

1 **Title:** Engineering transposon-associated TnpB- ω RNA system for efficient
2 gene editing and disease treatment in mouse

3

4 **Authors:**

5 Zhifang Li^{1†}, Ruochen Guo^{1,6†}, Xiaozhi Sun^{1,2†}, Guoling Li^{5†}, Yuanhua Liu⁶,
6 Xiaona Huo^{1,2}, Rongrong Yang^{1,2}, Zhuang Shao¹, Hainan Zhang⁴, Weihong
7 Zhang⁴, Xiaoyin Zhang^{1,2}, Shuangyu Ma⁷, Yinan Yao⁶, Xinyu Liu⁶, Hui Yang^{3,4,6},
8 Chunyi Hu^{5*}, Yingsi Zhou^{4*}, Chunlong Xu^{1,2,3*}

9

10 **Affiliations:**

11 1. Lingang Laboratory, Shanghai, China.

12 2. School of Life Sciences and Technology, ShanghaiTech University, Shanghai,
13 China

14 3. Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai,
15 China.

16 4. HuidaGene Therapeutics Inc., Shanghai, China.

17 5. Department of Biological Sciences, National University of Singapore,
18 Singapore

19 6. Institute of Neuroscience, State Key Laboratory of Neuroscience, Key
20 Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain
21 Science and Intelligence Technology, Shanghai Institutes for Biological
22 Sciences, Chinese Academy of Sciences, Shanghai, China.

23 7. Department of Histoembryology, Genetics and Developmental Biology,
24 Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong
25 University School of Medicine, Shanghai, China.

26

27 †These authors contributed equally to this work.

28 ***Correspondences:** hu_dbs@nus.edu.sg (C.H.), yingsizhou@huidagene.com
29 (Y.Z.), xucl@lglab.ac.cn (C.X.)

30

31 **Abstract:**

32 Transposon-associated ribonucleoprotein TnpB is known to be the ancestry
33 endonuclease of diverse Cas12 effector proteins from type-V CRISPR system.
34 Given its small size (409 aa), it is of interest to examine whether engineered
35 TnpB could be used for efficient mammalian genome editing. Here, we showed
36 that the gene editing activity of native TnpB in mouse embryos was already
37 higher than previously identified small-sized Cas12f1. Further stepwise
38 engineering of noncoding RNA (ω RNA or reRNA) component of TnpB
39 significantly elevated the nuclease activity of TnpB. Notably, an optimized
40 TnpB- ω RNA system could be efficiently delivered *in vivo* with single adeno-
41 associated virus (AAV) and prevented the disease phenotype in a tyrosinaemia
42 mouse model. Thus, the engineered miniature TnpB system represents a new
43 addition to the current genome editing toolbox, with the unique feature of the
44 smallest effector size that facilitate efficient AAV delivery for editing of cells and
45 tissues.

46

47 **Main Text:**

48 **Introduction**

49 The TnpB proteins represent a family of transposon-associated RNA-guided
50 endonucleases. Recent biochemical studies^{1,2} revealed that TnpB proteins are
51 ancestry predecessors of Cas12 effector proteins in the type-V CRISPR system,
52 and a 247-nucleotides (nt) noncoding RNA (termed ω RNA or reRNA) derived
53 from the right end of transposon element is the required component for TnpB
54 to recognize and cleave target DNA. The size of TnpB proteins, with ~400
55 amino acid (aa) residues, is much smaller than their evolutionary progeny
56 Cas12 proteins (mostly ~1000 aa). Furthermore, *in vitro* studies^{1,2}
57 demonstrated that TnpB exhibited double-strand DNA cleavage activity guided
58 by ω RNA. Therefore, there is potential for the use of this TnpB system in
59 genome editing and therapeutic applications.

60

61 Gene editing using Cas9 or Cas12 systems has been widely used in animal
62 models and recently applied in clinical trials. At present, AAV is the most
63 commonly used delivery system and shown to be safe in gene therapy³.
64 However, the maximal cargo size of AAV was limited to be 4.7 kilobase (kb)
65 pairs, hindering efficient *in vivo* delivery of the large Cas9 or Cas12 protein via
66 single AAV injection. This size problem is exacerbated in the use of base and
67 prime editors comprising Cas9 (or Cas12) and fusion enzymes. Recent
68 identification of compact CRISPR effector proteins Cas12f1 (~500 aa)⁴ and
69 Cas13 (~700 aa)^{5,6} represent potential solutions. However, the gene editing
70 efficiency of Cas12f1 was relatively low⁷⁻¹¹, whereas Cas13 exhibited collateral
71 RNA cleavage activity with uncertain safety profile^{12,13}.

72

73 In the present study, we demonstrated that genome editing activity of TnpB was
74 markedly higher than that of Cas12f1 in cultured cells and mouse embryos. To
75 further optimize the TnpB system, we engineered TnpB-associated ω RNA in a
76 stepwise manner to identify the optimal ω RNA variant with the shortest
77 sequence length and elevated gene editing activity. Importantly, we showed that
78 the optimized TnpB- ω RNA system could be effectively delivered *in vivo* via a
79 single AAV injection in tyrosinaemia model mice, leading to the prevention of
80 disease phenotype. Thus, we have shown the applicability of the engineered
81 hypercompact TnpB for genome editing *in vivo*.

82

83 **Results**

84 **TnpB exhibited gene editing activity higher than Cas12f1**

85 Previous study has shown the endonuclease activity of several Cas12f1
86 orthologs from type V-U CRISPR family that have small sizes. As the ancestry
87 enzyme of Cas12 proteins, TnpB (~400 aa) represents the smallest
88 programmable nuclease among common single effector Cas proteins, including
89 SpCas9, LbCas12a, Un1Cas12f1, and IscB (**Fig. 1a**). However, the mammalian
90 genome editing potential of TnpB remained to be fully characterized. Thus, we

91 selected several genomic loci to evaluate the editing activity of TnpB (from
92 *Deinococcus radiodurans*, ISDra2) in mouse embryos. First, we in vitro
93 transcribed ω RNA that targets the mouse *Tyr* gene (**Fig. 1b**), and inject ω RNA
94 together with TnpB mRNA into mouse embryos. The injected embryos were
95 then transferred into surrogate female mice to generate gene-modified offspring.
96 Since *Tyr* gene encodes the black coat color of C57/B6 mice, we estimated the
97 efficiency of TnpB-induced gene disrupton by directly examining the coat color
98 change in TnpB-injected mice. We found that TnpB treatment completely
99 converted black coat color into albino white in all newborn mice (**Fig. 1c**). In
100 contrast, similar embryo injection of Un1Cas12f1 together with sgRNA targeting
101 the *Tyr* gene did not change the black coat color in the newborn mice (**Fig. 1c**),
102 suggesting a much lower *Tyr* gene disruption efficiency of Un1Cas12f1 than
103 that of TnpB. Further deep-sequencing for *Tyr* gene showed that 20% and 90%
104 of indel mutations were induced by Un1Cas12f1 and TnpB, respectively (**Fig.**
105 **1b**). Although Cas12f1 and TnpB have different requirements for target
106 adjacent motif (TAM, also known as PAM) that recognizes the target sequence,
107 we have chosen the targeted sequence in *Tyr* gene to have 17-bp overlap
108 (among 20 bp) for both enzymes (**Fig. 1b**). Thus, the higher editing efficiency
109 of TnpB as compared to Cas12f1 was largely due to its endonuclease activity.
110

111 To further evaluate the gene editing activity of TnpB, we chose six additional
112 loci in the mouse *Dmd* gene (**Fig. 1d, Supplementary Fig. 1**) for targeting in
113 mouse embryos, by injecting ω RNA targeting these loci with TnpB mRNA. As
114 shown by deep-sequencing results, TnpB exhibited an average of 90% editing
115 efficiency for all six targeted loci in the *Dmd* gene (**Fig. 1d, Supplementary Fig.**
116 **1**). Furthermore, the gene editing outcome was verified by immunostaining of
117 dystrophin protein encoded by *Dmd* gene that is specifically expressed in
118 muscle tissues. In contrast to wildtype mice, TnpB-treated mice showed
119 undetectable dystrophin expression in heart, Diaphragm (DI) and Tibialis
120 anterior (TA) muscles (**Fig. 1e, Supplementary Fig. 2**), suggesting the

121 complete disruption of *Dmd* gene by TnpB and ω RNA injection. Finally, these
122 immunostaining results were confirmed by Western blotting of dystrophin
123 protein of various muscle tissues (Fig. 1f). Consequently, rotarod and grip
124 strength assessment of TnpB-treated DMD mice found functional dysfunction
125 of muscle (Supplementary Fig. 3). Thus, our finding indicated more robust
126 gene editing activity of TnpB than that of Un1Cas12f1 in mammalian tissues.
127

128 **Engineered TnpB-associated ω RNA with elevated editing efficiency**

129 Cognate ω RNA scaffold associated with TnpB is 247 nt, much longer than
130 sgRNA scaffold for most single effector Cas proteins. Previous findings reported
131 that the sgRNA engineering could improve the performance of gene editing
132 enzymes¹⁴. We thereby hypothesized that ω RNA truncation and optimization
133 might be helpful for enhancing TnpB activity in mammalian cells. To this end,
134 we predicted the secondary structure of ω RNA and formulated a stepwise
135 strategy to truncate ω RNA (Fig. 2a). Based on the stem loops in predicted
136 structure, we divided ω RNA into six segments, named as S1 to S6 for the
137 truncation experiment (Fig. 2b). To facilitate screen of ω RNA variants, we
138 designed a gene editing reporter with TnpB target DNA placed within a split and
139 frameshifted GFP gene which could only be repaired after disruption of TnpB
140 target sequence to express GFP (Fig. 2a). We tested the reporter with cognate
141 ω RNA to prove the conditional activation of GFP after treatment of TnpB guided
142 by ω RNA targeting frameshift mutation in GFP gene (Fig. 2a). At first, we
143 deleted S1 to S6 one by one and run the reporter assay. It showed that only
144 deletion of S4 and S6 ablated the activity of TnpB (Fig. 2c), suggesting the
145 dispensable role of S1, S2, S3 and S5 for normal ω RNA function. Furthermore,
146 sequence deletion of S1 slightly increase TnpB activity (Fig. 2c).
147

148 To interrogate combined deletion effect of S1 to S6, we added S2 to S5 deletion
149 in the S1 deletion variant of ω RNA to conduct reporter assay. It found that
150 simultaneous deletion of S1, S2, and S3 in ω RNA-v1 not only supported the

151 normal function of TnpB but also significantly increased the gene editing
152 efficiency (**Fig. 2d**). These results implied that the ω RNA sequence from S4 to
153 S6 dictated the enzymatic activity of TnpB. Secondary structure of ω RNA after
154 combined truncation of S1, S2 and S3 showed typical stem loop conformations
155 with three distinguishable and consecutive stem loop (SL) domains, termed as
156 SL1, SL2 and SL3(**Fig. 2e**). To further determine the effect of these three SL
157 domains on TnpB activity, we iteratively remove SL1, SL2 and SL3 for reporter
158 test. In addition, we also generated two other ω RNA variants with partial
159 deletion of SL2 subdomain or substitution of G:U with G:C pairs (**Fig. 2e**). We
160 found that SL1, SL2 and SL3 are necessary for the normal function of TnpB
161 since deletion variants lack of any single SL fully blocked the reporter activation
162 (**Fig. 2f**). However, partial replacement of SL3 subdomain with 5'-GAAA-3' loop
163 sequence actually enhance the TnpB activity (**Fig. 2f**). G:C substitution for G:U
164 pair exhibited no additive effect on the performance of TnpB (**Fig. 2f**). Based
165 on these results, we finally identified an optimal ω RNA variant ω RNA-v2 or
166 ω RNA* that improved TnpB performance. Predicted secondary structure of
167 ω RNA* presented with three compact stem loop domains in contrast to loose
168 organization of cognate ω RNA structure (**Fig. 2g**).
169

170 **Characterization of endogenous gene editing and off-target activity for 171 TnpB- ω RNA system**

172 To verify the reporter assay results for ω RNA*, we selected 14 endogenous
173 genomic loci for further evaluation of gene editing performance in HEK293T
174 (**Fig. 3a**). Among 14 human loci tested, 10 individual target sites showed
175 significant increase of TnpB gene editing efficiency with ω RNA* compared with
176 original ω RNA (**Fig. 3b**). Summary analysis of 14 loci also found significant
177 improvement for TnpB using ω RNA* (**Fig. 3c**). To investigate broad
178 improvement effect of ω RNA* in mammalian cells, we further performed the
179 gene editing in mouse N2a cells targeting four disease relevant genes,
180 including *Klkb1*, *Tyr*, *Hpd* and *Pcsk9*. It found that all genomic sites exhibited

181 significantly increased gene editing efficiency for ω RNA* compared to original
182 ω RNA (**Supplementary Fig. 4**). Quantitative analysis revealed two fold
183 increase of gene editing efficiency in N2a for ω RNA* versus original ω RNA
184 (**Supplementary Fig. 4**). In particular, ω RNA* even supported TnpB editing of
185 some loci that are barely edited using cognate ω RNA (**Supplementary Fig. 4**).
186 Therefore, we demonstrated the enhanced TnpB activity in mammalian cells
187 via the identification of ω RNA* after stepwise engineering.

188
189 To examine the off-target effect of TnpB, we carried out prediction of potential
190 off-target genomic loci with Cas-OFFinder¹⁵ for off-target analysis when
191 designing ω RNA against a target site in *Hpd* gene (**Fig. 3d**). For the top 10
192 predicted off-target sites, no gene editing events was detected for *Hpd*-targeting
193 TnpB- ω RNA (**Fig. 3d**). Furthermore, we also performed genome-wide off-target
194 analysis by PEM-seq¹⁶ to identify potential translocation between on-target and
195 off-target loci. Our PEM-seq results showed that there is no induction of
196 translocation events related to gene editing of *Hpd* gene by TnpB- ω RNA
197 treatment (**Fig. 3e**).
198

199 **Prevention of fatal liver disease with in vivo delivery of TnpB- ω RNA via 200 single AAV**

201 Given the hypercompact size of TnpB, it would greatly facilitate in vivo delivery
202 via single AAV for gene editing therapy. To demonstrate the potential of TnpB
203 in disease intervention, we chose the *Hpd* as therapeutic target for gene editing
204 therapy of type I hereditary tyrosinaemia (HTI) in *Fah*^{-/-} mouse model. Adult
205 *Fah*^{-/-} was administrated with AAV-TnpB or AAV-TnpB- ω RNA (**Fig. 4a**) and kept
206 without NTBC drug, an HPD inhibitor. We observed that AAV-TnpB- ω RNA
207 treated *Fah*^{-/-} mice was still alive after 75 days without NTBC but all untreated
208 mice died at about 65 days (**Fig. 4b**). Furthermore, *Fah*^{-/-} mice subject to AAV-
209 TnpB- ω RNA treatment gained body weight after experiencing a short period of
210 weight loss (**Fig. 4c**). Contrarily, untreated mice exhibited rapid weight loss until

211 death (**Fig. 4c**). Histological analysis found massive liver fibrosis in untreated
212 mice whereas dramatically reduced fibrotic pathology in treated mice (**Fig. 4d**).
213

214 Furthermore, we also analyzed the HPD expression in treated versus untreated
215 mice. It showed the remarkable decrease of HPD positive liver region in AAV-
216 TnpB- ω RNA treated mice (**Supplementary Fig. 5a, b**). To investigate the *in vivo*
217 gene editing outcomes, we collected liver tissue from both treated and
218 untreated mice. We only found 70% indel rate in AAV-TnpB- ω RNA treated mice
219 but no editing events in non-treated animals (**Supplementary Fig. 5c, d**).
220 Consistently, liver metabolic functions were significantly ameliorated after AAV-
221 TnpB- ω RNA treatment as indicated by the blood biochemical profiling results
222 of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total
223 bilirubin and tyrosine (**Supplementary Fig. 6**). Therefore, our results showed
224 the proof-of-concept for applying TnpB in disease control via single AAV
225 delivery *in vivo*.
226

227 **Discussion**

228 Diverse CRISPR-Cas systems evolved from immune battle between microbe
229 and mobile genetic elements (MGE), providing us abundant resources for the
230 identification of gene editing enzymes¹⁷. In the past years, various single
231 effector Cas proteins including Cas9¹⁸, Cas12¹⁹ and Cas13²⁰ were found to
232 deploy DNA or RNA editing activity in different organisms for both research and
233 therapeutic purpose²¹. Recently, TnpB-like proteins, including IscB and TnpB
234 associated with microbe transposon element, were identified to be active
235 ancestry endonuclease for Cas9 and Cas12^{1,2}. Given the hypercompact size of
236 TnpB and IscB, they are excellent candidates for developing miniature gene
237 editing tools that would facilitate *in vivo* delivery via AAV. To this end, our
238 present study demonstrated the potential of TnpB for robust genome editing in
239 both cultured cells and animal tissues. Although Kim et al. recently reported
240 engineering base editor from a 557-aa 'TnpB'²², both Siksnys and Doudna

241 group lately demonstrated that 'TnpB' used by Kim et al. study should be
242 actually annotated as Cas12f1 that works as dimer unlike monomer TnpB^{23,24}.
243 Thus, our work was the first study to extensively show the rational optimization
244 of TnpB to achieve excellent in vitro and in vivo performance for gene editing.
245 Furthermore, we also showed the effectiveness of TnpB based gene editing
246 therapy to prevent fatal genetic disease in mouse model of tyrosineamia via in
247 vivo single AAV delivery of TnpB and ωRNA. Interestingly, we performed
248 stepwise truncation of cognate ωRNA to generate a ωRNA variant with short
249 sequence and high efficiency. Our study represent a good start point to optimize
250 TnpB or even IscB for more broad and convenient use in research and
251 therapeutic scenario.

252

253 Endonuclease activity of TnpB was only shown with limited data in 2021 by
254 Karvelis et al study¹. Extensive characterization of TnpB activity in mammalian
255 cell and tissue were currently needed. Our finding corroborated the results from
256 Karvelis et al study, revealing unexpected higher activity for TnpB than Cas12f1
257 without further engineering. Moreover, we showed that deletion of 5'-end and
258 partial internal sequence in ωRNA could enhance the gene editing performance
259 of TnpB both in vitro and in vivo. Intriguingly, such deletion strategy was
260 supported by two latest structural studies^{25,26} of TnpB-ωRNA-DNA ternary
261 complex published last month, suggesting the potential useful applicability of
262 our ωRNA engineering strategy for more TnpB-like systems. In addition, the
263 TnpB structure could accelerate the rational engineering of such compact
264 enzyme with more demanding properties such as relaxed limitation of target-
265 adjacent motif (TAM), enhanced editing activity and specificity etc.

266

267 Gene editing therapy was partly impeded by the limited AAV cargo capacity of
268 only ~4.7 kb considering the fact that common Cas9, Cas12 and their derived
269 base or prime editors have protein size beyond 1000 aa^{3,27}. TnpB with less than
270 500 aa are highly desired gene editing enzymes for AAV delivery in vivo. Our

271 results with TnpB in treating fatal tyrosineamia in mice signify the advantage of
272 reducing gene editing cargo size despite the modest modification efficiency for
273 Hpd target gene after TnpB- ω RNA optimization. Besides, compact TnpB size
274 could permit using sophisticated regulatory sequences for switchable gene
275 editing and reducing the AAV administration dose for high expression to enable
276 safe therapeutic applications. Furthermore, our optimized ω RNA* variant with
277 less than 100 nt would also be easy for synthesizing chemically modified ω RNA,
278 which is very useful for ribonucleoprotein(RNP)-based gene editing
279 applications.

280

281 Overall, our study demonstrated improved gene editing activity of TnpB via
282 ω RNA engineering in cultured cells and showed its disease prevention ability
283 in animal models, indicating the potential of hypercompact TnpB- ω RNA system
284 as effective miniature gene editing modality for more AAV-based disease
285 treatment in animal models and even human patients.

286

287 **References**

- 288 1 Karvelis, T. *et al.* Transposon-associated TnpB is a programmable RNA-guided DNA
289 endonuclease. *Nature* **599**, 692-696, doi:10.1038/s41586-021-04058-1 (2021).
- 290 2 Altae-Tran, H. *et al.* The widespread IS200/IS605 transposon family encodes diverse
291 programmable RNA-guided endonucleases. *Science (New York, N.Y.)* **374**, 57-65,
292 doi:10.1126/science.abj6856 (2021).
- 293 3 Wang, D., Zhang, F. & Gao, G. CRISPR-Based Therapeutic Genome Editing: Strategies and
294 In Vivo Delivery by AAV Vectors. *Cell* **181**, 136-150, doi:10.1016/j.cell.2020.03.023 (2020).
- 295 4 Harrington, L. B. *et al.* Programmed DNA destruction by miniature CRISPR-Cas14 enzymes.
296 *Science (New York, N.Y.)* **362**, 839-842, doi:10.1126/science.aav4294 (2018).
- 297 5 Xu, C. *et al.* Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated
298 microbes. *Nature methods* **18**, 499-506, doi:10.1038/s41592-021-01124-4 (2021).
- 299 6 Kannan, S. *et al.* Compact RNA editors with small Cas13 proteins. *Nature biotechnology* **40**,
300 194-197, doi:10.1038/s41587-021-01030-2 (2022).
- 301 7 Kim, D. Y. *et al.* Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide
302 RNAs delivered by adeno-associated virus. *Nature biotechnology* **40**, 94-102,
303 doi:10.1038/s41587-021-01009-z (2022).
- 304 8 Kong, X. *et al.* Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and
305 expanded target range for genome editing. *Nature communications* **14**, 2046,
306 doi:10.1038/s41467-023-37829-7 (2023).

307 9 Bigelyte, G. *et al.* Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modification
308 in cells. *Nature communications* **12**, 6191, doi:10.1038/s41467-021-26469-4 (2021).

309 10 Wu, Z. *et al.* Programmed genome editing by a miniature CRISPR-Cas12f nuclease. *Nature
310 chemical biology* **17**, 1132-1138, doi:10.1038/s41589-021-00868-6 (2021).

311 11 Xu, X. *et al.* Engineered miniature CRISPR-Cas system for mammalian genome regulation and
312 editing. *Molecular cell* **81**, 4333-4345.e4334, doi:10.1016/j.molcel.2021.08.008 (2021).

313 12 Tong, H. *et al.* High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral
314 effects. *Nature biotechnology* **41**, 108-119, doi:10.1038/s41587-022-01419-7 (2023).

315 13 Li, Y. *et al.* The collateral activity of RfxCas13d can induce lethality in a RfxCas13d knock-in
316 mouse model. *Genome biology* **24**, 20, doi:10.1186/s13059-023-02860-w (2023).

317 14 Nowak, C. M., Lawson, S., Zerez, M. & Bleris, L. Guide RNA engineering for versatile Cas9
318 functionality. *Nucleic acids research* **44**, 9555-9564, doi:10.1093/nar/gkw908 (2016).

319 15 Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for
320 potential off-target sites of Cas9 RNA-guided endonucleases. *Bioinformatics (Oxford, England)*
321 **30**, 1473-1475, doi:10.1093/bioinformatics/btu048 (2014).

322 16 Yin, J. *et al.* Optimizing genome editing strategy by primer-extension-mediated sequencing.
323 *Cell Discov* **5**, 18, doi:10.1038/s41421-019-0088-8 (2019).

324 17 Makarova, K. S. *et al.* Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and
325 derived variants. *Nature reviews. Microbiology* **18**, 67-83, doi:10.1038/s41579-019-0299-x
326 (2020).

327 18 Cong, L. *et al.* Multiplex genome engineering using CRISPR/Cas systems. *Science (New York, N.Y.)*
328 **339**, 819-823, doi:10.1126/science.1231143 (2013).

329 19 Zetsche, B. *et al.* Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. *Cell*
330 **163**, 759-771, doi:10.1016/j.cell.2015.09.038 (2015).

331 20 Abudayyeh, O. O. *et al.* RNA targeting with CRISPR-Cas13. *Nature* **550**, 280-284,
332 doi:10.1038/nature24049 (2017).

333 21 Wang, J. Y. & Doudna, J. A. CRISPR technology: A decade of genome editing is only the
334 beginning. *Science (New York, N.Y.)* **379**, eadd8643, doi:10.1126/science.add8643 (2023).

335 22 Kim, D. Y. *et al.* Hypercompact adenine base editors based on transposase B guided by
336 engineered RNA. *Nature chemical biology* **18**, 1005-1013, doi:10.1038/s41589-022-01077-5
337 (2022).

338 23 Karvelis, T. & Siksnys, V. Mis-annotation of TnpB: case of TaRGET-ABE. *Nature chemical biology*
339 **19**, 261-262, doi:10.1038/s41589-022-01242-w (2023).

340 24 Yoon, P. H., Adler, B. A. & Doudna, J. A. To TnpB or not TnpB? Cas12 is the answer. *Nature
341 chemical biology* **19**, 263-264, doi:10.1038/s41589-022-01243-9 (2023).

342 25 Nakagawa, R. *et al.* Cryo-EM structure of the transposon-associated TnpB enzyme. *Nature* **616**,
343 390-397, doi:10.1038/s41586-023-05933-9 (2023).

344 26 Sasnauskas, G. *et al.* TnpB structure reveals minimal functional core of Cas12 nuclease family.
345 *Nature* **616**, 384-389, doi:10.1038/s41586-023-05826-x (2023).

346 27 Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. *Cell*
347 **185**, 2806-2827, doi:10.1016/j.cell.2022.03.045 (2022).

348 28 Clement, K. *et al.* CRISPResso2 provides accurate and rapid genome editing sequence analysis.
349 *Nature biotechnology* **37**, 224-226, doi:10.1038/s41587-019-0032-3 (2019).

350

351 **Acknowledgements**

352 We thank technical support from laboratory animal center (Y.D., J.S., T.Z.),
353 optical imaging (L.T., K.S., W.L.) and gene-editing core (R.Y., X.H., X.Z.) facility
354 in Shanghai Center for Brain Science and Brain-Inspired Technology as well as
355 Lingang Laboratory. **Funding:** This work was funded by Lingang Laboratory
356 (LG2023 to C.X.), and Shanghai City Committee of Science and Technology
357 Project (22QA1412300 to C.X., 20ZR1466600 to X.H.). S.M. was funded by
358 National Natural Science Foundation of China (32100641). H.Y. was funded by
359 National Science and Technology Innovation 2030 Major Program
360 (2021ZD0200900) (H.Y.), Chinese National Science and Technology major
361 project R&D Program of China (2018YFC2000101) (H.Y.), Strategic Priority
362 Research Program of Chinese Academy of Science (XDB32060000) (H.Y.),
363 National Natural Science Foundation of China (31871502, 31901047,
364 31925016, 91957122 and 82021001) (H.Y.), Basic Frontier Scientific Research
365 Program of Chinese Academy of Sciences From 0 to 1 original innovation
366 project (ZDBS-LY-SM001) (H.Y.), Shanghai Municipal Science and Technology
367 Major Project (2018SHZDZX05) (H.Y.), Shanghai City Committee of Science
368 and Technology Project (18411953700, 18JC1410100, 19XD1424400 and
369 19YF1455100) (H.Y.) and the International Partnership Program of Chinese
370 Academy of Sciences (153D31KYSB20170059) (H.Y.).

371

372 **Author contributions:** Z.L., R.G. and C.X. jointly conceived the project and
373 designed experiments. Y.Z. and C.X. supervised the whole project. Z.L. and
374 G.L. generated mouse model. Z.L. and R.G. designed vectors, performing in
375 vitro experiments and scanning confocal imaging. X.H. and X.S. assisted with
376 construction plasmids and cell culture. R.Y. and X.Z. prepared AAV virus. R.G.,
377 Z.L., Z.S. and G.L. performed in vivo virus injection, tissue dissection,
378 histological immunostaining and liver function experiments. Y.L. and Y.Z.
379 performed bioinformatics analysis. R.G., G.L. and X.H. assisted with tissue
380 dissection, immunostaining and animal breeding. Z.L., R.G., G.L., C.H., Y.Z.

381 and C.X. analyzed the data and organized figures. Z.L., C.H., Y.Z. and C.X.
382 wrote the manuscript with data contributed by all authors participated in project.
383 **Competing interests:** H.Y. is a founder of HuidaGene Therapeutics. The
384 remaining authors declare no competing interests. **Data and materials**
385 **availability:** Deep-seq data is deposited to the GEO repository under
386 accession number PRJNA963402 and plasmids are available from the
387 corresponding authors upon request.

388

389 **Supplementary Materials:**

390 Materials and Methods

391 Figures S1 to S6

392 Tables S1 to S3

393

394

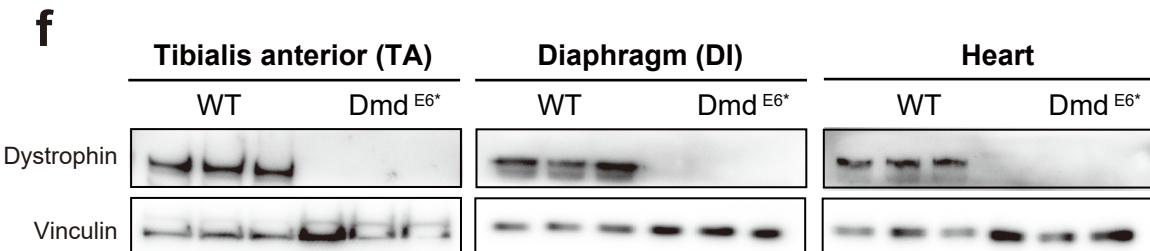
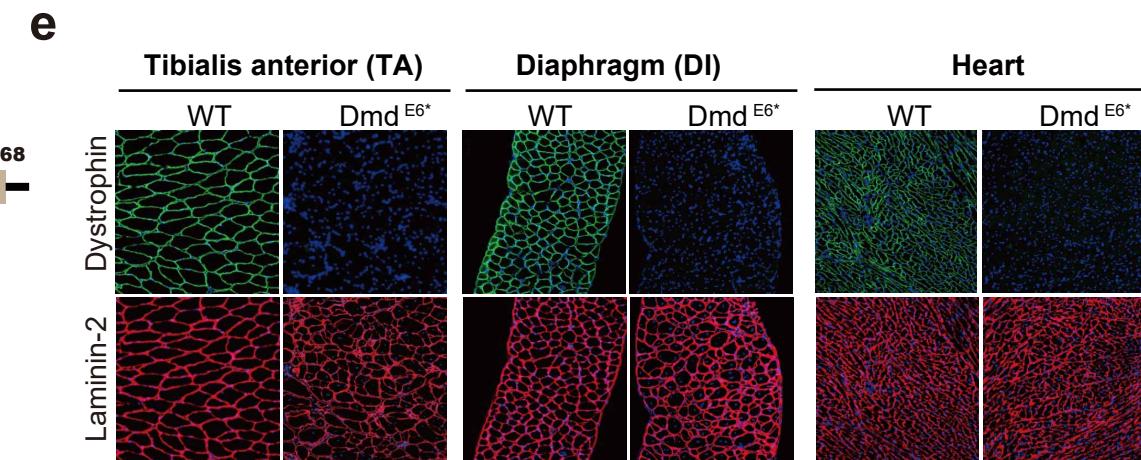
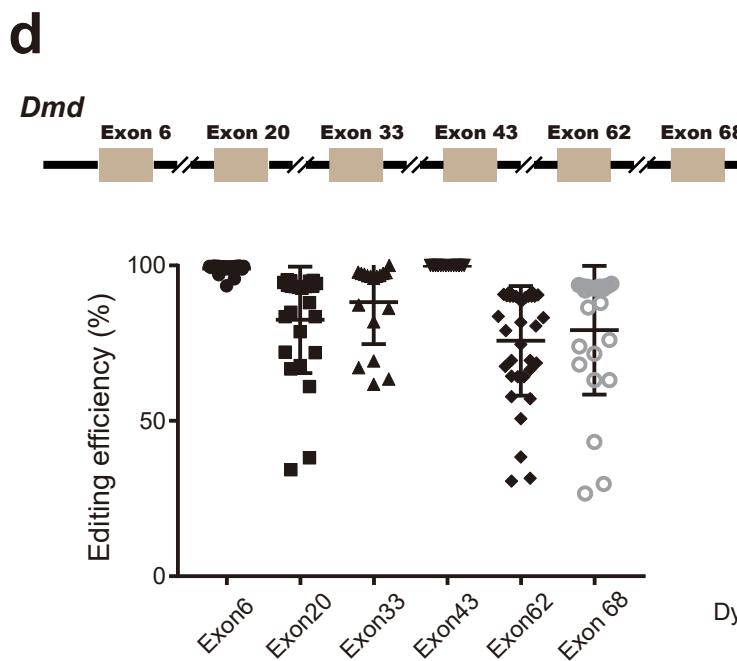
395

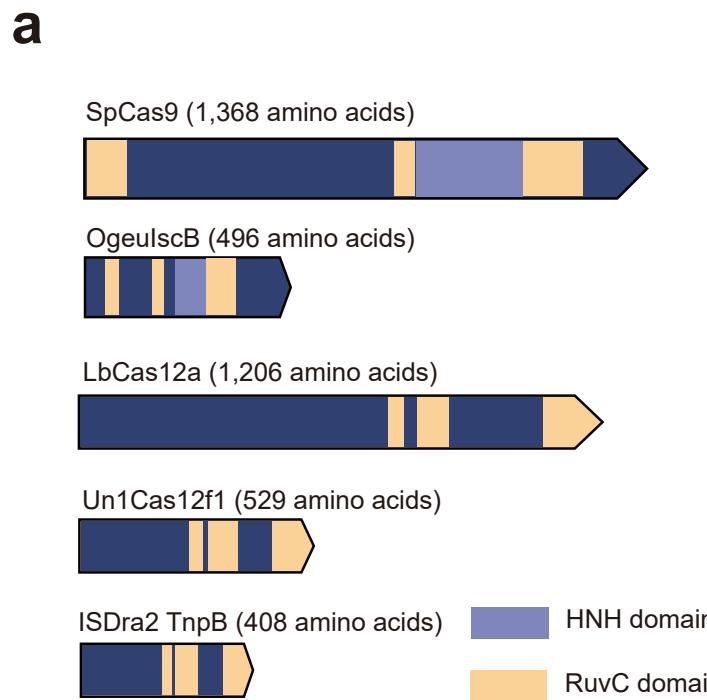
396

397

398

399

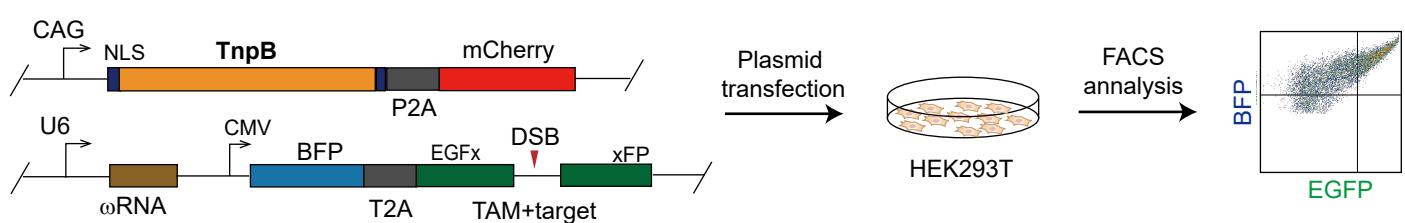
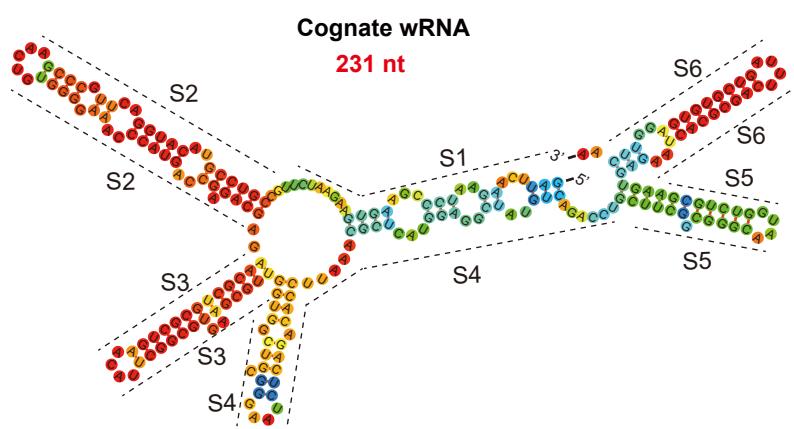
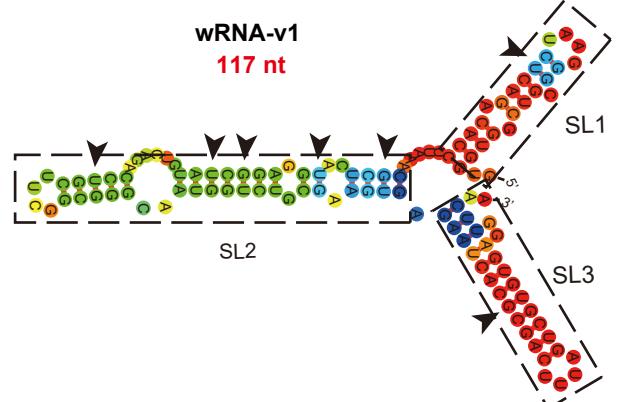
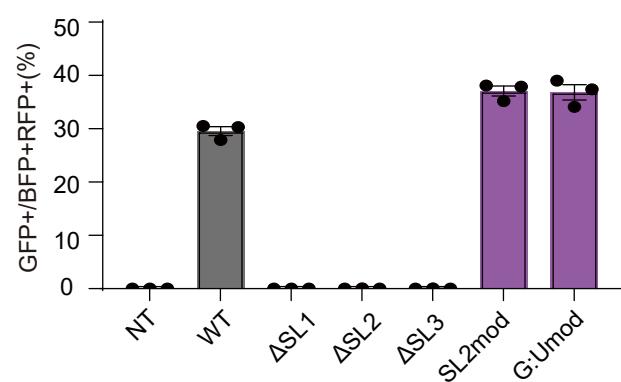
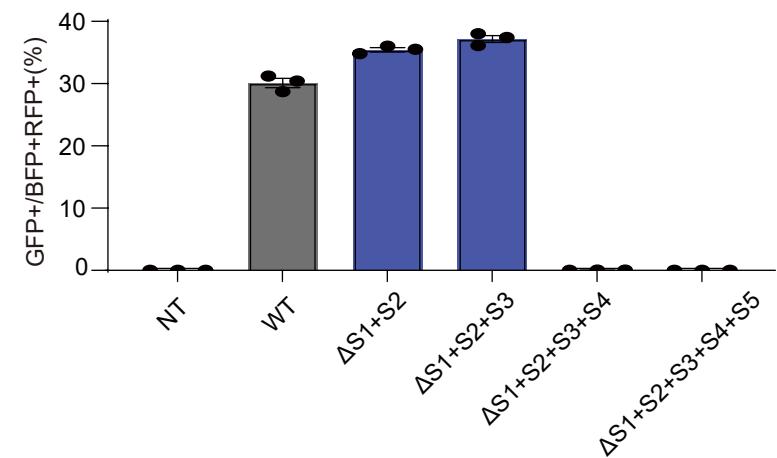
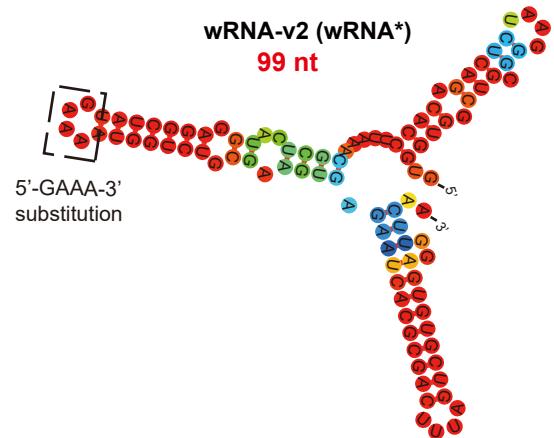

400

401

402

403

Fig.1

404 **Main figures and legend**

405 **Fig. 1. Mouse embryo injection of TnpB- ω RNA induced efficient gene**
406 **editing.**

407 **a.** Characteristics of SpCas9, IscB, LbCas12a, Un1Cas12f1 and TnpB
408 nucleases. **b.** Comparison of editing efficiency between TnpB and Cas12f1 on
409 *Tyr* gene for gene modified mice. **c.** Coat color phenotype of *Tyr* gene modified
410 mice by Un1Cas12f1 and TnpB. **d.** TnpB-mediated gene editing efficiency for
411 *Dmd* gene. **e.** Dystrophin and laminin-2 immunostaining for TA, DI and heart
412 muscle tissues in wildtype and *Dmd*-edited mice by TnpB. **f.** Western blotting
413 of dystrophin and vinculin protein for three muscle tissues in wild-type and *Dmd*-
414 edited mice by TnpB. Data are represented as means \pm SEM. A dot represents
415 a biological replicate. Significant differences between conditions are indicated
416 by asterisk. Unpaired two-tailed Student's t tests. * P < 0.05, *** P < 0.001, NS
417 non-significant. Scale bars, 200 μ m.

418

a**b****e****c****f****d****g**

419 **Fig. 2. Stepwise engineering of TnpB-associated ω RNA improved gene
420 editing efficiency.**

421 **a.** Reporter assay schematics of detecting cleavage activity of TnpB- ω RNA. **b.**
422 Predicted secondary structure of cognate ω RNA (245 nt). Cognate ω RNA was
423 divided into 6 segments, named from S1 to S6. **c.** Reporter assay results using
424 engineered ω RNA by one-by-one truncation of S1 to S6. **d.** Reporter assay
425 results with engineered ω RNA by different combined truncations of S1 to S5. **e.**
426 Predicted secondary structure of a ω RNA variant with simultaneous truncation
427 of S1, S2 and S3. **f.** Reporter assay results for ω RNA variants with different SL
428 deletion and modifications. **g.** Predicted secondary structure of final optimized
429 ω RNA variant. Data are represented as means \pm SEM. A dot represents a
430 biological replicate. Significant differences between conditions are indicated by
431 asterisk. Unpaired two-tailed Student's t tests. * P < 0.05, *** P < 0.001, NS
432 non-significant.

433

434

435

436

437

438

439

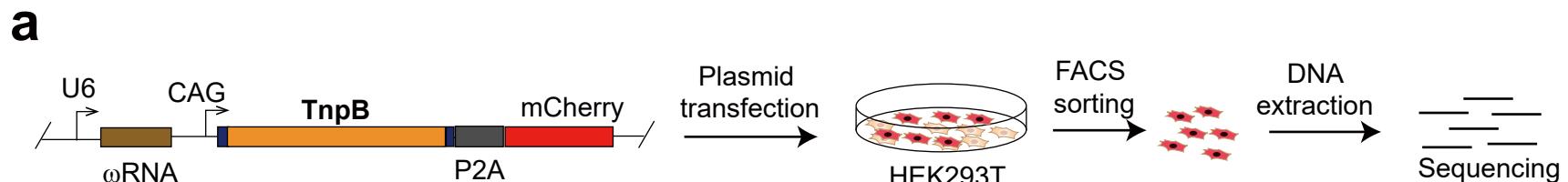
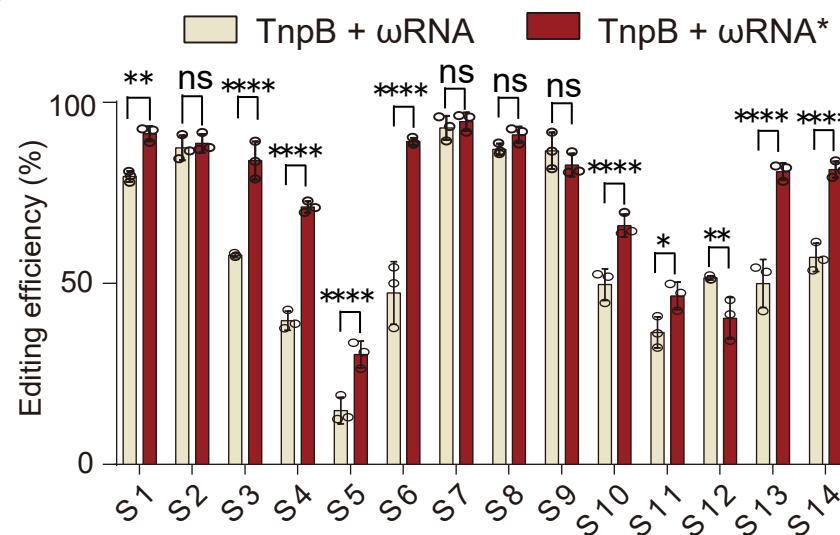
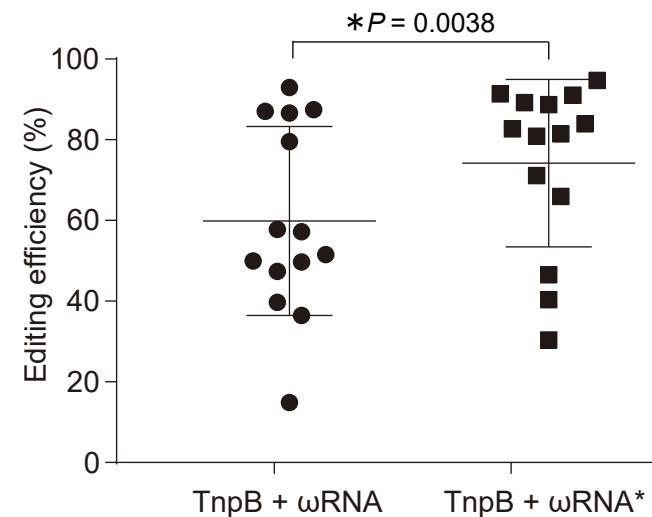
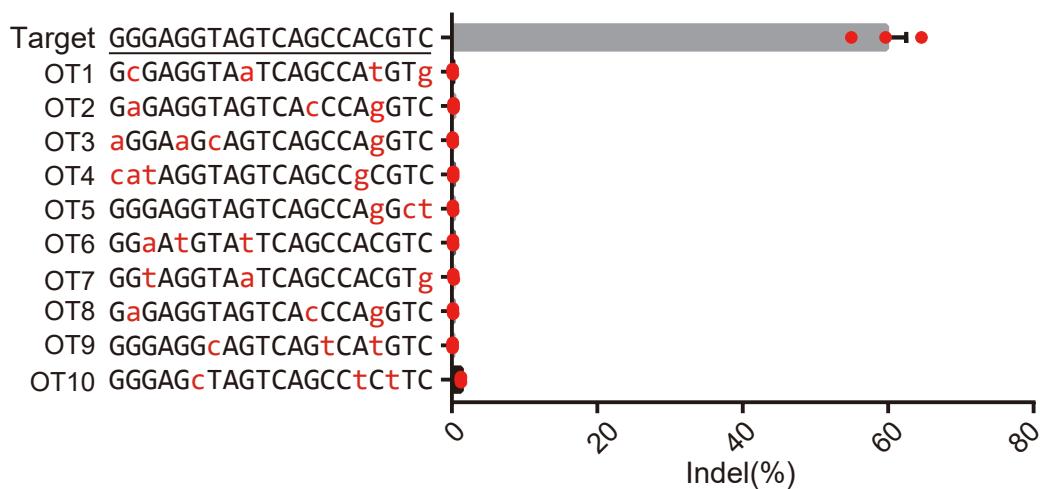
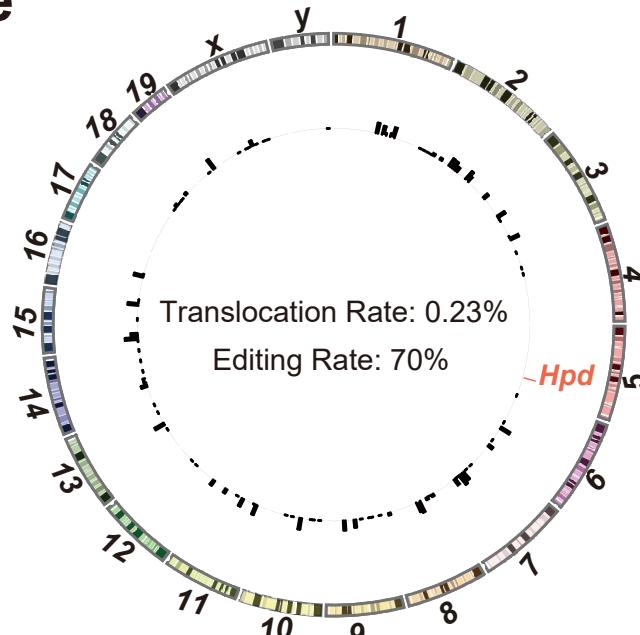
440

441

442

443

444

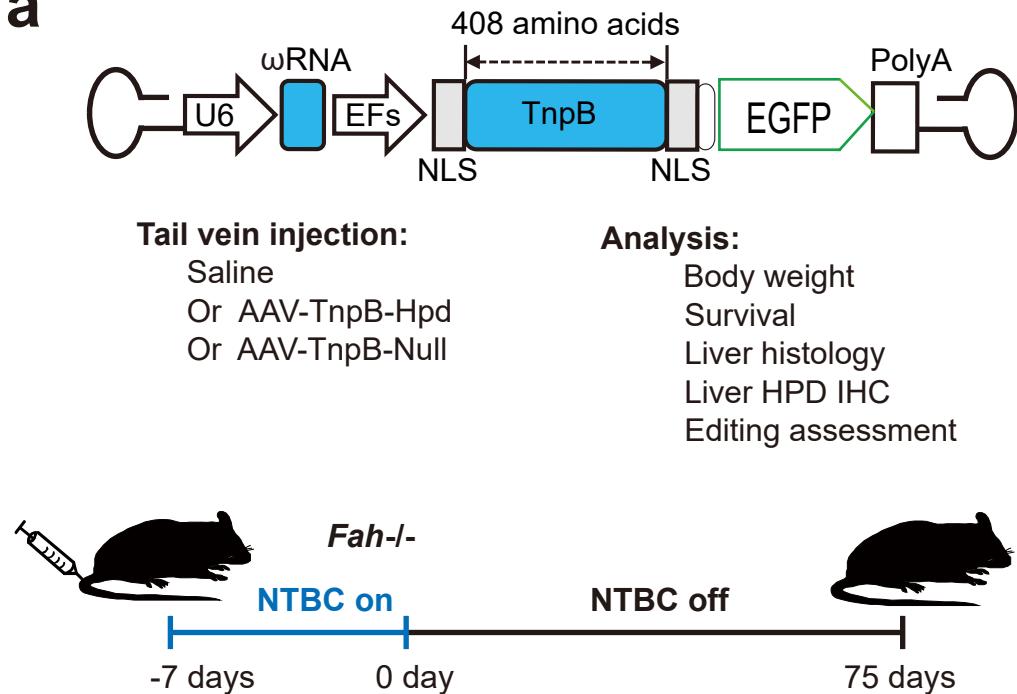
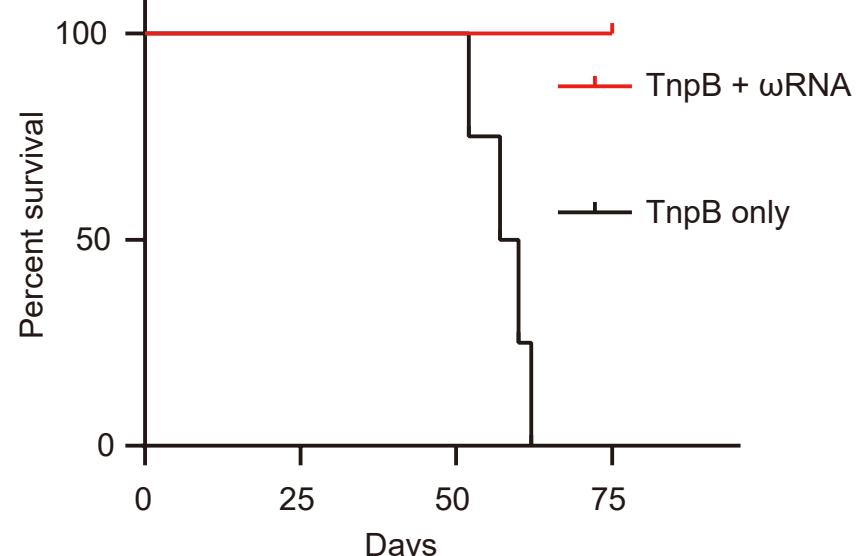
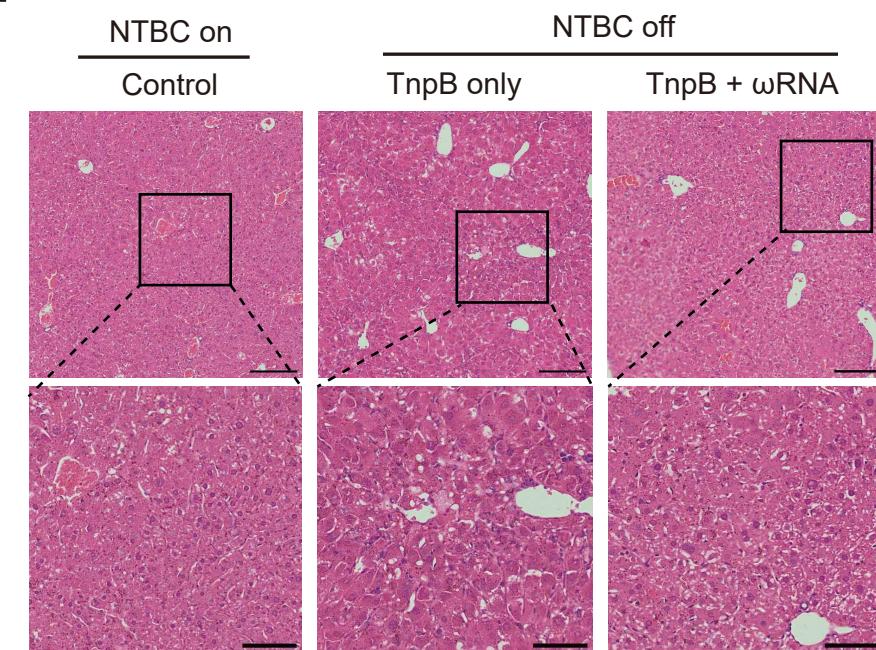
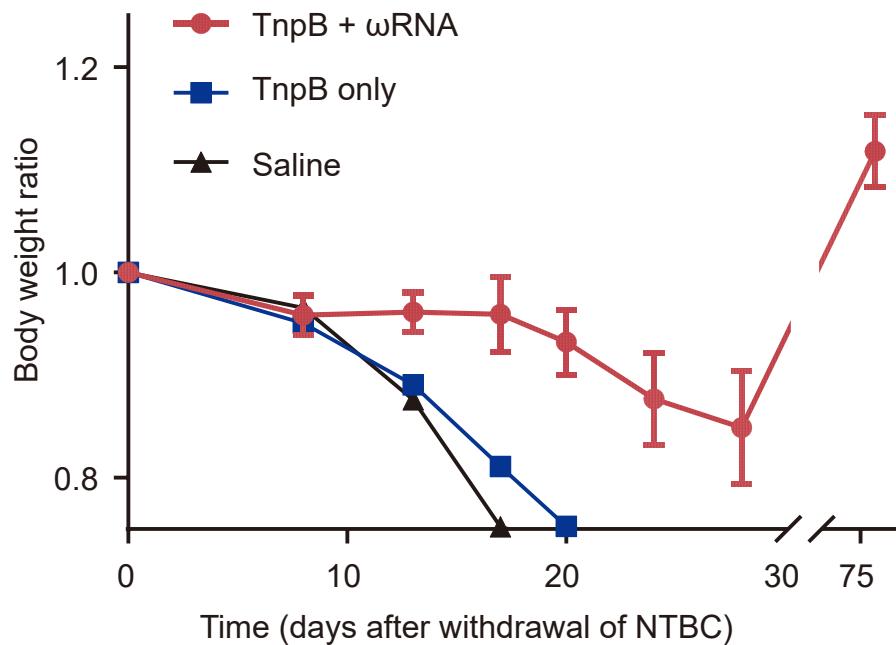





445

446

447

448

Fig.3





b**c****d****e**

449 **Fig. 3. Characterization of endogenous gene editing activity and off-target**
450 **effect with optimized TnpB- ω RNA system.**

451 **a.** The experimental workflow for detecting editing efficiency of original and
452 optimized TnpB- ω RNA in HEK293T cells. **b.** Efficiency comparison results for
453 14 endogenous gene edited with original and optimized TnpB- ω RNA. **c.**
454 Summary results for 14 endogenous genes editing efficiency. **d.** Off-target
455 analysis for top predicted off-target genomic loci via Cas-OFFinder. **e.** Genome-
456 wide off-target analysis with PEM-seq. Data are represented as means \pm SEM.
457 A dot represents a biological replicate. Significant differences between
458 conditions are indicated by asterisk. Unpaired two-tailed Student's t tests. * P <
459 0.05, *** P < 0.001, NS non-significant.

460

Fig.4

a**b****d****c**

461 **Fig. 4. Prevention of fatal liver disease with in vivo delivery of TnpB- ω RNA**
462 **via single AAV.**

463 **a.** Diagram of AAV-TnpB- ω RNA vector and gene therapy schematics in Fah-/-
464 mouse model of type I hereditary tyrosinaemia. **b.** Survival curve for disease
465 mice treated with AAV-TnpB- ω RNA or AAV-TnpB without ω RNA. **c.** Body
466 weight change during the observation period for disease mice in different
467 treatment groups. **d.** Histology analysis with H&E staining for mouse liver from
468 different treatment groups. Data are represented as means \pm SEM. A dot
469 represents a biological replicate. Significant differences between conditions are
470 indicated by asterisk. Unpaired two-tailed Student's t tests. * P < 0.05, *** P <
471 0.001, NS non-significant. Scale bars, 200 μ m.

472

473 Supplementary materials for
474 **Title:** Engineering transposon-associated TnpB- ω RNA system for efficient
475 gene editing and disease treatment in mouse

476

477 **Authors:**

478 Zhifang Li^{1†}, Ruochen Guo^{1,6†}, Xiaozhi Sun^{1,2†}, Guoling Li^{5†}, Yuanhua Liu⁶,
479 Xiaona Huo^{1,2}, Rongrong Yang^{1,2}, Zhuang Shao¹, Hainan Zhang⁴, Weihong
480 Zhang⁴, Xiaoyin Zhang^{1,2}, Shuangyu Ma⁷, Yinan Yao⁶, Xinyu Liu⁶, Hui Yang^{3,4,6},
481 Chunyi Hu^{5*}, Yingsi Zhou^{4*}, Chunlong Xu^{1,2,3*}

482

483 **†These authors contributed equally to this work.**

484 ***Correspondences:** hu_dbs@nus.edu.sg (C.H.), yingsizhou@huidagene.com
485 (Y.Z.), xucl@lglab.ac.cn (C.X.)

486

487 **This PDF file includes:**

488 Materials and Methods

489 Fig. S1. Transcriptional genotyping of *Dmd*-edited mice with RT-PCR.

490 Fig. S2. Dystrophin and laminin-2 immunostaining results for TA, DI and heart
491 muscle in *Dmd*-edited mice.

492 Fig. S3. Grip strength and rotarod test for *Dmd*-edited mice.

493 Fig. S4. Characterization of gene editing activity for engineered TnpB- ω RNA
494 system in mouse N2a cells.

495 Fig. S5. Gene editing and immunostaining analysis for HPD in AAV-TnpB
496 treated mouse liver.

497 Fig. S6. Serum biochemical analysis for AAV-TnpB treated mouse liver.

498 Tables S1. Target sgRNA and primer sequence.

499 Table S2. PCR and IVT primers used in this study.

500 Table S3. NGS primers used in this study.

501

502

503 **Materials and Methods**

504 **Study approval**

505 The objectives of the present study were to show proof-of-concept for in vivo
506 TnpB-mediated gene editing in wildtype and disease mice. All animal
507 experiments were performed and approved by the Animal Care and Use
508 Committee of Shanghai Center for Brain Science and Brain-Inspired
509 Technology, Shanghai, China.

510

511 **Plasmid constructions**

512 The pCBh-TnpB-hU6-Bpil plasmid encoded a human codon-optimized TnpB
513 driven by CBh promoter, and hU6-driven ω RNAs with *Bpil* cloning site. The
514 sgRNA and ω RNA were designed suitable for Un1Cas12f1 and TnpB, then
515 synthesized as DNA oligonucleotides and cloned into pCBh-Un1Cas12f1 or
516 pCBh-TnpB to get the CRISPR targeting plasmids.

517

518 **Cell culture, transfection and flow cytometry analysis**

519 HEK293T were maintained in Dulbecco's modified eagle medium (DMEM)
520 (Gibco, 11965092) supplemented with 10% fetal bovine serum at 37 °C and
521 5% CO₂ in a humidified incubator. For sgRNA screening, CRISPR targeting
522 plasmids and reporter were co-transfected using polyethylenimine (PEI)
523 transfection reagent. After transfected cells were cultured with 48 hours, we
524 carefully resuspended the cell pellet, and then analyzed or sorted by BD
525 FACSAria II. Flow cytometry results were analyzed with FlowJo X (v.10.0.7).

526

527 **In vitro transcription of TnpB and ω RNA**

528 TnpB mRNA was transcribed using the mMESSAGE mMACHINE T7 Ultra Kit
529 (Invitrogen, AM1345). T7 promoter was added to ω RNA template by PCR
530 amplification of pCX2280 using primer F and R. The PCR products purified
531 with Omega gel extraction Kit (Omega, D2500-02), templates were
532 transcribed using the MEGAshortscript Kit (Invitrogen, AM1354). The TnpB

533 mRNA and ωRNA were purified by MEGAclear Kit (Invitrogen, AM1908),
534 eluted with RNase-free water and stored at -80°C.

535

536 **Zygote injection and embryo transplantation**

537 Eight-week-old B6D2F1 female mice were super ovulated and mate with
538 B6D2F1 male mice, and fertilized embryos were collected from oviduct. The
539 mixture of TnpB mRNA(50 ng/μL) and ωRNA (100 ng/μL) was injected into the
540 cytoplasm of fertilized eggs using a FemtoJet microinjector(Eppendorf). The
541 injected embryos were cultured in KOSM medium with amino acids at 37°C
542 under 5% CO₂ in a humidified incubator overnight and then transferred into
543 oviducts of pseudo-pregnant ICR foster mothers at 0.5-d.p.c.

544

545 **AAV virus production**

546 The adeno-associated virus 8 (AAV8) serotype was used in this study. The
547 TnpB plasmids with ωRNA was sequenced before packaging into AAV8
548 vehicle, and the AAV vectors were packaged by transfection of HEK293T cell
549 with helper plasmids. The virus titer was 5×10^{13} (AAV-TnpB), and 5×10^{13}
550 (AAV-TnpB-ωRNA) genome copies/mL as determined by qPCR specific for
551 the inverted terminal repeat.

552

553 **Gene editing treatment for tyrosinaemia mouse model**

554 Mice were housed in a barrier facility with a 12-hour light/dark cycle and 18–
555 23 °C with 40–60% humidity. Diet and water were accessible at all times. Fah^{-/-}
556 mice were kept on 10mg/L NTBC (Sigma-Aldrich, Cat. No. PHR1731) in
557 drinking water when indicated. For hydrodynamic liver injection, AAV8 (4 ×
558 10^{11} vg/mouse) in 200 μl saline were injected via the tail vein into 8-10 weeks
559 old male and female mice. Mice were kept off NTBC water at 7 days post
560 injection, and their body weights were recorded every 3-5 days. Mice were
561 harvested at 75 days after NTBC water withdrawal for histology and DNA
562 analysis. Control mice off NTBC water were harvested when reaching >20%

563 weight loss.

564

565 **Histological analysis and Serum biochemistry**

566 Liver tissues were harvested, and sections were fixed in 4% PFA overnight.
567 The following antibodies were used: anti-HPD antibody (SantaCruz, sc-
568 390279; dilution 1:100), anti-P21 antibody (Abcam, ab109199; dilution 1:200).
569 Immunohistochemistry, immunofluorescence and hematoxylin and eosin
570 (H&E) staining were performed by the standard procedures. Blood was
571 collected using retro-orbital puncture before mice was sacrificed. ALT, AST,
572 tyrosine and bilirubin levels in serum were determined using diagnostic ELISA
573 Kits (Abcam, HWRK chem).

574

575 **Targeted deep sequencing**

576 To analyze TnpB targeting efficiency, the DNA of successfully transfected cells
577 or AAV8 treatment tissues were extracted with TIANamp Genomic DNA
578 Kit(TIANGEN,) according to the manufacturer protocol. DNA was amplified
579 with Phanta max super-fidelity DNA polymerase (Vazyme, P505-d1) for
580 Sanger or deep sequencing methods. And deep sequencing libraries were
581 used to add Illumina flow cell binding sequences and specific barcodes on the
582 5' and 3' end of the primer sequence. The products were pooled and
583 sequenced with 150 paired-end reads on an Illumina Hiseq instrument.
584 FASTQ format data were analyzed using the Cutadapt (v.2.8)41 according to
585 assigned barcode sequences. CRISPResso2 was used for gene editing
586 analysis²⁸.

587

588 **PEM-seq analysis**

589 Genome-wide off-target analysis was performed following PEM-seq protocol
590 previously described¹⁶. The 20 µg genomic DNA from TnpB edited or control
591 samples were fragmented with Covaris sonicator to generate 300-700 bp
592 DNA. DNA fragments was tagged with biotin at 5'-end by one-round PCR

593 extension using a biotinylated primer, primer leftover removed by AMPure XP
594 beads and purified by streptavidin beads. The single-stranded DNA on
595 streptavidin beads is ligated with a bridge adapter containing 14-bp random
596 molecular barcode, and PCR product was generated via nested PCR to
597 enrich DNA fragment containing the bait DSB events and tagged with illumine
598 adapter sequences. The prepared sequencing library was sequenced by Hi-
599 seq 2500 with 150 bp pair-end reads. PEM-seq data analysis was performed
600 using PEM-Q pipeline with default parameters.

601

602 **Statistical analysis**

603 The number of independent biological replicates were shown in the figure
604 legend. The data are presented as means \pm SEM. Differences were assessed
605 using unpaired two-tailed Student's t tests. Differences in means were
606 considered statistically significant at $P < 0.05$.

607

608

609

610

611

612

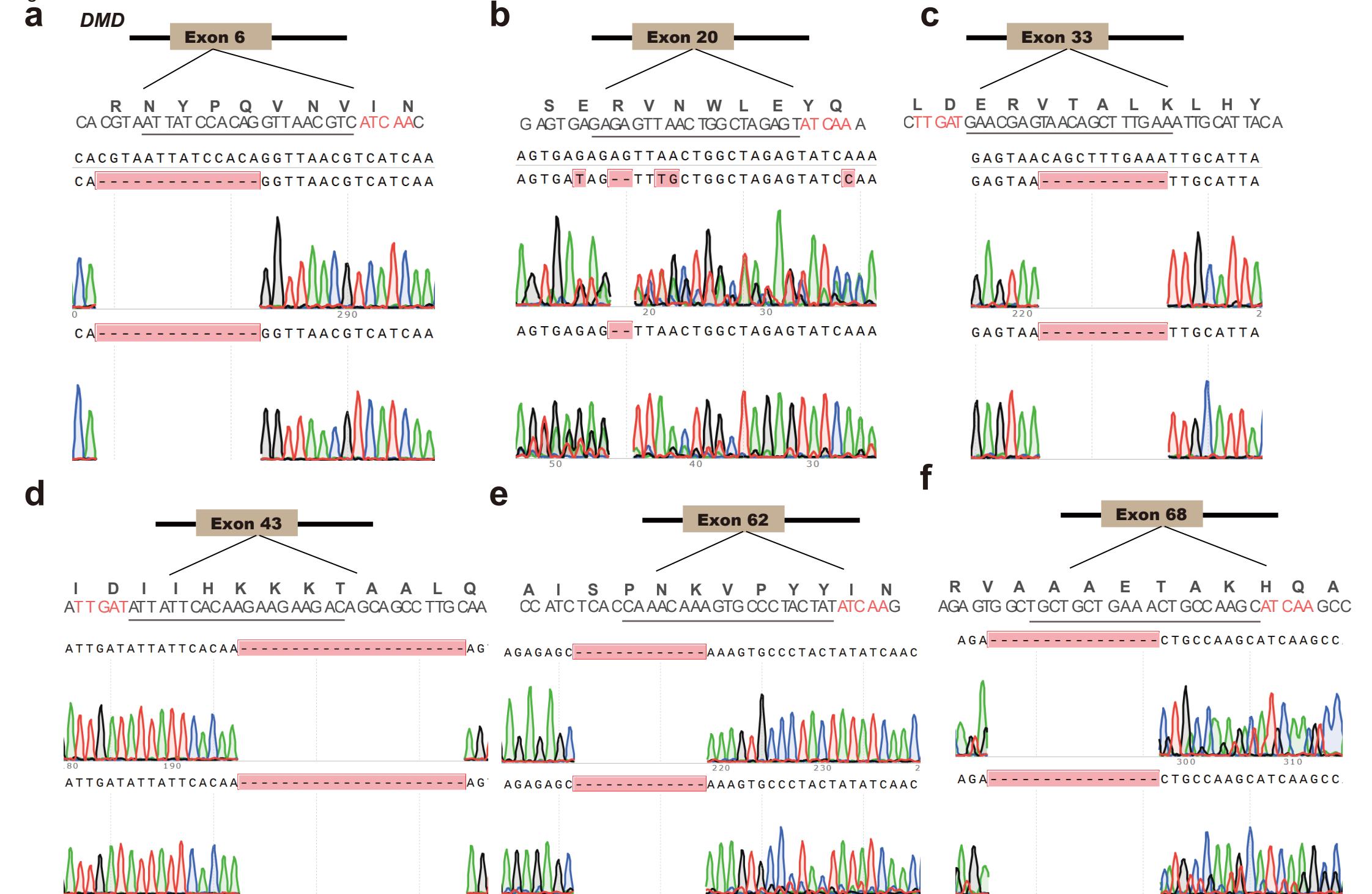
613

614

615

616

617


618

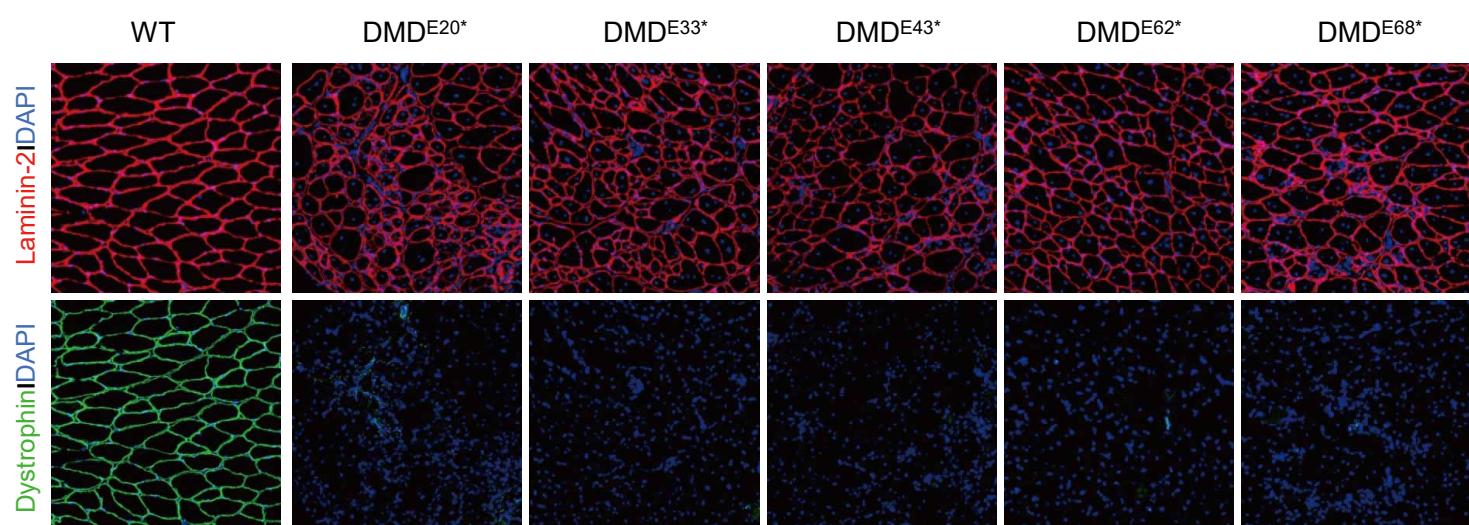
619

620

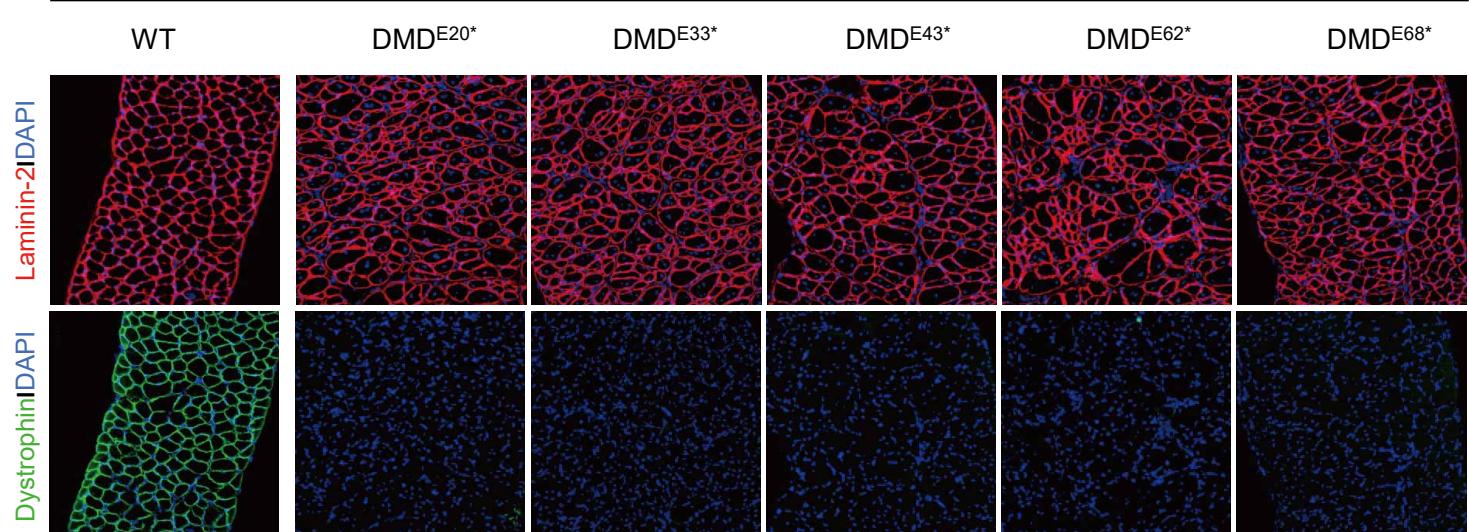
621

Fig.S1

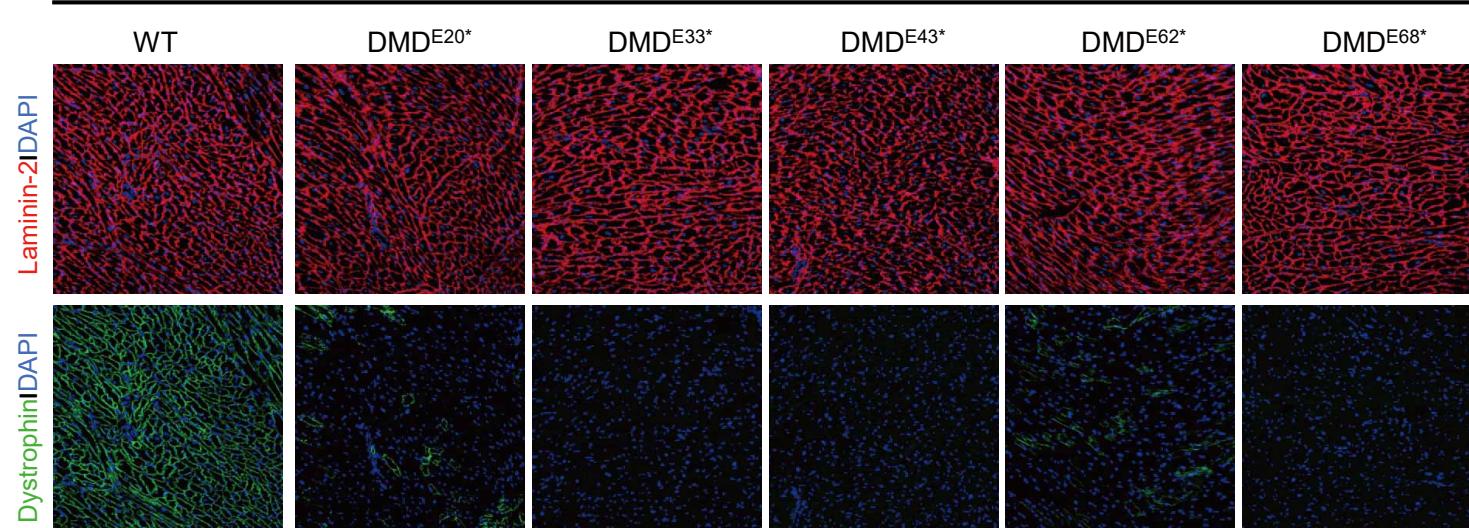
622 **Supplementary figures and legend**


623 **Fig. S1. Transcriptional genotyping of *Dmd*-edited mice with RT-PCR.**

624 **a-f.** RT-PCR and sequencing results for muscle from individual mouse edited


625 by TnpB in exon 6, 20, 33, 43, 62 and 68 of *Dmd* gene.

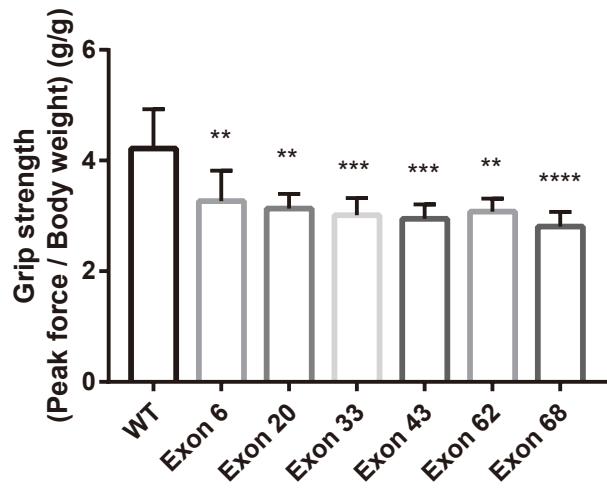
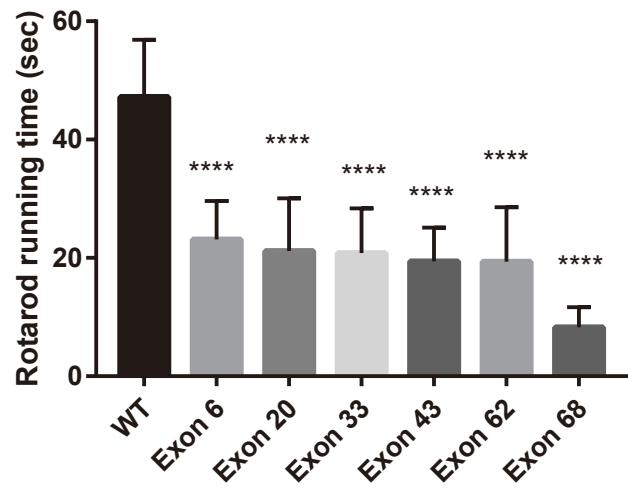
626


Tibialis anterior (T.A.)

a**b**

Diaphragm

c



Heart

627 **Fig. S2. Dystrophin and laminin-2 immunostaining results for TA, DI and**
628 **heart muscle in *Dmd*-edited mice.**

629 **a-c.** Immunostaining of dystrophin and laminin-2 in TA, DI and heart muscle
630 from mice edited by TnpB in exon 6, 20, 33, 43, 62 and 68 of *Dmd* gene. Scale
631 bars, 200 μ m.

632

a**b**

633 **Fig. S3. Grip strength and rotarod test for *Dmd*-edited mice.**

634 **a.** Forelimb grip strength analysis results for wildtype and *Dmd* mutant mice. **b.**
635 Rotarod running time analysis results for wildtype and *Dmd* mutant mice. Data
636 are represented as means \pm SEM. A dot represents a biological replicate.
637 Significant differences between conditions are indicated by asterisk. Unpaired
638 two-tailed Student's t tests. * $P < 0.05$, *** $P < 0.001$, NS non-significant.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

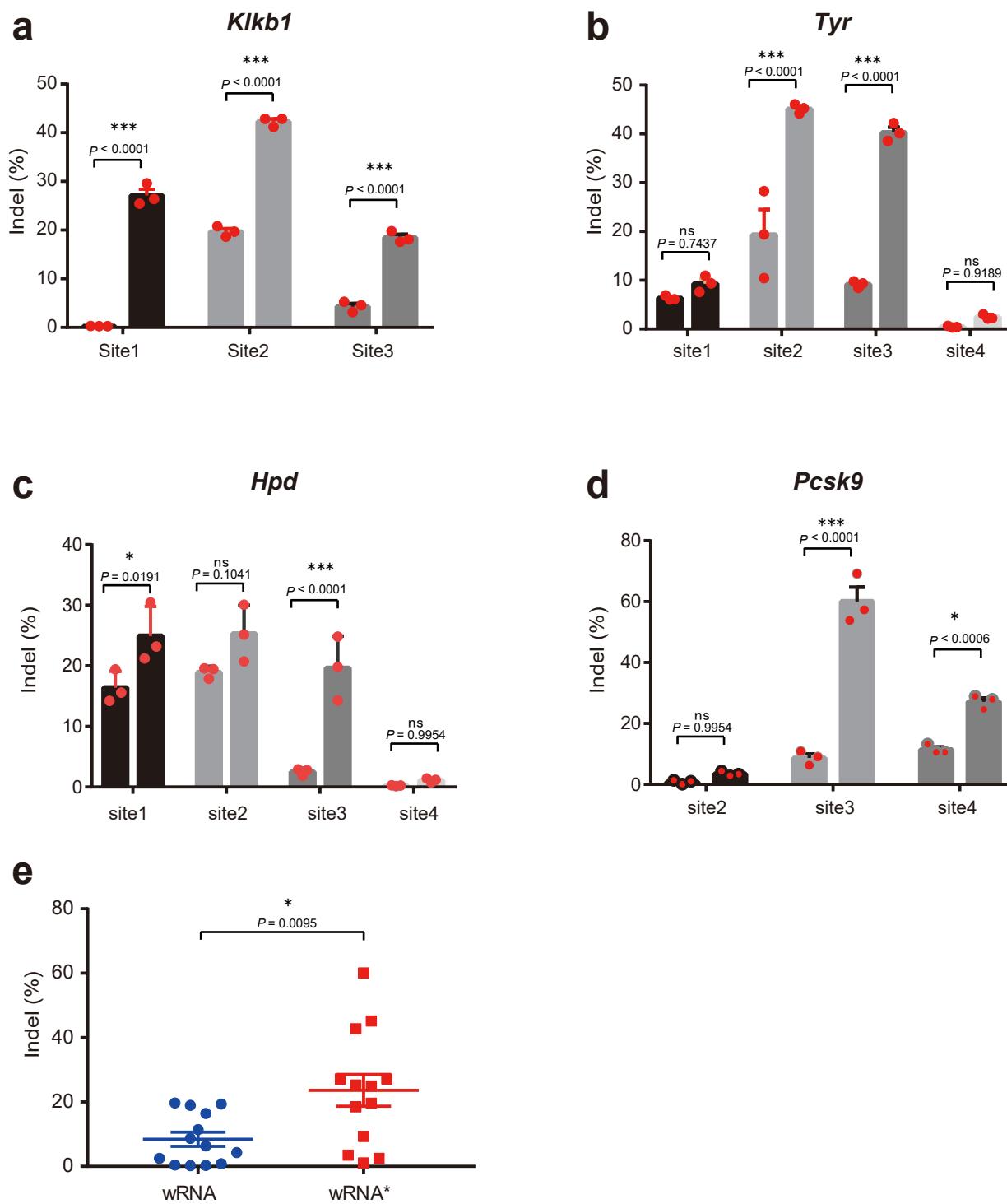
654

655

656

657

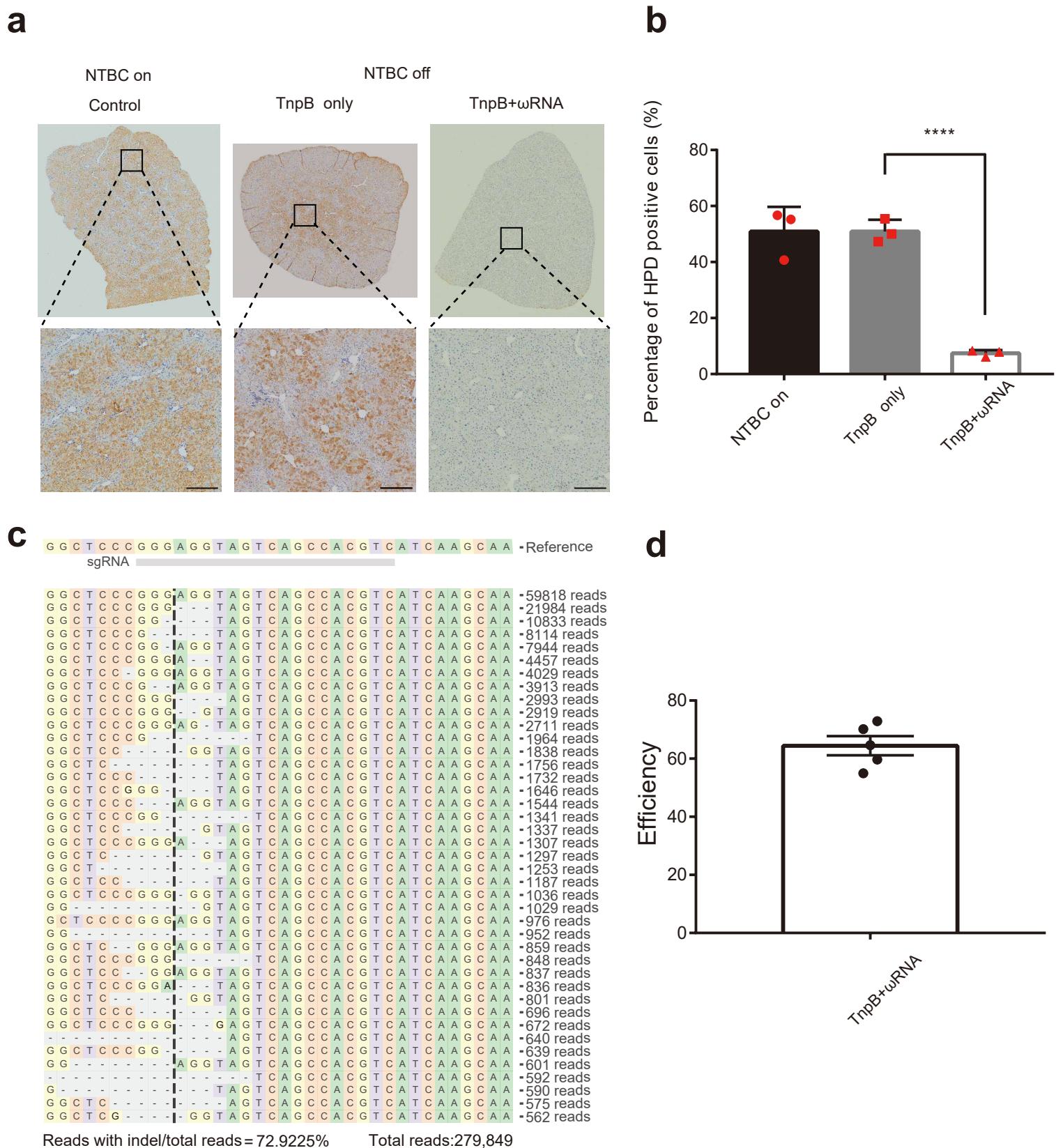
658


659

660

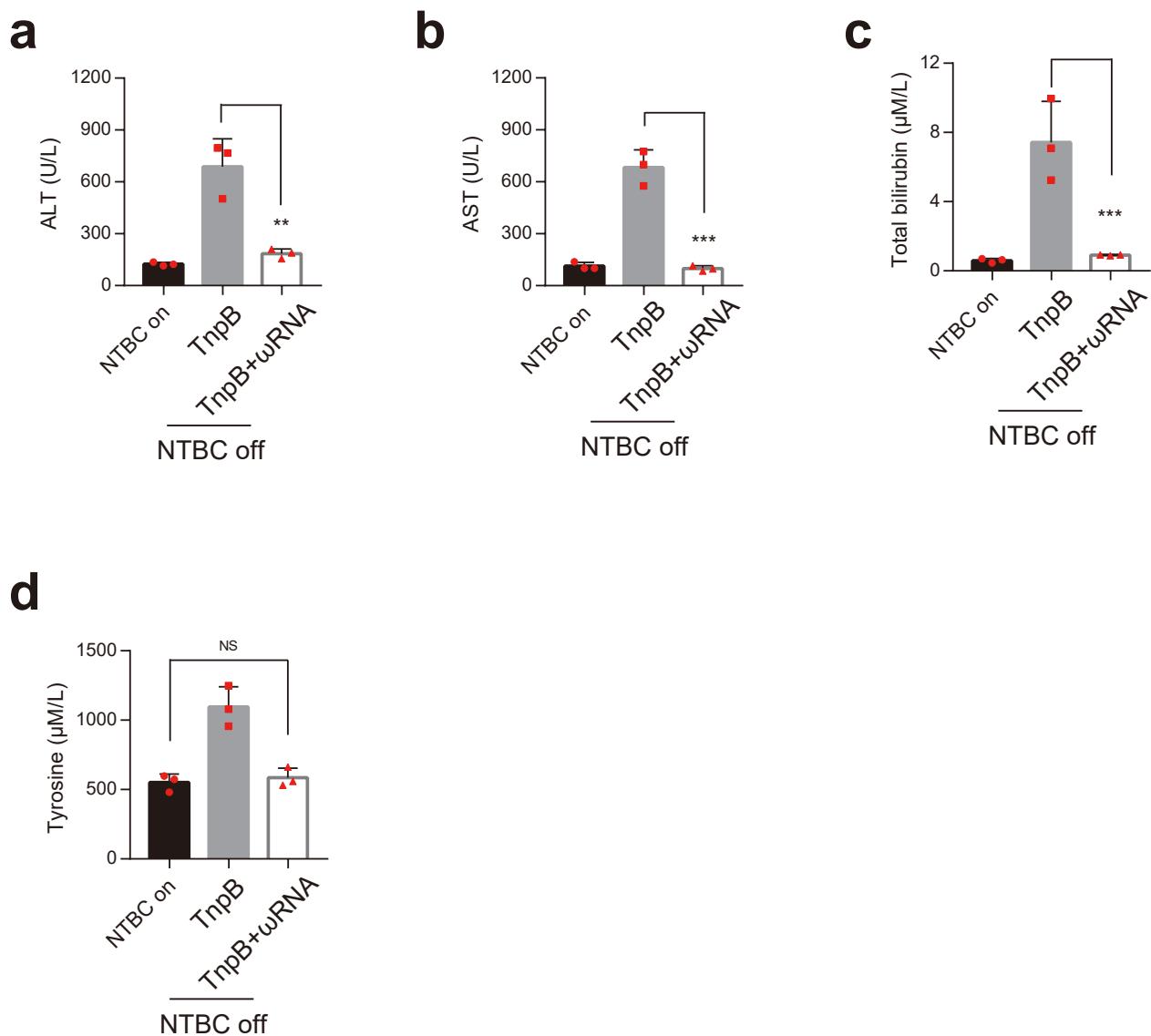
661

662


Fig.S4

663 **Fig. S4. Characterization of gene editing activity for engineered TnpB-
664 ωRNA system in mouse N2a cells.**

665 **a-d.** Efficiency comparison using cognate and engineered ωRNA for mouse
666 *Klkb1*, *Tyr*, *Hpd*, and *Pcsk9* gene editing. **b.** Summary statistic results for gene
667 editing activity characterization of cognate and engineered ωRNA in N2a. Data
668 are represented as means \pm SEM. A dot represents a biological replicate.
669 Significant differences between conditions are indicated by asterisk. Unpaired
670 two-tailed Student's t tests. * P < 0.05, *** P < 0.001, NS non-significant.


671

672 **Fig. S5. Gene editing and immunostaining analysis for HPD in AAV-**
673 **TnpB- ω RNA treated mouse liver.**

674 **a.** Hpd immunostaining analysis in $Fah^{-/-}$ mice treated with or without AAV-
675 TnpB- ω RNA. **b.** Deep-seq results for *Hpd* gene editing by AAV-TnpB.

676

677 **Fig. S6. Serum biochemical analysis for AAV-TnpB- ω RNA treated mouse**
678 **liver.**

679 **a-d.** Biochemical analysis of serum indicators for liver metabolic function in
680 TnpB-treated or untreated mice (n=3). Liver damage markers alanine
681 aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin and
682 tyrosine were measured in peripheral blood from $Fah^{-/-}$ mice injected with AAV-
683 TnpB without or with ω RNA (NTBC off, day 30). $Fah^{-/-}$ mice on NTBC water
684 (NTBC on) served as a control. Data are represented as means \pm SEM. A dot
685 represents a biological replicate. Significant differences between conditions are
686 indicated by asterisk. Unpaired two-tailed Student's t tests. * P < 0.05, *** P <
687 0.001, NS non-significant.

688

689

Supplementary Table S1. Target sgRNA and primer sequence.

sgRNA	Target site sequences (5'-3')	Primer sequence
<i>HEK1</i> -site1	GTCTTATCACCTATAGAGT	TCAA GTCTTATCACCTATAGAGT
		GGCC ACTCTATAGGGTGATAAGAC
<i>HEK1</i> -site2	AATGGAGGTCTGGTGAGTAT	TCAA AATGGAGGTCTGGTGAGTAT
		GGCC ATACTCACCAAGACCTCCATT
<i>HEK1</i> -site3	TGTTTATTTATTACACACA	TCAA TGTTTATTTATTACACACA
		GGCC TGTGTGTAATAAATAAAACA
<i>HEK1</i> -site4	TTTACACATCATCATATACA	TCAA TTTACACATCATCATATACA
		GGCC TGTATATGATGATGTGAAA
<i>HEK1</i> -site5	CTTTCAAAATTACTTTGCA	TCAA CTTTCAAAATTACTTTGCA
		GGCC TGCAAAGTAATTTGAAAAG
<i>HEK1</i> -site6	AGAAGTGAGATGGCTCCAAA	TCAA AGAAGTGAGATGGCTCCAAA
		GGCC TTTGGAGCCATCTCACTTCT
<i>HEK1</i> -site7	GACCCAAAGAAATGTATTCC	TCAA GACCCAAAGAAATGTATTCC
		GGCC GGAATACATTCTTTGGGTC
<i>HEK1</i> -site8	ATTCAAAACACGCAAACCC	TCAA ATTCAAAACACGCAAACCC
		GGCC GGGTTTGCCTGTTTGAAT
<i>HEK1</i> -site9	GTGATTCTTGGAAATAGTT	TCAA GTGATTCTTGGAAATAGTT
		GGCC AACTATTCCAAGAAATCAC
<i>HEK1</i> -site10	AAAGAAGTCTACTTGACTT	TCAA AAAGAAGTCTACTTGACTT
		GGCC AAGTCAAAGTAGACTTCTTT
<i>HEK1</i> -site11	TCCTTGCCAGGTTCTGCA	TCAA TCCTTGCCAGGTTCTGCA
		GGCC TGCAGAAACCTGGCAAAGGA
<i>HEK1</i> -site12	TCTGCACAGAGCTCAAATG	TCAA TCTGCACAGAGCTCAAATG
		GGCC CATTGGAGCTCTGTGCAGA
<i>HEK1</i> -site13	AACTAGACCTGTTGCTCAA	TCAA AACTAGACCTGTTGCTCAA
		GGCC TTTGAGCAACAGGTCTAGTT
<i>HEK1</i> -site14	TAATTAGAGCATAATAAGA	TCAA TAATTAGAGCATAATAAGA
		GGCC TCTTATTATGCTCTAATTA
<i>HEK1</i> -site15	TTGGGGCTAGCTGTATTCTC	TCAA TTGGGGCTAGCTGTATTCTC
		GGCC GAGAATACAGCTAGCCCCAA
<i>HEK1</i> -site16	GGGTTATGAATATTGACACA	TCAA GGGTTATGAATATTGACACA
		GGCC TGTGTCAATATTCTAAACCC
<i>HEK1</i> -site17	TCAAGTACCAACCAGTTTAT	TCAA TCAAGTACCAACCAGTTTAT
		GGCC ATAAAACGTGGTGGTACTTGA
<i>HEK1</i> -site18	AACTTAGATGTCTGTTCC	TCAA AACTTAGATGTCTGTTCC
		GGCC GGAAACAGACATCTAAAGTT
<i>HEK1</i> -site19	AGAACACCCATAAGAACAAAC	TCAA AGAACACCCATAAGAACAAAC
		GGCC GTTGTCTTATGGGTGTTCT
<i>HEK1</i> -site20	GAAAAGATTACAGAACATCAGG	TCAA GAAAAGATTACAGAACATCAGG
		GGCC CCTGATTCTGTAATCTTTTC

<i>HEK1</i> -site21	TATGTCTAGGTGAACCTGGTA	TCAA TATGTCTAGGTGAACCTGGTA
		GGCC TACCAAGTTCACCTAGACATA
<i>HEK1</i> -site22	AGATGATGTTCCACACATA	TCAA AGATGATGTTCCACACATA
		GGCC TATGTGTGAAACATCATCT
<i>HEK1</i> -site23	TTTTAAGGAATTGACATAT	TCAA TTTTAAGGAATTGACATAT
		GGCC ATATGTCAAATTCTTAAAAA
<i>HEK1</i> -site24	CCAAGTTCAAAAGTTGTAAT	TCAA CCAAGTTCAAAAGTTGTAAT
		GGCC ATTACAACCTTGTAACTTGG
<i>HEK1</i> -site25	CTGCCTTCAGAAAGCACCTT	TCAA CTGCCTTCAGAAAGCACCTT
		GGCC AAGGTGCTTCTGAAGGCAG
<i>HEK1</i> -site26	AAAAATGCATGAAGCTCCTT	TCAA AAAAATGCATGAAGCTCCTT
		GGCC AAGGAGCTTCATGCATTTT
<i>HEK1</i> -site27	TAAGGAACCTAGAATCTAAAAA	TCAA TAAGGAACCTAGAATCTAAAAA
		GGCC TTTTAGATTCTAGTTCCTTA
<i>HEK1</i> -site28	CCTTACTGACTTTCAGCTTT	TCAA CCTTACTGACTTTCAGCTTT
		GGCC AAAGCTGAAAGTCAGTAAGG
<i>HEK1</i> -site29	GAGTCCAGTCAGAAAGCAGA	TCAA GAGTCCAGTCAGAAAGCAGA
		GGCC TCTGCTTCTGACTGGACTC
<i>HEK1</i> -site30	TTCAAGAACATTTAGCACA	TCAA TTCAAGAACATTTAGCACA
		GGCC TGTGCTAAATATTCTTGAA
<i>HEK1</i> -site31	TCTCTCATAATATTCATTT	TCAA TCTCTCATAATATTCATTT
		GGCC AAATGAAAATATTATGAGAGA
<i>HEK2</i> -site1	ATAAACATTTATTAACATG	TCAA ATAAACATTTATTAACATG
		GGCC CATGTTAATAAAATGTTTAT
<i>HEK2</i> -site2	TGAGATTAATTACATGTGA	TCAA TGAGATTAATTACATGTGA
		GGCC TCACATGTGAATTAATCTCA
<i>HEK2</i> -site3	TCATGTGTTCAAACAGTTTC	TCAA TCATGTGTTCAAACAGTTTC
		GGCC GAAACTGTTGAACACATGA
<i>HEK2</i> -site4	GTTGTAGGGTTTTGTTTG	TCAA GTTGTAGGGTTTTGTTTG
		GGCC CAAACAAAAAACCTACAAC
<i>HEK2</i> -site5	TCAAAATGATCCTTATGTA	TCAA TCAAAATGATCCTTATGTA
		GGCC TACATAAAGGATCATTGTA
<i>HEK2</i> -site6	TGCAACAAACCAACCATTTC	TCAA TGCAACAAACCAACCATTTC
		GGCC AAAATGGTTGGTTGTTGCA
<i>HEK2</i> -site7	CCTCAGGGTGGTCAGGGCCA	TCAA CCTCAGGGTGGTCAGGGCCA
		GGCC TGGCCCTGACCACCCCTGAGG
<i>HEK2</i> -site8	AAATATGTAATTAAATGTCT	TCAA AAATATGTAATTAAATGTCT
		GGCC AGACATTAAATTACATATT
<i>HEK2</i> -site9	GAATCAGTGCTGGAGAACATGG	TCAA GAATCAGTGCTGGAGAACATGG
		GGCC CCATTCTCCAGCACTGATTG
<i>HEK2</i> -site10	GCTTTTTCTGCTTCTCCA	TCAA GCTTTTTCTGCTTCTCCA
		GGCC TGGAGAAGCAGAAAAAAAGC
<i>HEK2</i> -site11	CTCTGATTTCATGCAGGTG	TCAA CTCTGATTTCATGCAGGTG

		GGCC CACCTGCATGAAAATCAGAG
HEK2-site12	CCGTAGCCAGGAAGTTAGAT	TCAA CCGTAGCCAGGAAGTTAGAT
		GGCC ATCTAACCTCCTGGCTACGG
HEK2-site13	TAATGGAGACATTGCCATGC	TCAA TAATGGAGACATTGCCATGC
		GGCC GCATGGCAATGTCTCCATTA
HEK2-site14	CACCTGCCCAAATGTGAGGA	TCAA CACCTGCCCAAATGTGAGGA
		GGCC TCCTCACATTGGGCAGGTG
HEK2-site15	TTCGCCAGCTCTGATGAGGC	TCAA TTCGCCAGCTCTGATGAGGC
		GGCC GCCTCATCAGAGCTGGCGAA
HEK2-site16	ATGGGGATAGGTGGAGACTA	TCAA ATGGGGATAGGTGGAGACTA
		GGCC TAGTCTCCACCTATCCCCAT
HEK3-site1	TTATTAGCATAAGAGTGTCT	TCAA TTATTAGCATAAGAGTGTCT
		GGCC AGACACTCTTATGCTAATAA
HEK3-site2	CTTTAGTAAAGACAGGCAAC	TCAA CTTTAGTAAAGACAGGCAAC
		GGCC GTTGCCTGTCTTACTAAAG
HEK3-site3	TACACAGCTGACTCACTCTG	TCAA TACACAGCTGACTCACTCTG
		GGCC CAGAGTGAGTCAGCTGTGTA
HEK3-site4	CAATGCACTTTAAAATTGT	TCAA CAATGCACTTTAAAATTGT
		GGCC ACAATTTAAAAGTGCATTG
HEK3-site5	CAAATTCATCATCTCACCTA	TCAA CAAATTCATCATCTCACCTA
		GGCC TAGGTGAGATGATGAATTG
HEK3-site6	GCATCCCCCATCCACTATAA	TCAA GCATCCCCCATCCACTATAA
		GGCC TTATAGTGGATGGGGATGC
HEK3-site7	GGCTCAGCTCAGGAGCACCC	TCAA GGCTCAGCTCAGGAGCACCC
		GGCC GGGTGCCTGAGCTGAGCC
HEK3-site8	TTTCCAGAGTTGAGATGAT	TCAA TTTCCAGAGTTGAGATGAT
		GGCC ATCATCTCAACTCTGGAAAA
HEK3-site9	CTTCCTCAGATGTTAGGCA	TCAA CTTCCTCAGATGTTAGGCA
		GGCC TGCCTAACATCTGAGGAAG
HEK3-site10	GTCTGTACTTAATAACGAAT	TCAA GTCTGTACTTAATAACGAAT
		GGCC ATTGTTATTAAGTACAGAC
hVEGFA-site1	GAGGGGAGCTGGCTCAGA	TCAA GAGGGGAGCTGGCTCAGA
		GGCC TCTGAGCCACAGCTCCCCTC
hVEGFA-site2	GTCTGCAGGCCAGATGAGGG	TCAA GTCTGCAGGCCAGATGAGGG
		GGCC CCCTCATCTGGCTGCAGAC
hVEGFA-site3	ATTCAATTGATCCGGGTTTA	TCAA ATTCAATTGATCCGGGTTTA
		GGCC TAAAACCCGGATCAATGAAT
hVEGFA-site4	CCGGGTTTATCCCTCTTCT	TCAA CCGGGTTTATCCCTCTTCT
		GGCC AGAAGAGGGATAAAACCCGG
hVEGFA-site5	CCTTATATTCCCTGTGCCCT	TCAA CCTTATATTCCCTGTGCCCT
		GGCC AGGGGCACAGGAATATAAGG
hVEGFA-site6	TAGTCATCTCTCCCCTATC	TCAA TAGTCATCTCTCCCCTATC
		GGCC GATAGGGGAGAAGATGACTA

<i>hVEGFA</i> -site7	GATGCTTGCCGTAACCCCTT	TCAA GATGCTTGCCGTAACCCCTT
		GGCC AAGGGTTACGGCAAAGCATC
<i>hVEGFA</i> -site8	TGGGAAGAAGGTGGGGAGAA	TCAA TGGGAAGAAGGTGGGGAGAA
		GGCC TTCTCCCCACCTTCITCCCA
<i>hVEGFA</i> -site9	GTCAGCTAATTCTGACTCCT	TCAA GTCAGCTAATTCTGACTCCT
		GGCC AGGAGTCAGAATTAGCTGAC
<i>hVEGFA</i> -site10	GGTGGAAAGCTTAGGAAAGT	TCAA GGTGGAAAGCTTAGGAAAGT
		GGCC ACTTCCCTAACGCTTCCACC
<i>hVEGFA</i> -site11	CCGCATAATCTGGAAAGGAA	TCAA CCGCATAATCTGGAAAGGAA
		GGCC TTCCTTCCAGATTATGCGG
<i>Hpd</i> -site1	CAGGCTTATGGAAACTGTGA	TCAA GACGTGGCTGACTACCTCCC
		GGCC GGGAGGTAGTCAGCCACGTC
<i>Hpd</i> -site2	CATAAGCCTGAAAATGTCTC	TCAA CTTCTCCACCAGGGTGTGTG
		GGCC CACACACCCTGGTGGAGAAG
<i>Hpd</i> -site3	TTGAAGGCCAAGTGAAGCC	TCAA GGATTCCCTCGTAGTTGGTCA
		GGCC TGACCAACTACGAGGAATCC
<i>Hpd</i> -site4	GGGCATTTGATGGATT CCT	TCAA GGGCATTGGATGGATT CCT
		GGCC AGGAATCCATCAAATGCC
<i>Tyr</i> -site1	TGAAGGCCAAGTGAAGCCC	TCAA TAGAAGAACATTTGATT
		GGCC AATCAAAATGTTCTCTA
<i>Tyr</i> -site2	GAAGGCCAAGTGAAGCCCT	TCAA TTGAGTGTCTCCGAAAAGAA
		GGCC TTCTTTCGGAGACACTCAA
<i>Tyr</i> -site3	AAGGCCAAGTGAAGCCCTC	TCAA ATCATTAAACATGGGTGTTG
		GGCC CAACACCCATGTTAATGAT
<i>Tyr</i> -site4	GTCCCTCTCAAAAAACTTA	TCAA TTTGCCCATGAAGCACCAGG
		GGCC CCTGGTGCTTCATGGCAAA
<i>Pcsk9</i> -site1	TCCCTCTCAAAAAACTTAC	TCAA TGATCAGGCGAGCAAGTGTG
		GGCC CACACTGCTCGCCTGATCA
<i>Pcsk9</i> -site2	TCATCTTGTCCCTCTCA	TCAA GACGTCTTGGTAGAGAAAGT
		GGCC ACTTCTCTACCAAAGACGTC
<i>Pcsk9</i> -site3	GTCATCTTGTCCCTCTC	TCAA TTTGCATTCCAGCCCTGGGG
		GGCC CCCCAGGGCTGGAATGCAA
<i>Klkb1</i> -site1	AGAAGGGACAAAGATGACA	TCAA GCCCACACTGCTTAAAGAA
		GGCC TTCTTAAAGCAGTGTGGCC
<i>Klkb1</i> -site2	CTTCCACCCGGATAAGATGC	TCAA ATGAGAGGGTCCAACTTAA
		GGCC TTAAAGTTGGACCCTCTCAT
<i>Klkb1</i> -site3	TATCCCGAGTATCTGGAAAGA	TCAA TGCTTCATAGGTGAAACGCA
		GGCC TGCCTTTCACCTATGAAGCA
<i>Dmd</i> -site1	ATATACTTTCTTCCAAAT	TCAA ATATACTTTCTTCCAAAT
		GGCC ATTTGGAAGAAAAAGTATAT
<i>Dmd</i> -site2	TTGGAATATAATCCTCCACT	TCAA TTGGAATATAATCCTCCACT
		GGCC AGTGGAGGATTATATTCCAA
<i>Dmd</i> -site3	GACGTTAACCTGTGGATAAT	TCAA GACGTTAACCTGTGGATAAT

		GGCC ATTATCCACAGGTTAACGTC
<i>Dmd</i> -site4	TGGAATAGTGTGGTTTCACA	TCAA TGGAATAGTGTGGTTTCACA
		GGCC TGTGAAACCACACTATTCCA
<i>Dmd</i> -site5	CCTGAAGGTGGTAGATTCT	TCAA CCTGAAGGTGGTAGATTCT
		GGCC AGAATCTACCAACCTTCAGG
<i>Dmd</i> -site6	GGAGACGGAAGTAAATCTGG	TCAA GGAGACGGAAGTAAATCTGG
		GGCC CCAGATTTACTTCCGTCTCC
<i>Dmd</i> -site7	GAGATGTCAGATCCATCATG	TCAA GAGATGTCAGATCCATCATG
		GGCC CATGATGGATCTGACATCTC
<i>Dmd</i> -site8	GAATCCAGCGGTGATCATGC	TCAA GAATCCAGCGGTGATCATGC
		GGCC GCATGATCACCGCTGGATTTC
<i>Dmd</i> -site9	TCTTCATCCTCAGGTACTG	TCAA TCTTCATCCTCAGGTACTG
		GGCC CAGTACCTGAGGATGAAAGA
<i>Dmd</i> -site10	CTTTAAAGCCACTTGTCTGA	TCAA CTTAAAGCCACTTGTCTGA
		GGCC TCAGACAAGTGGCTTAAAG
<i>Dmd</i> -site11	TGAGTGAACCTAGTTTTCC	TCAA TGAGTGAACCTAGTTTTCC
		GGCC GGAAAAAACTAACAGTTCACTCA
<i>Dmd</i> -site12	GCACTCACCTTCCTGAGT	TCAA GCACTCACCTTCCTGAGT
		GGCC ACTCAGGAAAAGGTGAGTGC
<i>Dmd</i> -site13	ACTCTAGCCAGTTAACTCTC	TCAA ACTCTAGCCAGTTAACTCTC
		GGCC GAGAGTTAACTGGCTAGAGT
<i>Dmd</i> -site14	GGTGTGAGGGCCAAGAGAA	TCAA GGTGTGAGGGCCAAGAGAA
		GGCC TTCTCTTGGCCCTCACACC
<i>Dmd</i> -site15	GTTTCCTGAAAGAGGAATG	TCAA GTTTCCCTGAAAGAGGAATG
		GGCC CATTCCCTTTTCAGGAAAAC
<i>Dmd</i> -site16	CAGTTCATCCATGACTCCTC	TCAA CAGTTCATCCATGACTCCTC
		GGCC GAGGAGTCATGGATGAACTG
<i>Dmd</i> -site17	GTTGCACAGGTATGTTTAT	TCAA GTTGCACAGGTATGTTTAT
		GGCC ATAAAACATACCTGTGCAAC
<i>Dmd</i> -site18	GAACGAGTAACAGCTTGAA	TCAA GAACGAGTAACAGCTTGAA
		GGCC TTCAAAGCTGTTACTCGTTC
<i>Dmd</i> -site19	CAGAACATAGAACAAATCAC	TCAA CAGAACATAGAACAAATCAC
		GGCC GTGATTGTTCTATGTTCTG
<i>Dmd</i> -site20	GGCAAACCGCGGTGACCACT	TCAA GGCAAACCGCGGTGACCACT
		GGCC AGTGGTCACCGCGGTTGCC
<i>Dmd</i> -site21	TTTGCTCAATAGGAAATTGA	TCAA TTTGCTCAATAGGAAATTGA
		GGCC TCAATTTCCTATTGAGCAAA
<i>Dmd</i> -site22	CGTGAATTGCAGAAGAAGAA	TCAA CGTGAATTGCAGAAGAAGAA
		GGCC TTCTTCTCTGCAATTACG
<i>Dmd</i> -site23	CATCTTCTAAATACTCCTGA	TCAA CATCTTCTAAATACTCCTGA
		GGCC TCAGGAGTATTAGAAGATG
<i>Dmd</i> -site24	ATTATTCAACAAGAAGAAC	TCAA ATTATTCAACAAGAAGAAC
		GGCC GTCTTCTTGTGAATAAT

<i>Dmd</i> -site25	TAAATACCTTCATATCATAA	TCAA TAAATACCTTCATATCATAA
		GGCC TTATGATATGAAGGTATT
<i>Dmd</i> -site26	CGAGTTATAAAATCACAGAG	TCAA CGAGTTATAAAATCACAGAG
		GGCC CTCTGTGATTATAACTCG
<i>Dmd</i> -site27	GTCTTCCAGATCACCCACCA	TCAA GTCTTCCAGATCACCCACCA
		GGCC TGGTGGGTGATCTGGAAGAC
<i>Dmd</i> -site28	GATCATTTCATTGATGTCTT	TCAA GATCATTTCATTGATGTCTT
		GGCC AAGACATCAATGAAATGATC
<i>Dmd</i> -site29	TGCTGGTTTGTTCAAA	TCAA TGCTGGTTTGTTCAAA
		GGCC TTTGAAAAACAAAACCAGCA
<i>Dmd</i> -site30	ATTCTCTGTTATCATGTGTA	TCAA ATTCTCTGTTATCATGTGTA
		GGCC TACACATGATAACAGAGAAAT
<i>Dmd</i> -site31	GAAAATGGCCAAAAATCCT	TCAA GAAAATGGCCAAAAATCCT
		GGCC AGGATTTTGGCCATTTC
<i>Dmd</i> -site32	CACCTCAGCTGGCGCAACT	TCAA CACCTCAGCTGGCGCAACT
		GGCC AGTTGCGCCAAGCTGAGGTG
<i>Dmd</i> -site33	ATAGTAGGGCACTTGT	TCAA ATAGTAGGGCACTTGT
		GGCC CAAACAAAGTGCCCTACTAT
<i>Dmd</i> -site34	GCTTGGCAGTTTCAGCAGCA	TCAA GCTTGGCAGTTTCAGCAGCA
		GGCC TGCTGCTGAAACTGCCAAGC
<i>Dmd</i> -site35	CAGAGTAACGGGACTGCAA	TCAA CAGAGTAACGGGACTGCAA
		GGCC TTTGCAGTCCCCTACTCTG
<i>Dmd</i> -site36	TTTATTTCAGAGATGATG	TCAA TTTATTTCAGAGATGATG
		GGCC CATCATCTCTGGAAAATAAA
<i>Dmd</i> -site37	TTCCTTAGAGAGTGAGGAAA	TCAA TTCCTTAGAGAGTGAGGAAA
		GGCC TTTCCTCACTCTCAAGGAA

690 **Supplementary Table S2. PCR and IVT primers used in this study.**

Primer	Primer sequences (5'-3')
lzf256-mTyr -1f	AACAGGCTGAGAGTATTGATGT
lzf257-mTyr -1r	CTATATAGTGCATCTTACCTGCC
lzf258-mTyr -2f	GTTGCTGGAAAAGAAGTCTG
lzf259-mTyr -2r	CTCATCTGTGCAAATGTAC
lzf346-mPcsk9-Exon4-1f	TCAGTTACCTCCTGGTCTGTC
lzf347-mPcsk9-Exon4-1r	ACATGTGACAACACTGTAAGAGC
lzf348-mPcsk9-Exon4-2f	CATGAGCCGTCTAACGCGTG
lzf349-mPcsk9-Exon4-2r	TCAGTTCCCACCTGCATT
lzf358-mPcsk9-Exon9-1f	GAGCGTTAGTTGGACCAGAAAG
lzf359-mPcsk9-Exon9-1r	GCCTGCCATACACAAATGCACAC
lzf360-mPcsk9-Exon9-2f	TACAGAGTCTGAGCTGCATG
lzf361-mPcsk9-Exon9-2r	GCTACCTGACACATGGACC
lzf1121_mHpd-exon3-1f	CAATCAGGGTCCCCAAGGACCTT
lzf1122_mHpd-exon3-1r	GAGAAGTTGAAACCAGGAAGAT

lzf1123_mHpd-exon3-2f	AGAGTCTCCAAATGACGGAC
lzf1124_mHpd-exon3-2r	TACATCTTGGAACCGAGCTAG
lzf1127_mHpd-exon7-1f	CTGAGTTAGGGTCAGCTTCATGG
lzf1128_mHpd-exon7-1r	AAATGACGGAGCTGCCTGTGAAC
lzf1129_mHpd-exon7-2f	TAGAGAAGAGTGGGGGCTTT
lzf1130_mHpd-exon7-2r	GTTTCCCACCAGATGCTTAC
lzf1135_mHpd-exon9-1f	TGAGGATCCTGTGTAACGGGTGT
lzf1136_mHpd-exon9-1r	GTTTGTGGGAGAGGAAAGGGACG
lzf1137_mHpd-exon9-2f	GAAGAGGGTGGGAAGGTCTC
lzf1138_mHpd-exon9-2r	CGCTACTCTCATCGGCAGAG
lzf2045_mDmd-sgRNA1-1f	CTTGAAGGCAATAGCCTTATAG
lzf2046_mDmd-sgRNA1-1r	GATAATAAAGTAGATAAATGACG
lzf2047_mDmd-sgRNA1-2f	GAAGTTTATTGGCTTCTCAT
lzf2048_mDmd-sgRNA1-2r	TGTAATCAATCTGCCTACTC
lzf2051_mDmd-sgRNA2-1f	CAATTAGTTATTTCTATCTATT
lzf2052_mDmd-sgRNA2-1r	TAGCCTAGAAAGATGGTAGAT
lzf2053_mDmd-sgRNA2-2f	TAGTGAATATAGGAAGCACT
lzf2054_mDmd-sgRNA2-2r	GATATATTAATGATATTGGT
lzf2057_mDmd-sgRNA3-1f	TCTTATTAAAGCATGACAGATGC
lzf2058_mDmd-sgRNA3-1r	TAACAGCATGCAGCCTAGTAGAG
lzf2059_mDmd-sgRNA3-2f	CTATCATGGCTGGATTGCAG
lzf2060_mDmd-sgRNA3-2r	ATTAATCTAAAATAAATG
lzf2063_mDmd-sgRNA4-1f	CTCAATTAGAACATTGGAATGGAT
lzf2064_mDmd-sgRNA4-1r	GTATTATCAGAACACAGGAAAAC
lzf2065_mDmd-sgRNA4-2f	GTGTATGTGTTGTTTCAGG
lzf2066_mDmd-sgRNA4-2r	CTCATTCTACACAATTATT
lzf2071_mDmd-sgRNA6-1f	ATATTCATTCCATCTCTCATT
lzf2072_mDmd-sgRNA6-1r	TACCTCATGAGCATGAAACTGTT
lzf2073_mDmd-sgRNA6-2f	ACCACTAATTGTATACCAACC
lzf2074_mDmd-sgRNA6-2r	CACTTCTAACATCATTG
lzf2077_mDmd-sgRNA7-1f	TAAGATATGCTTAAGAAGAATAT
lzf2078_mDmd-sgRNA7-1r	ATGCTAGCTACCCGTAGACATTC
lzf2079_mDmd-sgRNA7-2f	AATTGCAACTAATAAAATTC
lzf2080_mDmd-sgRNA7-2r	CAAATGAATCTCCTAAATTC
lzf2083_mDmd-sgRNA8-1f	TGAGCAATTGCATTACCTTATAT
lzf2084_mDmd-sgRNA8-1r	GAAAGTGATACTGCACAAGTGGC
lzf2085_mDmd-sgRNA8-2f	TCAGGTGCTTCAAGAAGATC
lzf2086_mDmd-sgRNA8-2r	TAGATACATTTCATATTGG
lzf2089_mDmd-sgRNA9-1f	GTGGAAGAATGACTGGATTAATC
lzf2090_mDmd-sgRNA9-1r	CAATGAATAAGTGTATTAAGATA
lzf2091_mDmd-sgRNA9-2f	CTATTCTTACAGGGAGATCC
lzf2092_mDmd-sgRNA9-2r	GTTAAATAATAATTGTACAC
lzf2097_mDmd-sgRNA11-1f	ACACAATTAAAGGAGATTGAATT

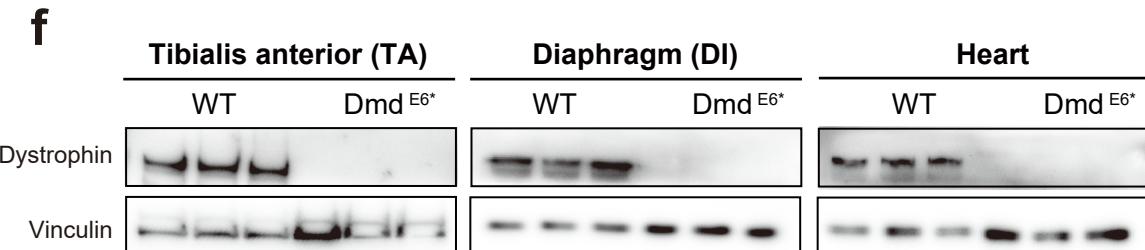
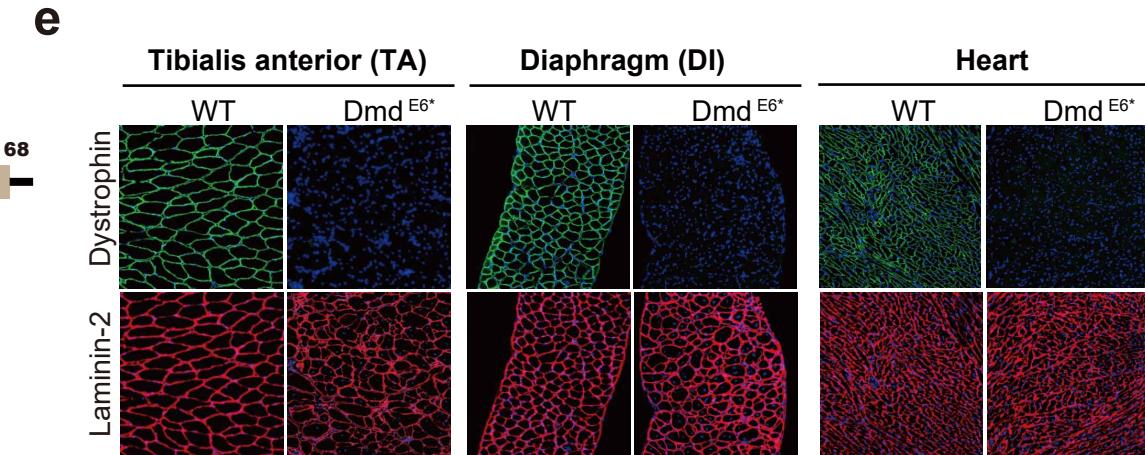
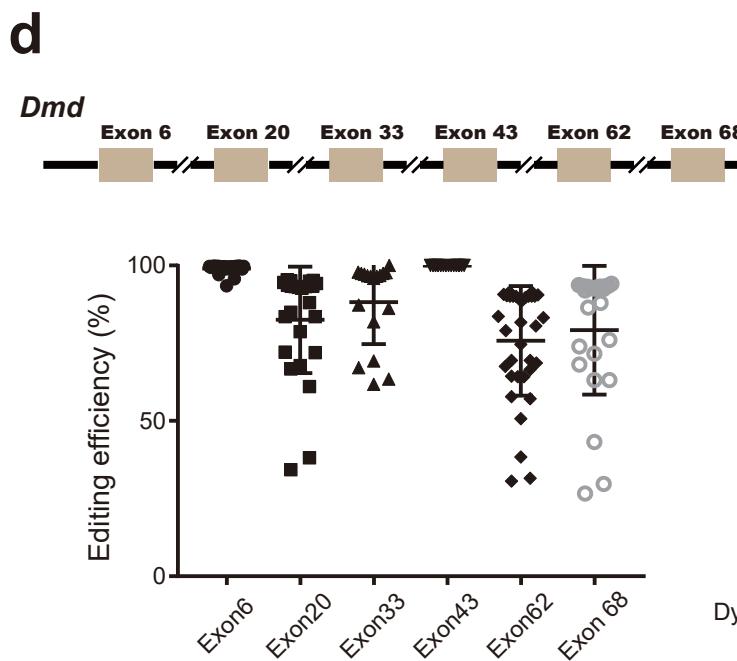
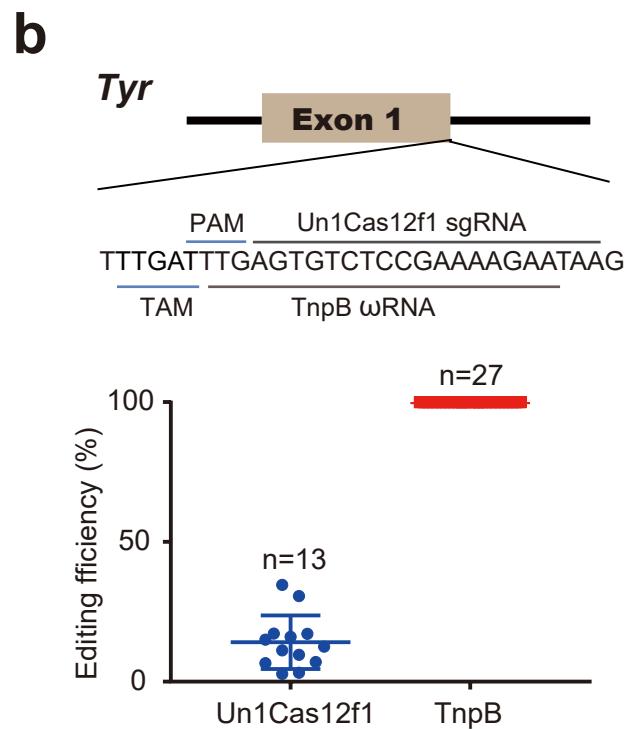
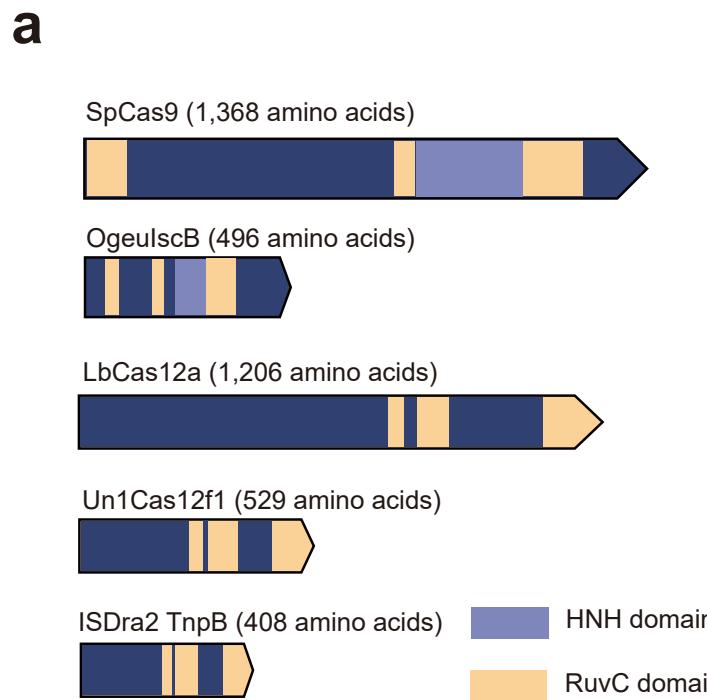
lzf2098_mDmd-sgRNA11-1r	TAAGAATTAATATCACTTACTTG
lzf2099_mDmd-sgRNA11-2f	ACCTAGACTTAATTCATTTC
lzf3000_mDmd-sgRNA11-2r	GTCCCAACGTTGTGCAAAGT
lzf3003_mDmd-sgRNA12-1f	TCACAGATTTCACAGGCTGTAC
lzf3004_mDmd-sgRNA12-1r	GCATAATGATTCTTGGGTAAAT
lzf3005_mDmd-sgRNA12-2f	ACGGTAACTATGGTGACCAC
lzf3006_mDmd-sgRNA12-2r	TTGGGAAATGTGATTCAACT
lzf3009_mDmd-sgRNA13-1f	TCTTCATGGGATATGTATTGG
lzf3010_mDmd-sgRNA13-1r	GAAGGAGGAAAACCTTACCTTAC
lzf3011_mDmd-sgRNA13-2f	TGTAGAGGGTGTAAATGCTG
lzf3012_mDmd-sgRNA13-2r	TGGTAGACTGGGTTTCAAC
lzf3015_mDmd-sgRNA14-1f	GATGAAGTCAACAGATTGTCAGC
lzf3016_mDmd-sgRNA14-1r	CTCTAGCTGCAAATGTAGCTTGT
lzf3017_mDmd-sgRNA14-2f	TCAGCCTCAAATTGAGCAAT
lzf3018_mDmd-sgRNA14-2r	CTTGGCCTGGGAAGGCTAG
lzf3021_mDmd-sgRNA15-1f	GATATATCATCATGATGAACTAT
lzf3022_mDmd-sgRNA15-1r	CAGGTACTGAAACTGTCCTAGC
lzf3023_mDmd-sgRNA15-2f	TTCCAGAATCACATAAAAAC
lzf3024_mDmd-sgRNA15-2r	GGCTGAGCTAATTATATAAT
lzf3027_mDmd-sgRNA16-1f	TCAGTCTCTTGTAAAATCTGATGC
lzf3028_mDmd-sgRNA16-1r	TCAGACTAAACTGAGCAGAAATC
lzf3029_mDmd-sgRNA16-2f	CAAATCAGATTGCTTATTG
lzf3030_mDmd-sgRNA16-2r	AGACTGTGTCACTCATATAT
lzf3033_mDmd-sgRNA17-1f	GCAATAATATTAAGAGTATGAAT
lzf3034_mDmd-sgRNA17-1r	TAAATGTTACTAAGCAGTCGT
lzf3035_mDmd-sgRNA17-2f	TCCAATCAGATTGACAAGT
lzf3036_mDmd-sgRNA17-2r	TACAGTGTACAGAAGTTATT
lzf3039_mDmd-sgRNA18-1f	CTGAGTGAAGTCAAGTCTGAAGT
lzf3040_mDmd-sgRNA18-1r	CTGAGAATCACAATAAGGGTTTC
lzf3041_mDmd-sgRNA18-2f	CCGGACGTCAAATTGTACAG
lzf3042_mDmd-sgRNA18-2r	TCTATTCTTATCTGAATACT
lzf3045_mDmd-sgRNA19-1f	TGTAGATAGTTGAACAAATGTT
lzf3046_mDmd-sgRNA19-1r	TTAAAACATTATTTCTACAAACAG
lzf3047_mDmd-sgRNA19-2f	ATAACATGGTATATTCCAT
lzf3048_mDmd-sgRNA19-2r	TACTTCTCATATAATTCAT
lzf3051_mDmd-sgRNA20-1f	TTCTTGCTCATGGAATATAGCGT
lzf3052_mDmd-sgRNA20-1r	CTTCAGAGTATTGCGCAACCTTC
lzf3053_mDmd-sgRNA20-2f	TAAAGGCTGAAATGAATGAC
lzf3054_mDmd-sgRNA20-2r	ACAAGTTCCACCTTGAAGT
lzf3057_mDmd-sgRNA21-1f	GCTTATTGGGTGAGGATGACAGT
lzf3058_mDmd-sgRNA21-1r	CACAATTGTGCAAAGTTGAGTC
lzf3059_mDmd-sgRNA21-2f	CAGCCTATGAAAGTTCTGAG
lzf3060_mDmd-sgRNA21-2r	TGCTGAGCTGGATCTGAGTT

lzf3065_mDmd-sgRNA23-1f	CAGCACACTCTCCATGAAGAAC
lzf3066_mDmd-sgRNA23-1r	TAGTTATACATTACCTACCAAG
lzf3067_mDmd-sgRNA23-2f	GTAGTGACGACTGAAGATAT
lzf3068_mDmd-sgRNA23-2r	ATTCTTCAATGTGCAGTAAC
lzf3071_mDmd-sgRNA24-1f	TAAGGTTGATAATTAGAATTGT
lzf3072_mDmd-sgRNA24-1r	TAATGTTCAGTAACATTAAAAG
lzf3073_mDmd-sgRNA24-2f	TACTCCCTAGAGAAAGCTAG
lzf3074_mDmd-sgRNA24-2r	GGCTACTTACCCCTGTCGTT
lzf3077_mDmd-sgRNA25-1f	TACTACAAAAGTAATACCTTGT
lzf3078_mDmd-sgRNA25-1r	TATTGCTGAAAAAATGAAGCCAG
lzf3079_mDmd-sgRNA25-2f	GTGTCCTATAAACCACTTAC
lzf3080_mDmd-sgRNA25-2r	GTCTTACCTTAAGATAACCAT
lzf3087_mDmd-sgRNA28-1f	TGACACAACTGTGGTTACTAAG
lzf3088_mDmd-sgRNA28-1r	AGGTAGCCTAAAAACTATTAGTC
lzf3089_mDmd-sgRNA28-2f	ATGCCATCTCTTGCTGTT
lzf3090_mDmd-sgRNA28-2r	GAAATGGAAAGTGACAATAT
lzf3093_mDmd-sgRNA29-1f	CATATTTCATTCTAAAGTCT
lzf3094_mDmd-sgRNA29-1r	TTCTTCAGTAAATGGCTATCAT
lzf3095_mDmd-sgRNA29-2f	TTCAGGCAACACTGCAAGAT
lzf3096_mDmd-sgRNA29-2r	CTATACCTTGAGCTGTTACT
lzf3099_mDmd-sgRNA30-1f	GATGCACCGTTAAAGATGTCTG
lzf3100_mDmd-sgRNA30-1r	CAGGACAGCAAGCCAGGCTTTG
lzf3101_mDmd-sgRNA30-2f	CGGCAGATAAGTGTAGACGT
lzf3102_mDmd-sgRNA30-2r	CATGGTTCATCCAAGGTAC
lzf3105_mDmd-sgRNA31-1f	ATTACATTCCCAGCAAGTCTCT
lzf3106_mDmd-sgRNA31-1r	GCCATCTTATTCTATCTGGAT
lzf3107_mDmd-sgRNA31-2f	TGGTAATTCTGAATGTGTTT
lzf3108_mDmd-sgRNA31-2r	TCTGAAGTTCACTCCACTTG
lzf3111_mDmd-sgRNA32-1f	GAAAGCAGGCTGAAGAGGTCAAC
lzf3112_mDmd-sgRNA32-1r	TGAGTACTCTTGGGATCTCTC
lzf3113_mDmd-sgRNA32-2f	GACAAATTGAACCTGCGCTC
lzf3114_mDmd-sgRNA32-2r	CAAAACAAAGCACACAGTAC
lzf3117_mDmd-sgRNA33-1f	TGTAATTCTGGAGATTAATGTTG
lzf3118_mDmd-sgRNA33-1r	TATGAATTATTATCTATGCTTC
lzf3119_mDmd-sgRNA33-2f	TCCTGTTACCACGAATTG
lzf3120_mDmd-sgRNA33-2r	TAGATATTGTAGATGAGAAT
lzf3123_mDmd-sgRNA34-1f	CTTTCGATACTATTGTCCCCACTT
lzf3124_mDmd-sgRNA34-1r	GAAAGGAACAAACTCACAGCAAC
lzf3125_mDmd-sgRNA34-2f	CAATAATAAACCTGAGATTG
lzf3126_mDmd-sgRNA34-2r	AACCTAGTCACGACAAATTG
lzf3129_mDmd-sgRNA35-1f	CATTACGGTTACTTTAGTTG
lzf3130_mDmd-sgRNA35-1r	TAAATTGGAAATTAAAATGTCAT
lzf3131_mDmd-sgRNA35-2f	CCTTTGACCTTCCATAAT

lzf3132_mDmd-sgRNA35-2r	AGCTGAATAAACAAACAAAG	
lzf3137_mDmd-sgRNA36-1f	TGTCTTAGAATAGGGAAACAAT	
lzf3138_mDmd-sgRNA36-1r	ACAGATTATTTATCAAACAGTT	
lzf3139_mDmd-sgRNA36-2f	TGAGAGCAAAGAAATGTTTC	
lzf3140_mDmd-sgRNA36-2r	TTCTCCATGTGCAAGTGTGT	
lzf4303-mKlkb1-exon3-1f	GGACTTGTGCAAGAACGTTCTC	
lzf4304-mKlkb1-exon3-1r	TTATCTTCTTGGTGGTCTCGTC	
lzf4305-mKlkb1-exon4-1f	CAGTGTGATAATTAGACATG	
lzf4306-mKlkb1-exon4-1r	GTTGACTACAGGGAGTTGCTAC	
lzf4311-mKlkb1-exon13-1f	CGGATCACTGCTCCTCATCTCC	
lzf4312-mKlkb1-exon13-1r	TCGTTTTGAATGAACGTCTTC	
lzf2041_ZF709-IVT-1f	GAAAT TAATACGACTCACTATAGG	G
	GATTCAAGAATCCCGAAGT	
lzf2042_ZF709-IVT-1r	TTCTTTCGGAGACACTCAA	
	TTGAACCTCACACGACTAAA	
lzf3141_ZF759- IVT-1r	ATTATCCACAGGTTAACGTC	
	TTGAACCTCACACGACTAAA	
lzf3142_ZF769- IVT-1r	GAGAGTTAACTGGCTAGAGT	
	TTGAACCTCACACGACTAAA	
lzf3143_ZF774- IVT-1r	TTCAAAGCTGTTACTCGTTC	
	TTGAACCTCACACGACTAAA	
lzf3144_ZF780- IVT-1r	GTCTTCTCTGTGAATAAT	
	TTGAACCTCACACGACTAAA	
lzf3145_ZF789- IVT-1r	CAAACAAAGTGCCCTACTAT	
	TTGAACCTCACACGACTAAA	
lzf5034_TnpB-IVT-1f	GAAAT TAATACGACTCACTATAGG	G
	tGGTGGCTGCGGGAAATCTC	
lzf5035_IVT-mKlkb1-sg1-1r	TTCTTAAAGCAGTGTGGCC	
	TTGAACCTCACACGACTAAA	
lzf5036_IVT-mKlkb1-sg2-1r	TTAAAGTTGGACCCCTCTCAT	
	TTGAACCTCACACGACTAAA	
lzf5037_IVT-mKlkb1-sg3-1r	TGCGTTCACCTATGAAGCA	
	TTGAACCTCACACGACTAAA	

691

692






Supplementary Table S3. NGS primers used in this study.

lzf3762_ZF704-R701-1f	GAATTCA TCCAGACTGGTCCCCACAAC	NNNNNN GGATCC
lzf3769_ZF704-R707-1r	GACACACTGGTGCCCTCATC	
lzf3803_ZF709-R701-1f	GAATTCA CAACTGCGGAAACTGTAAGT	NNNNNN GGATCC
lzf3832_ZF709-R731-1r	CATGGGTGTTGACCCATTGT	
lzf3833_ZF759-R701-1f	GAATTCA	NNNNNN GGATCC

	GAAAACATCATGGCTGGAT	
lzf4008_mDmd-exon6-2r	TGTACCTGTGACTATGGATAAG	
lzf3855_ZF769-R701-1f	GAATTC NNNNNN GGATCC TATTTGGTTTCTTGTAG	
lzf3884_ZF769-R731-1r	TTTCGGCAGTAGTTGTCAT	
lzf3885_ZF774-R701-1f	GAATTC NNNNNN GGATCC GGTGATTAAAACCGGACGTC	
lzf3643_mDmd-exon33-2r	CTGGTATTCTATTTATCTT	
lzf3904_ZF780-R701-1f	GAATTC NNNNNN GGATCC GCTAGTTACTTTATGATAT	
lzf3647_mDmd-exon43-2r	GTACATTCTATGAAGTTTT	
lzf3924_ZF789-R701-1f	GAATTC NNNNNN GGATCC TCTGGAGATTAATGTTGCCT	
lzf3960_ZF789-R738-1r	TTCATGAACATACAGATCAG	
lzf3961_ZF790-R701-1f	GAATTC NNNNNN GGATCC CTCCTCTGTTTCCCAGGC	
lzf3985_ZF790-R726-1r	GAATACTAACACCTGAATCC	
lzf3986_ZF759-R701-1f	GAATTC NNNNNN GGATCC GTTATATTTAACATATAGGTC	
lzf4672_ZF1162-R715-1f	GAATTC NNNNNN GGATCC TGTGTTGTTCAATTCCGCT	
lzf4675_ZF1162-R717-1r	GTCCATCATAGTATAAACCT	
lzf4676_ZF1163-R718-1f	GAATTC NNNNNN GGATCC GAAGAGCAGTTATTGTGT	
lzf4661_ZF1163-R705-1r	CTGTAAAATGCACTTGTAGC	
lzf4662_ZF1164-R706-1f	GAATTC NNNNNN GGATCC CCTCTCCCGGTCTCTCTCT	
lzf4663_ZF1164-R706-1r	GTTTATAACATAATCTCTGT	
lzf5038_ZF1699-R708-1f	GAATTC NNNNNN GGATCC GTGGTGCTTAGAGAAGAGTG	
lzf5040_ZF1699-R709-1r	CATCAAGGGACACTCACAGT	
lzf5042_ZF1725-R711-1f	GAATTC NNNNNN GGATCC TGAAAAAACCTGCAGTTCCAC	
lzf5043_ZF1700-R711-1r	GCTCTCTCAGAGCCCCGCAAG	
lzf5045_ZF1726-R713-1f	GAATTC NNNNNN GGATCC TGAAAAAACCTGCAGTTCCAC	
lzf5046_ZF1701-R713-1r	GCTCTCTCAGAGCCCCGCAAG	
lzf5048_ZF1727-R715-1f	GAATTC NNNNNN GGATCC CTTCATGGTTCAACTGCG	
lzf5049_ZF1702-R715-1r	TGACCCATTGTTCATTGGC	
lzf5051_ZF1729-R719-1f	GAATTC NNNNNN GGATCC CTGCGGAAACTGTAAGTTG	
lzf5052_ZF1704-R719-1r	CATGGGTGTTGACCCATTGT	

lzf5054_ZF1730-R721-1f	GAATTC CCTCTTGTATGGATGCATT	NNNNNN GGATCC
lzf5055_ZF1705-R721-1r	TTTTCTGCATCTCTCCAATC	

Fig.1

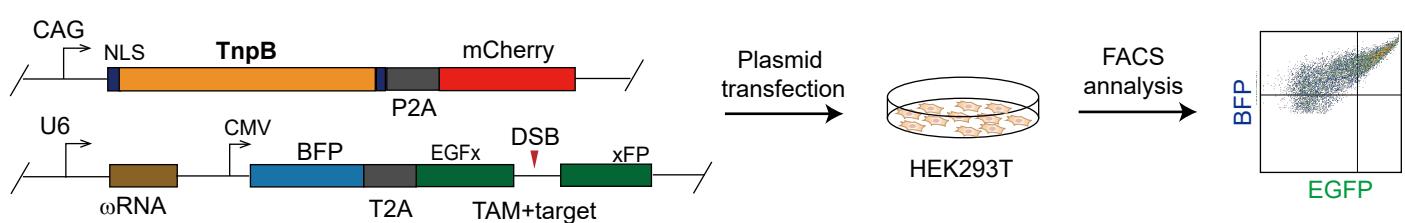
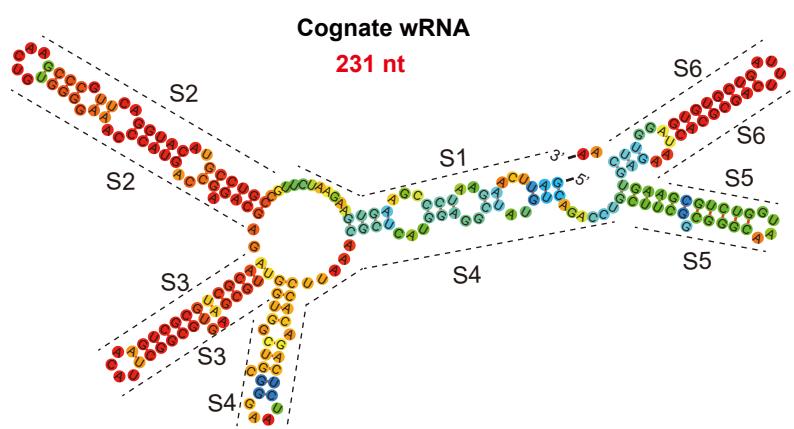
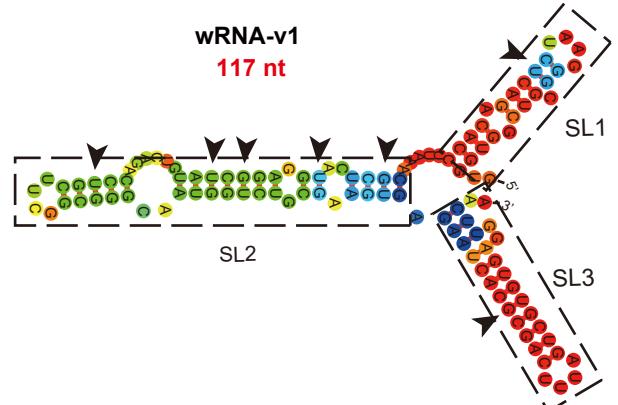
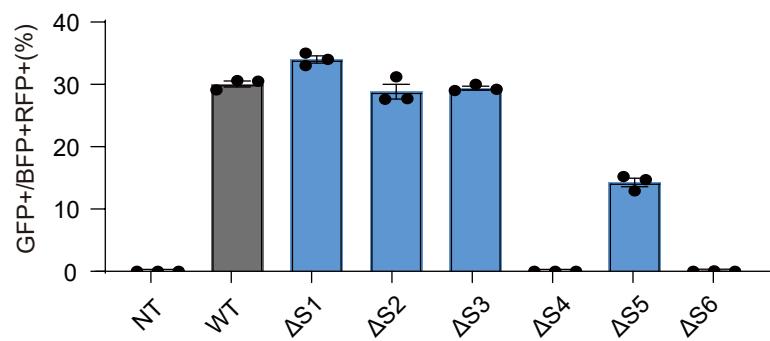
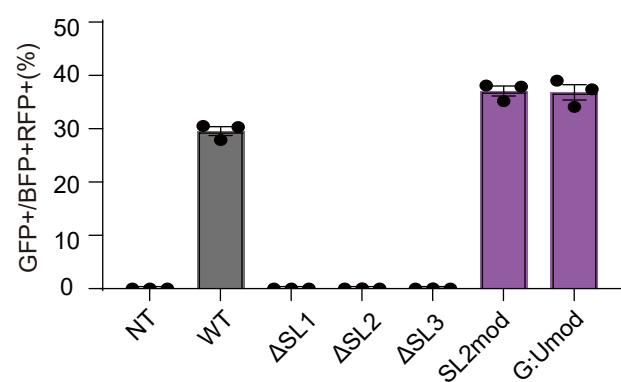
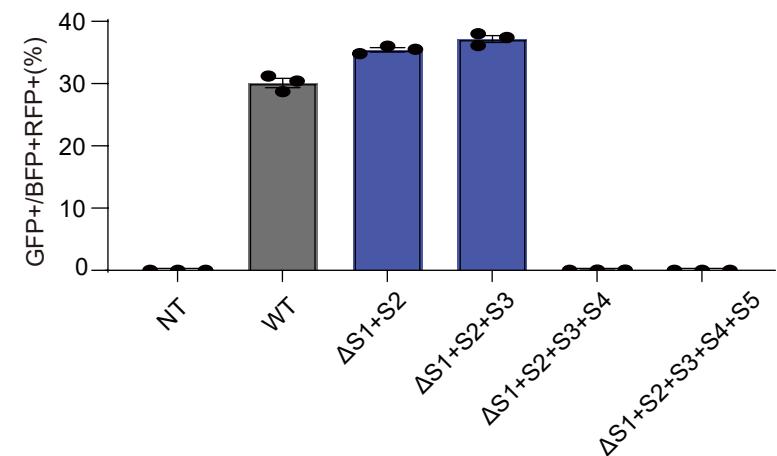
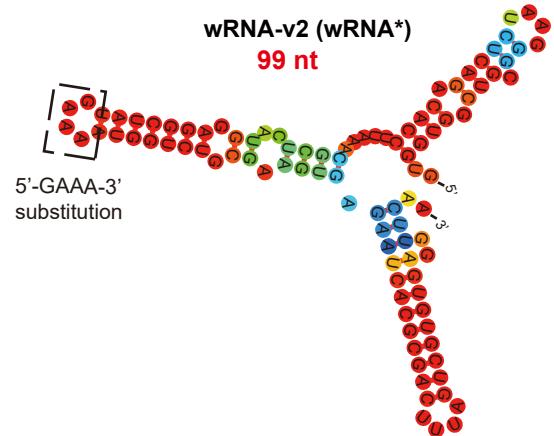
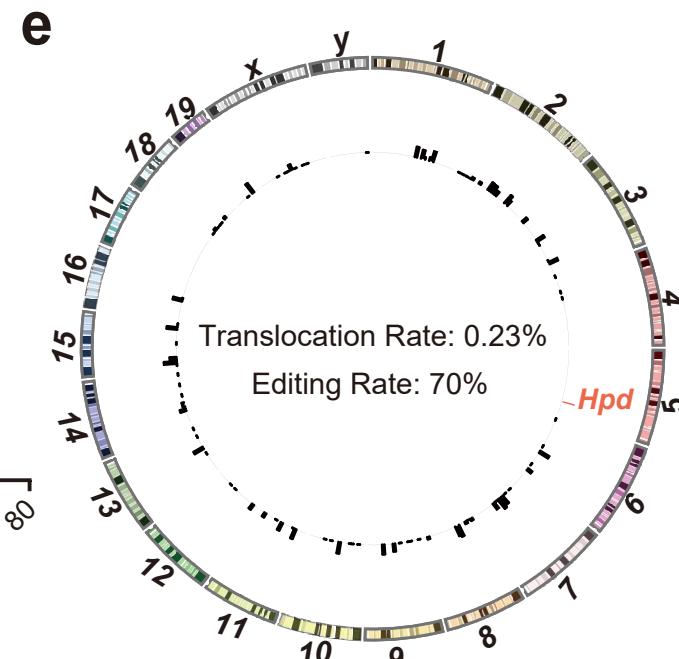
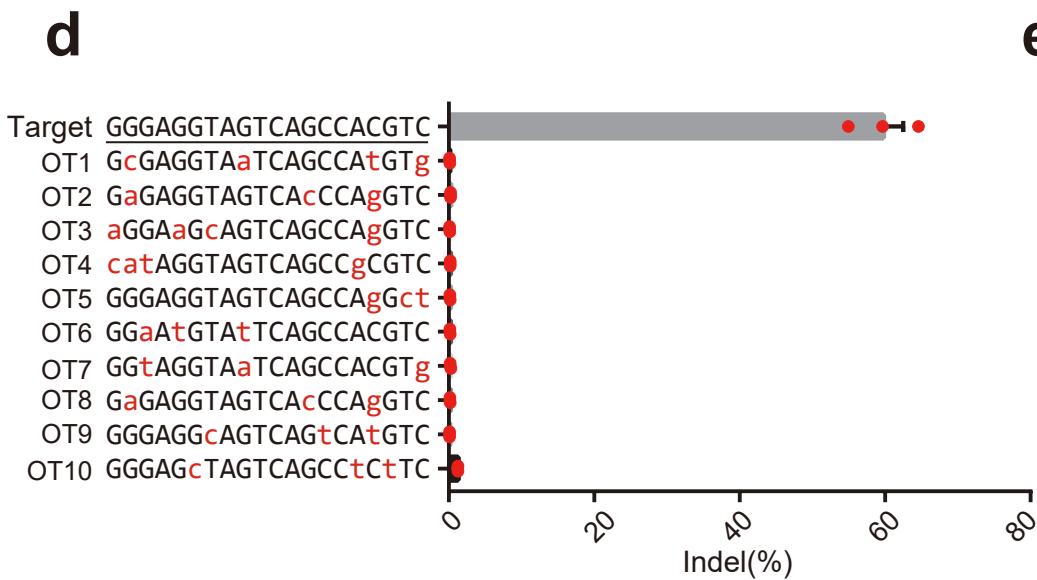
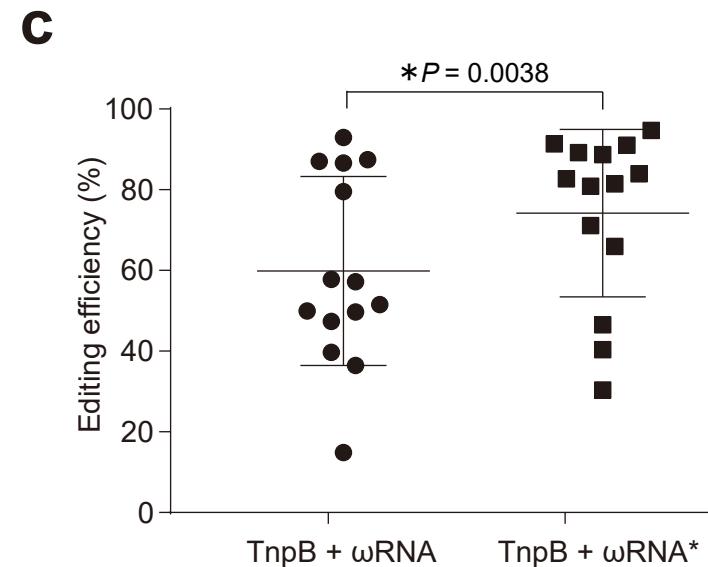
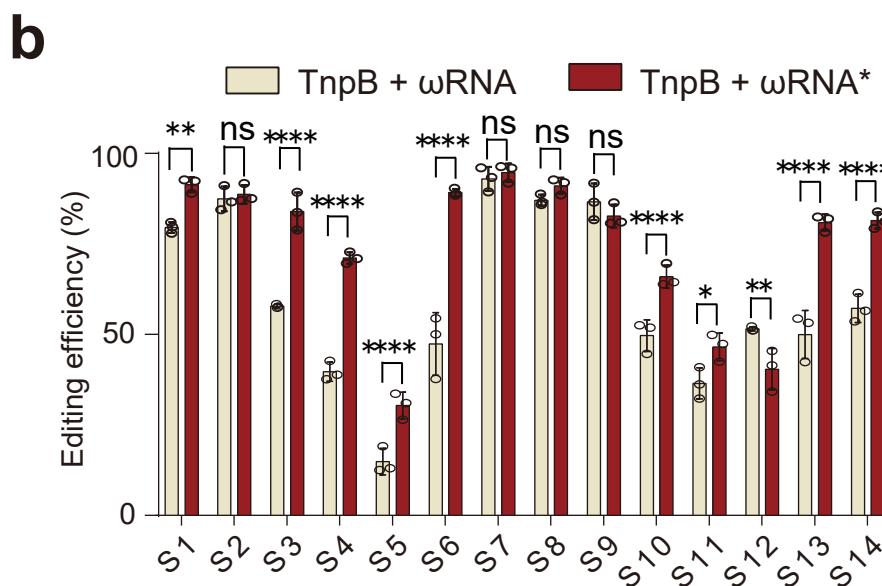
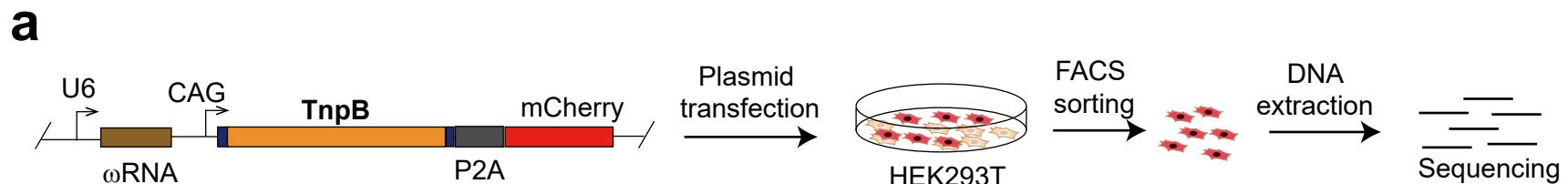
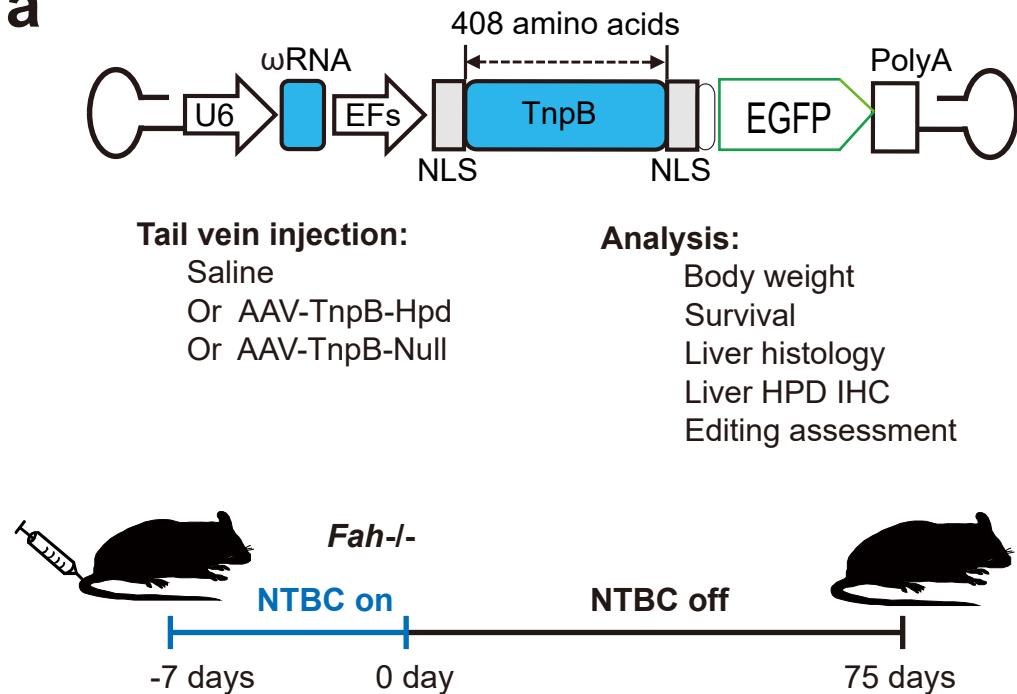







a**b****e****c****f****d****g**

Fig.3

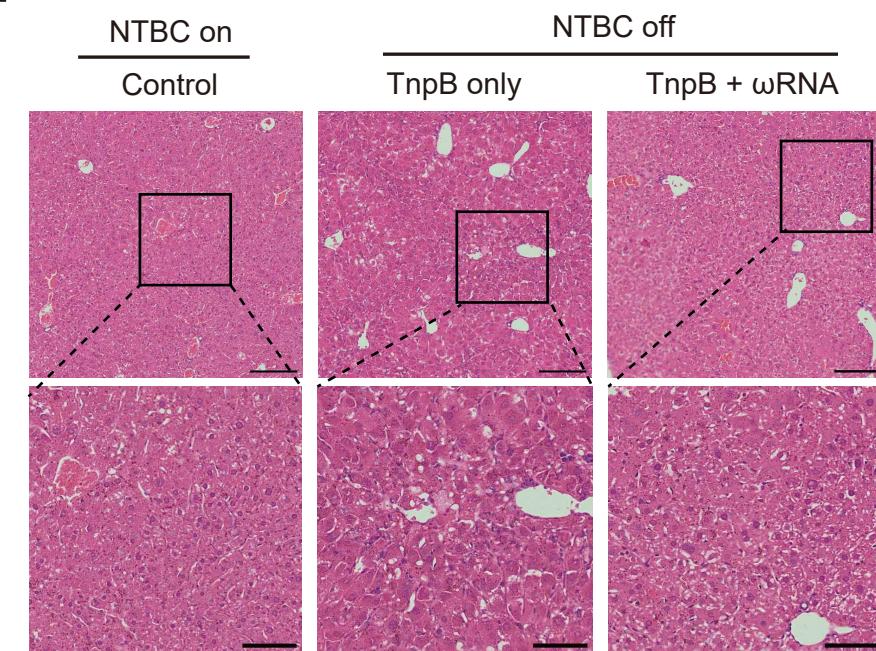
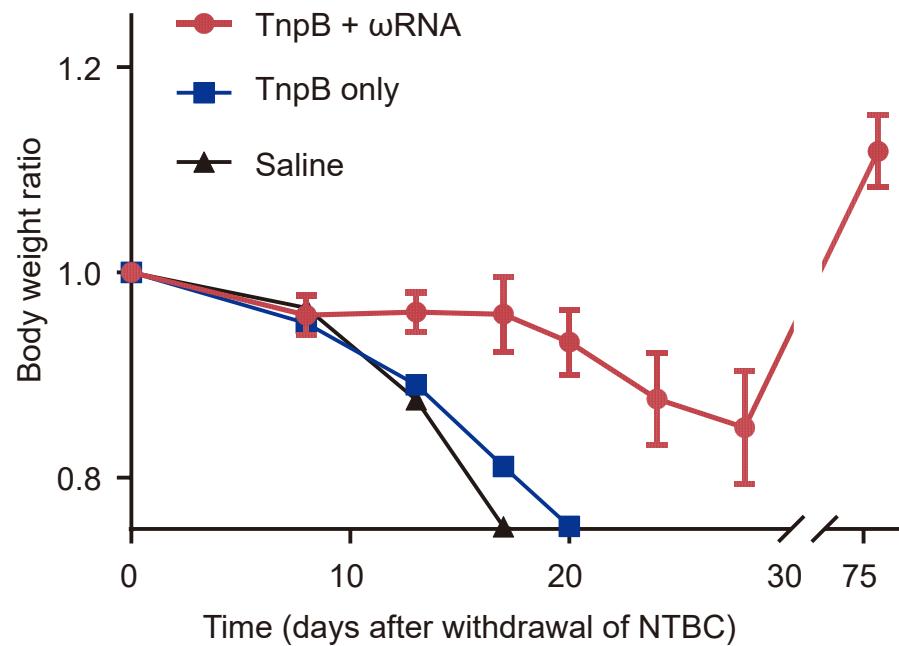



Fig.4

a**b****d****c**