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Abstract

Inflammatory macrophages in the intestine are a key pathogenic factor driving
inflammatory bowel disease (IBD). Here, we report the role of inflammatory
macrophage-mediated notch signaling on secretory lineage differentiation in the
intestinal epithelium. Utilizing IL-10-deficient (//7107) mice, a model of spontaneous
colitis, we found an increase in Notch activity in the colonic epithelium as well as an
increase in intestinal macrophages expressing Notch ligands, which are increased in
macrophages upon inflammatory stimuli. Furthermore, a co-culture system of
inflammatory macrophages and intestinal stem and proliferative cells during
differentiation reduced goblet and enteroendocrine cells. This was recapitulated when
utilizing a Notch agonist on human colonic organoids (colonoids). In summary, our
findings indicate that inflammatory macrophages upregulate notch ligands that activate
notch signaling in ISC via cell-cell interactions, which in turn inhibits secretory lineage

differentiation in the gastrointestinal (Gl) tract.
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Introduction

Notch signaling is a cell-cell communication mechanism important for many aspects of
biology, including intestinal stem cell (ISC) differentiation’-2. This process mainly occurs
through signal-sending cells expressing Notch ligands that bind Notch receptors on
signal-receiving cells. There are 5 mammalian Notch ligands (Delta-like: DLL1, DLL3,
and DLL4; and Serrate (Jagged)-like: Jagged1 and Jagged2) and 4 Notch receptors
(Notch1—4)2. Notch activation occurs after i) Notch ligand binds a Notch receptor
resulting in proteolysis of the extracellular domain of Notch receptor by the
metalloprotease ADAM1032 and ii) the mechanical pull of Notch ligand on the Notch
receptor. The Notch intracellular domain (NICD) is then released into the cytosol by the
y-secretase complex. The cytosolic NICD translocate to the nucleus binding the
transcription factor CSL (CBF-1 /Suppressor of Hairless/ Lag-1) resulting in the
expression of numerous target genes such as Hes17 (Hairy and enhancer of split 1) and
Hey1 (Hes related family bHLH transcription factor with YRPW motif 1) that mediate
Notch activity’-?>4. During ISC differentiation, continuous Notch signaling through Hes1
and Hey1 expression represses the transcription factor Atoh1 (atonal bHLH
transcription factor 1) to promote absorptive cellular differentiation, e.g., enterocytes in
small intestine and colonocytes in the colon 6. Whereas, certain secretory cells, like
goblet and enteroendocrine cells, are promoted through the inhibition of Notch signaling
and the expression of Afoh1 7-°. Nevertheless, both absorptive and secretory cells are
critical to the epithelial barrier to maintain intestinal homeostasis.

Intestinal macrophages also contribute to ISC renewal, homeostasis, and
differentiation, as depletion of macrophages reduces stem cell numbers and impairs
cellular differentiation '°. Macrophages are abundant in the intestine and act as a first
line of defense in the gut. Unlike other tissue macrophages, intestinal macrophages
exhibit an anti-inflammatory phenotype and display high phagocytic and bactericidal
activity, as well as a high tolerance towards foreign material '*'2. However, in states of
chronic intestinal inflammation, like Crohn’s disease (CD) and ulcerative colitis (UC) the
two major forms of inflammatory bowel disease (IBD), an accumulation of inflammatory
macrophages can be observed in the mucosa '3'4. The influence of inflammatory

macrophages on ISC differentiation is unclear but macrophages have been found to be
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both Notch signal-sending and signal-receiving cells. Interestingly, Notch signaling is
dysregulated in IBD%'5-'8, Nevertheless, it is unclear which cell-type promotes increased
Notch signaling in IBD. Herein, we show intestinal macrophages in the inflamed colon of
a mouse model of IBD display increased expression of Notch ligands Jagged1 and
DLL3. The inflamed colon also showed increased levels of Notch target gene
expression and reduced levels of Atoh1. We further show inflammatory macrophages
prevent secretory cell differentiation while anti-inflammatory macrophages promoted
goblet and enteroendocrine cell differentiation. This was recapitulated in human
organoids in the absence of macrophages and through the utilization of a Notch agonist.
In summary, our findings indicate that inflammatory macrophages can inhibit secretory

lineage differentiation in the gastrointestinal (Gl) tract through Notch signaling.

Results and Discussion

Increased Notch activity in the inflamed colonic epithelium

Notch signaling is a major pathway dictating absorptive and secretory cellular
differentiation. High Notch activity is observed in the crypts of the inflamed colon of UC
patients'®1°, UC patients also show decreased ATOH1 expression as well as decreased
goblet cell numbers and mucus®. CD also shows a similar loss of secretory cells'’. In
mice, the loss of Notch signaling via genetic or chemical inhibition results in intestinal
inflammation®. Similar to IBD, //70”- mice also have reduced goblet cells and mucus?.
The 11107 mouse model is representative of chronic, immune-mediated intestinal
inflammation as IL-10 polymorphisms confer increased risk to both CD and UC 2122, We
were interested to see if Notch target genes were upregulated in the inflamed colon of
11107~ mice. Utilizing fecal lipocalin-2 (LCN-2) as a marker of intestinal inflammation?3-26,
we observed increased fecal LCN-2 levels in //107- mice when compared to control
C57BL/6 (B6) mice (Suppl. Fig. 1 A) as well as increased IFNy, IL-17A, and IL-22
production from CD4* T cells isolated from mesenteric lymph nodes (Suppl. Fig. 1 D-
F). Next, we isolated colonocytes from the inflamed colon of //70”- mice and observed
an increase in several Notch target genes including Hes1, Hey1, and Dix1 when
compared to the uninflamed colon of control B6 mice (Fig. 1 A-C). Although not

significantly different from controls, the Notch target gene Hes5 was trending upwards
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(Fig. 1 D). Examination of Gli1, a gene associated with Hedgehog signaling, another
cell determination pathway, showed no change in expression (Fig. 1 E). However, when
we examined Atoh1, a promoter of secretory cells, colonocytes from //7107- mice showed
a significant decrease in Atoh1 expression compared to the uninflamed colon (Fig. 1 F).
To determine if this change in Notch activity is due to lack of IL-10 or chronic
inflammation, we compared Hes1 and Atoh1 expression in an acute and chronic model
of dextran sodium sulfate (DSS) induced colitis. Isolated colonocytes from chronic DSS
B6 mice showed similar expression patterns of both Hes? and Atoh1 to colitic //107-
mice (Suppl. Fig. 1 B, C). However, colonic Hes?1 and Atoh1 expression in the acute
DSS model were similar to untreated B6 mice (Suppl. Fig. 1 B, C). Our data supports
prior evidence®1518 of enhanced Notch activity in the colonic epithelium during chronic

intestinal inflammation.

Colonic macrophages in the inflamed colon express enhanced levels of Notch
ligands. Amassing evidence from IBD patient samples, animal and mathematical
models of IBD, as well as identified IBD susceptible risk loci, have all suggested that
macrophages are a major cell-type contributing to IBD pathogenesis®12-18.27-30_ Gjven
the abundance of macrophages in the gut, we next sought to identify features of colonic
macrophages that could contribute to the observed Notch activity in the inflamed colon.
As we have previously reported?®, we isolated colonic macrophages from the lamina
propria (LP). Similar to what has been observed in the mucosa of IBD patients'314,
there was an overall increase in the total number of LP macrophages
(CX3CR1*MHCII*CD68") in /110" mice compared to controls (Suppl. Fig. 2 A-C). A
significant portion of these LP macrophages from colitic /70"~ mice expressed Jagged1
compared to macrophages in the non-inflamed gut (Fig. 2 A, B). There was also an
increase in DLL3* LP macrophages in //70’- mice (Fig. 2 C, D). However, Jagged2,
DLL1 and DLL4 expression in macrophages did not show a significant difference
between both groups of mice (Suppl. Fig. 2 D-F). Lastly, this population of
macrophages isolated from colitic mice also showed increased levels of cell surface
TLR4 expression (Suppl. Fig. 2 A, B) which has been reported to be upregulated

during intestinal inflammation3".
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Upon observing that inflammatory macrophages from 1/710”- mice show increased
Notch ligand expression in vivo, we wanted to determine if inflammatory stimuli could
upregulate Notch ligand expression in macrophages. Therefore, we generated
macrophages from bone marrow monocytes isolated from B6 mice as we have
previously described 263233 Macrophages were stimulated overnight with
lipopolysaccharide (LPS) or interferon-gamma (IFNy) to examine changes in Notch
ligand expression. Flow cytometric analysis revealed both LPS and IFNy stimuli
increased expression of Jagged1 (Fig. 2 E, F). Under our conditions, these stimuli also
increased Jagged2, DLL3 and DLL4 but did not alter DLL1 expression compared to
unstimulated macrophages (Suppl. Fig. 3 A-D). Taken together, our data demonstrates
an inflammatory microenvironment and signals increase Notch ligand expression in

macrophages.

Inflammatory macrophages prevent secretory lineage differentiation
At steady state, intestinal macrophages contribute to ISC differentiation%; however, it is
unclear how inflammatory macrophages affect ISC differentiation. We reveal a
compelling correlation of increased colonic epithelial Notch activity and Notch ligand
expression by colonic macrophages in the inflamed colon of //707- mice. One possibility
is that the inflamed colon harbor ISC that have enhanced expression of Notch receptors
that increases Notch activity. When colonic Lgr5* crypt cells were examined for Notch
receptor expression there were no observed differences between the proportion of cells
expressing Notch receptors (Notch1-4) in the inflamed and uninflamed crypt (Suppl.
Fig. 4 A-E). This suggest an increase in Notch ligand expression in Notch signal-
sending cell(s) may increase Notch activity in the inflamed colon. Interestingly, Notch-1
and -2 as well as DLL1 and DLL4 have been reported to be the respective key
receptors and ligands regulating intestinal homeostasis®#-3’. Given there was no
difference in DLL1 and DLL4 expression in macrophages suggest other Notch ligand-
positive cells contribute to Notch signaling during homeostatic conditions.

We next wanted to examine the impact of macrophage-mediated Notch signaling
on colonic ISC differentiation. To do so, we set-up a co-culture system3? (Fig. 3)

allowing colonic intestinal stem cells to differentiate in the presence of anti-inflammatory
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or inflammatory macrophages. Transwells were seeded with ISC derived from B6
colonoids to form a monolayer. After reaching confluency, monolayers were cultured
with either anti-inflammatory (unstimulated, Fig. 3 A4, C4) or inflammatory (IFNy
stimulated, Fig. 3 A5, C5) macrophages on the basolateral side of the transwell. As
shown in Fig. 2 E and Suppl. Fig. 3A-D, inflammatory macrophages express high
levels of Notch ligands. ISC monolayers co-cultured with anti-inflammatory
macrophages showed a significant increase in goblet cells as stained by Muc2 (Fig. 3
A2) and enteroendocrine cells marked by chromogranin A (CHGA) (Fig. 3 C2) when
compared to control monolayers with no macrophages (Fig. 3 A1, C1). On the other
hand, monolayers cultured with inflammatory macrophages inhibited goblet (Fig. 3 A3,
B) and enteroendocrine cell (Fig. 3 C3, D) differentiation. Upon quantification, both
goblet and enteroendocrine cells increased by two folds upon co-culture with anti-
inflammatory macrophages while there was a slight decrease in goblet cells and no
change in enteroendocrine cells upon co-culture with inflammatory macrophages (Fig. 3
B, D). The effect of inflammatory macrophages on the barrier appeared surprisingly
similar to monocultures; however, monolayers cultured with inflammatory macrophages
showed changes in phalloidin (Fig. 3 A3, C3) staining. Although not the scope of this
study, in the future we will examine how inflammatory macrophages impact epithelial
maturation.

Intestinal macrophages are close to the epithelial barrier, performing tissue
remodeling and producing soluble factors such as prostaglandin E2 and Wnt ligands to
maintain the integrity of the barrier3®42. CX3CL1-producing epithelial cells and CX3CR1-
expression in intestinal macrophages mediate this tissue localization*3-4%. Other studies
have utilized macrophage (U937) and colonic epithelial (Caco-2 and HT29) cell lines
and shown similar results. U937 cells were skewed to inflammatory cells expressing
Notch ligands and were able to turn on Notch in both Caco-2 and HT29 cell lines*6.
Although these are differentiated cell lines and cannot commit to lineage differentiation
this suggests inflammatory macrophages are likely to impact the mature epithelium.
Taken together, our data demonstrates anti-inflammatory (low Notch ligand expression)
macrophages enhance secretory lineage differentiation while inflammatory

macrophages (high Notch ligand expression) inhibit secretory lineage differentiation.
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Notch activation inhibit secretory lineage differentiation in human colonoids
Inflammatory macrophages produce proinflammatory cytokines*’ (i.e., TNFa, IL-12, IL-
23, and IL-1) that can activate inflammatory cells, increase intestinal permeability by
dysregulating tight junction proteins as well as induce apoptosis in epithelial cells*8-%8.
Notably, these cytokines are the current targets for biological therapy and are at the
forefront of IBD treatment. Organoids derived from UC patients show defective goblet
cell and mucus production and TNFa was shown to exacerbate this phenotype °°. In our
co-culture studies, inflammatory macrophages were washed before co-culturing but we
cannot rule out the effects of cytokines produced during our in vitro experiments.
Therefore, we wanted to directly assess the role of Notch activation on goblet and
enteroendocrine cell development in human colonoids. Human colonoids were allowed
to differentiate for 6 days while media was replenished every 48 hrs. During this period,
Notch signaling was activated in colonoids using Yhhu3792 (5-(3-Methoxyphenoxy)-N2-
[4-(1-methylethyl) phenyl]-2,4-quinazo-linediamine hydrochloride)®° or inhibited using
SAHM1, a modified peptide that disrupts protein-protein interactions and prevents notch
complex assembly®'. Using RNAscope and confocal imaging, we confirmed that Notch
activation led to upregulation of the Notch target HEY71 (Fig. 4 A, B) while decreasing
the expression of secretory genes MUC2 (Fig. 4 C, D) and CHGA (Fig. 4 E, F).
Interestingly, there was no change in secretory lineage expression upon Notch inhibition
when comparing unstimulated colonoids (Fig. 4 A-F); however, there was a significant
change in secretory marker expression between Notch activation and Notch inhibition
(Fig. 4 B, D, F). Taken together, this supports our co-culture system that Notch

activation on ISC prevents secretory cell development.

Previous reports in IBD patient samples identified Notch activity in different
compartments of the epithelium (i.e., Notch activity in crypts and differentiated cells)>46.
The loss of Notch signaling via genetic or chemical inhibition results in intestinal
inflammation and constitutive Notch signaling is found in IBD and Gl cancers. Pan-
Notch inhibitors being utilized for cancers are also associated with Gl toxicity,
specifically, goblet cell hyperplasia®’. Nevertheless, it is unclear what component of the

Notch pathway contributes to intestinal disease or what cell(s) contributes to continuous
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Notch activation. Here, we show in a model of intestinal inflammation and ISC
differentiation, inflammatory macrophages have increased expression of Notch ligands
that can prevent goblet and enteroendocrine cell differentiation (Suppl. Fig. 5).
Changes in enteroendocrine cell numbers as well as hormones and peptides (both
increased and decreased) have been noted in UC and CD, but the mechanism(s)
driving these changes are largely unknown. This study suggests Notch signaling from
pro-inflammatory macrophages plays a role in enteroendocrine cell changes during
intestinal inflammation. Given that additional cells such as dendritic cells and monocytes
express Notch ligands we cannot rule out the influence of these cells on ISC
differentiation during intestinal inflammation. Additionally, the Notch pathway also
promotes proinflammatory T cell activity and can also dampen regulatory T cell function,
which could drive IBD pathogenesis 1%62-68, The interaction of Notch ligand-positive
inflammatory macrophages with T cells could also prove problematic for IBD patients.
Overall, dysregulated Notch signaling appears to perturb intestinal homeostasis on
multiple fronts. Future work will entail understanding the signals of anti-inflammatory
macrophages impacting ISC and how inflammatory (Notch ligand-positive)

macrophages affect immune cells in the gut.

Methods

Animals

B6.129P2-//10!™1Cen/J mutant (//107-) (002251) and C57BL/6J (000664) mice were
purchased from JAX. Both female and male mice between 14-18 weeks of age were
used for experiments. All experiments were approved by the Institutional Animal Care
and Use Committee of the University of New Mexico Health Sciences Center (IACUC #
20-201025-HSC), in accordance with the National Institutes of Health guidelines for use
of live animals. The University of New Mexico Health Sciences Center is accredited by

the American Association for Accreditation of Laboratory Animal Care.

Macrophage-Epithelial Co-culture
Crypt isolation and colonoid generation was done as previously reported® utilizing

proximal colon tissue from B6 mice. Briefly, colonic tissue was minced into 0.5 cm
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pieces and washed several times in cold freshly prepared complete chelating solution
(CCS; 5.6mM Na2HPO4, 96.2mM NaCl, 1.6mM KCI, 8mM KH2P0O4, 43.4mM sucrose,
0.5mM DL-dithiothreitol and 54.9mM D-sorbitol). Colonic tissue was incubated for one
hour in 10 mM EDTA in CCS on an orbital shaker at 4°C. Supernatant containing crypts
were collected and centrifuged at 1500rpm for 10 minutes at 4°C. Crypts were
resuspended in Matrigel (Corning, Tewksbury, MA) and plated in 24-well plates
(Corning) as 30 ul droplets or utilized for flow cytometry. After polymerization at 37°C,
500 ul of expansion media (EM), described in supplemental material) was added to
each well. Media was replenished every 48 hours. All colonoid cultures were maintained
at 37°C with 5% COz2 and passaged every 5 days. To seed Transwells (0.4 uM pore
size), colonoids were harvested from Matrigel using Cultrex Organoid Harvesting
Solution as previously described’®. Colonoids were resuspended in 500 ul of 0.25%
trypsin, washed and transferred to 24 well plates. The plates were placed in a
spinoculator at 37°C and rocked at 600 rpm for 45 minutes to digest the colonoids into
single cells. Digested colonoids were transferred into 15ml conical tubes, containing
10ml PBS and spun down to pellet the cells. The supernatant was removed and single
cells were resuspended in 100 pl of filter media and transferred onto collagen-coated
Transwells (described in supplemental material). Seeded Transwells were placed in 24
well plates and 600 pl of filter media was added to the bottom of the plate. Both the
apical and basal media were replenished every 48 hours until the monolayers were 80-
90% confluent. To seed the confluent layer with macrophages, Transwells were
carefully flipped utilizing sterile forceps and ensuring the media inside the Transwell did
not pour out. Macrophages were generated as described in supplemental material and
previously reported?6-33 and resuspended in filter media at a density of 2000
macrophages per microliter. Macrophages suspended in filter media (50 ul) were
carefully added to the bottom of the filter to cover the entire surface. The plate was
carefully transferred to a cell culture incubator at 37°C for two hours. After, the
Transwells were reinserted into the wells of a 24 well plate. Fresh base media (600 ul)
to allow for differentiation was added to the bottom of the well while 100 ul was added
into the apical side of the Transwell. The co-culture was left for 48 hours at 37°C with

5% CO:a2. The apical and basal media was removed, and the monolayer and
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macrophages were rinsed twice with PBS, fixed with 4% paraformaldehyde and

immunostained (Suppl. Tables S1 and S4) for confocal microscopy.

Human Tissue Collection and Human Colonoid Generation

Human colonoid studies were reviewed and approved by the Johns Hopkins University
School of Medicine Institutional Review Board (IRB# NA_00038329) and University of
New Mexico Institutional Review Board (IRB# 18-171). Colonic biopsies were obtained
from healthy individuals undergoing screening colonoscopies who had given informed
written consent. Colonic crypt isolation and colonoid generation were prepared as
previously reported 7. Briefly, biopsy tissue was minced, washed several times in
freshly prepared cold chelating solution (CCS; 5.6mM Naz2HPO4, 8mM KH2PO4, 96.2mM
NaCl, 1.6mM KCI, 43.4mM sucrose, 54.9mM D-sorbitol, and 0.5mM DL-dithiothreitol)
and incubated 1 hour at 4°C in 10 mM EDTA in CCS on an orbital shaker. Isolated
crypts were resuspended in Matrigel (Corning) and 30 ul droplets were plated in a 24-
well plate (Corning). After polymerization at 37°C, 500 ul of expansion media (EM) was
added for 2 days (Advanced Dulbecco’s modified Eagle medium/Ham’s F-12
(ThermoFisher, Waltham, MA), 100 U/mL penicillin/streptomycin (Quality Biological,
Gaithersburg, MD), 10 mM HEPES (ThermoFisher), and 1X GlutaMAX (ThermoFisher),
with 0.15 nM WNT surrogate-Fc fusion protein (ImmunoPrecise Antibodies, Fargo, ND),
15% v/v R-spondin1 conditioned medium (cell line kindly provided by Calvin Kuo,
Stanford University), 10% v/v Noggin conditioned medium (cell line kindly provided by
Gijs van den Brink, Tytgat Institute for Liver and Intestinal Research), 1X B27
supplement (ThermoFisher), 1 mM N-acetylcysteine (MilliporeSigma), 50 ng/mL human
epidermal growth factor (ThermoFisher), 10 nM [Leu-15] gastrin (AnaSpec, Fremont,
CA), 500 nM A83-01 (Tocris, Bristol, United Kingdom), 10 uM SB202190
(MilliporeSigma), 100 mg/mL primocin (InvivoGen, San Diego, CA), 10 yM CHIR99021
(Tocris), and 10 uM Y-27632 (Tocris)). After 2 days, the EM (without CHIR99021 and Y-
27632) was replaced every other day. Colonoids were passaged every 10-14 days by
harvesting in Cultrex Organoid Harvesting Solution (R&D Systems, Minneapolis, MN) at
4°C with shaking for 30’. Colonoids were fragmented by trituration with a P200 pipet 30-
50 times, collected and diluted in Advanced DMEM/F12, centrifuged at 300 xg for 10’ at
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4°C. The pellet was resuspended in Matrigel and plated as described for crypt isolation.
All colonoid cultures were maintained at 37°C and 5% CO2. Unless noted, colonoid

lines have been passaged >20 times.

RNAscope

RNA was stained in colonoids via the RNAscope protocol (ACD, Newark, CA),with
minor changes, as previously described’®. Briefly, colonoids were harvested from
Matrigel and fixed onto lysine coated glass slides with 4% paraformaldehyde for 1 hour.
Colonoids were permeabilized with hydrogen peroxide for 10 minutes. Slides were
washed 3 times with distilled water, RNAscope Protease Plus was added to submerge
the colonoids. Slides were incubated for 30 minutes at 40°C in a humidified tray. Probe
hybridization was done for 2 hours at 40°C. Signal amplification and detection were
done as described in the RNAscope protocol. Nuclei were stained with DAPI and
FluorSave Reagent (Calbiochem) was used to mount coverslips onto the slides. Images
were acquired at the UNM AIM Center using the LSM 900 Zeiss AXIO Observer.Z1/7
Inverted Fluorescence Microscope with 63x oil objective lens. Images were processed
using the Zen blue (version 3.4) software and ImagedJ (version1.8.0) for quantification.
All RNA probes used are listed in supplemental table S1.

Statistical Analysis

Statistical analysis was performed as described in figure legends and graphs generated
display mean (£ SD or SEM) and were obtained using GraphPad Prism software. The
data were analyzed using one-way ANOVA or two-tailed unpaired Student’s t test
(Prism).

Online supplemental material. Material and methods for colitis induction, cell and
tissue preparation, organoid media, RT-qPCR, flow cytometry, ELISA, and

immunostaining are found in supplemental material.
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Figure 1. Notch target gene expression in the colon of //70”- mice. mRNA
expression of (A) Hes1, (B) Hey1, (C) Dix1, (D) Hes5, (E) Gli1, and (F) Atoh1 in the
inflamed colon of //707- mice compared to the uninflamed colon of (B6) mice. Two
independent experiments, n = 8/group. Graphs indicate mean (xSEM). * P<0.05,
****P<0.0001, ns, not significant. Significance was calculated by two-tailed unpaired
Student’s t test.
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Figure 2. Notch ligand expression in lamina propria macrophages. Phenotype of
lamina propria macrophages in colitic //707- mice. (A) Representative flow cytometric
plots showing MHC Il and Jagged1 expression in LP macrophages (gated on
CD45*MHC-II"CX3CR1*CD68* cells) isolated from colitic //707- mice and non-colitic B6
mice. (B) Graph showing percent of Jagged1* (Jag1) LP macrophages from both group
of mice. (C) Representative flow cytometric plots showing MHC Il and DLL3 expression
in LP macrophages isolated from colitic //707- mice and non-colitic B6 mice. (D) Graph
showing percent of DLL3* LP macrophages from both group of mice. (E)
Representative histogram showing Jagged1 expression in B6 macrophages stimulated
with LPS (Blue) or IFNy (Red) compared to baseline/unstimulated (Black)
macrophages. (F) Graph showing the geometric mean fluorescence intensity (MFI) of
Jagged1 on unstimulated and stimulated B6 macrophages. Representative of two
independent experiments, Graphs indicate mean (£SD). * P<0.05, **P<0.01,
***P<0.001, ****P<0.0001. Significance was calculated by two-tailed unpaired Student’s
t test or one-way ANOVA.
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Figure 3. Inflammatory macrophages inhibit secretory lineage differentiation.
Representative images showing mucin 2 (MUC2) and chromogranin A (CHGA)
detection in mouse epithelia-macrophage (CD68) co-cultures after ISC differentiation.
(A) MUC2 (Red) staining in 1) epithelial monolayers, 2) co-culture with anti-
inflammatory macrophages (M), 3) co-culture with inflammatory macrophages, 4 and
5) staining of CD68 (Purple) on the basolateral surface. (B) Graph shows the proportion
of MUC2™ cells out of 1000 cells counted in each condition. (C) CHGA (Green) staining
in 1) epithelial monolayers, 2) co-culture with anti-inflammatory macrophages (Mo), 3)
co-culture with inflammatory macrophages, 4 and 5) staining of CD68 (purple) on the
basolateral surface. D) Graph shows the proportion of CHGA™ cells out of 1000 cells
counted in each condition. Representative of two independent experiments, n=3 per
group. Graphs indicate mean (xSD). ***P<0.001, ****P<0.0001, ns, not significant.

Significance was calculated by one-way ANOVA.
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Figure 4. Notch activation decrease secretory lineage marker expression in
human colonoids. Macrophage-free Notch activation in Human colonoids. Colonoids
were treated with 10 uM of the Notch activator Yhhu3792 or 40 uM of the Notch inhibitor
SAHM1 for 6 days. Notch target HEY1 and secretory lineage markers MUC2 and CHGA
were quantified via RNA scope. (A) RNAscope detection of HEY1 in human colonoids
after left untreated or treated with Yhhu3792, or SAHM1. (B) Graph shows the
proportion of HEY1* cells out of 1000 cells counted in each condition. (C) RNAscope
detection of MUCZ2 in human colonoids after left untreated or treated with Yhhu3792, or
SAHM1. (D) Graph shows the proportion of MUCZ2* cells out of 1000 cells counted in
each condition. (E) RNAscope detection of CHGA in human colonoids after left
untreated or treated with Yhhu3792, or SAHM1. (F) Graph shows the proportion of
CHGA?* cells out of 1000 cells counted in each condition. Representative of two
independent experiments, n=3 per group. Graphs indicate mean (xSD). * P<0.05,
**P<0.01, ***P<0.001, ns, not significant. Significance was calculated by one-way
ANOVA.
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Inflammatory macrophages prevent colonic goblet and enteroendocrine cell
differentiation through Notch signaling

Roger Atanga et al.,

Supplementary Methods and References, Supplemental Tables (1-4), Supplemental

Figures and Figure Legends (1-5).

Supplementary Methods

Colitis

11107~ mice showed early inflammatory changes by 10-12 weeks after weaning and more
severe inflammation by 14-16 weeks. Dextran Sodium Sulfate (DSS, colitis grade,
~30,000 -50,000 MW; MP Biomedicals) was used for both acute and chronic DSS-
induced colitis in C57BL/6J female mice between 8-16 weeks of age. In the acute
model, mice were provided 2.5% DSS in drinking water ad-libitum for 7 days and then
switched to drinking water for 7 days. In the chronic model, mice received three cycles
of 2.5% DSS in drinking water ad-libitum for 7 days and each cycle was separated with
two weeks of drinking water. Stool was utilized to detect lipocalin-2 (LCN-2). Stool
samples were weighed and diluted in 0.1% PBS-Tween. LCN-2 ELISA was performed
using Quantikine ELISA Kits (R&D Systems) according to the manufacturer’'s

specifications.

Cells and tissue preparation. Colonic epithelial cells and lamina propria (LP)
macrophages were isolated from the colon by a three-step process 1-3. 1) Separation of
the colonic epithelium from the LP by chelation using 2 mM EDTA and 0.5mM
dithiothreitol in HBSS buffer; 2) digestion of the remaining colon with collagenase and
dispase; and 3) enrichment of CD45" cells using biotinylated CD45 antibody and
streptavidin beads from the digested fraction. Colonic epithelial cells were
cryopreserved in RNA-Later (Invitrogen) for RNA isolation. LP macrophages were used
for flow cytometric analysis. Mesenteric lymph nodes (mLN) were collected and
manually homogenized into single cell suspensions. mLN cells were resuspended in

RPMI prior to plating and then stimulated with phorbol 12-myristate 13-acetate (PMA,
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50 ng/mL) and lonomycin (500 ng/mL) in the presence of Brefeldin A/GolgiPlug (1:1000,
BD Biosciences) and Monesin/GolgiStop, (1:1000, BD Biosciences) in preparation for

intracellular cytokine staining and analysis by flow cytometry.

Generation of primary macrophages

The generation of primary macrophages were prepared as briefly described 34, marrow
was collected from the femur and tibia, washed and differentiated in DMEM (Gibco),
FBS (VWR), and murine L929-fibroblast supernatant containing CSF-1 for 10 days,
after which cellular morphology was evaluated to confirm differentiation. Macrophages
were rested for 16 hours in media without CSF-1 prior to stimulation with LPS (200
ng/mL, Thermofisher) or IFNy (10 ng/mL, Peprotech) overnight. Macrophages were
used for flow cytometric analysis or co-culturing with epithelial cells derived from
organoids. Prior to co-culturing with colonic epithelial cells, macrophages were washed

twice before incubation.

Flow Cytometry

Bone marrow-derived or LP cells were pretreated with Stain FcX (anti-CD16/32)
(Biolegend) before being stained for cell surface markers. For staining, cells were
washed with FACS buffer [90% by volume 1x PBS, (Life Technologies), 10%FBS
(VWR), and 0.05% 0.5 M EDTA, (Invitrogen)] prior to staining. Cells were incubated for
20 min with antibody stain in FACS buffer, followed by washing with FACS buffer, and
fixation in 1% PFA. To examine intracellular proteins, cells were permeabilized and
incubated with antibodies targeting cytokines for 30 minutes and then washed and
resuspended in FACS buffer. Sample analysis was performed on LSR Fortessa (BD
Biosciences) and analyzed using FlowJo software (TreeStar). Antibodies used for flow
cytometric analysis are listed in Table S2.

RNA Isolation, Quantification, and RT-gPCR

RNA isolation was performed on cells or tissues cryopreserved in RNA-Later
(Invitrogen) using the RNA Purelink Minikit (Invitrogen) according to the manufacturer’'s
protocols. RNA was quantified on Nanodrop2000 and all samples yielded a 260/280 of
2 £ 0.15. cDNA synthesis was performed using Oligo(dT) Primer and SSIV Reverse
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Transcriptase in the presence of Cloned Ribonuclease Inhibitor (all ThermoFisher).
Reverse transcription reaction and RT-gPCR runs utilized Tagman MasterMix
(ThermoFisher) on a viiA7 Thermal Cycler (ThermoFisher) using QuantStudio 7. RT-

gPCR primers and reagents used are listed in Table S3.

Immunostaining for Confocal Microscopy

Colonoids were harvested from Matrigel using Cultrex Organoid Harvesting Solution as
previously described®. Colonoids were fixed for 30 minutes in 4% paraformaldehyde
(Electron Microscopy Sciences, Hatfield, PA). Colonoids were washed twice using 500 pl
of 1X PBS. Colonoids were permeabilized and blocked simultaneously for 1 hour using a
10% Fetal Bovine Serum (Atlanta Biologicals, Flowery Branch, GA), 0.1% saponin
(MilliporeSigma) solution prepared in PBS. After permeabilization, colonoids were
washed three times in 1X PBS. 100 pl of primary antibody prepared at 1:50 dilution in 1X
PBS was added to organoids and incubated overnight at 4°C. Organoids were washed 3
times with 1X PBS, and 100 pl of AlexaFluor secondary antibodies including AlexaFluor-
647 phalloidin, diluted 1:200 in 1X PBS, were added for 1h at room temperature. Hoechst
33342 (ThermoFisher) 1 mg/ml was added for 5 minutes. After three 1X PBS washes,
FluorSave Reagent (Calbiochem) was added to the colonoids and mounted on glass
slides. Confocal imaging was performed at the UNM AIM Center using the LSM 900 Zeiss
AXIO Observer Z1/7 Inverted Fluorescence Microscope. Images were processed using
the Zen blue (version 3.4) software. Images were processed using the Zen blue (version
3.4). Primary and secondary antibodies used are listed on Table S4.

Organoid Growth media

Intestinal organoid media for monolayer plating (referred to as ‘filter media’) was
comprised of Advanced Dulbecco’s modified Eagle medium/Ham’s F-12 (ThermoFisher,
Waltham, MA), 100 U/mL penicillin/streptomycin (Quality Biological, Gaithersburg, MD),
50% v/v WNT3A conditioned medium (ATCC CRL-2647), 15% v/v R-spondinl
conditioned medium (cell line kindly provided by Calvin Kuo, Stanford University), 10%
v/v Noggin conditioned medium (cell line kindly provided by Gijs van den Brink, Tytgat
Institute for Liver and Intestinal Research), 1X B27 supplement (ThermoFisher), 10 mM
HEPES (ThermoFisher), 1X GlutaMAX (ThermoFisher), 1mM N-acetylcysteine
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(MilliporeSigma), 50 ng/mL human epidermal growth factor (ThermoFisher), 10 nM
[Leu-15] gastrin (AnaSpec, Fremont, CA), 500 nM A83-01 (Tocris, Bristol, United
Kingdom), 10 uM SB202190 (MilliporeSigma), 100 mg/mL primocin (InvivoGen, San
Diego, CA). Intestinal organoid media for expansion of 3-dimensional organoids
(referred to as expansion media) had the same composition as filter media except for
the replacement of 50% v/v WNT3A conditioned medium with 0.15 nM WNT surrogate-
Fc fusion protein (ImmunoPrecise Antibodies, Fargo, ND). The volume of the
conditional WNT3A was made up for by Advanced Dulbecco’s modified Eagle
medium/Ham’s F-12 (ThermoFisher). Base media, for differentiation of organoids, had
the same composition of filter media but lacked WNT3A, Rspo-1 and SB202190. 0.4 uM
pore sizeTranswell filters (Corning) were coated using 100 ul of 100 ug rat collagen IV
(Corning) at 4°C overnight, aspirated, and washed (3x) with 200 pl of sterile water prior

to use.
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Supplemental Tables

Table S1. RNAScope probes

Probe Source Identifier
Hs-CHGA-C4 ACD Cat# 311111-C4
Hs-HEY1 ACD Cat# 311201
Hs-MUC2-c2 ACD Cat# 3122871-C2
Table S2. Flow Cytometry antibodies
Antibody Conjugate Company Catalog #
CD45 eFluor 450 eBioscience 48-0451-82
MHC II APC-eFluor780 eBioscience 47-5321-82
CD68 Brilliant Violet 605 BioLegend 137021
CX3CR1 Brilliant Violet 510 BioLegend 149025
TLR4/MD2 PE-Cyanine7 (PE-Cy7) | eBioscience 25-9924-82
Jaggedl Phycoerythrin (PE) eBioscience 12-3391-82
Jagged?2 eFluor 660 Invitrogen 50-3392-82
DLL1 Alexa Fluor 488 Invitrogen 1942873
DLL3 PE BioLegend 154004
DLL4 APC BioLegend 130814
CD4 PE-Cy7 Invitrogen 25-0041-82
TCRB FITC Invitrogen 11-5961-82
IFNy PE eBioscience 12-7311-82
IL-17A eFluor 660 eBioscience 50-7177-82
IL-22 PerCP-eFluor710 eBioscience 46-7222-82
Lgr5 PE Origene TA400001
Lgr5 Alexa Fluor 647 R&D Systems FAB8240R
EpCAM eFluor 450 eBioscience 48-5791-82
c-Kit/CD117 Alexa Fluor 700 BioLegend 105826
CD24 PerCP-Cy5.5 Invitrogen 45-0242-80
Notchl APC Invitrogen 17-5765-82
Notch2 PE Invitrogen 12-5786-82
Notch3 Alexa Fluor 647 BioLegend 130512
Notch4 PE BioLegend 128407
CDA45 Biotin BioLegend 103104
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Table S3. PCR Primers

Assay ID Source Identifier

Atohl: Mm00476035_s1 ThermoFisher Cat# 4331182
Gapdh: MmM99999915 ThermoFisher Cat# 4331182
Hesl: MmM01342805 m1l ThermoFisher Cat# 4331182
Heyl: Mm00468865 ml ThermoFisher Cat# 4453320
Hes5: Mm00439311 gl ThermoFisher Cat# 4331182
Dtx1: Mm00492297_m1 ThermoFisher Cat# 4453320
Gli5: Mm00494654 m1 ThermoFisher Cat# 4331182

Table S4. Primary and secondary antibodies for Immunostaining

Antibody Source Identifier

CD68 ThermoFisher Cat# 140681-82
MUC2 Novus Cat# NBP1 31231
Chromogranin A Santa Cruz Cat# Sc393941
Donkey anti-Rabbit IgG-AF488 ThermoFisher Cat# A-21206
Donkey anti-Mouse IgG, AF568 ThermoFisher Cat# A10037
Donkey anti-Mouse IgG, AF488 ThermoFisher Cat# A21202
Goat anti-Rabbit IgG AF568 ThermoFisher Cat# A1101042
Phalloidin-Alexa Fluor 647 AAT Bioquest Cat# 1000854
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Supplemental Figure 1. Comparison of colitic 11107 and non-colitic B6 mice. (A)
Fecal LCN-2 levels as detected by ELISA from colitic 11107~ and non-colitic B6 mice.
Colon epithelial (B) Hes1 and (C) Atohl gene expression after acute (aDSS) and
chronic (cDSS) DSS-induced colitis. (D) Representative dot plots showing Intracellular
IFNy staining in CD4* T cells isolated from mLN in colitic 11107 and non-colitic B6 mice
and corresponding graph. (E) Representative dot plots showing Intracellular IL-17A
staining in CD4"* T cells isolated from mLN in colitic 11107~ and non-colitic B6 mice and
corresponding graph. (F) Representative dot plots showing Intracellular IL-22 staining in
CD4* T cells isolated from mLN in colitic 11107 and non-colitic B6 mice and
corresponding graph. Representative of two independent experiments, Graphs indicate
mean (£SEM). *P<0.05, **P<0.01, ***P<0.001, Significance was calculated by two-tailed

unpaired Student’s t test.
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Supplemental Figure 2. Colonic lamina propria macrophages and Notch ligand
expression. Gating strategy of LP macrophages from (A) B6 and (B) 11107 mice. (A, B)
Dot plots showing FSC/SSC. FSC-W and lamina propria (gated on CD45* and MHC II*)
cells and further gated on CD68 and CX3CR1. Dot plot showing gated CD68+ cells
TLR4 expression. (C) Graph showing total number of macrophages (MHC-
[I"CD68*CX3CRL1"). (D-F) Graphs showing the percent of (D) DLL1*, (E) DLL4*, and (F)
Jagged2* (Jag2) macrophages. Representative of two independent experiments (n=3
per group), Graphs indicate mean (xSD). **P<0.01, ns, not significant. Significance was

calculated by two-tailed unpaired Student’s t test.
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Supplemental Figure 3. Notch ligand expression in macrophages after
inflammatory stimulation. Representative histograms showing (A) Jagged2, (B) DLL1,
(C) DLL3, and (D) DLL4 expression in B6 macrophages stimulated with LPS (Blue) or
IFNy (Red) compared to baseline/unstimulated (Black) macrophages and corresponding
graph showing the geometric mean fluorescence intensity (MFI) of (A) Jagged2, (B)
DLL1, (C) DLL3, and (D) DLL4 in unstimulated and stimulated B6 macrophages.
Representative of two independent experiments (n=3 per group), Graphs indicate mean
(xSD). *P<0.05, *P<0.01, ***P<0.001, ns, not significant. Significance was calculated

by one-way ANOVA.
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Supplemental Figure 4. Notch Receptor on colonic crypt cells. Crypt cells were
isolated from the colon of B6 or 11107 mice to examine Notch receptor expression. (A)
Gating strategy of Lgr5* crypt cells — Lgr5* EpCAM*CD24*c-Kit* cells were examined
for Notch receptor expression. Graphs showing the percent of (B) Notchl, (C) Notch2,
(D) Notch3, and (E) Notch4 Lgr5* crypt cells isolated from B6 or 11107 mice.
Representative of two independent experiments (n=3 per group), Graphs indicate mean
(xSD). ns, not significant. Significance was calculated by two-tailed unpaired Student’s t

test.
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Supplemental Figure 5
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Supplemental Figure 5. Graphical image showing inflammatory macrophages express
increased levels of Notch ligands that can influence intestinal stem cells (ISC) to
become absorptive cells through the promotion of Notch signaling (Image made with
BioRender).
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