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Abstract

A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies
(IgG4-AIDs). Why lgG4 predominates in these disorders is unknown. We hypothesized that
dysregulated B cell maturation or aberrant class switching causes overrepresentation of 1gG4* B cells
and plasma cells. Therefore, we compared the B cell compartment of patients with muscle-specific
kinase (MuSK) myasthenia gravis (MG), pemphigus, leucine-rich glioma inactivated (LGI1) encephalitis
and contactin-associated protein-like 2 (CASPR2) encephalitis (four IgG4-AIDs) to patients with
acetylcholine receptor (AChR) MG, Lambert-Eaton myasthenic syndrome (LEMS) (two IgG1-3-AIDs)
and age-matched healthy donors, using flow cytometry. B cell subset relative abundance at all
maturation stages was normal, except for a, possibly treatment-related, reduction in immature and
naive CD5* cells in IgG4-AlIDs. 1gG4* B cell and plasma cell fractions were normal in 1gG4-AID patients,
however they had an (sub)class-independent 8-fold increase in circulating mature CD20CD138*
plasma cells. No autoreactivity was found in this subset after sorting. In conclusion, patients with 1gG4-
AID do not show increased numbers of IgG4-expressing cells. These results argue against aberrant B
cell development in these patients and rather suggest the autoantibody subclass predominance to be
antigen-driven. The similarities between B cell subset numbers among these patients suggest that
these IgG4-AlDs, despite displaying variable clinical phenotypes, share a similar underlying immune

profile.

1. Introduction

An important factor that determines the pathophysiological mechanism in antibody-mediated
autoimmune diseases is the dominant autoantibody (sub)class. The majority of antibody-mediated
autoimmune diseases are caused by pro-inflammatory autoantibody subclasses such as
ImmunoglobulinG 1 (IgG1) and IgG3 (1). These antibody subclasses, through activation of complement
or immune cell-mediated cytotoxicity, damage the target organ causing the disease-associated

symptoms (2). In addition, their bivalent nature allows them to crosslink their target antigens, often


https://doi.org/10.1101/2023.06.30.546522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.30.546522; this version posted June 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

causing internalization and loss of surface antigen function which further contributes to the pathology
(3, 4). Interestingly, in 2015 a group of autoimmune diseases (AlDs) predominated by autoantibodies
of the 1gG4 subclass was described (IgG4-AlDs) (5). This was surprising as 1gG4 is generally considered
an anti-inflammatory antibody subclass. 1gG4 has low affinity for most Fc receptors and complement
factor Clq (6-9). This means that IgG4 usually does not induce antibody-mediated phagocytosis,
antibody-dependent cell-mediated cytotoxicity or complement-mediated tissue damage.
Additionally, 1gG4 antibodies are uniquely capable of Fab-arm exchange meaning exchange of
antibody half molecules (one heavy chain and one light chain) resulting in bispecific, functionally
monovalent 1gG4 molecules (10-13). Because of the inability to activate the immune system and its
relatively high affinity the effects of 1gG4 are usually caused by blocking the function of the target

antigen (5, 6, 14, 15).

To date, 29 different AIDs fit the criteria for IgG4-AID (16). These affect different organ systems and
are generally rare with a prevalence of 0.001-5/10.000 individuals (17). During the last decades in vitro
and in vivo studies have directly confirmed the pathogenicity of IgG4 autoantibodies in at least six
IgG4-AIDs (18-21). Insight in the pathophysiology and immunological characteristics of these
autoimmune diseases highlights several commonalities between these disorders: 1) IgG4
autoantibodies block essential protein-protein interactions thereby causing disease, 2) on a group
level, IgG4 serum titers are only marginally increased (22-24), 3) they respond favorably to rituximab
treatment (25-28) and 4) they show a strong association with HLA-class Il haplotypes HLA-DQB1*05
and HLA-DRB1*04 (16, 29). These observations suggest that, although 1gG4-AIDs affect different
organs and cause a variety of symptoms, they may in fact share a similar underlying immunological

profile.

Why 1gG4 predominates in these autoimmune responses is poorly understood. This is relevant
however as the switching to IgG4 may make autoantibodies more pathogenic (30) and treatment

strategy may be adjusted accordingly. Class switching to 1gG4 is known to occur in response to
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prolonged exposure to certain antigens such as bee venom (6, 31) or under influence of Th2 cytokines
IL-4, IL-10 and IL-13 (32-35). Indeed, these cytokines were found increased in IgG4-AID patients and
cross-reactivity was observed with autoantibodies from pemhigus patients with 1gG4-inducing
allergens (36—38). Lastly, dysregulated B cell maturation or aberrant class switching may cause
overrepresentation of IgG4* B cells and 1gG4 plasma cells in immune responses. To further understand
what is causing the 1gG4 predominance in I1gG4-AlDs, we investigated in detail the many IgH-isotype
subsets of the circulating B cell compartment in four archetypical IgG4-AlDs and compared them to

two IgG1-3-AlDs and age-matched healthy controls.

2. Results

Study population

To investigate the role of abberant B cell development or class switching in subclass predominated
AID, the B cell compartments of four IgG4-AlDs were immunophenotyped and compared to two 1gG1-
3-AlDs and healthy donors. An overview of the demographics of the study population is given in Table
1. Median age at time of blood draw and male:female ratio were comparable between groups. The
CASPR2 encephalitis patient samples did not contain enough cells to perform a reliable in-depth
phenotyping analysis (Sup. Fig. 3), therefore they were only included in the pre-germinal center
analyses. One pemphigus patient sample was excluded due to an abnormally low total B cell count
which can be attributed to the patient receiving rituximab infusion just before blood draw. In this
study we aimed to include as many treatment naive patients as possible or those only receiving low
dosis of immunosuppression to limit a treatment bias. Several patients however received multiple
treatments simultaneously. A complete description of the included study population is given in Sup.

Table 1.
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Number of patients ?mg:dian Sex Immunosuppressive  treatment (number of
(excluded) . ! (M:F) patients)
min/max)
11 (0) 59 None (2), prednisone (4), azathioprine (3),
(27-79) 4:7 IVIG (1), cellcept (2), plasmaferesis (1),
MuSK Myasthenia Gravis unknown (2)
10 (1) 58 5.4 Prednisone (8), clobetasol (1) rituximab (1;
Pemphigus (26-75) ’ excluded)
2(0) - . .
LGI1 encephalitis (48-62) 1:1 Untreated (1), prednisone (1), IVIG (1)
3 65
included in pre- : ntreate , azathioprine
(included i GC (57-69) 3:0 u d (1) hioprine (2)
CASPR2 encephalitis only)
Lambert-Eaton 10 (0) 56 37 None (7), prednisone (1), azathioprine (1),
Myasthenic Syndrome (49 —-74) ’ IVIG (1), hydrocortisone (1)
10 (0) 63 . .
AChR Myasthenia Gravis (18-79) 7:3 None (5), prednisone (5), IVIG (1)
10 (0) 58 5.5 )
Healthy control (44-68) ’
0.96 031
- (1-way x?) -
p-value (column statistic) ANOVA)

Decreased numbers of immature and naive B cells in patients with AID may be treatment related

To investigate early B cell development stages we investigated the pre-germinal center (GC) B cells

across all cohorts. The relative abundance of immature (Fig. 1A) and naive CD5* (Fig. 1B) B cells was

lowered in MuSK MG and pemphigus patients compared to healthy controls. Consequently, their

relative abundance of naive CD5 B cells is increased (Fig. 1C). LGI1 and CASPR2 encephalitis patients

show a similar trend, but due to the low number of patients per group this analysis lacked power.

Treatment status may influence immature B cell numbers (39). The observed reduction in cell numbers

does not seem to be explained by the use of a single drug. Notably, the variance within the

autoimmune disease groups was considerably larger than in healthy donors.
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Figure 1. Pre-germinal center B cell fractions. (A) Immature, (B) naive CD5* and (C) naive B cell counts
as percentage of all pre-germinal center (GC) B cells. Treatment status is marked per patient. For all
panels, 1gG4-AlDs were compared to both healthy controls and IgG1-3-AlDs by one-way ANOVA

followed by unpaired Student’s t-test (* p<0.05; ** p<0.01; *** p<0.005).

B memory cell numbers are largely normal in IgG1-3-AlD and IgG4-AID

GC formation is essential for the development of a functional antibody repertoire and is iniated by B
cell receptor signaling after antigen encounter (40, 41). Pre-GC B cells are mostly of the IgM or IgD
isotype and have not undergone affinity maturation yet as both class switching and somatic
hypermutation take place in the GC (41-43). In the context of autoimmunity, post-GC antigen-
experienced mature memory B cells and plasma cells are particularly of interest as they may harbor
the autoreactive cell subsets. Overall total memory B cell levels are normal in all autoimmunity groups
(Fig. 2A). The total number of switched (IgM7/DCD27*) (Fig. 2B), double-negative (IgM*/D'CD27’) (Fig.
2C) and atypical (IgM?/D'CD21°CD27") (Fig. 2D) memory B cells are similar to healthy donors. After
stratification for B cell receptor (sub)class, total memory B cell (Fig. 2E), switched (Fig. 2F) and double-
negative (Fig. 2G) memory B cell fractions are still similar between groups. Only in MuSK MG patients

did we observe significantly lower atypical 1gG4 B cells (IgM/D'CD21°CD27°) compared to healthy
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controls and IgG1-3 AID patients (Fig. 2H). Surprisingly, atypical IgG4 memory B cells were increased

in the IgG1-3 AIDs LEMS and AChR MG compared to IgG4-AID patients.
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Figure 2. Memory B cell fractions of 1gG4-AID and 1gG1-3-AID patients. (A) Overall memory B cell
(CD19*CD20*CD27*) counts normalized to total B cell counts, (B) switched memory B cell (IgM"/D
CD19*CD20*CD27*) counts normalized to total B cell counts, (C) double-negative B cell (IgM*/D
CD19*CD20*CD27) counts normalized to total B cell counts, (F) atypical B cell (IlgM/D
CD19*CD20*CD21°CD27°) counts normalized to total B cell counts. (E), (F), (G), (H): Respectively total
memory, switched, double-negative and atypical B cell counts normalized to total memory B cell
counts and stratified by B cell receptor (sub)class. For all panels, |gG4-AlDs were compared to both
healthy controls and IgG1-3-AlDs by one-way ANOVA followed by unpaired Student’s t-test (* p<0.05;

** p<0.01; *** p<0.005).

1gG4-AID patients have 8-fold increased circulating mature plasma cell numbers

Differentiating B cells can also commit to the plasma cell lineage upon leaving the GC (44). These
plasmablasts express CD27 and CD38 as they fully mature into plasma cells they gradually lose
expression of CD20 and gain expression of CD138 (45, 46). Total plasma cell fractions were comparable
in all groups (Fig. 3A). When stratified by B cell receptor (sub)class, we observe increases in IgG1* and
IgG3* plasma cells, as well as a decrease in IgA1* plasma cells only seen in the pemphigus patients (Fig.
3B). Only 1gG3* plasma cells are increased in MuSK MG patients. There were no changes in 1gG4*
plasma cell fractions for any of the 1gG4-AlDs. Upon maturation to plasma cells, plasmablasts lose
expression of CD20 while gaining expression of CD138 (47, 48). To investigate if IgG4-AIDs correlate
with altered numbers of these matured plasma cells we quantified three specific plasma cell
maturation stages: CD20*CD138", CD20°CD138 and CD20°CD138*. 1gG1-3-AID patients show a slight
reduction in CD20°'CD138" intermediate plasma cells (Fig. 4A). When stratified by B cell receptor
(sub)class this reduction is observable in IgG1* and 1gG2* plasma cells (Fig. 4B-C). At the same time,
IgG1" and IgG2* CD20"CD138" plasmablasts are increased in IgG1-3-AlD patients. Interestingly, in all
three IgG4-AID patient groups we observe increased fractions of the CD20CD138* fully matured
plasma cells in comparison to both healthy controls and IgG1-3-AIDs (on average 8-fold increase, range
4-14; Fig. 4A).This increase is not specific to 1gG4* plasma cells and instead is observed in IgG1*

10
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(pemphigus only), IgG2*, IgA1* and IgA2* (pemphigus only) CD20°CD138" plasma cells (Fig. 4D, 4F, 4G,

respectively).
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Figure 3. Plasma cell fractions of 1gG4-AID and IgG1-3-AID patients. (A) Overall plasma cell
(CD19*CD20*CD138*") counts normalized to total B cell counts. (B) Plasma cell counts normalized to
total plasma cell counts stratified per B cell receptor IgH (sub)class. Groups were compared using one-
way ANOVA on log-transformed data. If significant, Student’s t-tests were performed to compare
IgG4-AID groups with other patient groups and all patient groups with healthy controls. For all panels,
IgG4-AIDs were compared to both healthy controls and IgG1-3-AIDs (* p<0.05; ** p<0.01; ***

p<0.005).

Mature plasma cells of 1gG4-AID patients seem to segregate in two populations. Immunosuppresive
treatment may alter B cell compartment composition. The acute nature of these autoimmune disease
often requires patients to start immunomodulatory treatment quickly after diagnosis. The samples
included in this study were prioritized on no or low amounts of immunosuppressive treatment.
However, some patients did receive prednisone, rituximab or azathioprine (Sup. Table 1). To
investigate if these treatments biased our analysis we plotted the data including the treatment (Sup.

Fig. 4-5). The low numbers in each treatment category prevent statistical analysis, but this plot may
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suggest that untreated patients have higher fractions of mature plasma cells and that treatment may

lowered their numbers.
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Figure 4. Distribution of plasma cell maturation stages of 1gG4-AID and 1gG1-3-AlIDs. (A) Overall
plasma cell (CD19*CD20*'CD138*") counts normalized to total B cell counts and subdivided for
maturation status normalized to total plasma cell counts. The same plasma cell populations are shown
for1gG1 (B), 1gG2 (C), 1gG3 (D), 1gG4 (E), IgA1 (F) and IgA2 (G). For all panels, IgG4-AlDs were compared
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to both healthy controls and IgG1-3-AIDs by one-way ANOVA followed by unpaired Student’s t-test (*

p<0.05; ** p<0.01; *** p<0.005).

Autoreactivity is not enriched in any of the circulating plasma cell maturation stages

To investigate whether these CD20°CD138" plasma cells of IgG4-AID patients include autoantibody-
producing cells, we sorted CD207CD138", CD20CD138 and CD20°CD138* plasma cells of MuSK MG
patients and compared them to healthy controls (Fig. 5A). We selected 3 untreated MuSK MG patients
with relatively high numbers of mature plasma cells (marked in Fig. 5B and Sup. Table 1) for this
experiment. After sorting, these populations were taken into culture to collect supernatants for
screening on MuSK-specific antibodies (18). Despite detecting total I1gG in supernatants of all three
plasma cell subsets (Fig. 5C), no MuSK-specific IgG was found in any of the subsets except for 1 patient

in the CD20*CD138" population (Fig. 5D).
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N é 2.0 S 2.0 * Control
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Figure 5. Plasma cell subset sorting and follow-up culture to investigate autoreactivity. (A)
Representative flow plots and gating strategy of plasma cell sorting into CD20*CD138°, CD20°CD138"
and CD20'CD138" subsets. (B) Excerpt from Fig. 4A, patients selected for plasma cell sort are shown

as filled dots. (C) Total IgG titers produced by plasma cell subsets after culturing for 14 days. (D) MuSK-
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reactive 1gG titers produced by plasma cell subsets after culturing for 14 days. The dashed lines

represent the average anti-MuSK IgG titer of the control sample with a range of 3 standard deviations.

3. Discussion

To investigate whether predominance of IgG4 autoantibodies in 1IgG4-AlDs is caused by aberrations in
B cell development or class switching, we compared the full peripheral blood B cell compartment of
the 1gG4-AIDs MuSK MG, pemphigus, LGI1 and CASPR2 encephalitis with the IgG1-3-AlDs AChR MG
and LEMS, as well as healthy controls. Generally, B cell relative frequencies, and therefore also B cell
development, were normal across all autoimmune diseases tested. B cell numbers from our healthy
donors matched well with previous reports (49). 1gG4* memory B cell or I1gG4* plasma cell fractions
were not increased in IgG4-AID patients. This suggests that IgG4-AID patients do not have aberrant B
cell receptor class switching favoring an 1gG4 response. This is in line with studies showing that 1gG4
serum levels are only mildly, if at all, increased in 1gG4-AID patients (22—24). Generalized 1gG4 B cell
fractions in IgG4-AID patients being comparable to healthy controls suggests that the 1gG4
predominance in autoimmune responses is selective, antigen-specific and perhaps antigen-driven (see
below). The HLA class Il associations as well as the favorable response to rituximab across IgG4-AlIDs,
in combination with the data presented here, further support the hypothesis of an overarching
immunophenotype across IgG4-AlDs.

This data also strengthens the idea that IgG4-AlDs represent a different disease entity from IgG4-
related diseases (IgG4-RDs). 1gG4-RD are hallmarked by increased numbers of circulating 1gG4*
memory B cells and IgG4* plasmablasts coupled to high IgG4 serum titers and tissue fibrosis (50). While
various autoantibodies have been found in 1gG4-RD patients, these are mainly of the IgG1 subclass
and are not known to correlate consistently with the disease (51-53). Serum IgG4 autoantibody titers
do correlate with disease severity in 1gG4-AIDs and cause disease upon passive transfer (20, 21, 54).
Despite the central role of 1gG4 in both disease groups, 1gG4-AlDs and 1gG4-RDs should not be

considered part of the same disease spectrum.
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IgG4-AID patients were found to have an overall increase in mature (CD20°CD138*) plasma cells, but
this increase was not unique to 1gG4" cells. Increased mature plasma cells were previously reported in
some (55), but not all (56) studies on AChR MG patients. We did not observe this in AChR MG patients
included in this study. Plasma cell numbers decrease with age (49, 57). The differences between the
AChR MG studies may be explained by this confounding effect. We did not observe any age-dependent
plasma cell decrease in our study population (Sup. Fig. 6). Increased CD138* plasma cells are a hallmark
of several chronic AIDs (58, 59) and both MuSK MG and pemphigus likely fit the same classification.
Why the other AIDs did not show increased mature plasma cell numbers is not known.

CD138* plasma cells are usually contained within the bone marrow and are considered responsible for
long term immunity (60). This fully matured plasma cell subset shows the highest levels of antibody
secretion. Why certain immune responses induce such mature responses is not fully understood, but
has been reported at day 7 post-vaccination for common vaccines against pathogens such as mumps,
tetanus, pertussis and measles (45, 60—62). This suggests an immune response timing-dependent
migration. In 1gG4-AIDs these mature plasma cell levels may be increased as a result of: 1) a net
increase in their numbers due to a change in antigen-independent maturation, 2) stronger migratory
signals that may stimulate these cells to leave the bone marrow and become increased in PBMCs,
possibly during migration towards sites with high target antigen availability, or, 3) these may contain
the autoantibody producing plasma cell subsets which increase their overall numbers due to chronic
activation. Although there was no selective increase of 1gG4 subclass mature plasma cells, we tested
the third hypothesis by sorting the early, intermediate and mature plasma cell populations of MuSK
MG patients and testing for autoantibody production. We did not find evidence for autoreactivity in
any of these subsets. Although we detected robust total IgG production in these cultures, we cannot
exclude a technical limitation as sorting and subsequently culturing these delicate plasma cell
populations is challenging (63). A role for these mature plasma cells in the autoimmune response may

be considered unlikely due to the fact that they do not express CD20, but rituximab (anti-CD20
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therapy) treatment is usually effective in IgG4-AlDs (25—-28). 1gG4 responses are mostly mediated by
short-lived plasma cells which do not migrate to the bone marrow (64). Bone marrow holds many of
the cell types that contribute to humoral immunity. PBMCs may therefore not accurately reflect
aberrations present in the bone marrow compartment. Whether peripheral or bone marrow mature

plasma cells play a role in the pathophysiology of IgG4-AIDs requires further investigation.

Pre-germinal center subsets of immature and naive CD5* B cells were decreased in IgG4-AlDs. Previous
work has shown that immunosuppressants, especially azathioprine, selectively lower naive CD5* B cell
counts, which may explain this observation (39). Indeed, azathioprine treated patients show the most
severe decrease in naive CD5* B cell numbers in our cohorts (Figure 1). Other immunomodulatory
treatments may also significantly bias immunophenotyping analysis. The severity of the 1gG4-AlDs
requiring rapid treatment combined with a poor response to symptomatic treatments made inclusion
of untreated patients challenging (65, 66). We therefore aimed to include as much
immunosuppressive treatment naive patients for this study, but, due to the rarity of these samples,
were compelled to also include some who received (low amounts of) immunosuppression. Although
the included patients all experienced significant disease symptoms, we cannot fully exclude that in
some patients the treatment regimens affected the B cell compartment. Future immune profiling

studies should aim to only include untreated individuals whenever possible.

In the memory B cell compartment, we found no differences between any of the patient groups in
both total cell abundance or when stratified for the switched (IgM"/D'CD27*) or double negative (IgM"
/D' CD27°) subsets. We did observe a significant decrease of 1gG4* atypical (IgM/D'CD21CD27)
memory B cells in MuSK MG patients when compared to healthy controls or IgG1-AID patients. Like
IgG4 responses in general, atypical B cell counts increase with prolonged and repeated antigen
exposure (67) and are associated with several autoimmune diseases (68—71). However, we did not
detect this in our study for the other AIDs.
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The question thus remains why these autoimmune diseases are characterized by predominant IgG4
autoantibody responses. One possibility is that the antigen itself directs the response towards 1gG4.
Certain antigens are known to drive IgG4 responses, such as bee venom and certain biologicals (72).
Specifically for pemphigus there is evidence of desmoglein 1/3 autoantibody development following
exposure to walnut or sand fly antigens (36—38). There is no evidence yet for comparable molecular
mimicry events in other IgG4-AlDs. However, given the strong correlation between these antigens and

IgG4, molecular mimicry could be a plausible factor in the etiology of other IgG4-AlDs.

4.Methods

4.1 Study population

AID patients with Muscle-specific kinase (MuSK) myasthenia gravis (MG), acetylcholine receptor
(AChR) MG, Lambert-Eaton myasthenic syndrome (LEMS) or pemphigus (vulgaris, foliaceus and
paraneoplastica) were recruited from the Leiden University Medical Centre (2017-2021). We obtained
blood samples for 10 patients per disease except for MuSK MG, for which we obtained 11 samples.
Two Contactin-associated protein-like 2 (CASPR2) encephalitis and three leucine-rich glioma
inactivated (LGI1) encephalitis patients were recruited from the Erasmus University Medical Center
(2019-2021). Patients were included based on the presence of symptoms matching MG, pemphigus,
encephalitis or LE (73—-75) and a positive titer on a serological test for the respective autoantibody
upon standard clinical testing. Patients were excluded if they had received rituximab treatment within
the past 12 months. Blood samples were also obtained from 10 age- and sex-matched healthy
controls. These healthy controls were recruited by the LUMC Voluntary Donor Service (LuVDS). Figure

1 and Supplemental Table 1 provide a detailed overview of the study population.

4.2 Isolation of peripheral blood mononuclear cells
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Peripheral blood mononuclear cells (PBMCs) were isolated from 60-90 ml of sodium-Heparin
anticoagulated peripheral blood samples by Ficoll-amidotrizoate density gradient centrifugation.
Following isolation, cells were immediately frozen at -80° C at a density of 5-10-10° per ml in Recovery
Cell Freezing medium (Thermo Fisher Scientific, Waltham, MA, USA) in a Mr. Frosty Freezing Container

(Thermo Fisher Scientific, Waltham, MA, USA) for 24 hours before transfer to liquid nitrogen storage.

4.3 Flow cytometry

The B cell subsets and B cell receptor (sub)classes were identified in freshly thawed PBMCs using the
standardized EuroFlow 12-color IgH-isotype B-cell tube (49, 76, 77), with the exception of CD62L which
was replaced by a Zombie Yellow cell viability stain (BioLegend, San Diego, CA, USA) (see Sup. Table 2
for a detailed overview). At least 10-10° cells were stained for 30 minutes in the dark in 100 pl (75 pl
EuroFlow B cell tube mix and 25 pl Cytognos isotype mix) staining solution according to the EuroFlow
SOP for sample preparation and staining of markers followed by immediate analysis

(www.EuroFlow.org).

Flow cytometry was performed on a BD FACS LSR Fortessa 4L (BD Biosciences, San Jose, CA, USA) at
the Flow cytometry Core Facility (FCF) of Leiden University Medical Center (LUMC) in Leiden,
Netherlands (https://www.lumc.nl/research/facilities/fcf). At least 3-10° cells were acquired per
sample. Instrument setup was according to the EuroFlow standardized operating procedures (78). See

Sup. Fig. 1 for a detailed overview of the gating strategy.

Plasma cells were sorted on a BD FACSAria 3 cell sorter (BD Biosciences, San Jose, CA, USA). The gating
strategy is detailed in Sup Fig. 2. In brief, freshly thawed PBMCs were stained for expression of CD38,
CD20, CD138 and CD19. Viable cells were identified using Zombie Green cell viability stain (BioLegend,
San Diego, CA, USA). See Sup. Table 3 for a detailed overview of the staining. A dump channel for T

cells, NK cells and macrophages was created by staining PBMCs for expression of CD3, CD14 and CD56.

4.4 Plasma cell culture
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After bulk sorting, plasma cell subtypes were cultured in RPMI1640 (Thermo Fisher Scientific,
Waltham, MA, USA) supplemented 10% heat-inactivated fetal bovine serum, IL-6 (10 ng/ml; Thermo
Fisher Scientific, Waltham, MA, USA), IL-21 (50 ng/ml; Thermo Fisher Scientific, Waltham, MA, USA),
IFN-a (100 U/ml; Merck, Rahway, NJ, USA), BAFF (20 ng/ml; Miltenyi Biotec, Bergisch Gladbach, NRW,
Germany), chemically defined lipid mixture 1 (1/200; Thermo Fisher Scientific, Waltham, MA, USA),
MEM amino acid solution (1x; Sigma-Aldrich, St. Louis, MO, USA) on y-irradiated M2-10B4 stromal
cells (1.5*10% well, 100 pl/well) in 96-well plates (79). Every 7 days, 50 pl culture supernatant was

aspirated for IgG detection (anti-MuSK and total IgG) and replaced with fresh medium.

4.5 ELISA

Plasma cell culture medium samples were screened for antibody production using a total human IgG

ELISA assay and for MuSK reactivity using a previously described MuSK ELISA assay (80).

4.6 Statistics

Flow cytometry data was blinded and then analyzed using Infinicyt 2.0 (Cytognos, Salamanca, Spain).
Statistical analyses were performed using Prism 9 (GraphPad Software, San Diego, CA, USA). Data was
log transformed and significance was assessed by one-way ANOVA followed by unpaired Student’s t-
test unless otherwise specified. IgG4-AID patients were compared to healthy controls and to IgG1-3-
AID patients. P-values below 0.05 are considered statistically significant (* p<0.05; ** p<0.01; ***

p<0.005).

4.7 Study approval

This study was approved by the local medical ethics committee of the Leiden University Medical
Centre (CME protocolnumber P17.011). All subjects provided written informed consent prior to
participation and experiments were in accordance with the Declaration of Helsinki, including current

revisions, and Good Clinical Practice guidelines.

4.7 Data availability
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All raw flow cytometry data for this work is directly accessible via the Flow Repository under

experiment ID FR-FCM-Z6K2 (81). Derived data supporting the findings of this study are available from

the corresponding author on request.
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