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Abstract

Several computational methods have recently been developed for characterizing molecular tissue regions in spatially re-
solved transcriptomics (SRT) data. However, each method fundamentally relies on spatially smoothing transcriptomic fea-
tures across neighboring cells. Here, we demonstrate that smoothing increases autocorrelation between neighboring cells,
causing latent space to encode physical adjacency rather than spatial transcriptomic patterns. We find that randomly sub-
sampling neighbors before smoothing mitigates autocorrelation, improving the performance of existing methods and fur-
ther enabling a simpler, more efficient approach that we call spatial integration (SPIN). SPIN leverages the conventional
single-cell toolkit, yielding spatial analogies to each tool: clustering identifies molecular tissue regions; differentially ex-
pressed gene analysis calculates region marker genes; trajectory inference reveals continuous, molecularly defined ana-
tomical axes; and integration allows joint analysis across multiple SRT datasets, regardless of tissue morphology, spatial
resolution, or experimental technology. We apply SPIN to SRT datasets from mouse and marmoset brains to calculate
shared and species-specific region marker genes as well as a molecularly defined neocortical depth axis along which

several genes and cell types differ across species.

Introduction
The introduction of spatially resolved transcriptomics (SRT)
has raised the fundamental question of how to leverage
paired spatial and gene expression data'. A prominent ap-
proach is to combine this information to identify molecu-
larly defined tissue regions, yielding insight into the tran-
scriptional basis of tissue architecture and function*®. While
current methods for molecular region identification vary in
their exact approaches, they each fundamentally rely on
smoothing gene expression features over the tissue, i.e. set-
ting each cell’s feature vector to a weighted sum of itself and
its spatial nearest neighbors. For instance, UTAG® imple-
ments smoothing through message passing, in which the
weights used for neighborhood averaging correspond to the
physical distances between the given cell and each neighbor.
Similarly, STAGATE" uses a graph convolutional network
to smooth features over spatial nearest neighbors with learn-
able weights for each neighbor. Smoothing is fundamental
to region identification tasks because it is equivalent to iso-
lating low-frequency, large-scale patterns over the spatial
neighbors graph'!, which defines molecular regions. Alter-
natively, smoothing can be understood as a sliding window
average over the tissue, blurring away variation in small-
scale cell type-specific expression signals and instead reveal-
ing large-scale regional signals.

Here, we describe a fundamental limitation of smoothing
that prevents the wuse of multiple existing region
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identification methods. Because spatially adjacent cells have
almost identical neighborhoods, their smoothed expression
features are also almost identical. In other words, smoothing
increases autocorrelation between neighboring cells’ expres-
sion features. This leads to spatial reconstruction of the tis-
sue in latent space: adjacency in latent space reflects adja-
cency in physical space. We show that autocorrelation can
be mitigated via several strategies, including randomly sub-
sampling each cell’s spatial neighborhood before smoothing.
This allows adjacent cells to vary in their exact neighborhood
compositions while maintaining their general molecular
compositions, ultimately enabling the resulting latent space
to represent meaningful spatial transcriptomic features ra-
ther than just the spatial adjacency of cells.

We further utilize subsampling to develop a simpler and
more efficient alternative to existing molecular region char-
acterization methods which we call spatial integration
(SPIN). SPIN leverages the conventional single-cell analysis
toolkit to achieve spatial analogies to each tool: clustering
identifies molecular tissue regions; differentially expressed
gene (DEG) analysis calculates marker genes for each re-
gion; trajectory inference identifies continuous molecular
trajectories in physical space; and integration allows each of
these tools to be applied jointly across multiple datasets, re-
gardless of tissue morphology, spatial resolution, or experi-
mental technology. As this approach is based on the conven-
tional single-cell toolkit, it does not require GPU accelera-
tion andis as efficient as conventional single-cell analysis,
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Figure 1. Schematic of the smoothing idea, autocorrelation obstacle, and subsampling solution. a) Schematic of conventional cell type clus-
tering. Each dot represents a cell. b) Schematic of recent region clustering methods, in which expression features are smoothed before applying
conventional single-cell clustering tools. The dots shown are the same as those in a). ¢) Schematic demonstrating the main limitation of smoothing.
The dots shown are the same as those in a) and b). The red and blue filled dots represent physically adjacent cells. d) Results of comparing the
smoothed representation of one cell (represented as a dot with white fill and black outline) to all others in the tissue. Similarity is defined as the dot
product between normalized expression feature vectors. An anatomical wireframe from the Allen Brain Atlas is overlaid for comparison with conven-
tional mouse brain anatomy'®. e) Results of conventional single-cell clustering on smoothed data. PCA was omitted to emphasize physical recon-
struction. For results that include PCA, see Fig. 2a. f) Schematic demonstrating a simple solution to the problem shown in c). g-h) Same as d-e) but
with random neighborhood subsampling and including PCA during clustering. For e,h), Leiden resolutions were set such that clustering yielded 23
clusters.
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with the exception of a fast preliminary smoothing step. We
demonstrate this approach by comparing spatial tran-
scriptomic features across several SRT brain datasets from
mouse and marmoset species as well as across multiple ex-
perimental technologies, showing that datasets with arbi-
trary morphologies and spatial resolutions can be jointly
spatially analyzed using conventional single-cell tools. We
identify genes and cell types with spatial distributions that
differ across species, most notably the widely expressed neu-
ronal marker Cck as well as oligodendrocyte and interneu-
ron cell types. We provide an implementation of SPIN based
on Scanpy'? along with basic usage principles and a tutorial
notebook here:

https://github.com/wanglab-broad/spin

Results

Smoothing reconstructs spatial connectivity in latent space
Single-cell transcriptomics analysis typically begins with
molecular cell type clustering, during which single-cell gene
expression vectors are stacked into a cell-by-gene matrix, fol-
lowed by dimension reduction using principal components
analysis (PCA), clustering using the Leiden'® algorithm, and
visualization using uniform manifold approximation and
projection (UMAP)" (Fig. 1a). Current methods for molec-
ular tissue region clustering follow a similar workflow, but
with the addition of a preliminary smoothing step in which
each cell’s expression feature is set to a weighted average of
itself and its spatial nearest neighbors. To better understand
these methods, we investigated a simplified model in which
smoothing constitutes neighborhood averaging with equal
weights across neighbors (Fig. 1b). We identified a potential
issue with this approach in which physically adjacent cells
have nearly identical neighborhoods, yielding smoothed ex-
pression features that are nearly equal (Fig. 1c). This can
also be understood as smoothing-induced spatial autocorre-
lation. Because downstream methods such as Leiden and
UMAP operate based on a nearest neighbors graph (in fea-
ture space), we reasoned that the resulting latent graph
would represent the spatial proximity of cells to one another
rather than the desired spatial transcriptomic features.

We demonstrated this phenomenon in a STARmap PLUS
dataset of mouse brain from a recent atlas'>. We began by
smoothing over neighborhoods of size k=30 and then visu-
alizing the similarity of one neocortical cell’s smoothed ex-
pression vector to all other cells in the dataset. While the
given cell was appropriately less similar to subcortical cells
and more similar to other neocortical cells, it was indeed the
most similar to its immediate spatial neighbors (Fig. 1d). As
a result, after applying Leiden and UMAP, the latent space
appeared to reconstruct the physical space, generating spa-
tially contiguous yet arbitrary cluster labels (Fig. 1e; for an
example of equivalent results that include PCA, see Fig. 2a).
This can also be viewed as a combined consequence of ran-
domness of neighborhood cell-type compositions and noisi-
ness of single-cell expression, making the smoothed features
of neighboring cells uniquely similar. Indeed, when
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expression features are randomly shuffled across the tissue,
this phenomenon persists and is more pronounced, with the
tissue again being physically reconstructed in latent space
(Supplementary Fig. 1). While PCA can deemphasize the
effects of spatial autocorrelation, we find that it is not suffi-
cient to eliminate them, necessitating a more comprehensive
solution (Supplementary Fig. 2).

We identified a simple solution to this issue in which
each cell’s spatial neighborhood is randomly subsampled be-
fore smoothing (Fig. 1f). We reasoned that, given the num-
ber of samples is sufficiently large to represent each cell’s
molecular niche, subsampling would allow adjacent cells to
differ in their exact neighbor compositions while still captur-
ing their general molecular compositions. We identified
neighborhoods of size k=30 cells, randomly subsampled
each neighborhood with samples of size s=10 cells, and then
repeated smoothing. Indeed, when comparing one cell to all
others as performed above, the subsampling approach
placed less emphasis on spatial adjacency (Fig. 1g). As a re-
sult, clustering identified the major molecular tissue regions
expected in the dataset, including the neocortical layers as
well as many subcortical structures (Fig. 1h; for region la-
bels, see Fig. 3d). Furthermore, the latent space appeared to
capture features of anatomical structure, as evidenced by the
one-dimensional manifold corresponding to the laminar
structure of the neocortex. These exact values of k and s were
determined by manual variation and inspection of the re-
sults. While more extensive optimization may be possible,
we find that these parameters are sufficient to identify major
anatomical regions in most of the SRT datasets explored
here. Finally, despite the randomness of subsampling, we
find that multiple runs with different random seeds show
consistent results, although potentially requiring different
clustering resolutions to identify the same set of regions
(Supplementary Fig. 3).

Several alternative approaches to subsampling can also
be derived based on this principle. For example, an alterna-
tive aggregation approach is to concatenate each neighbor-
hood’s gene expression profiles rather than average them.
Single-cell gene expression vectors of a cell and its spatial
nearest neighbors (without subsampling) can be concate-
nated in order of distance, from nearest to furthest to the
given cell, forming a neighborhood vector of length dk where
d is the number of genes measured and k is the number of
neighbors (Supplementary Fig. 4a). This concatenation
approach assigns an ordering to each cell’s neighborhood
and relies on the fact that even identical neighborhoods will
have different orderings; as each cell is closest to itself, the
order of each cell’s neighborhood vector will always begin
with itself and thus differ from all other cells’. Furthermore,
even if adjacent cells have identical neighborhoods, their rel-
ative distances to each neighbor likely differ, leading to ad-
ditional variation in their concatenation orderings. Cluster-
ing on concatenated features yields largely the same molec-
ular tissue regions and latent representation as the subsam-
pling approach (Supplementary Fig. 4b,c). While one may
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Figure 2. Comparing SPIN to existing methods. a) Leiden clustering results after smoothing (without subsampling). Same as Fig. 1e but including
PCA with 50 PCs. b) K-means clustering results after smoothing ¢) Leiden clustering results after neighborhood subsampling followed by smoothing,
i.e. SPIN. Same as Fig. 1h. d) Leiden clustering results using UTAG. e) K-means clustering results using UTAG. f) Leiden clustering results from
subsampling followed by UTAG. g) Leiden clustering results using STAGATE. h) K-means clustering results using STAGATE. i) Leiden clustering
results from subsampling followed by STAGATE. j) Memory usage of each method applied to different amounts of cells. k) Run time of each method
applied to different amounts of cells. “Single-cell” in j,k) refers to the analysis shown in Fig. 1a. Curves were created by running each method on
subsets of the mouse brain dataset shown in a-i), from 10% to 100% of the total number of cells, in increments of 10%. Subsampling is included as
part of each method. For a-i), k-means and Leiden were performed such that clustering yielded 23 clusters.

wonder whether the distance-based ordering encodes rele-
vant biological information, we find that randomly shuffling
the ordering of each cell’s neighborhood produces nearly
identical clustering results, suggesting that the absolute or-
dering is irrelevant so long as the relative ordering of adja-
cent cells is different (Supplementary Fig. 4d,e). However,
as concatenation increases the size of the data matrix by a
factor of k, the PCA step is much more computationally
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costly than conventional single-cell analysis. On the other
hand, the subsampling approach is computationally equiva-
lent to single-cell analysis, apart from the overhead required
for smoothing.

Finally, rather than modifying the smoothing strategy,
one can instead vary the clustering strategy. For instance, k-
means clustering can be applied to plainly smoothed (with-
out subsampling) data to recover largely the same tissue


https://doi.org/10.1101/2023.06.30.547258
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.30.547258; this version posted July 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Mitigating autocorrelation during spatially resolved transcriptomics data analysis

regions as Leiden with subsampling or concatenation (Sup-
plementary Fig. 5a). This is due to the fact that k-means
does not depend on pairwise similarities between cells in or-
der to determine clusters. Rather, a fixed number of cluster
centroids are initialized, and cells are iteratively assigned to
each centroid without individual comparisons. Alterna-
tively, one can avoid clustering altogether by utilizing clus-
ter-free methods to identify molecular tissue regions. For in-
stance, non-negative matrix factorization (NMF)" can be ap-
plied to plainly smoothed data to calculate factors corre-
sponding to distinct spatial expression patterns (Supple-
mentary Fig. 5b). This approach is similar to k-means in
that it also does not rely on individual comparisons. How-
ever, NMF does not generate categorical cluster labels which
may be necessary for downstream analysis. Furthermore,
neither k-means nor NMF produce latent spaces that are
compatible with downstream analyses relying on nearest-
neighbor graphs, such as Leiden, UMAP, or trajectory infer-
ence. This is because k-means does not explicitly calculate a
latent embedding, while the latent representation given by
NMEF still embeds physically adjacent cells closest to one an-
other, again causing latent nearest neighbors to reflect spa-
tial proximity. Thus, among the strategies explored above,
we find subsampling to be the most efficient and convenient
solution.

An important consideration when using the above ap-
proaches is that molecular regions may exist on varying
length scales'. The number of neighbors used for smoothing,
k, determines which length scale the spatial expression pat-
terns are detected on. For instance, smoothing over a large k
might allow identification of large regions such as cortical
layers while ignoring smaller-scale structures such as me-
ninges or vasculature, and vice versa. We demonstrated this
by varying k and comparing the resulting molecular region
clusters (Supplementary Fig. 6a). Between k=1 and k=5,
clustering identified small regions corresponding to vascula-
ture (Supplementary Fig. 6b,c). Marker genes indicated
these regions were indeed composed of endothelial cells and
pericytes (Supplementary Fig. 6d). However, at k=30, the
same vascular cells were instead classified based on the cor-
tical layers they occupied, with top marker genes corre-
sponding to the given cortical layer (Supplementary Fig.
6e).

Altogether, we found that smoothing SRT data increases
spatial autocorrelation and causes latent reconstruction of
physical space, obscuring the underlying spatial molecular
patterns. However, several approaches outlined above can
mitigate this issue, with subsampling in particular offering
efficiency and complete compatibility with the conventional
single-cell toolkit. We refer to this subsampling and smooth-
ing approach as spatial integration (SPIN).

Mitigating spatial autocorrelation in existing methods

Because existing methods for molecular region clustering in
SRT data can be expressed as more complex variations on
smoothing, we sought to determine whether they also cause
artifactual spatial reconstruction of the data. We began by
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smoothing (without subsampling) and clustering as shown
above for comparison (Fig. 2a). Here we did not omit PCA,
so the physical reconstruction in UMAP space was less pro-
nounced. However, it was still evident based on the quilting
of the arbitrary, spatially contiguous tiles in latent space. We
then plotted the prior results from k-means and SPIN to vis-
ualize the expected molecular regions (Fig. 2b,c). For our
first comparison, we applied UTAG to the same mouse brain
dataset, which yielded similar results to smoothing without
subsampling (Fig. 2d). While one could argue that this may
be due to suboptimal parameter selection, we found that
UTAG with k-means identified the expected molecular re-
gions, indicating that the underlying spatial expression fea-
tures were present in the latent representation despite being
obscured by Leiden and UMAP (Fig. 2e). Indeed, when a
randomly subsampled adjacency matrix was provided as in-
put, the expected regions were detectable using Leiden and
UMAP (Fig. 2f). This suggests that UTAG also increases spa-
tial autocorrelation which can be mitigated by subsampling.
We then determined whether this issue affects STAGATE’s
more complex graph neural network-based model. Again,
applying Leiden and UMAP to the latent space output pro-
duced spatially contiguous yet arbitrary clusters (Fig. 2g),
while k-means identified the expected regions (Fig. 2h), and
inputting a subsampled adjacency matrix enabled Leiden
and UMAP to also detect the expected regions (Fig. 2i).
Thus, we find that spatial autocorrelation is increased and
can be mitigated by subsampling even in more complex
graph neural network-based models such as STAGATE.

Given that subsampling enabled each method to identify
comparable molecular tissue regions, we next sought to
compare the computational efficiency of each method. To do
so, the conventional single-cell approach, SPIN, UTAG, and
STAGATE were each used to cluster subsets of the same
STARmap PLUS mouse brain dataset, from 10% of the data
to 100%, in increments of 10%. As the majority of these meth-
ods do not rely on GPU acceleration, we chose to compare
them using CPU only. SPIN showed the least memory usage
and was comparable to single-cell clustering, while STA-
GATE showed consistently higher usage across all amounts
of cells, and UTAG usage appeared to exponentially increase
with more cells (Fig. 2j). With respect to run time, SPIN
again appeared equivalent to single-cell clustering, while
UTAG and STAGATE became less efficient as the number
of cells increased (Fig. 2k). Thus, considering both memory
usage and run time, we find that SPIN is more efficient than
the existing region identification methods shown here.

For the remainder of this work, we further demonstrate
the power and convenience of SPIN by leveraging additional
conventional single-cell tools to jointly analyze various SRT
datasets.

DEG analysis identifies region marker genes

Cell type clustering is typically followed by DEG analysis for
molecular characterization of each cell type. We demon-
strated this process by applying conventional cell type
clustering and DEG analysis to the same STARmap PLUS
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Figure 3. Spatial DEG analysis with SPIN. a) Visualization of cells in UMAP space colored and labeled by molecular cell type (left). Visualization
of cells in UMAP space (left) and in situ (right) colored by cell type. An anatomical wireframe from the Allen Brain Atlas is overlaid for comparison of
cell type distributions with conventional anatomy'®. Inset box | indicates area of zoom-in view in b). b) Examples of cell type distributions within the
Thalamus (TH). ¢) Marker genes for each cell type directly above in b). d) Visualization of cells in situ (left) and in UMAP space (right) colored by
molecular tissue regions, which are generated by subsampling and smoothing the data before clustering. Same as Fig. 1h and Fig. 2c. Same dataset
as in a) but horizontally reflected. Inset box Il indicates area of zoom-in view in e). Visualization of labeled regions in UMAP space colored and labeled
by region (right). e) Cells from the same Thalamic region as b). f) Visualization of the top three marker genes in situ for the Thalamic cluster in e) (left
to right). For a,d), Leiden resolutions were set such that each approach yielded 23 clusters.

sample of mouse brain shown above (Fig. 3a). Clusters were
assigned cell type labels based on their respective marker
genes. As expected, conventional anatomical regions con-
tained mixtures of cell types. For instance, the thalamus con-
tained a mixture of glutamatergic neurons (Ex2), microglia
(Micro), and astrocytes (Astro) (Fig. 3b). The marker genes
defining these cell types demonstrated various extents of
spatial patterning. The glutamatergic neuron marker Prked
appeared to be spatially distributed uniquely within the thal-
amus, while the microglial marker Ctss appeared uniformly
distributed, and the astrocyte marker Clu appeared spatially
patterned in some areas such as the cortex yet uniform in
others (Fig. 3c).

On the other hand, clustering on subsampled and
smoothed data yielded spatially contiguous molecular re-
gion labels, identifying marker genes specific to each region
(Fig. 3d,e). For example, the top three marker genes for the
thalamus region all appeared to be spatially variable genes
(SVGs) expressed within the thalamus (Fig. 3f). This
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suggests that smoothing successfully removes sparse, non-
spatial gene expression patterns, instead maintaining and
propagating patterns of SVGs. Thus, when combined with
SPIN, DEG analysis is capable of identifying SVG markers
for each molecular tissue region.

Integration aligns spatial transcriptomic features across
species

Given that SPIN combined with clustering and DEG analysis
identified molecular tissue regions and their corresponding
marker SVGs, we wondered whether single-cell integration
methods could further enable joint characterization of re-
gions across multiple datasets. We reasoned that the local
operation of smoothing should allow integration to align
spatial expression features across datasets with arbitrary
global morphologies. In other words, while differences in
morphology between samples can prevent accurate physical
registration, molecular comparison of local cellular neigh-
borhoods is independent of global morphology, allowing
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Figure 4. Spatial integration across species with SPIN. a) Visualization of tissue in situ colored by molecular cell type. The marmoset STARmap
dataset contained measurements of 454 genes across 42,458 cells, and the mouse STARmap PLUS dataset contained measurements of 1,022
genes across 29,623 cells. After integration, each dataset contained measurements across 174 genes (the genes measured in both datasets). Inset
boxes | and Il indicate areas for zoom-in views used in b), €), and g), and h). b) Zoom-in views of the tissue colored by cell type. c) Visualization of
tissue in UMAP space colored and labeled by cell type. Inset shows tissue in UMAP space colored by species. d-f) Same as a-c) but labeled by
molecular tissue regions generated by SPIN (i.e. clustering the subsampled and smoothed data). g) Histogram of L2/3 marker scores for each gene
(left). Scores correspond to t-test results for a given gene across cells in L2/3 versus cells in all other regions (i.e. Scanpy’s sc.tl.rank_genes_groups).
The top joint marker for L2/3 in both species was Lamp5, which is visualized in situ (right). h) Histogram of species-specific L2/3 marker scores for
each gene. Scores were calculated as in g) but by comparing all L2/3 cells based on species. The top species-specific marker was Cck, which is

visualized in situ (right).

alignment of samples with arbitrary shapes. We chose to
demonstrate this by comparing a STARmap PLUS dataset of
mouse frontal cortex with a STARmap dataset of marmoset
frontal cortex, the former from a recent mouse brain atlas'®
and the latter newly collected for this study. We first identi-
fied cell types for reference by performing single-cell integra-
tion using Harmony'® followed by two levels of clustering as
described above (Supplementary Fig. 7). Major excitatory
neuron, interneuron, and non-neuronal cell types were
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detected in the data (Fig. 4a-c). We then performed subsam-
pling and smoothing on each dataset independently with
k=30 and s=12, followed by the same integration and clus-
tering approach. Region clusters were then annotated by ref-
erencing mouse and marmoset anatomical atlases'>'%2.
Clustering revealed the laminar neocortical structure in
each dataset (Fig. 4d,e), which was reflected in the one-di-
mensional shape of the UMAP embedding (Fig. 4f). Integra-
tion appeared to successfully align spatial expression
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features from each species, as indicated by the overlap be-
tween latent representations of cells from each dataset (Fig.
4f, inset). Notably, integration appeared to preserve and
identify real dataset-specific regional differences, as demon-
strated by the lack of species overlap in the anterior commis-
sure (aco), piriform area (PIR), and taenia tecta (TT) regions,
which were present in the mouse sample but absent in the
marmoset sample.

Given the ability to molecularly align regions across da-
tasets, we further sought to calculate shared and species-spe-
cific spatial transcriptomic features. Shared marker genes
for each region were calculated using DEG analysis across
region groups using data from both species, yielding region
marker genes that were shared by both species. For instance,
the top shared marker for L2/3 was Lamp5, a canonical
marker for that region, which was confirmed by in situ visu-
alization of STARmap measurements (Fig. 4g; see Supple-
mentary Fig. 8a-c for plots of the full tissue). We then cal-
culated species-specific region markers by isolating cells
within a given region and performing DEG analysis across
species. Cck was identified as the top differentially distrib-
uted gene (DDG) in the L2/3 region, which was also visually
evident in situ (Fig. 4h, Supplementary Fig. 8d-f). Nota-
bly, Cck is expressed in both excitatory and inhibitory neu-
rons in mice?, indicating that the difference in spatial distri-
butions between species is not due to an underlying differ-
ence in a single cell type. Thus, this approach is capable of
identifying differences in spatial distributions that are inde-
pendent of cell types. Furthermore, Cck neurons have been
shown to regulate opiate antagonism*, satiety signaling®,
and learning and memory?®, indicating that this difference in
spatial distribution between species may have functional im-
plications. Finally, we visualized the top marmoset specific
L2/3 marker, Pdela. However, just as the magnitude of its z-
score was lower than that of Cck, the difference between spe-
cies was more difficult to visualize by eye (Supplementary
Fig. 8g-i).

Integration aligns spatial transcriptomic features across
technologies
While single-cell integration methods are often used to iden-
tify differences across datasets, they are also used to merge
datasets collected using diverse experimental technologies?.
This has enabled the creation of single-cell atlases that lev-
erage the unique strengths of multiple technologies, such as
single-cell and single-nucleus RNA sequencing®*. SRT
technologies also vary in their strengths, with methods such
as Visium* measuring more genes with lower spatial resolu-
tion and methods such as STARmap measuring fewer genes
with higher spatial resolution. As SRT atlases are increas-
ingly being generated using a variety of technologies®'>*'-%,
we sought to test whether integrating smoothed data facili-
tates joint characterization of spatial datasets from different
technologies.

We thus used SPIN to spatially integrate three open-
source SRT datasets of mouse brain from technologies with
decreasing spatial and increasing transcriptomic
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resolutions: STARmap PLUS, Slide-seqV2*, and Visium. To
accommodate their different spatial resolutions, smoothing
was performed with varying neighborhood sizes across each
dataset (Methods). Integration and clustering yielded mo-
lecular tissue regions that reflected the underlying anatomy
within each dataset, despite broad differences in spatial res-
olution, orientation, and field of view (Fig. 5a). Regions rep-
resented in UMAP space appeared well-aligned across tech-
nologies as evidenced by dataset mixing (Fig. 5b). Notably,
regions were accurately identified despite the limited field of
view of the Slide-seqV2 sample as well as the more posterior
anatomical position of the Visium sample. Finally, an addi-
tional layer 6b region (L6b) was detected, which was not
found in the STARmap data alone.

Beyond the creation of consensus atlases, we reasoned
that cross-technology spatial integration could enable com-
parison across datasets that differ both in technology and in
other properties. For instance, consider the scenario where
one wants to compare molecular regions across marmoset
and mouse neocortex yet only has access to marmoset data
collected using one technology and mouse data collected us-
ing a different technology. In this case, the ability to spatially
integrate across both species and technology would be nec-
essary. To test whether this was possible, we isolated the
above neocortical regions from the Visium mouse brain da-
taset and performed SPIN with the prior marmoset neocor-
tex STARmap data as shown above. All cortical, fiber tract,
and meninges regions from the prior cross-species integra-
tion were once again detected, and the latent representation
appeared similar as well (Fig. 5c-e). Furthermore, integra-
tion again allowed the identification of an additional Léb re-
gion that was not detected in the STARmap data alone. Be-
cause the mouse Visium dataset measured more genes than
in the prior mouse STARmap PLUS dataset, the overlap with
the marmoset data was greater, allowing the detection of ad-
ditional genes, such as Stxbp6, that were enriched in L2/3
(Fig. 5f). However, Cck remained the top species-specific
gene in 1L.2/3 (Fig. 5g), matching the results from our previ-
ous cross-species analysis that only used STARmap data.

Trajectory inferences identifies continuous molecularly de-
fined spatial axes

While SPIN allowed joint characterization of discrete tissue
regions, the one-dimensional latent structure of the neocor-
tical data suggested the presence of meaningful continuous
variation as well (Fig. 3d, Fig. 4f, Fig. 5b,e). The conven-
tional single-cell tools used to characterize such molecular
gradients are referred to as trajectory inference or pseudo-
time methods”. In the context of single-cell analysis, the gra-
dients identified by these methods are typically interpreted
as developmental trajectories. We reasoned that, when ap-
plied to smoothed data, these same methods would instead
identify spatial molecular gradients within the tissue. We
thus applied diffusion maps®, a popular trajectory inference
method, to the prior smoothed and integrated marmoset and
mouse neocortical STARmap datasets. As the neocortex is
known to be organized into layers L2/3-L6 ordered by depth,
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Figure 5. Spatial integration across experimental technologies with SPIN. a) Visualization of tissue from each technology in situ colored by
molecular tissue region. From left to right, technologies decrease in spatial resolution and increase in transcriptomic resolution. The STARmap PLUS
dataset contained 1,022 genes measured across 37,928 cells, the Slide-seqV2 dataset contained 4,000 genes measured across 41,786 spots, and
the Visium dataset contained 18,078 genes measured across 2,688 spots. After integration, each dataset contained measurements across 521

genes. b) Visualization of dataset in UMAP space colored and labeled by

molecular tissue region. Inset is the same but colored by technology. c)

Visualization of tissue in situ colored by molecular tissue region. After integration, each dataset contained measurements across 401 genes. Inset
boxes | and Il indicate areas for zoom-in views used in d), f), and g). d) Zoom-in views of the tissue colored by region. e) Visualization of cells/spots
in UMAP space colored and labeled by molecular tissue region. Inset shows cells/spots in UMAP space colored by species. f) Histogram of L2/3
marker scores for each gene (left). The top ranked marker for L2/3 in both species was Stxbp6, which is visualized in situ (right). g) Histogram of
species-specific L2/3 marker scores for each gene. The top species-specific marker was Cck, which is visualized in situ (right).

we isolated cells from these cortical region clusters for
demonstration. Indeed, the first diffusion component (DC1)
formed a one-dimensional measure of depth along the neo-
cortex (Fig. 6a). Notably, this measure was not physically
uniform in physical space; for example, a large change in
DC1 occurred within a small physical portion of the tissue
corresponding to L4. Accordingly, we termed this measure
“molecular depth”. Importantly, calculation of molecular
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depth is unsupervised, independent of cell type clustering,
and can be performed across multiple datasets, unlike previ-
ous supervised, cell type-based approaches®**.

We leveraged this approach to identify genes with differ-
ing neocortical molecular depth across species. For each
gene, a depth distribution was calculated by binning cells ac-
cording to molecular depth and calculating the average ex-
pression of the gene within each bin. To compare a given
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Figure 6. Joint spatial trajectory inference across species with SPIN. a) Visualization of tissue in UMAP space colored and labeled by molecular
tissue region (left; same as in Fig. 4f). Visualization of diffusion component 1 (DC1), which we termed “molecular depth”. Molecular depth visualized
over the tissue in UMAP space (middle). Zoom-ins of the same brain tissue regions as in Fig. 4b,e,g,h, colored by molecular depth (right). b) Depth
distributions for the top shared and species-specific L2/3 genes from the analysis shown in Fig. 4g,h. Cells were binned according to depth, and
expression was averaged across cells within each bin to calculate a depth distribution for each gene. ¢) A histogram of depth distribution differences
for each gene across species. d) Depth distribution plots and in situ visualization of Slc13a3, which had the lowest depth distribution difference. e)
Depth distribution plots and in situ visualization of Plch1, which had the second highest depth distribution difference. f) Boxplot showing the depth
distributions of cells from each cell type and each species. Boxes extend from the first to the third quartile with the middle line showing the mean.
Whiskers extend above and below the first and third quartiles by 1.5 times the interquartile range. Points outside this range are considered outliers
and depicted as individual diamonds. For each cell type, distributions were compared across species using a two-sided Mann-Whitney U-test and
*P<0.01 after Bonferroni correction for multiple comparisons. Zoom-in views of the in situ distributions of Pvalb interneurons are shown for illustration
(right). Paired histograms correspond to the physical depths of the cells along the y-axis of the tissue for comparison to molecular depth.

gene’s depth distribution across species, we summed the ab-
solute values of the differences in expression between spe-
cies at each depth bin. To validate this metric, we first plot-
ted the depth distributions of Lamp5 and Cck, which reca-
pitulated the spatial patterns found during our previous
DEG analysis (Fig. 6b). We then calculated the depth distri-
bution differences between species for all measured genes
(Fig. 6¢). Indeed, Lamp5 showed a relatively low difference
across species, whereas Cck showed the highest difference.
The lowest difference was in Slc13a3, which appeared spa-
tially uniform in both species (Fig. 6d). The second highest
difference was in Plch1, which appeared spatially uniform in
mouse neocortex yet uniquely expressed in L4 in marmoset
(Fig. 6e).
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We then compared the molecular depth of cell types
across species. For a given cell type, depth distributions for
each species were compared. Significant differences in depth
were observed within oligodendrocytes (Oligo, Micro/Ol-
igo), excitatory neurons (IT, ET), and Cxcl14, Sst, and Pvalb
interneurons (Fig. 6f, left). Out of these significant groups,
modest differences were found between excitatory neurons,
which were more superficial in marmoset neocortex com-
pared to mouse. Larger differences were found between oli-
godendrocytes, which were much deeper in marmoset neo-
cortex. Finally, Cxcl14, Sst, and Pvalb interneurons appeared
much more superficial in the marmoset neocortex compared
to mouse, recapitulating results from prior supervised anal-
yses***, To visualize an example of the difference in cell type
molecular depths, we plotted Pvalb interneurons in situ in
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both species along with physical depth histograms based on
each sample’s y-axis (Fig. 6f, right). The in-situ visualization
and physical depth distributions both appeared to recapitu-
late the molecular depth distributions and their differences
between species.

Discussion

We demonstrated that multiple smoothing-based methods
physically reconstruct SRT data in latent space, preventing
accurate characterization of spatial transcriptomic features.
We introduced several simple modifications that circumvent
this issue, including a subsampling approach that can im-
prove the performance of existing methods as well as form
the basis of a new minimal method for spatial characteriza-
tion that we call SPIN. We then showed that SPIN extends
the utility of conventional single-cell tools to SRT data, cre-
ating spatial analogies of each tool. This allowed the unsu-
pervised identification of genes whose spatial distributions
differ across species. It also enabled the unsupervised iden-
tification of genes and cell types that differ in neocortical
molecular depth across species. Altogether, we introduced a
simple, efficient, and effective approach to analyzing spatial
transcriptomic features using conventional single-cell tools.

Drawbacks of the smoothing and clustering strategies
mentioned here may arise at small or large length scales. In
the case of small length scales, the subsampling approach
may fail due to the inability to capture the relevant regional
features within so few cells. For example, smoothing with
k=5 would require using s<5 subsampled cells, which may
not be sufficient to capture the molecular diversity of the re-
gions of interest. However, in this case, one may benefit from
the concatenation or k-means approaches to avoid subsam-
pling altogether. On the other hand, large length scales may
prohibit the use of concatenation due to computational inef-
ficiency. Furthermore, the requirement of choosing a single
k prevents the identification of molecular regions along both
small and large length scales simultaneously. However, one
could likely utilize the hierarchical subclustering approach
often used in single-cell clustering to iteratively identify
large-scale regions, their constituent smaller-scale subre-
gions, and so on.

We anticipate SPIN will be utilized for two primary ap-
plications. First, given the efficiency of spatial smoothing as
well as conventional single-cell analysis methods, we expect
the use of SPIN for combining and comparing spatial tran-
scriptomic features across emerging large-scale SRT at-
lases®!331%5, As anatomy corresponds with function, such at-
las-level spatial comparisons may be able to identify tran-
scriptional underpinnings of functional differences between
species or conditions. Second, we anticipate that SPIN will
be used to generate spatial analogies for several additional
classes of single-cell methods not explored here. For in-
stance, SPIN may be capable of generalizing single-cell mul-
timodal integration methods to spatial pattern alignment
across multiple modalities. On the other hand, novel inte-
gration methods such as SATURN* allow flexible alignment
of cells across species based on transcriptional features as
well as protein embeddings of the corresponding genes,
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yielding cell embeddings and clusters that are more relevant
to biological function. Thus, when combined with SPIN,
they may also enable more functionally informative charac-
terization of molecular tissue regions across species. Fur-
thermore, cluster-free differential abundance methods such
as Milo* and CNA* allow identification of cell type popula-
tions that are more abundant in a given dataset compared to
others. Thus, such methods applied alongside SPIN may be
capable of revealing differentially abundant molecular tissue
regions across datasets. Finally, novel cluster-free DEG
methods such as LEMUR®* and miloDE* could be paired
with SPIN to calculate DDGs in SRT data, potentially allow-
ing flexible, cluster-free identification of spatial tran-
scriptomic differences between tissues.
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Materials and Methods
Marmoset sample collection

All marmosets were either family group-housed or pair-housed in large
cages with a variety of perches and enrichment devices. All marmoset cages
are in spacious rooms with environmental control of temperature (23—
28°C), humidity (40-72%), and 12 hr light/dark cycle. All marmosets re-
ceived regular health checks and behavioral assessment from MIT DCM
veterinary staff and researchers. All animal procedures were conducted
with prior approval by the MIT Committee for Animal Care (CAC) and fol-
lowing veterinary guidelines.

Adult marmosets (2.5 years old, female) were deeply sedated by intra-
muscular injection of ketamine (20-40 mg kg—1) or alfaxalone (5-10 mg
kg—1), followed by intravenous injection of sodium pentobarbital (10-30
mg kg—1). When the pedal withdrawal reflex was eliminated and/or the
respiratory rate was diminished, animals were trans-cardially perfused with
ice-cold sucrose-HEPES buffer. Whole brains were rapidly extracted into
fresh buffer on ice. Brain regions were dissected using a marmoset atlas as
reference”” and were snap-frozen in liquid nitrogen.

Gene panel selection

Marker genes and most differentially expressed genes were extracted from
single-cell RNA-sequencing studies*** that surveyed multiple marmoset
brain regions, including motor cortex, somatosensory cortex, visual cortex,
striatum, hippocampus, etc.
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STARmap procedure

The STARmap PLUS procedure was conducted following established pro-
tocols. Glass bottom 6-well plates were treated with methacryloxypropyltri-
methoxysilane (Bind-Silane) and subsequently treated with poly-D-lysine
solution. #2 Micro cover glasses (18 mm) were pretreated with Gel Slikck
according to the manufacturer’s instructions. 20 um coronal brain slices
were mounted in the pretreated glass-bottom 6-well plate. The brain slices
were fixed with 4% PFA in PBS at r.t. for 15 min, permeabilized with pre-
chilled methanol at -80°C for 2hr, and rehydrated with PBSTR/Gly-
cine/YtRNA at room temperature for 10 min before hybridization. SNAIL
probes were dissolved at the concentration of 50 nM per probe in water, and
the final concentration per probe for hybridization was 5 nM. The brain
slices were incubated in 600 L hybridization buffer (consisting of 2X SSC
[Sigma-Aldrich, S6639], 10% formamide [Calbiochem, 655206], 1% Triton
X-100, 20 mM RVC [Ribonucleoside vanadyl complex, New England Bi-
olabs, S1402S], 0.1 mg/ml yeast tRNA, 0.5% SUPERaseln, and SNAIL
probes) at 40°C for 36-40 hours with gentle shaking. Subsequently, the sam-
ples were washed at 37°C for 20 min with 1200 uL PBSTR (PBS, 0.1%
Tween-20, 0.1 U/uL SUPERaseln) twice and then washed once at 37°C for
20 min with 1200 uL High Salt buffer (PBSTR, 4XSSC). After a brief rinse
with PBSTR at r.t, the samples were incubated for two hours with 600 uL
T4 DNA ligase mixture (containing 0.1 U/uL T4 DNA ligase [ThermoFisher,
EL0011], 1X T4 ligase buffer, 0.2 mg/mL BSA, 0.2 U/uL of SUPERase-In) at
room temperature with gentle shaking. This was followed by two washes
with 1200 uL PBSTR. Next, the samples were incubated with 600 uL of roll-
ing-circle amplification (RCA) mixture (including 0.2 U/uL Phi29 DNA pol-
ymerase [Thermo Scientific, EP0094], 1X Phi29 reaction buffer, 250 M
dNTP mixture, 0.2 mg/mL BSA, 0.2U/uL of SUPERase-In and 20 uM 5-(3-
aminoallyl)-dUTP [Invitrogen, AM8439]) at 4°C for 30 minutes and at 30
°C for two hours. The samples were then washed twice with 1200 uL PBST
(PBS, 0.1% Tween-20) and treated with 800 uL of 20 mM Acrylic acid NHS
ester (Sigma-Aldrich, 730300-1G) in 100 mM NaHCOs (pH 8) for one hour
at room temperature. After a brief wash with 1200 uL PBST, the samples
were incubated with 800 uL monomer buffer (containing 4% acrylamide,
0.2% bis-acrylamide, 2X SSC) for 30 min at room temperature. The buffer
was removed, and 50 uL of polymerization mixture (0.2% ammonium per-
sulfate, 0.2% tetramethylethylenediamine in monomer buffer) was added to
the center of the sample. The samples were immediately covered by Gel
Slick-coated coverslip and incubated for one hour at room temperature un-
der nitrogen gas atmosphere. Following polymerization, the samples were
washed twice with 1200 uL PBST for 5 min each. The tissue-gel hybrids
were then digested with Proteinase K (Invitrogen, 25530049, 0.2 mg/ml in
50 mM Tris-HCI 8.0, 100 mM NacCl, 1% SDS) at room temperature overnight
and then washed with 1200 pL of 1 mM AEBSF in PBST (Sigma-Aldrich,
101500) once at room temperature for 5 min, followed by two additional
washes with PBST. The samples were stored in PBST at 4°C until imaging
and sequencing. Before SEDAL sequencing, the samples were washed twice
with the stripping buffer (60% formamide and 0.1% Triton X-100 in water)
and treated with the dephosphorylation mixture (0.25 U/uL Antarctic Phos-
phatase [NEB, M0289L], 1X reaction buffer, 0.2 mg/mL BSA) at 37°C for
one hour. Each cycle of SEDAL sequencing began with two washes using
the stripping buffer (10 min each) and three washes with PBST (5 min each).
For the six round of 461-gene sequence, the sample was then incubated with
the “sequencing by ligation” mixture (0.2 U/uL T4 DNA ligase [Ther-
moFisher, EL0011], 1X T4 ligase buffer, 0.2 mg/mL BSA, 10 uM reading
probe, and 300 nM of each of the 16 two-base encoding fluorescent probes)
at room temperature for three hours. After three washes with wash and im-
aging buffer (10% Formamide, 2X SSC in water) and DAPI staining, the
sample was imaged in the wash and imaging buffer.

Image processing

Images were deconvoluted by Huygens Essential version 21.04 (Scientific
Volume Imaging, The Netherlands, http://svi.nl), using the CMLE algo-
rithm, with SNR:10 and 10 iterations. Image registration, spot calling, and
barcode filtering were performed by following previously published re-
ports* with minor adjustments.

Cell segmentation

A pretrained machine learning model from the StarDist package®® was used
to automatically identify nuclei from the 2D maximum projection of the
DAPI staining image. The segmented image was then used to extract cell
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locations and serve as markers for cell body segmentation. To represent cell
bodies, an overlay of stitched DAPI staining and merged amplicon images
from the first sequencing round was created. A gaussian filter with ¢ equal
to 3 was applied to this composite image before binarizing it using Otsu
thresholding strategy. To better incorporate amplicons around the periph-
eral region of cell bodies, a binary dilation with a disk structure element (r
= 5) was applied on the mask. Finally, a marker-based watershed transform
was performed on the binary mask representing cell bodies for segmenta-
tion purposes. Points overlapping each segmented cell region in 2D were
assigned to that specific cell in order to compute a per-cell gene expression
matrix.

Data preprocessing

Normalization was performed using conventional single-cell methods in
Scanpy: sc.pp.normalize_total, sc.pp.loglp, and sc.pp.scale, in that order,
were applied to each dataset with default parameters.

Smoothing

Data were spatially smoothed by performing the following: for each cell,
spatial nearest neighbors were identified, the average expression vector
within that neighborhood (including the given cell) was calculated, and the
given cell’s expression vector was set to that average. Nearest neighbors
were determined using scikit-learn’s NearestNeighbors model.

The subsampling approach was performed using numpy’s ran-
dom.choice function with the random seed set to zero by default. We found
that a ratio of 1:3 samples:neighbors tends to work well for most datasets.
When applied to datasets of different resolution, the number of neighbors
for each dataset was independently adjusted to achieve roughly the same
length scale for each dataset. For our cross-technology demonstration, pairs
of numbers of neighbors, k, and numbers of samples, s, were (30,10),
(400,133), and (10,3) for STARmap, Slide-seqV2, and Visium datasets, re-
spectively. Smoothing was then performed by setting the features of each
cell to the average of their respective subsampled neighborhoods.

The concatenation approach was performed by identifying the neigh-
bors of each cell in order of proximity, including the given cells themselves,
and concatenating them in that order. The resulting feature vectors of each
cell were of size dxk, where d is the number of genes measured and k is the
number of neighbors identified for each cell.

Clustering

PCA was performed using scikit-learn’s PCA model. Leiden and UMAP
were applied using Scanpy’s sc.tlleiden and sc.tl.umap functions. Subclus-
tering was performed hierarchically by performing low resolution cluster-
ing to identify “levell” clusters (non-neuronal, excitatory neuron, inhibitory
neuron) followed by separate clustering of each levell cluster to identify
level2 clusters. K-means was performed by first smoothing features as de-
scribed above, without subsampling. Then PCA was performed on the
smoothed features. Scikit-learn’s KMeans model was applied to the result-
ing PC space to identify region clusters. Molecular cell type and region an-
notation for resulting clusters were performed by referencing marker genes
for each cluster as well as comparing to the Allen Brain Atlas® for mouse
and Riken’s Marmoset Gene Atlas®®*! for marmoset. The NMF approach
was performed by subtracting the minimum expression value to make non-
negative, smoothing as described above without subsampling, and fitting
scikit-learn’s NMF model to the non-negative, smoothed data.

Integration

Molecular cell type integration was performed by applying PCA to each da-
taset independently followed by applying Harmony to the stacked PC rep-
resentations of the datasets. Molecular region integration was performed by
subsampling, smoothing, and applying PCA to each dataset independently
followed by applying Harmony to the stacked PC representations. The re-
sulting Harmony-aligned PC representation was then used as input to
downstream analyses, such as clustering, DEG analysis, and trajectory in-
ference.

DEG analysis

DEG analysis was performed by applying Scanpy’s sc.tl.rank_genes_groups
function with default parameters. These default parameters entail perform-
ing the following for each gene. Cells are first separated into “self vs. other”
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groups based on the grouping parameter. For instance, say we focus on a
given molecular region to identify its unique marker genes. Then the group-
ing would be performed by region, and a t-test would compare the expres-
sion histogram between region A and all others, region B and all others, and
so on. Genes with large z-scores resulting from this test associated with a
given region would be considered markers for that region. The same ap-
proach was used to generate species-specific markers for each region. In
that case, cells from a given region (including both species) were isolated
and passed into sc.tl.rank_genes_groups with the grouping parameter set to
species. Then t-tests would be used to compare mouse region A to marmoset
region A, mouse region B to marmoset region B, and so on in order to find
species-specific markers for each region.

Trajectory inference

Cells belonging to the cortical layer regions of the spatially integrated mar-
moset and mouse data were first isolated from the full dataset. Diffusion
maps was then applied to the subsampled, smoothed, Harmony-aligned PC
representation of the cortical data using Scanpy’s sc.tl.diffmap function
with default parameters.

Maher et al. 2023 (preprint)

Molecular depth comparisons

The molecular depth distribution of a given gene was compared across spe-
cies as follows. First, trajectory inference was performed as described above
to calculate a molecular depth value for each cell. Then, 50 evenly spaced
bins were created along the depth range. Each cell was then assigned to the
bin corresponding to its molecular depth, and its non-negative expression
value for the given gene was added to the bin. Expression values for each
cell were made non-negative by simply subtracting the minimum value
across all cells. The expression of the given gene was then divided by the
number of cells within each bin, respectively, to give an average approxima-
tion to the intensity of the gene’s expression at each molecular depth. The
top and bottom 5 bins were omitted due to noise, as few numbers of cells
had very high or low depth values. This was performed for each species sep-
arately, yielding a molecular depth curve of the given gene for each species.
The curves were then normalized by dividing each curve by its sum. Curves
for the given gene were then compared across species by calculating the ab-
solute value of the difference at each depth bin and summing to form a
measure of total difference between species.

The molecular depth distribution of a given cell type was compared in
a simpler manner. Because each cell had a depth value, cells of a given type
and species were isolated and histograms for each species were calculated
and compared using a two-sided Mann-Whitney U-test and *P<0.01 after
Bonferroni correction for multiple comparisons.
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Supplementary Figure 1. Spatial smoothing of randomly shuffled features yields spatial reconstruction. a) Results of comparing the smoothed
representation of one cell (represented as a dot with white fill and black outline) to all others in the tissue. Similarity is defined as the dot product
between normalized expression feature vectors. An anatomical wireframe from the Allen Brain Atlas is overlaid for comparison with conventional
mouse brain anatomy. Equivalent to Fig. 1d. b) Clustering results without using PCA, displayed in physical (above) and latent (below) spaces.
Equivalent to Fig. 1e. ¢) Clustering results using PCA, displayed in physical (above) and latent (below) spaces.
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Supplementary Figure 2. The effect of reducing the number of PCs used. Results from titrating the number of PCs used for Leiden and UMAP
in the mouse brain STARmap PLUS sample. On the right, subsampling with 50 PCs is shown for comparison and is the same as Fig. 1h, Fig. 2c,

and Fig. 3d. Leiden resolutions were set such that clustering yielded 23 clusters.

Maher et al. 2023 (preprint)

16


https://doi.org/10.1101/2023.06.30.547258
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.30.547258; this version posted July 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

Mitigating autocorrelation during spatially resolved transcriptomics data analysis

UMAP2

UMAP2

UMAP2

UMAP2

UMAP2

UMAP1

UMAP1

UMAP1

UMAP1

UMAP1

Supplementary Figure 3. Consistency of SPIN across runs. Five runs of SPIN with different random states, each clustered using a Leiden
resolution of 0.5. Each column represents the results of a separate run.
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Supplementary Figure 6. Titrating the neighborhood size, k, used for spatial smoothing. a) The region of interest used in b-e) b) K-means
clustering results after spatial smoothing over various numbers of neighbors, k. K-means was used in order to avoid issues with subsampling on
small length scales, i.e. for small k. ¢) Visualization of a cluster that spatially resembles vasculature after smoothing at lower length scales and
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The top 4 marker genes of the vascular cluster at k=1. e) The top 4 marker genes of the L6b/fiber tract cluster at k=30.
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Supplementary Figure 7. Subclustering results for molecular cell typing across species. a) Level 1 clustering results identify major brain cell
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Mitigating autocorrelation during spatially resolved transcriptomics data analysis
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Supplementary Figure 8. Visualization of shared and species-specific L2/3 marker genes. a) Histogram of shared L2/3 marker scores for each
gene. Same as Fig. 49 (left). b) Lamp5 expression plotted using the full tissue samples. ¢) Lamp5 expression plotted on tissue zoom-ins. Same as
Fig. 4g (right). d) Histogram of species-specific L2/3 marker scores for each gene. Same as Fig. 4h (left). e) Cck expression plotted using the full

normalized for each marker gene independently.

tissue samples. f) Cck expression plotted on tissue zoom-ins. Same as Fig. 4h (right). g-i) Analogous to d-f) but showing Pde7a. Colormaps were
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