity, inflammation and cancer. *Nat Rev 725 Cancer.* 2012;12:465–77.
- 726 11. Huang B, Yang X-D, Zhou M-M, Ozato K, Chen L-F. Brd4 Coactivates Transcriptional Activation of 727 NF- κ B via Specific Binding to Acetylated RelA. *Mol Cell Biol.* 2009;29(5):1375–87.
- 728 12. Liu L, Yang C, Candelario-Jalil E. Role of BET Proteins in Inflammation and CNS Diseases. *Front Mol 729 Biosci.* 2021;16;8:748449.
- 730 13. Pastori C, Daniel M, Penas C, Volmar C-H, Johnstone AL, Brothers SP, et al. BET bromodomain 731 proteins are required for glioblastoma cell proliferation. *Epigenetics.* 2014;9(4):611–20.
- 732 14. Engelberg IA, Foley CA, James LI, Frye S V. Improved methods for targeting epigenetic reader 733 domains of acetylated and methylated lysine. *Curr Opin Chem Biol.* 2021;63:132–44.

736 15. Volmar C, Wahlestedt C, Faghihi MA. The BET-Bromodomain Inhibitor JQ1 Reduces Inflammation
737 and Tau Phosphorylation at Ser396 in the Brain of the 3xTg Model of Alzheimer's Disease.
738 2016;985–95.

739 16. Zanca C, Villa GR, Benitez JA, Thorne AH, Koga T, D'Antonio M, et al. Glioblastoma cellular cross-
740 talk converges on NF- κ B to attenuate EGFR inhibitor sensitivity. *Genes Dev.* 2017;31:1212–27.

741 17. Dahia PL. PTEN, a unique tumor suppressor gene. *Endocr Relat Cancer.* 2000;7:115–29.

742 18. Koul D. PTEN Signaling pathways in glioblastoma. *Cancer Biol Ther.* 2008;7:1321–5.

743 19. Furnari FB, Lin H, Huang HS, Cavenee WK. Growth suppression of glioma cells by PTEN requires a
744 functional phosphatase catalytic domain. *Proc Natl Acad Sci U S A.* 1997;94:12479–84.

745 20. Koul D, Takada Y, Shen R, Aggarwal BB, Yung WKA. PTEN enhances TNF-induced apoptosis
746 through modulation of nuclear factor- κ B signaling pathway in human glioma cells.
747 2006;350:463–71.

748 21. Huang B, Yang XD, Lamb A, Chen LF. Posttranslational modifications of NF- κ B: Another layer of
749 regulation for NF- κ B signaling pathway. *Cell Signal.* 2010;22:1282–90.

750 22. Jonathan D Brown, Charles Y Lin, Qiong Duan, Gabriel Griffin, Alexander Federation, et al. NF κ B
751 directs dynamic super enhancer formation in inflammation and atherogenesis. *Mol Cell.*
752 2014;56(2):219–231.

753 23. Z Zou, B Huang, X Wu, H Zhang, JQi, J Bradner, et al. Brd4 maintains constitutively active NF- κ B in
754 cancer cells by binding to acetylated RelA. *Oncogene.* 2014; 33(18):2395–404.

755 24. Guilhamon P, Chesnelong C, Kushida MM, Nikolic A, Singhal D, Macleod G, et al. Single-cell
756 chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell population
757 associated with lower survival. *Elife.* 2021;10:1–20.

758 25. Yin W, Zhu H, Tan J, Xin Z, Zhou Q, Cao Y, et al. Identification of collagen genes related to immune
759 infiltration and epithelial-mesenchymal transition in glioma. *Cancer Cell Int.* 2021;21:1–18.

760 26. Chen L, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear
761 functions of NF- κ B. *EMBO J.* 2002;21:6539–48.

762 27. Mohiuddin E, Wakimoto H. Extracellular matrix in glioblastoma: opportunities for emerging
763 therapeutic approaches. *Am J Cancer Res.* 2021;11:3742–54.

764 28. Oeckinghaus A, Ghosh S. The NF- κ B family of transcription factors and its regulation. *Cold
765 Spring Harb Perspect Biol.* 2009;1:a000034.

766 29. Gilan O, Rioja I, Knezevic K, Bell MJ, Yeung MM, Harker NR, et al. Selective targeting of BD1 and
767 BD2 of the BET proteins in cancer and immunoinflammation. *Science.* 2020;368:387–394.

768 30. Yu-Ju Wu C, Chen C-H, Lin C-Y, Feng L-Y, Lin Y-C, Wei K-C, et al. CCL5 of glioma-associated
769 microglia/macrophages regulates glioma migration and invasion via calcium-dependent matrix
770 metalloproteinase 2. *Neuro Oncol.* 2020;22:253–66.

771 31. Segerman A, Niklasson M, Haglund C, Bergström T, Jarvius M, Xie Y, et al. Clonal Variation in Drug
772 and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal
773 Transition. *Cell Rep.* 2016;17:2994–3009.

774 32. Tang P, Zhang J, Liu J, Chiang C-M, Ouyang L. Targeting Bromodomain and Extraterminal Proteins
775 for Drug Discovery: From Current Progress to Technological Development. *J Med Chem.*
776 2021;64:2419–35.

777 33. Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, Wilcox D, et al. Selective inhibition of
778 the BD2 bromodomain of BET proteins in prostate cancer. *Nature.* 2020;578:306–10.

779 34. Stratton MS, Haldar SM, McKinsey TA. BRD4 inhibition for the treatment of pathological organ
780 fibrosis. *F1000Res.* 2017;6.

781 35. Ballesta A, Zhou Q, Zhang X, Lv H, Gallo JM. Multiscale design of cell-type-specific
782 pharmacokinetic/pharmacodynamic models for personalized medicine: application to
783 temozolomide in brain tumors. *CPT Pharmacometrics Syst Pharmacol.* 2014;3:e112.

784 36. Benitez JA, Finlay D, Castanza A, Parisian AD, Ma J, Longobardi C, et al. PTEN deficiency leads to
785 proteasome addiction: a novel vulnerability in glioblastoma. *Neuro Oncol.* 2021;23:1072–86.

786 37. Azam Z, To ST, Tannous BA. Mesenchymal Transformation : The Rosetta Stone of Glioblastoma
787 Pathogenesis and Therapy Resistance. 2020;2002015:1–13.

788 38. Wang J, Yi L, Kang Q mei, Zhou J, Chen T qing, Hugnot J philippe, et al. Glioma invasion along
789 white matter tracts: A dilemma for neurosurgeons. *Cancer Lett.* 2022;526:103–111.

790 39. Wang LB, Karpova A, Gritsenko MA, Kyle JE, Cao S, Li Y, et al. Proteogenomic and metabolomic
791 characterization of human glioblastoma. *Cancer Cell.* 2021;39:509-528.e20.

792 40. Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, et al. The complex interactions
793 between the cellular and non-cellular components of the brain tumor microenvironmental
794 landscape and their therapeutic implications. *Front Oncol.* 2022;12:1–26.

795 41. Lan Q, Wang P, Tian S, Dong W. Mining TCGA database for genes of prognostic value in gastric
796 cancer microenvironment. *J Cell Mol Med.* 2020;24:11120–32.

797 42. Tian B, Zhao Y, Sun H, Zhang Y, Yang J, Brasier AR. BRD4 mediates NF-κB-dependent epithelial-
798 mesenchymal transition and pulmonary fibrosis via transcriptional elongation. *Am J Physiol Lung
799 Cell Mol Physiol.* 2016;311:L1183–201.

800 43. Serresi M, Kertalli S, Li L, Jürgen Schmitt M, Dramaretska Y, Wierikx J, et al. Functional
801 antagonism of chromatin modulators regulates epithelial-mesenchymal transition. *Sci. Adv.*
802 2021;7:eabd7974.

803 44. Comba A, Faisal SM, Dunn PJ, Argento AE, Hollon TC, Al-Holou WN, et al. Spatiotemporal analysis
804 of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor progression.
805 *Nat Commun. Nature Research;* 2022;13:3606.

806 45. Hoogstrate Y, Draisma K, Ghisai SA, van Hijfte L, Barin N, de Heer I, et al. Transcriptome analysis
807 reveals tumor microenvironment changes in glioblastoma. *Cancer Cell.* 2023;41:678-692.e7.

808 46. Ni X, Wu W, Sun X, Ma J, Yu Z, He X, et al. Interrogating glioma-M2 macrophage interactions
809 identifies Gal-9/Tim-3 as a viable target against PTEN-null glioblastoma. *Sci. Adv.*
810 2022;8:eabl5165.

811 47. Hnilicová J, Hozeifi S, Stejskalová E, Dušková E, Poser I, Humpolíčková J, et al. The C-terminal
812 domain of Brd2 is important for chromatin interaction and regulation of transcription and
813 alternative splicing. *Mol Biol Cell.* 2013;24:3557–68.

814 48. Xie L, Dong P, Qi Y, Hsieh THS, English BP, Jung SK, et al. BRD2 compartmentalizes the accessible
815 genome. *Nat Genet.* 2022;54:481–91.

816 49. Pal DK, Evgrafov OV, Tabares P, Zhang F, Durner M, Greenberg DA. BRD2 (RING3) is a probable
817 major susceptibility gene for common juvenile myoclonic epilepsy. *Am J Hum Genet.*
818 2003;73:261–70.

819 50. Schmitt MJ, Company C, Dramaretska Y, Barozzi I, Göhrig A, Kertalli S, et al. Phenotypic mapping
820 of pathologic cross-talk between glioblastoma and innate immune cells by synthetic genetic
821 tracing. *Cancer Discov.* 2021;11:754–77.

822 51. Wykosky J, Hu J, Gomez GG, Taylor T, Villa GR, Pizzo D, et al. A urokinase receptor-Bim signaling
823 axis emerges during EGFR inhibitor resistance in mutant EGFR glioblastoma. *Cancer Res.*
824 2015;75:394–404.

825 52. Inda M-M, Bonavia R, Mukasa A, Narita Y, Sah DWY, Vandenberg S, et al. Tumor heterogeneity is
826 an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. *Genes*
827 *Dev.* 2010;24:1731–45.

828 53. Shcherbakova DM, Verkhusha V V. Near-infrared fluorescent proteins for multicolor *in vivo*
829 imaging. *Nat Methods.* 2013;10:751–4.

830 54. Miki S, Koga T, Mckinney AM, Parisian AD, Tadokoro T, Vadla R, et al. TERT promoter C228T
831 mutation in neural progenitors confers growth advantage following telomere shortening *in vivo*.
832 *Neuro Oncol.* 2022;24:2063–75.

833 55. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a
834 biologist-oriented resource for the analysis of systems-level datasets. *Nat Commun.*
835 2019;10:1523.

836 56. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic
837 analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in
838 PDGFRA, IDH1, EGFR, and NF1. *Cancer Cell.* 2010;17:98–110.

839 57. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-
840 responsive genes involved in oxidative phosphorylation are coordinately downregulated in
841 human diabetes. *Nat Genet.* 2003;34:267–73.

842 58. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set
843 enrichment analysis: a knowledge-based approach for interpreting genome-wide expression
844 profiles. *Proc Natl Acad Sci U S A.* 2005;102:15545–50.

845 59. Dai H, Marbach P, Lemaire M, Hayes M, Elmquist WF. Distribution of STI-571 to the brain is
846 limited by P-glycoprotein-mediated efflux. *J Pharmacol Exp Ther.* 2003;304:1085–92.

847

Figure 1

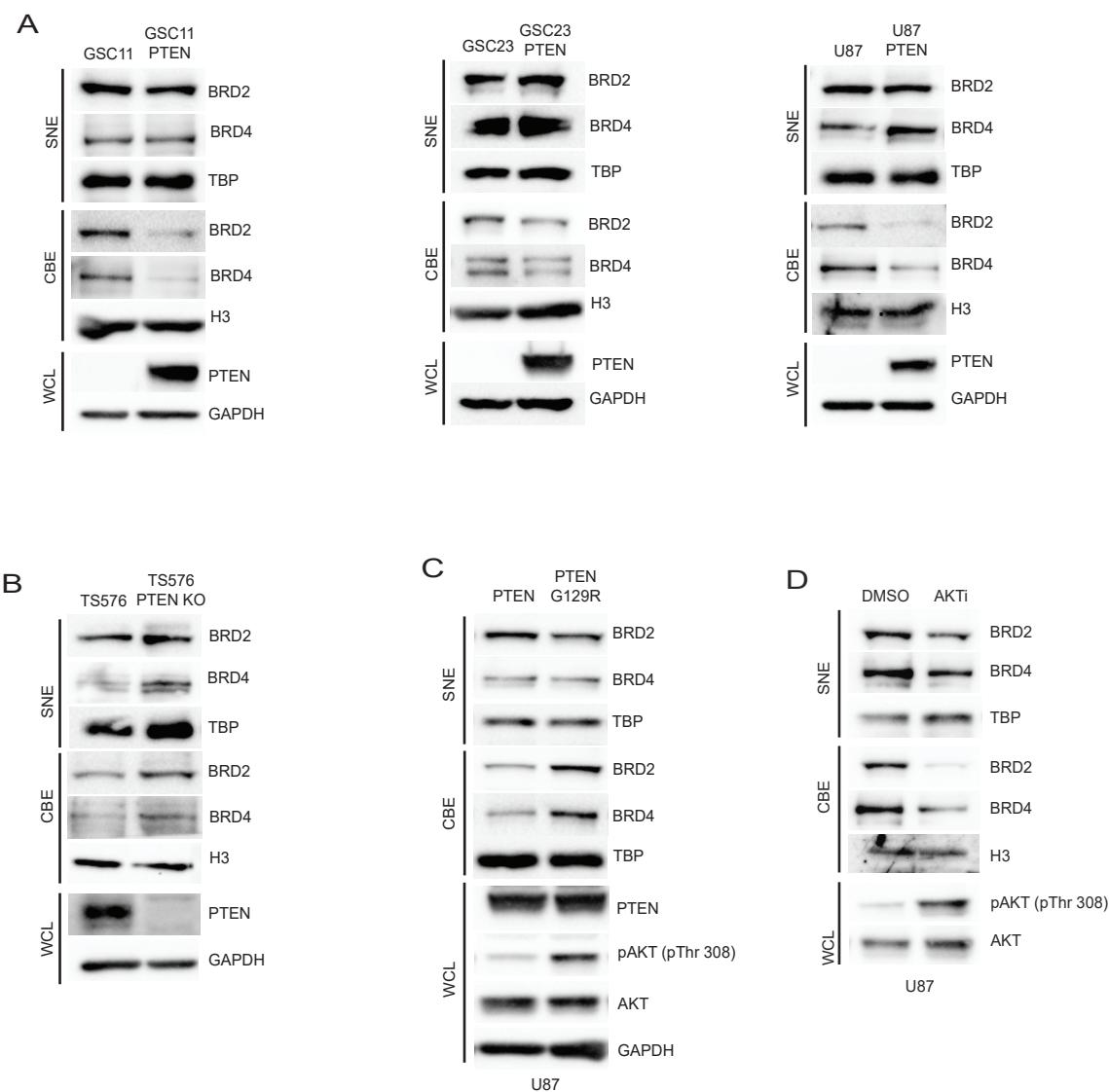
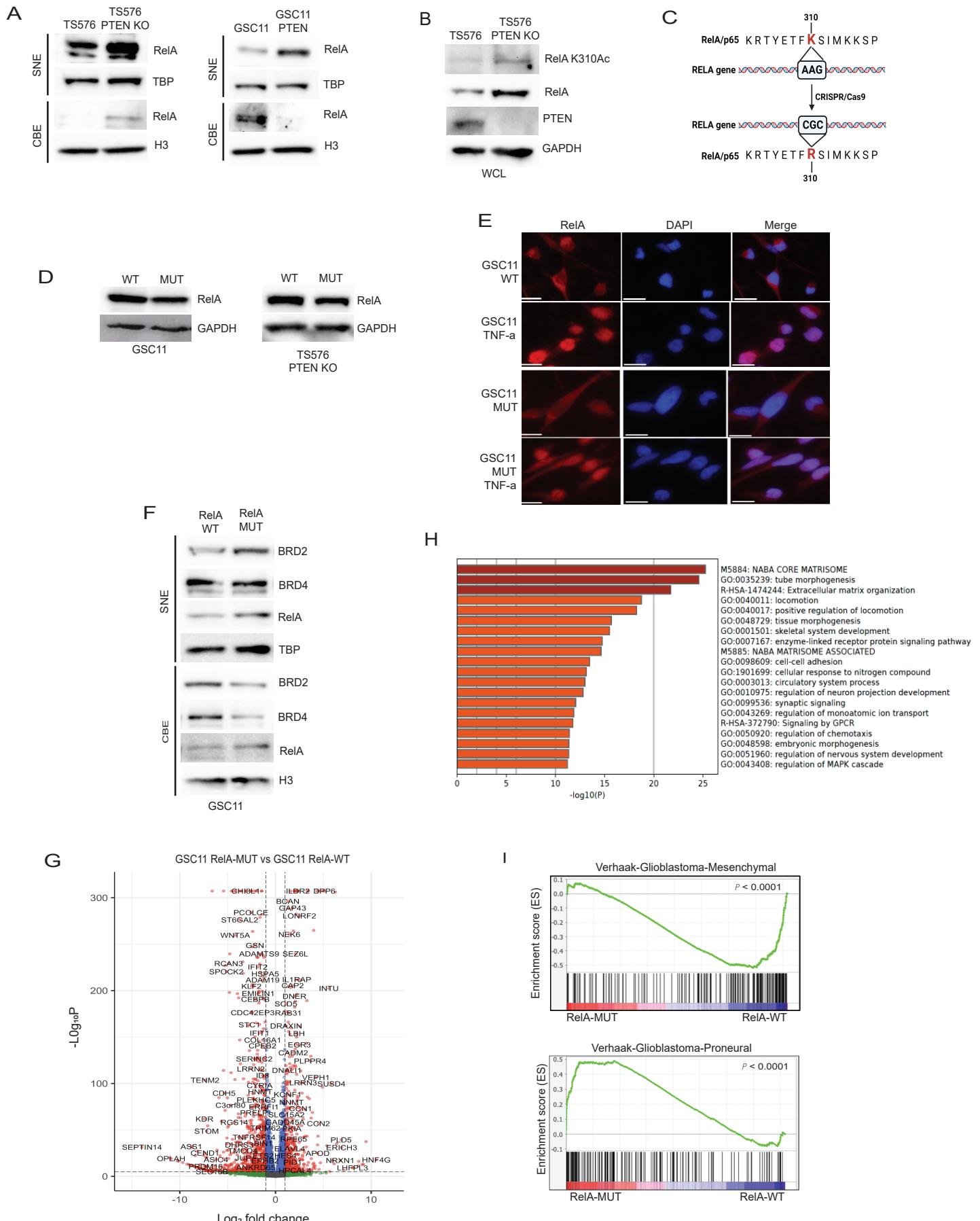
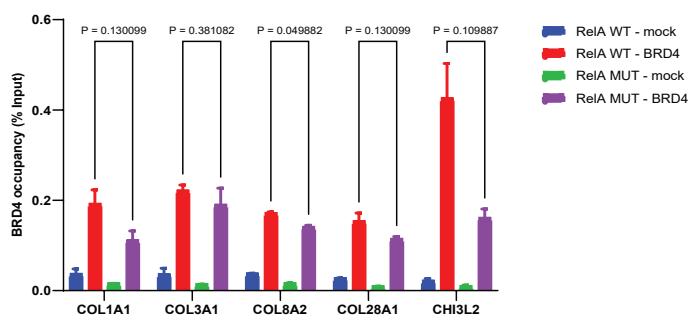
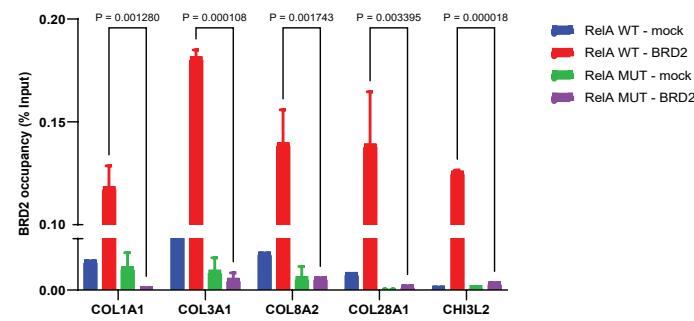





Figure 2

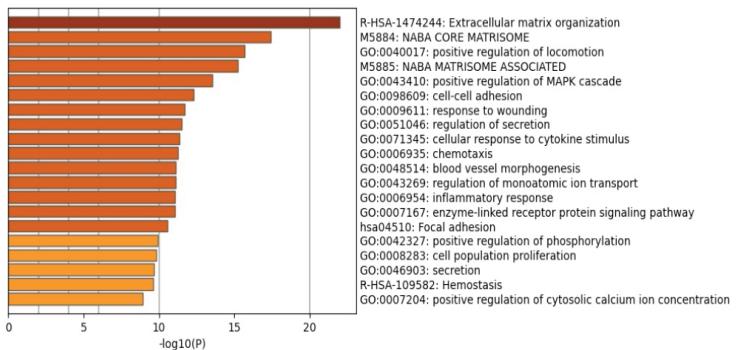
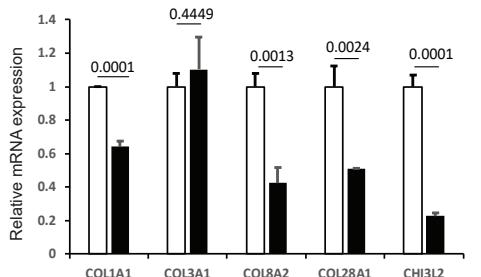
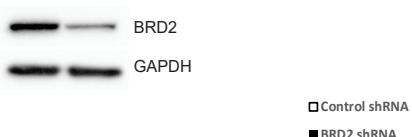
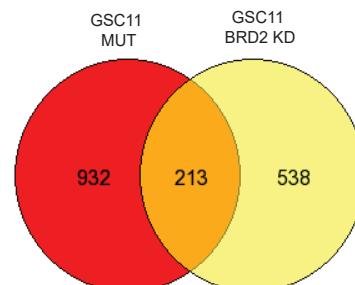
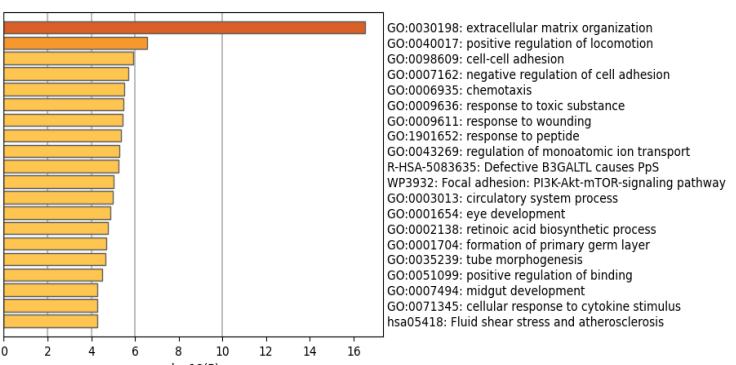


Figure 3



A


C


B Control shRNA
BRD2 shRNA

D

E

F

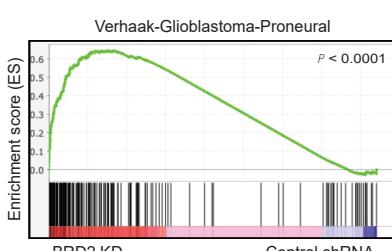
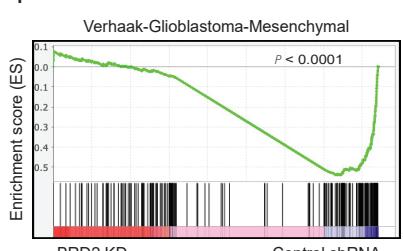



Figure 4

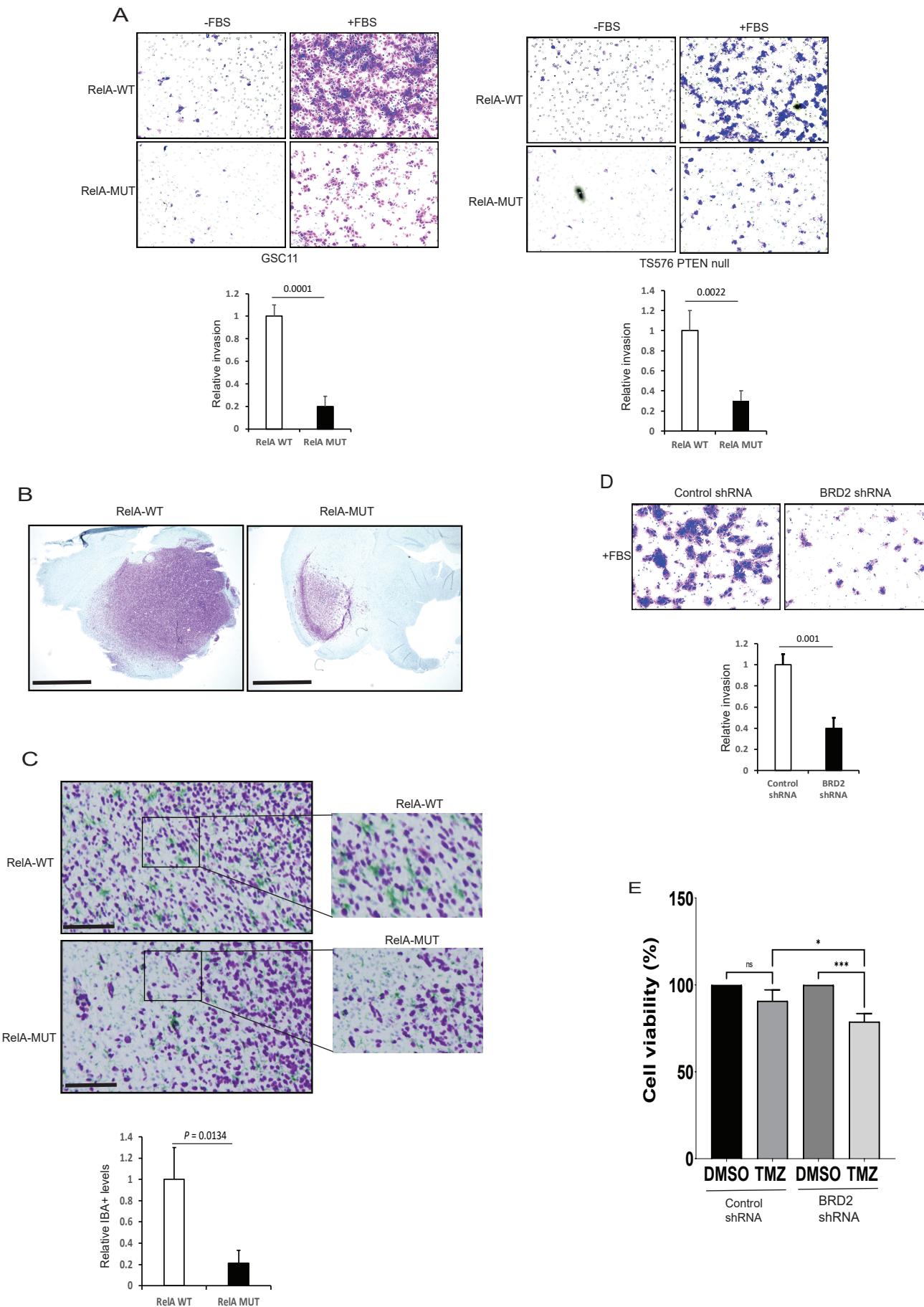
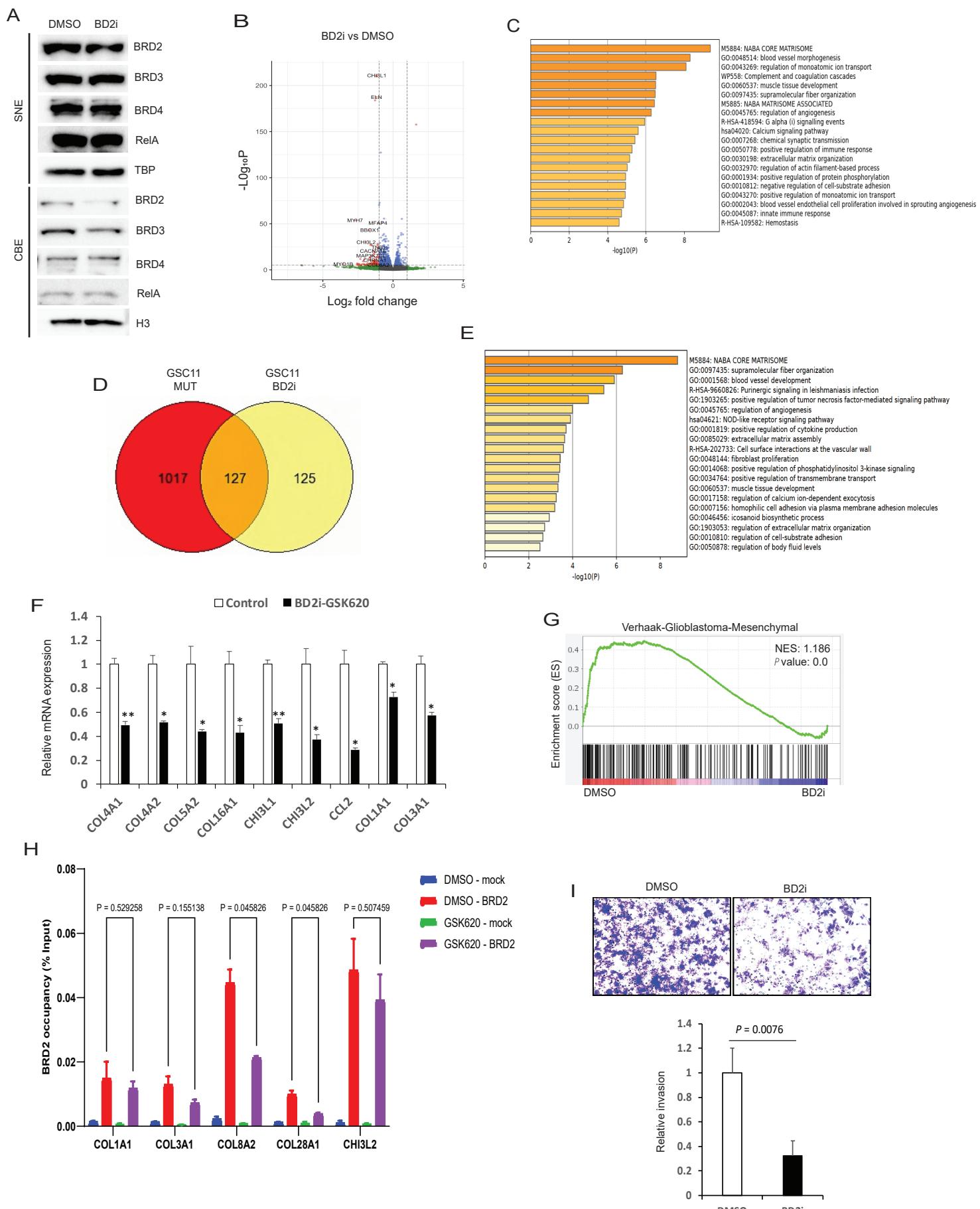
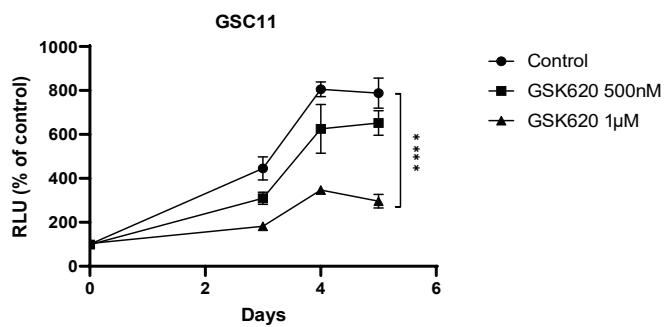




Figure 5

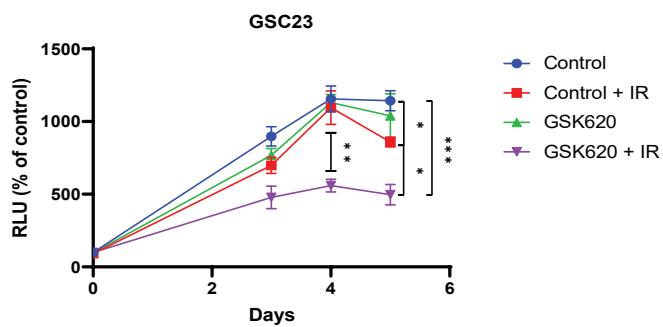
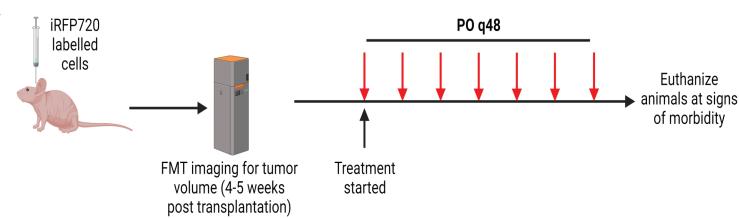
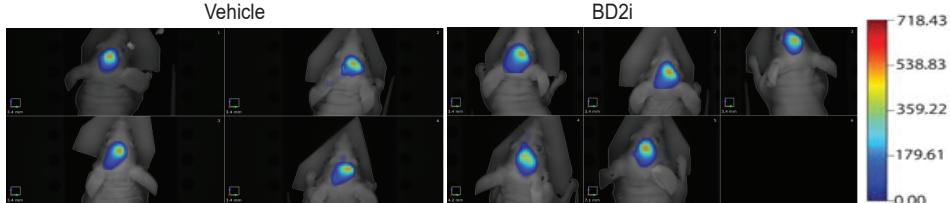
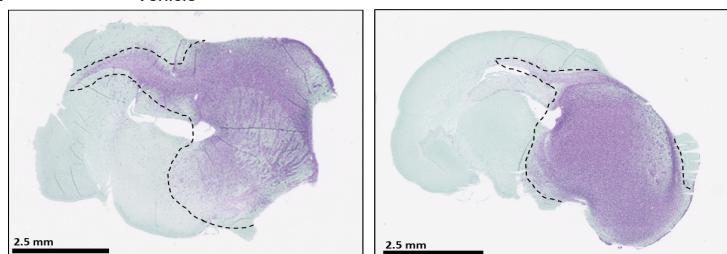


Figure 6


A


B


C

D

E

F

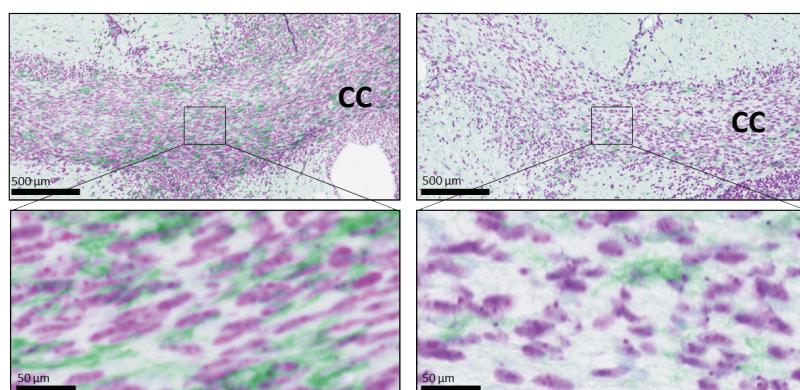
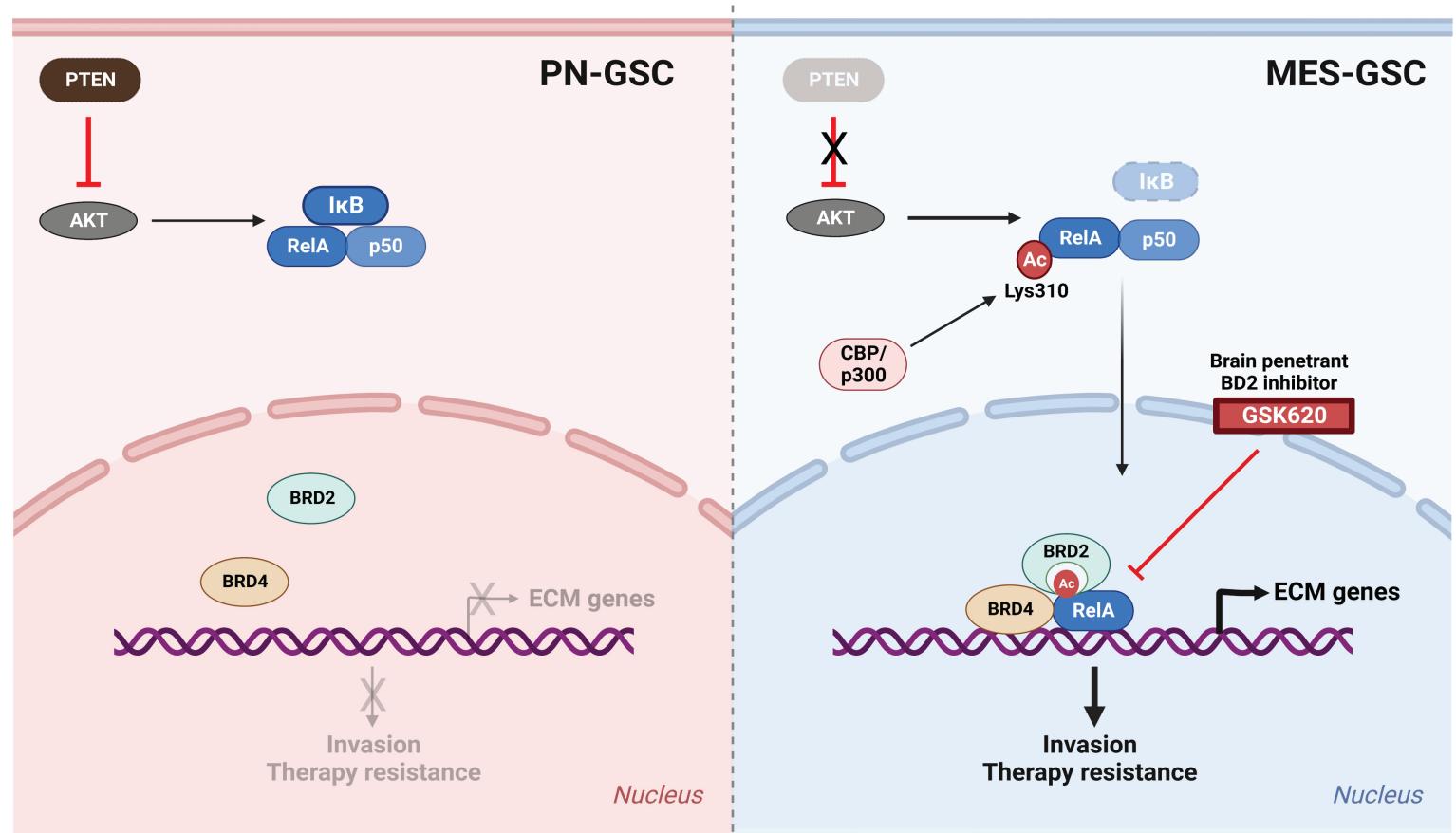



Figure 7

