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Abstract 
Several computational methods have recently been developed for characterizing molecular tissue regions in spatially re-
solved transcriptomics (SRT) data. However, each method fundamentally relies on spatially smoothing transcriptomic fea-
tures across neighboring cells. Here, we demonstrate that smoothing increases autocorrelation between neighboring cells, 
causing latent space to encode physical adjacency rather than spatial transcriptomic patterns. We find that randomly sub-
sampling neighbors before smoothing mitigates autocorrelation, improving the performance of existing methods and fur-
ther enabling a simpler, more efficient approach that we call spatial integration (SPIN). SPIN leverages the conventional 
single-cell toolkit, yielding spatial analogies to each tool: clustering identifies molecular tissue regions; differentially ex-
pressed gene analysis calculates region marker genes; trajectory inference reveals continuous, molecularly defined ana-
tomical axes; and integration allows joint analysis across multiple SRT datasets, regardless of tissue morphology, spatial 
resolution, or experimental technology. We apply SPIN to SRT datasets from mouse and marmoset brains to calculate 
shared and species-specific region marker genes as well as a molecularly defined neocortical depth axis along which 
several genes and cell types differ across species.

Introduction 
The introduction of spatially resolved transcriptomics (SRT) 
has raised the fundamental question of how to leverage 
paired spatial and gene expression data1–3. A prominent ap-
proach is to combine this information to identify molecu-
larly defined tissue regions, yielding insight into the tran-
scriptional basis of tissue architecture and function4–8. While 
current methods for molecular region identification vary in 
their exact approaches, they each fundamentally rely on 
smoothing gene expression features over the tissue, i.e. set-
ting each cell’s feature vector to a weighted sum of itself and 
its spatial nearest neighbors. For instance, UTAG9 imple-
ments smoothing through message passing, in which the 
weights used for neighborhood averaging correspond to the 
physical distances between the given cell and each neighbor. 
Similarly, STAGATE10 uses a graph convolutional network 
to smooth features over spatial nearest neighbors with learn-
able weights for each neighbor. Smoothing is fundamental 
to region identification tasks because it is equivalent to iso-
lating low-frequency, large-scale patterns over the spatial 
neighbors graph11, which defines molecular regions. Alter-
natively, smoothing can be understood as a sliding window 
average over the tissue, blurring away variation in small-
scale cell type-specific expression signals and instead reveal-
ing large-scale regional signals. 

Here, we describe a fundamental limitation of smoothing 
that prevents the use of multiple existing region 

identification methods. Because spatially adjacent cells have 
almost identical neighborhoods, their smoothed expression 
features are also almost identical. In other words, smoothing 
increases autocorrelation between neighboring cells’ expres-
sion features. This leads to spatial reconstruction of the tis-
sue in latent space: adjacency in latent space reflects adja-
cency in physical space. We show that autocorrelation can 
be mitigated via several strategies, including randomly sub-
sampling each cell’s spatial neighborhood before smoothing. 
This allows adjacent cells to vary in their exact neighborhood 
compositions while maintaining their general molecular 
compositions, ultimately enabling the resulting latent space 
to represent meaningful spatial transcriptomic features ra-
ther than just the spatial adjacency of cells.  

We further utilize subsampling to develop a simpler and 
more efficient alternative to existing molecular region char-
acterization methods which we call spatial integration 
(SPIN). SPIN leverages the conventional single-cell analysis 
toolkit to achieve spatial analogies to each tool: clustering 
identifies molecular tissue regions; differentially expressed 
gene (DEG) analysis calculates marker genes for each re-
gion; trajectory inference identifies continuous molecular 
trajectories in physical space; and integration allows each of 
these tools to be applied jointly across multiple datasets, re-
gardless of tissue morphology, spatial resolution, or experi-
mental technology. As this approach is based on the conven-
tional single-cell toolkit, it does not require GPU accelera-
tion  and is  as  efficient as  conventional single-cell analysis,  
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Figure 1. Schematic of the smoothing idea, autocorrelation obstacle, and subsampling solution. a) Schematic of conventional cell type clus-
tering. Each dot represents a cell. b) Schematic of recent region clustering methods, in which expression features are smoothed before applying 
conventional single-cell clustering tools. The dots shown are the same as those in a). c) Schematic demonstrating the main limitation of smoothing. 
The dots shown are the same as those in a) and b). The red and blue filled dots represent physically adjacent cells. d) Results of comparing the 
smoothed representation of one cell (represented as a dot with white fill and black outline) to all others in the tissue. Similarity is defined as the dot 
product between normalized expression feature vectors. An anatomical wireframe from the Allen Brain Atlas is overlaid for comparison with conven-
tional mouse brain anatomy16.  e) Results of conventional single-cell clustering on smoothed data. PCA was omitted to emphasize physical recon-
struction. For results that include PCA, see Fig. 2a. f) Schematic demonstrating a simple solution to the problem shown in c). g-h) Same as d-e) but 
with random neighborhood subsampling and including PCA during clustering. For e,h), Leiden resolutions were set such that clustering yielded 23 
clusters. 
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with the exception of a fast preliminary smoothing step. We 
demonstrate this approach by comparing spatial tran-
scriptomic features across several SRT brain datasets from 
mouse and marmoset species as well as across multiple ex-
perimental technologies, showing that datasets with arbi-
trary morphologies and spatial resolutions can be jointly 
spatially analyzed using conventional single-cell tools. We 
identify genes and cell types with spatial distributions that 
differ across species, most notably the widely expressed neu-
ronal marker Cck as well as oligodendrocyte and interneu-
ron cell types. We provide an implementation of SPIN based 
on Scanpy12 along with basic usage principles and a tutorial 
notebook here: 
 https://github.com/wanglab-broad/spin 
 

Results 
Smoothing reconstructs spatial connectivity in latent space 
Single-cell transcriptomics analysis typically begins with 
molecular cell type clustering, during which single-cell gene 
expression vectors are stacked into a cell-by-gene matrix, fol-
lowed by dimension reduction using principal components 
analysis (PCA), clustering using the Leiden13 algorithm, and 
visualization using uniform manifold approximation and 
projection (UMAP)14 (Fig. 1a). Current methods for molec-
ular tissue region clustering follow a similar workflow, but 
with the addition of a preliminary smoothing step in which 
each cell’s expression feature is set to a weighted average of 
itself and its spatial nearest neighbors. To better understand 
these methods, we investigated a simplified model in which 
smoothing constitutes neighborhood averaging with equal 
weights across neighbors (Fig. 1b). We identified a potential 
issue with this approach in which physically adjacent cells 
have nearly identical neighborhoods, yielding smoothed ex-
pression features that are nearly equal (Fig. 1c). This can 
also be understood as smoothing-induced spatial autocorre-
lation. Because downstream methods such as Leiden and 
UMAP operate based on a nearest neighbors graph (in fea-
ture space), we reasoned that the resulting latent graph 
would represent the spatial proximity of cells to one another 
rather than the desired spatial transcriptomic features. 

We demonstrated this phenomenon in a STARmap PLUS 
dataset of mouse brain from a recent atlas15. We began by 
smoothing over neighborhoods of size k=30 and then visu-
alizing the similarity of one neocortical cell’s smoothed ex-
pression vector to all other cells in the dataset. While the 
given cell was appropriately less similar to subcortical cells 
and more similar to other neocortical cells, it was indeed the 
most similar to its immediate spatial neighbors (Fig. 1d). As 
a result, after applying Leiden and UMAP, the latent space 
appeared to reconstruct the physical space, generating spa-
tially contiguous yet arbitrary cluster labels (Fig. 1e; for an 
example of equivalent results that include PCA, see Fig. 2a). 
This can also be viewed as a combined consequence of ran-
domness of neighborhood cell-type compositions and noisi-
ness of single-cell expression, making the smoothed features 
of neighboring cells uniquely similar. Indeed, when 

expression features are randomly shuffled across the tissue, 
this phenomenon persists and is more pronounced, with the 
tissue again being physically reconstructed in latent space 
(Supplementary Fig. 1). While PCA can deemphasize the 
effects of spatial autocorrelation, we find that it is not suffi-
cient to eliminate them, necessitating a more comprehensive 
solution (Supplementary Fig. 2). 

We identified a simple solution to this issue in which 
each cell’s spatial neighborhood is randomly subsampled be-
fore smoothing (Fig. 1f). We reasoned that, given the num-
ber of samples is sufficiently large to represent each cell’s 
molecular niche, subsampling would allow adjacent cells to 
differ in their exact neighbor compositions while still captur-
ing their general molecular compositions. We identified 
neighborhoods of size k=30 cells, randomly subsampled 
each neighborhood with samples of size s=10 cells, and then 
repeated smoothing. Indeed, when comparing one cell to all 
others as performed above, the subsampling approach 
placed less emphasis on spatial adjacency (Fig. 1g). As a re-
sult, clustering identified the major molecular tissue regions 
expected in the dataset, including the neocortical layers as 
well as many subcortical structures (Fig. 1h; for region la-
bels, see Fig. 3d). Furthermore, the latent space appeared to 
capture features of anatomical structure, as evidenced by the 
one-dimensional manifold corresponding to the laminar 
structure of the neocortex. These exact values of k and s were 
determined by manual variation and inspection of the re-
sults. While more extensive optimization may be possible, 
we find that these parameters are sufficient to identify major 
anatomical regions in most of the SRT datasets explored 
here. Finally, despite the randomness of subsampling, we 
find that multiple runs with different random seeds show 
consistent results, although potentially requiring different 
clustering resolutions to identify the same set of regions 
(Supplementary Fig. 3). 

Several alternative approaches to subsampling can also 
be derived based on this principle. For example, an alterna-
tive aggregation approach is to concatenate each neighbor-
hood’s gene expression profiles rather than average them. 
Single-cell gene expression vectors of a cell and its spatial 
nearest neighbors (without subsampling) can be concate-
nated in order of distance, from nearest to furthest to the 
given cell, forming a neighborhood vector of length dk where 
d is the number of genes measured and k is the number of 
neighbors (Supplementary Fig. 4a). This concatenation 
approach assigns an ordering to each cell’s neighborhood 
and relies on the fact that even identical neighborhoods will 
have different orderings; as each cell is closest to itself, the 
order of each cell’s neighborhood vector will always begin 
with itself and thus differ from all other cells’. Furthermore, 
even if adjacent cells have identical neighborhoods, their rel-
ative distances to each neighbor likely differ, leading to ad-
ditional variation in their concatenation orderings. Cluster-
ing on concatenated features yields largely the same molec-
ular tissue regions and latent representation as the subsam-
pling approach (Supplementary Fig. 4b,c). While one may 
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wonder whether the distance-based ordering encodes rele-
vant biological information, we find that randomly shuffling 
the ordering of each cell’s neighborhood produces nearly 
identical clustering results, suggesting that the absolute or-
dering is irrelevant so long as the relative ordering of adja-
cent cells is different (Supplementary Fig. 4d,e). However, 
as concatenation increases the size of the data matrix by a 
factor of k, the PCA step is much more computationally 

costly than conventional single-cell analysis. On the other 
hand, the subsampling approach is computationally equiva-
lent to single-cell analysis, apart from the overhead required 
for smoothing. 

Finally, rather than modifying the smoothing strategy, 
one can instead vary the clustering strategy. For instance, k-
means clustering can be applied to plainly smoothed (with-
out subsampling) data to recover largely the same tissue 

Figure 2. Comparing SPIN to existing methods. a) Leiden clustering results after smoothing (without subsampling). Same as Fig. 1e but including 
PCA with 50 PCs. b) K-means clustering results after smoothing c) Leiden clustering results after neighborhood subsampling followed by smoothing, 
i.e. SPIN. Same as Fig. 1h. d) Leiden clustering results using UTAG. e) K-means clustering results using UTAG. f) Leiden clustering results from 
subsampling followed by UTAG. g) Leiden clustering results using STAGATE. h) K-means clustering results using STAGATE. i) Leiden clustering 
results from subsampling followed by STAGATE. j) Memory usage of each method applied to different amounts of cells. k) Run time of each method 
applied to different amounts of cells. “Single-cell” in j,k) refers to the analysis shown in Fig. 1a. Curves were created by running each method on 
subsets of the mouse brain dataset shown in a-i), from 10% to 100% of the total number of cells, in increments of 10%. Subsampling is included as 
part of each method. For a-i), k-means and Leiden were performed such that clustering yielded 23 clusters. 
_____________________________________________________________________________________________________________________ 
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regions as Leiden with subsampling or concatenation (Sup-
plementary Fig. 5a). This is due to the fact that k-means 
does not depend on pairwise similarities between cells in or-
der to determine clusters. Rather, a fixed number of cluster 
centroids are initialized, and cells are iteratively assigned to 
each centroid without individual comparisons. Alterna-
tively, one can avoid clustering altogether by utilizing clus-
ter-free methods to identify molecular tissue regions. For in-
stance, non-negative matrix factorization (NMF)17 can be ap-
plied to plainly smoothed data to calculate factors corre-
sponding to distinct spatial expression patterns (Supple-
mentary Fig. 5b). This approach is similar to k-means in 
that it also does not rely on individual comparisons. How-
ever, NMF does not generate categorical cluster labels which 
may be necessary for downstream analysis. Furthermore, 
neither k-means nor NMF produce latent spaces that are 
compatible with downstream analyses relying on nearest-
neighbor graphs, such as Leiden, UMAP, or trajectory infer-
ence. This is because k-means does not explicitly calculate a 
latent embedding, while the latent representation given by 
NMF still embeds physically adjacent cells closest to one an-
other, again causing latent nearest neighbors to reflect spa-
tial proximity. Thus, among the strategies explored above, 
we find subsampling to be the most efficient and convenient 
solution. 

An important consideration when using the above ap-
proaches is that molecular regions may exist on varying 
length scales1. The number of neighbors used for smoothing, 
k, determines which length scale the spatial expression pat-
terns are detected on. For instance, smoothing over a large k 
might allow identification of large regions such as cortical 
layers while ignoring smaller-scale structures such as me-
ninges or vasculature, and vice versa. We demonstrated this 
by varying k and comparing the resulting molecular region 
clusters (Supplementary Fig. 6a). Between k=1 and k=5, 
clustering identified small regions corresponding to vascula-
ture (Supplementary Fig. 6b,c). Marker genes indicated 
these regions were indeed composed of endothelial cells and 
pericytes (Supplementary Fig. 6d). However, at k=30, the 
same vascular cells were instead classified based on the cor-
tical layers they occupied, with top marker genes corre-
sponding to the given cortical layer (Supplementary Fig. 
6e). 

Altogether, we found that smoothing SRT data increases 
spatial autocorrelation and causes latent reconstruction of 
physical space, obscuring the underlying spatial molecular 
patterns. However, several approaches outlined above can 
mitigate this issue, with subsampling in particular offering 
efficiency and complete compatibility with the conventional 
single-cell toolkit. We refer to this subsampling and smooth-
ing approach as spatial integration (SPIN). 
 
Mitigating spatial autocorrelation in existing methods 
Because existing methods for molecular region clustering in 
SRT data can be expressed as more complex variations on 
smoothing, we sought to determine whether they also cause 
artifactual spatial reconstruction of the data. We began by 

smoothing (without subsampling) and clustering as shown 
above for comparison (Fig. 2a). Here we did not omit PCA, 
so the physical reconstruction in UMAP space was less pro-
nounced. However, it was still evident based on the quilting 
of the arbitrary, spatially contiguous tiles in latent space. We 
then plotted the prior results from k-means and SPIN to vis-
ualize the expected molecular regions (Fig. 2b,c). For our 
first comparison, we applied UTAG to the same mouse brain 
dataset, which yielded similar results to smoothing without 
subsampling (Fig. 2d). While one could argue that this may 
be due to suboptimal parameter selection, we found that 
UTAG with k-means identified the expected molecular re-
gions, indicating that the underlying spatial expression fea-
tures were present in the latent representation despite being 
obscured by Leiden and UMAP (Fig. 2e). Indeed, when a 
randomly subsampled adjacency matrix was provided as in-
put, the expected regions were detectable using Leiden and 
UMAP (Fig. 2f). This suggests that UTAG also increases spa-
tial autocorrelation which can be mitigated by subsampling. 
We then determined whether this issue affects STAGATE’s 
more complex graph neural network-based model. Again, 
applying Leiden and UMAP to the latent space output pro-
duced spatially contiguous yet arbitrary clusters (Fig. 2g), 
while k-means identified the expected regions (Fig. 2h), and 
inputting a subsampled adjacency matrix enabled Leiden 
and UMAP to also detect the expected regions (Fig. 2i). 
Thus, we find that spatial autocorrelation is increased and 
can be mitigated by subsampling even in more complex 
graph neural network-based models such as STAGATE. 

Given that subsampling enabled each method to identify 
comparable molecular tissue regions, we next sought to 
compare the computational efficiency of each method. To do 
so, the conventional single-cell approach, SPIN, UTAG, and 
STAGATE were each used to cluster subsets of the same 
STARmap PLUS mouse brain dataset, from 10% of the data 
to 100%, in increments of 10%. As the majority of these meth-
ods do not rely on GPU acceleration, we chose to compare 
them using CPU only. SPIN showed the least memory usage 
and was comparable to single-cell clustering, while STA-
GATE showed consistently higher usage across all amounts 
of cells, and UTAG usage appeared to exponentially increase 
with more cells (Fig. 2j). With respect to run time, SPIN 
again appeared equivalent to single-cell clustering, while 
UTAG and STAGATE became less efficient as the number 
of cells increased (Fig. 2k). Thus, considering both memory 
usage and run time, we find that SPIN is more efficient than 
the existing region identification methods shown here. 

For the remainder of this work, we further demonstrate 
the power and convenience of SPIN by leveraging additional 
conventional single-cell tools to jointly analyze various SRT 
datasets. 

 
DEG analysis identifies region marker genes 
Cell type clustering is typically followed by DEG analysis for 
molecular characterization of each cell type. We demon-
strated   this   process  by  applying   conventional   cell  type  
clustering  and  DEG analysis to  the  same  STARmap  PLUS
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sample of mouse brain shown above (Fig. 3a). Clusters were 
assigned cell type labels based on their respective marker 
genes. As expected, conventional anatomical regions con-
tained mixtures of cell types. For instance, the thalamus con-
tained a mixture of glutamatergic neurons (Ex2), microglia 
(Micro), and astrocytes (Astro) (Fig. 3b). The marker genes 
defining these cell types demonstrated various extents of 
spatial patterning. The glutamatergic neuron marker Prkcd 
appeared to be spatially distributed uniquely within the thal-
amus, while the microglial marker Ctss appeared uniformly 
distributed, and the astrocyte marker Clu appeared spatially 
patterned in some areas such as the cortex yet uniform in 
others (Fig. 3c). 

On the other hand, clustering on subsampled and 
smoothed data yielded spatially contiguous molecular re-
gion labels, identifying marker genes specific to each region 
(Fig. 3d,e). For example, the top three marker genes for the 
thalamus region all appeared to be spatially variable genes 
(SVGs) expressed within the thalamus (Fig. 3f). This 

suggests that smoothing successfully removes sparse, non-
spatial gene expression patterns, instead maintaining and 
propagating patterns of SVGs. Thus, when combined with 
SPIN, DEG analysis is capable of identifying SVG markers 
for each molecular tissue region. 

 
Integration aligns spatial transcriptomic features across 
species 
Given that SPIN combined with clustering and DEG analysis 
identified molecular tissue regions and their corresponding 
marker SVGs, we wondered whether single-cell integration 
methods could further enable joint characterization of re-
gions across multiple datasets. We reasoned that the local 
operation of smoothing should allow integration to align 
spatial expression features across datasets with arbitrary 
global morphologies. In other words, while differences in 
morphology between samples can prevent accurate physical 
registration, molecular comparison of local cellular neigh-
borhoods  is  independent  of  global  morphology,  allowing 

Figure 3. Spatial DEG analysis with SPIN. a) Visualization of cells in UMAP space colored and labeled by molecular cell type (left). Visualization 
of cells in UMAP space (left) and in situ (right) colored by cell type. An anatomical wireframe from the Allen Brain Atlas is overlaid for comparison of 
cell type distributions with conventional anatomy16. Inset box I indicates area of zoom-in view in b). b) Examples of cell type distributions within the 
Thalamus (TH). c) Marker genes for each cell type directly above in b). d) Visualization of cells in situ (left) and in UMAP space (right) colored by 
molecular tissue regions, which are generated by subsampling and smoothing the data before clustering. Same as Fig. 1h and Fig. 2c. Same dataset 
as in a) but horizontally reflected. Inset box II indicates area of zoom-in view in e). Visualization of labeled regions in UMAP space colored and labeled 
by region (right). e) Cells from the same Thalamic region as b). f) Visualization of the top three marker genes in situ for the Thalamic cluster in e) (left 
to right). For a,d), Leiden resolutions were set such that each approach yielded 23 clusters. 
_____________________________________________________________________________________________________________________ 
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alignment of samples with arbitrary shapes. We chose to 
demonstrate this by comparing a STARmap PLUS dataset of 
mouse frontal cortex with a STARmap dataset of marmoset 
frontal cortex, the former from a recent mouse brain atlas15 
and the latter newly collected for this study. We first identi-
fied cell types for reference by performing single-cell integra-
tion using Harmony18 followed by two levels of clustering as 
described above (Supplementary Fig. 7). Major excitatory 
neuron, interneuron, and non-neuronal cell types were 

detected in the data (Fig. 4a-c). We then performed subsam-
pling and smoothing on each dataset independently with 
k=30 and s=12, followed by the same integration and clus-
tering approach. Region clusters were then annotated by ref-
erencing mouse and marmoset anatomical atlases15,19–21. 
Clustering revealed the laminar neocortical structure in 
each dataset (Fig. 4d,e), which was reflected in the one-di-
mensional shape of the UMAP embedding (Fig. 4f). Integra-
tion appeared to successfully align spatial expression 

Figure 4. Spatial integration across species with SPIN. a) Visualization of tissue in situ colored by molecular cell type. The marmoset STARmap 
dataset contained measurements of 454 genes across 42,458 cells, and the mouse STARmap PLUS dataset contained measurements of 1,022 
genes across 29,623 cells. After integration, each dataset contained measurements across 174 genes (the genes measured in both datasets). Inset 
boxes I and II indicate areas for zoom-in views used in b), e), and g), and h). b) Zoom-in views of the tissue colored by cell type. c) Visualization of 
tissue in UMAP space colored and labeled by cell type. Inset shows tissue in UMAP space colored by species. d-f) Same as a-c) but labeled by 
molecular tissue regions generated by SPIN (i.e. clustering the subsampled and smoothed data). g) Histogram of L2/3 marker scores for each gene 
(left). Scores correspond to t-test results for a given gene across cells in L2/3 versus cells in all other regions (i.e. Scanpy’s sc.tl.rank_genes_groups). 
The top joint marker for L2/3 in both species was Lamp5, which is visualized in situ (right). h) Histogram of species-specific L2/3 marker scores for 
each gene. Scores were calculated as in g) but by comparing all L2/3 cells based on species. The top species-specific marker was Cck, which is 
visualized in situ (right). 
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features from each species, as indicated by the overlap be-
tween latent representations of cells from each dataset (Fig. 
4f, inset). Notably, integration appeared to preserve and 
identify real dataset-specific regional differences, as demon-
strated by the lack of species overlap in the anterior commis-
sure (aco), piriform area (PIR), and taenia tecta (TT) regions, 
which were present in the mouse sample but absent in the 
marmoset sample. 

Given the ability to molecularly align regions across da-
tasets, we further sought to calculate shared and species-spe-
cific spatial transcriptomic features. Shared marker genes 
for each region were calculated using DEG analysis across 
region groups using data from both species, yielding region 
marker genes that were shared by both species. For instance, 
the top shared marker for L2/3 was Lamp5, a canonical 
marker for that region, which was confirmed by in situ visu-
alization of STARmap measurements (Fig. 4g; see Supple-
mentary Fig. 8a-c for plots of the full tissue). We then cal-
culated species-specific region markers by isolating cells 
within a given region and performing DEG analysis across 
species. Cck was identified as the top differentially distrib-
uted gene (DDG) in the L2/3 region, which was also visually 
evident in situ (Fig. 4h, Supplementary Fig. 8d-f). Nota-
bly, Cck is expressed in both excitatory and inhibitory neu-
rons in mice22, indicating that the difference in spatial distri-
butions between species is not due to an underlying differ-
ence in a single cell type. Thus, this approach is capable of 
identifying differences in spatial distributions that are inde-
pendent of cell types. Furthermore, Cck neurons have been 
shown to regulate opiate antagonism23,24, satiety signaling25, 
and learning and memory26, indicating that this difference in 
spatial distribution between species may have functional im-
plications. Finally, we visualized the top marmoset specific 
L2/3 marker, Pde1a. However, just as the magnitude of its z-
score was lower than that of Cck, the difference between spe-
cies was more difficult to visualize by eye (Supplementary 
Fig. 8g-i). 

 
Integration aligns spatial transcriptomic features across 
technologies 
While single-cell integration methods are often used to iden-
tify differences across datasets, they are also used to merge 
datasets collected using diverse experimental technologies27. 
This has enabled the creation of single-cell atlases that lev-
erage the unique strengths of multiple technologies, such as 
single-cell and single-nucleus RNA sequencing28,29. SRT 
technologies also vary in their strengths, with methods such 
as Visium30 measuring more genes with lower spatial resolu-
tion and methods such as STARmap measuring fewer genes 
with higher spatial resolution. As SRT atlases are increas-
ingly being generated using a variety of technologies6,15,31–35, 
we sought to test whether integrating smoothed data facili-
tates joint characterization of spatial datasets from different 
technologies. 

We thus used SPIN to spatially integrate three open-
source SRT datasets of mouse brain from technologies with 
decreasing spatial and increasing transcriptomic 

resolutions: STARmap PLUS, Slide-seqV236, and Visium. To 
accommodate their different spatial resolutions, smoothing 
was performed with varying neighborhood sizes across each 
dataset (Methods). Integration and clustering yielded mo-
lecular tissue regions that reflected the underlying anatomy 
within each dataset, despite broad differences in spatial res-
olution, orientation, and field of view (Fig. 5a). Regions rep-
resented in UMAP space appeared well-aligned across tech-
nologies as evidenced by dataset mixing (Fig. 5b). Notably, 
regions were accurately identified despite the limited field of 
view of the Slide-seqV2 sample as well as the more posterior 
anatomical position of the Visium sample. Finally, an addi-
tional layer 6b region (L6b) was detected, which was not 
found in the STARmap data alone. 

Beyond the creation of consensus atlases, we reasoned 
that cross-technology spatial integration could enable com-
parison across datasets that differ both in technology and in 
other properties. For instance, consider the scenario where 
one wants to compare molecular regions across marmoset 
and mouse neocortex yet only has access to marmoset data 
collected using one technology and mouse data collected us-
ing a different technology. In this case, the ability to spatially 
integrate across both species and technology would be nec-
essary. To test whether this was possible, we isolated the 
above neocortical regions from the Visium mouse brain da-
taset and performed SPIN with the prior marmoset neocor-
tex STARmap data as shown above. All cortical, fiber tract, 
and meninges regions from the prior cross-species integra-
tion were once again detected, and the latent representation 
appeared similar as well (Fig. 5c-e). Furthermore, integra-
tion again allowed the identification of an additional L6b re-
gion that was not detected in the STARmap data alone. Be-
cause the mouse Visium dataset measured more genes than 
in the prior mouse STARmap PLUS dataset, the overlap with 
the marmoset data was greater, allowing the detection of ad-
ditional genes, such as Stxbp6, that were enriched in L2/3 
(Fig. 5f). However, Cck remained the top species-specific 
gene in L2/3 (Fig. 5g), matching the results from our previ-
ous cross-species analysis that only used STARmap data. 

 
Trajectory inferences identifies continuous molecularly de-
fined spatial axes 
While SPIN allowed joint characterization of discrete tissue 
regions, the one-dimensional latent structure of the neocor-
tical data suggested the presence of meaningful continuous 
variation as well (Fig. 3d, Fig. 4f, Fig. 5b,e). The conven-
tional single-cell tools used to characterize such molecular 
gradients are referred to as trajectory inference or pseudo-
time methods37. In the context of single-cell analysis, the gra-
dients identified by these methods are typically interpreted 
as developmental trajectories. We reasoned that, when ap-
plied to smoothed data, these same methods would instead 
identify spatial molecular gradients within the tissue. We 
thus applied diffusion maps38, a popular trajectory inference 
method, to the prior smoothed and integrated marmoset and 
mouse neocortical STARmap datasets. As the neocortex is 
known to be organized into layers L2/3-L6 ordered by depth, 
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we isolated cells from these cortical region clusters for 
demonstration. Indeed, the first diffusion component (DC1) 
formed a one-dimensional measure of depth along the neo-
cortex (Fig. 6a). Notably, this measure was not physically 
uniform in physical space; for example, a large change in 
DC1 occurred within a small physical portion of the tissue 
corresponding to L4. Accordingly, we termed this measure 
“molecular depth”. Importantly, calculation of molecular 

depth is unsupervised, independent of cell type clustering, 
and can be performed across multiple datasets, unlike previ-
ous supervised, cell type-based approaches30,39. 

We leveraged this approach to identify genes with differ-
ing neocortical molecular depth across species. For each 
gene, a depth distribution was calculated by binning cells ac-
cording to molecular depth and calculating the average ex-
pression  of  the  gene  within  each  bin. To  compare  a  given

Figure 5. Spatial integration across experimental technologies with SPIN. a) Visualization of tissue from each technology in situ colored by 
molecular tissue region. From left to right, technologies decrease in spatial resolution and increase in transcriptomic resolution. The STARmap PLUS 
dataset contained 1,022 genes measured across 37,928 cells, the Slide-seqV2 dataset contained 4,000 genes measured across 41,786 spots, and 
the Visium dataset contained 18,078 genes measured across 2,688 spots. After integration, each dataset contained measurements across 521 
genes. b) Visualization of dataset in UMAP space colored and labeled by molecular tissue region. Inset is the same but colored by technology. c) 
Visualization of tissue in situ colored by molecular tissue region. After integration, each dataset contained measurements across 401 genes. Inset 
boxes I and II indicate areas for zoom-in views used in d), f), and g). d) Zoom-in views of the tissue colored by region. e) Visualization of cells/spots 
in UMAP space colored and labeled by molecular tissue region. Inset shows cells/spots in UMAP space colored by species. f) Histogram of L2/3 
marker scores for each gene (left). The top ranked marker for L2/3 in both species was Stxbp6, which is visualized in situ (right). g) Histogram of 
species-specific L2/3 marker scores for each gene. The top species-specific marker was Cck, which is visualized in situ (right). 
_____________________________________________________________________________________________________________________ 
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gene’s depth distribution across species, we summed the ab-
solute values of the differences in expression between spe-
cies at each depth bin. To validate this metric, we first plot-
ted the depth distributions of Lamp5 and Cck, which reca-
pitulated the spatial patterns found during our previous 
DEG analysis (Fig. 6b). We then calculated the depth distri-
bution differences between species for all measured genes 
(Fig. 6c). Indeed, Lamp5 showed a relatively low difference 
across species, whereas Cck showed the highest difference. 
The lowest difference was in Slc13a3, which appeared spa-
tially uniform in both species (Fig. 6d). The second highest 
difference was in Plch1, which appeared spatially uniform in 
mouse neocortex yet uniquely expressed in L4 in marmoset 
(Fig. 6e). 

We then compared the molecular depth of cell types 
across species. For a given cell type, depth distributions for 
each species were compared. Significant differences in depth 
were observed within oligodendrocytes (Oligo, Micro/Ol-
igo), excitatory neurons (IT, ET), and Cxcl14, Sst, and Pvalb 
interneurons (Fig. 6f, left). Out of these significant groups, 
modest differences were found between excitatory neurons, 
which were more superficial in marmoset neocortex com-
pared to mouse. Larger differences were found between oli-
godendrocytes, which were much deeper in marmoset neo-
cortex. Finally, Cxcl14, Sst, and Pvalb interneurons appeared 
much more superficial in the marmoset neocortex compared 
to mouse, recapitulating results from prior supervised anal-
yses40,41. To visualize an example of the difference in cell type 
molecular depths, we plotted Pvalb interneurons in situ in 

Figure 6. Joint spatial trajectory inference across species with SPIN. a) Visualization of tissue in UMAP space colored and labeled by molecular 
tissue region (left; same as in Fig. 4f). Visualization of diffusion component 1 (DC1), which we termed “molecular depth”. Molecular depth visualized 
over the tissue in UMAP space (middle). Zoom-ins of the same brain tissue regions as in Fig. 4b,e,g,h, colored by molecular depth (right). b) Depth 
distributions for the top shared and species-specific L2/3 genes from the analysis shown in Fig. 4g,h. Cells were binned according to depth, and 
expression was averaged across cells within each bin to calculate a depth distribution for each gene. c) A histogram of depth distribution differences 
for each gene across species. d) Depth distribution plots and in situ visualization of Slc13a3, which had the lowest depth distribution difference. e) 
Depth distribution plots and in situ visualization of Plch1, which had the second highest depth distribution difference. f) Boxplot showing the depth 
distributions of cells from each cell type and each species. Boxes extend from the first to the third quartile with the middle line showing the mean. 
Whiskers extend above and below the first and third quartiles by 1.5 times the interquartile range. Points outside this range are considered outliers 
and depicted as individual diamonds. For each cell type, distributions were compared across species using a two-sided Mann-Whitney U-test and 
*P<0.01 after Bonferroni correction for multiple comparisons. Zoom-in views of the in situ distributions of Pvalb interneurons are shown for illustration 
(right). Paired histograms correspond to the physical depths of the cells along the y-axis of the tissue for comparison to molecular depth. 
_____________________________________________________________________________________________________________________ 
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both species along with physical depth histograms based on 
each sample’s y-axis (Fig. 6f, right). The in-situ visualization 
and physical depth distributions both appeared to recapitu-
late the molecular depth distributions and their differences 
between species. 

Discussion 
We demonstrated that multiple smoothing-based methods 
physically reconstruct SRT data in latent space, preventing 
accurate characterization of spatial transcriptomic features. 
We introduced several simple modifications that circumvent 
this issue, including a subsampling approach that can im-
prove the performance of existing methods as well as form 
the basis of a new minimal method for spatial characteriza-
tion that we call SPIN. We then showed that SPIN extends 
the utility of conventional single-cell tools to SRT data, cre-
ating spatial analogies of each tool. This allowed the unsu-
pervised identification of genes whose spatial distributions 
differ across species. It also enabled the unsupervised iden-
tification of genes and cell types that differ in neocortical 
molecular depth across species. Altogether, we introduced a 
simple, efficient, and effective approach to analyzing spatial 
transcriptomic features using conventional single-cell tools. 

Drawbacks of the smoothing and clustering strategies 
mentioned here may arise at small or large length scales. In 
the case of small length scales, the subsampling approach 
may fail due to the inability to capture the relevant regional 
features within so few cells. For example, smoothing with 
k=5 would require using s<5 subsampled cells, which may 
not be sufficient to capture the molecular diversity of the re-
gions of interest. However, in this case, one may benefit from 
the concatenation or k-means approaches to avoid subsam-
pling altogether. On the other hand, large length scales may 
prohibit the use of concatenation due to computational inef-
ficiency. Furthermore, the requirement of choosing a single 
k prevents the identification of molecular regions along both 
small and large length scales simultaneously. However, one 
could likely utilize the hierarchical subclustering approach 
often used in single-cell clustering to iteratively identify 
large-scale regions, their constituent smaller-scale subre-
gions, and so on. 

We anticipate SPIN will be utilized for two primary ap-
plications. First, given the efficiency of spatial smoothing as 
well as conventional single-cell analysis methods, we expect 
the use of SPIN for combining and comparing spatial tran-
scriptomic features across emerging large-scale SRT at-
lases6,15,31–35. As anatomy corresponds with function, such at-
las-level spatial comparisons may be able to identify tran-
scriptional underpinnings of functional differences between 
species or conditions. Second, we anticipate that SPIN will 
be used to generate spatial analogies for several additional 
classes of single-cell methods not explored here. For in-
stance, SPIN may be capable of generalizing single-cell mul-
timodal integration methods to spatial pattern alignment 
across multiple modalities. On the other hand, novel inte-
gration methods such as SATURN42 allow flexible alignment 
of cells across species based on transcriptional features as 
well as protein embeddings of the corresponding genes, 

yielding cell embeddings and clusters that are more relevant 
to biological function. Thus, when combined with SPIN, 
they may also enable more functionally informative charac-
terization of molecular tissue regions across species. Fur-
thermore, cluster-free differential abundance methods such 
as Milo43 and CNA44 allow identification of cell type popula-
tions that are more abundant in a given dataset compared to 
others. Thus, such methods applied alongside SPIN may be 
capable of revealing differentially abundant molecular tissue 
regions across datasets. Finally, novel cluster-free DEG 
methods such as LEMUR45 and miloDE46 could be paired 
with SPIN to calculate DDGs in SRT data, potentially allow-
ing flexible, cluster-free identification of spatial tran-
scriptomic differences between tissues.  
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Materials and Methods 
Marmoset sample collection 

All marmosets were either family group-housed or pair-housed in large 
cages with a variety of perches and enrichment devices. All marmoset cages 
are in spacious rooms with environmental control of temperature (23–
28°C), humidity (40–72%), and 12 hr light/dark cycle. All marmosets re-
ceived regular health checks and behavioral assessment from MIT DCM 
veterinary staff and researchers. All animal procedures were conducted 
with prior approval by the MIT Committee for Animal Care (CAC) and fol-
lowing veterinary guidelines. 

Adult marmosets (2.5 years old, female) were deeply sedated by intra-
muscular injection of ketamine (20–40 mg kg−1) or alfaxalone (5–10 mg 
kg−1), followed by intravenous injection of sodium pentobarbital (10–30 
mg kg−1). When the pedal withdrawal reflex was eliminated and/or the 
respiratory rate was diminished, animals were trans-cardially perfused with 
ice-cold sucrose-HEPES buffer. Whole brains were rapidly extracted into 
fresh buffer on ice. Brain regions were dissected using a marmoset atlas as 
reference47 and were snap-frozen in liquid nitrogen. 

 
Gene panel selection 
Marker genes and most differentially expressed genes were extracted from 
single-cell RNA-sequencing studies40,48 that surveyed multiple marmoset 
brain regions, including motor cortex, somatosensory cortex, visual cortex, 
striatum, hippocampus, etc. 
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STARmap procedure 
The STARmap PLUS procedure was conducted following established pro-
tocols. Glass bottom 6-well plates were treated with methacryloxypropyltri-
methoxysilane (Bind-Silane) and subsequently treated with poly-D-lysine 
solution. #2 Micro cover glasses (18 mm) were pretreated with Gel Slikck 
according to the manufacturer’s instructions. 20 µm coronal brain slices 
were mounted in the pretreated glass-bottom 6-well plate. The brain slices 
were fixed with 4% PFA in PBS at r.t. for 15 min, permeabilized with pre-
chilled methanol at -80°C for 2hr, and rehydrated with PBSTR/Gly-
cine/YtRNA at room temperature for 10 min before hybridization. SNAIL 
probes were dissolved at the concentration of 50 nM per probe in water, and 
the final concentration per probe for hybridization was 5 nM. The brain 
slices were incubated in 600 µL hybridization buffer (consisting of 2X SSC 
[Sigma-Aldrich, S6639], 10% formamide [Calbiochem, 655206], 1% Triton 
X-100, 20 mM RVC [Ribonucleoside vanadyl complex, New England Bi-
olabs, S1402S], 0.1 mg/ml yeast tRNA, 0.5% SUPERaseIn, and SNAIL 
probes) at 40°C for 36-40 hours with gentle shaking. Subsequently, the sam-
ples were washed at 37°C for 20 min with 1200 µL PBSTR (PBS, 0.1% 
Tween-20, 0.1 U/µL SUPERaseIn) twice and then washed once at 37°C for 
20 min with 1200 µL High Salt buffer (PBSTR, 4XSSC). After a brief rinse 
with PBSTR at r.t, the samples were incubated for two hours with 600 µL 
T4 DNA ligase mixture (containing 0.1 U/µL T4 DNA ligase [ThermoFisher, 
EL0011], 1X T4 ligase buffer, 0.2 mg/mL BSA, 0.2 U/µL of SUPERase-In) at 
room temperature with gentle shaking. This was followed by two washes 
with 1200 µL PBSTR. Next, the samples were incubated with 600 µL of roll-
ing-circle amplification (RCA) mixture (including 0.2 U/µL Phi29 DNA pol-
ymerase [Thermo Scientific, EP0094], 1X Phi29 reaction buffer, 250 µM 
dNTP mixture, 0.2 mg/mL BSA, 0.2U/µL of SUPERase-In and 20 µM 5-(3-
aminoallyl)-dUTP [Invitrogen, AM8439]) at 4°C for 30 minutes and at 30 
°C for two hours. The samples were then washed twice with 1200 µL PBST 
(PBS, 0.1% Tween-20) and treated with 800 µL of 20 mM Acrylic acid NHS 
ester (Sigma-Aldrich, 730300-1G) in 100 mM NaHCO3 (pH 8) for one hour 
at room temperature. After a brief wash with 1200 µL PBST, the samples 
were incubated with 800 µL monomer buffer (containing 4% acrylamide, 
0.2% bis-acrylamide, 2X SSC) for 30 min at room temperature. The buffer 
was removed, and 50 µL of polymerization mixture (0.2% ammonium per-
sulfate, 0.2% tetramethylethylenediamine in monomer buffer) was added to 
the center of the sample. The samples were immediately covered by Gel 
Slick-coated coverslip and incubated for one hour at room temperature un-
der nitrogen gas atmosphere. Following polymerization, the samples were 
washed twice with 1200 µL PBST for 5 min each. The tissue-gel hybrids 
were then digested with Proteinase K (Invitrogen, 25530049, 0.2 mg/ml in 
50 mM Tris-HCl 8.0, 100 mM NaCl, 1% SDS) at room temperature overnight 
and then washed with 1200 µL of 1 mM AEBSF in PBST (Sigma-Aldrich, 
101500) once at room temperature for 5 min, followed by two additional 
washes with PBST. The samples were stored in PBST at 4°C until imaging 
and sequencing. Before SEDAL sequencing, the samples were washed twice 
with the stripping buffer (60% formamide and 0.1% Triton X-100 in water) 
and treated with the dephosphorylation mixture (0.25 U/µL Antarctic Phos-
phatase [NEB, M0289L], 1X reaction buffer, 0.2 mg/mL BSA) at 37°C for 
one hour. Each cycle of SEDAL sequencing began with two washes using 
the stripping buffer (10 min each) and three washes with PBST (5 min each). 
For the six round of 461-gene sequence, the sample was then incubated with 
the “sequencing by ligation” mixture (0.2 U/µL T4 DNA ligase [Ther-
moFisher, EL0011], 1X T4 ligase buffer, 0.2 mg/mL BSA, 10 µM reading 
probe, and 300 nM of each of the 16 two-base encoding fluorescent probes) 
at room temperature for three hours. After three washes with wash and im-
aging buffer (10% Formamide, 2X SSC in water) and DAPI staining, the 
sample was imaged in the wash and imaging buffer.  
 
Image processing 
Images were deconvoluted by Huygens Essential version 21.04 (Scientific 
Volume Imaging, The Netherlands, http://svi.nl), using the CMLE algo-
rithm, with SNR:10 and 10 iterations. Image registration, spot calling, and 
barcode filtering were performed by following previously published re-
ports49 with minor adjustments. 
 
Cell segmentation 
A pretrained machine learning model from the StarDist package50 was used 
to automatically identify nuclei from the 2D maximum projection of the 
DAPI staining image. The segmented image was then used to extract cell 

locations and serve as markers for cell body segmentation. To represent cell 
bodies, an overlay of stitched DAPI staining and merged amplicon images 
from the first sequencing round was created. A gaussian filter with σ equal 
to 3 was applied to this composite image before binarizing it using Otsu 
thresholding strategy. To better incorporate amplicons around the periph-
eral region of cell bodies, a binary dilation with a disk structure element (r 
= 5) was applied on the mask. Finally, a marker-based watershed transform 
was performed on the binary mask representing cell bodies for segmenta-
tion purposes. Points overlapping each segmented cell region in 2D were 
assigned to that specific cell in order to compute a per-cell gene expression 
matrix. 
 
Data preprocessing 
Normalization was performed using conventional single-cell methods in 
Scanpy: sc.pp.normalize_total, sc.pp.log1p, and sc.pp.scale, in that order, 
were applied to each dataset with default parameters.  
 
Smoothing 
Data were spatially smoothed by performing the following: for each cell, 
spatial nearest neighbors were identified, the average expression vector 
within that neighborhood (including the given cell) was calculated, and the 
given cell’s expression vector was set to that average. Nearest neighbors 
were determined using scikit-learn’s NearestNeighbors model. 

The subsampling approach was performed using numpy’s ran-
dom.choice function with the random seed set to zero by default. We found 
that a ratio of 1:3 samples:neighbors tends to work well for most datasets. 
When applied to datasets of different resolution, the number of neighbors 
for each dataset was independently adjusted to achieve roughly the same 
length scale for each dataset. For our cross-technology demonstration, pairs 
of numbers of neighbors, k, and numbers of samples, s, were (30,10), 
(400,133), and (10,3) for STARmap, Slide-seqV2, and Visium datasets, re-
spectively. Smoothing was then performed by setting the features of each 
cell to the average of their respective subsampled neighborhoods. 

The concatenation approach was performed by identifying the neigh-
bors of each cell in order of proximity, including the given cells themselves, 
and concatenating them in that order. The resulting feature vectors of each 
cell were of size dxk, where d is the number of genes measured and k is the 
number of neighbors identified for each cell. 
 
Clustering 
PCA was performed using scikit-learn’s PCA model. Leiden and UMAP 
were applied using Scanpy’s sc.tl.leiden and sc.tl.umap functions. Subclus-
tering was performed hierarchically by performing low resolution cluster-
ing to identify “level1'' clusters (non-neuronal, excitatory neuron, inhibitory 
neuron) followed by separate clustering of each level1 cluster to identify 
level2 clusters. K-means was performed by first smoothing features as de-
scribed above, without subsampling. Then PCA was performed on the 
smoothed features. Scikit-learn’s KMeans model was applied to the result-
ing PC space to identify region clusters. Molecular cell type and region an-
notation for resulting clusters were performed by referencing marker genes 
for each cluster as well as comparing to the Allen Brain Atlas51 for mouse 
and Riken’s Marmoset Gene Atlas20,21 for marmoset. The NMF approach 
was performed by subtracting the minimum expression value to make non-
negative, smoothing as described above without subsampling, and fitting 
scikit-learn’s NMF model to the non-negative, smoothed data. 
 
Integration 
Molecular cell type integration was performed by applying PCA to each da-
taset independently followed by applying Harmony to the stacked PC rep-
resentations of the datasets. Molecular region integration was performed by 
subsampling, smoothing, and applying PCA to each dataset independently 
followed by applying Harmony to the stacked PC representations. The re-
sulting Harmony-aligned PC representation was then used as input to 
downstream analyses, such as clustering, DEG analysis, and trajectory in-
ference. 
 
DEG analysis 
DEG analysis was performed by applying Scanpy’s sc.tl.rank_genes_groups 
function with default parameters. These default parameters entail perform-
ing the following for each gene. Cells are first separated into “self vs. other” 
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groups based on the grouping parameter. For instance, say we focus on a 
given molecular region to identify its unique marker genes. Then the group-
ing would be performed by region, and a t-test would compare the expres-
sion histogram between region A and all others, region B and all others, and 
so on. Genes with large z-scores resulting from this test associated with a 
given region would be considered markers for that region. The same ap-
proach was used to generate species-specific markers for each region. In 
that case, cells from a given region (including both species) were isolated 
and passed into sc.tl.rank_genes_groups with the grouping parameter set to 
species. Then t-tests would be used to compare mouse region A to marmoset 
region A, mouse region B to marmoset region B, and so on in order to find 
species-specific markers for each region. 
 
Trajectory inference 
Cells belonging to the cortical layer regions of the spatially integrated mar-
moset and mouse data were first isolated from the full dataset. Diffusion 
maps was then applied to the subsampled, smoothed, Harmony-aligned PC 
representation of the cortical data using Scanpy’s sc.tl.diffmap function 
with default parameters. 
 

Molecular depth comparisons 
The molecular depth distribution of a given gene was compared across spe-
cies as follows. First, trajectory inference was performed as described above 
to calculate a molecular depth value for each cell. Then, 50 evenly spaced 
bins were created along the depth range. Each cell was then assigned to the 
bin corresponding to its molecular depth, and its non-negative expression 
value for the given gene was added to the bin. Expression values for each 
cell were made non-negative by simply subtracting the minimum value 
across all cells. The expression of the given gene was then divided by the 
number of cells within each bin, respectively, to give an average approxima-
tion to the intensity of the gene’s expression at each molecular depth. The 
top and bottom 5 bins were omitted due to noise, as few numbers of cells 
had very high or low depth values. This was performed for each species sep-
arately, yielding a molecular depth curve of the given gene for each species. 
The curves were then normalized by dividing each curve by its sum. Curves 
for the given gene were then compared across species by calculating the ab-
solute value of the difference at each depth bin and summing to form a 
measure of total difference between species. 

The molecular depth distribution of a given cell type was compared in 
a simpler manner. Because each cell had a depth value, cells of a given type 
and species were isolated and histograms for each species were calculated 
and compared using a two-sided Mann-Whitney U-test and *P<0.01 after 
Bonferroni correction for multiple comparisons. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2023. ; https://doi.org/10.1101/2023.06.30.547258doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.30.547258
http://creativecommons.org/licenses/by-nc/4.0/


Mitigating autocorrelation during spatially resolved transcriptomics data analysis 
 

Maher et al. 2023 (preprint)   15 

 
 

  

Supplementary Figure 1. Spatial smoothing of randomly shuffled features yields spatial reconstruction. a) Results of comparing the smoothed 
representation of one cell (represented as a dot with white fill and black outline) to all others in the tissue. Similarity is defined as the dot product 
between normalized expression feature vectors. An anatomical wireframe from the Allen Brain Atlas is overlaid for comparison with conventional 
mouse brain anatomy16. Equivalent to Fig. 1d. b) Clustering results without using PCA, displayed in physical (above) and latent (below) spaces. 
Equivalent to Fig. 1e. c) Clustering results using PCA, displayed in physical (above) and latent (below) spaces. 
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Supplementary Figure 2. The effect of reducing the number of PCs used. Results from titrating the number of PCs used for Leiden and UMAP 
in the mouse brain STARmap PLUS sample. On the right, subsampling with 50 PCs is shown for comparison and is the same as Fig. 1h, Fig. 2c, 
and Fig. 3d. Leiden resolutions were set such that clustering yielded 23 clusters. 
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Supplementary Figure 3. Consistency of SPIN across runs. Five runs of SPIN with different random states, each clustered using a Leiden 
resolution of 0.5. Each column represents the results of a separate run. 
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Supplementary Figure 4. A concatenation approach to smoothing. a) Schematic of the concatenation approach. b) Results from clustering on 
the concatenated neighborhood representation. c) Confusion matrix representing comparison of cluster assignment between subsampling and con-
catenation approaches. d) Results from clustering on the concatenated neighborhood representation after shuffling the order of cells in each neigh-
borhood. e) Confusion matrix representing comparison of cluster assignment between shuffled and plain concatenation approaches. 
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Supplementary Figure 5. K-means and NMF approaches to smoothing avoid spatial reconstruction. a) K-means applied to spatially smoothed 
data with k=23 clusters. b) NMF applied to spatially smoothed data. Each of the resulting 25 factors is shown. 
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Supplementary Figure 6. Titrating the neighborhood size, k, used for spatial smoothing. a) The region of interest used in b-e) b) K-means 
clustering results after spatial smoothing over various numbers of neighbors, k. K-means was used in order to avoid issues with subsampling on 
small length scales, i.e. for small k. c) Visualization of a cluster that spatially resembles vasculature after smoothing at lower length scales and 
L6b/fiber tract at higher length scales. Ovals outline vascular shapes in the k=1 clusters, which decrease in prominence at higher length scales. d) 
The top 4 marker genes of the vascular cluster at k=1. e) The top 4 marker genes of the L6b/fiber tract cluster at k=30. 
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Supplementary Figure 7. Subclustering results for molecular cell typing across species. a) Level 1 clustering results identify major brain cell 
type classes. Cell types plotted in-situ (above, left) and in UMAP space (above, right). Cells in UMAP space colored by species in upper inset (above, 
right). Top 3 marker genes for each cell type cluster (below) b) Results from subclustering the Excitatory neuron cell type cluster. Layout same as a). 
c) Same as b) but for the Inhibitory neuron cluster. d) Same as b,c) but for the Non-neuronal cluster. 
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Supplementary Figure 8. Visualization of shared and species-specific L2/3 marker genes. a) Histogram of shared L2/3 marker scores for each 
gene. Same as Fig. 4g (left). b) Lamp5 expression plotted using the full tissue samples. c) Lamp5 expression plotted on tissue zoom-ins. Same as 
Fig. 4g (right). d) Histogram of species-specific L2/3 marker scores for each gene. Same as Fig. 4h (left). e) Cck expression plotted using the full 
tissue samples. f) Cck expression plotted on tissue zoom-ins. Same as Fig. 4h (right). g-i) Analogous to d-f) but showing Pde1a. Colormaps were 
normalized for each marker gene independently. 
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