

The evolutionary history of hepaciviruses

Li YQ¹, Ghafari M², Holbrook AJ³, Boonen I¹, Amor N⁴, Catalano S^{5,6}, Webster JP⁶, Li YY^{7,9}, Li HT^{8,9}, Vergote V¹, Maes P¹, Chong YL^{10,11}, Laudisoit A^{12,13}, Baelo P¹⁴, Ngoy S¹⁴, Mbalitini SG¹⁴, Gembu GC¹⁴, Musaba Akawa P¹⁴, Goiÿ de Bellocq J¹⁵, Leirs H¹³, Verheyen E¹³, Pybus OG^{2,6}, Katzourakis A², Alagaili AN⁴, Gryseels S¹³, Li YC⁹, Suchard MA³, Bletsa M^{1,16,*}, Lemey P^{1,*}

1. Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium

2. Department of Biology, University of Oxford, Oxford, OX1, UK

3. Department of Biostatistics, University of California, Los Angeles, CA 90095, USA

4. Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia

5. School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK

6. Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK

7. College of Life Sciences, Linyi University, Linyi, 276000, China

8. College of Life Sciences, Liaocheng University, Liaocheng, 252000

9. Marine College, Shandong University (Weihai), Weihai, 264209, China

10 Animal Resource Science and Management Group, Faculty of Resource

11. Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong
Malaysia Sarawak (UNIMAS), 94300, Malaysia

12, EcoHealth Alliance, New York, NY 10018, USA

12. Evolutionary Ecology group (EVECO), Department

14. Faculty of Sciences, University of Kassel, Kassel, Germany; 15. Department of Biology, University of Antwerp, Antwerp, Belgium

15. Institute of Hydrology, Diorama, The Gondwana Research Group, K. V. 62, 602 65 Potsdam, Germany.

15. Institute of Vertebrate Biology, The Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic

16. Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece

* corresponding author, contributed equally:

Dr. Magda Bletsas

Address: Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece

Tel: +30 2107462073

Email: mabletsa@med.uoa.gr

40 Prof. Philippe Lemey
41 Address: Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven,
42 Leuven, 3000, Belgium
43 Tel: +32 16321428
44 Email: philippe.lemey@kuleuven.be

45 **Abstract**

46 In the search for natural reservoirs of hepatitis C virus (HCV), a broad diversity of non-human
47 viruses within the *Hepacivirus* genus has been uncovered. However, the evolutionary dynamics
48 that shaped the diversity and timescale of hepaciviruses evolution remain elusive. To gain
49 further insights into the origins and evolution of this genus, we screened a large dataset of wild
50 mammal samples ($n = 1,672$) from Africa and Asia, and generated 34 full-length hepacivirus
51 genomes. Phylogenetic analysis of these data together with publicly available genomes
52 emphasizes the importance of rodents as hepacivirus hosts and we identify 13 rodent species
53 and 3 rodent genera (in Cricetidae and Muridae families) as novel hosts of hepaciviruses.
54 Through co-phylogenetic analyses, we demonstrate that hepacivirus diversity has been affected
55 by cross-species transmission events against the backdrop of detectable signal of virus-host co-
56 divergence in the deep evolutionary history. Using a Bayesian phylogenetic multidimensional
57 scaling approach, we explore the extent to which host relatedness and geographic distances
58 have structured present-day hepacivirus diversity. Our results provide evidence for a
59 substantial structuring of mammalian hepacivirus diversity by host as well as geography, with
60 a somewhat more irregular diffusion process in geographic space. Finally, using a mechanistic
61 model that accounts for substitution saturation, we provide the first formal estimates of the
62 timescale of hepacivirus evolution and estimate the origin of the genus to be about 22 million
63 years ago. Our results offer a comprehensive overview of the micro- and macroevolutionary
64 processes that have shaped hepacivirus diversity and enhance our understanding of the long-
65 term evolution of the *Hepacivirus* genus.

66

67 **Key words:** hepacivirus; co-divergence; cross-species transmission; phylogeography;
68 timescale estimation.

69

70 **Significance:**

71 Since the discovery of Hepatitis C virus, the search for animal virus homologues has gained
72 significant traction, opening up new opportunities to study their origins and long-term
73 evolutionary dynamics. Capitalizing on a large-scale screening of wild mammals, and genomic
74 sequencing, we expand the novel rodent host range of hepaciviruses and document further virus
75 diversity. We infer a significant influence of frequent cross-species transmission as well as
76 some signal for virus-host co-divergence, and find comparative host and geographic structure.
77 We also provide the first formal estimates of the timescale of hepaciviruses indicating an origin

78 of about 22 million years ago. Our study offers new insights in hepacivirus evolutionary
79 dynamics with broadly applicable methods that can support future research in virus evolution.

80 **Introduction**

81 Thanks to the development of viral detection methods, advances in genome sequencing, and
82 the improvement of computational tools, natural animal reservoirs have been identified for a
83 number of key human viruses. Examples include primates as zoonotic sources of HIV-1 and
84 HIV-2 (Hahn et al. 2000; Sharp and Hahn 2011), multimammate rats as natural hosts of Lassa
85 virus (Olayemi et al. 2016; Bonwitt et al. 2017) and bats harboring a broad diversity of SARS-
86 like coronaviruses (Ge et al. 2013). Although the identification of animal reservoirs of recently
87 emerged pathogens is important, the origins of some viruses with a longstanding history in
88 humans, such as smallpox, hepatitis B virus and hepatitis C virus, remain unresolved.

89

90 Hepatitis C virus (HCV) was for a long time the sole representative of the *Hepacivirus* genus
91 within the positive-sense single-stranded RNA virus family *Flaviviridae*. This blood-borne
92 pathogen was discovered in 1989 (Choo et al. 1989) and causes both acute and chronic liver
93 disease, leading to liver cirrhosis and hepatocellular carcinoma in severe cases. According to
94 the World Health Organization, at least 58 million people worldwide have been infected by
95 chronic HCV in 2021 and the number is increasing at a rate of about 1.5 million per year (Spera
96 2022). While the infection burden of HCV is comparable to that of HIV, evidence of the animal
97 source of this important human pathogen remains lacking.

98

99 An effort to shed light on hepaciviruses in animals started in 2011, when HCV homologues
100 were identified for the first time in a non-human host (Kapoor et al. 2011). Since then, a wide
101 variety of HCV-like viruses in diverse animal species have been detected, ranging from
102 mammals to birds, reptiles, arthropods and fish species (Hartlage et al. 2016; Cagliani et al.
103 2019; Bletsas et al. 2021). So far, the most closely related animal homologue of HCV is the
104 equine hepacivirus. However, it is generally assumed that equids are not the prime candidates
105 for the zoonotic source of HCV because equine hepaciviruses are relatively divergent from
106 HCV, they have a comparably lower genetic diversity, and associated with this, a
107 comparatively more recent time to their most recent common ancestor (tMRCA) (Walter et al.
108 2017). Rodents and bats harbor the greatest hepacivirus genetic heterogeneity and are
109 considered one of the major transmitters of hepaciviruses to other mammalian species (Quan
110 et al. 2013; Pybus and Thézé 2016; Bletsas et al. 2021). Despite relatively extensive sampling
111 and screening, current efforts have not yet led to a definitive identification of the zoonotic
112 origin of HCV.

113

114 In line with the range of hepacivirus host species, these viruses are also geographically broadly
115 distributed. Non-human hepaciviruses have been recorded in countries across six continents:
116 Asia (Quan et al. 2013; Van Nguyen et al. 2018; Wu et al. 2018; Wu et al. 2021), Africa
117 (Corman et al. 2015; Bletsa et al. 2021), North America (Kapoor et al. 2013; Tomlinson et al.
118 2019), South America (Schmid et al. 2018; de Souza et al. 2019), Europe (Drexler et al. 2013;
119 Kesäniemi et al. 2019) and Australia (Harvey et al. 2019; Porter et al. 2020). Contrary to
120 endemic HCV genotypes that circulate in specific locations, currently identified non-human
121 hepaciviruses do not appear to be restricted to specific areas. Rodents and bats are mainly
122 endemic to most land regions and consequently hepaciviruses from these hosts have been
123 reported in various locations (Quan et al. 2013; Bletsa et al. 2021). Domesticated animals, such
124 as cattle and equids, demonstrate a complex global geographic distribution, mainly resulting
125 from international transport (Walter et al. 2017; Shao et al. 2021; Breitfeld et al. 2022). Apart
126 from these hosts, the majority of hepaciviruses from wild animals tend to exhibit limited spatial
127 ranges, probably due to the restricted habitat range of their hosts. Despite these observations,
128 it is not yet known to what extent diversity within the *Hepacivirus* genus is structured by
129 geography or hosts.

130
131 Recent research on the discovery of novel hosts or endogenous viral elements suggests that
132 hepacivirus presence could trace back to million years ago, thus leading to this massive
133 diversity and relatively high prevalence at present (Bamford et al. 2022; Mifsud et al. 2023).
134 However, the potentially ancient origin of hepaciviruses challenges the molecular clock
135 estimation methods that typically rely on contemporary sampling dates of viruses. These
136 methods ignore the time-dependent rate phenomenon (TDRP) that has been commonly
137 observed for the long-term evolution of rapidly-evolving RNA viruses (Duchêne et al. 2014;
138 Aiewsakun and Katzourakis 2016). Among the models available to tackle this problem, Ghafari
139 et al. recently proposed a new mechanistic model that recapitulates the TDRP in power-law
140 rate decay and was initially applied to HCV genotypes (Ghafari et al. 2021). Using this
141 approach, the most recent common ancestor (tMRCA) of HCV genotypes was estimated to
142 date back to about 423 thousand years ago (KYA), so before the modern human movement
143 out-of-Africa. This either supports a single ancient zoonotic origin of HCV and subsequent
144 diversification within modern humans from Africa, or it could be explained by long-term
145 circulation in animal hosts, for which no descendants have currently been sampled, followed
146 by multiple more recent cross species transmissions to humans. A clear timescale for the non-
147 human hepaciviruses and the entire *Hepacivirus* genus is still lacking.

148

149 In this study, we screen a comprehensive set of wild animal specimens ($n = 1,672$) originating
150 from more than 75 species mainly from Africa and Asia to characterize the hepacivirus
151 diversity in animal reservoirs. Using available and novel hepacivirus genomes we reconstruct
152 the evolutionary history of hepaciviruses and characterize virus-host co-phylogenetic
153 relationships. Furthermore, we evaluate the influence of host species diversity and geographic
154 distribution on the current phylogenetic structure of hepaciviruses by applying a phylogenetic
155 Bayesian multidimensional scaling (BMDS) approach. Finally, we estimate hepacivirus
156 divergence times and provide a new perspective on the evolutionary timescale of these viruses.

157

158 **Material and methods**

159 **Sample collection and hepacivirus detection**

160 To screen for hepacivirus presence in various mammals, a total of 1,672 mammalian samples
161 were collected from several ecological and evolutionary studies (Těšíková et al. 2017). Our
162 sample set contained 1,601 wild small mammals (including shrews, hedgehogs, moles, rodents
163 and bats) from locations in Africa, Asia and Europe. Of these, 214 animals originated from the
164 Democratic Republic of the Congo (DRC), 70 from Guinea, 156 from Senegal, 3 from
165 Tanzania, 713 from China, 64 from Malaysia, 380 from Saudi Arabia and 1 from the Czech
166 Republic (Supplementary Table 1). In addition to our small-mammal collection, a few large-
167 sized mammals were sampled, including 1 civet and 5 galagos from the DRC, and 65 camels
168 from Saudi Arabia.

169

170 Whole blood specimens were collected on Serobuvard pre-punched filter papers, which were
171 shipped and stored at room temperature, while tissue specimens, including liver, spleen,
172 kidneys, and muscles, were shipped and stored in RNAlater (Qiagen) at -20°C or in ethanol at
173 room temperature.

174

175 Prior to hepacivirus screening, viral RNA was purified from its starting material and reverse
176 transcribed. For 381 samples, RNA extracts were directly provided by our collaborators, while
177 for the remaining 1,291 samples, RNA was extracted in-house. From the latter, RNA was
178 purified for a subset of 220 dried blood spots (DBS) samples (all from DRC) using the
179 QIAamp® Viral RNA Mini kit with a slightly adapted protocol. Briefly, in this modified
180 version, two dried blood spots were used for each sample and incubated for 15 min with 400
181 μ l of AVL-carrier RNA buffer. Upon incubation, we used sterile DNase- and RNase-free

182 micropestles, to extract the blood from the serobuvard filter papers. This process was repeated
183 twice to increase the extraction efficiency. After the second incubation, filter papers were
184 removed and 400 μ l of 100% ethanol were added in the tube. For the two washing steps we
185 used a volume of 400 μ l of AW1 and AW2, respectively, and final elution was performed with
186 25 μ l of nuclease-free water. For the remaining 1,071 tissue samples, total RNA was purified
187 using the Qiagen RNeasy Mini kit, following the protocol described by Bletsa et al. (2021).
188 This method essentially includes an optimized intermediate on-column DNase treatment to
189 increase RNA yield and purity.

190

191 To screen for hepaciviruses, we followed a previously described protocol (Bletsa et al. 2021).
192 In brief, this involved a step of reverse-transcription using Maxima Reverse Transcriptase
193 (ThermoFisher Scientific), random hexamers (ThermoFisher Scientific) and 8 μ l of total RNA.
194 Upon generating the complementary DNA (cDNA), a hemi-nested PCR assay was employed
195 using two pairs of degenerate primers that targeted a 300nt fragment of the conserved NS3
196 protease-helicase genomic region.

197

198 PCR products were verified on a 2% agarose gel electrophoresis and the expected products
199 were subsequently purified using ExoSAP-IT PCR Product Cleanup Reagent (Applied
200 Biosystems) or Zymoclean Gel DNA Recovery Kit (Zymo Research). Finally, purified
201 products were sent for Sanger sequencing (Eurogentec, Belgium) and upon delivery of results,
202 a tBLASTx similarity search against a custom hepacivirus-enriched database was used for the
203 detection of hepacivirus positive hits.

204

205 **Hepacivirus whole-genome sequencing**

206 Full-length hepacivirus genomes were generated from hepacivirus-positive tissue samples
207 using a meta-transcriptomics approach. Total RNA was first quantified with the Qubit RNA
208 BR assay kit (ThermoFisher Scientific) and qualified using an Agilent RNA 6000 Nano chip
209 (Agilent) in the 2100 Bioanalyzer System (Agilent). Samples with a total RNA Integrity
210 Number (RIN) > 2 were selected for downstream processing.

211

212 To increase the proportion of viral RNA reads, ribosomal RNA (rRNA) was depleted prior to
213 library preparation with the NEBNext rRNA Depletion Kit (Human/Mouse/Rat) (Li et al. 2022,
214 DOI: [dx.doi.org/10.17504/protocols.io.q26g74843gwz/v1](https://doi.org/10.17504/protocols.io.q26g74843gwz/v1)). Before subjecting all samples to
215 this rRNA depletion step, we assessed hepaciviral RNA yield using a custom real-time

216 quantitative PCR (qPCR) assay. This qPCR assay was performed with the Universal KAPA
217 SYBR FAST qPCR kit (Sigma Aldrich) on the ABI 7500 Fast Real-Time PCR desktop system
218 (Applied Biosystems). In brief, cDNA was generated using Maxima Reverse Transcriptase
219 (ThermoFisher Scientific) with random hexamers (ThermoFisher Scientific) following the
220 manufacturer's protocol. The internal primer pair AK4340F2 and AK4630R2 from our hemi-
221 nested screening PCR was used for quantification of hepacivirus RNA. Standard curves were
222 calculated based on serial dilutions of a 393bp fragment of the NS3 genomic region from one
223 of our hepac-positive samples (sample voucher: S2645, NCBI accession no. OM162002). To
224 assess mitochondrial rRNA depletion, we designed two pan-rodent primers 12S-512F and 12S-
225 694R (Supplementary Table 2) targeting a ~183bp fragment of the 12S rRNA rodent
226 mitochondrial genomic region. Standard curves were calculated using serial dilutions of the
227 aforementioned gene fragment from a *Lophuromys* mice (NCBI accession no. AJ250349). The
228 qPCR assay was performed with the Universal KAPA SYBR FAST qPCR kit (Sigma Aldrich)
229 on an Applied Biosystems 7500 Fast Real-Time PCR desktop system (Applied Biosystems)
230 using the following cycling conditions: enzyme activation at 95 °C for 3 min; 40 cycles of
231 denaturation at 95 °C for 3s, annealing/extension at 57 °C for 30 s (for the NS3 hepacivirus),
232 while 58 °C in 30 s (for the 12S rRNA); (3) dissociation using the default settings of our qPCR
233 platform. All qPCR data were analyzed with ABI PRISM 7000 software (v2.0.5; Applied
234 Biosystems).

235
236 Upon rRNA depletion, the quantity and quality of total RNA were assessed using the Qubit
237 RNA HS assay kit (ThermoFisher Scientific) and the Agilent RNA 6000 Pico kit (Agilent),
238 respectively. Sequencing libraries were prepared using the NextFlex Rapid directional RNAseq
239 kit (PerkinElmer). RNA input volume was determined by the total amount of ~100 ng and
240 adjusted to 14 µl with nuclease-free water. For the library preparation assay we generally
241 followed the manufacturer's guidelines with some optimizations in two steps (Li et al. 2022,
242 DOI: [dx.doi.org/10.17504/protocols.io.kqdg3p6pel25/v1](https://doi.org/10.17504/protocols.io.kqdg3p6pel25/v1)). Specifically, we adjusted the
243 incubation time for scalable RNA fragmentation and the number of PCR amplification cycles
244 were determined in a sample-specific fashion depending on the quality and amount of starting
245 material.

246
247 NGS libraries were subsequently checked for quality and quantified using the Agilent High
248 Sensitivity DNA kit and the KAPA Library Quantification Kit Complete Kit (ROX Low) for
249 Illumina Platforms, following the manufacturer's protocol. Libraries were normalized using

250 Tris-HCl (10 mM) with 0.1% Tween 20, followed by pooling and paired-end high-throughput
251 sequencing on an Illumina NextSeq 500 platform at the VIB Nucleomics Core (Flanders,
252 Belgium).

253

254 **Hepacivirus genome assembly and host species identification**

255 We built on a previously described high-throughput sequencing data analysis pipeline to
256 assemble complete hepatitis C virus genomes (Bletsa et al. 2021) and further optimized it to increase
257 its efficiency. Demultiplexing was performed using Bcl2fastq2 v2.20 (Illumina). Quality of the
258 raw read data was checked in FastQC v0.11.9 (Andrews 2010), followed by quality filtering
259 and Illumina adaptor trimming using Trimmomatic v0.39 (Bolger et al. 2014). To subtract host
260 background, a total number of 11 genomes from various rodent species and a human genome
261 (NCBI accession no. in supplementary table 3) were used as mapping references in SNAP
262 aligner v1.0.3 (Zaharia et al. 2011). PRINSEQ-lite v0.20.4 (Schmieder and Edwards 2011) was
263 used to filter out duplicates and low complexity reads. A *de novo* assembly approach was
264 followed to generate contigs using SPAdes genome assembler v3.15.2 (Bankevich et al. 2012).
265 All generated contigs were screened using the BLASTx algorithm against a custom
266 hepatitis C virus-enriched viral protein database in DIAMOND v2.0.9 (Buchfink et al. 2021). To
267 increase the overlap between all identified hepatitis C virus contigs or create scaffolds from
268 discontinuous contigs, re-assembly was performed in CAP3 version date 02/10/15 (Huang and
269 Madan 1999). Coverage and sequencing depth statistics were calculated by remapping all pre-
270 processed reads to each newly assembled hepatitis C virus genome with Bowtie2 v2.4.2 (Langmead
271 and Salzberg 2012), coupled with SAMtools v1.12 (Danecek et al. 2021) for format conversion
272 and visualized using the weeSAM script (<https://github.com/centre-for-virus-research/weeSAM>).
273

274

275 For several samples resulting in partial hepatitis C virus genomes, strain-specific PCR assays were
276 designed to fill genomic gaps (Supplementary Table 2). Overlapping amplicons were generated
277 using the OneStep RT-PCR kit (Qiagen) with 5 µl of cDNA as a template. PCR products were
278 purified and Sanger sequenced in both directions. Sequences were mapped and concatenated
279 to their original contigs in Geneious Prime v2020.2.4 (Biotmatters, Auckland, New Zealand,
280 <https://www.geneious.com>) to obtain complete viral genomes.

281

282 For the purpose of host species identification, the mitochondrial cytochrome b (cytb) gene was
283 reconstructed by *de novo* assembling the trimmed read data. Upon contig generation, a total

284 number of 52,405 rodent cytb sequences were downloaded from the NCBI database (search of
285 2021 September 27th) for building a local BLAST reference database in BLASTn v2.10.1+
286 (Camacho et al. 2009). The tBLASTx algorithm along with a custom perl script were used to
287 extract cytb contigs, followed by similarity search against the NCBI nt database. To delineate
288 any unclassified rodent species we relied on our collaborators' expert opinion.

289

290 **Phylogenetic analysis**

291 All hepacivirus nucleotide sequences generated were first translated to amino acid using
292 Aliview v1.27 (Larsson 2014). The polyprotein coding regions were predicted based on all
293 available rodent hepacivirus complete genomes from NCBI.

294

295 To reconstruct the phylogeny of the whole *Hepacivirus* genus, we analyzed our novel
296 hepacivirus genomes ($n = 34$) along with all available complete hepacivirus polyprotein
297 sequences ($n = 259$, search on August 2022) with annotated host species information. The latter
298 were downloaded from NCBI and included 21 hepaciviruses from cattle, 1 from dog, 48 from
299 equids, 7 of human origin (one representative reference genome per genotype), 10 of non-
300 human primate origin, 2 hepaciviruses from sloths, 2 from ringtails, 2 from marsupials, 125
301 from rodents, 11 from bats, 3 from shrews, and 27 from non-mammalian hosts (Supplementary
302 table 4). For the human HCV subset, in addition to including one representative reference
303 genome per genotype, we also collected specific subsets for genotypes 1a ($n = 35$), 1b ($n = 34$)
304 and 3a ($n = 35$) for further downstream evolutionary analyses.

305

306 The complete amino acid dataset was aligned using MAFFT v7.453 (Katoh 2002) in a stepwise
307 approach. In brief, sequences from the same hosts were initially aligned in batches and we
308 progressively incorporated the various host-specific alignments into a single Multiple
309 Sequence Alignment (MSA). All alignments were visually assessed and manually edited using
310 Aliview v1.27 (Larsson 2014). The phylogenetic informative blocks were selected using a
311 BLOSUM30 matrix and trimmed with the gap frequency criteria of 0.7 using BMGE v1.12
312 (Criscuolo and Gribaldo 2010). Upon obtaining our complete MSA, IQ-TREE v1.6.12
313 (Nguyen et al. 2015) was used to reconstruct the hepacivirus phylogeny with 1000 bootstrap
314 replicates. The best-fitting amino acid substitution model according to BIC was LG+F+I+G4.
315 Trees were visualized and annotated in Figtree v1.4.4
316 (<http://tree.bio.ed.ac.uk/software/figtree/>).

317

318 To further explore the evolutionary relationships among different hepaciviruses, the conserved
319 regions in NS3 (position 1123 – 1566 in amino acid, with AAA45676 as reference) and NS5B
320 (position 2536 – 2959 in amino acid), which have been previously used for species
321 classification of members of the *Hepacivirus* genus (Smith et al. 2016), were extracted from
322 the complete genome. The amino acid alignments were used to compute pairwise p-distance in
323 MEGA11 (Tamura et al. 2021). The corresponding genetic distances heatmaps were generated
324 using ComplexHeatmap R package (Gu et al. 2016).

325

326 **Virus-host co-divergence analysis**

327 To assess co-phylogenetic relationships between hepaciviruses and their hosts, we compared
328 the topological structure of virus and host phylogenies. For these analyses, we downsampled
329 our genome-wide hepacivirus dataset by retaining only one representative hepacivirus genome
330 per host species from the same lineage. In addition, the basal hepacivirus sequences originating
331 from non-mammalian hosts were removed due to the high degree of genetic divergence and
332 the uncertainty of host species in the case of blood-feeding arthropods. This resulted in a final
333 hepacivirus dataset of 85 sequences belonging to 58 mammalian taxa. To reconstruct the
334 mammalian host species phylogeny, we extracted a 31-gene supermatrix alignment for a subset
335 of 51 host taxa based on the most comprehensive mammalian species classification to date
336 (Upham et al. 2019). For the remaining 7 host species, which were not included in the 31-gene
337 collection, we manually added mitochondrial cytb sequences to the supermatrix alignment
338 (Supplementary Table 5) The final MSA was generated using MAFFT v7.453 (Katoh 2002),
339 manually edited in Aliview (Larsson 2014) and a phylogenetic tree was constructed with IQ-
340 TREE v1.6.12 (Nguyen et al. 2015) using the best BIC fitting model GTR+F+I+G4.

341

342 We used the event-based eMPRESS software (Santichaivekin et al. 2021) and the Procrustes
343 global-fit test PACo (Balbuena et al. 2013) to assess phylogenetic congruence between the host
344 and hepacivirus trees. The significance of the single viral-host link was evaluated using
345 AxParafit (Stamatakis et al. 2007) through Copycat (Meier-Kolthoff et al. 2007). In the
346 eMPRESS analysis, upon determining the most parsimonious costs for duplications, transfers
347 and losses, we performed a permutation test with 100 randomizations to calculate the support
348 value. For PACo and AxParafit settings, the co-phylogenetic signals were evaluated based on
349 100,000 permutations and considered to be significant if the observed squared residual distance

350 was smaller than 0.05. Visual correspondence (tanglegrams) between the two phylogenies was
351 created using the phytools v1.2-0 (Revell 2012) R package.

352
353 Due to the high proportion of hepacivirus co-infections in *Lophuromys* mice, we performed a
354 second virus-host co-divergence analysis on a reduced dataset. In this latter dataset, we
355 removed all hepacivirus sequences that were retrieved from co-infected mice and only retained
356 genomic information from single hepacivirus infections ($n = 63$) and their corresponding host
357 species ($n = 57$). For the virus-host co-phylo plot and the phylogenetic congruence analysis we
358 followed the approach described above.

359
360 **Evaluating hepacivirus geographic versus host structure**
361 As a first step towards exploring the phylogeographic clustering of hepaciviruses, we compiled
362 sampling location information for all the sequences in our genome-wide dataset and collected
363 the corresponding geographic coordinates. When only country information was available, we
364 used the geographic coordinates from the capital city of the sampled country. To visualize the
365 spatial distribution of hepacivirus, a country-level allocation plot was generated with ggtree
366 v3.2.1 (Yu et al. 2017) and ggplot2 v3.3.5 (Wickham 2009) in R.

367
368 In order to formally compare to what extent hepaciviruses are structured by geography or host
369 we explored a new approach based on phylogenetic Bayesian multidimensional scaling
370 (BMDS) (Bedford et al. 2014). Our approach sidesteps the problem of discrete approaches that
371 require arbitrary discretizations according to geography and hosts, which are highly likely to
372 differ in their dimensionality and hence difficult to compare in terms of their phylogenetic
373 association. Our BMDS approach conditions on geographic distances and host distances
374 between pairs of hepaciviruses and estimated locations in a lower dimensional geographic and
375 host space for the sampled viruses (phylogenetic tips) and their hypothetical common ancestors
376 (internal nodes). In our probabilistic BMDS formulation, observed distances are assumed to be
377 centered on their mapped distances with a Gaussian error. As a prior on the unobserved
378 locations in lower-dimensional space, we specify a phylogenetic Brownian diffusion process
379 (Lemey et al. 2010). To determine the appropriate dimensionality for our BMDS procedure,
380 we adopted a cross-validation approach (Holbrook et al. 2021).

381

382 We proposed two metrics to compare the diffusion process in geographic and host space. One
383 of these metrics is Pagel's lambda parameter (Pagel 1999), which measures the degree of
384 phylogenetic association of a continuously-valued trait. A Pagel's lambda estimate close to 0
385 reflects the absence of phylogenetic association whereas an estimate close to 1 reflects a
386 phylogenetic signal that is expected under a Brownian diffusion process. The second metric is
387 the standard deviation of a relaxed random walk (RRW) process, which relaxes the constant-
388 variance assumption of Brownian diffusion. This metric reflects the regularity of diffusion in
389 geographic or host space, with a higher standard deviation representing a more heterogeneous
390 diffusion process. We used a Bayesian implementation to co-estimate Pagel's lambda in our
391 BMDs approach (Vrancken et al. 2015) and performed two analyses. The first analysis models
392 standard independent Brownian diffusion processes in lower dimensional geographic and host
393 space on a random phylogeny, incorporating a Pagel's lambda parameter for both diffusion
394 processes. In this analysis we estimated the phylogeny using a LG amino acid substitution
395 model with a discrete gamma distribution to model among-site rate variation and a Yule
396 speciation prior. We specified an uncorrelated relaxed molecular clock model with mean fixed
397 to 1 (so, estimating branch lengths in substitution units). The second analysis models
398 independent RRW diffusion processes in both geographic and host space using a lognormal
399 distribution with an estimable standard deviation on a fixed tree topology while also
400 incorporating the Pagel's lambda estimator. As a fixed tree, we used the MCC tree (or relevant
401 subtree) rescaled by the time-dependent rate modelling in our dating approach (cfr. Methods,
402 section 2.8). We applied both analyses to all non-mammalian hepaciviruses ($n = 13$), all
403 mammalian hepaciviruses ($n = 257$), a mammalian subset with only a single representative for
404 clusters of viruses that were sampled from the same host and country ($n = 160$), a subset of the
405 latter with only a single representative for bovine and equine viruses ($n = 123$), only rodent
406 viruses ($n = 95$) and only rodent viruses excluding those sampled in co-infections ($n = 68$).
407

408 The mammalian host phylogeny that served as the basis for the host distances ($n = 58$ host taxa)
409 was generated according to the description in Methods (section 2.5). To compile the non-
410 mammalian dataset ($n = 13$ host taxa), we selected from the genome-wide hepacivirus dataset
411 the non-mammalian host species for which we had geographic information. For those host
412 species, we visited the VertLife.org (<http://vertlife.org>) database and inferred separate
413 phylogenies for the fish ($n = 4$ species), the squamates ($n = 3$ species) and the birds ($n = 4$
414 species) in our dataset. Based on the alignments that gave rise to a relatively recent and robust
415 vertebrate phylogeny (Irisarri et al. 2017), we created a backbone tree with 5 taxa (in which 3

416 taxa originated from host species in our vertebrate hepacivirus dataset and 2 species were used
417 as calibrations for the merging of the subtrees) (Supplementary Table 6). Upon generating all
418 subtrees, we used the tree.merger R package (Castiglione et al. 2022) to incorporate the
419 subtrees into the backbone vertebrate phylogeny in a stepwise fashion. Host distances were
420 extracted as patristic distances from both the mammalian and the non-mammalian phylogeny
421 using R and geographic distance matrices were constructed using great-circle distances based
422 on the coordinates (cfr. previous section).

423

424 **Recombination and temporal signal analysis**

425 To avoid the impact of recombination prior to assessing temporal signal and inferring time-
426 scaled phylogenies (Schierup and Hein 2000; Arenas and Posada 2010; Martin et al. 2011), we
427 performed recombination analyses on a restricted number of host-specific hepacivirus lineages
428 with comparatively low phylogenetic diversity. For these analyses, we selected the entire
429 collection of cattle ($n = 21$), equids ($n = 48$), HCV genotype 1a ($n = 35$), HCV genotype 1b (n
430 = 34), HCV genotype 3a ($n = 35$) and three rodent hepacivirus lineages ($n = 13$, $n = 25$, and n
431 = 50) (Supplementary Fig. 1).

432

433 For those different subsets, nucleotide sequences of the complete polyprotein were aligned as
434 codons using MUSCLE in MEGA11 (Tamura et al. 2021). A recombination evaluation was
435 conducted using the Phi test (Bruen et al. 2006) (window size 100, significance threshold =
436 0.05) in SplitsTree4 v4.18.2 (Huson and Bryant 2006). To further test for evidence of
437 recombination, we employed 7 different detection algorithms in the RDP4 program (Martin et
438 al. 2015) under the following conditions: RDP (window size 30), BootScan (window size 200,
439 step size 20), SiScan (window size 200, step size 20), GENECONV, Chimaera, MaxChi, and
440 3Seq (default settings). The highest acceptable p-value was set at 0.05 and recombination
441 events were reported only upon detection by more than 3 methods. Recombinant-free
442 alignments were generated by masking the minor recombinant regions.

443

444 To examine the relationship between genetic diversity and sampling date, we estimated
445 temporal signal using the non-recombinant regions of the lineage-specific alignments.
446 Sequences without known sampling date were removed, which resulted in the final subsets of
447 cattle ($n = 19$), equids ($n = 35$), HCV genotype 1a ($n = 35$), HCV genotype 1b ($n = 34$), HCV
448 genotype 3a ($n = 35$), rodent lineage 1 ($n = 13$), lineage 2 ($n = 25$) and lineage 3 ($n = 50$). We
449 used TempEst v1.5.3 (Rambaut et al. 2016) for a visual inspection of the dataset by plotting

450 the root-to-tip divergences against sampling time based on the non-molecular clock tree built
451 using IQ-TREE v1.6.12 (Nguyen et al. 2015). A more formal analysis was performed in
452 BEAST v1.10.4 (Suchard et al. 2018) with the high-performance BEAGLE phylogenetic
453 compute library (Ayres et al. 2012) using generalized stepping-stone sampling (GSS) (Baele
454 et al. 2016) marginal likelihood estimation with an initial Markov chain length of 200 million
455 and 50 stepping stones each with a chain length of 1 million.

456

457 **Divergence time estimation using the PoW model**

458 To estimate a timescale for hepacivirus evolutionary history, we applied the ‘Prisoner of War’
459 (PoW) evolutionary rate decay model developed by Ghafari et al. (2021). This model takes into
460 account that sequence divergence is impacted by substitution saturation and following a recent
461 period of evolution at the short-term evolutionary rate, lower evolutionary rates apply to deeper
462 parts of the evolutionary history following a universal rate decay dynamic.

463

464 The PoW model requires an estimate of the short-term hepacivirus evolutionary rate. In the
465 absence of temporal signal in most hepacivirus lineages, we estimated this rate using a dated
466 tip model applied to HCV genomes with sampling years ranging between 1990 and 2015. In
467 order to obtain a rate estimate for the exact same sites as in the hepacivirus data set, we first
468 combined HCV genotype 1a, 1b and 3a sequences ($n = 104$) with our previously described
469 hepacivirus dataset ($n = 293$). Multiple sequence alignment was performed at the amino acid
470 level using MAFFT v7.453 (Katoh 2002) and the conserved regions were selected using
471 BMGE v1.12 (Criscuolo and Gribaldo 2010) with 20 block size and BLOSUM75 matrix. In
472 particular, from an initial alignment that spanned 6,027 amino acid residues we extracted an
473 alignment of 669 relatively conserved amino acid sites. The conserved alignment was back
474 translated to nucleotides in TranslatorX (Abascal et al. 2010), and separated into the HCV
475 genotype 1a, 1b and 3a dataset on the one hand and the hepacivirus data set on the other hand.
476 Using the Phi test, we did not find any detectable recombination in this hepacivirus data set (p
477 = 0.98). We used a strict clock model with dated tips applied to the three independent
478 phylogenies of HCV1a, 1b and 3a and HKY substitution model to estimate the short-term rate
479 in BEAST v1.10.4 (Suchard et al. 2018) with BEAGLE (Ayres et al. 2012) using an MCMC
480 of 200 million generations and a 10% burn-in. We also used BEAST to estimate a posterior
481 distribution of trees in units of genetic distance for the hepacivirus data set specifying again an
482 HKY substitution model. Using the short-term evolutionary estimate and adopting the
483 previously predicted maximum substitution rate for single-stranded RNA (ssRNA) viruses of

484 3.65×10^{-2} substitutions per site per year (Ghafari et al. 2021), the hepacivirus tree distribution
485 was transformed to units of time under the PoW model.

486

487 **Results**

488 **Novel hepaciviruses present in a wide range of rodent species**

489 We screened for hepaciviruses a comprehensive set of wild mammal samples ($n = 1,672$) that
490 were obtained by our collaborators in Africa, Asia and Europe. The majority of our samples
491 were small mammals ($n = 1,601$) that belong to 75 potential species across 47 genera.
492 Specifically, 169 specimens belong to 14 Insectivora species (Order: Eulipotyphla), 1,396
493 specimens originated from at least 50 rodent species (Order: Rodentia) and 36 specimens were
494 collected from 8 bat species (Order: Chiroptera). In addition to the small-mammal samples, we
495 also included specimens from 1 civet, 5 galagoes, and 65 camels in our screening efforts
496 (Supplementary Table 1).

497

498 After molecular detection, a total of 53 hepacivirus positive specimens were identified across
499 18 host species within the Rodentia order. Out of those 18 host species, 14 species belong to
500 the Muridae family and 4 species to the Cricetidae family (Supplementary Fig. 2 A). In the
501 Muridae family, we extend the hepacivirus host repertoire by identifying 10 new hepacivirus-
502 positive rodent species that belong to 7 genera: *Acomys*, *Dipodillus*, *Lophuromys*, *Meriones*,
503 *Micromys*, *Niviventer*, and *Rattus*. Among them, the *Dipodillus* and *Micromys* genera were for
504 the first time identified as hepacivirus hosts in this study (Supplementary Table 7). In the
505 Cricetidae family, we identified 3 novel hepacivirus-positive host species from the *Eothenomys*
506 genus, and provided additional proof that rodents from the *Clethrionomys* genus harbor
507 hepaciviruses. Despite previous evidence that shrews and bats can carry hepaciviruses, we were
508 not able to detect any hepaciviruses from those animals, but we only had limited samples
509 available for these hosts. In addition, none of the very few surveyed galagoes, and camels tested
510 positive for hepaciviruses, nor did the civet.

511

512 With respect to the percentage of positive rodent specimens in this study, we detected the
513 lowest hepacivirus prevalence (0.88%, 1 out of 114) in *Niviventer confucianus*, followed by
514 *Rattus rattus* with 1.49% (1 out of 67) and *Praomys* mice with 2.94% (1 out of 34). While
515 sampling sizes were considerably smaller for species of the *Eothenomys* genus compared to
516 the previously mentioned species, they exhibited much higher prevalence. In particular, the
517 positivity rate for *Eothenomys eleusis* was 55.56% (5 out of 9), for *Eothenomys miletus* was

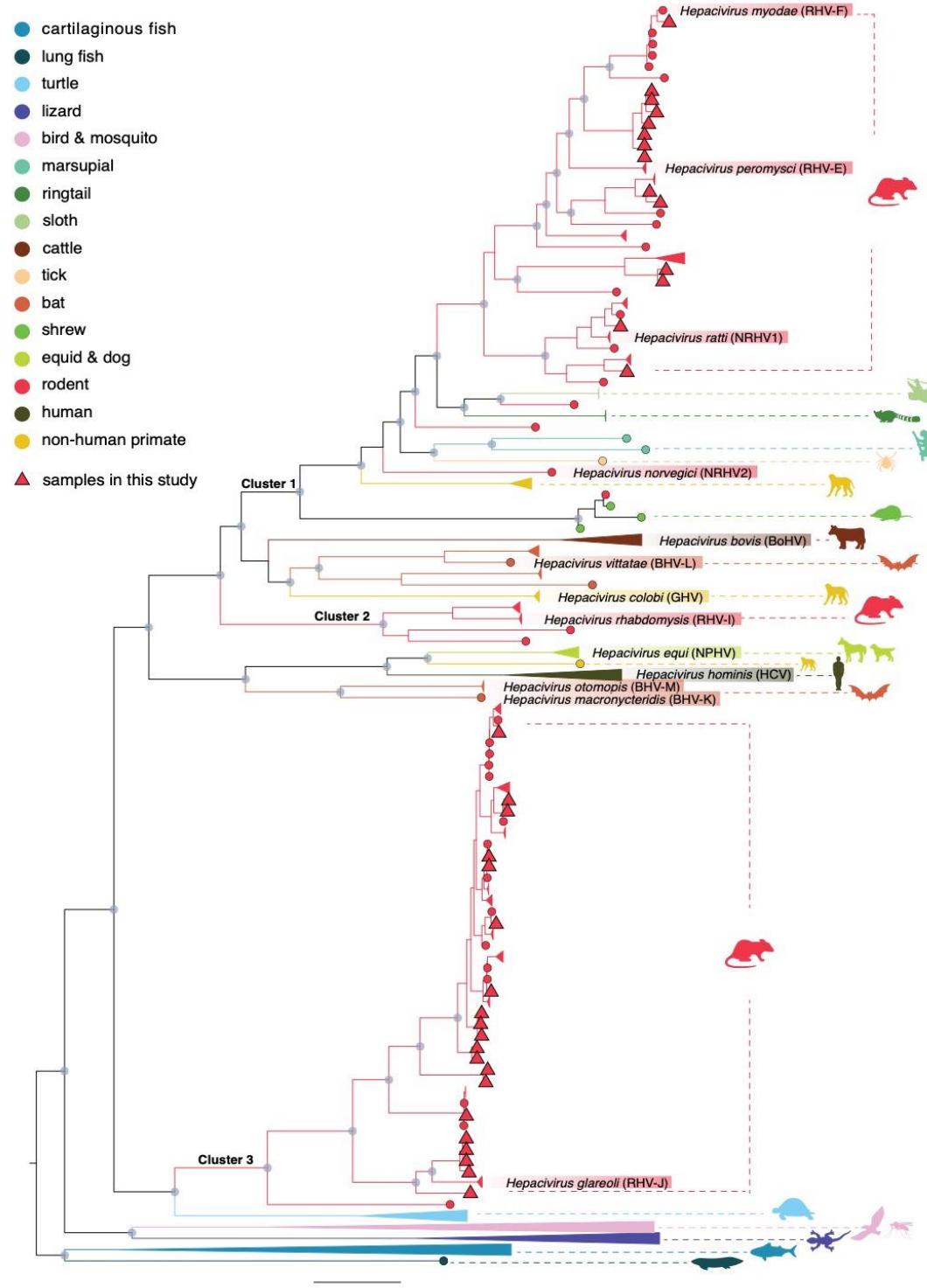
518 40% (2 out of 5) and for *Eothenomys melanongaster* was 22.22% (4 out of 18). In line with the
519 high prevalence in *Eothenomys* species, the positivity rate of *Rattus andamanensis* was 50%
520 (1 out of 2), while the hepacivirus-positive percentages for the remaining species ranged from
521 2.94% to 26.32% (Supplementary Table 1).

522

523 As for the spatial distribution of our novel hepaciviruses, the majority were detected in Saudi
524 Arabia with a proportion of 7.37%, followed by Guinea with 4.29%. Rodents from China and
525 the DRC presented a similar hepacivirus positive rate, with 1.96% and 1.87% respectively.
526 Hepaciviruses in a bank vole from the Czech Republic and in three Tanzanian samples were
527 detected during a metagenomic sequencing effort and were not considered in the prevalence
528 calculations, since no hepacivirus-targeted molecular screening was performed. For a more
529 detailed summary of our screening results by country and mammalian species, see
530 Supplementary Tables 1 and 7, respectively.

531

532 **Phylogenetic reconstruction demonstrates high hepacivirus diversity**


533 We generated 34 complete hepacivirus genomes from 25 samples belonging to 13 rodent host
534 species. Our results contribute significant new genomic data to the currently available rodent
535 hepacivirus data, mainly by adding to the genomes available from China (14 new) and
536 Tanzania (8 new). In addition, we provide novel genomic records from three previously
537 unrepresented locations: Saudi Arabia (4 new), Czech Republic (1 new) and Guinea (7 new)
538 (Supplementary Fig. 3).

539

540 Through genome-wide phylogenetic reconstruction, we confirm the high genetic heterogeneity
541 of the *Hepacivirus* genus (Fig. 1). In agreement with Bletsa et al. (2021), mammalian hosts
542 harbor highly divergent viruses, with only the bovine, equine-canine, marsupial, sloth, ringtail
543 and human hepaciviruses clustering into monophyletic clades. Viruses from rodent, bat and
544 non-human primate species on the other hand are interspersed throughout the phylogenetic tree,
545 forming multiple divergent lineages and exhibiting the largest mammalian hepacivirus
546 diversity. The rodent and bat groups host the majority of assigned species within the
547 *Hepacivirus* genus at present.

548

549

550

551 **Fig. 1. Phylogenetic reconstruction of hepaciviruses based on complete genomes.** Selected clades have been
 552 collapsed to emphasize the rodent hepacivirus relationships. Tips in circles indicate sequences generated in
 553 previous studies ($n = 259$). Tips in triangles indicate novel sequences generated in this study ($n = 34$). Clades are
 554 colored based on the host type as represented in legend. Internal nodes with Shimodaira-Hasegawa (SH)-like
 555 support values ≥ 80 are labeled with gray circles. The scale bar indicates the number of amino acid substitutions
 556 per site. To better frame phylogenetic relationships, the current demarcations of hepacivirus species and their

557 abbreviations by ICTV are highlighted in coloured boxes at the tips of the trees. The 3 major clusters containing
558 rodent hepaciviruses are labeled for future reference (clusters 1-3).

559
560 All our novel rodent hepaciviruses (RHVs) fall into 2 major rodent clusters, denoted as cluster
561 1 and cluster 3 in Fig. 1. The former is positioned within the heterogeneous mammalian
562 hepacivirus group, while the latter is composed solely of rodent hepaciviruses (Fig. 1 & 2). To
563 illustrate better the phylogenetic relationships of our novel hepaciviruses within the overall
564 rodent hepaciviruses diversity, we computed amino acid genetic distances for all rodent
565 hepaciviruses of cluster 1 and cluster 3 based on the conserved NS3 and NS5B regions
566 according to Smith et al. (2016).

567
568 As shown in Fig. 2, the new RHV genomes from *Clethrionomys glareolus* and *Praomys*
569 *jacksoni* cluster within the clades of previously identified RHVs from those same rodent
570 species. The estimated amino acid genetic distances for those viruses are < 0.07 in both the
571 NS3 and NS5B regions (Suppl. Figure 4). Hepaciviruses from *Rattus andamanensis* and
572 *Niviventer confucianus* individuals are very closely related to hepaciviruses from other rodent
573 species of the *Rattus* and *Niviventer* genera, respectively (Fig. 2). Amino acid genetic distances
574 in these cases were computed to be < 0.15 in both the NS3 and NS5B regions. *Dipodillus*
575 rodents are newly identified hepacivirus hosts and they harbor RHVs related to those from the
576 *Meriones* genus. Both the *Dipodillus* and the *Meriones* genera belong to the Gerbillinae
577 subfamily; in these rodents we observe a clustering of hepaciviruses at the rodent subfamily
578 level.

579
580 Despite the non-random clustering of hepaciviruses from the aforementioned rodent taxa, there
581 are RHVs that do not closely follow host relatedness. Specifically, the Chinese *Micromys*
582 *minutus* hepacivirus groups with viruses sampled from European *Clethrionomys* and Chinese
583 *Eothenomys* genera. Interestingly, the latter genus even belongs to a different rodent family
584 (Cricetidae) than the *Micromys* rodents (Muridae). Another striking example is the clustering
585 of our newly discovered *Acomys dimidiatus* hepaciviruses from Saudi Arabia. These strains
586 group with viruses obtained from Guinean *Lophuromys* mice and are very divergent from the
587 hepacivirus found in a Tanzanian *Acomys wilsoni* individual (Fig. 2).

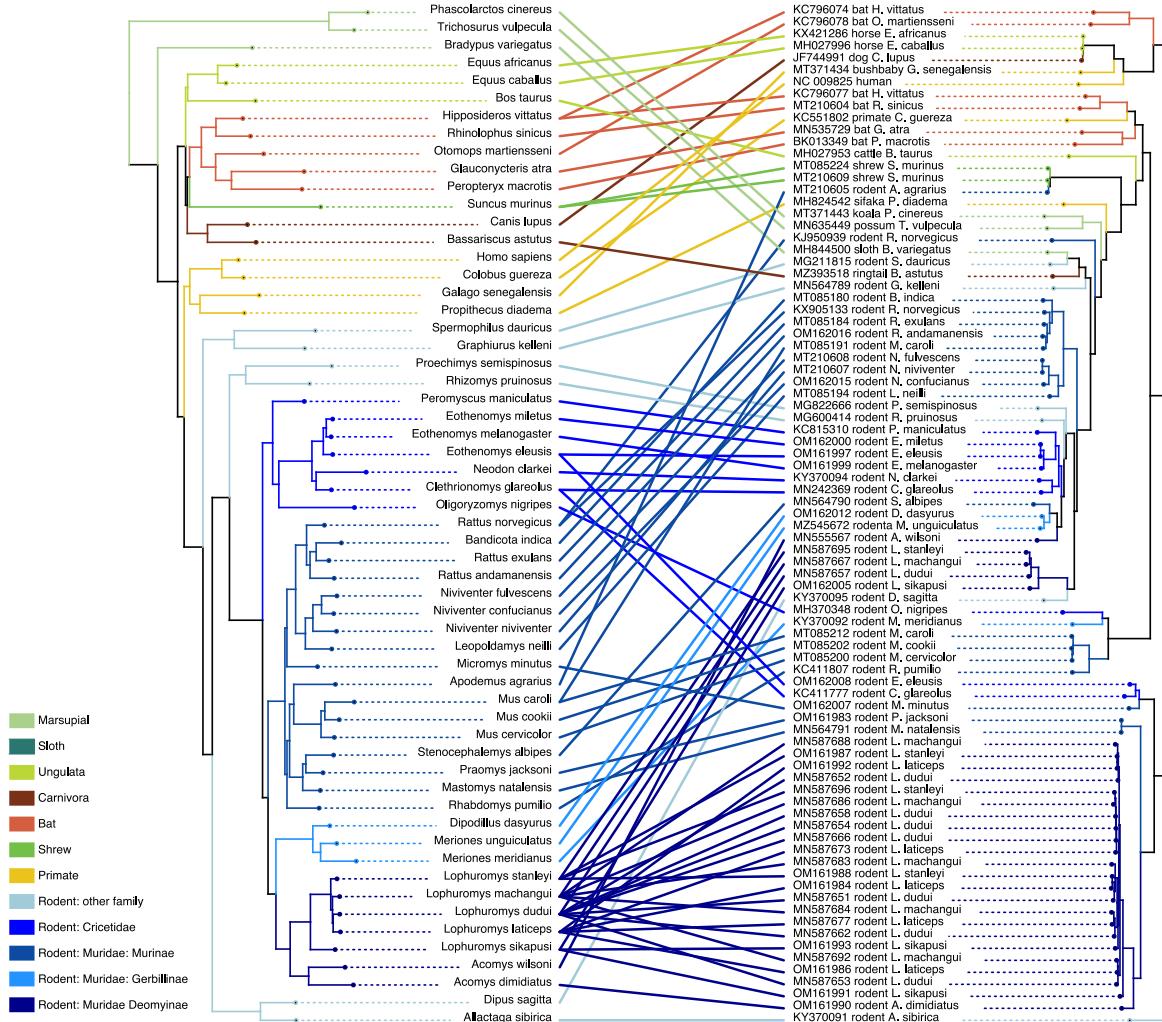
588
589 Consistent with the results of Bletsa et al. (2021), we find that *Lophuromys* mice commonly
590 exhibit hepacivirus co-infections. Specifically, in *Lophuromys* rodents from Tanzania we

591 identified between two (specimen TA109) up to five (specimen TA289) hepacivirus strains in
592 the same individual. These sequences form divergent lineages in the monophyletic cluster 3
593 and group with RHVs from the same host species. In addition to the multiple co-circulating
594 hepaciviruses found in Tanzanian *Lophuromys* mice, we also identified RHV co-infections in
595 two Guinean *Lophuromys sikapusi* individuals. These hepaciviruses have a close phylogenetic
596 relationship with those circulating in central/eastern Africa and demonstrate an amino acid
597 genetic distance < 0.13 in NS3 and < 0.08 in NS5B.

598

599 Finally, all hepaciviruses detected in *Eothenomys* species form distinct lineages within cluster
600 1 and cluster 3. Viruses in cluster 1 exhibit high similarity to the *Hepacivirus peromysci* (RHV-
601 E) species and *Hepacivirus myodae* (RHV-F) species. The amino acid genetic distances
602 between *Eothenomys* hepaciviruses and RHV-E were estimated to range between 0.24 - 0.27
603 in NS3 and 0.23 - 0.27 in NS5B, while the respective genetic distances between *Eothenomys*
604 hepaciviruses and RHV-F vary between 0.26 - 0.28 in NS3 and 0.22 in NS5B. As for the
605 *Eothenomys* viruses in cluster 3, they form sister lineages with the *Hepacivirus glareoli* (RHV-
606 J) species. For these strains, the amino acid genetic distances between *Eothenomys*
607 hepaciviruses and RHV-J varied between 0.13 – 0.15 in NS3 and was estimated to be 0.13 in
608 the NS5B region.

609


610

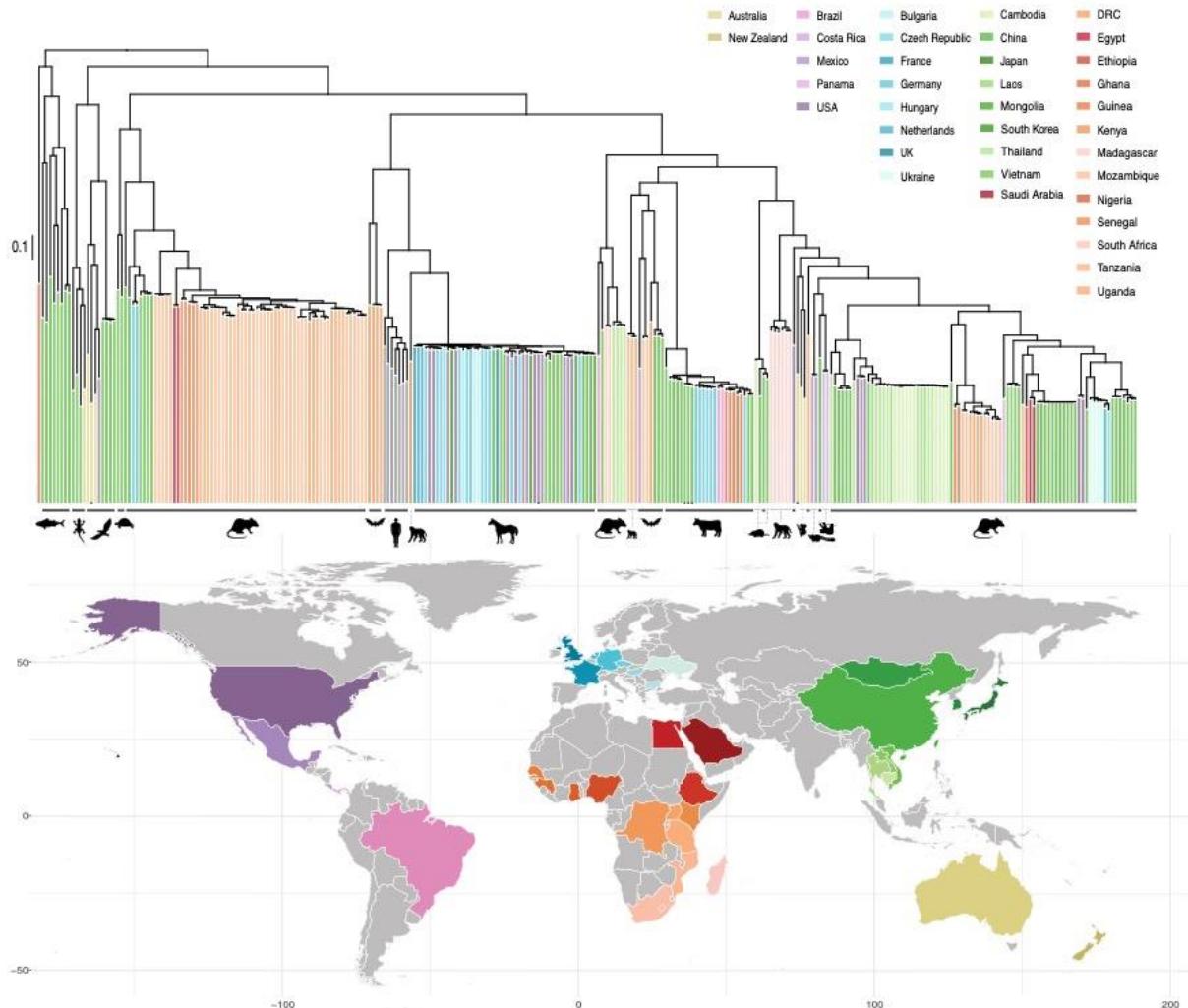
611 **Fig. 2. Phylogenetic grouping of rodent hepaciviruses within their three major clusters.** Tips with red circles
 612 indicate the rodent sequences ($n= 125$) generated in previous studies. Tips with triangles indicate the novel rodent
 613 hepacivirus sequences ($n = 34$) generated in this study. Internal nodes with bootstrap values ≥ 80 are labeled with
 614 gray circles. The scale bar indicates the number of amino acid substitutions per site. The ICTV classified
 615 hepacivirus species are highlighted in coloured boxes at the tips of the tree as shown in Fig. 1.

616

617 **Impact of host and geography on hepacivirus diversification**

618 To evaluate the extent to which host relatedness impacts hepacivirus diversification, we
619 measured the cophylogenetic signal between hepaciviruses and their hosts by conducting a
620 reconciliation analysis. Although our results provide evidence for significant cophylogenetic
621 patterns using both the eMPREss event-based test (p-value < 0.01) and the Procrustes global-
622 fit test (PACo p-value < 0.001, AxParafit p < 0.001, using 100000 permutations), the
623 tanglegram visualization also demonstrates numerous cross-species transmission events.
624 Noticeably, the *Lophuromys* mice exhibit several interlaced connections and have a significant
625 contribution to co-speciation events, which may be the result of frequent co-infections found
626 in those species (Fig. 3 & 4). Considering this, we re-ran the reconciliation analysis after
627 removing all the co-infections from our dataset. In this latter analysis, the overall global test
628 results support significant phylogenetic congruence between host and mammalian
629 hepaciviruses in all methods tested (eMPREss p-value < 0.01, PACo p-value < 0.001 and
630 AxParafit p < 0.01) and display the topological structure of the virus and the host phylogenies
631 with low similarity (Supplementary Fig. 5 & 6).

632


633 **Fig. 3. Tanglegram of host (left) and hepatitis viruses (right).** The host phylogeny was inferred for 31 genes from
634 58 mammalian species. For *Myodes glareolus*, *Gerbillus dasyurus* and *Microtus clarkei* their updated species
635 names were used: *Clethrionomys glareolus*, *Dipodillus dasyurus* and *Neodon clarkei*, respectively. The
636 hepatitis virus phylogeny was inferred for 85 representative genomes. Clades and associations were colored based
637 on host type.

638

639
640 **Fig. 4. Contribution of each host-hepacivirus association to the general co-evolution pattern.** Bars represent
641 Jack-knifed squared residuals with the upper 95% confidence intervals from PACo test. The median squared
642 residual value is shown with a dashed line. Stars represent the host-hepacivirus links that were also tested to be
643 significant in AxParafit ($p < 0.05$). Colors represent different host types as shown in Fig. 3.
644

645 To explore visually the geographic structure of hepacivirus diversity, we colored the viral
646 clades according to their country of sampling and examined their distribution (Fig. 5).
647 Available genomes complemented with our novel data predominantly represent hepaciviruses
648 from Africa and Asia. Due to limited sampling, hepaciviruses from non-mammalian hosts,
649 marsupial, carnivora and shrews are represented by only a restricted number of locations.
650 Equine and bovine hepacivirus clades both contain sequences sampled worldwide, which are
651 relatively intermixed, thus suggesting a dynamic dispersal history likely impacted by
652 anthropogenic factors. Thanks to a relatively extensive sampling, rodent hepaciviruses cover a
653 much broader spatial distribution. In the coinfection clade of *Lophuromys* hepaciviruses we
654 exclusively observe African-specific viruses, while all the other RHVs tend to be structured by
655 location. One such example are RHVs originating from Asia, which form several small clusters
656 and are distinct from those originating from Europe or Africa. In addition, evidence of potential
657 geographic isolation is also observed in bat hepaciviruses, although on a much more limited
658 sampling. In conclusion, we observe that both host species and geography have shaped
659 hepacivirus diversification, however, it remains challenging to determine their relative impact
660 without a formal comparison.

661
662 **Fig. 5. Geographic distribution of hepaciviruses based on complete genome sampling locations.** Except for
663 the HCV genotypes, clade colors in the hepacivirus ML tree correspond to geographic locations in the map. Only
664 major host types occupying a clade are marked with icons next to the phylogeny. Arthropods hepaciviruses, which
665 include one tick hepacivirus close to marsupial viruses, three tick hepaciviruses from cattle, one mosquito
666 hepacivirus clustering with bird viruses, as well as one canine hepacivirus within the equine lineage are all marked
667 with black dots at the tips.

668
669 To this end, we explored the extent to which hepacivirus diversity is structured by geography
670 and host species using a Bayesian multidimensional scaling (BMDS) approach that employs
671 pairwise host and geographic distances (see Methods, section 2.6). We estimated Pagel's
672 lambda as a measure of phylogenetic signal for the host and geographic traits, either in a strict
673 Brownian diffusion model or a relaxed random walk model. For the latter, we estimated the
674 standard deviation of the lognormal distribution as a measure of the heterogeneity in the
675 diffusion process in host and geographic space. A 5-fold cross-validation approach was applied
676 to i) all mammalian hepaciviruses in our data set ($n = 257$) and ii) to a subset containing only

677 a single representative for bovine and equine viruses, respectively, as well as for clusters of
678 viruses that were sampled from the same host and country ($n = 123$). This analysis indicated
679 that a one-dimensional model provided the best fit to the data in our BMDS approach, and
680 therefore we consistently adopted this model in all our investigations.

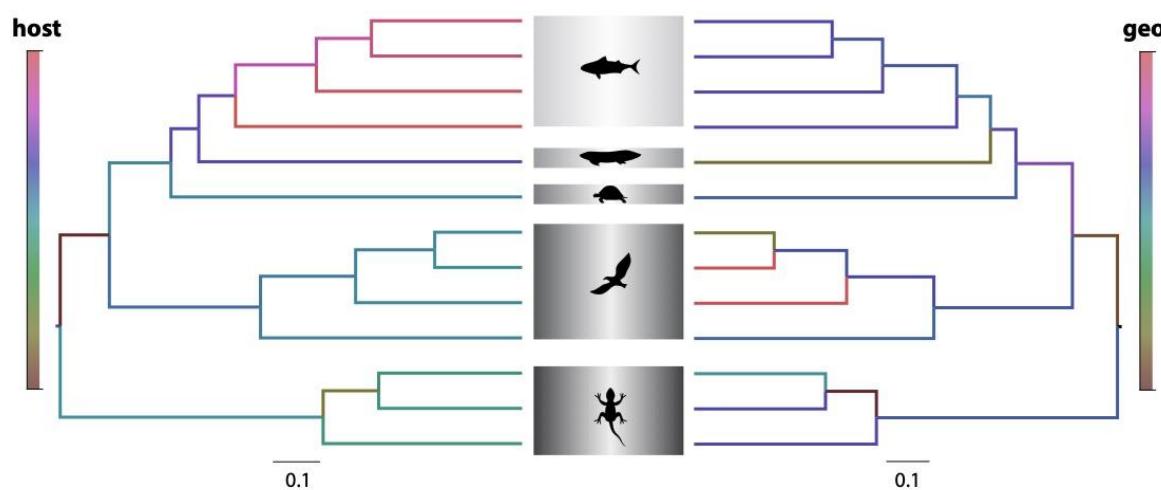
681
682 In Table 1, we summarize the posterior estimates for Pagel's lambda and the lognormal
683 standard deviation of the RRWs for different subsets of the hepacivirus data. These include all
684 non-mammalian hepaciviruses ($n = 13$), all mammalian hepaciviruses ($n = 257$), a mammalian
685 subset with only a single representative for clusters of viruses that were sampled from the same
686 host and country ($n = 160$), a subset of the latter with only a single representative for bovine
687 and equine viruses ($n = 123$), only rodent viruses ($n = 95$) and only rodent viruses excluding
688 those sampled from co-infected individuals ($n = 68$). Pagel's lambda estimates for mammalian
689 data sets indicate a high phylogenetic signal for both host and geography in our BMDS
690 approach and hence no discriminatory power to distinguish between the two. We obtained
691 substantially different estimates only for the small non-mammalian data set, with higher signal
692 for host structure than for geographical structure. This can be also seen in the colored
693 phylogeny (Fig. 6), where the host trait indeed leads to more variation. For only one
694 mammalian subset, we obtained a somewhat lower phylogenetic signal estimate for geography
695 when using a strict Brownian model. However, when using only a single bovine and equine
696 hepacivirus in the subset, we estimated again a high degree of geographic signal. This indicates
697 a higher degree of hepacivirus spatial dispersal in equids and cattle (Fig. 7), which is likely
698 shaped by human-assisted movement on a global scale.

699
700 In contrast to the phylogenetic signal estimates, the RRW standard deviation estimates are
701 markedly different for the diffusion process in host and geographic space in the mammalian
702 virus data sets. Specifically, we obtained consistently higher estimates for the geographic
703 diffusion process indicating more variability or heterogeneity than for the host diffusion
704 process. In the rodent data sets, we estimated less heterogeneity in the geographic diffusion
705 process as compared to the collection of mammalian viruses, but also in these cases the host
706 diffusion process is more regular.

707
708
709
710

711 **Table 1. Mean posterior estimates and 95% highest density posterior intervals for Pagel's lambda and the**
 712 **relaxed random walk standard deviation.**

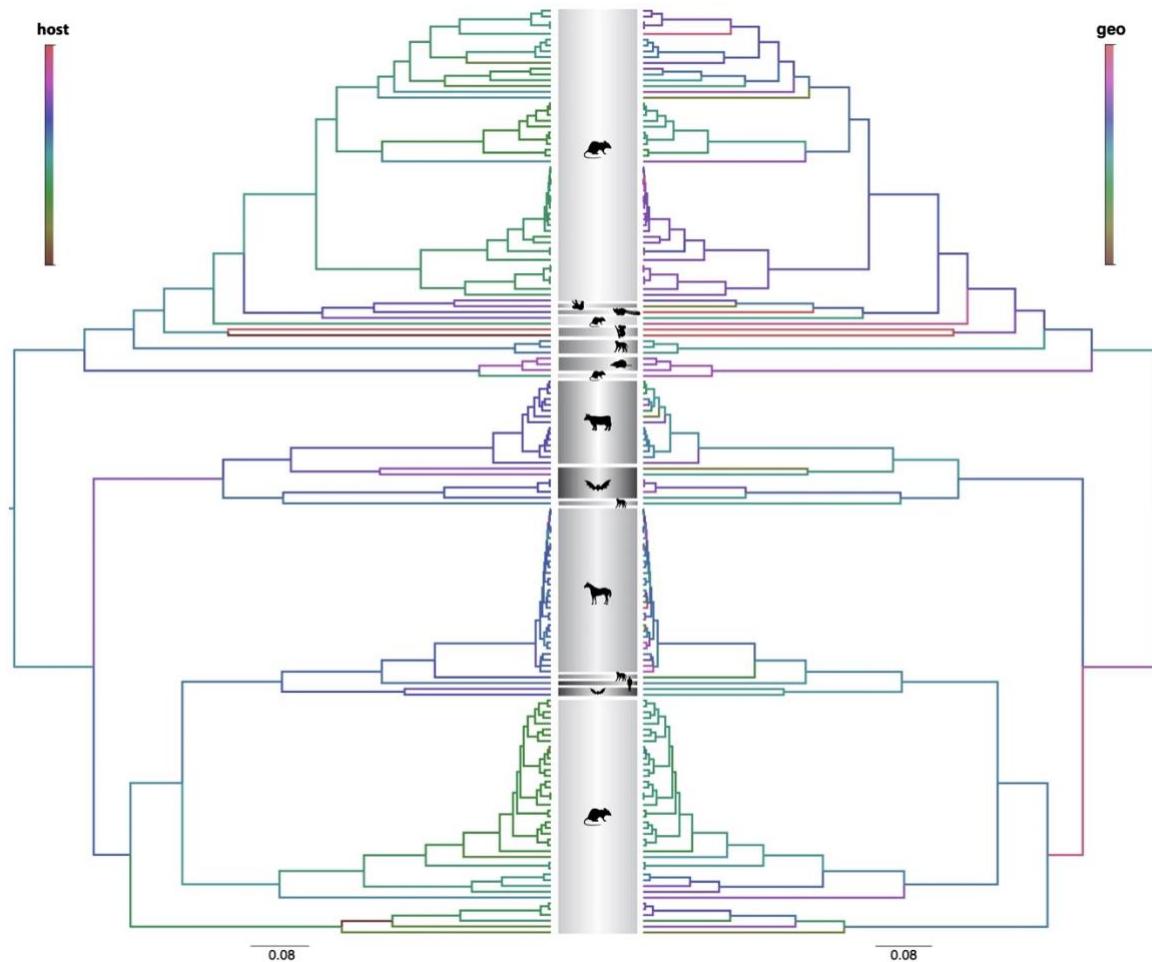
Data set size		Strict Brownian		Relaxed random walk			
		Lambda		Lambda		Standard deviation	
		Host	Geo	Host	Geo	Host	Geo
Non-mammalian	13	0.7733 (0.3543, 0.9999)	0.2833 (0.0001, 0.7263)	0.8343 (0.4436, 0.9999)	0.2548 (0.0003, 0.684)	1.9475 (0.0263, 4.8118)	1.7737 (0.0076, 4.2552)
Mammalian	257	0.9999 (0.9996-1.0000)	0.9999 (0.9998-1.0000)	0.9967 (0.9945-0.9987)	0.9998 (0.9997-1.0000)	1.5855 (0.2109,3.7811)	23.395 (15.8077,30.5774)
Mammalian subset 1*	160	0.9997 (0.9991-1.0000)	0.7383 (0.5573-0.8809)	0.9998 (0.9996-1.0000)	0.9999 (0.9976-0.9999)	5.764 (2.8956,8.6949)	14.905 (8.5009,19.6000)
Mammalian subset 2**	123	0.9996 (0.9972-1.0000)	0.9997 (0.9942-1.0000)	0.9998 (0.9993-1.0000)	0.9999 (0.9996-1.0000)	5.4163 (2.7742,8.5257)	8.849 (5.0008,13.2999)
Rodent	95	0.9996 (0.9989-1.0000)	0.9997 (0.9990-1.0000)	1.0000 (0.9999,1.0000)	1.0000 (0.9999,1.0000)	2.1285 (0.5031,4.1033)	4.041 (1.8113,7.0174)
Rodent, no co-infections	68	0.9994 (0.9979-1.0000)	0.9994 (0.9980-1.0000)	0.9998 (0.9993-1.0000)	0.9945 (0.9811,1.0000)	2.6692 (0.8834,4.9230)	5.982 (3.0039,10.0134)


713

714 * Mammalian subset with only single representatives for clusters of viruses that were sampled from the same host
 715 and country

716 ** Same as above with only single representatives for the bovine and equine viruses

717


718

719

720 **Fig. 6. Non-mammalian hepatitis C virus (n = 13) phylogeny colored by precisions of host distances and**
 721 **geographical distances generated from the strict Brownian one-dimensional BMDS analysis. The two**
 722 **phylogenies were derived from the same Bayesian maximum clade credibility (MCC) tree.**

723

724

725 **Fig. 7. Mammalian hepacivirus (subset 1, $n = 160$) phylogeny colored by precisions of host distances and**
726 **geographical distances generated from the strict Brownian one-dimensional BMDS analysis.** The two
727 phylogenies were derived from the same Bayesian maximum clade credibility (MCC) tree.

728

729 **Divergence dating reveals the deep hepacivirus evolutionary history**

730 To assess our ability to estimate short-term evolutionary rates for hepaciviruses, we selected
731 five lineages from our hepacivirus data set, which included the bovine and equine-canine
732 hepacivirus clades, and three RHV sub-clades with relatively low genetic diversity
733 (Supplementary Fig. 1). In addition, we included genomic data sets for HCV genotypes 1a, 1b
734 and 3a. Prior to testing for temporal signal using the Bayesian Evaluation of Temporal Signal
735 (BETS) approach, we explored the impact of recombination in those datasets. Significant
736 evidence for recombination was detected in the bovine, equine, rodent 1 and rodent 3
737 hepacivirus lineages (Supplementary Table 8). Recombinant regions were masked and the
738 datasets were further reduced by only keeping sequences with known sampling time.

739

740 For each host-specific lineage, we estimated the (log) Bayes factor support for a model that
741 employs sampling time (dated tips) against a model that treats sequences as contemporaneous
742 (same sampling time) This BETS analysis revealed that the equine hepacivirus lineage, as well
743 as HCV genotypes 1a, 1b and 3a exhibit strong support for the presence of temporal signal (log
744 Bayes factor > 3). For the bovine and the three rodent hepacivirus lineages tested, BETS
745 reported evidence against significant temporal signal (Table 2.).

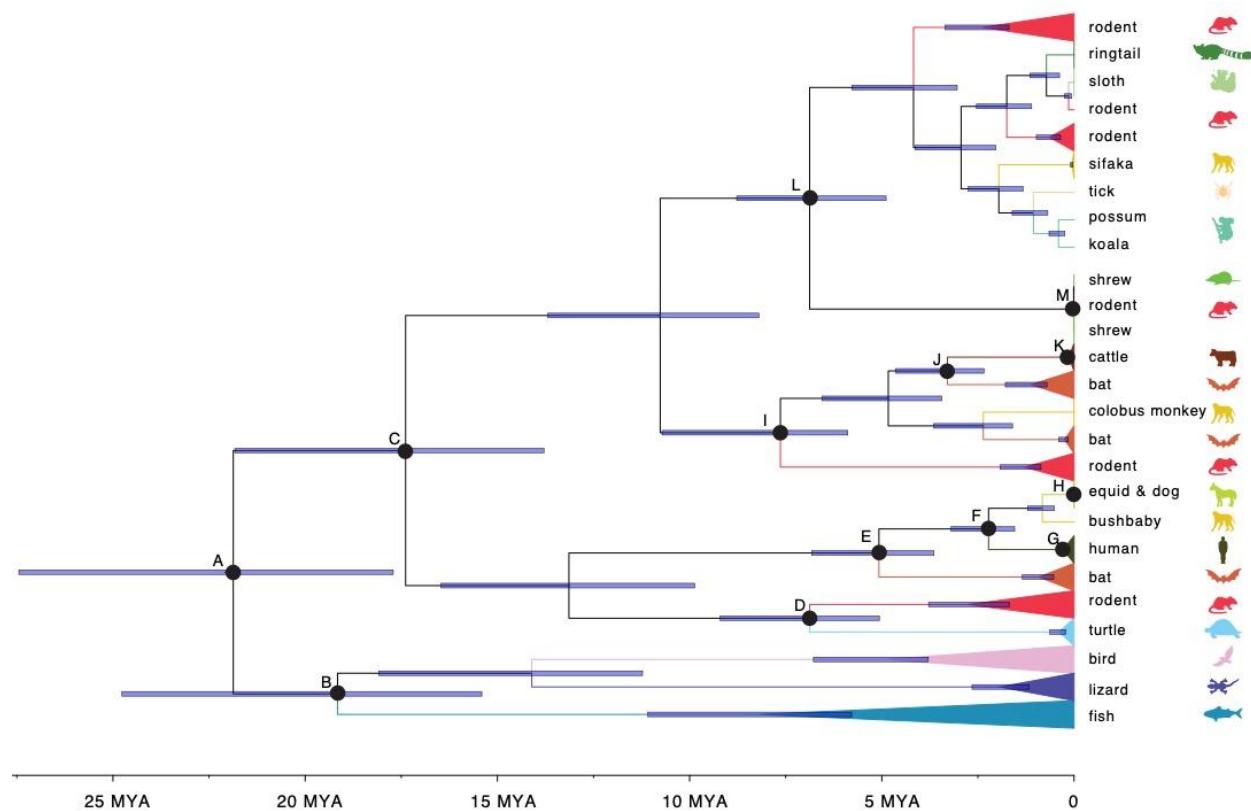
746

747

Table 2. Temporal signal results from BETS.

Lineage	No. of genomes	Sampling time window	Sampling date range (years)	Bayes factor (dated vs contemporaneous)
HCV1a	35	1997-2014	17	6.48
HCV1b	34	1990-2015	25	36.71
HCV3a	35	2002-2014	12	6.13
bovine	19	2011-2018	7	-1.26
equine	35	1979-2021	42	7.96
rodent lineage 1	13	2010-2018	8	0.10
rodent lineage 2	25	2006-2018	12	-4.74
rodent lineage 3	50	2010-2018	8	-21.12

748


749 Using the short-term substitution rate of 4.6 (95% HPD: 3.9 – 5.4) $\times 10^{-4}$ substitutions per site
750 per year estimated from HCV genotypes 1a, 1b and 3a, we applied the recently developed
751 mechanistic time-dependent rate decay PoW model to date the hepacivirus evolutionary history
752 (Ghafari et al. 2021). Based on the PoW model estimates, we estimate the tMRCA of the
753 mammalian and non-mammalian hepaciviruses to be 21.9 (17.8 – 27.4) million years ago
754 (MYA), thus, indicating that the origins of the *Hepacivirus* genus occurred at least around that
755 time (Fig. 8 and Table 3). Hepaciviruses from fish, reptiles and avian hosts diverged 19.2 (15.4
756 – 24.8) MYA, while the mammalian hepaciviruses split dates back to 17.4 (13.8 – 21.8) MYA.
757 Interestingly, this split coincides with the rodent and bat hepacivirus diversification, which
758 concords with a deep evolutionary history of these lineages, driven to some extent by host
759 switching events to other mammalian species.

760

761 When focusing on the descendant clades, bovine, bat and non-human primate hepaciviruses
762 separated from RHVs (node I in Fig. 8) around 7.6 (5.9 – 10.7) MYA, whereas the tMRCA of
763 the diverse mammalian cluster 1 (Fig. 1 – or node L in Fig. 8) is estimated at 6.9 (4.9 – 8.8)

764 MYA. Furthermore, we estimate that the common ancestor of the HCV genotypes dates back
765 to 283 (183 – 447) KYA, in broad agreement with the HCV divergence time estimates reported
766 by Ghafari et al. (2021). Finally, the most recent radiations correspond to the bovine, equine-
767 canine and shrew hepacivirus lineages, which appear to have diversified 135 (83.1 – 223) KYA,
768 13.5 (7.2 – 21.8) KYA and 11.3 (5.5 – 21.8) KYA, respectively. These time estimates indicate
769 that HCV originated much earlier than the emergence of these hepacivirus lineages, unless
770 HCV was introduced through multiple zoonotic jumps more recently from a hitherto
771 unsampled reservoir.

772

774 **Fig. 8. Time-scaled hepaciviruses phylogeny obtained using the PoW-model.** Lineages were collapsed based
775 on the host type. Node age uncertainty is shown with 95% highest posterior density (HPD) as interval blue bars.
776 Nodes of interest are marked as A - M for further discussion, and the tMRCA and 95% HPD are listed in Table
777 3.

778

779

Table. 3. Hepaciviruses divergence times for particular nodes of interest.

Node of interest	tMRCA	95% HPD
A: root	21.9 MYA	17.8-27.4 MYA
B: non mammalian hepacivirus	19.2 MYA	15.4-24.8 MYA
C: major mammalian hepacivirus	17.4 MYA	13.8-21.8 MYA
D: turtle/rodent	6.9 MYA	5.1-9.2 MYA
E: bat/equids-bushbaby-human	5.1 MYA	3.6-6.8 MYA
F: human/equids-bushbaby	2.2 MYA	1.5-3.2 MYA
G: human	283 KYA	183-447 KYA
H: equids & dog	13.5 KYA	7.2-21.8 KYA
I: rodent/cattle-bat-colobus monkey	7.6 MYA	5.9-10.7 MYA
J: bat/cattle	3.3 MYA	2.3-4.6 MYA
K: cattle	135 KYA	83.1-223 KYA
L: rodent complex	6.9 MYA	4.9-8.8 MYA
M: shrew & rodent	11.3 KYA	5.5-21.8 KYA

780

781 **Discussion**

782 Animal hepaciviruses have received considerable attention during the last decade because of
783 the search for the zoonotic origin of HCV and the interest in developing surrogate animal
784 models for HCV clinical and vaccine studies (Hartlage et al. 2016; Trivedi et al. 2018). In this
785 work, we screened a comprehensive collection of wild mammalian specimens ($n = 1,672$)
786 mainly from Africa and Asia. Our screening complements previous efforts and extends the host
787 range of hepaciviruses in the rodent population by identifying 13 novel host species and 3 novel
788 host genera, particularly in the Cricetidae and Muridae families. We also contribute to
789 knowledge of the geographic distribution of rodent hepacivirus genomes, not only by extending
790 the sampling locations within China and Africa, but also by including specimens from
791 previously unrepresented locations in the Middle East and Western Africa.

792

793 In our screening, we observed that the percentage of hepacivirus positive samples varied
794 considerably among host species. Although this might be biased due to the uneven number of
795 specimens tested per host species, it may also suggest a potentially uneven hepacivirus
796 prevalence in natural rodent populations. The sampling bias and variation of hepacivirus

797 prevalence among different host species should be considered when assessing the spatial
798 distribution of hepaciviruses, especially for locations with high host species diversity.

799

800 Our genome-wide virus phylogeny demonstrates that small mammals, especially bats and
801 rodents, constitute an important source of divergent hepaciviruses. The clustering of these virus
802 genomes does not follow the mammalian taxonomy, which hints to a potentially large number
803 of cross-species transmission events during the hepacivirus evolutionary history. Those
804 multiple host-switching events are further supported by the results of our co-phylogenetic
805 analysis, where we observe a high degree of incongruence between virus and host trees,
806 especially between taxa corresponding to shallow nodes. This is in line with previous studies,
807 which estimated a frequency of 65% of all evolutionary events in the hepacivirus and pegivirus
808 genera to represent cross-species transmission (Mifsud et al. 2023). Despite frequent host
809 jumps, the deeper hepacivirus topology appears to reflect an important role of virus-host co-
810 divergence that is also supported by our observation of an overall significant signal of co-
811 divergence. Mifsud et al. (2023) have detected and quantified an accompanying signal of virus-
812 host co-divergence in their analyses (frequency of 22% of all evolutionary events), indicating
813 that hepaciviruses may to some extent have co-diverged with their hosts over longer
814 evolutionary timescales. Taken together, our results corroborate the hypothesis that
815 hepaciviruses have crossed the species barriers multiple times in the past, either in cases of
816 spillover between species from the same genus (Walter et al. 2017; Bletsa et al. 2021) or across
817 different orders (Pybus and Thézé 2016; Moreira-Soto et al. 2020). Relatively frequent cross-
818 species transmission is commonly observed in rapidly-evolving RNA viruses (Geoghegan et
819 al. 2017; Shi et al. 2018).

820

821 Due to the wide host spectrum of hepaciviruses and their high genetic heterogeneity, virus
822 phylogenetic relationships have previously been explored mainly from the perspective of their
823 hosts' diversity (Pybus and Thézé 2016; Porter et al. 2020; Bletsa et al. 2021; Mifsud et al.
824 2023). However, the spatial component of prevalence can be also crucial in shaping virus
825 diversity. Hepacivirus spatial structure has so far been investigated only at an intraspecies level,
826 for instance, within HCV genotypes (Markov et al. 2009; Iles et al. 2014; Hostager et al. 2019).
827 To compare the extent to which geography and hosts have influenced viral diversification
828 within the *Hepacivirus* genus, we adopted a BMDS approach based on host genetic and
829 geographic distances. This approach has previously been used to assess the antigenic evolution

830 of influenza strains (Bedford et al. 2014; Langat et al. 2017) and to evaluate how mobility
831 processes have shaped viral dispersal (Holbrook et al. 2021). Using a measure of phylogenetic
832 signal did not allow us to meaningfully distinguish between the degree of host and spatial
833 structuring in the mammalian hepaciviruses; both generally exhibited high phylogenetic signal,
834 although some impact of hepaciviruses in livestock was noted that can be explained by human
835 transportation. We note that a phylogenetic signal measure (Pagel's lambda) close to 1 does not
836 necessarily imply an absolute clustering according to this trait, but that the trait distribution
837 follows the pattern that is expected under a Brownian diffusion process over the phylogeny.
838 As such a high phylogenetic signal measure for the host trait does not necessarily imply strong
839 co-divergence, and it could be compatible with a process of preferential host switching
840 (Charleston and Robertson 2002). Based on a measure of diffusion rate variability in relaxed
841 random walk models, we recover more pronounced differences between host and geographic
842 diffusion processes in mammalian hosts. Specifically, we detect a considerably higher degree
843 of variability in the geographic diffusion process, but it remains challenging to provide a clear
844 interpretation of this.

845
846 Contrary to the mammalian hepaciviruses, non-mammalian hepaciviruses show a markedly
847 different pattern with a substantially higher phylogenetic signal according to host compared to
848 geography. The non-mammalian hosts include relatively closely related host types, such as
849 birds or fish, which are globally distributed and thus the host structure component is expected
850 to have a stronger effect on the diffusion process. Moreover, the comparably higher host
851 phylogenetic signal might also be caused by a more prominent virus-host co-divergence
852 process (relative to cross-species transmissions) in the more sparsely sampled non-mammalian
853 hepacivirus evolutionary history (Porter et al. 2020; Mifsud et al. 2023). It is indeed important
854 to acknowledge that the relatively sparse sampling, both in terms of the number of available
855 virus genomes and the variation in sampling locations, of the non-mammalian hepacivirus
856 dataset may impact the host-geography comparative analyses.

857
858 Complementing previous results by Bletsa et al. (2021), we find that *Lophuromys* rodents
859 (brush-furred mice) from central and western Africa frequently harbor hepacivirus co-
860 infections. The distribution of hepacivirus co-infection strains within Africa (West, Central and
861 East Africa) seems to be associated with the distribution of the *Lophuromys* rodents and
862 suggests that this finding is most likely restricted to members of this particular rodent genus,
863 although the ecological reason for this is still unclear (Bletsa et al. 2021). The majority of our

864 hepacivirus genomes obtained from co-infected individuals form sister lineages in the
865 phylogenetic tree and provide significant links in the reconciliation analysis. Given the close
866 phylogenetic distance between both the *Lophuromys* hosts and the co-infection strains, it seems
867 reasonable that we have not yet observed any impact caused by the RHV co-infections on either
868 our overall virus-host co-phylogenetic or BMDS analyses, since we obtained similar results
869 with or without including all the RHV genomes from the co-infected individuals.

870

871 Using a substitution rate decay model to account for time dependent rates, we formally infer
872 for the first time the timescale for the long-term evolutionary history of the *Hepacivirus* genus
873 from present-day virus genome data only. We estimate that the origin of hepacivirus dates back
874 to about 22 million years ago. In very broad terms, the ancient origin of this virus genus is also
875 implied by previous studies, which suggested an origin of the whole *Flaviviridae* family close
876 to the emergence of metazoans 750-800 million years ago (Bamford et al. 2022; Mifsud et al.
877 2023). However, those previous estimates include all flavivirid groups (*Flavi-*, *Hepaci-*, *Pegi-*
878 and *Pestivirus* genera) and provide estimates of the evolutionary origins based on virus-host
879 co-divergence hypotheses combined with EVEs calibrations. While our hepacivirus molecular
880 dating estimates cannot be directly compared to the estimates of the whole *Flaviviridae* family,
881 the divergence dates for subclades seems to be in very good agreement with the divergence
882 date of the HCV genotypes (Ghafari et al. 2021).

883

884 In terms of other hepacivirus subclades, the presence of mammalian hepaciviruses (17.4 MYA)
885 is estimated to have originated much earlier than the origin of modern humans (0.3 – 1 MYA)
886 (Bergström et al. 2021), thus emphasizing that the virus was possibly circulating in non-human
887 mammalian hosts for millions of years before it was introduced into the human population
888 through a single or multiple cross-species transmission events. The HCV zoonotic source has
889 been often proposed to lie in rodents or bats due to the great genetic hepacivirus diversity
890 circulating in these animals and their general importance as pathogen reservoirs (Drexler et al.
891 2013; Kapoor et al. 2013; de Souza et al. 2019; Bletsa et al. 2021). Our time tree also
892 demonstrates that rodent hepaciviruses diverged earlier than hepaciviruses from other
893 mammalian hosts and that their divergence overlaps with the MRCA of the entire mammalian
894 hepacivirus group. This suggests a possible rodent origin for many other mammalian
895 hepaciviruses, although the transmission routes from those small mammals to other
896 mammalian hosts remain unknown. Finally, our results do not support the current bovine,
897 equine, canine, or shrew hepaciviruses as the origin of HCV, since HCV is more diversified

898 and diverged earlier than the equine, canine and shrew hepaciviruses. We expect that a more
899 complete picture of the hepacivirus diversity and potential zoonotic reservoirs for HCV may
900 emerge from additional screening efforts. The origin of equine and canine hepacivirus is
901 estimated to be 13.5 KYA, well aligned with the start of agriculture communities development
902 and livestock domesticating (12 - 14 KYA) (Hartung 2013). The bovine hepacivirus originated
903 at 135 KYA, which seems to suggest an hepacivirus introduction into the aurochs population
904 before domesticating. However, the complex domestication patterns and introgression in
905 bovine evolutionary history (Murray et al. 2010; Upadhyay et al. 2017) make the hepacivirus
906 emergence event difficult to interpret. Finally, we acknowledge that our estimates of the time
907 scale are primarily derived from the application of the PoW model on present-day virus
908 sequence data and currently rely on the modern rate of HCV and the maximum substitution
909 rate of ssRNA viruses in general. Given the very deep evolutionary history of hepaciviruses
910 and the overall scarcity of archival molecular data, which are considered genomic fossil records,
911 our results may be sensitive to the type of model applied and they may change when additional
912 data will become available in the future.

913

914 In summary, we show that the current phylogeny for members of the *Hepacivirus* genus is
915 largely characterized by a complex combination of micro- and macroevolutionary processes
916 having occurred over timescales of millions of years. We envisage that the methods applied in
917 this study and the novel results obtained will inspire future research on virus evolutionary
918 dynamics and phylogeography of hepaciviruses and, hopefully, lead to uncovering an even
919 wider diversity of circulating animal hepaciviruses.

920

921 **Acknowledgement:**

922 PL and MAS acknowledge support from the European Research Council (grant agreement no.
923 725422 – ReservoirDOCS), the National Institutes of Health (R01 AI153044), the Wellcome
924 Trust ARTIC (Collaborators Award 206298/Z/17/Z ARTIC network) & supplement, the
925 Research Foundation - Flanders (Fonds voor Wetenschappelijk Onderzoek - Vlaanderen,
926 G066215N, G0D5117N and G0B9317N) and by HORIZON 2020 EU grant 874850 MOOD.
927 YL acknowledges the support from China Scholarship Council (CSC). MG acknowledges
928 support from the Biotechnology and Biological Science Research Council (BBSRC) grant
929 number BB/M011224/1. AJH acknowledges support from the National Science Foundation
930 (DMS 2236854 and DMS 2152774) and the National Institutes of Health (K25 AI153816). SC
931 and JPW acknowledge support from the Zoonoses and Emerging Livestock Systems

932 programme (grant no. BB/L018985). JGB acknowledges support from the Czech Science
933 Foundation (22-32394S).

934

935 **Data availability**

936 All sequences generated in this study have been submitted in the NCBI GenBank database
937 under the following accession numbers:

938 – 34 rodent hepacivirus genomes (OM161982 - OM161997, OM161999 - OM162013,
939 OM162015 - OM162017)

940 – 22 rodent cytochrome b sequences (OM324311 - OM324328, OM324330 - OM324333).

941

942 **References:**

943 Abascal F, Zardoya R, Telford MJ. 2010. TranslatorX: multiple alignment of nucleotide
944 sequences guided by amino acid translations. *Nucleic Acids Res* 38:W7–W13.

945 Aiewsakun P, Katzourakis A. 2016. Time-Dependent Rate Phenomenon in Viruses. Ross SR,
946 editor. *J Virol* 90:7184–7195.

947 Andrews S. 2010. Babraham Bioinformatics - FastQC A Quality Control tool for High
948 Throughput Sequence Data. Available from:
949 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

950 Arenas M, Posada D. 2010. The Effect of Recombination on the Reconstruction of Ancestral
951 Sequences. *Genetics* 184:1133–1139.

952 Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO, Hulsenbeck JP, Ronquist
953 F, Swofford DL, Cummings MP, et al. 2012. BEAGLE: An Application Programming
954 Interface and High-Performance Computing Library for Statistical Phylogenetics.
955 *Systematic Biology* 61:170–173.

956 Baele G, Lemey P, Suchard MA. 2016. Genealogical Working Distributions for Bayesian
957 Model Testing with Phylogenetic Uncertainty. *Syst Biol* 65:250–264.

958 Balbuena JA, Míguez-Lozano R, Blasco-Costa I. 2013. PACo: A Novel Procrustes Application
959 to Cophylogenetic Analysis. *PLoS One* 8:e61048.

960 Bamford CGG, de Souza WM, Parry R, Gifford RJ. 2022. Comparative analysis of genome-
961 encoded viral sequences reveals the evolutionary history of flavivirids (family
962 Flaviviridae). *Virus Evolution*:veac085.

963 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
964 Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: A New Genome Assembly
965 Algorithm and Its Applications to Single-Cell Sequencing. *J Comput Biol* 19:455–477.

966 Bedford T, Suchard MA, Lemey P, Dudas G, Gregory V, Hay AJ, McCauley JW, Russell CA,
967 Smith DJ, Rambaut A. 2014. Integrating influenza antigenic dynamics with molecular
968 evolution. Losick R, editor. *eLife* 3:e01914.

969 Bergström A, Stringer C, Hajdinjak M, Scerri EML, Skoglund P. 2021. Origins of modern
970 human ancestry. *Nature* 590:229–237.

971 Bletsa M, Vrancken B, Gryseels S, Boonen I, Fikatas A, Li Y, Laudisoit A, Lequime S, Bryja
972 J, Makundi R, et al. 2021. Molecular detection and genomic characterization of diverse
973 hepaciviruses in African rodents. *Virus Evolution* 7:veab036.

974 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
975 data. *Bioinformatics* 30:2114–2120.

976 Bonwitt J, Sáez AM, Lamin Joseph, Ansumana R, Dawson M, Buanie J, Lamin Joyce, Sondufu
977 D, Borchert M, Sahr F, et al. 2017. At Home with Mastomys and Rattus: Human-
978 Rodent Interactions and Potential for Primary Transmission of Lassa Virus in Domestic
979 Spaces. *The American Journal of Tropical Medicine and Hygiene* 96:935–943.

980 Breitfeld J, Fischer N, Tsachev I, Marutsov P, Baymakova M, Plhal R, Keuling O, Becher P,
981 Baechlein C. 2022. Expanded Diversity and Host Range of Bovine Hepacivirus—
982 Genomic and Serological Evidence in Domestic and Wild Ruminant Species. *Viruses*
983 14:1457.

984 Bruen TC, Philippe H, Bryant D. 2006. A Simple and Robust Statistical Test for Detecting the
985 Presence of Recombination. *Genetics* 172:2665–2681.

986 Buchfink B, Reuter K, Drost H-G. 2021. Sensitive protein alignments at tree-of-life scale using
987 DIAMOND. *Nat Methods* 18:366–368.

988 Cagliani R, Formi D, Sironi M. 2019. Mode and tempo of human hepatitis virus evolution.
989 *Comput Struct Biotechnol J* 17:1384–1395.

990 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009.
991 BLAST+: architecture and applications. *BMC Bioinformatics* 10:421.

992 Castiglione S, Serio C, Mondanaro A, Melchionna M, Raia P. 2022. Fast production of large,
993 time-calibrated, informal supertrees with tree.merger. *Palaeontology* 65:e12588.

994 Charleston MA, Robertson DL. 2002. Preferential Host Switching by Primate Lentiviruses Can
995 Account for Phylogenetic Similarity with the Primate Phylogeny. *Systematic Biology*
996 51:528–535.

997 Choo Q-L, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. 1989. Isolation of a
998 cDNA Clone Derived from a Blood-Borne Non-A, Non-B Viral Hepatitis Genome.
999 *Science, New Series* 244:359–362.

1000 Corman VM, Grundhoff A, Baechlein C, Fischer N, Gmyl A, Wollny R, Dei D, Ritz D, Binger
1001 T, Adankwah E, et al. 2015. Highly Divergent Hepaciviruses from African Cattle.Ou
1002 J-HJ, editor. *J Virol* 89:5876–5882.

1003 Criscuolo A, Gribaldo S. 2010. BMGE (Block Mapping and Gathering with Entropy): a new
1004 software for selection of phylogenetic informative regions from multiple sequence
1005 alignments. *BMC Evol Biol* 10:210.

1006 Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T,
1007 McCarthy SA, Davies RM, et al. 2021. Twelve years of SAMtools and BCFtools.
1008 *GigaScience* 10:giab008.

1009 Drexler JF, Corman VM, Müller MA, Lukashev AN, Gmyl A, Coutard B, Adam A, Ritz D,
1010 Leijten LM, van Riel D, et al. 2013. Evidence for Novel Hepaciviruses in
1011 Rodents.Wang D, editor. *PLoS Pathog* 9:e1003438.

1012 Duchêne S, Holmes EC, Ho SYW. 2014. Analyses of evolutionary dynamics in viruses are
1013 hindered by a time-dependent bias in rate estimates. *Proc. R. Soc. B.* 281:20140732.

1014 Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng
1015 C, et al. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses
1016 the ACE2 receptor. *Nature* 503:535–538.

1017 Geoghegan JL, Duchêne S, Holmes EC. 2017. Comparative analysis estimates the relative
1018 frequencies of co-divergence and cross-species transmission within viral
1019 families. Drosten C, editor. *PLoS Pathog* 13:e1006215.

1020 Ghafari M, Simmonds P, Pybus OG, Katzourakis A. 2021. A mechanistic evolutionary model
1021 explains the time-dependent pattern of substitution rates in viruses. *Current Biology*
1022 31:4689-4696.e5.

1023 Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in
1024 multidimensional genomic data. *Bioinformatics* 32:2847–2849.

1025 Hahn BH, Shaw GM, De KM, Cock, Sharp PM. 2000. AIDS as a Zoonosis: Scientific and
1026 Public Health Implications. *Science* 287:607–614.

1027 Hartlage AS, Cullen JM, Kapoor A. 2016. The Strange, Expanding World of Animal
1028 Hepaciviruses. *Annu. Rev. Virol.* 3:53–75.

1029 Hartung J. 2013. A short history of livestock production. In: Aland A, Banhazi T, editors.
1030 Livestock housing. The Netherlands: Wageningen Academic Publishers. p. 21–34.
1031 Available from: https://www.wageningenacademic.com/doi/10.3920/978-90-8686-771-4_01

1032

1033 Harvey E, Rose K, Eden J-S, Lo N, Abeyasuriya T, Shi M, Doggett SL, Holmes EC. 2019.
1034 Extensive Diversity of RNA Viruses in Australian Ticks. *Journal of Virology*
1035 93:e01358-18.

1036 Holbrook AJ, Lemey P, Baele G, Dellicour S, Brockmann D, Rambaut A, Suchard MA. 2021.
1037 Massive parallelization boosts big Bayesian multidimensional scaling. *J Comput Graph
1038 Stat* 30:11–24.

1039 Hostager R, Ragonnet-Cronin M, Murrell B, Hedskog C, Osinusi A, Susser S, Sarrazin C,
1040 Svarovskaia E, Wertheim JO. 2019. Hepatitis C virus genotype 1 and 2 recombinant
1041 genomes and the phylogeographic history of the 2k/1b lineage. *Virus Evolution*
1042 5:vez041.

1043 Huang X, Madan A. 1999. CAP3: A DNA Sequence Assembly Program. *Genome Res* 9:868–
1044 877.

1045 Huson DH, Bryant D. 2006. Application of Phylogenetic Networks in Evolutionary Studies.
1046 *Molecular Biology and Evolution* 23:254–267.

1047 Iles JC, Raghwani J, Harrison GLA, Pepin J, Djoko CF, Tamoufe U, LeBreton M, Schneider
1048 BS, Fair JN, Tshala FM, et al. 2014. Phylogeography and epidemic history of hepatitis
1049 C virus genotype 4 in Africa. *Virology* 464–465:233–243.

1050 Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire J-Y, Kupfer A, Petersen J, Jarek M, Meyer
1051 A, Vences M, et al. 2017. Phylotranscriptomic consolidation of the jawed vertebrate
1052 timetree. *Nat Ecol Evol* 1:1370–1378.

1053 Kapoor A, Simmonds P, Gerold G, Qaisar N, Jain K, Henriquez JA, Firth C, Hirschberg DL,
1054 Rice CM, Shields S, et al. 2011. Characterization of a canine homolog of hepatitis C
1055 virus. *Proc. Natl. Acad. Sci. U.S.A.* 108:11608–11613.

1056 Kapoor A, Simmonds P, Scheel TKH, Hjelle B, Cullen JM, Burbelo PD, Chauhan LV,
1057 Duraisamy R, Sanchez Leon M, Jain K, et al. 2013. Identification of Rodent Homologs
1058 of Hepatitis C Virus and Pegiviruses. Moscona A, editor. *mBio* 4:e00216-13.

1059 Katoh K. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast
1060 Fourier transform. *Nucleic Acids Research* 30:3059–3066.

1061 Kesäniemi J, Lavrinienko A, Tukalenko E, Mappes T, Watts PC, Jurvansuu J. 2019. Infection
1062 Load and Prevalence of Novel Viruses Identified from the Bank Vole Do Not Associate
1063 with Exposure to Environmental Radioactivity. *Viruses* 12:44.

1064 Langat P, Raghwan J, Dudas G, Bowden TA, Edwards S, Gall A, Bedford T, Rambaut A,
1065 Daniels RS, Russell CA, et al. 2017. Genome-wide evolutionary dynamics of influenza
1066 B viruses on a global scale. *PLoS Pathog* 13:e1006749.

1067 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods*
1068 9:357–359.

1069 Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets.
1070 *Bioinformatics* 30:3276–3278.

1071 Lemey P, Rambaut A, Welch JJ, Suchard MA. 2010. Phylogeography Takes a Relaxed
1072 Random Walk in Continuous Space and Time. *Molecular Biology and Evolution*
1073 27:1877–1885.

1074 Markov PV, Pepin J, Frost E, Deslandes S, Labbe A-C, Pybus OG. 2009. Phylogeography and
1075 molecular epidemiology of hepatitis C virus genotype 2 in Africa. *Journal of General*
1076 *Virology* 90:2086–2096.

1077 Martin DP, Lemey P, Posada D. 2011. Analysing recombination in nucleotide sequences.
1078 *Molecular Ecology Resources* 11:943–955.

1079 Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. 2015. RDP4: Detection and analysis
1080 of recombination patterns in virus genomes. *Virus Evolution* [Internet] 1. Available
1081 from: <https://academic.oup.com/ve/ve/article/2568683/RDP4>:

1082 Meier-Kolthoff JP, Auch AF, Huson DH, Goker M. 2007. COPYCAT: cophylogenetic
1083 analysis tool. *Bioinformatics* 23:898–900.

1084 Mifsud JCO, Costa VA, Petrone ME, Marzinelli EM, Holmes EC, Harvey E. 2023.
1085 Transcriptome mining extends the host range of the *Flaviviridae* to non-bilaterians.
1086 *Virus Evolution* 9:veac124.

1087 Moreira-Soto A, Arroyo-Murillo F, Sander A-L, Rasche A, Corman V, Tegtmeyer B,
1088 Steinmann E, Corrales-Aguilar E, Wieseke N, Avey-Arroyo J, et al. 2020. Cross-order
1089 host switches of hepatitis C-related viruses illustrated by a novel hepacivirus from
1090 sloths. *Virus Evolution* 6:veaa033.

1091 Murray C, Huerta-Sanchez E, Casey F, Bradley DG. 2010. Cattle demographic history
1092 modelled from autosomal sequence variation. *Philos Trans R Soc Lond B Biol Sci*
1093 365:2531–2539.

1094 Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A Fast and Effective
1095 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Molecular*
1096 *Biology and Evolution* 32:268–274.

1097 Olayemi A, Cadar D, Magassouba N, Obadare A, Kourouma F, Oyeyiola A, Fasogbon S,
1098 Igobokwe J, Rieger T, Bockholt S, et al. 2016. New Hosts of The Lassa Virus. *Sci Rep*
1099 6:25280.

1100 Pagel M. 1999. Inferring the historical patterns of biological evolution. *Nature* 401:877–884.

1101 Porter AF, Pettersson JH-O, Chang W-S, Harvey E, Rose K, Shi M, Eden J-S, Buchmann J,
1102 Moritz C, Holmes EC. 2020. Novel hepac- and pegi-like viruses in native Australian
1103 wildlife and non-human primates. *Virus Evolution* 6:veaa064.

1104 Pybus OG, Thézé J. 2016. Hepacivirus cross-species transmission and the origins of the
1105 hepatitis C virus. *Current Opinion in Virology* 16:1–7.

1106 Quan P-L, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM, Anthony SJ, Ellison JA,
1107 Gilbert AT, Kuzmin IV, Niegzoda M, et al. 2013. Bats are a major natural reservoir for
1108 hepatitis C viruses and pegiviruses. *Proc. Natl. Acad. Sci. U.S.A.* 110:8194–8199.

1109 Rambaut A, Lam TT, Max Carvalho L, Pybus OG. 2016. Exploring the temporal structure of
1110 heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus Evol*
1111 2:vew007.

1112 Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other
1113 things). *Methods in Ecology and Evolution* 3:217–223.

1114 Santichaivekin S, Yang Q, Liu J, Mawhorter R, Jiang J, Wesley T, Wu Y-C, Libeskind-Hadas
1115 R. 2021. eMPREss: a systematic cophylogeny reconciliation tool. Russell S, editor.
1116 *Bioinformatics* 37:2481–2482.

1117 Schierup MH, Hein J. 2000. Consequences of Recombination on Traditional Phylogenetic
1118 Analysis. *Genetics* 156:879–891.

1119 Schmid J, Rasche A, Eibner G, Jeworowski L, Page RA, Corman VM, Drosten C, Sommer S.
1120 2018. Ecological drivers of Hepacivirus infection in a neotropical rodent inhabiting
1121 landscapes with various degrees of human environmental change. *Oecologia* 188:289–
1122 302.

1123 Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets.
1124 *Bioinformatics* 27:863–864.

1125 Shao J-W, Guo L-Y, Yuan Y-X, Ma J, Chen J-M, Liu Q. 2021. A Novel Subtype of Bovine
1126 Hepacivirus Identified in Ticks Reveals the Genetic Diversity and Evolution of Bovine
1127 Hepacivirus. *Viruses* 13:2206.

1128 Sharp PM, Hahn BH. 2011. Origins of HIV and the AIDS Pandemic. *Cold Spring Harbor
1129 Perspectives in Medicine* 1:a006841–a006841.

1130 Shi M, Lin X-D, Chen X, Tian J-H, Chen L-J, Li K, Wang W, Eden J-S, Shen J-J, Liu L, et al.
1131 2018. The evolutionary history of vertebrate RNA viruses. *Nature* 556:197–202.

1132 Smith DB, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff AS, Pletnev A, Rico-
1133 Hesse R, Stapleton JT, et al. 2016. Proposed update to the taxonomy of the genera
1134 Hepacivirus and Pegivirus within the Flaviviridae family. *Journal of General Virology*
1135 97:2894–2907.

1136 de Souza W, Fumagalli M, Sabino-Santos G, Motta Maia F, Modha S, Teixeira Nunes M,
1137 Murcia P, Moraes Figueiredo L. 2019. A Novel Hepacivirus in Wild Rodents from
1138 South America. *Viruses* 11:297.

1139 Stamatakis A, Auch AF, Meier-Kolthoff J, Göker M. 2007. AxPcoords & parallel AxParafit:
1140 statistical co-phylogenetic analyses on thousands of taxa. *BMC Bioinformatics* 8:405.

1141 Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian
1142 phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evolution*
1143 4:vey016.

1144 Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis
1145 Version 11. *Mol Biol Evol* 38:3022–3027.

1146 Těšíková J, Bryjová A, Bryja J, Lavrenchenko LA, Goüy de Bellocq J. 2017. Hantavirus
1147 Strains in East Africa Related to Western African Hantaviruses. *Vector-Borne and
1148 Zoonotic Diseases* 17:278–280.

1149 Tomlinson JE, Kapoor A, Kumar A, Tennant BC, Laverack MA, Beard L, Delph K, Davis E,
1150 Schott Ii H, Lascola K, et al. 2019. Viral testing of 18 consecutive cases of equine serum
1151 hepatitis: A prospective study (2014-2018). *J Vet Intern Med* 33:251–257.

1152 Trivedi S, Murthy S, Sharma H, Hartlage AS, Kumar A, Gadi SV, Simmonds P, Chauhan LV,
1153 Scheel TKH, Billerbeck E, et al. 2018. Viral persistence, liver disease, and host
1154 response in a hepatitis C-like virus rat model. *Hepatology* 68:435–448.

1155 Upadhyay MR, Chen W, Lenstra JA, Goderie CRJ, MacHugh DE, Park SDE, Magee DA,
1156 Matassino D, Ciani F, Megens H-J, et al. 2017. Genetic origin, admixture and
1157 population history of aurochs (*Bos primigenius*) and primitive European cattle.
1158 *Heredity* 118:169–176.

1159 Upham NS, Esselstyn JA, Jetz W. 2019. Inferring the mammal tree: Species-level sets of
1160 phylogenies for questions in ecology, evolution, and conservation. Tanentzap AJ, editor.
1161 *PLoS Biol* 17:e3000494.

1162 Van Nguyen D, Van Nguyen C, Bonsall D, Ngo T, Carrique-Mas J, Pham A, Bryant J,
1163 Thwaites G, Baker S, Woolhouse M, et al. 2018. Detection and Characterization of
1164 Homologues of Human Hepatitis Viruses and Pegiviruses in Rodents and Bats in
1165 Vietnam. *Viruses* 10:102.

1166 Vrancken B, Lemey P, Rambaut A, Bedford T, Longdon B, Günthard HF, Suchard MA. 2015.
1167 Simultaneously estimating evolutionary history and repeated traits phylogenetic signal:
1168 applications to viral and host phenotypic evolution. *Methods in Ecology and Evolution*
1169 6:67–82.

1170 Walter S, Rasche A, Moreira-Soto A, Pfaender S, Bletscha M, Corman VM, Aguilar-Setien A,
1171 García-Lacy F, Hans A, Todt D, et al. 2017. Differential Infection Patterns and Recent
1172 Evolutionary Origins of Equine Hepaciviruses in Donkeys. Ou J-HJ, editor. *J Virol*
1173 91:e01711-16.

1174 Wickham H. 2009. *ggplot2*. New York, NY: Springer Available from:
1175 <http://link.springer.com/10.1007/978-0-387-98141-3>

1176 Wu Z, Han Y, Liu B, Li H, Zhu G, Latinne A, Dong J, Sun L, Su H, Liu L, et al. 2021. Decoding
1177 the RNA viromes in rodent lungs provides new insight into the origin and evolutionary
1178 patterns of rodent-borne pathogens in Mainland Southeast Asia. *Microbiome* 9:18.

1179 Wu Z, Lu L, Du J, Yang L, Ren X, Liu B, Jiang J, Yang J, Dong J, Sun L, et al. 2018.
1180 Comparative analysis of rodent and small mammal viromes to better understand the
1181 wildlife origin of emerging infectious diseases. *Microbiome* 6:178.

1182 Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. 2017. *ggtree*: an r package for visualization and
1183 annotation of phylogenetic trees with their covariates and other associated data.
1184 *Methods in Ecology and Evolution* 8:28–36.

1185 Zaharia M, Bolosky WJ, Curtis K, Fox A, Patterson D, Shenker S, Stoica I, Karp RM, Sittler
1186 T. 2011. Faster and More Accurate Sequence Alignment with SNAP. Available from:
1187 <http://arxiv.org/abs/1111.5572>

1188