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Abstract

Large-scale genetic circuits are rapidly becoming crit-
ical components for the next generation of biotech-
nologies and living therapeutics. However, the rela-
tionship between synthetic and host gene expression
is poorly understood. To reveal the impact of ge-
netic circuits on their host, we measure the transcrip-
tional response of wild-type and engineered E. coli
MG1655 subject to seven genomically integrated cir-
cuits and two plasmid-based circuits across 4 growth
time points and 4 circuit input states resulting in 1007
transcriptional profiles. We train a classifier to dis-
tinguish profiles from wild-type or engineered strains
and use the classifier to identify synthetic construct
burdened genes, i.e., genes whose dysregulation is de-
pendent on the presence of a genetic circuit and not
what is encoded on the circuit. We develop a deep
learning architecture, capable of disentangling influ-
ence of combinations of perturbations, to model the
impact that synthetic genes have on their host. We
use the model to hypothesize a generalizable, syn-
thetic cell state phenotype and validate the pheno-
type through antibiotic challenge experiments. The
synthetic cell state results in increased resistance to
B-lactam antibiotics in gram-negative bacteria. This
work enhances our understanding of circuit impact
by quantifying the disruption of host biological pro-
cesses and can guide the design of robust genetic cir-
cuits with minimal burden or uncover novel biological
circuits and phenotypes.

*Please address correspondence to aqib@ucsb.edu

Introduction

Genetic circuits are engineered biological systems
composed of interacting genetic elements, such as pro-
tein coding sequences and promoters, that are de-
signed to implement specified logics in living cells.
The wide adoption of genetic circuits holds promise
for significant advancements in biotechnology and
medicine, offering new avenues for disease diagno-
sis and treatment, as well as providing sustainable
methods for the production of biofuels, chemicals, and
other valuable products. The use of these circuits can
already be found in a range of tasks, including im-
proving control of gene expression through directed
evolution and high-throughput screens [11 2] [3] 4], ex-
panding biomanufacturing capabilities [5, [6] [7], ad-
vancing next-generation therapeutics and diagnostics
[8, 9] [T0], and sensing biotechnologically relevant com-
pounds [T}, 12 [13], [14].

Applications of synthetic biology in the environ-
ment and health require robust, predictable perfor-
mance of gene circuits in the host organisms in which
they reside. This is made challenging largely due
to the synthetic construct imposing a burden on
their host potentially resulting in reduced fitness, dis-
ruption of circuit performance, and undesirable and
unforeseen phenotypes [I5 16, 17]. Though stud-
ies have been performed to measure the transcrip-
tional response of the host under burden conditions
[18, 19} [20], it is still unclear which synthetic construct
components are driving the transcriptional disrup-
tion, especially in scenarios where burden is not real-
ized through fitness defects (which have been shown
to be highly correlated with cellular capacity [20]).
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More than that, it is also not known how burden ef-
fects differ between constructs that are genomically
integrated and constructs that are expressed from a
plasmid. Quantitative methods to investigate genetic
circuits have been developed to characterize and trou-
bleshoot origins of failures [21], 22} 23], however meth-
ods that model the influence of the circuit on the host
transcriptional response have been restricted to math-
ematical modeling and have not revealed how specific
host gene expression is dysregulated [16], 24} 25].

Quantitatively disentangling the impact of syn-
thetic gene expression on host gene expression is made
challenging for several reasons. Firstly, synthetic
genes are typically part of a network of genes, and if
not as part of a network, at least an antibiotic resis-
tance marker is required for screening transformants.
Disentangling impact is also made difficult to con-
founders such as external inducers or the time point
at which the measurements are taken. Lastly, distinct
perturbations applied individually (e.g., two distinct
synthetic genes) generally will not impact the host
in an additive manner when applied simultaneously.
Recent work has established machine learning for pre-
dicting the transcriptional response of combinatorial
perturbations from single perturbations [26], 27]. In-
spired by these works, we develop an adversarially-
trained deep learning architecture [28] that allows for
the prediction of unseen combinations of perturba-
tions from transcriptomics data for data-driven mod-
eling of gene expression burden.

In this paper, we seek to characterize and quantita-
tively model the transcriptional dysregulation of host
biological processes that are perturbed by synthetic
constructs. To characterize the impact, we analyze
a set of E. coli MG1655 strains that have been engi-
neered to express synthetic payloads integrated in the
genome as well as from a plasmid. We examine signif-
icant changes in gene expression between engineered
strains and the wild-type through differential expres-
sion analysis of RNA sequencing (RNA-seq) collected
over 10 inducer combinations and 4 time points from
each of 9 strains. This data are also used to identify 3
genes whose dysregulation explains differences in each
strain’s stationary phase cell density. We train a clas-
sifier to identify 20 genes capable of distinguishing be-
tween wild-type and engineered strains and propose
these as biomarkers of circuit engineering. Finally,
our deep learning model is used to measure the influ-
ence of individual synthetic genes and combinations
of synthetic genes on the host, identifying host genes
which are disrupted, not by any single synthetic gene,
but by a combination of synthetic genes. The burden
imposed by synthetic constructs, which is not always
reflected in a reduction in growth rate, was shown to

be generalizable to new strains and new constructs
through the phenotype of increased resistance to an-
tibiotics in the [S-lactam class, verifying the ability
of our model to identify generalizable phenotypes in-
duced by synthetic gene networks.

Results

RNA-seq characterization of a genomically-
integrated genetic NAND circuit reveals sig-
nificant disruption in transcriptome of E. coli
We sought to investigate the transcriptomic response
of E. coli MG1655 engineered with genetic circuits
in which the number of genetic components is mod-
ularly increased in size, ultimately resulting in a ge-
netic circuit that performs Not AND (NAND) logic
(Fig. [[]A). The base circuit strain is comprised of four
genes, driven by the constitutive pLaclq promoter
[29], which switch regulatory states upon induction.
In the final strain, araC and lacl, are used to imple-
ment control over the expression of two downstream
repressors, phlF' and icaR, which are activated in the
presence of Ara and IPTG, respectively. The expres-
sion of yellow fluorescent protein (YFP) is controlled
by the repressors to implement NAND logic, i.e. only
in the presence of Ara and IPTG is YFP expression
low, otherwise YFP expression is high (Fig. [IB).
The resulting 9 strains used for this study are named
wild-type (WT), landing pads, pBADmin, pTACmin,
PhlF Gate, IcaR Gate, NAND Circuit, PhlF Gate
(plasmid), and IcaR Gate (plasmid). Transcriptome
profiles were generated for each strain, including the
wild-type strain, across four time points: 5, 6.5, 8,
and 18 hours post-induction, and 10 inducer condi-
tions (Ara (mM)/IPTG (uM): 0/0,0/62,0/75,0/373,
6.2/0, 6.2/62, 7.5/0, 7.5/75, 37.3/0, 37.3/373) re-
sulting in 783 wild-type and genomically-integrated
profiles and 224 plasmid-based profiles for character-
ization. The time points were chosen to profile the
transcriptome at early log phase, mid log phase, and
stationary phase.

To characterize the main sources of variation in the
RNA-seq data, i.e. strain, timepoint, or inducer con-
dition, we performed an integrated analysis of all 783
genomically-integrated and wild-type transcriptome
profiles through graph-based clustering and manifold
learning. Each profile consists of expression levels in
In(transcripts per million + 1), where transcripts per
million (TPM) is calculated as described in [30], of
4,095 genes in the F. coli MG1655 genome. Distances
between profiles can measure the level of similarity
between two experimental conditions, however due to
distances in high-dimensional space being untrustwor-
thy [31], we first project the full transcriptome of each
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Figure 1: Bottom-up construction and RNA-seq characterization of the genetic NAND circuit reveals
significant disruption in E. coli genome. (A) Synthetic gene circuit schematics for the six strains used to
characterize the impact of circuits on their host. (B) Distribution of the expression of YFP is shown for the genetic
NAND circuit across the four inducer input states. Expression is quantified using In(transcripts per million + 1). (C)
Two-dimensional representation of wild-type and genomic integration circuit strain transcriptome profiles. The two
dimensions correspond to the first two coordinates identified through graph-based clustering using PCA followed by
UMAP. Graph-based clusters using the Leiden clustering algorithm are visualized in the top-left panel. The data
points are colored by strain, time, and inducer combination in the top-right, bottom-left, and bottom-right panels,
respectively. (D) Gene ontology enrichment analysis of differentially expressed genes identified flagellum assembly,
amino acid biosynthesis, and tricarboxylic acid cycle to be over-enriched at 5, 6.5/8, and 18 hours, respectively. The
upper panel shows, in large, black markers, the dysregulated genes belonging to the biological process in the legend.
Genes marked in gray are not significantly differentially expressed. Genes marked in blue are differentially expressed,
but do not belong to the biological process in the legend. The lower panels show marker genes from each biological
process in the two-dimensional UMAP space. The color scale denotes the expression in In(transcripts per million +

1).

sample onto principal components of the data matrix.
Next, to preserve both global and local structure of
the manifold on which the data points lie, we per-
form Uniform Manifold Approximation and Projec-
tion (UMAP) to further reduce the gene-space to two
dimensions for visualization [32] B33].

Graph-based clustering (Leiden clustering [34]) re-
solved distinct transcriptomic profiles, identifying 17
clusters which are characterized by combinations of
strain, time, and inducer concentrations (Fig. )
We found that globally across clusters the main
sources of variation are the strain and time point,
while locally within a cluster the inducer combination

dominates. The profiles are projected to two dimen-
sions with UMAP for visualization purposes, and the
Leiden clusters visually agree with variation in the
reduced space.

The landing pads strain, containing four constitu-
tively expressed heterologous genes and landing pads
for integration elsewhere in the genome, is clustered
together with the wild-type strain at all time points
and inducer combinations. This strain is the clos-
est to the wild-type E. coli as it does not contain
any circuit components, except the four constitutively
expressed genes responsible for sensing external in-
ducers. Notably, the landing pads strain does not
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contain an antibiotic resistance gene. With the intro-
duction of the antibiotic resistance gene, kanR, along-
side YFP to construct the pPBADmin and pTACmin
strains, the similarity to the wild-type strain is di-
minished. This is consistent with previous proteomic
studies that showed evidence of plasmid metabolic
burden during fermentations is related to the produc-
tion of antibiotic resistance gene products [35] [36].

Excluding the landing pads strain, the engineered
strains’ transcriptome profiles are shown to be simi-
lar through clustering of pPBADmin, pTACmin, PhIF
Gate, IcaR Gate, and NAND Circuit strains at all
timepoints and inducer combinations.

We next focused our attention to quantify the gene
expression differences between engineered strains (ex-
cluding the landing pads strain) and the wild-type.
We found 1846 genes to be statistically significantly
differentially expressed when comparing the NAND
strain to the wild-type strain; 767 after 5 hours, 683
after 6.5/8 hours, and 1138 after 18 hours. (Fig. [ID).
Enrichment analysis reveals targeted disrup-
tion to genes associated with flagellum assem-
bly, amino acid transport and biosynthesis,
and TCA cycle
We found significant upregulation of flagellum assem-
bly genes at the 5 hour time point when compar-
ing engineered strains to the wild-type (Fig. ,
left). Using Gene Set Enrichment Analysis (GSEA)
[37, B8, [39], we identified that there is a 4.8-fold en-
richment of flagellum assembly upregulation (Fisher’s
exact test, FDR=4 x 1073). flgA, required for the
assembly of the flagellar P-ring formation, is upreg-
ulated 5.3 fold (Fig. [ID, left). Through GSEA we
also found the enrichment of nitrate assimilation (4.6-
fold enrichment, FDR=3 x 10~2), colanic acid biosyn-
thesis (4.2-fold enrichment, FDR=1 x 107%), aro-
matic amino acid biosynthesis (3.8-fold enrichment,
FDR=4 x 1073), anaerobic respiration (3.2-fold en-
richment, FDR=2 x 107%), and general transport
associated biological processes (1.3-fold enrichment,
FDR=2 x 1072) 5 hours post-induction.

Significant down and upregulation of amino acid
transport and biosynthesis was revealed through
GSEA at the 6.5 and 8 hour time points (Fig. ,
middle). Amino acid transport is enriched 3.3-fold
(FDR=2 x 1072) and amino acid biosynthesis is en-
riched 1.9-fold (FDR=4 x 1072). The amino acid
proline is catabolized by the proline dehydrogenase,
putA, which is downregulated 11-fold (Fig. , mid-
dle). Through GSEA we also found the enrichment
of slime layer polysaccharide biosynthesis (5.8-fold en-
richment, FDR=3 x 10~2), hexitol metabolism (5.3-
fold enrichment, FDR=4 x 10~2), and cellular respi-
ration (2.1-fold enrichment, FDR=3 x 10~2) 6.5 and

8 hours post-induction.

After 18 hours post-induction, GSEA reveals that
the tricarboxylic acid (TCA) cycle dysregulation is
enriched 7.7-fold (FDR=1 x 107°) (Fig. [1D, right).
This is consistent with the findings of proteomics and
metabolic flux analysis which demonstrated an in-
crease in TCA metabolic flux [36]. The upregula-
tion ranges from 2.7-fold (acnB) to 13-fold (aceA)
and one TCA cycle gene, aspA, is downregulated
3.5-fold. GSEA also reveals an 11-fold enrichment
(FDR=4 x 10~2) in the glyoxylate cycle. This in con-
juction with a 7.5-fold upregulation of icd suggests a
shifting of carbon flux between TCA and glyoxylate
cycles [40].

Dysregulation of endogenous gene expression
patterns explains fitness variation across ge-
netically engineered strains

All engineered strains suffered from fitness defects ob-
served through an increase in lag time and stationary
phase density (Fig ) Strain pTACmin, different
from pBADmin by a single promoter driving YFP ex-
pression, suffers from considerably greater defect in
stationary phase density relative to other synthetic
strains. This includes the NAND Circuit strain ex-
pressing three additional genes, one being a second
antibiotic resistance gene which are known to be bur-
densome to the host [41]. This observed fitness defect
in pTACmin is unexplained by the heterologous gene
expression as strains with similar heterologous expres-
sion have different growth defects and strains with
different heterologous expression have similar growth
defects (Fig ) We then sought to explain this de-
viation in fitness in pTACmin through analyzing the
response of host genes.

We found a set of three genes to be consistently
differentially expressed in the pTACmin strain when
comparing to all other synthetic strains; the genes flu,
yeeR, yeeS are upregulated 6, 3, and 2 fold, respec-
tively, when compared to the pBADmin strain. The
upregulation is present at 5, 6.5, and 8 hours regard-
less of inducer levels and diminishes at the 18 hour
time point (Fig[2C).

flu, which codes for the protein known as Agd3,
is responsible for colony form variation and autoag-
gregation in liquid media [42]. The activity of Agd3
can be switched between ON/OFF states through
a competition between DNA methylation at GATC
sites of the regulatory region of flu and repression
by OxyR [43]. However, we find no evidence that
levels of OxyR or DNA adenine methyltransferase
(DAM) change between synthetic constructs (Sup-
plementary Fig. [1)). From a study investigating the
role of Ag43 for biofilm formation, researchers showed
that some Agd3 variants promote biofilm formation
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Figure 2: Host gene dysregulation explains fit-
ness variability across strains (A) Growth curves
for each strain used in the NAND circuit construction.
Vertical gray lines denote the time points at which bulk
RNA sequencing was performed on the individual strains.
The averages and standard deviations were calculated us-
ing four biological replicates. (B) The total heterolo-
gous expression in each of the strains used in the NAND
circuit construction where total expression is computed
by summing the expression of all circuit genes within a
replicate. The averages and standard deviations were
calculated from eight replicates. (C) Expression (in
In(transcripts per million+1)) of three genes differentially
expressed in pTACmin and not other circuit strains: flu,
yeeR, yeeS, colored by strain (upper, see (A and B) for the
color to strain key) and by time (lower). (D) The pre-
dicted stationary phase cell density (at 18 hours) of the six
strains in (A), by the expression of genes flu, yeeR, yeeS
shown in (C), are compared against their measured values
(R? = 0.91). The solid line depicts the y = x line. Experi-
mental error bars represent the sample standard deviation
in the measured cell density at 18 hours across four bio-
logical replicates. Model error bars represent the standard
deviation over 192-fold cross validation. (E) Probability
density of the correlation between mean predictions and
mean stationary phase cell density obtained by randomly
selecting 2000 triplets of genes. The correlation for the
triplet of genes from (C) is indicated with a dashed or-
ange line near x = 1.0.

and result in a decrease in optical density (OD) [44].
yeeR and yeeS are co-transcribed as a single tran-
scriptional unit along with flu, suggesting that they
may as well play a role in biofilm formation [45]. In
the pTACmin strain, correlations among flu and yeeR

are significantly higher when compared to all other
strains in this study, further suggesting a mechanism
of co-regulation (Supplementary Fig. [2)).

We next evaluated if the overexpression of flu, yeeR,
and yeeS seen in the RNA-seq measurements can ex-
plain the fitness variability across strains. We con-
structed a linear model that predicts the optical den-
sities at 18 hours, shown in Fig. 1C, from their tran-
scriptome profiles at all time points (see Methods sec-
tion “Predicting optical density from RNA-seq mea-
surements” ). The linear model is able to capture 91%
of the variation in the optical densities across strains,
using the expression of only these three genes (Fig
2D).

To test how statistically significant this result is, we
compare to randomly selected sets of three genes and
construct linear models for each random set, measur-
ing their performance using the correlation between
actual optical density and predicted optical density.
From predictions of 2000 randomly selected triplets
of genes, the probability density was empirically es-
timated through kernel density estimation (Fig [2E).
From this distribution, we calculated the probability
of achieving a higher correlation than that achieved
by flu, yeeR, and yeeS. When comparing mean pre-
dictions and the mean measurements, this gene set
achieved a correlation of 0.975. Of the 2000 tested
gene sets, only two achieved a higher correlation with
the maximum being 0.987. Empirically, the proba-
bility of randomly selecting a set of three genes that
better explains the fitness defect is 2/2000 or 0.1%.
This exceedingly unlikely probability of randomly se-
lecting three genes to explain the fitness variability
across strains, coupled with their dysregulation and
role in biofilm formation, we conclude that the expres-
sions of flu, yeeR, and yeeS are indicators of synthetic
strain fitness.

Time-course RINA-seq reveals a conserved set
of synthetic cell state biomarkers indicative of
circuit engineering

An integrated analysis of the RNA-seq data across
wild-type and engineered strains show that the host
transcriptome of engineered strains are transcription-
ally similar to one another (Fig. [IC). This suggests
the existence of host genes which are commonly dys-
regulated, giving rise to a synthetic cell state that,
once characterized, can explain phenotypes resulting
from construct burden and can be tuned based on the
needs of an application. Moreover, knowledge of such
synthetic-construct-induced genes can play a pivotal
role in quantifying the burden imposed by expression
of heterologous genes.

Ceroni et al. identified seven synthetic-construct-
induced genes from RNA-seq measurements in E. coli
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Figure 3: The engineered cell state is classified by conditionally-independent, synthetic-construct-
induced dysregulation. (A) Logistic regression was used to extract gene weights for classifying whether a tran-
scriptional profile belongs to the wild-type or engineered strain class. The model coefficients are depicted on the left
and a histogram of the coefficients on the right. (B) Logistic regression classifiers were trained on increasing number
of genes, either ranked by the coefficients in (A) or by random selection and depicted here are the classifier F1 scores.
(C) Expression (minmax normalized across all conditions) for synthetic cell state genes (30 genes with largest mag-
nitude coefficient in logistic regression model) grouped by strain. (D) Fold change of the synthetic-construct-induced
biomarkers in (C) comparing the NAND circuit to the wild-type condition. Horizontal dashed lines are displayed at
+0.25. (E) Two-dimensional representation of wild-type and genomic integration circuit strain whose transcriptome
profiles are comprised of the 20 transcription factors associated with regulation of the synthetic cell state biomark-
ers (left) and 20 random transcription factors (right). The two dimensions correspond to the principal components
which capture the largest amount of variance in the data. The black dashed line in the left panel indicates the linear
separation between wild-type and synthetic strains.

transformed with plasmids that impose high burden induced genes, htpG, is burden-induced and a feed-
on the host [I9] as measured by a cellular capacity back controller was constructed to mitigate growth
monitor circuit [20]. In their study, it was shown that defects. We then wanted to see if the seven genes
the promoter from one of the synthetic-construct- also are biomarkers of synthetic constructs when con-
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sidering strains with genomically integrated circuits.
Due to the low copy number of genomically integrat-
ing synthetic constructs, the burden is thought to be
lower than in the plasmid case.

We found a shared pattern of temporal dysregula-
tion in the seven genes identified in [I9] (Supplemen-
tary Fig. [3). When comparing the transcriptional
profiles of the NAND strain to the wild-type strain,
we find that a majority of these genes are not differ-
entially expressed 5 hours post-induction. The genes
then follow a pattern of upregulation at 6.5 and 8
hours followed by downregulation at 18 hours (and
similar for the two plasmid strains). htpG is dysreg-
ulated no more than 2-fold, consistent with another
study reporting plasmid-based host impact [21]. This
then suggests that there are experimental contexts in
which the seven identified genes are not necessarily
burden-induced or indicative of engineered cell states.

Motivated by this, we next sought to identify host
genes that are indicative of circuit engineering, i.e.
genes whose dysregulation is independent of the ex-
perimental conditions and depends only on possessing
a synthetic construct or not. To identify these genes,
i.e., genes whose dysregulation depends on the pres-
ence of a synthetic construct and not what is encoded
on the construct, we trained a linear classifier (bi-
nary logistic regression; see Methods section “Classi-
fying synthetic-construct-induced biomarker genes”)
to predict, from a transcriptional profile, whether the
sample belongs to a wild-type strain or to a engi-
neered strain.

We found that most genes have insignificant contri-
bution to classifying wild-type vs engineered strains
from the transcriptional profiles. To quantify this, we
compare the logistic regression (LR) coefficients and
use them as a measure of feature importance (Fig.
[B]A). On a held-out test set of 504 out of 1007 total
samples, the classifier correctly predicts the class of
all 504 samples.

Next, we quantified how well the coefficients of the
LR classifier capture genes which are discriminative
of wild-type and synthetic strains and found that on
the order of 10 genes are needed for near perfect clas-
sification on the held-out test set (Fig. [3B). To do
this, we re-trained LR classifiers on subsets of genes
chosen by their magnitude of LR coefficients and used
F1 score as the classification performance metric. Us-
ing this strategy, we find that using more than the top
10 genes for re-training provides diminishing returns
for F1 score. Comparing this performance to ran-
domly sampled genes for classification, we find that
the identified important features significantly outper-
form random selection (Fig. BB).

The 30 genes with largest magnitude regression

coeflicient are involved in disparate biological pro-
cesses including nitrate assimilation, zinc ion trans-
port, and sulfate transport (Supplementary Fig. .
To showcase the conditionally-independent dysregu-
lation across synthetic strains, we visualize these 30
genes in a heatmap shown in Fig. BIC. Here the RNA-
seq data is grouped by strain, and within each strain
are data from the four time points and 10 distinct in-
ducer combinations. We see that regardless of the ex-
perimental context, these genes are dysregulated with
striking fold changes ranging from 7 x 10~ (ykgM)
to 32 (cysA) (Supplementary Fig. . Of the 30 genes
shown, 20 exhibit the similar transcriptional profiles
in plasmid-based strains as in genomically integrated
strains characterized in this study (Supplementary
Fig. @ We propose this set of genes as synthetic
cell state biomarkers in engineered strains.

Transcription factor regulation of engineered
cell state biomarkers distinguish engineered
from wild-type strains

To better understand interdependencies and co-
regulation between the proposed synthetic cell state
biomarkers and to further validate the proposed set
of biomarkers, we sought to identify shared transcrip-
tional regulators, shared sigma factors, and gene es-
sentiality. Two out of the 33 synthetic cell state genes
are essential for growth in rich medium, csgF and
dipA [46], both of which are upregulated in synthetic
constructs. dipA plays a role in transport of di- and
tripeptides [47] and is activated by the OmpR regu-
lon [48] while csgE plays a role in curli production,

assembly, and transport [49].

The housekeeping sigma, factor, o7°, regulates the

transcription initiation of the majority of engineered
cell state genes (Supplementary Table . We also
found that 5 out of 30 of the biomarkers are regulated
by the stationary phase sigma factor, o38. At the 18
hour time point the expression of ¢7° is higher in the
wild-type strain and the expression of o8 is lower in
the wild-type strain compared to engineered strains,
suggesting an increased or early-induced stress re-
sponse in engineered strains (Supplementary Fig. [7)).

We found that the transcription of the engineered
cell state biomarkers are regulated by 20 unique tran-
scription factors (TFs) (Supplementary Table [2). To
understand how significant the expression of the iden-
tified 20 TFs are for distinguishing engineered cell
states from wild-type cell states, we measured how
distinct they are through linear dimensionality reduc-
tion on only these 20 TF's. Using principal component
analysis, we computed the directions of maximal vari-
ance in the data (subsetted to the 20 TFs) and pro-
jected the data onto these directions. We similarly
followed this procedure when 20 randomly selected
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TFs are chosen instead of the identified 20. We found
that when considering the 20 identified TF's the dis-
tance between wild-type and synthetic strains in the
reduced space is larger than when considering 20 ran-
dom TFs (Fig. [BE). Engineered strains are nearly
linearly separable from the wild-type when consider-
ing only the 20 identified TF's, whereas there is no
clear separability for the random TF case.

A deep learning model quantifies the targeted
impact of genetic circuits on the host tran-
scriptome

The transcriptional processes of engineered microbes
are heavily disrupted by the introduction of syn-
thetic payloads. Though studies have shown that
kanamycin resistance genes have significant effects on
gene transcript levels in E. coli [41], there is no quan-
titative model that demonstrates this effect. To quan-
tify the effects of individual synthetic construct ele-
ments on the host transcriptome, we develop a deep
learning model, influenced heavily by prior architec-
tures for deconfounding batch effects and other co-
variates in transcriptomics data [50 27], which dis-
entangles the influence of individual perturbations on
the host transcriptome.

Our deep learning architecture consists of a set of
three autoencoders, one for gene compression and re-
construction, one for continuous covariate (perturba-
tion) compression and reconstruction, and one for
discrete covariate compression and reconstruction.
Alongside are two discriminators, a perturbation dis-
criminator and a covariate discriminator (Fig. [A).
Gene expression vectors representing transcriptomic
profiles, x, are compressed by a variational autoen-
coder to a latent state z which is distributed accord-
ing to a standard normal distribution. The associ-
ated perturbations, p, and covariates, ¢, are com-
pressed deterministically to latent states ¢ and d of
the same dimension as z. To facilitate the gene latent
state, z, to be free from information about the corre-
sponding perturbation and covariates, during train-
ing the encoders are penalized for producing latent
states from which discriminators are able to predict
the perturbations and covariates. In this way, z be-
comes a perturbation-free (and covariate-free) latent
state. The influence of perturbations and covariates
on the host genes are then captured in the latent space
through a linear model of the form

T=F(z4+q+4d) (1)

where [ is the decoder tasked with predicting z,
the reconstruction of the gene expression z. See the
Methods section “Circuit-impact model” for details on
model training, hyperparameter selection, and model
evaluation.

We found that our circuit impact model accu-
rately captures the impact of perturbations on un-
seen strains, achieving an R? of over 0.75 on all left-
out strains (Fig. [B, top panel). This includes the
NAND Circuit strain in which all synthetic regulatory
interactions are present, demonstrating that the deep
learning approach captures the compositional impact
of regulatory elements. Specifically, the model cap-
tures host gene dysregulation upon composition of
both icaR and phlF' in the NAND Circuit strain, af-
ter only being trained on the impact of each individ-
ually (Fig. , lower panel). Here we have also in-
cluded two plasmid-based strains, pJ2007 PhlF, and
pJ2007 IcaR for which RNA-seq measurements were
also taken across IPTG/Ara doses and time points.

Once the model is trained, the latent state z no
longer carries information of the perturbations and
covariates (Fig. , top panel). This is enforced
through adversarial training and also through en-
forcing that z follow a standard normal distribution.
Thus, the effects of perturbations and covariates can
be fully captured in the latent space. Our model also
provides an interpretable perturbation latent state
that can be used to quantify the similarity and dif-
ferences between the impact of perturbations across
strains (Fig. [AC, bottom panel.) The first dimen-
sion of the perturbation latent state, g1, captures the
variation of perturbations across strains while the sec-
ond dimension, q¢2, captures the temporal perturba-
tion differences (Supplementary Fig. [g)).

Testing to see if our model has captured known bio-
logical mechanisms of regulation, we found a positive
influence of the araBAD operon by arabinose and a
positive influence of the lacZ YA operon by IPTG (Fig.
[D). We measure the influence of each individual per-
turbation on each host gene through sensitivity anal-
ysis. We define the influence of perturbation j on
gene ¢ as O0&;/0p; which can be calculated through
the chain rule as

0&; 0 ' kA
dp;  Oq Op;

(2)

This measure of influence can be calculated for ev-
ery sample, x, in the RNA-seq dataset and this is
visualized in Fig. (left column). Computing the
influence of each perturbation, p;, on araD, we find
that the arabinose concentration (Ara) has the most
significant positive influence on expression. This is
consistent with prior knowledge of Ara activation of
the araBAD operon [51]. Similarly, we find that the
model infers that lacZ is activated in the presence of
IPTG, consistent with prior knowledge [51].

Using counterfactual (CF) experiments, our model
infers that the change in wild-type expression between
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Figure 4: Deep learning captures host gene dysregulation in unseen circuit combinations. (A) A
schematic depicting the deep learning architecture for disentangling the influence of individual synthetic construct
elements. The network consists of three autoencoders (and two discriminators) which transform inputs z, p, and ¢
into latent states z, ¢, and d, respectively, and where x denotes a vector of genes, p denotes a vector of continuous
perturbations and ¢ denotes a vector of discrete covariates The list of perturbations and covariates are provided in the
tables on the right. The discriminators are each tasked with predicting either the perturbation vector or the covariate
vector. The gene encoder is penalized for producing latent states z from which the perturbations and covariates are
able to be discriminated. (B) (Top) Results of leaving one strain out from training and testing on the left-out strain
are measured through the coefficient of determination, R?. The results shown here are from the model selected via
hyperparameter optimization. (Bottom) Predicted vs. true gene expression of the NAND Circuit strain from the
circuit impact model trained on all other strains. (C) The first two-dimensions of the transcriptome latent state,
z, is depicted for all samples = in the RNA-seq dataset. Below is the resulting two-dimensional perturbation latent
state, ¢. All data points are colored by strain. (D) (Left column) Kernel density estimates of the influence of each
continuous perturbation in p on the host transcriptome z, i.e. dz;/dp;, for two genes araD and lacZ. (Right column)
Counterfactual experiments capturing the ability of the model to 1) simulate time responses to doses of inducers, and
2) recapitulate activity of known sugar utilization pathways. (E) Total influence of the synthetic genetic network on
host genes. Influences on synthetic cell state biomarkers are visualized separately. (F) Individual influence of genes
in the synthetic gene network on the synthetic cell state biomarkers.
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+Ara/-IPTG and -Ara/-IPTG can be explained by
a simulated Ara dose and how much of the change
in wild-type expression between -Ara/+IPTG and -
Ara/-IPTG can be explained by a simulated IPTG
dose. The CF experiment answers the question —
what would the transcriptional profile have been if
the strain was perturbed with a distinct perturba-
tion vector p. We find that the model attributes the
increase in expression in the two cases to Ara and
IPTG induction (Fig [D, right column), consistent
with prior knowledge.

Using this measure of influence, we found that
the expression of the synthetic cell state biomarkers
(Fig. [BC) are impacted more than 87% of genes (3480
genes) in the E. coli genome with the biomarker im-
pacted the most being impacted more than all but
3 genes — lacZ, lacY, lacA (Fig. ) The synthetic
network influence score for gene i is calculated as

1 & 93

Ut Opj

3)

where j goes from 1 to n, = 9 representing each per-
turbation p; on the host from the synthetic gene ex-
pression of the 9 genes encoded on the NAND Circuit.

Our model quantitatively captures that kanamycin
and chloramphenicol resistance markers significantly
impact the synthetic cell state biomarkers (Fig. [F).
We also find that the basally active synthetic tran-
scriptional regulators: TetR, Lacl, LuxR, and AraC
impact the host more than the transcriptional actua-
tors PhlF and IcaR, which have little influence on syn-
thetic cell state biomarkers. This may be due to the
fact that the regulators are always expressed, while
PhIF and IcaR are only expressed when IPTG or Ara
are present, respectively.

In addition, we find that several synthetic cell state
biomarkers (fecCDE, yjiH, znuC, mepM) are influ-
enced only minorly by individual components of the
synthetic gene network. One explanation for this
is that these genes are influenced by combinations
of perturbations rather than any single perturbation
alone. In the next section, we use our model to test
this hypothesis and show that phenotypes resulting
from combinatorially influenced genes are generaliz-
able.

Synthetic cell state reveals antimicrobial resis-
tance

We next sought to study the phenotypic impacts of
the synthetic microbial cell state. Given that the ex-
pression of a significant number of genes in the E. coli
genome were permanently dysregulated in the pres-
ence of a synthetic construct, it is expected that this
results in unintended phenotypic consequences. We

used our circuit-impact model to identify a subset of
these genes for which no single perturbation results
in significant dysregulation, the hypothesis being that
these are genes which are impacted by synthetic con-
structs in general, rather than by what is being ex-
pressed on the construct. To test the generality of
the phenotypes, we perform the following phenotypic
screens in new strains in which the RN A-seq measure-
ments were not performed.

We zoomed in on a highly-impacted gene, mepM,
and used the circuit-impact model to explain the
downregulation of the corresponding mRNA (Fig.
5A). We found that no single perturbation explains
the dysregulation (Fig. ) We then performed the
counterfactual experiment of setting combinations of
the perturbations to zero to identify which set of genes
are jointly responsible for the dysregulation. Setting
the transcript levels of PhlF, IcaR, YFP, KanR, and
CmR to zero results in a counterfactual mepM gene
expression profile that largely recapitulates wild-type
mepM transcript levels (Fig. ) This result indi-
cates that the the downregulation of mepM may be
a general synthetic microbe feature rather than one
that is caused by an individual circuit component.

Through high-throughput screens of cell envelope
bioprocesses in E. coli, Babu et al. [52] showed that
the lack of MepM results in impaired membrane in-
vagination and cytokinesis. Based on their results,
we hypothesized that the downregulation of mepM in
synthetic strains should cause a decreased sensitivity
to the S-lactam class of antibiotics.

The hypothesis we next test is: Do synthetic
constructs induce a decrease in sensitivity to (-
lactam antibiotics in engineered microbes? To test
this, we challenged 5 engineered strains containing
distinct genetic circuits with S-lactam antibiotics.
First, we found that the introduction of the plas-
mid, pATdCasRx, containing a chloramphenicol re-
sistance marker and a dCasRx-gRNA cassette in E.
coli MG1655 Z1 (note that RNA-seq studies were con-
ducted using MG1655) results in an increased resis-
tance to ampicillin (Fig. [5D). We treated both the
wild-type strain and the engineered strain with 18
pug/mL of ampicillin which is above the known mini-
mum inhibitory concentration for E. coli strains [53].
At this concentration of ampicillin, the engineered
strain not only has a decreased lag time compared
to the wild-type, but it also has a higher stationary
phase cell density (Fig. ) We further tested the
ampicillin resistance at a reduced temperature dur-
ing growth and reduced concentration of ampicillin
in the same engineered MGZ1 strain and another en-
gineered strain which contains two plasmids. In both
cases, the reduced ampicillin sensitivity was recapitu-
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Figure 5: Increased ampicillin resistance is a generalizable consequence of the synthetic cell state.

(A) Distribution of the expression of mepM is shown for the wild-type strain and all genomic integration strains.
Expression is quantified using In(transcripts per million+1). (B) Kernel density estimates of the influence of synthetic
gene perturbations on mepM as calculated through sensitivity analysis on the trained circuit-impact model. (C) The
resulting mepM levels after performing the counterfactual experiment of setting a subset of synthetic gene levels to
zero in the NAND Circuit strain (pink curve). Model predictions are visualized with solid lines while RNA-seq data
are visualized with markers. The counterfactual result (NAND_CF) is compared with the NAND Circuit expression

and with wild-type (WT) expression.

(D) Growth curves of E. coli MG1655 Z1 with and without the plasmid

pATdCasRx subject to 18 ug/mL ampicillin. (E) Growth curves of A. baylyi ADP1 with and without the plasmid
pBWB162 subject to 8 pug/mL ampicillin. (F) Brightfield and fluorescence microscopy images of wild-type ADP1
and pBWB162 ADP1 subject to 8 ug/mL ampicillin, respectively.

lated (Supplementary Fig. |§|A and B). Extending be-
yond ampicillin, we also find an increased resistance
to the antibiotic cefazolin, another in the {-lactam
class (Supplementary Fig. Ep) Testing for increased
ampicillin resistance in the two plasmid-based NAND
strains considered in this study, we find a decreased
lag-time with respect to the wild-type but a lower
stationary phase density.

To further test the generality of the reduced sensi-
tivity to ampicillin across different strains and genetic
components, we transformed another gram-negative
strain, Acinetobacter baylyi ADP1, with the plasmid
pBWB162 containing a kanamycin resistance marker,
a lacl coding sequence, and an IPTG-inducible pro-
moter driving the expression of mCherry. We found
that the gram-negative ADP1 also shows an increased
resistance to ampicillin in the presence of synthetic
constructs. There is a drastic increase in the sta-
tionary phase cell density in engineered ADP1 strains
compared to the wild-type (Fig[BJE). In contrast to the
previously considered strains, in the case of ADP1
in the absence of ampicillin, there is no reduction in
growth rate relative to the wild-type strain. We find a

minor increase in stationary phase cell density in the
gram-positive strain Bacillus subtilis 168 subjected to
ampicillin (Supplementary Fig. .

To connect the reduced ampicillin sensitivity with
cell morphology and growth defects, we next imaged
single cells under the microscope. We found that un-
der treatment of ampicillin, ADP1 forms chains of
daughter cells connected by uncleaved septa under in-
duction of synthetic constructs (Fig. [fF). No chains
of cells were visible in the wild-type strain. This is
consistent with the results in [52], in which chains of
daughter cells were apparent in E. coli mepM mu-
tants (formerly known as yebA).

Purifed MepM is a peptidoglycan endopeptidase,
essential and sufficient for the insertion of new gly-
can strands into the peptidoglycan mesh between the
outer and inner cell membranes in growing gram-
negative bacteria [54]. The splitting of daughter
cells at the septa by peptidoglycan hydrolases such
as MepM is required for cell division [55]. Babu et
al. [52] discovered that E. coli mepM mutants show
impaired membrane invagination and cytokinesis, re-
sulting in what are chains of daughter cells connected
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by uncleaved septa. Seemingly, this same effect is
reproduced here in A. baylyi ADP1 induced by syn-
thetic constructs. Using BLAST homology searches,
we were unable to identify mepM homologs with high
confidence. The most similar coding sequence iden-
tified is the M23 family metallopeptidase (locus tag
ACIAD_RS15865) which contains a 312 bp region
with a 46.2% similarity with mepM.

Discussion

Through high-throughput RNA-seq analysis, we mea-
sured the transcriptional disruption imposed by syn-
thetic genetic constructs integrated on the genome
and plasmid-based constructs. Despite changing ge-
netic contexts, as we introduce larger genetic circuits
into the host, similar dysregulation patterns across
strains were able to be identified and synthetic con-
struct induced biomarkers were characterized. This
suggested the existence of a synthetic microbial cell
state that can be studied and exploited.

Through data-driven modeling of the transcrip-
tional response to genetic perturbations, we quan-
tified the impact of individual synthetic construct
components on the host. Consistent with previous
findings, the model identified that in a plasmid-based
setting, the impact of antibiotic resistance genes on
the host is significant. However, in the context of
low-copy numbers with genomically-integrated con-
structs, the impact of transcriptional regulators out-
weighs the impact of the antibiotic resistance genes.
Furthermore, the model infers that a majority of the
synthetic cell state biomarkers are influenced by a
combination of perturbations, rather than any single
one. This suggested that the burden induced by the
circuit on the biomarkers arise due to effects such as
resource reallocation and can result in generalizable
consequences.

The burden imposed by synthetic constructs, which
is not always reflected in a reduction in growth rate,
was shown to be generalizable to new strains and new
constructs through the phenotype of increased resis-
tance to antibiotics in the S-lactam class. This is
a consequence of the downregulation of mepM (for-
merly known as yebA) in E. coli and hypothetically is
due to a downregulation in peptidoglycan endopepti-
dases in A. bayly:.

Our modeling and data suggest that there are
an enormous number of possible generalizable con-
sequences of synthetic construct burden. Previous
characterizations of synthetic construct burden were
done in the context of fitness-burdened hosts, how-
ever our results in Figure 2JA suggest that a bur-
den on transcription is present even though growth

profiles are comparable to the wild-type strain. The
marked differences in housekeeping genes in Figures
and [F, e.g., proteins associated with the outer
membrane, the chaperone protein greB, biosynthesis
genes from the wca and curli production cluster, sug-
gest that circuit impact can occur from transcription
and translational resource reallocation even if growth
is not impacted. Further investigations should collect
measurements that are not only probing transcrip-
tion, but also epigenetic relationships and proteomic
measurements could shed light on the mechanisms by
which burden is imposed on the host.

Methods

Strains and plasmid engineering

The strain used in this study of the transcriptional response
to synthetic constructs is E. coli MG1655 (NCBI genome se-
quence U00096.3; [56]). Cell growth for cloning and plasmid
extraction were performed as in [57] (see Materials and Meth-
ods section “Strains and media”) unless otherwise noted.

Two other strains used in this study, namely E. coli MGZ1 [58]
and A. baylyi ADP1 (NCBI genome sequence NC_005966.1;
[59]) have distinct growth and cloning protocols.  Both
were transformed with plasmids containing the medium-copy
pBAV1K backbone [60].

Chemically competent MGZ1 were prepared using TSS Buffer
and the protocol from [6I] was followed. Transformation of
MGZ1 was performed as follows. Chemically competent MGZ1
cells were thawed on ice and 1 uL of prepped plasmid was was
mixed gently with a pipette. The cells were incubated on ice
for 15 minutes followed by incubation at 42°C for 30 seconds.
The cells were incubated on ice for 2 minutes. 1 mL of LB
media was added at room temperature followed by incubation
and shaking at 37°C for 1 hour. Transformed cells were plated
on appropriate antibiotic LB agar plates and grown overnight
at 37°C.

Naturally competent ADP1 was grown overnight in LB media
in a shaking incubator at 30°C. 70 uL of cells along with 100
ng of plasmid DNA were added to 1 mL of fresh LB. The cells
were incubated and shaken for 3 hours followed by plating on
appropriate antibiotic selection LB agar plates.

Construction of genomic landing pads and insertion of
payloads

Genomically-integrated landing pad strains of E. coli MG1655
constructed and verified in [57] were used in this study for
payload integration of the genetic NAND gates (For details,
we refer to Materials and Methods section “Construction of
genomic landing pads” and section “Insertion of payloads into
landing pads”).

Briefly, in [57] three landing pads were inserted into the genome
of E. coli MG1655. Two landing pads were introduced se-
quentially using A-RED recombineering [62]. A third landing
pad was constructed and inserted using a site-specific mini-
Tn7 transposase [63]. After the genomic insertion of landing
pads, each landing pad contained a unique antibiotic resis-
tance marker (chloramphenicol, kanamycin, and tettracycline
for Landing Pads #1, #2, and #3, respectively) located be-
tween a pair of unidirectional flippase recognition target (FRT)
sites.

For insertion of payloads into the landing pads, first co-
transformation of the empty landing pads strain with a plas-
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mid encoding three integrases [57] and a plasmid containing
the DNA payloads. Electrocompetent cell preparation and
transformation was performed as in [57] and integration was
confirmed with colony PCR by amplifying regions containing
integrated constructs and adjacent genomic DNA.

RNA sequencing and data processing

Wild-type and engineered E. coli MG1655 were cultured
overnight in M9 Media consisting of 1X M9 media salts, 0.1
mM CaCly, 1X trace salts, 1 mM MgSQOy, 0.05 mM FeCls, 0.1
mM CgHgO7, 0.2% Casamino Acids, and 0.4% Glucose.

Glycerol stocks were inoculated into M9 media in shake flasks,
and the culture was grown overnight for 18h at 30°C and 1000
rpm. The following day, cultures were diluted to OD 0.1 in
fresh M9 media and grown in 96-well plates under the same
conditions for 3 hours. For induction, cells were diluted a sec-
ond time to OD 0.05 in the presence of inducers. Plates were
incubated at 37°C and 1000 rpm for 5 hours, 6.5 hours, 8 hours,
and 18 hours and cultured cells were harvested and fixed with
RNAprotect (Qiagen 76506).

Total RNA was extracted using Magjet RNA extraction kit
(Thermo Fisher) according to the manufacturer’s instruc-
tions. RNA quality was assessed using a Tapestation (Agilent).
KAPA RNA Hyperprep Kit (Roche 08098140702) was used
for ribosomal RNA depletion and Illumina compatible library
preparation. The prepared library was loaded on an Illumina
sequencer to generate 150 base pair paired end reads.

The raw RNA sequencing data were trimmed and quality fil-
tered with Trimmomatic (v0.36) [64]. The trimmed reads were
aligned to the E. coli genome with bwa (v0.7.17) [65]. Gene-
level quantification of counts was performed using the feature-
Counts function of Rsubread (v1.34.4) [66].

We followed [26] and used three metrics to measure a sample’s
quality: 1) number of reads mapped must be greater than or
equal to 5 x 10%, 2) count of all annotated genes must be
greater than 5 x 10°, and 3) replicates must have correlation
greater than 0.9. If a sample did not pass any of these three
metrics, than the sample was discarded and not used for down-
stream analysis.

Differential expression, gene ontology analysis

The Python package for ’omics analysis scanpy [67] was used
to perform differential expression analysis. Specifically, log-
transformed transcripts per million were used with a Wilcoxon
rank-sum test were used to test for differential expression be-
tween wild-type and NAND Circuit strains. The p-values as-
sociated with the log fold changes were corrected for multiple
testing using the Benjamini-Hochberg procedure.

Gene ontology enrichment analyses [37] were performed using
PANTHER [68]. All identified gene sets were tested for statis-
tical significance using Fisher’s exact test and gene sets were
only considered significant if the false discovery rate did not
exceed 5%.

The database RegulonDB [69] was used to identify transcrip-
tion factors and sigma-factors for differentially expressed genes
and syntehtic cell state biomarkers.

Predicting optical density from RNA-seq measure-
ments

RNA-sequencing measurements at all sampled time points (5,
6.5, 8, and 18 hours) and biological replicates (eight) were used
to build a linear model to predict the optical density (ODgoo)
at 18 hours after growth. In order to prevent overfitting to the
data and assess prediction variance across subsamples of the
data, we divided the data over 192 folds stratified by biological
replicates. The OD observations in a fold were averaged across
biological replicates, y*, from each strain, s for s € {wild-type,
pBADmin, pTACmin, PhlF Gate, IcaR Gate, NAND}, and
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concatenated into the vector
i —
y = [yw1ld type L yNAND} (4)

with y € RS. We then selected n genes from the transcriptome
and formed the n x 6 data matrix X with x;s computed as the
average expression of gene x; in strain s in a fold. By taking
the average of the expression over time, we are implicitly give
equal weight to the expression at each time point. We then
constructed a linear model of the form

y' =B8'X (5)
where 3 € R"™ is a vector of coefficients that weigh the contri-
bution of each gene towards prediction of the OD observations.
We then minimize the squared error between the left-hand side
and right-hand side, ||y’ — 87 X||3 and the solution is ob-
tained by taking the gradient with respect to 3 to obtain the
least squares solution:

B=XX")"'Xy. (6)

‘We calculate the goodness of fit of the parameters in 3 through
the coefficient of determination, R2, and through the Pearson
correlation between the mean predicted OD and the mean mea-
sured OD. The mean of the predictions are taken over the 192
folds while the mean of the measurements are taken over bio-
logical replicates. These averages and standard deviations were
reported in the Results section and used within figures.

Classifying
genes

synthetic-construct-induced biomarker

The transcriptional profiles were assigned labels: 0 for a wild-
type strain and 1 for an engineered strain. Data were z-scored
and a binary logistic regression model was trained on a train-
ing set of data consisting of 50% of all samples. The training
set consisted of 503 samples of which 49 samples were from the
wild-type class and the remaining belonging to the synthetic
class. The test set, containing 63 wild-type samples and 441
synthetic samples, are used to measure the empirical perfor-
mance of the classifier.

L2 regularization was used to prevent the model from over-
fitting to the training data. A 5-fold cross-validation was per-
formed on the training set to determine the optimal L2 regular-
ization weight. Once the L2 regularization weight was identi-
fied through cross-validation, the logistic regression model was
then re-trained on all of the training data. Testing the model
on the test set, we found that it accurately classified all 504
test points.

The magnitude of the model coefficients were then used to as-
sign feature importances to each of the genes; the higher the
magnitude of the coefficient, the more important a gene is for
classificatiion. This was validated through training a sequence
of logistic regression classifiers on only important features and
through comparison to classifiers trained with random features.

Circuit-impact model

Our dataset consists of the triplet of measurements D =
{(zi, pi, c,-)}i\il, where each z; € RY denotes the gene expres-
sion of all g genes from sample i, p; € R™ describes m indi-
vidual, continuous perturbations applied to the cells in sample
i, and ¢ € R™ describes any discrete covariate that is to be
modeled. For example, discrete covariates can be a batch, pa-
tient, species, and for the circuit-impact model it is describing
whether and how the synthetic construct is integrated into the
host. More specifically, the perturbations in the circuit-impact
model are,

Ara PTG asyn] ' (7)

where zsyn is the vector of synthetic gene expressions. If p;; =
0, then perturbation j was not applied to sample i. Similarly,
the covariates in the circuit-impact model are,

p = [time

T
c= [ﬂcxzwild—type ]lCI =genomic ﬂcmzplasmid] (8)


https://doi.org/10.1101/2023.06.29.547078
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.29.547078; this version posted July 1, 2023. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

14

where 1 denotes and C is the set representing whether a sample
x; is from the wild-type strain, a genomically-integrated strain,
or a plasmid-based strain.

Given the dataset D, our task is to model the impact that per-
turbations, p, and covariates, ¢, have on the host gene expres-
sion z. We start by assuming that there exists a latent (hidden)
state, z; € R, for each gene expression vector x;, such that z;
contains no information about the corresponding perturbation,
p;, or covariates, ¢;. We call this the perturbation-free latent
state. Simultaneously, we assume that there are latent repre-
sentations of the perturbations, ¢, and covariates, d, such that
they impact the perturbation-free latent state, z, additively,
producing a perturbed latent state, Z. This assumes that the
perturbation-free latent state is independent of the latent per-
turbations and latent covariates. The perturbed latent state is
formed directly as

Zi =z +qi + d;. 9)

Deep learning architecture and training of the circuit-
impact model

The architecture of the circuit-impact model consists of three
encoders, one for each of the triplets in D, i.e. a gene expression
encoder, F : R — R, a perturbation encoder, G : R™ — R!,
and a covariate encoder, H : R — R!, such that

zi = F(x;)
¢ = G(zi) (10)
d; = H(z;)

which can then be used to form the perturbed latent state
Z; = z; + q; + d;. The perturbed latent state is then trans-
formed back to gene-space through the decoder F:R — RY
to produce, Z, a reconstruction of the original gene expression
vector. Similarly, ¢ and d are decoded into reconstructions pg
and §p, respectively.

To facilitate the encoder F' to map gene expression vectors
to a perturbation-free latent state, we employ two techniques:
1) enforce that z; ~ N(0,I), and 2) train discriminators, D)
and D. to predict the perturbations, p;, and covariates, c;,
given z;, respectively. The normally distributed latent states
encourage a specific geometric structure, but inherently cannot
prevent clusters that group strains together from forming. This
is where the discriminator architecture facilitates the latent
state to be perturbation free by penalizing the encoder losses
for good discrimination. This form of adversarial training to
disentangle factors of variation from input features follows from
28].

The mean squared error is used to calculate the reconstruction
loss between x, p and their respective decoder outputs &, pg:

lo(z) = MSE(z, £) (11)

where B is the batch size and y and ¢ are the considered inputs
to be reconstructed and the network reconstruction, respec-
tively. The covariate autoencoder loss and the covariate dis-
criminator, D., loss is calculated as the cross-entropy between
the output of the covariate decoder (H~1!) and the output of

D, and the true covariates, respectively:
1" (c) = CrossEntropy(c, H1(¢)) (12)
1P¢(¢) = CrossEntropy(c, De(z)).

The mean squared error is also used to calculate the discrimi-
nator loss for the continuous perturbation discriminator (Dp):

177 (p) = MSE(p, Dp(2)). (13)

Finally, the Kullback-Leibler (K L) divergence between the
perturbation-free latent state distribution and a standard nor-

Hyperparameter Random Search

A Uniform(107%,273)
learning rate Uniform(1, 2.1)

L2 regularization Uniform(0, 1079)
batch size 20 b=3,...,9

latent state dim. [ {5,6,7,8,9,10,11,12}
hidden layer dimensions {128,256,512}

Table 1: Random search over hyperparameters.

mal prior is calculated as the latent space distribution penalty:
K (z) = KL(p(zla) || N0, 1))

= > ol +ui —log(oy) —1/2
z; €EBy

(14)

where B)| is the set of samples for a single batch of data k, o
is the vector of variances of the perturbation-free latent state
z, and p is the vector of means of the perturbation-free latent
state.

The circuit-impact model is trained in steps wherein the pa-
rameters of the discriminators, encoders, and decoders are se-
quentially optimized. For a batch By consisting of x5, , ps,,
and cp, , training takes places in three steps:

1. Minimize [Pe and IP» by updating the parameters of D,
and Dy, respectively;

2. Minimize I — A(IPr + 1P<) + XL by updating the pa-
rameters of F, F', G, and H.

3. Minimize I, and I by updating the parameters of G and
H, respectively.

We use the Adadelta optimizer [70] for parameter optimization
and implement the model in Pytorch.

min [Pe min (Pr
c P
min Ly — (PP +1P¢) 4157 (15)
F.E,G,H
min lp min 7
G-1 H—
D= {(fi,pi,ci)}f'vzl (16)

Hyperparameter Selection and Training

The hyperparameters we considered during training of the
circuit-impact model were the penalty coefficient, A, for good
discriminator performance, the encoder and decoder learning
rates, L2 regularization weight on network parameters, the
batch size, the dimension of the latent state [, and the dimen-
sion of hidden layers in the network. 50 models were trained for
randomly chosen hyperparameters. The following table depicts
the distribution over which each hyperparameter was selected
from are given in Table [I]

The dataset was stratified by strain and cross-validation was
performed by training the 50 models with randomly selected
hyperparameters on each of the stratified validation datasets.
We used R? as the metric of accuracy to choose the hyperpa-
rameters which resulted in a model with highest average accu-
racy across the validation datasets. We then trained the final
model on all strains using these hyperparameters.

Calculating influence of perturbations on host genes
Once the model is trained, we can calculate the derivate of
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the output of the network gene encoder, &, with respect to the
perturbation p to obtain a measure of sensitivity of each host
gene to each perturbation. Specifically, for a sample z; cor-
responding to perturbations p; and covariates c;, to calculate
the influence of perturbation j, p;;, on gene k, &;, we compute
o3,

datapoints in D, producing a tensor, J € RVX9X™ where Jijk
describes the influence of perturbation k on gene j in sample 4.

Cell imaging with CellASIC Acinetobacter baylyi ADP1
from a glycerol stock was recovered overnight in LB and pas-
saged to log-phase to reach a target OD of 0.3. Cells were
subsequently diluted, per manufacturer recommendations, to
OD 0.05, or 5 x 107 cells per milliliter and then loaded into an
inlet valve in the CellASIC plate. The cells were then primed
and injected into the chamber using 0.25 kPa of pressure, sus-
pended in standard LB media (Teknova L8000). The Cell
ASIC plate was mounted on an automated Advanced Scientific
Imaging microscopy stage for planar control within an Olym-
pus I1X83 epifluorescence microscope system. The entire plate
was incubated at 30°C in a Tokai incubation chamber mounted
on the stage of the Olympus IX83 frame. Cells were imaged
with brightfield illumination and fluorescence illumination (580
nm excitation and 610 nm emission) every 12.5 minutes for 15
hours. A media of LB and ampicillin at 8 ug/mL was injected
after 3 hours of cell growth in the chamber.

. We can perform this operation simultaneously for all N

Data availability

Processed RNA-seq data used in this study are available at:
https://github.com/AqgibHasnain/circuit-state. The RNA se-
quencing data generated in this study have been deposited in
the GEO database under accession code (GSE206047

Code availability

Code to reproduce all figures in this study is available at:
https://github.com/AqgibHasnain/circuit-statel
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