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Abstract

The glycosylation of viral envelope proteins can play important roles in virus biology and
immune evasion. The spike (S) glycoprotein of severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) includes 22 N-linked glycosylation sequons and 17 O-
linked glycosites. Here, we investigated the effect of individual glycosylation sites on
SARS-CoV-2 S function in pseudotyped virus infection assays and on sensitivity to
monoclonal and polyclonal neutralizing antibodies. In most cases, removal of individual
glycosylation sites decreased the infectiousness of the pseudotyped virus. For
glycosylation mutants in the N-terminal domain (NTD) and the receptor binding domain
(RBD), reduction in pseudotype infectivity was predicted by a commensurate reduction
in the level of virion-incorporated spike protein. Notably, the presence of a glycan at
position N343 within the RBD had diverse effects on neutralization by RBD-specific
monoclonal antibodies (mAbs) cloned from convalescent individuals. The N343 glycan
reduced overall sensitivity to polyclonal antibodies in plasma from COVID-19
convalescent individuals, suggesting a role for SARS-CoV-2 spike glycosylation in
immune evasion. However, vaccination of convalescent individuals produced

neutralizing activity that was resilient to the inhibitory effect of the N343 glycan.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent
of the COVID-19 disease and has caused a devastating pandemic (1, 2). SARS-CoV-2
encodes a spike (S) glycoprotein which binds angiotensin-converting enzyme 2 (ACE2)
and mediates viral entry into host cells (3-6). The S glycoprotein (1273 aa) consists of a
signal peptide followed by the S1 subunit (13-685 aa) and the S2 subunit (686-1273
aa). These two subunits are separated by a furin cleavage site (PRRAR), abrogation of
which can increase virus infectivity in some circumstances (7). The receptor-binding
domain (RBD, 319-541 aa) that is responsible for ACE2 binding (6) and the N-terminal
domain (NTD), both encoded in S1, are the major targets of neutralizing antibodies. Like
other viral envelope glycoproteins including HIV-1 (8), SARS-CoV-2 spike protein is
heavily glycosylated (9-11). Indeed, approximately 40% of the surface the SARS-CoV-2
S protein expressed in human 293T cells is shielded by glycans (12). The majority of
this shield is comprised of N-linked oligomannose-type or complex glycans, linked to 22
sites (Asn-X-Ser/Thr) on the S protein (13). Additionally,17 O-linked glyco-sites have

been identified by biochemical methods (14-16).

Glycosylation of viral envelope proteins can play an important role in virus-host
interactions (17). In the case of HIV-1, for example, N-linked glycans are essential for
correct folding and processing of gp120 as well as structural rearrangements required
for receptor binding (18). The HIV-1 glycan shield also plays a crucial role in preventing
neutralizing antibodies from binding to HIV-1 envelope (19). Likewise, S glycosylation

affects SARS-CoV-2 infection (20). Blocking N-glycan biosynthesis onto SARS-CoV-2
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spike protein and, to lesser extent, O-glycan elaboration, reduces viral infectivity (21).
Additionally, cryo-electron microscopy studies have revealed that the N-glycan at
position N343 in the RBD facilitates transition of the spike protein to the ‘open’
conformation, which is important for ACE2 binding (22). Accordingly, mutation of this

site (N343Q) reduced viral entry into ACE2-expressing cells (23).

Little is known about how SARS-CoV-2 S glycosylation might affect immune
surveillance. It is conceivable that glycans sterically shield underlying epitopes from
recognition by antibodies, as is the case in HIV-1 (19). Many SARS-CoV-2 neutralizing
antibodies target the RBD and can be divided into 4 broad classes based on the
epitopes targeted (24). Class 1 antibodies recognize epitopes overlapping with the
ACE2-binding site and bind only to ‘up’ RBDs. Class 2 antibodies bind both ‘up’ and
‘down’ RBDs and also block ACE2 binding. In contrast, class 3 antibodies bind epitopes
distinct from the ACE2 binding site but can potently neutralize. Class 4 antibodies are
generally less potent and recognize epitopes that are distinct from the ACE2 binding
site that are shielded in the down conformation. Interestingly, some antibodies, namely
S309 and SW186, recognize epitopes that include the N343 glycan (25) (26), raising the
possibility that this glycan might play a dual role in antibody recognition, either as shield

or as a component of an epitope.

Co-expression of SARS-CoV-2 S with envelope-deficient viruses such as HIV-1 (human
immunodeficiency virus-1) produces pseudotyped viruses capable of infecting ACE2-

expressing cells and is widely used as a surrogate to study viral entry and neutralization
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88 by antibodies (27, 28). To comprehensively understand the role of spike glycans in viral
89 infectivity and antigenicity, we individually mutated each of the 22 N-linked glycosylation
90 sites in the spike protein as well as two O-linked sites (S323 and T325) in the RBD. We
91 found mutations introduced at many glycosylation sites in the NTD and RBD reduced
92  pseudotype infectivity, and the magnitude of this effect was predicted by the magnitude
93  of the loss of S incorporation into virions. Furthermore, while the S protein levels in
94  virions had little effect on neutralization sensitivity, the presence or absence of a glycan
95 on N343 in RBD governed the sensitivity to some monoclonal antibodies cloned from
96 convalescent individuals. Moreover, the glycan at N343 reduced neutralization
97  sensitivity to polyclonal antibodies from convalescent individuals, but this evasive effect
98 imparted by glycosylation was overcome by plasma antibodies from the same
99 individuals who were subsequently vaccinated.

100

101  Results

102  Levels of virion-incorporated SARS-CoV-2 spike protein and pseudotyped HIV-1

103  particle infectiousness

104  While SARS-CoV-2 S pseudotyped HIV-1 has been widely utilized to study S-mediated

105 viral entry and neutralizing activities by antibodies, the extent to which the amount of S

106  protein on virions affects particle infectivity and neutralization sensitivity is not fully

107  understood. To address this question, we co-transfected 293T cells with various

108  amounts of an S expression plasmid (pSARS-CoV-2a19), along with an envelope-

109  deficient HIV-1 proviral plasmid encoding NanoLuc. The number of SARS-CoV-2 spikes

110  incorporated into HIV-1 pseudotype virions were estimated using purified recombinant
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purified S protein (S-6P-NanoLuc (29)) and recombinant p24 CA proteins as standards
on near-IR fluorescent western blotting (LiCor) and assuming 1500 capsid (CA) protein
subunits per mature HIV-1 particle (30, 31) (Fig. S1A). While the amount of S
expression plasmid used for transfection had little effect on the amount of virions
produced (Fig. 1A), the amount of S protein incorporated into virions correlated with the
amount expressed in cells. S incorporation into virions reached a plateau (~30 ng S/ml
in virions, or around 300 spike trimers per virion) when 0.125 ug or 0.25 ug of an S
expression plasmid was co-transfected with the HIV-1 proviral plasmid (Fig. 1A, 1B,

10).

To assess the effect of the number of spikes on pseudotype infectiousness, the titers of
pseudotyped viruses were measured on 293T cells expressing ACE2 (293T/cl.22). Co-
transfection with as little as 2 ng of S expression plasmid produced virions that induced
1000x the level of luciferase observed with ‘bald virions’, indicating that small amounts
of S protein (0.15 ng/ml or a mean of ~1-2 S trimers per virion) were sufficient to
mediate viral entry (Fig. S2, Fig. 1B and 1C). Nevertheless, pseudotype virion infectivity
increased with increasing spike numbers. Indeed, infectivity and the number of spikes
was approximately linearly correlated, in the range 1 spike to 300 spikes per virion (Fig.
1C). Of note, these spike numbers are comparable to the average number of S trimers
on authentic SARS-CoV-2 virions (25-127 prefusion spikes per virion) (32) and higher

than the numbers of gp120 trimers on HIV-1 virions (33).
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133  Reduced infectious virion yield conferred by SARS-CoV-2 spike glycosylation site

134 removal

135  To investigate the contribution of glycosylation to S protein function, we generated 22
136  spike substitution mutants, each containing a single Asn to Asp (N to D) substitution at
137  one of the 22 N-glycosylation sequons. Additionally, we generated a mutant with Ala
138 replacements at potential O-linked sites S323 and T325 in the receptor binding domain
139  (RBD) (13). None of these substitutions affected the levels of the S protein in

140  transfected cells, but some of them reduced S incorporation into virions (Fig. 2A).

141  Specifically, N61D, N122D, N165D, N343D, and S323A T325A that fall within S1, that
142 includes the NTD and RBD, exhibited 10-fold or greater reductions in the levels of

143  virion-associated S protein, suggesting that these glycans affect S protein transport or
144  virion incorporation. Conversely, removal of the glycosylation sites in S2 had either no
145  or minor effects on S protein incorporation into virions (Fig. 2A). Measurements of the
146  yield of infectious pseudotyped particles carrying each of the substitutions indicated that
147  several substitutions in the NTD and RBD markedly reduced infectivity. For example,
148  the N61D substitution reduced infectivity by almost 50-fold (Fig. 2B, Fig. S2) while

149  substitutions at glycosylation sites in the RBD, namely N331D, N343D, and S323A

150  T325A, resulted in 5- to 10-fold reduction in infectivity (Fig. 2B, Fig. S2). Western blot
151  analyses revealed that the amount of S protein in virions was directly correlated with
152 infectivity (Fig. 2B), suggesting a potential role for most glycans during synthesis or

153  folding of spike trimers, or their incorporation into virions, rather than in S protein

154  function after virion incorpration. In contrast, two substitutions (N1194D and N657D) did

155 not change the amount of S protein in virions, but substantially reduced infectivity (Fig.
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156 2B, Fig. S2). This finding suggests a functional role for N1194 and N657 glycans in
157  spike conformation or stability on virions, or function during viral entry. Overall, we
158 conclude that a subset of glycosylation sites is important for the incorporation of S

159  protein into virions, while others are required for optimal particle infectivity.

160

161 Impact of spike density and RBD glycosylation on neutralization sensitivity

162  he RBD is the major target of neutralizing antibodies. To determine the effect of glycan
163  removal on sensitivity to neutralizing antibodies, we focused on glycosylation sites in the
164 RBD (N331 and N343), and one site adjacent to the RBD (N282). Because these

165 glycosylation sites affected the level of spike incorporation into virions, we first tested
166 the effect of SARS-CoV-2 spike density on neutralization sensitivity, as this parameter
167  could be a potential confounder. We harvested pseudotyped virions from cells

168  transfected with varying amounts (from 2 ng to 1 pg) of wild-type S expression plasmid
169 and tested their sensitivity to C144, a potent class 2 neutralizing human monoclonal

170  antibody cloned from a convalescent individual (34) (Fig. 3A). Notably, varying the

171  levels of WT S protein on virions over a wide range (Fig. 1B) had no discernable effect

172 on neutralization sensitivity to C144.

173 We next tested the neutralization sensitivity of the RBD glycosylation site mutants
174  bearing Asn to Asp mutation at N-linked sites (N331D and N343D) or proximal (N282D)
175 to the RBD or alanine substitutions at O-linked sites S323 and T325. To provide

176  matched control viruses with approximately similar numbers of S trimers and similar
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177  levels of infectivity, neutralization of the glycosylation site mutants was compared to
178  virions generated with an appropriate level of the WT spike protein. We compared the
179  neutralization sensitivity of WT and mutant virions to C144 and another potent class 2
180  neutralizing antibody, C121, both of which target the ACE2 binding site. While the

181 N282D, S323/T325A, and N331D mutant pseudotypes exhibited neutralization

182  sensitivities that were similar to the WT pseudotype, the N343D substitution conferred
183  significantly increased neutralization sensitivity to both C144 and C121 (Fig. 3B).

184  Specifically, the half maximal inhibitory concentration (ICso) of C144 was reduced from
185 1.8 to 3.4 ng/ml (against the WT pseudotype) to 0.45 ng/ml (against the N343D

186  pseudotype), while the C121 ICso was reduced from 2.3 to 2.9 ng/ml (against the WT

187  pseudotype) to 0.21 ng/ml (against the N343D pseudotype).

188

189 Positive and negative effects of RBD glycosylation on sensitivity to human

190 monoclonal antibodies

191 To determine the effects of glycosylation more broadly on SARS-CoV-2 sensitivity to
192  neutralizing antibodies, we used pseudotyped viruses bearing spike proteins with

193  R683G substitution, which ablates the furin cleavage site. This substitution does not
194  affect S incorporation into virions (Fig. S1B) but enhances particle infectivity (7). The
195  glycosylation site mutations had a smaller effect on spike incorporation into virions in
196  the R683G context (Fig. S3A). Nevertheless, transfection of cells with 1 ug of N282D,
197 S323A T325A, and N331D S expression plasmids generated pseudotyped viruses with

198 S protein amounts and infectious properties comparable to those generated by
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199  transfection of 30-100 ng of WT S expression plasmid (Fig. S3A and S3B). Transfection
200 of cells with 1 pug of the N343D spike expression plasmid yielded pseudotyped virus

201  particles carrying a similar amount of S protein to those generated by cells transfected
202  with 10 ng of the R683G S protein expression plasmid (Fig. S3A), while the particle

203 infectivity was similar to those from cells transfected with 3 ng of the WT R683G

204  expression plasmid (Fig. S3B). To evaluate the effect of glycosylation site mutations on
205  sensitivity to neutralizing antibodies, we generated WT and mutant virion stocks bearing
206  similar amounts of spike protein and then assessed their susceptibility to neutralization
207 by a panel of RBD-specific human monoclonal antibodies of the various neutralizing
208 classes (24) recovered from convalescent individuals, including antibodies from class 1
209 (C098 (35), C099 (35), C936 (36)), class 2 (C121 (34), C144 (34)), class 3 (C032 (34),
210 CO080 (35), C135 (34), C581 (36), C952 (24)), and class 4 (C022 (34) (37), C118 (34)

211 (37)).

212

213 Of class 1 antibodies, C098 had only weak neutralizing activity, whereas its clonal

214 relative C099 was potent (ICso =21.3 ng/ml against WT (10ng) or 24.5 ng/ml against WT
215  (3ng) and its activity was resilient to many naturally occurring mutations in the RBD (7).
216  The N343D mutation decreased the neutralization sensitivity to C099 by 7-fold, ie ICso
217  was increased to 176.9 ng/ml (Fig. 3C). Neutralization sensitivity to a third unrelated
218 class 1 antibody, C936, was reduced by almost 10-fold, and ICsp was increased from
219  41.1 ng/ml against WT (10ng) or 54.9 ng/ml against WT (3ng) to 467.1 ng/ml against

220 N343D (Fig. 3C).
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In contrast to the class 1 antibodies, pseudotyped virus sensitivity to two class 2
antibodies was increased for the N343D mutant compared to WT. As was the case in
the context of the furin-cleavable S protein (Fig. 3B), the N343D mutation in R683G
spike increased neutralization sensitivity to C121 and C144. The ICso of C121 was
reduced from 4.8 to 8.1 ng/ml (against the WT) to 2.6 ng/ml (against the N343D), while
the C144 1Cso was reduced from 5.7 to 6.1 ng/ml (against the WT) to 1.7 ng/ml (against

the N343D) (Fig. 3C).

Class 3 antibodies, which bind epitopes distinct from the ACE2 binding site, showed a
complicated pattern of effects in response to the N343D substitution. Some class 3
antibodies, including C032, C080, and C952, inhibited the WT and N343D mutant
pseudotypes with approximately the same potency. A different class 3 antibody C135,
that exhibited incomplete neutralization of the WT pseudotypes at high concentrations
despite exhibiting low I1Cso (ICs0= 8.3 -11.5ng/ml), was able to achieve almost complete
neutralization of the N343D pseudotypes at high concentrations (Fig. 3C). In contrast,
another class 3 antibody C581 showed reduced potency against the N343D mutant, ie,
the 1Cso was >2000 ng/ml against N343D compared to 70.0 to 76.6 ng/ml against the

wild-type pseudotype (Fig. 3C).
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241  Fortwo class 4 antibodies, C022 and C118, the N343D substitution affected the slope
242  of the neutralization curves and conferred partial resistance at high of antibody

243 concentrations (Fig. 3C). For example, C022 at 2000 ng/ml almost completely

244  neutralized the wild-type pseudotypes but only inhibited the N343D pseudotypes by

245  ~50%. A similar trend was seen for a second class 4 antibody, C118.

246

247  Overall, the N343D substitution had a range of positive and negative effects on

248 neutralization sensitivity that varied greatly dependent on the nature of the particular
249  monoclonal antibody tested. To better understand the molecular basis for the impact of
250  N343 glycan on antibody neutralization, we inspected the structures of some of the

251 aforementioned antibodies in complex with spike (Fig. 4A, B, C). The glycosylation site
252 at N343 (shown in red in Fig. 4A, B, C) is distinct from the binding site of the class 1
253  antibody C098 — suggesting that the effects of the glycan on sensitivity to class 1

254  antibodies are mediated through effects of the glycan on RBD conformational dynamics
255  and epitope exposure (Fig. 4B). In contrast, for the class 2 antibodies C121 and C144,
256  N343 is proximal to the antibody bound to the neighboring spike subunit (Fig. 4C). Since
257  removal of the glycan increased sensitivity to these antibodies (Fig. 3C), it is likely that
258  the N343 glycan partly shields these class 2 antibody epitopes. For class 3 antibodies,
259  N343 protrudes towards the C135 binding site on the same S subunit (Fig. 4),

260  potentially explaining incomplete neutralization by this antibody (Fig. 3C). For the class

261 4 antibody C118, N343 is distal to the antibody binding site on spike (Fig. 4C),
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262  suggesting that N343 glycan is not involved in direct antibody binding and likely exerts

263  changes in neutralization through effects on RBD conformational dynamics.

264

265  Other RBD substitutions (S323A/T325A and N331D) did not alter the neutralization
266  sensitivity to most monoclonal antibodies tested herein (Fig. S4, Fig. S5). However, the
267  N282D substitution, which lies outside the RBD, had marginal effect on sensitivity to the

268 class | antibodies C099, C936 and the class 3 antibody C581 (Fig. S6).

269

270  Effect of the N343 glycan on neutralization by polyclonal SARS-CoV-2

271 neutralizing plasma

272 Given that the N343D substitution exhibited different effects on sensitivity to neutralizing
273 monoclonal antibodies, we next asked whether this substitution affected neutralization
274 by polyclonal antibodies present in convalescent plasma. As with the monoclonal

275 antibodies, we compared the neutralization sensitivity of N343D pseudotyped particles
276  with that of WT pseudotyped particles containing same amount of WT spike protein or
277  showing the same infectivity as the N343D pseudotype, to convalescent plasma from 15
278  patients collected early in the COVID19 pandemic (at 1.3 months after infection) and
279  from the same individuals ~1 year later following subsequent vaccination (34) (36). The
280  N343D mutant pseudotypes were more sensitive than the WT pseudotypes to

281  convalescent plasma collected at 1.3 months after infection (Fig. 5A and Fig. S7).

282  Indeed, the 50% neutralization titers (NT50) were a mean of 5.1-fold greater for the
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N343D mutant as compared to WT pseudotypes (p=0.0022) (Fig. 5B). Notably, the
difference in neutralization sensitivity between N343D mutant (mean NT50=26179) and
WT S pseudotypes (mean NT50=20853) was negligible (p=0.2805) when plasmas
collected from the same individuals 1 year later and after subsequent vaccination were
tested. Of note, these subsequently collected plasma exhibited higher neutralization
potency than those collected shortly after infection (Fig. 5). We conclude that the glycan
at N343 confers protection against neutralization by antibodies generated shortly after
SARS-CoV-2 infection but that this effect is lost against antibodies from the same

individuals who are subsequently vaccinated.

Discussion

While SARS-CoV-2 spike pseudotyped viruses have been widely used as a surrogate to
study S-mediated viral entry (28) little is known about the varying effect of S level on
virions on particle infectivity and neutralization sensitivity. Previously it was reported that
approximately 8 HIV-1 trimer-receptor interactions are required for HIV-1 to infect a
target cell (38), a result that is broadly consistent with our finding that a small number
(minimally an average of 1-2 spike per virion) is sufficient for detection of SARS-CoV-2
pseudotype infection. To achieve neutralization, monoclonal antibodies must encounter
prefusion spikes and reduce the number of functional spike trimers below the threshold
required for infection. We found that an increased level of S on pseudotyped virions is
associated with increased infectivity but had little effect on neutralization sensitivity to

monoclonal antibodies. This result suggests that monoclonal antibodies are in excess
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305 over functional spikes in a typical neutralization assay, and their measured potency is
306 limited by their affinity, rather than by the amount of functional spike protein in a

307 pseudotype neutralization assay.

308

309 In this study, we found that glycosylation at several sites in the spike NTD and RBD,
310 including N61, N122, N165, N331, N343 and S323 T325 are required for full

311  pseudotyped virus infectivity. Substitution of these glycosylation sites resulted in a

312 reduction in pseudotype infectivity of about 10-fold or more and correlated with a

313  reduction in spike incorporation into virions. While it is unclear precisely how

314  glycosylation on these sites drives S incorporation into virions, glycans could in principle
315  affect protein stability and trafficking through the secretory pathway (39). We note,

316 however, that the glycosylation site mutations did not affect steady state levels of S in
317 transfected cells. Compared with other glycosylation sites in the S1 domain, these sites
318 are highly conserved among sarbecovirus S proteins (40). Likewise, the conservation of
319 these glycosylation sites is observed among the major SARS-CoV-2 variant lineages,
320 including Alpha, Beta, Gamma, Delta and Omicron (41). Some studies, largely

321  employing molecular dynamics simulations, have suggested glycans on spike proteins
322  affect the conformational dynamics of the spike's RBD “up” and “down” states (10) (42).
323  In particular, the glycan at N343 stabilizes RBD states in a process termed "glycan

324  gating” (22, 43, 44). Our findings show that the N-glycan at N343 affected incorporation
325 into virions, suggesting that the conformational state, might affect trimer assembly or
326  stability, transit through the secretory pathway or incorporation into pseudotyped virions.

327
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328  The N343 glycan also affected neutralization by RBD-targeted monoclonal antibodies,
329 and the effect was largely dependent on the class to which antibodies belong. The N343
330 glycan is positioned on the RBD distal to the ACE2 and class 1 antibody (C098) binding
331 site, but increased sensitivity to class 1 antibodies (C098, C099, C936), which bind only
332 to “up” RBDs (24), suggesting that this effect is mediated through the impact of the

333 glycan on RBD conformation. Conversely, the N343 glycan reduced sensitivity to class
334 2 antibodies, including C121 and C144, both of which can bind both ‘up’ and ‘down’

335 RBDs. Cryo-EM structures (24) (Fig. 4) show that N343 is located proximally to the

336  C121 and C144 antibody bound to the neighboring subunit, in a manner that might

337 interfere with antibody binding. Overall, our results are consistent with a model in which
338  N343 glycan affects sensitivity to class 1 and class 2 antibodies by affecting the RBD
339  conformational dynamics (43) and also potentially by sterically hindering class 2

340  antibody binding into neighboring RBDs in the “down” conformation (Fig. 4).

341

342  The N343 glycan is proximal to the binding sites of class 3 antibodies, and the N343D
343  substitution had a range of effects on sensitivity to class 3 antibodies. Three clonally
344 related antibodies, C032, C080 and C952, were unaffected by the N343D substitution,
345  while substantial but opposing effects were seen for two others, C135 and C581. In the
346 case of C135, removal of the glycan reduced the fraction of virions that resisted

347 neutralization at high antibody concentration. A possible explanation for this

348 phenomenon is that the N343 site is heterogeneously glycosylated, and some

349  subfraction of the glycans occlude the C135 binding site. For C581, removal of the

350  N343 glycan had the opposite effect, reducing neutralization sensitivity. In this case it
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seems likely C581 mimics the properties of two previously described cross-reactive
class 3 antibodies, S309 and SW186, for which the N343 glycan constitutes part of the
antibody binding site (25) (26). Finally, for the two class 4 antibodies, the glycan at N343
affected the character of the neutralization curve. Since in these cases the antibody
binding site is on the opposite face of the RBD to that of the glycan, it is likely that these
effects are mediated through alteration of spike conformational dynamics and exposure

of the class 4 epitope, which is shielded in the RBD ‘down’ conformation.

The N343 glycan reduced neutralization by convalescent plasma collected at 1.3
months after infection, echoing the effects on sensitivity to the C121, C144 (class 2) and
C135 (class 3) antibodies. Conversely, neutralization by convalescent plasma from the
same individuals (collected at 12 months following subsequent vaccination) was
unaffected by the N343 glycan. That neutralizing antibodies are relatively sensitive to
glycan-mediated protection early after infection may be a reflection of the fact that the
initial neutralizing response is based to a large extent on class 2 antibodies that are
easily escaped (29, 34). Subsequent increases in antibody affinity and neutralizing
potency and a shift in the RBD epitopes that are recognized, following months of affinity
maturation and boosting by vaccination (7, 35, 36, 45) results in neutralizing antibodies
that are mostly unaffected by the N343 glycan. In sum, while the SARS-CoV-2 N343
glycan affects both spike conformation and neutralization sensitivity shortly after
infection, antibody evolution confers sufficient potency and breadth to combat glycan-

mediated immune evasion.
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397

398 Materials and Methods

399  Antibodies and recombinant HIV p24

400  Antibodies used here are anti-SARS CoV-2 spike antibody [1A9] (Genetax,

401 GTX632604) and anti-HIV capsid p24 (183-H12-5C, NIH AIDS Research and

402  Reference Reagent Program). Secondary antibodies included goat anti-mouse

403  conjugated to IRDye 800CW or IRDye 680 for Western blot analysis. The recombinant

404  HIV p24 protein was purchased from abcam (ab43037).

405 Plasmid construction

406  The plasmid expressing C-terminally truncated, human-codon-optimized SARS-CoV-2
407  spike protein (pSARS-CoV-2a19) has been previously described (28). Using this plasmid
408 as the template, asparagine at N-linked glycosylation sites was replaced by aspartate
409 by overlap-extension PCR amplification with primers that incorporated the

410  corresponding nucleotide substitutions. O-linked glycosylation sites in the RBD region
411  (S323, T325) were replaced by alanine using the same strategy. The purified PCR

412  products were then inserted into the pCR3.1 expression vector with NEBuilder® HiFi
413  DNA Assembly. Some mutations within or adjacent to the RBD region, including N282D,
414  N331D, N343D, and S323A T325A, were also introduced in spike bearing the R683G

415  substation which impairs the furin cleavage site and enhances particle infectivity.

416 Cell lines


https://doi.org/10.1101/2023.06.30.547241
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.30.547241; this version posted June 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

417  Human embryonic kidney HEK-293T cells (ATCC CRL-3216) and the derivative

418  expressing ACE2, ie 293T/ACE2.cl22, were maintained in Dulbecco’s Modified Eagle
419  Medium (DMEM) supplemented with 10% fetal bovine serum (Sigma F8067) and

420  gentamycin (Gibco). All cell lines used in this study were monitored periodically to

421  ensure the absence of retroviral contamination and mycoplasma.

422  Generation of clarified SARS-CoV-2 pseudotyped virions and infectivity

423  measurement

424  To generate HIV-1/NanoLuc-SARS-CoV-2 pseudotyped virions, two million 293T cells
425  in 10-cm dish were transfected with 7.5 pg of HIV-1 proviral plasmids expressing

426  NanoLuc along with increasing amounts (0 ng, 2 ng, 3.9 ng, 7.8 ng, 15.6 ng, 31.2 ng,
427  62.5ng, 125 ng, 250 ng, 500 ng, or 1000 ng) of WT or 1000 ng of glycosylation site
428  mutant SARS-CoV-2 expression plasmids (pSARS-CoV-2a19). In transfection

429  experiment to generate viruses bearing R683G substitution, 1 ng, 3 ng, 10 ng, 30 ng,
430 100 ng, and 300 ng of expression plasmid were used instead. The total amount of DNA
431  was held constant by supplementing the transfection with empty expression vector.

432  Cells were harvested at 48 hr post transfection and subjected to Western blot analysis.
433  Virus-containing supernatant was filtered (0.2 ym), and, to remove cell debris, clarified
434 by Lenti-X (TaKaRa). Particle infectivity was measured as previously described (28).
435  Briefly, viral stocks were three-fold serially diluted and added to 293T/ACE2 cl.22 in 96-

436  well plates. Cells were then harvested at 48 hr post infection for measuring NanoLuc

437  activity (Promega). The number of spike trimers per virion was estimated using the

438  following formula: S ng/ml/78.3 x 1500/(p24 ng/mi/24)/3.
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439  Western blot analysis

440  Cell lysates were separated on NuPage Novex 4-12% Bis-Tris Mini Gels (Invitrogen).
441  Proteins were blotted onto nitrocellulose membranes. Thereafter, the blots were probed
442  with primary antibodies and followed by secondary antibodies conjugated to IRDye

443  800CW or IRDye 680. Fluorescent signals were detected and quantitated using an

444  Odyssey scanner (LI-COR Biosciences).

445  S-6P-NanolLuc protein purification

446  To express S-6P-NanoLuc proteins, Expi293 cells were transfected with S-6P-NanoLuc
447  expression plasmids using ExpiFectamine 293 (ThermoFisher Scientific). Four days
448 later, the supernatant was harvested and loaded on Ni-NTA agarose and, after thorough

449  wash, S-6P-NanoLuc proteins were released after HRV 3C protease treatment.

450  Neutralization assays

451  To measure neutralizing activity of monoclonal antibodies, serial dilutions of antibodies
452  beginning at 3 pg/ml were four-fold serially diluted in 96-well plates over seven dilutions.
453  To determine the neutralizing activity in convalescent plasma, the initial dilution started
454  at a 1:30 (for plasma at 1.3 months) or a 1:150 (for plasma at 12 months). Thereafter,
455 SARS-CoV-2 spike pseudotyped viruses were incubated with monoclonal antibodies or
456  the convalescent plasma for 1 hr at 37°C in 96-well plates. The mixture was then added
457  to 293T/ACEZ2cl.22 target cells seeded one day prior to infection so the final starting

458  dilutions were 1.5 pg/ml for monoclonal antibodies and 1:60 or 1:300 for plasma. Cells

459  were then harvested 48 hours post infection for NanoLuc luciferase assays.
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460 Human plasma samples and monoclonal antibodies

461  Monoclonal antibodies C022, C032, C080, C098, C099, C118, C121, C135, C144,
462  C581, C936, and C952 used in this study were previously reported (24, 34-37). The
463  human convalescent plasma samples (COVs) were obtained under protocols approved

464 by Institutional Review Boards at Rockefeller University.
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468 FIG 1 The effect of spike proteins level on pseudotype infectiousness

469  (A) Western blot analysis of 293T cell lysates (upper panel) or virions (lower panel) at
470 48 hours after transfection with various amounts (0 ng, 2 ng, 3.9 ng, 7.8 ng, 15.6 ng,
471  31.2ng, 62.5 ng, 125 ng, 250 ng, 500 ng, or 1000 ng) of a WT SARS-CoV-2 spike
472  expression plasmid along with envelope-deficient HIV-1 proviral plasmid expressing
473  NanoLuc luciferase. Each S blot was scanned twice, at low intensity (upper) and high
474  intensity (lower), respectively. Representative of three independent experiments.

475  (B) Characterization of virions pseudotyped with spike expression plasmids.

476 Infectiousness (on left y axis) was quantified by measuring NanoLuc luciferase activity
477  (RLUs) following infection of 293T cells expressing ACE2 (293T/ACEZ2.cl22) in 96-well
478  plates with pseudotyped viruses. The S1 incorporated into viruses (on right y axis) was
479  determined by quantitative Western Blot, using purified recombinant S-6P-NanoLuc
480  proteins as standard, representative of three independent experiments. The mean and
481  range of two technical replicates are shown.


https://doi.org/10.1101/2023.06.30.547241
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.30.547241; this version posted June 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

482  (C) Characterization of virions pseudotyped with spike expression plasmids as in (B).
483  virus infectiousness (on y axis) was plotted against S trimers per virion (on x axis),
484  which was determined by quantitative Western blot, using purified recombinant S-6P-
485  NanoLuc proteins as standard. Representative of three independent experiments.

486
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489  FIG 2 The impact of glycosylation site mutations on spike incorporation and
490 particle infectivity

491  (A) Western blot analysis of 293T cell lysates (lower panel) or virions (upper panel) at
492 48 hours after transfection with 1 pg of glycosylation site mutants or wild-type spike
493  expression plasmid along with envelope-deficient HIV-1 proviral plasmid expressing
494  NanoLuc. Representative of two independent experiments.

495  (B) Characterization of virions pseudotyped with spike expression plasmids.

496 Infectiousness (on y axis) was quantified by measuring NanoLuc luciferase activity
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497  (RLUs) following infection of 293T/ACEZ2.cl22 cells in 96-well plates with pseudotyped
498  viruses. The S1 incorporated into viruses (on x axis) was determined by quantitative
499  Western blot. Glycosylation site mutants are shown in black and wild-type spike is
500 shown in red. The mean and range of two technical replicates are plotted.

501
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504 FIG 3 Neutralization sensitivity of Spike to monoclonal antibodies is affected by
505 N343D substitution

506  (A) Quantification of pseudotyped virions from cells transfected with various amounts of
507  wild-type spike expression plasmid along with envelope-deficient HIV proviral plasmid
508 expressing NanoLuc in the presence of the indicated concentrations of the class 2
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509 neutralizing monoclonal antibody C144. Infectivity was quantified by measuring

510  NanoLuc luciferase levels (RLU). The mean and range of two technical replicates are
511  shown.

512 (B) Quantification of glycosylation site mutant N282D, S323A T325A, N331D, and

513  N343D or wild-type spike pseudotyped virus infection in the presence of the indicated
514  concentrations of the class 2 neutralizing monoclonal antibody C144 (left) or C121

515  (right). Infectivity was quantified by measuring NanoLuc luciferase levels (RLU). The
516 mean and range of two technical replicates are shown.

517  (C) Quantification of neutralization of glycosylation site mutant N343D in the

518  background of furin uncleavable (R683G) SARS-CoV-2 S pseudotyped virus infection in
519 the presence of the indicated concentrations of a panel of monoclonal antibodies,

520  including class 1 (C098, C099, and C936), class 2 (C121 and C144), class 3 (C032,

521 €080, C135, C581, and C952), and class 4 (C022 and C118) antibodies. As controls,
522  glycosylation intact spike expression plasmid (WT in the R683G background) was

523  transfected at two doses, 10 ng or 3 ng, and the neutralization sensitivity of the resulting
524  viruses were assessed in parallel. The mean and range of two technical replicates are
525  shown. The C135 neutralization graph is depieced with both a linear and logarithmic Y-
526  axis to more clearly show effects of glycosylation on the completeness of neutralization
527  at high antibody concentrations
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528

529  FIG 4 Proximity of N343 to antibody binding sites
530 (A) Surface representation of the receptor-binding domain (RBD) in an X-ray crystal

531  structure (PDB ID: 7K8M). ACE2-binding site and the N343 glycosylation site are

532 highlighted in palegreen and red, respectively.

533  (B) Views of antibody Fab variable domains (blue) binding to spike (grey), in which each
534  trimer subunit, is shown with distinct gray shade. ACE2-binding site and N343 are

535  highlighted in pale green and red, respectively. The structures illustrated herein are

536 C098 (PDB ID: 7N3I), C121 (PDB ID: 7K8X), C144 (PDB ID: 7K90), C135 (PDB ID:

537 7K8Z) and C118 (PDB ID: 7RKV).

538
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540 FIG 5 Neutralization sensitivity of N343D mutant to convalescent plasma

541  (A) Plasma neutralization of N343D or glycosylation site intact spike (in the furin

542  uncleavable (R683G) background) pseudotyped virus using 293T/ACE2.cl22 target
543  cells. The convalescent plasma samples were collected at 1.3 months and 12 months
544  (infected then vaccinated) and diluted four-fold serially followed by incubation with
545  viruses. As controls, glycosylation intact spike expression plasmid (WT in the R683G
546  background) was transfected at two doses, 10 ng or 3 ng, and the neutralization

547  sensitivity of the resulting viruses were assessed in parallel. The mean and range of two
548  technical replicates are shown.

549  (B) Comparison of NTsg values for each of the 15 convalescent plasma samples

550  collected at 1.3 months and at 12 months (infected then vaccinated) for the N343D or
551  glycosylation intact spike pseudotypes.
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553  FIG S1 Western blot analysis of virions, using recombinant proteins as standard

554 (A) Western blot analysis of virions pelleted through 20% sucrose from 100 pl

555  supernatant harvested at 48 hours after transfection with 0.0625 ug or 0.5 ug of wild-
556  type spike expression plasmid along with envelope-deficient HIV-1 proviral plasmid

557  expressing NanoLuc luciferase. The blot was probed with an anti-p24 antibody and

558 recombinant HIV p24 protein was used as a standard (1.0 ng, 2.0 ng, 4.0 ng, or 8.0 ng
559  per lane) on the left, or with anti-Spike antibody using recombinant S-6P-nanoLuc as a
560 standard (0.25 ng, 0.5 ng, 1.0 ng, 2.0 ng, or 4.0 ng per lane) on the right.

561 Representative of two independent experiments.

562  (B) Western blot analysis of virions pelleted through 20% sucrose from 100 pl

563  supernatant harvested at 48 hours after transfection with 0.008 ug, 0.024 g, 0.073 ug,
564  0.22 ug, or 0.67 ug of wild-type spike expression (furin uncleavable R683G background)
565 along with envelope-deficient HIV-1 proviral plasmid expressing NanoLuc luciferase.
566  The blot was probed with anti-p24 antibody using recombinant HIV p24 protein as

567 standard (0.5 ng, 1.0 ng, 2.0 ng, 4.0 ng, or 8.0 ng per lane) on the left, or with anti-Spike
568 antibody using recombinant S-6P-nanoLuc as standard (0.125 ng, 0.25 ng, 0.5 ng, 1.0
569 ng, or 2.0 ng per lane) on the right. Representative of two independent experiments.
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570
571  FIG S2 The impact of glycosylation site mutations on particle infectivity
572 Infectious virion measurements of for pseudotypes bearing glycosylation site mutant
573  spike proteins (bold black lines, 1 ug transfected S expression plasmid), compared with
574 as well as WT S pseudoytpes (dashed lines) collected from 293T cells transfected with
575  various amounts of spike expression plasmids. Infection was quantified by measuring
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576  NanolLuc luciferase activity (RLU). Virus generated in the absence of S (0 pg), shown in
577  thin black line, was used as a background control. 293T/ACEZ2.cl22, as target cells,

578  were infected with the indicated volumes of pseudotyped viruses in 96-well plates and
579  harvested 48 hours post infection for NanoLuc luciferase assay. The mean and range
580 deviation from two technical replicates are shown.

581
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584 FIG S3 The impact of glycosylation site mutations in the furin uncleavable

585 (R683G) background on spike incorporation and particle infectivity

586  (A) Western blot analysis of 293T cell lysates (lower panel) or virions (upper panel) at
587 48 hours after transfection with various amounts of glycosylation site intact spike

588  expression plasmid (R683G background), or 1 ug of glycosylation site mutants (N282D,
589  S323A T325A, N331D, or N343D) along with envelope-deficient HIV-1 proviral plasmid
590  expressing NanolLuc.

591 (B) Infectivity was quantified by measuring NanoLuc luciferase activity (RLUs) following
592  infection of 293T expressing ACE2 (293T/ACE2.cl22) in 96-well plates with

593  pseudotyped viruses as depicted in (A). The mean and range of two technical replicates
594  are plotted.

595
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597
598 FIG S4 Mutations of the O-linked glycosylation sites at 323 and 325 in the RBD
599 (S323A T325A) have marginal effect on neutralization sensitivity
600 Neutralization of glycosylation site mutant S323A T325A pseudotyped virus infection in
601 the presence of the indicated concentrations of a panel of monoclonal antibodies,
602 including class 1 (C098, C099, and C936), class 2 (C121 and C144), class 3 (C032,
603 €080, C135, C581, and C952), and class 4 (C022 and C118) antibodies. As controls,
604  glycosylation intact spike expression plasmid (WT in the furin uncleavable R683G
605  background) was transfected at two doses, 10 ng or 3 ng, and the resulting viruses
606  were assessed for neutralization sensitivity in parallel. The mean and range of two
607  technical replicates are shown.

608
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611 FIG S5 Effect of glycosylation at N331 on neutralization sensitivity

612  Neutralization of glycosylation site mutant N331D pseudotyped virus infection in the

613  presence of the indicated concentrations of a panel of monoclonal antibodies, including
614 class 1 (C098, C099, and C936), class 2 (C121 and C144), class 3 (C032, C080, C135,
615 C581, and C952), and class 4 (C022 and C118) antibodies. As controls, glycosylation
616 intact spike (WT in the furin uncleavable R683G background) was transfected at two
617 doses, 10 ng or 3 ng, and the resulting viruses were assessed for neutralization

618  sensitivity in parallel. The mean and range of two technical replicates are shown.

619
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FIG S6 Effect of glycosylation at N282 on neutralization sensitivity

Neutralization of glycosylation site mutant N282D pseudotyped virus infection in the
presence of the indicated concentrations of a panel of monoclonal antibodies, including
class 1 (C098, C099, and C936), class 2 (C121 and C144), class 3 (C032, C080, C135,
C581, and C952), and class 4 (C022 and C118). As controls, glycosylation intact spike
(WT in the furin uncleavable R683G background) was transfected at two doses, 10 ng
or 3 ng, and the resulting viruses were assessed for neutralization sensitivity in parallel.
The mean and range of two technical replicates are shown.
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FIG S7 Neutralization sensitivity of N343D mutant to convalescent plasma
Additional examples of plasma neutralization of N343D or glycosylation site intact spike
(in the furin uncleavable R683G background, same as FIG 5) pseudotyped virus using
293T/ACE2.cl22 target cells. The mean and range of two technical replicates are

shown.
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