

Shedding light on blue-green photosynthesis: A wavelength-dependent mathematical model of photosynthesis in *Synechocystis* sp. PCC 6803

Tobias Pfennig^{1,2,*}, Elena Kullmann¹, Tomáš Zavřel³, Andreas Nakielski^{1,4}, Oliver Ebenhöh^{2,5}, Jan Červený³, Gábor Bernát⁶, and Anna Matuszynska^{1,2}

¹Computational Life Science, Department of Biology, RWTH Aachen University, 52074 Aachen, Germany

²Cluster of Excellence on Plant Sciences, Heinrich Heine University (HHU) Düsseldorf, Germany

³Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia

⁴Institute for Synthetic Microbiology, HHU Düsseldorf, Düsseldorf, Germany

⁵Institute of Theoretical and Quantitative Biology, HHU Düsseldorf, Düsseldorf, Germany

⁶HUN-REN Balaton Limnological Research Institute, Tihany, Hungary

* Corresponding authors

Corresponding authors

Abstract

15 Cyanobacteria hold great potential to revolutionize conventional industries and farming practices with
16 their light-driven chemical production. To fully exploit their photosynthetic capacity and enhance
17 product yield, it is crucial to investigate their intricate interplay with the environment including
18 the light intensity and spectrum. Mathematical models provide valuable insights for optimizing
19 strategies in this pursuit. In this study, we present an ordinary differential equation-based model
20 for the cyanobacterium *Synechocystis* sp. PCC 6803 to assess its performance under various light
21 sources, including monochromatic light. Our model can reproduce a variety of physiologically measured
22 quantities, e.g. experimentally reported partitioning of electrons through four main pathways, O₂
23 evolution, and the rate of carbon fixation for ambient and saturated CO₂. By capturing the interactions
24 between different components of a photosynthetic system, our model helps in understanding the
25 underlying mechanisms driving system behavior. Our model qualitatively reproduces fluorescence
26 emitted under various light regimes, replicating Pulse-amplitude modulation (PAM) fluorometry
27 experiments with saturating pulses. Using our model, we test four hypothesized mechanisms of
28 cyanobacterial state transitions. Moreover, we evaluate metabolic control for biotechnological
29 production under diverse light colors and irradiances. By offering a comprehensive computational
30 model of cyanobacterial photosynthesis, our work enhances the basic understanding of light-dependent
31 cyanobacterial behavior and sets the first wavelength-dependent framework to systematically test their
32 producing capacity for biocatalysis.

Keywords: biocatalysis | cyanobacteria | electron transport | light spectrum | state transitions.

Introduction

36 Cyanobacteria are responsible for a quarter of global carbon fixation [1]. They are, in fact, the originators
37 of oxygenic photosynthesis, later transferring this capability to other organisms via endosymbiosis
38 [2]. Despite their relative simplicity in cellular structure, the cyanobacterial photosynthetic machinery
39 is a highly sophisticated system that shows significant differences from their plastidic relatives [3].
40 Recently, they have emerged as a powerful resource for research and biotechnology due to their unique
41 combination of beneficial traits and photosynthetic capabilities [4]. In the quest for environmentally
42 friendly alternatives to fossil fuels and sugar-based production, cyanobacteria stand out as promising
43 candidates due to their ability to convert sunlight and CO₂ into valuable products, their minimal growth
44 requirements, and their adaptability to diverse environments. Their metabolic versatility allows for

45 producing a wide range of biofuels, chemicals, and raw materials. Besides biomass [5], the cells can
46 be harvested for a variety of primary and secondary metabolites, such as sugars and alcohols [6, 7],
47 chlorophyll and carotenoids [4], (poly)peptides and human vitamins [8], and terpenoids [9]. In particular,
48 strains of the model cyanobacteria *Synechocystis* sp. PCC 6803 and *Synechococcus elongatus* PCC 7942,
49 are highly attractive platform organisms for the phototrophic production of e.g. isoprene, squalene,
50 valencene, cycloartenol, lupeol or bisabolene [9]. Leveraging the cells' natural capabilities, isolation of
51 molecular hydrogen [10] and reduced nitrogen [4] is also possible, with uses in energy and agronomic
52 sectors. Furthermore, there have been attempts to use cyanobacteria for bioelectricity production [7, 11]
53 or, inversely, to overcome cellular limitations by fuelling cyanobacteria with induced electrical currents
54 [12].

55 Modifying metabolism for biotechnological purposes involves overcoming natural regulations and
56 inhibitory mechanisms, disrupting the metabolic network's balance. However, balance is crucial for a
57 proper photosynthetic function [13] and, thus, the viability of cyanobacteria for biotechnology. Therefore,
58 a comprehensive understanding of primary and secondary metabolism is essential for effective and
59 compatible modifications. Mathematical models integrate and condense current knowledge to identify
60 significant parts and interactions, enabling the simulation of the effect of various external factors and
61 internal modifications [14, 15]. They can also provide a platform to test new hypotheses. Numerous
62 plant models of primary metabolism helped to identify the most favorable environmental conditions,
63 nutrient compositions, and genetic modifications to maximize the desired outputs [16, 15]. Despite the
64 evolutionary connection between cyanobacteria and plants, the structural and kinetic differences between
65 cyanobacteria and plants (e.g., competition for electrons due to respiration [17], phycobilisomes (PBSs)
66 as cyanobacterial light-harvesting antennae, photoprotection mediated by Orange Carotenoid Protein
67 (OCP), existence of Carbon Concentrating Mechanism (CCM)) prevent the use of established plant-
68 based models for photosynthesis [3, 17, 18, 19, 20, 21]. Even standard experimental methods developed
69 for plants for non-invasive probing of photosynthesis using spectrometric techniques, such as Pulse
70 Amplitude Modulation (PAM) fluorometry and the Saturation Pulse method (PAM-SP)[22], may require
71 either adaptation or change in the interpretation of the measurements when applied to cyanobacteria
72 [3, 23, 24]. In PAM fluorometry, a modulated light source is used to excite the chlorophyll molecules [22].
73 The emitted fluorescence is then measured, and various parameters derived from this fluorescence signal
74 can provide insights into the efficiency of photosynthesis, the health of the photosynthetic apparatus,
75 and other aspects of plant physiology. Compared to plants and green algae, the measured fluorescence
76 of cyanobacteria has contributions from PSII, PSI, and detached PBS resulting in distinct fluorescence
77 behavior [3, 24, 25, 26].

78 Therefore, a mathematical model targeted specifically for cyanobacteria, and capable of simulating
79 and interpreting their re-emitted fluorescence signal after various light modulations is needed to obtain a
80 system perspective on their photosynthetic dynamics. Established cyanobacterial models often describe
81 broad ecosystem behavior or specific cellular characteristics [27]. Worth mentioning here are constrained-
82 based reconstructions of primary metabolic networks [28, 29, 30], as well as kinetic models, ranging from
83 simple models of non-photochemical quenching [31] and fluorescence [26] to adapted plant models to study
84 the dynamics of cyanobacterial photosynthesis [32] and models created to study proteome allocation as a
85 function of growth rate [33]. However, none of these models provide a detailed, mechanistic description
86 of oxygenic photosynthesis in *Synechocystis* sp. PCC 6803, including the dynamics of respiration and a
87 mechanistic description of short-term acclimation mechanisms, which are highly sensitive to changes in
88 light wavelengths.

89 With this work, we provide a detailed description of photosynthetic electron flow in cyanobacteria (as
90 summarized in Fig. 1a), parameterized to experimental data, including measurements collected under
91 monochromatic light, in *Synechocystis* sp. PCC 6803, a unicellular freshwater cyanobacterium. Light is
92 a critical resource for photosynthetic prokaryotes, which defines their ecological niche and heavily affects
93 cell physiology [24, 34, 35]. Significantly, beyond its intensity, the light spectrum plays a crucial role
94 in exerting physiological control. For example, growth under various monochromatic light sources led
95 to large differences in cyanobacterial growth rate, cell composition, and photosynthetic parameters [36].
96 Blue light strongly inhibits growth and can cause cell damage by disrupting the excitation balance of
97 photosystems [29, 37, 38], resulting from the varying absorption properties of their pigments [38]. To
98 react to changes in illumination, the cell is able to undergo both short and long-term adaptations. Over
99 time, cells adjust their pigment content (in a process called chromatic acclimation), and the ratio of
100 photosystems to optimize performance [35, 24]. In the short term, processes like OCP-related Non-
101 Photochemical Quenching (NPQ) [39, 40] or state transitions [41] help them adapt, though precise
102 mechanisms of the latter are not yet fully elucidated [3, 42]. While the scientific community agrees

103 that the PQ redox state triggers state transitions, multiple underlying mechanisms have been proposed
104 without a current consensus. Our model uses therefore both light intensity and light wavelengths
105 as input, allowing the simulation of any combination of light sources and adaptation to the specific
106 growth conditions. Readouts include all intermediate metabolites and carriers, most importantly ATP
107 and NADPH, fluxes through several electron pathways: Linear Electron Transport (LET), Respiratory
108 Electron Transport (RET), Cyclic Electron Transport (CET) and Alternate Electron Transport (AEF)),
109 reaction rates, such as carbon fixation and water splitting, and the cell's emitted fluorescence as measured
110 by PAM. We perform Metabolic Control Analysis (MCA) [43, 44, 45] of the network in different light
111 conditions, showing that the reactions which determine the rate of CBB flux shift from photosynthetic
112 source reactions to sink reactions within the CBB as light intensity increases. By harnessing the power of
113 mathematical modelling, we seek to provide a quantitative framework to test further hypothesis on the
114 photosynthetic mechanisms in cyanobacteria and contribute to basic research on these organisms that
115 eventually can lead to optimized cyanobacterial production and contribute to the advancement of green
116 biotechnology.

117 Methods

118 Model description

119 We developed a dynamic, mathematical model of photosynthetic electron transport in *Synechocystis* sp.
120 PCC 6803 (further *Synechocystis*) following a classical bottom-up development cycle. Our model consists
121 of a system of 17 coupled Ordinary Differential Equations (ODEs), 27 reaction rates, and 95 parameters,
122 including measured midpoint potentials, compound concentrations, absorption spectra, and physical
123 constants (Table S3). By integrating the system over time, we can simulate the dynamic behavior of
124 rates and concentrations of all reactions and reactants visualized on Fig. 1a and summarized in Table S2,
125 including dynamic changes in the luminal and cytoplasmic pH. We included a detailed description
126 of four commonly distinguished electron transport pathways: LET, CET, RET, and AEF. Given the
127 high similarity between the essential electron transport chain proteins of plants and cyanobacteria
128 [3, 20], the photosystems were described using Quasi-Steady-State (QSS) approximation, as derived
129 in our previous dynamic models of photosynthetic organisms [47, 48]. We followed a reductionist
130 approach simplifying many downstream processes into lumped reactions. The lumped CBB, PR, and
131 metabolic consumption reactions represented the main cellular energy sinks. Functions describing CBB
132 and RuBisCO oxygenation (Oxy) contained multiple regulatory terms, including gas and metabolite
133 concentrations (see SI). Although cyanobacteria CCM components include at least four modes of active
134 inorganic carbon uptake [49], we have decided to represent the mechanism as a one lump reaction. By
135 calculating the dissolved CO₂ concentration at the cellular pH and with an actively 1000-fold increased
136 intracellular CO₂ gas pressure (see Supplement S1.12) we reflect the very efficient cyanobacterial
137 concentrating mechanism. Unless stated otherwise, simulations were run under three assumptions: 25 °C
138 temperature with 230 μmol L⁻¹ dissolved O₂ and supplemented with 5 % CO₂. The pigment content and
139 photosystems ratio were parametrized to a cell grown under ambient air with 25 μmol(photon) m⁻² s⁻¹ of
140 633 nm light. All rates and concentrations have been normalized to the chlorophyll content (4 mmol L⁻¹).
141 The default initial metabolite concentrations were set to literature measurements (Table S1). Steady-
142 state simulations were run for 1 × 10⁶ s. For the steady-state simulations, we considered that the steady-
143 state is reached if the Euclidean norm of relative concentration changes between the last two time steps
144 did not exceed 1 × 10⁻⁶. Because the regulatory processes, CBB redox activation, OCP activation, and
145 state transitions, have slow rates of change, we compared their relative changes to a threshold of 1 × 10⁻⁸.

146 Code implementation

147 The model has been developed in Python [50] using the modeling package `modelbase` [51] further
148 exploring a highly modular approach to programming mathematical models. The model and
149 scripts used to numerically integrate the system and to produce all figures from this manuscript,
150 as well as analysis run during the peer review process are accessible at <https://github.com/Computational-Biology-Aachen/synechocystis-photosynthesis-2024>.

152 Model Parameterization

153 The model has been manually parameterized, integrating physiological data and dynamic observations
 154 from numerous groups (pH-ranges: [52], NADPH reduction: [53], O₂ change rates: [25], CO₂
 155 consumption: [33], PQ reduction: [54], PC, PSI, and Fd redox-states: [55], PAM-behavior: [42], electron
 156 fluxes: [46], PAM fluorescence: [56]).

157 The model depends on 96 parameters (Table S3). 43 parameters, including pigment absorption

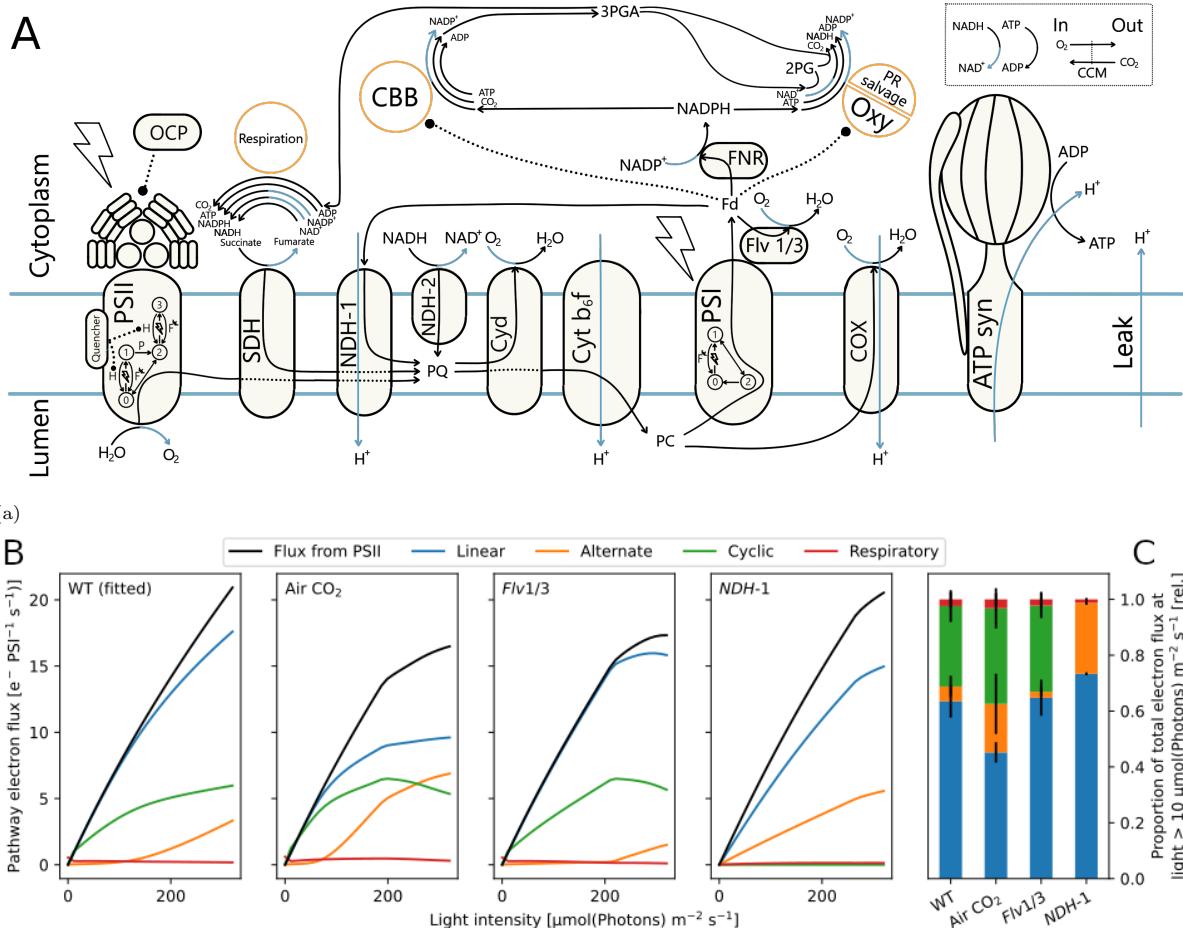


Fig. 1: Computational model of the photosynthetic and respiratory chain allows simulating electron fluxes through main (linear), cyclic, alternate, and respiratory pathways in *Synechocystis* sp. PCC 6803. **a)** Schematic representation of components and reactions included in the model of cyanobacterial photosynthesis. The model includes descriptions of four protein complexes (PSII, PSI, Cb₆f and ATP synthase), main electron carriers and reactions through them, enabling simulation of electron transfer through Linear Electron Transport (LET), Cyclic Electron Transport (CET), Respiratory Electron Transport (RET), and Alternate Electron Transport (AEF). With orange circles (Respiration, CBB, and photorespiratory salvage pathway (PR salvage)) we mark pathways represented in the model as lumped reactions. The top-right box shows gas exchange reactions (O₂ export and active CO₂ import) and metabolic ATP and NADH consumption. Electron and proton flows are colored black and blue, respectively. Regulatory effects, such as Fd-dependent CBB activity, are represented with dotted lines. The two photosystems are described using Quasi-Steady-State (QSS) approximation. For the analyzes we assume internal quencher as the state transition mechanism, as marked on PSII. Various scenarios of PBS attachment can be simulated, on the figure attached to PSII. **b)** Simulated steady-state electron flux through linear (blue), cyclic (green), alternate (flavodiiron+terminal oxidases, orange) and respiratory (red) electron pathways for light intensities between 10 μmol(photons) m⁻² s⁻¹ and 300 μmol(photons) m⁻² s⁻¹. The model has been **parameterized** to yield approximately 15 electrons PSI⁻¹ s⁻¹ linear electron flow (blue) for a fraction of 60 % under saturating CO₂ conditions, as measured in wild type (WT) [46]. The model **predicts** flux distributions under sub-saturating air CO₂ level and for the flavodiiron (*Flv1/3*) and NAD(P)H Dehydrogenase-like complex 1 (NDH-1) knockout mutants. Each value represents a steady-state flux under continuous light exposure. Simulations were run using 670 nm light (Gaussian LED, $\sigma = 10$ nm). The barplot shows the mean flux distribution for light intensities over 10 μmol(photons) m⁻² s⁻¹. Error bars show sd. Abbreviations: 2PG: 2-phosphoglycolate, 3PGA: 3-phosphoglycerate, ADP: Adenosine diphosphate, ATP: Adenosine triphosphate, ATPsynth: ATP synthase, CBB: Calvin-Benson-Bassham cycle, CCM: Carbon Concentrating Mechanism, COX(aaa₃): Cytochrome c oxidase, Cyd(bd): Cytochrome bd quinol oxidase, Cyto b₆f: Cytochrome b₆f complex, FNR: Ferredoxin-NADP⁺ Reductase, Fd: Ferredoxin, NAD⁺: Nicotinamide adenine dinucleotide phosphate, NADPH: reduced Nicotinamide adenine dinucleotide, NDH-2: NAD(P)H Dehydrogenase complex 2, OCP: Orange Carotenoid Protein, Oxy: RuBisCO oxygenation, PC: Plastocyanine, PQ: Plastoquinone, PR: Photorespiration, PSI: Photosystem I, PSII: Photosystem II, SDH: Succinate dehydrogenase

158 spectra, were taken directly from the literature, six parameters describe the experimental setup (light:
159 intensity and spectrum, CO₂, O₂, concentration of cells, and temperature), and eight parameters
160 describing photosystems concentrations and pigment composition were estimated from provided data [56].
161 The latter parameters were measured spectrophotometrically and through 77 K fluorescence, assuming
162 a 10-times higher fluorescence yield of free PBS (compare [26]). PAM-SP fluorescence curves were
163 used to fit seven fluorescence-related parameters, including quenching and OCP constants [56], and two
164 parameters were fit to electron transport rate measurements [46]. Nine rate parameters were estimated
165 from reported rates of the reaction itself or connected processes such as O₂ generation for respiration. To
166 derive rate constants, we divided the determined rate by the assumed cellular substrate concentrations.
167 Five parameters stemmed from simplifying assumptions regarding inhibition constants, the cytoplasmic
168 salinity, and pH buffering. 16 further parameters were fitted to reproduce literature behavior such as
169 cellular redox states or regulation of the CBB.

170 To avoid overfitting the parameters to a particular experimental set-up, we avoided using sophisticated
171 fitting algorithms and instead proceeded with manual curation. At every step of model refinement
172 we have been comparing visually how the change affects our simulated redox state, oxygen evolution,
173 carbon fixation, and dynamics of implemented photoprotective mechanisms. A comprehensive list of
174 all the model parameters utilized in this study, including values needed for unit conversion, is provided
175 in Table S3 and Table S4 (state transition analysis separate, see below), ensuring transparency and
176 reproducibility of our computational approach.

177 Reaction kinetics

178 Following the principle of parsimony, all reactions where no additional regulatory mechanism was known
179 have been implemented with first-order Mass-Action (MA) kinetics. A reaction with substrates S_i and
180 products P_j is defined as: $\sum n_i S_i \longleftrightarrow \sum m_j P_j$ with $i, j \in \mathbb{N}$ where n_i and m_j are the stoichiometric
181 coefficients of substrates and products, respectively. For each reaction, we calculated the Gibbs free
182 energy ($\Delta_r G'$, see supplemental information) [47, 48]. Only reactions with $\Delta_r G'$ close to 0 under
183 physiological conditions were described with reversible kinetics. Thus, we set reactions as irreversible
184 except for ATP synthase, SDH, FNR, regulatory variables (e.g. CBB activation), and PSII and PSI
185 internal processes.

186 To simplify higher order reversible MA equations [57], we first decompose the rate equation into
187 separate kinetic and thermodynamic components (as done for Michaelis-Menten (MM) [58]) and then
188 simplify only the kinetic part, leading to (see Equation S3 and S5):

$$v = \begin{cases} \text{if } \Delta_r G' < 0: & \overbrace{k^+ \cdot \prod c_{S_i}}^{\text{kinetic}} \cdot \overbrace{(1 - \exp(\Delta_r G' / RT))}^{\text{thermodynamic}} \\ \text{else:} & k^- \cdot \frac{\prod c_{P_j}}{K_{eq}} \cdot (\exp(-\Delta_r G' / RT) - 1) \end{cases} \quad (1)$$

189 with substrate concentrations c_S , product concentrations c_P , and $K_{eq} = \exp(-\Delta_r G'^0 / RT)$. Here, we
190 approximate $k \cdot \prod c_{S_i}^{n_i} \approx k^+ \cdot \prod c_{S_i}^{n_i} / \prod c_{S_i}^{n_i-1}$ and $k \cdot \prod c_{P_j}^{m_j} \approx k^- \cdot \prod c_{P_j}^{m_j} / \prod c_{P_j}^{m_j-1}$ which, for any $n_i > 1$ or
191 $m_j > 1$, leads to $k^+ \neq k^-$ (see Equation S6). This necessitated parameterising k^+ and k^- separately.
192 The reactions FNR and SDH, which were deemed reversible, used rate Equation 1 with the determination
193 of $\Delta_r G'$ during simulation. We calculated electron pathway fluxes from the following involved reactions:
194 LET (FNR), CET (NDH-1), respiration (SDH, NDH-2), and AEF (Cyd, COX, Flv) (see Equation S47).

195 Implementation of monochromatic and polychromatic light sources

196 To consider the influence of light spectrum on photosynthetic activity, our model takes light as input (I)
197 with wavelengths (λ) in range between 400 and 700 nm. In this work we performed simulations using the
198 solar spectrum, a fluorescent lamp, cold white LED, warm white LED, and "gaussian LEDs" simulated
199 as Gauss curves with a set peak-wavelength and variance of 10 nm or 0.001 nm ("near monochromatic")
200 [59] (see Fig. 3a & Fig. S11).

201 For calculation of absorbed light we further differentiate between the light absorbed by PSI, PSII,
202 and PBS, based on their reported pigment composition [59] (Fig. 3a). We focused on four most abundant
203 pigments: chlorophyll, beta-carotene, phycocyanin, and allophycocyanin, although the implementation
204 allows for more complex composition. We assume that PBSs can be either free, in which case the
205 excitation is lost, or attached to one of the photosystems to transfer their excitation energy. The
206 respective fractions of PBS states were fixed to values from [56], except for simulations of state transition

207 mechanisms which required dynamic PBS behavior. We assumed pigment content and PBS-attachment
 208 as measured by Zavřel *et al.* [56], although different pigment composition can be provided as an input
 209 to the model. We calculate PSII excitation rate E_{PSII} (and E_{PSI} analogically) as:

$$E_{PSII} = P^{PSII} \cdot Q_{OCP} \cdot \text{simpson}(A \cdot \text{diag}(I)) \cdot lcf \quad (2)$$

210 where vector $P_{1 \times 4}$ denotes absorbed photons redistributed to either photosystem, accounting e.g. for their
 211 pigment composition, high PSI:PSII ratio and the PBS attachment; $Q_{OCP} = \text{diag}(1, 1, 1 - OCP, 1 - OCP)$
 212 is a diagonal matrix with values set to one everywhere but at the contribution of PBS to reduce the
 213 excitation rate by light energy quenched due to OCP activity; $A_{p \times \lambda} = (a_{\lambda, p})$ contains each pigment
 214 p 's-specific absorption spectra; "simpson" is a row-wise, numerical integral of the light absorbed by each
 215 considered pigment, calculated using the composite Simpson's rule (we used `scipy.integrate.simps`
 216 function); $lcf = 0.5$ is the light conversion factor to estimate the amount of generated excitations,
 217 which was fitted to match the electron transfer rates of Theune *et al.* [46] (Fig. 1b). Importantly,
 218 we assume that despite the wavelength-dependent energy content, all photons result in equivalent
 219 excitation of photosystems with the extra energy being lost as heat [60, 61]. This implementation
 220 enabled us to simulate various light-adapted cells by updating the parameters corresponding to measured
 221 pigment composition and photosystem ratio. For simulations of PAM-SP, we further calculate the
 222 light encountered by a mean cell (I) for each wavelength according to an integrated Lambert-Beer
 223 function [62] accounting for the decreasing irradiance at various depths due to cellular absorption (see
 224 SI Equation S67).

225 Activation of photosystems

226 Following our previous approach [47], we modeled the photosystem's excitation and internal electron
 227 transport assuming that i) they are at Quasi-Steady-State (QSS), as they operate on a much faster
 228 time scale than other photosynthetic reactions, and ii) at every time point, photosystem II can be in
 229 one of four possible states, and PSI in three, relating pigment excitation with the charge separations at
 230 reaction centers (Fig. S1). The PSII excitation rate constant k_{LII} is calculated from E_{PSI} in Equation 2
 231 (in $\mu\text{mol}(\text{photons}) \text{mg}(\text{chl})^{-1}$) multiplied by the molar mass of chlorophyll M_{Chl} and normalized to PSII
 232 concentration:

$$k_{LII} = E_{PSI} \cdot M_{Chl} \cdot \frac{1}{c_{II}} \quad (3)$$

233 PSII was described with four (B_0 - B_3) and PSI with three states (Y_0 - Y_2) (see Fig. 1a and Fig. S1).
 234 The QSS models also consider the relaxation of excitations by fluorescence or heat emission (only PSII).
 235 We defined the PSII rate v_{PSII} as

$$v_{PSII} = 0.5 \cdot k_2 \cdot B_1 \quad (4)$$

236 since two $B_1 \rightarrow B_2$ reactions have to occur for a full PQ reduction.

237 Calculating the fluorescence signal

238 Based on the principle of PAM measurements, the model calculates fluorescence proportional to the gain
 239 in excited internal states of PSII and PSI when adding measuring light to the growth light. Additionally,
 240 we consider fluorescence of free PBS using their light absorption [26]. The default measuring light is set
 241 to 625 nm at $1 \mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$ throughout this manuscript.

242 PAM fluorometry measures the cellular fluorescence emitted in response to microsecond pulses of
 243 measuring light with a constant, low intensity. We built our model fluorescence function on the same
 244 principle. Measuring light pulses with irradiance I_{ML} are applied on top of the actinic light I , so cells
 245 experience a total irradiance of $I_{+ML} = I + I_{ML}$. We then recalculate the photosystems' QSS systems
 246 using I_{+ML} , resulting in the internal states B_0^{+ML} to B_3^{+ML} and Y_0^{+ML} to Y_2^{+ML} . We then define the
 247 PAM fluorescence as the increase in photosystem fluorescence reactions by the addition of measuring
 248 light (see Fig. S1):

$$F_{PSII} = k_F \cdot (B_1^{+ML} - B_1 + B_3^{+ML} - B_3) \quad (5)$$

$$F_{PSI} = k_{F1} \cdot (Y_0^{+ML} - Y_1) \quad (6)$$

249 Lastly, we make the simplifying assumption that PBS fluorescence only results from the fraction of
 250 uncoupled PBS f_{free}^{PBS} and is proportional to their absorption of I_{+ML} :

$$F_{PBS} = \text{simpson}_{\lambda}(p_{\lambda, PBS} \cdot \text{diag}(I_{+ML})) \quad (7)$$

251 Considering cyanobacterial optical properties of light-harvesting pigments, fluorescence measured at room
252 temperature can originate from both photosystems and PBS [3]. There have been attempts to determine
253 the fluorescence contributions of each component [26]. We assume that the three fluorescent species
254 contribute differently to the fluorescence detected > 650 nm, e.g. because of differing emission spectra.
255 Therefore, we include weighing factors when calculating the total recorded fluorescence in Equation 8,
256 which were calculated in Fig. 2a fitting. We estimate the total measured fluorescence signal by calculating
257 the weighted sum of PSI, PSII, and PBS fluorescence:

$$F = w_{PS1} \cdot F_{PS1} + w_{PS2} \cdot F_{PS2} + w_{PBS} \cdot F_{PBS}, \quad (8)$$

258 where weights w were manually fitted to reproduce the fluorescence dynamics under changing light
259 conditions of the experiment displayed in Figure 3 (fitted values can be found in (Table S3) as
260 `fluo_influence`).

261 Testing four possible mechanisms of state transitions

262 We intended to use the model to provide quantitative arguments for a possible mechanism of state
263 transitions that is not yet fully elucidated. We have implemented and tested four proposed state transition
264 mechanisms based on a recent review [42] (Fig. 4a.) We model the transition to state 2 depending
265 on reduced PQ (PQ_{red}) and to state 1 on oxidized PQ (PQ_{ox}). We implemented the default PSII-
266 quenching (used for simulations in Fig. 2a) using a constitutively active quenching reaction and a reverse
267 reaction with Hill kinetics. The remaining state transition models were described with few reactions
268 and using MA kinetics. A complete mathematical description of the implementations is available
269 in the SI. For the analysis, we systematically varied the parameter sets of all implementations and
270 compared the steady-state fluorescence and PQ redox state under different lighting conditions (actinic:
271 440 nm at $80 \mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$ or 633 nm at $50 \mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$; measuring: 625 nm at
272 $1 \mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$) (parameters in Table S5).

273 Metabolic Control Analysis

274 Metabolic Control Analysis (MCA) is a quantitative framework to study how the control of metabolic
275 pathways is distributed among individual enzymes or steps within those pathways. It quantifies the
276 change in steady-state compound concentrations or reaction fluxes in response to perturbation of an
277 examined reaction [43, 45]. We used the `modelbase.mca` function `get_response_coefficients_df` to
278 perform MCA on our model. The function is using definitions proposed by [63, 43] and calculates the
279 flux control coefficients ($C_{v_k}^{J_j}$) and concentration control coefficients ($C_{v_k}^{S_j}$) using formulas:

$$C_{v_k}^{J_j} = \frac{v_k}{J_j} \frac{\partial J_j / \partial p_k}{\partial v_k / \partial p_k}, \quad (9)$$

$$C_{v_k}^{S_j} = \frac{v_k}{S_j} \frac{\partial S_j / \partial p_k}{\partial v_k / \partial p_k}, \quad (10)$$

280 where J_j and S_j are respectively the steady-state fluxes and concentrations of the system, p_k is a kinetic
281 parameter which affects directly only reaction k with the rate v_k (see [63, 43]). We approximated these
282 formulas numerically using the central difference, varying the parameters by $\pm 1\%$. MCA has been
283 repeated for various simulated irradiances (Fig. 3a). For systematic analysis of the effect of various
284 light sources on the rate of carbon fixation, we calculated the absolute of the control coefficients and
285 show the mean of the following sets of model reactions: Photosystems (PSI, PSII), light-driven (PSI,
286 PSII, Cytochrome b₆f complex, NDH-1, FNR), alternate (Flv, Cytochrome bd quinol oxidase (Cyd),
287 Cytochrome c oxidase), and respiration (lumped respiration, Succinate Dehydrogenase, NDH-2).

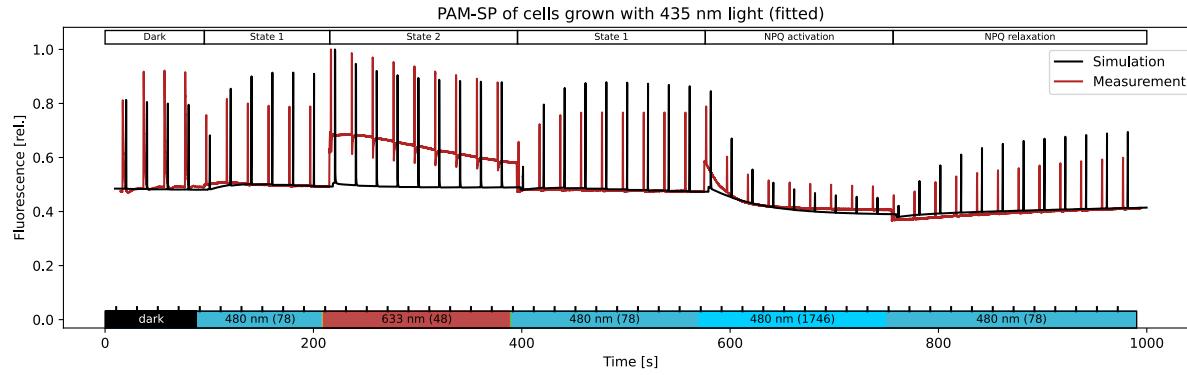
288 Analysis of the production capacity

289 Exploring highly modular structure of the model, for determining the production potential of a
290 biotechnological compound, we simply added an irreversible model reaction consuming ATP, NADPH,
291 and Fd in the required ratio. We assume optimality of carbon provision by the CBB and, thus, set its
292 rate to zero and add the energy equivalent cost of carbon fixation to the cost of the biotechnological
293 compound. The sink reaction was described using simplified MA kinetics with a rate constant sufficient
294 to prevent substrate accumulation under any light intensity (here set to 5000 (unit depending on the

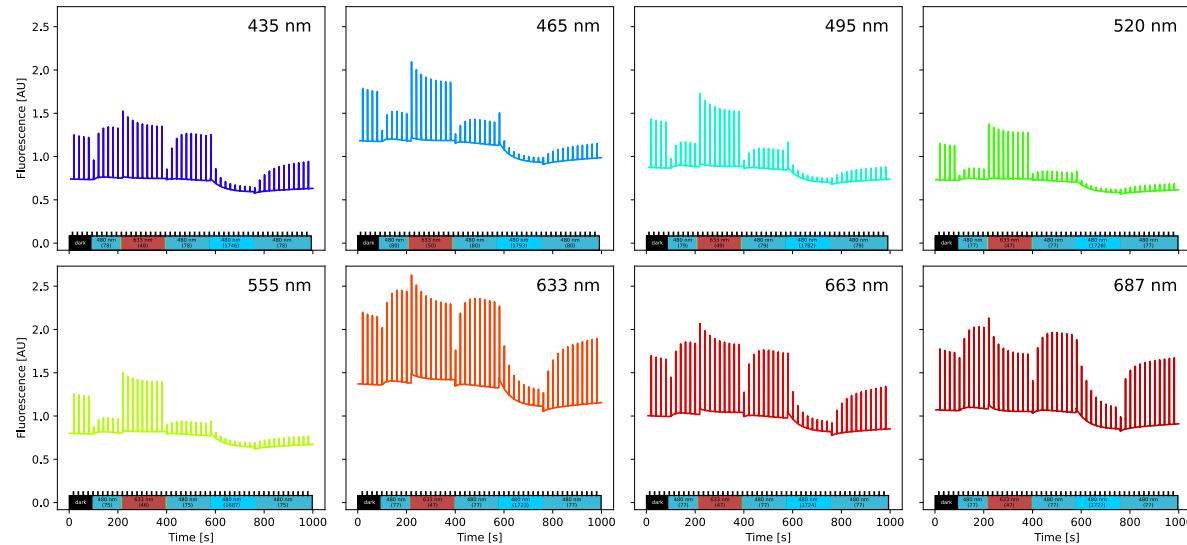
295 order of the reaction) for every sink). Additionally, we added MA reactions draining ATP and NADPH
296 with a very high rate constant ($10\,000\,\text{s}^{-1}$) if their pools became filled over 95 % to avoid sink limitation
297 by either compound.

298 Results

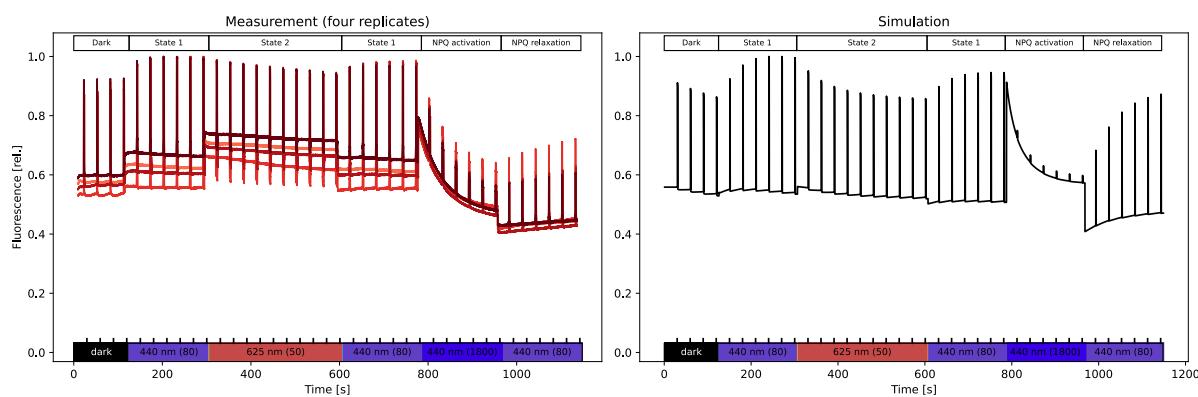
299 We present the first kinetic model of photosynthesis developed for cyanobacteria that can simulate its
300 dynamics for various light intensities and spectra. It is developed based on well-understood principles
301 from physics, chemistry, and physiology, and is used as a framework for systematic analysis of the
302 impact of light on photosynthetic dynamics. Our analysis focuses on several key aspects: the redox
303 state of electron carriers, carbon fixation rates in ambient air, reproduction of fluorescence dynamics
304 under changing light conditions, and the electron flow through main pathways (LET, CET, AEF) under
305 different conditions. We used O_2 measurements [64] to qualitatively validate the PSII light harvesting
306 and photochemistry implementation of the model. Changes in our simulated steady-state O_2 evolution
307 rates are in quantitative agreement with the experimental data, during low light and exceed measured
308 rates under light saturation by ca. 20 % (Fig. S4). Unfortunately, the exact culture conditions (e.g.
309 density) and strain used in the reference work [64] are not known. Hence the pigment composition may
310 differ. We also calculated the fraction of open PSII for increasing light intensities to assess the model
311 quality (Fig. S5). We observed that our response curve is less sensitive to increasing light, as our PSII
312 are open for higher light intensities than reported $300\,\mu\text{mol}(\text{photons})\,\text{m}^{-2}\,\text{s}^{-1}$ [65].


313 Flux through alternative electron pathways

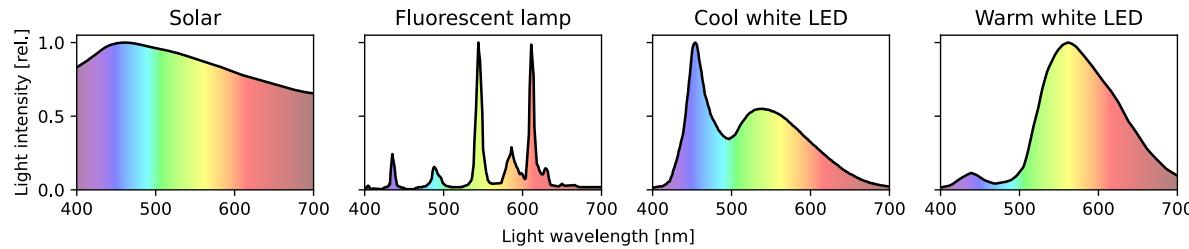
314 We simulated the steady-state flux of electrons through the PETC for four transport pathways under
315 670 nm monochromatic illumination (Fig. 1b). We parameterized the flux through the LET to yield
316 approximately 15 electrons $\text{PSI}^{-1}\,\text{s}^{-1}$ and 60 % of the total PSI electron flux in the wild type (WT)
317 [46]. Our simulated saturation of CET around $300\,\mu\text{mol}(\text{photons})\,\text{m}^{-2}\,\text{s}^{-1}$ compares well to proton flux
318 measurements by Miller *et al.* [65]. Under ambient CO_2 (400 ppm), our model simulates an overall
319 limitation of electron flux and an increase in alternative flows. We found similar electron partitioning
320 between WT and in the *Flv1/3* mutant at lower light intensities agreeing with the findings of Theune
321 *et al.* [46]. However, our simulations show significant AEF in the WT over $200\,\mu\text{mol}(\text{photons})\,\text{m}^{-2}\,\text{s}^{-1}$,
322 which might have been suppressed by high CO_2 and pH in the experiments by Theune *et al.* (personal
323 correspondence, see also [66]).


324 Under intermediate light intensity, the *Flv1/3* mutant also showed a higher CET while maintaining
325 LET similar to the WT, pointing towards a balancing act of NDH-1. Inversely, our simulated NDH-1
326 mutant maintained high AEF but, in contrast to Theune *et al.*, significant flux through the LET. In
327 addition to simulating electron flow, our model can probe the intracellular redox state, pH, and additional
328 fluxes through key biochemical reactions (Fig. S8). For example, it can be seen that a reduced PQ pool
329 under high light leads to reduced CET mediated by NDH-1 and, in turn, a decreased CBB flux due
330 to insufficient provision of ATP. Furthermore, we find that mutations affecting the electron flow lead
331 to an increased Non-Photochemical Quenching (NPQ) at higher light intensities and the decrease in
332 photosynthetic yield (Fig. S7).

333 Photosynthesis dynamics captured via fluorescence measurements


334 Using experimental measurements (pigment concentrations, photosystem ratios, and expected PBS-
335 attachment - method currently under review)[56], we manually fitted model parameters to represent a
336 *Synechocystis* strain grown under 435 nm monochromatic light. With this model, we simulate fluorescence
337 in a PAM-SP light protocol [22], which investigates photosynthesis behavior using the dark-adapted
338 minimal (F_0) and maximal fluorescence (F_m), the maximal fluorescence in the light (F'_m) and the
339 constantly measured steady-state fluorescence (F). By monitoring cell responses to changing light
340 conditions, we captured light responses via state transitions and non-photochemical quenching and
341 relaxation (for a review of the mechanisms, see [3] and for related models in plants [15]). We simulated
342 the same light protocol of blue and red light, as used *in vivo* [56], and fit parameters controlling
343 the fluorescence composition, state transitions, and NPQ to cells grown under 435 nm light (Fig. 2a).
344 Our simulation qualitatively reproduces the transition between states 1 and 2 and the activation and
345 relaxation of NPQ by the Orange Carotenoid Protein (OCP). Because our model underestimates PSII

(a) Fit of simulated (black) to measured (red) PAM fluorescence dynamics during a saturation pulse light protocol. The simulation was manually fit using seven model parameters, and the parameters are used for all other model simulations. The experimental traces were measured in *Synechocystis* sp. PCC 6803 grown under 435 nm light ($n=2$) [56]. Simulations use the measured pigment contents and ambient CO_2 (400 ppm). The shown light protocol includes several different light wavelengths and intensities to trigger a response from respective photosynthetic electron transport chain components. By monitoring cell responses to these light conditions, we captured light responses via state transitions and non-photochemical quenching and relaxation (as described in the upper bar). We calculated light attenuation in the culture using Equation S67 with the measured pigment concentrations and sample chlorophyll content in Table S4.


(b) Model prediction on emitted fluorescence signal. Light protocol in a) is repeated with pigment contents measured in cells grown under different monochromatic lights [56]. We calculated light attenuation with the chlorophyll content measured in each culture.

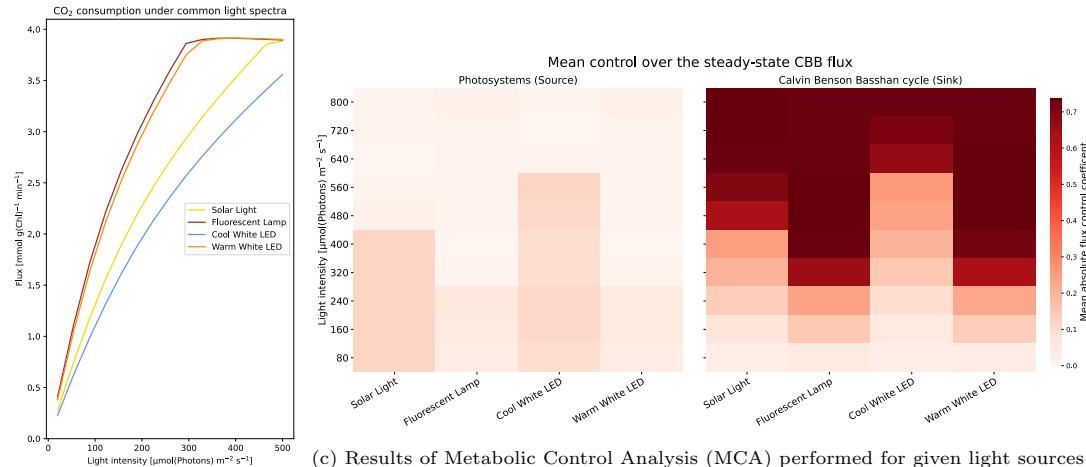

(c) Model validation comparing PAM-SP fluorescence traces *in vivo* and *in silico*. Four experimental replicates are shown. Simulations assume 1% CO_2 supplementation and use the default parameters (see a)) and pigment set. The model reproduces the fluorescence dynamics during most of the experiment except for overestimating steady-state fluorescence during the strong blue light phase. The lower bar depicts the light wavelength and intensity (in parentheses, in $\mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$) (lights used: 440 nm at $80 \mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$ and $1800 \mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$ and 625 nm at $50 \mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$, saturating pulse: 600 ms cool white LED at $15\,000 \mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$). The measurements were performed with a Multi-Color PAM (Walz, Effeltrich, Germany). Cultures of *Synechocystis* sp. PCC 6803 were grown under bubbling with 1% CO_2 and $25 \mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$ of 615 nm light for ca. 24 h. For the measurement, 1.5 mL culture was transferred to a quartz cuvette and dark-acclimated for 15 min prior to each measurement.

Fig. 2: **Saturation pulse method using Pulse Amplitude Modulation (PAM) fluorescence measurement *in vivo* and *in silico*.** The simulated signal has been calculated using (Equation 8). All experimental measurements were performed with a Multi-Color PAM (Walz, Effeltrich, Germany).

346 closure in response to light, the steady-state fluorescence during light phases is also underestimated.
 347 By systematically comparing our simulation results and experimental data, we have revealed that
 348 the experimentally used saturation pulses were non-saturating in 480 nm actinic light and induced
 349 fluorescence quenching, as confirmed by follow-up experiments (see Fig. S14 in [56] and Fig. S6 in
 350 this work). Thus, we found the model's usefulness in investigating fluorescence measurements. Using
 351 the same fitted parameters, we can also reproduce the quantitative behavior of cells grown under 633 nm
 352 monochromatic light (Fig. S3) and predict the fluorescence under further adapted pigment contents
 353 (Fig. 2b). The model shows a strong effect on cellular reactions and fluorescence when adapted to
 354 pigment contents of cells grown under other monochromatic lights. We have further validated our model
 355 against the newly measured fluorescence trace Fig. 2c. Our simulations predict accurately F'_m , but
 356 overestimate fluorescence signal in high 440 nm light (Fig. 2c).

(a) The light spectra of four light sources used in simulations, including common "white" light LED panels.

(b) Steady-state flux through the CBB under the lights in (a), simulated over different light intensities.

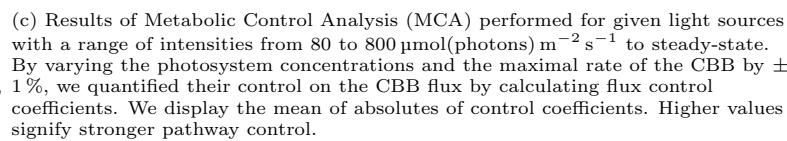


Fig. 3: Systematic analysis of the effect of various light sources on the rate of carbon fixation.

357 Common light sources affect the metabolic control differently

358 Photosynthesis experiments can be conducted with many different light sources that are equivalent in
 359 photon output but differ in the spectrum. To further investigate how these spectral differences affect
 360 cellular metabolism, we simulated the model with different monochromatic and "white" light sources:
 361 solar irradiance, fluorescent lamp, and cool and warm white LED (Fig. 3a). For each light, we simulated
 362 the model to steady-state to perform MCA (Fig. 3c). We perturbed single parameters of the PETC
 363 components by $\pm 1\%$ and quantified the effect on the steady-state fluxes and concentrations. A high
 364 control coefficient represents a strong dependency of the pathway flux on changes to that parameter, with
 365 control in a metabolic network being distributed across multiple reactions. A single parameter being in
 366 full control of the flux through a network would represent the case of a typical bottleneck, but this rarely
 367 occurs in biological systems [43, 45]. We show that the electron pathway-specific control differs between
 368 the simulated light sources. Our results indicate that, at lower intensities of solar and cool white LED
 369 light, the control mainly lies within the photosystems as sources of energy carriers (Fig. 3c). We find less
 370 control by the photosystems for light spectra with a higher proportion of red wavelengths, suggesting

371 such light sources induce less source limitation. Accordingly, the maximal simulated CO_2 consumption
 372 is reached at lower light intensities for these spectra (Fig. 3b). All tested spectra show the CBB having
 373 the main control of CO_2 fixation only under increased light, marking a shift towards the energy carrier
 374 sink limitation.

375 Repeating the analysis with simulated monochromatic lights, we found similar differences that seem to
 376 correspond with the preferential absorption by either chlorophyll or PBS (Fig. S11). The earliest switch
 377 to sink limitation was found in 624 nm light, while light that is weakly absorbed by photosynthetic
 378 pigments, such as 480 nm, seems to have little control effect. Our analysis also confirmed the intuitive
 379 understanding that remaining respiration under low light could have low control on the CBB while
 380 alternate electron flow became influential under light saturation (Fig. S10). Using the model, the control
 381 of single components, such as photosystems, can also be investigated (Fig. S12).

382 Model as a platform to test alternative mechanisms of state transition

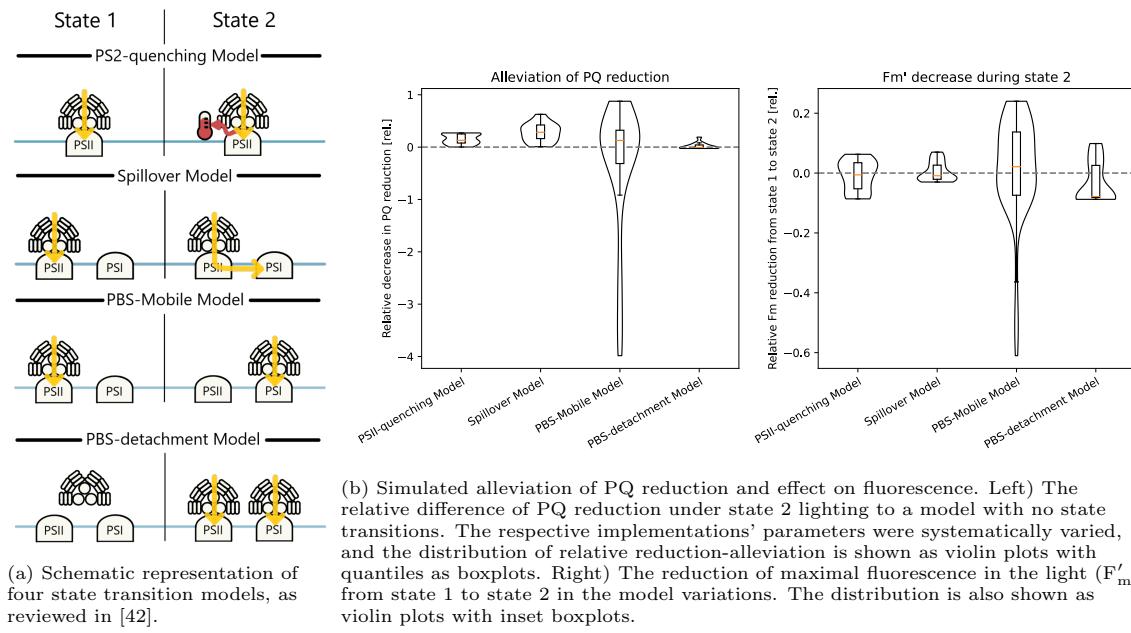
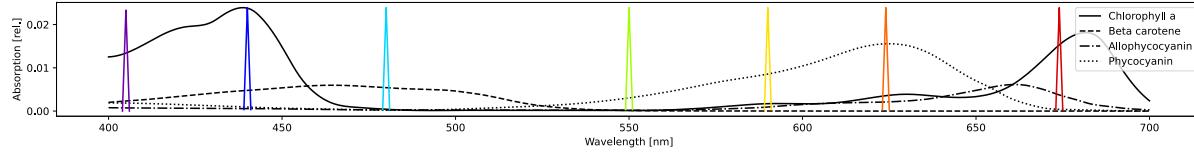
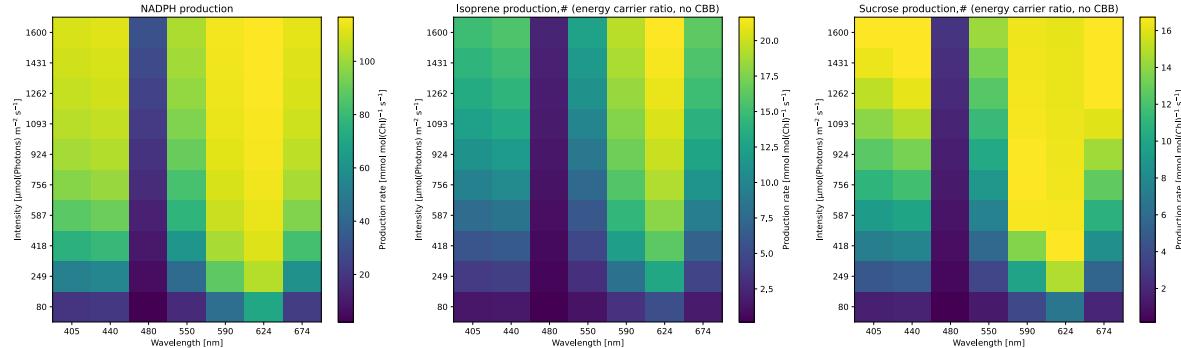




Fig. 4: **Testing possible mechanisms of state transitions.** Four possible mechanisms of state transitions have been implemented and parameterized randomly to quantify their performance by contributing to oxidising PQ pool. The fluorescence signal has been calculated using (Equation 8).

383 We defined four functions representing the mechanism of state transitions with the PSII-quenching
 384 model [67] as the default. Therein, a higher fraction of PSII excitations is lost as heat in state 2.
 385 Three alternative models of state transition were tested: the Spillover Model, where state 2 induces
 386 PSII excitation energy transfer to PSI; the PBS-Mobile model, where PBS attach preferentially to PSII
 387 or PSI in states 1 and 2, respectively; and the PBS-detachment Model, where PBS detach from the
 388 photosystems in state 1 [67, 42]. We model the transition to state 2 under a reduced PQ pool while
 389 oxidized PQ promotes state 1. To test the general behavior of these mechanisms without limitation to
 390 a single parameter set, we systematically simulated each mechanism with a range of parameter values,
 391 typically varying each parameter within two orders of magnitude. We calculated the relative difference
 392 of PQ reduction under state 2 lighting to a model with no state transitions, and the reduction of F'_m from
 393 state 1 to state 2 (Fig. 4b left). We see that all models can alleviate the PQ reduction that cyanobacteria
 394 encounter in state 2. However, across all parameter variations, the PBS-detachment model has vastly
 395 lower simulated potential to alleviate the reduction. Variations of the PBS-mobile model simulated a
 396 wide range of effects on the redox state, from near total oxidation to increased reduction. During the
 397 transition to state 2, the height of F'_m is expected to decrease, which all models can simulate within their
 398 parameter variations (Fig. 4b right). Again, the simulations of the PBS-mobile model had the widest
 399 wide range of simulation results.

(a) Monochromatic lights used in the analysis (Gaussian LED, $\sigma = 0.001$) shown as colored spikes. Relative absorption spectra of selected pigments are shown in the background.

(b) Simulated production capacities of biotechnological compounds under light variation. We created three models, each containing a sink reaction consuming energy carriers in the ratio corresponding to a biotechnological target compound, including the cost of carbon fixation. The models were simulated to steady-state under illumination with varying intensity of the lights in (a). We disabled the CBB reaction and limited ATP and NADPH concentrations to 95 % of their total pools. Thus we estimate the maximal production rate of energy carriers in a desired ratio, assuming optimal carbon assimilation for the process and no product inhibition. The shown sinks represent pure NADPH extraction, production of terpenes (19 ATP, 11 NADPH, 4 Fd_{red}), and sucrose (19 ATP, 12 NADPH).

Fig. 5: Simulated steady-state production rates of target compounds under monochromatic lights with varying intensities.

400 Model as a platform to test optimal light for biotechnological exploration

401 Cyanobacteria show potential as cell factories for the production of terpenoids from CO_2 or as whole-cell
 402 biocatalysts, which require different ratios of NADPH, ATP, and carbon. Several studies revealed that
 403 light availability is one of the main limitations of light-driven whole-cell redox biocatalysis [68]. With
 404 our model, we systematically analyzed the *Synechocystis* productivity for various light sources.

405 To identify potentially optimal light conditions and/or quantify the maximal production capacities
 406 for these exemplary processes, sink reactions were added to the model, and production was simulated
 407 with different light conditions (Fig. 5). These sinks drained the required amounts of ATP, NADPH, and
 408 Fd necessary for fixing the required amount of CO_2 and producing one unit of the target compound.
 409 Additionally, it was necessary to add reactions that avoid overaccumulation of ATP and NADPH in
 410 case the sink was not sufficiently consuming both. The model simulates that NADPH production
 411 was highest under red (624 nm) illumination saturating around $800 \mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$. We also
 412 compared the simulated productions of isoprene and sucrose, which require different optimal ratios of
 413 ATP and NADPH, 1.46 and 1.58, respectively. Isoprene production showed a stronger dependency on red-
 414 wavelength light, exceeding the production in blue light twofold, and did not saturate within the simulated
 415 light intensity range. Presumably, the involvement of Fd as a substrate further favors the usage of light
 416 preferentially exciting PSII. In line with the recent work by Rodrigues *et al.* (2023) [29], our simulated
 417 isoprene also follows the measured cellular growth rate as predicted by their stoichiometric model analysis
 418 (Fig. S13). Accordingly, Rodrigues *et al.* discuss that their experimentally realized isoprene production
 419 was determined not just by differential excitation of photosystems. On the other hand, simulation of the
 420 more ATP-intensive sucrose production was saturated at much lower light intensities and even decreased
 421 slightly under high light. These simulations indicate that the optimal light intensity could be lower
 422 for synthesis reactions requiring more ATP. It has also been suggested that the ATP:NADPH ratio is
 423 increased under blue light due to higher CET activity [69, 70]. However, our model did not show a benefit
 424 of more chlorophyll-absorbed light on the reactions involving ATP. Overall we found 624 nm light, to
 425 have the highest simulated production across the tested compounds and lights.

426 While these results were obtained for an unadapted cell, our model allows us to repeat such analyses
 427 with any adapted pigment composition (comparison of estimated CO_2 consumptions in S9).

428 Discussion

429 In this work, we present the first wavelength-dependent mathematical ODE-based photosynthesis model
430 for cyanobacteria. The model contains all major processes involved in the *Synechocystis* photosynthetic
431 electron flow, from light capture to CO₂ fixation [17] and a description of the respiratory chain embedded
432 within the same membrane. Furthermore, cyanobacteria-specific mechanisms were implemented in the
433 model, including state transitions and OCP-mediated NPQ [3, 39, 71, 42]. In contrast to other existing
434 dynamic models of photosynthesis, our model takes pigment composition of the strain as an input and
435 can simulate illumination within the full visible spectrum (400–700 nm). Hence, results obtained with
436 our model provide insights into the intricate dynamics of the photosynthetic process under various light
437 conditions.

438 The model was validated against published measurements of gas exchange rates (Fig. S4) and
439 compared to *in vivo* electron pathway fluxes and cellular fluorescence. The quantitative agreement with
440 oxygen production rates supports our pigment-specific implementation of light absorption, which allows
441 for a better assessment of the possible effect of photosystem imbalance [38, 59]. After parameterizing
442 the model to reproduce the electron fluxes in the wild type, we used it to gain in-depth information on
443 the system's behavior using *in-silico* mutants. Simulations of a Flv knockout mutant showed increased
444 CET by NDH-1 under intermediate light (Fig. 1b). It was reported previously that the proteins provide
445 redundancy for alleviating redox stress [55, 72]. Furthermore, in the Flv mutant, flux from PSII is
446 decreased due to lack of electron outflow to Flv (see Fig. S7). The decreased PSII flux is accompanied
447 by raised NPQ under high light intensities.

448 Our calculated PAM fluorescence signal is composed of signals originating from both photosystems
449 and PBS, with a similar contribution as in the previously published model [26]. We employed this
450 fluorescence estimate to fit a PAM-SP experiment inducing state transitions and OCP quenching
451 (Fig. 2a). We reached a qualitative agreement in the fluorescence dynamics, especially during the
452 induction of OCP. Therefore, despite existence of more detailed models of OCP dynamics [31], we
453 decided to keep our two-state implementation. The description of state transitions is challenging, as
454 there currently is no literature consensus on the mechanism of state transitions [3, 42]. Therefore, we
455 used our model to compare the implementations of four proposed mechanisms based on the cellular redox
456 state and fluorescence. Simulations of all mechanisms could reproduce the expected cellular effects in
457 some form. We saw, however, that the movement of PBS had the highest dynamic range of reducing or
458 oxidizing the PQ pool, while PBS detachment in state 2 had a very modest effect. Therefore, the targeted
459 movement of PBS could provide the cell with high control over its electron transport. The significance
460 of PBS movement has been debated, however [73, 74, 75, 76], as has the spillover of energy between
461 the photosystems [73, 74, 75]. It is noteworthy that considering solely the effect on PQ redox state,
462 the implemented PSII-quenching model favored by Calzadilla *et al.* [42] does not have a significantly
463 greater effect on the oxidation of PQ in our simulations. This limited PQ oxidation is in line with a
464 model of plant photoinhibition where PSII quenching decreased PSII closure by ca. 10% [77]. Overall,
465 the mechanism of state transitions and its impact on photosynthetic balance remains to be evaluated.

466 Therefore, we used MCA to systematically study the effect of light (intensity and color) and
467 determined the systems control on carbon fixation considering varying illumination: solar illumination,
468 a fluorescent lamp, and cold and warm white LEDs (Fig. 3) of different intensities. The photosystems
469 mainly controlled carbon fixation in simulations of low light intensity, which is in line with the limitation
470 of light uptake and ATP and NADPH production as found in analyses of plant models [48]. Spectra with
471 a high content of blue wavelength photons, which have been linked with an imbalanced excitation of PSI
472 and PSII [37], showed a further increase in photosystems control. Indeed, blue light was found to increase
473 PSII expression [78, 69], a cellular adaption possibly using this control. At higher light intensities, the
474 maximum rate of carbon fixation became the main controlling factor. Thus, the strategy promising
475 better productivity would involve increasing carbon fixation by e.g. additionally increasing the CO₂
476 concentration around RuBisCO [79], engineering RuBisCO itself [80] or introducing additional electron
477 acceptors and carbon sinks such as sucrose, lactate, terpenoids or 2,3-butanediol [81, 82, 83, 84, 85].

478 With the implementation of the spectral resolution, our model could also simulate cellular behavior
479 in high cell densities (e.g. bioreactors), where the light conditions might differ throughout the culture
480 [86]. We show that lighting in the orange-red spectrum requires the lowest intensity to saturate the
481 photosystems, with a warm-white LED showing the same efficiency as a fluorescent light bulb, an
482 important consideration when calculating process costs (Fig. 3b).

483 To showcase the biotechnological usability of this work, we analyzed the *Synechocystis* productivity
484 for various light sources (Fig. 5). Many experimental studies have investigated optimal light colors for

485 the production of biomass or a target compound, with most studies agreeing that white or red light is
486 optimal for cell growth but varying results for target compounds [87, 88, 29]. Especially the synthesis of
487 light harvesting or protection pigments is regulated and strongly dependent on the light color [89, 90, 91,
488 92]. These works point out that biotechnological production can be strongly improved using "correct"
489 lighting. However, finding such optimal experimental conditions may be hindered by, for example,
490 the active regulation of pigment synthesis - processes that could be overcome by cellular engineering.
491 Using our model of a cell without long-term adaption, we may identify optimal conditions to aim for in
492 cell engineering and experimentation. By simulating a target compound consuming the amount of ATP,
493 NADPH and reduced Ferredoxin (Fd) necessary to synthesize the target compound from carbon fixation,
494 we tried to estimate the maximum production potential without limitation by the CBB. We found that the
495 simulated production of all three compounds was highest under red light illumination (624 nm). Sucrose
496 production was saturated at intermediate light and even showed slight inhibition under high light, while
497 the simulated isoprene production, requiring reduced Fd and a lower amount of ATP, showed the highest
498 requirement for light (no saturation at 1600 $\mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$). Thus, the composition of energy
499 equivalents seems to determine the optimal lighting conditions. NADPH production in particular seemed
500 to follow a light saturation curve with maximum around 1600 $\mu\text{mol}(\text{photons}) \text{m}^{-2} \text{s}^{-1}$. For the purpose of
501 whole-cell biocatalysis, NADPH is often the only required cofactor for the reaction, while the generation
502 of ATP and biomass are secondary. Studies have attempted to optimise NADPH regeneration through
503 inhibition of the CBB, deletion of flavodiiron proteins, or introducing additional heterologous sinks for
504 ATP, while at the same time trying to avoid oxidative stress [93, 94, 95]. Our simulations suggest that a
505 switch in light color towards monochromatic red light may be a viable strategy to improve catalysis by
506 matching the NADPH-focused demand of the sink reaction with an equally biased source reaction.

507 These results again support the need to test and optimize light conditions for each application on
508 its own, as the stoichiometry of the desired process changes light requirements. Recently, two-phase
509 processes have been used to increase titers in cyanobacterial biotechnology, arresting growth to direct all
510 carbon towards a product [96]. Our model suggests that as a part of this process, changes in light color
511 could be used to intentionally create imbalances in metabolism and direct flux to the desired product
512 according to the energetic needs of the particular pathway.

513 To address the limitations of current model, it is imperative to critically evaluate its underlying
514 assumptions and identify key areas for improvement. For instance, with the current version of the
515 model we cannot predict the long-term cellular adaption governed by many photoreceptors [97, 98]. For
516 each simulation, we assume fixed pigment composition and light absorption capacity, thus, analysing
517 a given cell state. Relevant cellular adaptions can, however, be used as new inputs according to
518 experimental data. Also, rhodopsin photoreceptors can perform light-driven ion transport and, if found
519 photosynthetically relevant, would be a useful addition to the model [99, 100]. Next, although our model
520 considers the CBB as the main sink for energy equivalents, reactions downstream of the CBB, such
521 as glycogen production [101]), could pose additional significant sinks depending on the cell's metabolic
522 state, necessitating further refinement of our model to accurately capture these dynamics. Additionally,
523 further improvements of the currently significantly simplified CCM (Fig. S2) and photorespiratory
524 salvage functions could be beneficial, also due to the engineering efforts in building pyrenoid-based
525 CO_2 -concentrating mechanisms *in-planta* [102]. Photodamage may be a necessary addition to the model
526 when considering high-light conditions, specifically PSII photoinhibition and the Mehler reaction [103]
527 (see i.e. [30]). Finally, our model follows the dynamic change in the luminal and cytoplasmic pH but is
528 lacking the full description of *pmf*. An envisaged step of further development will be the integration of
529 the membrane potential $\Delta\Psi$ into the model and simulation of ion movement, as presented in several
530 mathematical models for plants [18, 104]. It would be moreover interesting to include the spatial
531 component into the model, accounting for the dynamics of thylakoid membranes, as revealed by [105].
532 Thanks to our computational implementation of the model using the package `modelbase` [51], the model
533 is highly modular, and the addition of new pathways or the integration of other published models (e.g.
534 a recent CBB model [106]) should not constitute a technical challenge.

535 In conclusion, the development of our first-generation computational model for simulating
536 photosynthetic dynamics represents a significant advancement in our comprehension of cyanobacteria-
537 specific photosynthetic electron flow. While acknowledging its imperfections, our model has proven to
538 be a versatile tool with a wide range of applications, spanning from fundamental research endeavors
539 aimed at unravelling the complexities of photosynthesis to practical efforts focused on biotechnological
540 optimization. Through a comprehensive presentation of our results, we have demonstrated the model's
541 capacity to elucidate core principles underlying photosynthetic processes, test existing hypotheses,
542 and offer valuable insights on the photosynthetic control under various light spectra. With further

543 development and integration of experimental data, we hope to provide a reference kinetic model of
544 cyanobacteria photosynthesis.

545 **Acknowledgements**

546 We would like to thank Ilka Axmann and Marion Eisenhut for the initial conversations on the physiology
547 of cyanobacteria that motivated the construction of this detailed model, and David Fuente for the
548 discussion on the cyanobacterial absorption and pigment compositions.

549 **Funding statement**

550 This work was funded by the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy –
551 EXC-2048/1 – project ID 390686111 (TP, OE, AM); Deutsche Forschungsgemeinschaft Research Grant
552 - project ID 420069095 (EK, AN, AM); Ministry of Education, Youth and Sports of CR within the
553 CzeCOS program (grant number LM2018123), under the OP RDE (grant number CZ.02.1.01/0.0/0.0/16
554 026/0008413 'Strategic Partnership for Environmental Technologies and Energy Production') (TZ, JC);
555 as well as by the National Research, Development and Innovation Office of Hungary, NKFIH (awards K
556 140351 and RRF-2.3.1-21-2022-00014 (GB).

557 **Authors contribution**

558 TP, EK developed the computational model; TP, EK and AN performed simulations and visualizations;
559 TZ performed validation experiments and performed data curation; OE, AM, JC, GB acquired funding;
560 TP, EK, AN, and AM wrote the original draft; TP and AM reviewed and edited the corrected manuscript;
561 AM conceptualized, initiated and supervised the project; all authors were involved in discussions on
562 methodology and investigation and made a substantial, direct, and intellectual contribution to the work
563 and approved it for publication.

564 **References**

- 565 [1] Malihe Mehdizadeh Allaf and Hassan Peerhossaini. Cyanobacteria: Model Microorganisms and
566 Beyond, 4 2022.
- 567 [2] Sophie De Vries and Jan De Vries. Evolutionary genomic insights into cyanobacterial symbioses in
568 plants, 8 2022.
- 569 [3] Alexandrina Stirbet, Dušan Lazár, George C. Papageorgiou, and Govindjee. Chapter 5 -
570 Chlorophyll a Fluorescence in Cyanobacteria: Relation to Photosynthesis. In A. K. Mishra, D. N.
571 Tiwari, and A. N. Rai, editors, *Cyanobacteria*, pages 79–130. Academic Press, January 2019.
- 572 [4] Jay Kumar, Divya Singh, Madhu B. Tyagi, and Ashok Kumar. Cyanobacteria: Applications in
573 Biotechnology. In *Cyanobacteria*, chapter 16, pages 327–346. Elsevier, 12 2019.
- 574 [5] K Benedikt Möllers, David Cannella, Henning Jørgensen, and Niels-Ulrik Frigaard. Cyanobacterial
575 biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation.
576 *Biotechnology for Biofuels*, 7(1):64, 12 2014.
- 577 [6] Stephanie G. Hays and Daniel C. Ducat. Engineering cyanobacteria as photosynthetic feedstock
578 factories. *Photosynthesis Research*, 123(3):285–295, 3 2015.
- 579 [7] Mrinal Kumar Sarma, Sharbani Kaushik, and Pranab Goswami. Cyanobacteria: A metabolic power
580 house for harvesting solar energy to produce bio-electricity and biofuels. *Biomass and Bioenergy*,
581 90:187–201, 7 2016.
- 582 [8] Ewa Żymańczyk-Duda, Sunday Ocholi Samson, Małgorzata Brzezińska-Rodak, and Magdalena
583 Klimek-Ochab. Versatile Applications of Cyanobacteria in Biotechnology. *Microorganisms*, 10(12),
584 12 2022.
- 585 [9] Oliver Klaus, Fabienne Hilgers, Andreas Nakielski, Dennis Hasenklever, Karl Erich Jaeger, Ilka M.
586 Axmann, and Thomas Drepper. Engineering phototrophic bacteria for the production of terpenoids.
587 *Current Opinion in Biotechnology*, 77:102764, 10 2022.

588 [10] Jens Appel, Vanessa Hueren, Marko Boehm, and Kirstin Gutekunst. Cyanobacterial in vivo solar
589 hydrogen production using a photosystem I-hydrogenase (PsaD-HoxYH) fusion complex. *Nature
590 Energy*, 5(6):458–467, 6 2020.

591 [11] David J Lea-Smith, Paolo Bombelli, Ravendran Vasudevan, and Christopher J Howe.
592 Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria.
593 *Biochimica et Biophysica Acta (BBA) - Bioenergetics*, 1857(3):247–255, 3 2016.

594 [12] Christine M. Lewis, Justin D. Flory, Thomas A. Moore, Ana L. Moore, Bruce E. Rittmann,
595 Wim F.J. Vermaas, César I. Torres, and Petra Fromme. Electrochemically Driven Photosynthetic
596 Electron Transport in Cyanobacteria Lacking Photosystem II. *Journal of the American Chemical
597 Society*, 144(7):2933–2942, 2 2022.

598 [13] David M. Kramer and John R. Evans. The importance of energy balance in improving
599 photosynthetic productivity. *Plant Physiology*, 155(1):70–78, 2011.

600 [14] Andreas Karoly Gombert and Jens Nielsen. Mathematical modelling of metabolism. *Current
601 Opinion in Biotechnology*, 11(2):180–186, 4 2000.

602 [15] Alexandrina Stirbet, Dušan Lazár, Ya Guo, and Govindjee Govindjee. Photosynthesis: Basics,
603 history and modelling. *Annals of Botany*, 126(4):511–537, 2020.

604 [16] Thierry Fourcaud, Xiaopeng Zhang, Alexia Stokes, Hans Lambers, and Christian Körner. Plant
605 growth modelling and applications: The increasing importance of plant architecture in growth
606 models, 5 2008.

607 [17] David J. Lea-Smith and Guy T. Hanke. Electron Transport in Cyanobacteria and Its Potential in
608 Bioproduction. In *Cyanobacteria Biotechnology*, pages 33–63. Wiley, 5 2021.

609 [18] Meng Li, Vaclav Svoboda, Geoffry Davis, David Kramer, Hans Henning Kunz, and Helmut
610 Kirchhoff. Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport
611 and photoprotection. *Nature Plants*, 7(7):979–988, 7 2021.

612 [19] Robert L. Burnap, Martin Hagemann, and Aaron Kaplan. Regulation of CO₂concentrating
613 mechanism in cyanobacteria, 1 2015.

614 [20] Jinlan Gao, Hao Wang, Qipeng Yuan, and Yue Feng. Structure and Function of the Photosystem
615 Supercomplexes. *Frontiers in Plant Science*, 9:357, 3 2018.

616 [21] E. M. Sukhova, V. A. Vodeneev, and V. S. Sukhov. Mathematical Modeling of Photosynthesis and
617 Analysis of Plant Productivity. *Biochemistry (Moscow), Supplement Series A: Membrane and Cell
618 Biology*, 15(1):52–72, January 2021.

619 [22] Ulrich Schreiber. Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method:
620 An Overview. In *Chlorophyll a Fluorescence*, number January 2004, pages 279–319. Springer
621 Netherlands, Dordrecht, 2004.

622 [23] Douglas Campbell, Vaughan Hurry, Adrian K. Clarke, Petter Gustafsson, and Gunnar Öquist.
623 Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation. *Microbiology
624 and Molecular Biology Reviews*, 62(3):667–683, 9 1998.

625 [24] D. Lazar, A. Stirbet, L. O. Björn, and G. Govindjee. Light quality, oxygenic photosynthesis and
626 more. *Photosynthetica*, 60(SPECIAL ISSUE 2022):25–58, March 2022. Publisher: Photosynthetica.

627 [25] R. Milou Schuurmans, Pascal van Alphen, J. Merijn Schuurmans, Hans C. P. Matthijs, and Klaas J.
628 Hellingwerf. Comparison of the Photosynthetic Yield of Cyanobacteria and Green Algae: Different
629 Methods Give Different Answers. *PLOS ONE*, 10(9):e0139061, 9 2015.

630 [26] Alonso M. Acuña, Joris J. Snellenburg, Michal Gwizdala, Diana Kirilovsky, Rienk van Grondelle,
631 and Ivo H. M. van Stokkum. Resolving the contribution of the uncoupled phycobilisomes to
632 cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals. *Photosynthesis Research*,
633 127(1):91–102, 1 2016.

634 [27] Stefanie Westermann and Ralf Steuer. Toward Multiscale Models of Cyanobacterial Growth: A
635 Modular Approach. *Frontiers in Bioengineering and Biotechnology*, 4:95, 12 2016.

636 [28] Henning Knoop, Yvonne Zilliges, Wolfgang Lockau, and Ralf Steuer. The Metabolic Network
637 of Synechocystis sp. PCC 6803: Systemic Properties of Autotrophic Growth. *Plant Physiology*,
638 154(1):410–422, 9 2010.

639 [29] João S. Rodrigues, László Kovács, Martin Lukeš, Rune Höper, Ralf Steuer, Jan Červený, Pia
640 Lindberg, and Tomáš Zavřel. Characterizing isoprene production in cyanobacteria – Insights
641 into the effects of light, temperature, and isoprene on Synechocystis sp. PCC 6803. *Bioresource
642 Technology*, 380:129068, 7 2023.

643 [30] R. Höper, D. Komkova, T. Zavřel, and R. Steuer. A quantitative description of light-limited
644 cyanobacterial growth using flux balance analysis, January 2024.

645 [31] Maxim Y Gorbunov, Fedor I Kuzminov, Victor V Fadeev, John Dongun Kim, and Paul G
646 Falkowski. A kinetic model of non-photochemical quenching in cyanobacteria. *Biochimica et
647 Biophysica Acta - Bioenergetics*, 1807(12):1591–1599, 2011.

648 [32] A V Vershubsckii, V I Mishanin, and A N Tikhonov. Modeling of the photosynthetic electron
649 transport regulation in cyanobacteria. *Biochemistry (Moscow) Supplement Series A: Membrane
650 and Cell Biology*, 31(2):110–128, 7 2014.

651 [33] Tomáš Zavřel, Marjan Faizi, Cristina Loureiro, Gereon Poschmann, Kai Stühler, Maria Sinetova,
652 Anna Zorina, Ralf Steuer, and Jan Červený. Quantitative insights into the cyanobacterial cell
653 economy. *eLife*, 8, feb 2019.

654 [34] Björn Andersson, Chen Shen, Michael Cantrell, David S. Dandy, and Graham Peers. The
655 fluctuating cell-specific light environment and its effects on cyanobacterial physiology. *Plant
656 Physiology*, 181(2):547–564, 2019.

657 [35] Marcel Dann, Edgardo M. Ortiz, Moritz Thomas, Arthur Guljamow, Martin Lehmann, Hanno
658 Schaefer, and Dario Leister. Enhancing photosynthesis at high light levels by adaptive laboratory
659 evolution. *Nature Plants*, 7(5):681–695, 5 2021.

660 [36] Gábor Bernát, Tomáš Zavřel, Eva Kotabová, László Kovács, Gábor Steinbach, Lajos Vörös, Ondřej
661 Prášil, Boglárka Somogyi, and Viktor R Tóth. Photomorphogenesis in the Picocyanobacterium
662 Cyanobium gracile Includes Increased Phycobilisome Abundance Under Blue Light, Phycobilisome
663 Decoupling Under Near Far-Red Light, and Wavelength-Specific Photoprotective Strategies.
664 *Frontiers in Plant Science*, 12:352, 3 2021.

665 [37] Veerle M Luimstra, J Merijn Schuurmans, Antonie M Verschoor, Klaas J Hellingwerf, Jef Huisman,
666 and Hans C P Matthijs. Blue light reduces photosynthetic efficiency of cyanobacteria through an
667 imbalance between photosystems I and II. *Photosynthesis Research*, 138(2):177–189, 11 2018.

668 [38] Veerle M. Luimstra, J. Merijn Schuurmans, Carolina F. M. de Carvalho, Hans C. P. Matthijs,
669 Klaas J. Hellingwerf, and Jef Huisman. Exploring the low photosynthetic efficiency of cyanobacteria
670 in blue light using a mutant lacking phycobilisomes. *Photosynthesis Research*, 141(3):291–301, 9
671 2019.

672 [39] Diana Kirilovsky and Cheryl A. Kerfeld. The Orange Carotenoid Protein: a blue-green light
673 photoactive protein. *Photochemical & Photobiological Sciences*, 12(7):1135–1143, 7 2013.

674 [40] Cheryl A. Kerfeld, Matthew R. Melnicki, Markus Sutter, and Maria Agustina Dominguez-Martin.
675 Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs.
676 *New Phytologist*, 215(3):937–951, 8 2017.

677 [41] Diana Kirilovsky, Radek Kaňa, and Ondřej Prášil. Mechanisms Modulating Energy Arriving at
678 Reaction Centers in Cyanobacteria. In Barbara Demmig-Adams, Gyozo Garab, William Adams III,
679 and Govindjee, editors, *Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and
680 Cyanobacteria*, pages 471–501. Springer Netherlands, Dordrecht, 2014.

681 [42] Pablo I Calzadilla and Diana Kirilovsky. Revisiting cyanobacterial state transitions. *Photochemical
682 & Photobiological Sciences*, 19(5):585–603, 5 2020.

683 [43] R. Heinrich, S.M. Rapoport, and T.A. Rapoport. Metabolic regulation and mathematical models.
684 *Progress in Biophysics and Molecular Biology*, 32(C):1–82, 1978.

685 [44] Jan-Hendrik S Hofmeyr. Metabolic control analysis in a nutshell. *Proceedings of the 2nd*
686 *International Conference on Systems Biology*, (ii):291–300, 2001.

687 [45] Rafael Moreno-Sánchez, Emma Saavedra, Sara Rodríguez-Enríquez, and Viridiana Olín-Sandoval.
688 Metabolic Control Analysis: A tool for designing strategies to manipulate metabolic pathways.
689 *Journal of Biomedicine and Biotechnology*, 2008(1), 2008.

690 [46] Marius L. Theune, Sarah Hildebrandt, Anja Steffen-Heins, Wolfgang Bilger, Kirstin Gutekunst,
691 and Jens Appel. In-vivo quantification of electron flow through photosystem I – Cyclic electron
692 transport makes up about 35% in a cyanobacterium. *Biochimica et Biophysica Acta - Bioenergetics*,
693 1862(3):148353, 2021.

694 [47] Oliver Ebenhöh, Geoffrey Fucile, Giovanni Finazzi, Jean David Rochaix, and Michel Goldschmidt-
695 Clermont. Short-term acclimation of the photosynthetic electron transfer chain to changing light:
696 A mathematical model. *Philosophical Transactions of the Royal Society B: Biological Sciences*,
697 369(1640):20130223, apr 2014.

698 [48] Anna Matuszyńska, Nima P. Saadat, and Oliver Ebenhöh. Balancing energy supply during
699 photosynthesis – a theoretical perspective. *Physiologia Plantarum*, 166(1):392–402, may 2019.

700 [49] Murray R. Badger and G. Dean Price. CO₂ concentrating mechanisms in cyanobacteria: molecular
701 components, their diversity and evolution. *Journal of Experimental Botany*, 54(383):609–622,
702 February 2003.

703 [50] Guido Van Rossum and Fred L Drake. *Python 3 Reference Manual*. CreateSpace, Scotts Valley,
704 CA, 2009.

705 [51] Marvin van Aalst, Oliver Ebenhöh, and Anna Matuszyńska. Constructing and analysing dynamic
706 models with modelbase v1.2.3: a software update. *BMC Bioinformatics*, 22(1):203, 12 2021.

707 [52] Shimshon Belkin, Rolf J. Mehlhorn, and Lester Packer. Proton Gradients in Intact Cyanobacteria.
708 *Plant Physiology*, 84(1):25–30, may 1987.

709 [53] Jason W. Cooley and Wim F. J. Vermaas. Succinate Dehydrogenase and Other Respiratory
710 Pathways in Thylakoid Membranes of *Synechocystis* sp. Strain PCC 6803: Capacity Comparisons
711 and Physiological Function. *Journal of Bacteriology*, 183(14):4251–4258, jul 2001.

712 [54] Sergey Khorobrykh, Tatsuhiko Tsurumaki, Kan Tanaka, Taina Tyystjärvi, and Esa Tyystjärvi.
713 Measurement of the redox state of the plastoquinone pool in cyanobacteria. *FEBS Letters*,
714 594(2):367–375, jan 2020.

715 [55] Lauri Nikkanen, Anita Santana Sánchez, Maria Ermakova, Matthias Rögner, Laurent Cournac,
716 and Yagut Allahverdiyeva. Functional redundancy between flavodiiron proteins and NDH-1 in
717 *Synechocystis* sp. PCC 6803. *The Plant Journal*, 103(4):1460–1476, aug 2020.

718 [56] Tomáš Zavřel, Anna Segečová, László Kovács, Martin Lukeš, Zoltán Novák, Anne-Christin
719 Pohland, Milán Szabó, Boglárka Somogyi, Ondřej Prášil, Jan Červený, and Gábor Bernát. A
720 comprehensive study of light quality acclimation in *Synechocystis* sp. PCC 6803, February 2024.
721 Pages: 2023.06.08.544187 Section: New Results.

722 [57] Wolfram Liebermeister, Jannis Uhendorf, and Edda Klipp. Modular rate laws for enzymatic
723 reactions: thermodynamics, elasticities and implementation. *Bioinformatics*, 26(12):1528–1534, 6
724 2010.

725 [58] Elad Noor, Avi Flamholz, Wolfram Liebermeister, Arren Bar-Even, and Ron Milo. A note on the
726 kinetics of enzyme action: A decomposition that highlights thermodynamic effects. *FEBS Letters*,
727 587(17):2772–2777, 9 2013.

728 [59] David Fuente, Dusan Lazar, Jose Vicente Oliver-Villanueva, and Javier F. Urchueguía.
729 Reconstruction of the absorption spectrum of *Synechocystis* sp. PCC 6803 optical mutants from
730 the in vivo signature of individual pigments. *Photosynthesis Research*, 147(1):75–90, jan 2021.

731 [60] Jeremy Harbinson and Eva Rosenqvist. An Introduction to Chlorophyll Fluorescence. In *Practical*
732 *Applications of Chlorophyll Fluorescence in Plant Biology*, pages 1–29. Springer US, Boston, MA,
733 2003.

734 [61] Dušan Lazár. A word or two about chlorophyll fluorescence and its relation to photosynthesis
735 research; a text for Ph.D. students, 5 2016.

736 [62] Christina Evi Pfaffinger, Dennis Schöne, Sascha Trunz, Hannes Löwe, and Dirk Weuster-Botz.
737 Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors.
738 *Algal Research*, 20:153–163, December 2016.

739 [63] H. Kacser and J. A. Burns. The control of flux. *Symp Soc Exp Biol*, 27:65–104, 1973.

740 [64] R. Milou Schuurmans, J. Merijn Schuurmans, Martijn Bekker, Jacco C. Kromkamp, Hans C.P.
741 Matthijs, and Klaas J. Hellingwerf. The redox potential of the plastoquinone pool of the
742 cyanobacterium *synechocystis* species strain PCC 6803 is under strict homeostatic control. *Plant
743 Physiology*, 165(1):463–475, 2014.

744 [65] Neil T. Miller, Michael D. Vaughn, and Robert L. Burnap. Electron flow through NDH-1 complexes
745 is the major driver of cyclic electron flow-dependent proton pumping in cyanobacteria. *Biochimica
746 et Biophysica Acta - Bioenergetics*, 1862(3), 3 2021.

747 [66] Anita Santana-Sanchez, Daniel Solymosi, Henna Mustila, Luca Bersanini, Eva-Mari Aro, and Yagut
748 Allahverdiyeva. Flavodiiron proteins 1–to-4 function in versatile combinations in O₂ photoreduction
749 in cyanobacteria. *eLife*, 8, 7 2019.

750 [67] Reza Ranjbar Choubeh, Emilie Wientjes, Paul C Struik, Diana Kirilovsky, and Herbert van
751 Amerongen. State transitions in the cyanobacterium *Synechococcus elongatus* 7942 involve
752 reversible quenching of the photosystem II core. *Biochimica et Biophysica Acta (BBA) -
753 Bioenergetics*, 1859(10):1059–1066, 10 2018.

754 [68] Adrian Tüllinghoff, Harcel Djaya-Mbissam, Jörg Toepel, and Bruno Bühler. Light-
755 driven redox biocatalysis on gram-scale in *Synechocystis* sp. PCC 6803 via an
756 in vivo cascade. *Plant Biotechnology Journal*, 21(10):2074–2083, 2023. *eprint*:
757 <https://onlinelibrary.wiley.com/doi/10.1111/pbi.14113>.

758 [69] Veerle M. Luimstra, J. Merijn Schuurmans, Klaas J. Hellingwerf, Hans C. P. Matthijs,
759 and Jef Huisman. Blue light induces major changes in the gene expression profile of the
760 cyanobacterium *Synechocystis* sp. PCC 6803. *Physiologia Plantarum*, 170(1):10–26, 2020. *eprint*:
761 <https://onlinelibrary.wiley.com/doi/10.1111/ppl.13086>.

762 [70] Chiaki Yamamoto, Masakazu Toyoshima, Sayaka Kitamura, Yoshifumi Ueno, Seiji Akimoto,
763 Yoshihiro Toya, and Hiroshi Shimizu. Estimation of linear and cyclic electron flows in
764 photosynthesis based on ¹³C-metabolic flux analysis. *Journal of Bioscience and Bioengineering*,
765 131(3):277–282, March 2021.

766 [71] Ciaran R. McFarlane, Nita R. Shah, Burak V. Kabasakal, Blanca Echeverria, Charles A. R.
767 Cotton, Doryen Bubeck, and James W. Murray. Structural basis of light-induced redox regulation
768 in the Calvin–Benson cycle in cyanobacteria. *Proceedings of the National Academy of Sciences*,
769 116(42):20984–20990, 10 2019.

770 [72] Lauri Nikkanen, Daniel Solymosi, Martina Jokel, and Yagut Allahverdiyeva. Regulatory electron
771 transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and
772 biotechnological prospects. *Physiologia Plantarum*, 173(2):514–525, 10 2021.

773 [73] Pablo I. Calzadilla, Jiao Zhan, Pierre Sétif, Claire Lemaire, Daniel Solymosi, Natalia Battchikova,
774 Qiang Wang, and Diana Kirilovsky. The Cytochrome b6f Complex Is Not Involved in
775 Cyanobacterial State Transitions. *The Plant Cell*, 31(4):911–931, 4 2019.

776 [74] Igor N. Stadnichuk, Evgeny P. Lukashev, and Irina V. Elanskaya. Fluorescence changes
777 accompanying short-term light adaptations in photosystem I and photosystem II of the
778 cyanobacterium *Synechocystis* sp. PCC 6803 and phycobiliprotein-impaired mutants: State 1/State
779 2 transitions and carotenoid-induced quenching of phycobilisomes. *Photosynthesis Research*,
780 99(3):227–241, March 2009.

781 [75] Volha Chukhutsina, Luca Bersanini, Eva Mari Aro, and Herbert Van Amerongen. Cyanobacterial
782 Light-Harvesting Phycobilisomes Uncouple From Photosystem I During Dark-To-Light Transitions.
783 *Scientific Reports* 2015 5:1, 5(1):1–10, September 2015.

784 [76] Sarah Joshua and Conrad W. Mullineaux. Phycobilisome Diffusion Is Required for Light-State
785 Transitions in Cyanobacteria. *Plant Physiology*, 135(4):2112–2119, August 2004.

786 [77] Tim Nies, Shizue Matsubara, and Oliver Ebenhöh. A mathematical model of photoinhibition:
787 exploring the impact of quenching processes. preprint, Plant Biology, September 2023.

788 [78] Abhay K. Singh, Maitrayee Bhattacharyya-Pakrasi, Thanura Elvitigala, Bijoy Ghosh, Rajeev
789 Aurora, and Himadri B. Pakrasi. A Systems-Level Analysis of the Effects of Light Quality on
790 the Metabolism of a Cyanobacterium. *Plant Physiology*, 151(3):1596–1608, November 2009.

791 [79] Nina A Kamennaya, Seeun Ahn, Hanwool Park, Roy Bartal, Kenji A Sasaki, Hoi-Ying Holman, and
792 Christer Jansson. Installing extra bicarbonate transporters in the cyanobacterium *Synechocystis*
793 sp. PCC6803 enhances biomass production. *Metab. Eng.*, 29:76–85, 5 2015.

794 [80] Feiyan Liang and Peter Lindblad. *Synechocystis* PCC 6803 overexpressing RuBisCO grow faster
795 with increased photosynthesis. *Metab Eng Commun*, 4:29–36, 6 2017.

796 [81] Xiang Gao, Fang Gao, Deng Liu, Hao Zhang, Xiaoqun Nie, and Chen Yang. Engineering the
797 methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from
798 CO₂. *Energy & Environmental Science*, 9(4):1400–1411, 2016.

799 [82] Masahiro Kanno, Austin L Carroll, and Shota Atsumi. Global metabolic rewiring for improved
800 CO₂ fixation and chemical production in cyanobacteria. *Nat. Commun.*, 8:14724, 3 2017.

801 [83] Amit K. Singh, María Santos-Merino, Jonathan K. Sakkos, Berkley J. Walker, and Daniel C
802 Ducat. Multi-layer Regulation of Rubisco in Response to Altered Carbon Status in *Synechococcus*
803 *elongatus* PCC 7942. *bioRxiv*, 10 2021.

804 [84] Marcel Grund, Torsten Jakob, Jörg Toepel, Andreas Schmid, Christian Wilhelm, and Bruno
805 Bühler. Heterologous Lactate Synthesis in *Synechocystis* sp. Strain PCC 6803 Causes a Growth
806 Condition-Dependent Carbon Sink Effect. *Appl. Environ. Microbiol.*, 88(8):e0006322, 4 2022.

807 [85] María Santos-Merino, Alejandro Torrado, Geoffry A. Davis, Annika Röttig, Thomas S. Bibby,
808 David M. Kramer, and Daniel C. Ducat. Improved photosynthetic capacity and photosystem I
809 oxidation via heterologous metabolism engineering in cyanobacteria. *Proceedings of the National
810 Academy of Sciences*, 118(11):e2021523118, March 2021.

811 [86] Alessandro Cordara, Angela Re, Cristina Pagliano, Pascal Van Alphen, Raffaele Pirone, Guido
812 Saracco, Filipe Branco dos Santos, Klaas Hellingwerf, and Nicolò Vasile. Analysis of the
813 light intensity dependence of the growth of *Synechocystis* and of the light distribution in a
814 photobioreactor energized by 635 nm light. *PeerJ*, 6:e5256, 7 2018.

815 [87] Ronaldo Leal Carneiro, Maria Elisângela Venâncio dos Santos, Ana Beatriz Furlanetto Pacheco, and
816 Sandra Maria Feliciano de Oliveira e Azevedo. Effects of light intensity and light quality on growth
817 and circadian rhythm of saxitoxins production in *Cylindrospermopsis raciborskii* (Cyanobacteria).
818 *Journal of Plankton Research*, 31(5):481–488, May 2009.

819 [88] Alexandros Polyzois, Diana Kirilovsky, Thi-hanh Dufat, and Sylvie Michel. Effects of Modification
820 of Light Parameters on the Production of Cryptophycin, Cyanotoxin with Potent Anticancer
821 Activity, in *Nostoc* sp. *Toxins*, 12(12):809, December 2020. Number: 12 Publisher:
822 Multidisciplinary Digital Publishing Institute.

823 [89] Sanjiv K. Mishra, Anupama Shrivastav, Rahulkumar R. Maurya, Shailesh K. Patidar, Soumya
824 Haldar, and Sandhya Mishra. Effect of light quality on the C-phycoerythrin production in marine
825 cyanobacteria *Pseudanabaena* sp. isolated from Gujarat coast, India. *Protein Expression and
826 Purification*, 81(1):5–10, January 2012.

827 [90] George N. Hotos and Theodoros I. Antoniadis. The Effect of Colored and White Light on
828 Growth and Phycobiliproteins, Chlorophyll and Carotenoids Content of the Marine Cyanobacteria
829 *Phormidium* sp. and *Cyanothece* sp. in Batch Cultures. *Life*, 12(6):837, June 2022. Number: 6
830 Publisher: Multidisciplinary Digital Publishing Institute.

831 [91] Fernando Pagels, Vitor Vasconcelos, and Ana Catarina Guedes. Carotenoids from Cyanobacteria:
832 Biotechnological Potential and Optimization Strategies. *Biomolecules*, 11(5):735, May 2021.
833 Number: 5 Publisher: Multidisciplinary Digital Publishing Institute.

834 [92] Ming Su, Jiao Fang, Zeyu Jia, Yuliang Su, Yiping Zhu, Bin Wu, John C. Little, Jianwei Yu, and Min
835 Yang. Biosynthesis of 2-methylisoborneol is regulated by chromatic acclimation of *Pseudanabaena*.
836 *Environmental Research*, 221:115260, March 2023.

837 [93] Julia Jodlbauer, Thomas Rohr, Oliver Spadiut, Marko D. Mihovilovic, and Florian Rudroff.
838 Biocatalysis in green and blue: Cyanobacteria, 9 2021.

839 [94] Jianhua Fan, Yinghui Zhang, Ping Wu, Xiaoyan Zhang, and Yunpeng Bai. Enhancing cofactor
840 regeneration of cyanobacteria for the light-powered synthesis of chiral alcohols. *Bioorganic*
841 *Chemistry*, 118, 1 2022.

842 [95] Jie Cheng, Chaobo Zhang, Kaidian Zhang, Jiashun Li, Yuyong Hou, Jiachao Xin, Yang Sun,
843 Chengshuai Xu, and Wei Xu. Cyanobacteria-mediated light-driven biotransformation: The current
844 status and perspectives, 11 2023.

845 [96] Kiyan Shabestary, Hugo Pineda Hernández, Rui Miao, Emil Ljungqvist, Olivia Hallman, Emil
846 Sporre, Filipe Branco dos Santos, and Elton P Hudson. Cycling between growth and production
847 phases increases cyanobacteria bioproduction of lactate. *Metabolic Engineering*, 68:131–141, 11
848 2021.

849 [97] Lisa B. Wiltbank and David M. Kehoe. Diverse light responses of cyanobacteria mediated by
850 phytochrome superfamily photoreceptors. *Nature Reviews Microbiology*, 17(1):37–50, January 2019.

851 [98] Hiroki Hoshino, Keita Miyake, and Rei Narikawa. Chapter 15 - Cyanobacterial photoreceptors
852 and their applications. In Hakuto Kageyama and Rungaroon Waditee-Sirisattha, editors,
853 *Cyanobacterial Physiology*, pages 201–210. Academic Press, January 2022.

854 [99] Masumi Hasegawa, Toshiaki Hosaka, Keiichi Kojima, Yosuke Nishimura, Yu Nakajima, Tomomi
855 Kimura-Someya, Mikako Shirouzu, Yuki Sudo, and Susumu Yoshizawa. A unique clade of light-
856 driven proton-pumping rhodopsins evolved in the cyanobacterial lineage. *Scientific Reports*,
857 10(1):16752, October 2020.

858 [100] R. Astashkin, K. Kovalev, S. Bukhdruker, S. Vaganova, A. Kuzmin, A. Alekseev, T. Balandin,
859 D. Zabelskii, I. Gushchin, A. Royant, D. Volkov, G. Bourenkov, E. Koonin, M. Engelhard,
860 E. Bamberg, and V. Gordeliy. Structural insights into light-driven anion pumping in cyanobacteria.
861 *Nature Communications*, 13(1):6460, October 2022.

862 [101] Melissa Cano, Steven C Holland, Juliana Artier, Rob L Burnap, Maria Ghirardi, John A Morgan,
863 and Jianping Yu. Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in
864 Cyanobacteria. *Cell Reports*, 23(3):667–672, 4 2018.

865 [102] Liat Adler, Aranzazú Díaz-Ramos, Yuwei Mao, Krzysztof Robin Pukacz, Chenyi Fei, and Alistair J
866 McCormick. New horizons for building pyrenoid-based CO₂-concentrating mechanisms in plants
867 to improve yields. *Plant Physiology*, 190(3):1609–1627, 10 2022.

868 [103] Amel Latifi, Marion Ruiz, and Cheng-Cai Zhang. Oxidative stress in cyanobacteria. *FEMS*
869 *Microbiology Reviews*, 33(2):258–278, March 2009.

870 [104] Hui Lyu and Dušan Lazár. Analyzing the effect of ion binding to the membrane-surface on
871 regulating the light-induced transthalakoid electric potential ($\Delta\Psi_m$). *Frontiers in Plant Science*,
872 13, 7 2022.

873 [105] Laura Roxana Stingaciu, Hugh O'Neill, Michelle Liberton, Volker S. Urban, Himadri B. Pakrasi,
874 and Michael Ohl. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells.
875 *Scientific Reports*, 6, 1 2016.

876 [106] Markus Janasch, Johannes Asplund-Samuelsson, Ralf Steuer, and Elton P Hudson. Kinetic
877 modeling of the Calvin cycle identifies flux control and stable metabolomes in *Synechocystis* carbon
878 fixation. *Journal of Experimental Botany*, 70(3):973–983, 2019.

879 [107] Marvin van Aalst, Oliver Ebenhöh, and Anna Matuszyńska. Constructing and analysing dynamic
880 models with modelbase v1.2.3: a software update. *BMC Bioinformatics*, 22(1):1–15, 4 2021.

881 [108] Shigeharu Kihara, Daniel A. Hartzler, and Sergei Savikhin. Oxygen concentration inside a
882 functioning photosynthetic cell. *Biophysical Journal*, 106(9):1882–1889, may 2014.

883 [109] Ulrich Schreiber. Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously
884 in intact leaves. *Photosynthesis Research*, 134(3):343–360, dec 2017.

885 [110] Kenya Tanaka, Ginga Shimakawa, Hiro Tabata, Shoko Kusama, Chikahiro Miyake, and Shuji
886 Nakanishi. Quantification of NAD(P)H in cyanobacterial cells by a phenol extraction method.
887 *Photosynthesis Research*, 148(1):57, may 2021.

888 [111] Sofia Doello, Alexander Klotz, Alexander Makowka, Kirstin Gutekunst, and Karl Forchhammer.
889 A Specific Glycogen Mobilization Strategy Enables Rapid Awakening of Dormant Cyanobacteria
890 from Chlorosis. *Plant Physiology*, 177(2):594–603, jun 2018.

891 [112] Jan Huege, Jan Goetze, Doreen Schwarz, Hermann Bauwe, Martin Hagemann, and Joachim Kopka.
892 Modulation of the Major Paths of Carbon in Photorespiratory Mutants of Synechocystis. *PLOS
893 ONE*, 6(1):e16278, 2011.

894 [113] Yuan-Hui Li and Tien-Fung Tsui. The solubility of CO₂ in water and sea water. *Journal of
895 Geophysical Research*, 76(18):4203–4207, 1971.

896 [114] Yu Tsukamoto, Yuriko Fukushima, Satoshi Hara, and Toru Hisabori. Redox Control of the Activity
897 of Phosphoglycerate Kinase in Synechocystis sp. PCC6803. *Plant and Cell Physiology*, 54(4):484–
898 491, apr 2013.

899 [115] Laure Michelet, Mirko Zaffagnini, Samuel Morisse, Francesca Sparla, María Esther Pérez-Pérez,
900 Francesco Francia, Antoine Danon, Christophe H. Marchand, Simona Fermani, Paolo Trost, and
901 Stéphane D. Lemaire. Redox regulation of the Calvin–Benson cycle: something old, something
902 new. *Frontiers in Plant Science*, 4:470, November 2013.

903 [116] Adjélé Wilson, Claire Punginelli, Andrew Gall, Cosimo Bonetti, Maxime Alexandre, Jean Marc
904 Routaboul, Cheryl A Kerfeld, Rienk Van Grondelle, Bruno Robert, John T M Kennis, and Diana
905 Kirilovsky. A photoactive carotenoid protein acting as light intensity sensor. *Proceedings of the
906 National Academy of Sciences*, 105(33):12075–12080, 8 2008.

907 [117] Martin Hagemann, Shanshan Song, and Eva-Maria Eva-Maria Brouwer. Inorganic Carbon
908 Assimilation in Cyanobacteria: Mechanisms, Regulation, and Engineering. *Cyanobacteria
909 Biotechnology*, pages 1–31, may 2021.

910 [118] Maximilian König, Jan Vaes, Elias Klemm, and Deepak Pant. Solvents and Supporting Electrolytes
911 in the Electrocatalytic Reduction of CO₂. *iScience*, 19:135–160, 9 2019.

912 [119] Francisco Javier Mojica Prieto and Frank J. Millero. The values of pK₁ + pK₂ for the dissociation
913 of carbonic acid in seawater. *Geochimica et Cosmochimica Acta*, 66(14):2529–2540, jul 2002.

914 [120] Joris J. Benschop, Murray R. Badger, and G. Dean Price. Characterisation of CO₂ and HCO₃⁻
915 uptake in the cyanobacterium Synechocystis sp. PCC6803. *Photosynthesis Research*, 77(2):117–126,
916 August 2003.

917 [121] Gwenaëlle Moal and Bernard Lagoutte. Photo-induced electron transfer from photosystem I to
918 NADP⁺: Characterization and tentative simulation of the in vivo environment. *Biochimica et
919 Biophysica Acta (BBA) - Bioenergetics*, 1817(9):1635–1645, sep 2012.

920 [122] Nir Keren, Rajeev Aurora, and Himadri B. Pakrasi. Critical Roles of Bacterioferritins in Iron
921 Storage and Proliferation of Cyanobacteria. *Plant Physiology*, 135(3):1666, 2004.

922 [123] Allison M.L. Van De Meene, William P. Sharp, Jennifer H. McDaniel, Heiner Friedrich, Wim F.J.
923 Vermaas, and Robert W. Roberson. Gross morphological changes in thylakoid membrane structure
924 are associated with photosystem I deletion in Synechocystis sp. PCC 6803. *Biochimica et Biophysica
925 Acta (BBA) - Biomembranes*, 1818(5):1427–1434, may 2012.

926 [124] Denys Pogoryelov, Christian Reichen, Adriana L. Klyszejko, René Brunisholz, Daniel J. Muller,
927 Peter Dimroth, and Thomas Meier. The oligomeric state of c rings from cyanobacterial F-ATP
928 synthases varies from 13 to 15. *Journal of bacteriology*, 189(16):5895–5902, aug 2007.

929 [125] Andrew S. Richardson. *2019 NRL Plasma Formulary*. U.S. Naval Research Laboratory, 2019.

930 [126] Michael E. Wieser. Atomic weights of the elements 2005 (IUPAC Technical Report). *Pure and*
931 *Applied Chemistry*, 78(11):2051–2066, jan 2006.

932 [127] Jocelyn Kauny and Pierre Sétif. NADPH fluorescence in the cyanobacterium *Synechocystis* sp.
933 PCC 6803: A versatile probe for in vivo measurements of rates, yields and pools. *Biochimica et*
934 *Biophysica Acta (BBA) - Bioenergetics*, 1837(6):792–801, jun 2014.

935 [128] Paul G. Falkowski and John A. Raven. *Aquatic Photosynthesis*. Princeton University Press, jan
936 2007.

937 [129] Gábor Bernát, Nadine Waschewski, and Matthias Rögner. Towards efficient hydrogen production:
938 The impact of antenna size and external factors on electron transport dynamics in *Synechocystis*
939 PCC 6803. *Photosynthesis Research*, 99(3):205–216, 2009.

940 [130] Pierre Sétif, Ginga Shimakawa, Anja Krieger-Liszka, and Chikahiro Miyake. Identification of the
941 electron donor to flavodiron proteins in *Synechocystis* sp. PCC 6803 by in vivo spectroscopy.
942 *Biochimica et Biophysica Acta (BBA) - Bioenergetics*, 1861(10):148256, oct 2020.

943 [131] Maria Ermakova, Tuomas Huokko, Pierre Richaud, Luca Bersanini, Christopher J. Howe, David J.
944 Lea-Smith, Gilles Peltier, and Yagut Allahverdiyeva. Distinguishing the Roles of Thylakoid
945 Respiratory Terminal Oxidases in the Cyanobacterium *Synechocystis* sp. PCC 6803. *Plant*
946 *Physiology*, 171(2):1307–1319, jun 2016.

947 [132] Lijin Tian, Ivo H. M. van Stokkum, Rob B. M. Koehorst, Aniek Jongerius, Diana Kirilovsky,
948 and Herbert van Amerongen. Site, Rate, and Mechanism of Photoprotective Quenching in
949 Cyanobacteria. *Journal of the American Chemical Society*, 133(45):18304–18311, nov 2011.

950 [133] Tomáš Zavřel, Petra Očenášová, and Jan Červený. Phenotypic characterization of *Synechocystis*
951 sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress. *PLoS ONE*, 12(12), dec
952 2017.

953 [134] Yonatan Savir, Elad Noor, Ron Milo, and Tsvi Tlusty. Cross-species analysis traces adaptation of
954 Rubisco toward optimality in a low-dimensional landscape. *Proceedings of the National Academy*
955 *of Sciences*, 107(8):3475–3480, feb 2010.

956 [135] Akira Wadano, Keisuke Nishikawa, Tomohiro Hirahashi, Ryohei Satoh, and Toshio Iwaki.
957 Reaction mechanism of phosphoribulokinase from a cyanobacterium, *Synechococcus* PCC7942.
958 *Photosynthesis Research*, 56(1):27–33, 1998.

959 [136] Olga Koksharova, Milada Schubert, Sergey Shestakov, and Rüdiger Cerff. Genetic and biochemical
960 evidence for distinct key functions of two highly divergent GAPDH genes in catabolic and anabolic
961 carbon flow of the cyanobacterium *Synechocystis* sp. PCC 6803. *Plant Molecular Biology*, 36:183,
962 1998.

963 [137] Taras K. Antal, Ilya B. Kovalenko, Andrew B. Rubin, and Esa Tyystjärvi. Photosynthesis-related
964 quantities for education and modeling. *Photosynthesis Research*, 117(1-3):1–30, November 2013.