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Abstract 

A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies 

(IgG4-AIDs). Why IgG4 predominates in these disorders is unknown. We hypothesized that 

dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells 

and plasma cells. Therefore, we compared the B cell compartment of patients with muscle-specific 

kinase (MuSK) myasthenia gravis (MG), pemphigus, leucine-rich glioma inactivated (LGI1) encephalitis 

and contactin-associated protein-like 2 (CASPR2) encephalitis (four IgG4-AIDs) to patients with 

acetylcholine receptor (AChR) MG, Lambert-Eaton myasthenic syndrome (LEMS) (two IgG1-3-AIDs) 

and age-matched healthy donors, using flow cytometry. B cell subset relative abundance at all 

maturation stages was normal, except for a, possibly treatment-related, reduction in immature and 

naïve CD5+ cells in IgG4-AIDs. IgG4+ B cell and plasma cell fractions were normal in IgG4-AID patients, 

however they had an (sub)class-independent 8-fold increase in circulating mature CD20-CD138+ 

plasma cells. No autoreactivity was found in this subset after sorting. In conclusion, patients with IgG4-

AID do not show increased numbers of IgG4-expressing cells. These results argue against aberrant B 

cell development in these patients and rather suggest the autoantibody subclass predominance to be 

antigen-driven. The similarities between B cell subset numbers among these patients suggest that 

these IgG4-AIDs, despite displaying variable clinical phenotypes, share a similar underlying immune 

profile.  

1. Introduction 

An important factor that determines the pathophysiological mechanism in antibody-mediated 

autoimmune diseases is the dominant autoantibody (sub)class. The majority of antibody-mediated 

autoimmune diseases are caused by pro-inflammatory autoantibody subclasses such as 

ImmunoglobulinG 1 (IgG1) and IgG3 (1). These antibody subclasses, through activation of complement 

or immune cell-mediated cytotoxicity, damage the target organ causing the disease-associated 

symptoms (2). In addition, their bivalent nature allows them to crosslink their target antigens, often 
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causing internalization and loss of surface antigen function which further contributes to the pathology 

(3, 4). Interestingly, in 2015 a group of autoimmune diseases (AIDs) predominated by autoantibodies 

of the IgG4 subclass was described (IgG4-AIDs) (5). This was surprising as IgG4 is generally considered 

an anti-inflammatory antibody subclass. IgG4 has low affinity for most Fc receptors and complement 

factor C1q (6–9). This means that IgG4 usually does not induce antibody-mediated phagocytosis, 

antibody-dependent cell-mediated cytotoxicity or complement-mediated tissue damage. 

Additionally, IgG4 antibodies are uniquely capable of Fab-arm exchange meaning exchange of 

antibody half molecules (one heavy chain and one light chain) resulting in bispecific, functionally 

monovalent IgG4 molecules (10–13). Because of the inability to activate the immune system and its 

relatively high affinity the effects of IgG4 are usually caused by blocking the function of the target 

antigen (5, 6, 14, 15).  

To date, 29 different AIDs fit the criteria for IgG4-AID (16). These affect different organ systems and 

are generally rare with a prevalence of 0.001-5/10.000 individuals (17). During the last decades in vitro 

and in vivo studies have directly confirmed the pathogenicity of IgG4 autoantibodies in at least six 

IgG4-AIDs (18–21). Insight in the pathophysiology and immunological characteristics of these 

autoimmune diseases highlights several commonalities between these disorders: 1) IgG4 

autoantibodies block essential protein-protein interactions thereby causing disease, 2) on a group 

level, IgG4 serum titers are only marginally increased (22–24), 3) they respond favorably to rituximab 

treatment (25–28) and 4) they show a strong association with HLA-class II haplotypes HLA-DQB1*05 

and HLA-DRB1*04 (16, 29). These observations suggest that, although IgG4-AIDs affect different 

organs and cause a variety of symptoms, they may in fact share a similar underlying immunological 

profile. 

Why IgG4 predominates in these autoimmune responses is poorly understood. This is relevant 

however as the switching to IgG4 may make autoantibodies more pathogenic (30) and treatment 

strategy may be adjusted accordingly. Class switching to IgG4 is known to occur in response to 
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prolonged exposure to certain antigens such as bee venom (6, 31) or under influence of Th2 cytokines 

IL-4, IL-10 and IL-13 (32–35). Indeed, these cytokines were found increased in IgG4-AID patients and 

cross-reactivity was observed with autoantibodies from pemhigus patients with IgG4-inducing 

allergens (36–38). Lastly, dysregulated B cell maturation or aberrant class switching may cause 

overrepresentation of IgG4+ B cells and IgG4 plasma cells in immune responses. To further understand 

what is causing the IgG4 predominance in IgG4-AIDs, we investigated in detail the many IgH-isotype 

subsets of the circulating B cell compartment in four archetypical IgG4-AIDs and compared them to 

two IgG1-3-AIDs and age-matched healthy controls.  

 

2. Results 

Study population 

To investigate the role of abberant B cell development or class switching in subclass predominated 

AID, the B cell compartments of four IgG4-AIDs were immunophenotyped and compared to two IgG1-

3-AIDs and healthy donors. An overview of the demographics of the study population is given in Table 

1. Median age at time of blood draw and male:female ratio were comparable between groups. The 

CASPR2 encephalitis patient samples did not contain enough cells to perform a reliable in-depth 

phenotyping analysis (Sup. Fig. 3), therefore they were only included in the pre-germinal center 

analyses. One pemphigus patient sample was excluded due to an abnormally low total B cell count 

which can be attributed to the patient receiving rituximab infusion just before blood draw. In this 

study we aimed to include as many treatment naïve patients as possible or those only receiving low 

dosis of immunosuppression to limit a treatment bias. Several patients however received multiple 

treatments simultaneously. A complete description of the included study population is given in Sup. 

Table 1. 
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Table 1. Study population 

 
Number of patients 
(excluded) 

Age 
(median, 
min/max) 

Sex 
(M:F) 

Immunosuppressive treatment (number of 
patients) 

MuSK Myasthenia Gravis 

11 (0) 
59 
(27-79) 

4:7 
None (2), prednisone (4), azathioprine (3), 
IVIG (1), cellcept (2), plasmaferesis (1), 
unknown (2) 

Pemphigus  
10 (1) 58 

(26-75) 
5:4 

Prednisone (8), clobetasol (1) rituximab (1; 
excluded) 

LGI1 encephalitis 
2 (0) - 

(48-62) 
1:1 Untreated (1), prednisone (1), IVIG (1) 

CASPR2 encephalitis 

3  
(included in pre-GC 
only) 

65 
(57-69) 

3:0 Untreated (1), azathioprine (2) 

Lambert-Eaton 
Myasthenic Syndrome 

10 (0) 56 
(49 – 74) 

3:7 
None (7), prednisone (1), azathioprine (1), 
IVIG (1), hydrocortisone (1) 

AChR Myasthenia Gravis 
10 (0) 63 

(18-79) 
7:3 None (5), prednisone (5), IVIG (1) 

Healthy control 
10 (0) 58 

(44-68) 
5:5 - 

p-value (column statistic) 
- 

0.96 
(1-way 
ANOVA) 

0.31 
(Χ2) 

- 

 

 

Decreased numbers of immature and naïve B cells in patients with AID may be treatment related 

To investigate early B cell development stages we investigated the pre-germinal center (GC) B cells 

across all cohorts. The relative abundance of immature (Fig. 1A) and naïve CD5+ (Fig. 1B) B cells was 

lowered in MuSK MG and pemphigus patients compared to healthy controls. Consequently, their 

relative abundance of naïve CD5-
 B cells is increased (Fig. 1C). LGI1 and CASPR2 encephalitis patients 

show a similar trend, but due to the low number of patients per group this analysis lacked power. 

Treatment status may influence immature B cell numbers (39). The observed reduction in cell numbers 

does not seem to be explained by the use of a single drug. Notably, the variance within the 

autoimmune disease groups was considerably larger than in healthy donors.  
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Figure 1. Pre-germinal center B cell fractions. (A) Immature , (B) naïve CD5+ and (C) naïve B cell counts 

as percentage of all pre-germinal center (GC) B cells. Treatment status is marked per patient. For all 

panels, IgG4-AIDs were compared to both healthy controls and IgG1-3-AIDs by one-way ANOVA 

followed by unpaired Student’s t-test (* p<0.05; ** p<0.01; *** p<0.005). 

 

B memory cell numbers are largely normal in IgG1-3-AID and IgG4-AID 

GC formation is essential for the development of a functional antibody repertoire and is iniated by B 

cell receptor signaling after antigen encounter (40, 41). Pre-GC B cells are mostly of the IgM or IgD 

isotype and have not undergone affinity maturation yet as both class switching and somatic 

hypermutation take place in the GC (41–43). In the context of autoimmunity, post-GC antigen-

experienced mature memory B cells and plasma cells are particularly of interest as they may harbor 

the autoreactive cell subsets. Overall total memory B cell levels are normal in all autoimmunity groups 

(Fig. 2A). The total number of switched (IgM-/D-CD27+) (Fig. 2B), double-negative (IgM-/D-CD27-) (Fig. 

2C) and atypical (IgM-/D-CD21-CD27-) (Fig. 2D) memory B cells are similar to healthy donors. After 

stratification for B cell receptor (sub)class, total memory B cell (Fig. 2E), switched (Fig. 2F) and double-

negative (Fig. 2G) memory B cell fractions are still similar between groups. Only in MuSK MG patients 

did we observe significantly lower atypical IgG4 B cells (IgM-/D-CD21-CD27-) compared to healthy 
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controls and IgG1-3 AID patients (Fig. 2H). Surprisingly, atypical IgG4 memory B cells were increased 

in the IgG1-3 AIDs LEMS and AChR MG compared to IgG4-AID patients. 
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Figure 2. Memory B cell fractions of IgG4-AID and IgG1-3-AID patients. (A) Overall memory B cell 

(CD19+CD20+CD27+) counts normalized to total B cell counts, (B) switched memory B cell (IgM-/D-

CD19+CD20+CD27+) counts normalized to total B cell counts, (C) double-negative B cell (IgM-/D-

CD19+CD20+CD27-) counts normalized to total B cell counts, (F) atypical B cell (IgM-/D-

CD19+CD20+CD21-CD27-) counts normalized to total B cell counts. (E), (F), (G), (H): Respectively total 

memory, switched, double-negative and atypical B cell counts normalized to total memory B cell 

counts and stratified by B cell receptor (sub)class. For all panels, IgG4-AIDs were compared to both 

healthy controls and IgG1-3-AIDs by one-way ANOVA followed by unpaired Student’s t-test (* p<0.05; 

** p<0.01; *** p<0.005). 

IgG4-AID patients have 8-fold increased circulating mature plasma cell numbers 

Differentiating B cells can also commit to the plasma cell lineage upon leaving the GC (44). These 

plasmablasts express CD27 and CD38 as they fully mature into plasma cells they gradually lose 

expression of CD20 and gain expression of CD138 (45, 46). Total plasma cell fractions were comparable 

in all groups (Fig. 3A). When stratified by B cell receptor (sub)class, we observe increases in IgG1+ and 

IgG3+ plasma cells, as well as a decrease in IgA1+ plasma cells only seen in the pemphigus patients (Fig. 

3B). Only IgG3+ plasma cells are increased in MuSK MG patients. There were no changes in IgG4+ 

plasma cell fractions for any of the IgG4-AIDs. Upon maturation to plasma cells, plasmablasts lose 

expression of CD20 while gaining expression of CD138 (47, 48). To investigate if IgG4-AIDs correlate 

with altered numbers of these matured plasma cells we quantified three specific plasma cell 

maturation stages: CD20+CD138-, CD20-CD138- and CD20-CD138+. IgG1-3-AID patients show a slight 

reduction in CD20-CD138- intermediate plasma cells (Fig. 4A). When stratified by B cell receptor 

(sub)class this reduction is observable in IgG1+ and IgG2+ plasma cells (Fig. 4B-C). At the same time, 

IgG1+ and IgG2+ CD20+CD138- plasmablasts are increased in IgG1-3-AID patients. Interestingly, in all 

three IgG4-AID patient groups we observe increased fractions of the CD20-CD138+ fully matured 

plasma cells in comparison to both healthy controls and IgG1-3-AIDs (on average 8-fold increase, range 

4-14; Fig. 4A).This increase is not specific to IgG4+ plasma cells and instead is observed in IgG1+ 
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(pemphigus only), IgG2+, IgA1+
 and IgA2+ (pemphigus only) CD20-CD138+ plasma cells (Fig. 4D, 4F, 4G, 

respectively).  

 

Figure 3. Plasma cell fractions of IgG4-AID and IgG1-3-AID patients. (A) Overall plasma cell 

(CD19+CD20+/-CD138+/-) counts normalized to total B cell counts. (B) Plasma cell counts normalized to 

total plasma cell counts stratified per B cell receptor IgH (sub)class. Groups were compared using one-

way ANOVA on log-transformed data. If significant, Student’s t-tests were performed to compare 

IgG4-AID groups with other patient groups and all patient groups with healthy controls. For all panels, 

IgG4-AIDs were compared to both healthy controls and IgG1-3-AIDs (* p<0.05; ** p<0.01; *** 

p<0.005). 

 

Mature plasma cells of IgG4-AID patients seem to segregate in two populations. Immunosuppresive 

treatment may alter B cell compartment composition. The acute nature of these autoimmune disease 

often requires patients to start immunomodulatory treatment quickly after diagnosis. The samples 

included in this study were prioritized on no or low amounts of immunosuppressive treatment. 

However, some patients did receive prednisone, rituximab or azathioprine (Sup. Table 1). To 

investigate if these treatments biased our analysis we plotted the data including the treatment (Sup. 

Fig. 4-5). The low numbers in each treatment category prevent statistical analysis, but this plot may 
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suggest that untreated patients have higher fractions of mature plasma cells and that treatment may 

lowered their numbers.  

 

 

Figure 4. Distribution of plasma cell maturation stages of IgG4-AID and IgG1-3-AIDs. (A) Overall 

plasma cell (CD19+CD20+/-CD138+/-) counts normalized to total B cell counts and subdivided for 

maturation status normalized to total plasma cell counts. The same plasma cell populations are shown 

for IgG1 (B), IgG2 (C), IgG3 (D), IgG4 (E), IgA1 (F) and IgA2 (G). For all panels, IgG4-AIDs were compared 
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to both healthy controls and IgG1-3-AIDs by one-way ANOVA followed by unpaired Student’s t-test (* 

p<0.05; ** p<0.01; *** p<0.005). 

 

Autoreactivity is not enriched in any of the circulating plasma cell maturation stages 

To investigate whether these CD20-CD138+ plasma cells of IgG4-AID patients include autoantibody-

producing cells, we sorted CD20+CD138-, CD20-CD138- and CD20-CD138+ plasma cells of MuSK MG 

patients and compared them to healthy controls (Fig. 5A). We selected 3 untreated MuSK MG patients 

with relatively high numbers of mature plasma cells (marked in Fig. 5B and Sup. Table 1) for this 

experiment. After sorting, these populations were taken into culture to collect supernatants for 

screening on MuSK-specific antibodies (18). Despite detecting total IgG in supernatants of all three 

plasma cell subsets (Fig. 5C), no MuSK-specific IgG was found in any of the subsets except for 1 patient 

in the CD20+CD138- population (Fig. 5D). 

 

 

Figure 5. Plasma cell subset sorting and follow-up culture to investigate autoreactivity. (A) 

Representative flow plots and gating strategy of plasma cell sorting into CD20+CD138-, CD20-CD138- 

and CD20-CD138+ subsets. (B) Excerpt from Fig. 4A, patients selected for plasma cell sort are shown 

as filled dots. (C) Total IgG titers produced by plasma cell subsets after culturing for 14 days. (D) MuSK-
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reactive IgG titers produced by plasma cell subsets after culturing for 14 days. The dashed lines 

represent the average anti-MuSK IgG titer of the control sample with a range of 3 standard deviations. 

3. Discussion 

To investigate whether predominance of IgG4 autoantibodies in IgG4-AIDs is caused by aberrations in 

B cell development or class switching, we compared the full peripheral blood B cell compartment of 

the IgG4-AIDs MuSK MG, pemphigus, LGI1 and CASPR2 encephalitis with the IgG1-3-AIDs AChR MG 

and LEMS, as well as healthy controls. Generally, B cell relative frequencies, and therefore also B cell 

development, were normal across all autoimmune diseases tested. B cell numbers from our healthy 

donors matched well with previous reports (49). IgG4+ memory B cell or IgG4+ plasma cell fractions 

were not increased in IgG4-AID patients. This suggests that IgG4-AID patients do not have aberrant B 

cell receptor class switching favoring an IgG4 response. This is in line with studies showing that IgG4 

serum levels are only mildly, if at all, increased in IgG4-AID patients (22–24). Generalized IgG4 B cell 

fractions in IgG4-AID patients being comparable to healthy controls suggests that the IgG4 

predominance in autoimmune responses is selective, antigen-specific and perhaps antigen-driven (see 

below). The HLA class II associations as well as the favorable response to rituximab across IgG4-AIDs, 

in combination with the data presented here, further support the hypothesis of an overarching 

immunophenotype across IgG4-AIDs. 

This data also strengthens the idea that IgG4-AIDs represent a different disease entity from IgG4-

related diseases (IgG4-RDs). IgG4-RD are hallmarked by increased numbers of circulating IgG4+ 

memory B cells and IgG4+ plasmablasts coupled to high IgG4 serum titers and tissue fibrosis (50). While 

various autoantibodies have been found in IgG4-RD patients, these are mainly of the IgG1 subclass 

and are not known to correlate consistently with the disease (51–53). Serum IgG4 autoantibody titers 

do correlate with disease severity in IgG4-AIDs and cause disease upon passive transfer (20, 21, 54). 

Despite the central role of IgG4 in both disease groups, IgG4-AIDs and IgG4-RDs should not be 

considered part of the same disease spectrum. 
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IgG4-AID patients were found to have an overall increase in mature (CD20-CD138+) plasma cells, but 

this increase was not unique to IgG4+ cells. Increased mature plasma cells were previously reported in 

some (55), but not all (56) studies on AChR MG patients. We did not observe this in AChR MG patients 

included in this study. Plasma cell numbers decrease with age (49, 57). The differences between the 

AChR MG studies may be explained by this confounding effect. We did not observe any age-dependent 

plasma cell decrease in our study population (Sup. Fig. 6). Increased CD138+ plasma cells are a hallmark 

of several chronic AIDs (58, 59) and both MuSK MG and pemphigus likely fit the same classification. 

Why the other AIDs did not show increased mature plasma cell numbers is not known.  

CD138+ plasma cells are usually contained within the bone marrow and are considered responsible for 

long term immunity (60). This fully matured plasma cell subset shows the highest levels of antibody 

secretion. Why certain immune responses induce such mature responses is not fully understood, but 

has been reported at day 7 post-vaccination for common vaccines against pathogens such as mumps, 

tetanus, pertussis and measles (45, 60–62). This suggests an immune response timing-dependent 

migration. In IgG4-AIDs these mature plasma cell levels may be increased as a result of: 1) a net 

increase in their numbers due to a change in antigen-independent maturation, 2) stronger migratory 

signals that may stimulate these cells to leave the bone marrow and become increased in PBMCs, 

possibly during migration towards sites with high target antigen availability, or, 3) these may contain 

the autoantibody producing plasma cell subsets which increase their overall numbers due to chronic 

activation. Although there was no selective increase of IgG4 subclass mature plasma cells, we tested 

the third hypothesis by sorting the early, intermediate and mature plasma cell populations of MuSK 

MG patients and testing for autoantibody production. We did not find evidence for autoreactivity in 

any of these subsets. Although we detected robust total IgG production in these cultures, we cannot 

exclude a technical limitation as sorting and subsequently culturing these delicate plasma cell 

populations is challenging (63). A role for these mature plasma cells in the autoimmune response may 

be considered unlikely due to the fact that they do not express CD20, but rituximab (anti-CD20 
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therapy) treatment is usually effective in IgG4-AIDs (25–28). IgG4 responses are mostly mediated by 

short-lived plasma cells which do not migrate to the bone marrow (64). Bone marrow holds many of 

the cell types that contribute to humoral immunity. PBMCs may therefore not accurately reflect 

aberrations present in the bone marrow compartment. Whether peripheral or bone marrow mature 

plasma cells play a role in the pathophysiology of IgG4-AIDs requires further investigation.   

 

Pre-germinal center subsets of immature and naïve CD5+ B cells were decreased in IgG4-AIDs. Previous 

work has shown that immunosuppressants, especially azathioprine, selectively lower naïve CD5+ B cell 

counts, which may explain this observation (39). Indeed, azathioprine treated patients show the most 

severe decrease in naïve CD5+ B cell numbers in our cohorts (Figure 1). Other immunomodulatory 

treatments may also significantly bias immunophenotyping analysis. The severity of the IgG4-AIDs 

requiring rapid treatment combined with a poor response to symptomatic treatments made inclusion 

of untreated patients challenging (65, 66). We therefore aimed to include as much 

immunosuppressive treatment naïve patients for this study, but, due to the rarity of these samples, 

were compelled to also include some who received (low amounts of) immunosuppression. Although 

the included patients all experienced significant disease symptoms, we cannot fully exclude that in 

some patients the treatment regimens affected the B cell compartment. Future immune profiling 

studies should aim to only include untreated individuals whenever possible. 

 

In the memory B cell compartment, we found no differences between any of the patient groups in 

both total cell abundance or when stratified for the switched (IgM-/D-CD27+) or double negative (IgM-

/D-CD27-) subsets. We did observe a significant decrease of IgG4+ atypical (IgM-/D-CD21-CD27-) 

memory B cells in MuSK MG patients when compared to healthy controls or IgG1-AID patients. Like 

IgG4 responses in general, atypical B cell counts increase with prolonged and repeated antigen 

exposure (67) and are associated with several autoimmune diseases (68–71). However, we did not 

detect this in our study for the other AIDs. 
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The question thus remains why these autoimmune diseases are characterized by predominant IgG4 

autoantibody responses. One possibility is that the antigen itself directs the response towards IgG4. 

Certain antigens are known to drive IgG4 responses, such as bee venom and certain biologicals (72). 

Specifically for pemphigus there is evidence of desmoglein 1/3 autoantibody development following 

exposure to walnut or sand fly antigens (36–38). There is no evidence yet for comparable molecular 

mimicry events in other IgG4-AIDs. However, given the strong correlation between these antigens and 

IgG4, molecular mimicry could be a plausible factor in the etiology of other IgG4-AIDs. 

 

4.Methods 

4.1 Study population 

AID patients with Muscle-specific kinase (MuSK) myasthenia gravis (MG), acetylcholine receptor 

(AChR) MG, Lambert-Eaton myasthenic syndrome (LEMS) or pemphigus (vulgaris, foliaceus and 

paraneoplastica) were recruited from the Leiden University Medical Centre (2017-2021). We obtained 

blood samples for 10 patients per disease except for MuSK MG, for which we obtained 11 samples. 

Two Contactin-associated protein-like 2 (CASPR2) encephalitis and three leucine-rich glioma 

inactivated (LGI1) encephalitis patients were recruited from the Erasmus University Medical Center 

(2019-2021). Patients were included based on the presence of symptoms matching MG, pemphigus, 

encephalitis or LE (73–75) and a positive titer on a serological test for the respective autoantibody 

upon standard clinical testing. Patients were excluded if they had received rituximab treatment within 

the past 12 months. Blood samples were also obtained from 10 age- and sex-matched healthy 

controls. These healthy controls were recruited by the LUMC Voluntary Donor Service (LuVDS). Figure 

1 and Supplemental Table 1 provide a detailed overview of the study population.  

4.2 Isolation of peripheral blood mononuclear cells 
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Peripheral blood mononuclear cells (PBMCs) were isolated from 60-90 ml of sodium-Heparin 

anticoagulated peripheral blood samples by Ficoll-amidotrizoate density gradient centrifugation. 

Following isolation, cells were immediately frozen at -80° C at a density of 5-10∙106 per ml in Recovery 

Cell Freezing medium (Thermo Fisher Scientific, Waltham, MA, USA) in a Mr. Frosty Freezing Container 

(Thermo Fisher Scientific, Waltham, MA, USA) for 24 hours before transfer to liquid nitrogen storage. 

4.3 Flow cytometry 

The B cell subsets and B cell receptor (sub)classes were identified in freshly thawed PBMCs using the 

standardized EuroFlow 12-color IgH-isotype B-cell tube (49, 76, 77), with the exception of CD62L which 

was replaced by a Zombie Yellow cell viability stain (BioLegend, San Diego, CA, USA) (see Sup. Table 2 

for a detailed overview). At least 10∙106 cells were stained for 30 minutes in the dark in 100 µl (75 μl 

EuroFlow B cell tube mix and 25 μl Cytognos isotype mix) staining solution according to the EuroFlow 

SOP for sample preparation and staining of markers followed by immediate analysis 

(www.EuroFlow.org). 

Flow cytometry was performed on a BD FACS LSR Fortessa 4L (BD Biosciences, San Jose, CA, USA) at 

the Flow cytometry Core Facility (FCF) of Leiden University Medical Center (LUMC) in Leiden, 

Netherlands (https://www.lumc.nl/research/facilities/fcf). At least 3∙106 cells were acquired per 

sample. Instrument setup was according to the EuroFlow standardized operating procedures (78). See 

Sup. Fig. 1 for a detailed overview of the gating strategy. 

Plasma cells were sorted on a BD FACSAria 3 cell sorter (BD Biosciences, San Jose, CA, USA). The gating 

strategy is detailed in Sup Fig. 2. In brief, freshly thawed PBMCs were stained for expression of CD38, 

CD20, CD138 and CD19. Viable cells were identified using Zombie Green cell viability stain (BioLegend, 

San Diego, CA, USA). See Sup. Table 3 for a detailed overview of the staining. A dump channel for T 

cells, NK cells and macrophages was created by staining PBMCs for expression of CD3, CD14 and CD56.  

4.4 Plasma cell culture 
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After bulk sorting, plasma cell subtypes were cultured in RPMI1640 (Thermo Fisher Scientific, 

Waltham, MA, USA) supplemented 10% heat-inactivated fetal bovine serum, IL-6 (10 ng/ml; Thermo 

Fisher Scientific, Waltham, MA, USA), IL-21 (50 ng/ml; Thermo Fisher Scientific, Waltham, MA, USA), 

IFN-α (100 U/ml; Merck, Rahway, NJ, USA), BAFF (20 ng/ml; Miltenyi Biotec, Bergisch Gladbach, NRW, 

Germany), chemically defined lipid mixture 1 (1/200; Thermo Fisher Scientific, Waltham, MA, USA), 

MEM amino acid solution (1x; Sigma-Aldrich, St. Louis, MO, USA) on γ-irradiated M2-10B4 stromal 

cells (1.5*104/well, 100 μl/well) in 96-well plates (79). Every 7 days, 50 μl culture supernatant was 

aspirated for IgG detection (anti-MuSK and total IgG) and replaced with fresh medium. 

4.5 ELISA  

Plasma cell culture medium samples were screened for antibody production using a total human IgG 

ELISA assay and for MuSK reactivity using a previously described MuSK ELISA assay (80). 

4.6 Statistics 

Flow cytometry data was blinded and then analyzed using Infinicyt 2.0 (Cytognos, Salamanca, Spain). 

Statistical analyses were performed using Prism 9 (GraphPad Software, San Diego, CA, USA). Data was 

log transformed and significance was assessed by one-way ANOVA followed by unpaired Student’s t-

test unless otherwise specified. IgG4-AID patients were compared to healthy controls and to IgG1-3-

AID patients. P-values below 0.05 are considered statistically significant (* p<0.05; ** p<0.01; *** 

p<0.005). 

4.7 Study approval 

This study was approved by the local medical ethics committee of the Leiden University Medical 

Centre (CME protocolnumber P17.011). All subjects provided written informed consent prior to 

participation and experiments were in accordance with the Declaration of Helsinki, including current 

revisions, and Good Clinical Practice guidelines. 

4.7 Data availability 
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All raw flow cytometry data for this work is directly accessible via the Flow Repository under 

experiment ID FR-FCM-Z6K2 (81). Derived data supporting the findings of this study are available from 

the corresponding author on request.  
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