

1 **Epistasis Arises from Shifting the Rate-Limiting Step during Enzyme Evolution**

2 Christopher Fröhlich^{1*#} and H. Adrian Bunzel^{2,3,4#}, Karol Buda⁵, Adrian J. Mulholland³, Marc
3 W. van der Kamp^{3,4}, Pål J. Johnsen¹, Hanna-Kirsti S. Leiros⁶, Nobuhiko Tokuriki^{5*}

4

5 ¹ Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway

6 ² Department of Biosystem Science and Engineering, ETH Zurich, Basel, Switzerland

7 ³ Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK

8 ⁴ School of Biochemistry, University of Bristol, Bristol, UK

9 ⁵ Michael Smith Laboratories, University of British Columbia, Canada

10 ⁶ Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway

11

12 * corresponding authors: christopher.frohlich@uit.no, tokuriki@msl.ubc.ca

13 [#] equal contribution

14

15 **AUTHOR CONTRIBUTION**

16 CF, HAB and NT conceived the study. CF performed directed evolution, selection, cloning,
17 and assayed dose-response curves. CF and KB expressed and purified enzymes. CF
18 determined thermostabilities. KB, CF, and HAB assayed enzyme kinetics. KB and NT
19 performed the statistical analysis. HAB performed, and HAB, AJM, and MWvdK analyzed the
20 molecular dynamics simulations. CF crystallized proteins, and CF and HKSL solved structures
21 and refined structures. CF, HAB, PJJ, and NT wrote the manuscript with input from all co-
22 authors.

23 **ABSTRACT**

24 The molecular mechanisms by which epistasis boosts enzyme activity remain elusive,
25 undermining our ability to predict the evolution of pathogens and engineer novel biocatalysts.
26 Here, we reveal how directed evolution of a β -lactamase yielded highly epistatic activity
27 enhancements. Evolution selected four mutations that increase antibiotic resistance 40-fold,
28 despite their marginal individual effects (≤ 2 -fold). Synergistic improvements coincided with
29 the introduction of super-stoichiometric burst kinetics, indicating that epistasis is rooted in the
30 enzyme's conformational dynamics. Kinetic, structural, and dynamical analyses reveal that
31 epistasis was driven by distinct effects of each mutation on the catalytic cycle. The first
32 mutation acquired during evolution increases protein flexibility and accelerates substrate
33 binding, which is rate-limiting in the wild-type enzyme. The ensuing mutations predominantly
34 boosted the chemical steps by fine-tuning substrate interactions. Our work identifies an
35 overlooked cause for epistasis: changing the rate-limiting step can result in substantial positive
36 synergy boosting enzyme activity.

37 **INTRODUCTION**

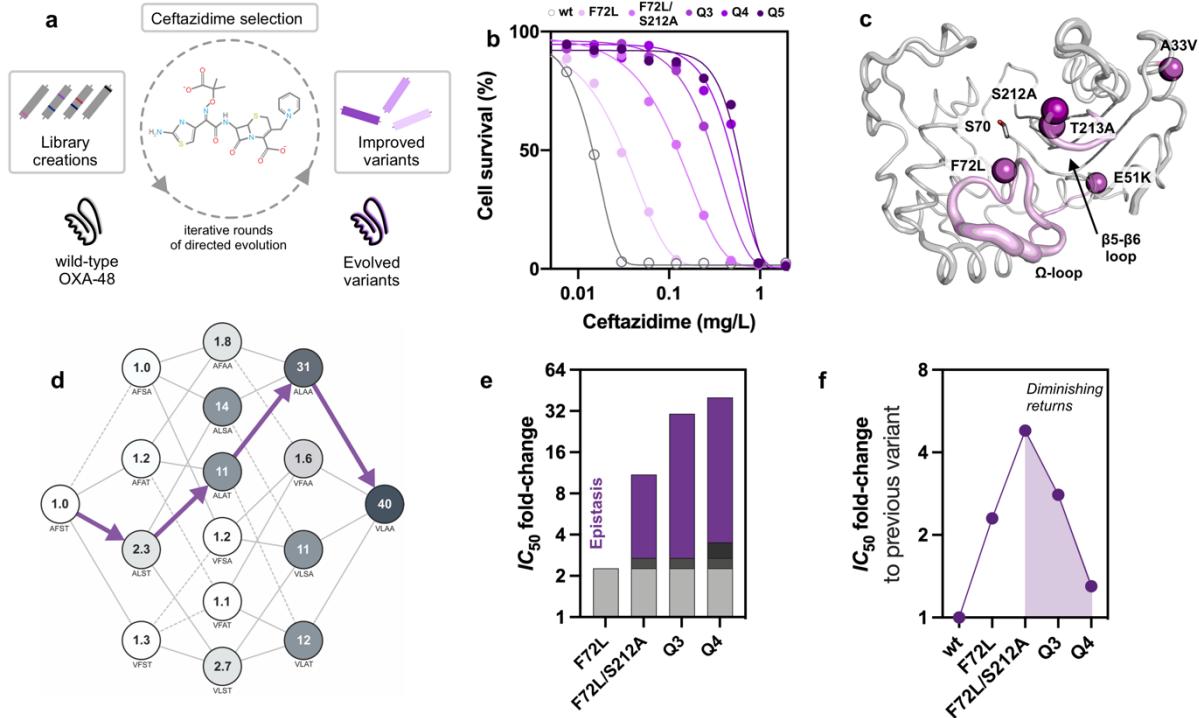
38 Enzymes rely on intricate intramolecular interactions between amino acids to organize the
39 active site and achieve efficient catalysis. Rewiring these interactions through evolution often
40 leads to unexpected and non-additive effects on protein fitness in a phenomenon known as
41 epistasis.¹⁻⁴ Positive epistasis, wherein the effect of mutations is more beneficial when
42 combined than in isolation, is highly desirable in protein engineering and often drives
43 evolutionary trajectories. In contrast, negative epistasis is caused by mutations that act
44 antagonistically, which adversely affects protein fitness and can be detrimental to protein
45 engineering campaigns. Consequently, epistasis often dictates enzyme evolution by providing
46 access to, or restricting, mutational paths.¹⁻⁶ Such non-additive interactions can be introduced
47 by various factors, including changes in structural interactions and protein conformational
48 dynamics. For example, epistasis can arise by rewiring the interactions of active site residues,
49 thereby establishing new interactions with the substrate. Also, mutations that change
50 conformational dynamics can improve enzymatic activity in a highly synergistic fashion,⁷⁻¹¹ for
51 instance, by epistemically altering the dynamics of solvent-exposed loops to aid substrate entry
52 or enhance active-site organization.¹²⁻¹⁴

53 While the link between structural changes and epistasis has been intensively studied,
54 the mechanistic relationship between epistatic mutations and the overall catalytic cycle is often
55 overlooked. Concerning epistasis, mechanistic studies may be particularly important because
56 evolution typically enhances the slowest steps in the catalytic cycle,¹⁵⁻¹⁸ which might change
57 the rate-limiting step resulting in non-additive effects. Here, we hypothesize that studying how
58 mutations impact each step in the reaction could reveal novel mechanisms of epistasis, which
59 would improve the predictability of evolution and provide a better understanding of the overall
60 permissiveness of adaptive landscapes.

61 The β -lactamase OXA-48 is an excellent model system for studying epistasis in the
62 context of antimicrobial resistance development.¹⁹⁻²¹ OXA-48 uses a catalytic serine (S70) to
63 cleave β -lactams in a three-step mechanism comprising enzyme-substrate complex formation
64 (ES), formation of an acyl-enzyme intermediate (EI), and hydrolytic product release (E+P).²²

65 OXA-48 confers resistance to many carbapenem and penicillin β -lactams, but only slowly
66 hydrolyses oxyimino-cephalosporins such as ceftazidime (CAZ).²³ Low catalytic activity for
67 CAZ hydrolysis has been attributed to the substrate's bulkiness, potentially requiring sampling
68 of alternative loop conformations to promote cephalosporin binding and hydrolysis.^{12,24} While
69 we have recently demonstrated that single mutations in OXA-48 can result in low-level CAZ
70 resistance by increasing the flexibility of active site loops,¹⁹⁻²¹ the mutational effects on the
71 overall catalytic cycle and their potential for epistasis remain elusive.

72 Here, we used directed evolution to study the mechanistic drivers of epistasis during
73 the adaptation of an antimicrobial resistance gene. After subjecting the β -lactamase OXA-48
74 to iterative rounds of mutagenesis and selection, we constructed an adaptive fitness
75 landscape of the introduced mutations that identifies positive epistasis as a key driver for
76 enzyme evolution. By combining biochemical, structural, and computational methods, we
77 reveal how evolution alters the protein's conformational dynamics to accelerate substrate
78 binding and hydrolysis, thereby changing the rate-limiting step and introducing epistasis. This
79 detailed understanding of mutational effects on the whole catalytic cycle is crucial to predicting
80 epistatic interactions¹⁻⁴, which is relevant to the evolution of enzymatic activity and the design
81 and engineering of novel enzymes.²⁵


82 **RESULTS**

83 **Evolution of OXA-48 is driven by positive epistasis.**

84 To investigate how epistasis drives the evolution of OXA-48, we performed five cycles of
85 directed evolution starting from the wild-type OXA-48 (wtOXA-48), using error-prone PCR
86 mutagenesis followed by selection on increasing CAZ concentrations (Fig. 1a). Variants
87 arising along the evolutionary trajectory were characterized by their half-maximal inhibitory
88 concentrations (IC_{50}) from antibiotic dose-response growth curves (Tab. S1). Five mutations
89 were accumulated during evolution (F72L→S212A→T213A→A33V→K51E), resulting in Q5
90 that confers 43-fold increased CAZ resistance in *E. coli* (Fig. 1b, Tab. S1). The mutations
91 acquired during evolution cluster around the active site or structural elements known to alter
92 substrate specificity, such as the nucleophilic S70 or the Ω - and β 5- β 6 loops (Fig. 1c).²³ K51E
93 increased resistance development by only 1.1-fold compared to Q4. Thus, we focused
94 analysis on the molecular origins of epistasis in Q4 (A33V/F72L/S212A/T213A), which
95 conferred a 40-fold higher CAZ resistance over wtOXA-48 in *E. coli* (Tab. S1).

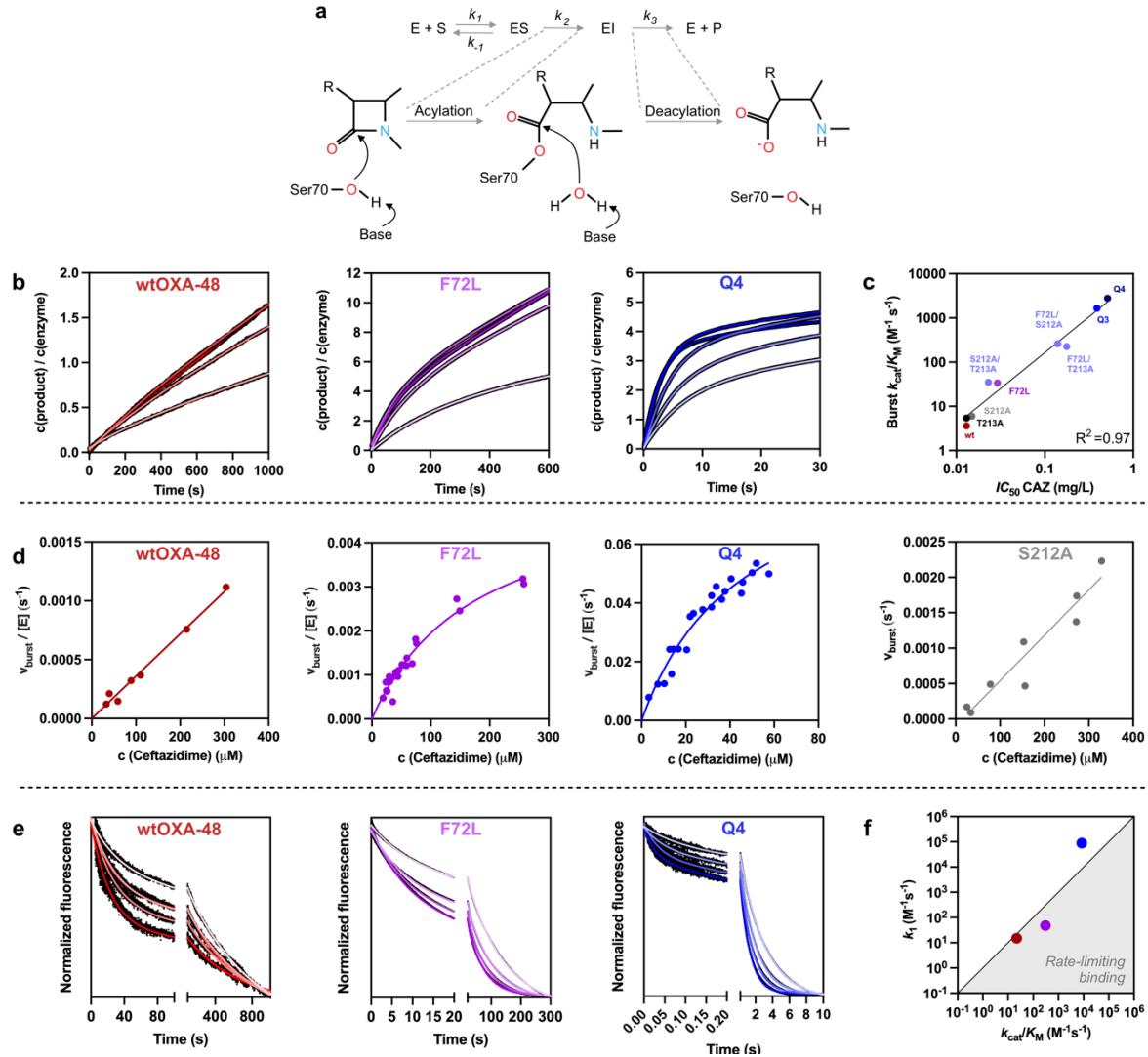
96 To study the interplay between mutations acquired along the evolutionary trajectory,
97 we constructed an adaptive landscape of all 16 mutational combinations based on the four
98 mutations in Q4 and determined their IC_{50} values when produced in *E. coli* (Fig. 1d, Tab. S2).
99 Overall, positive epistasis greatly shaped the evolution of Q4 and resulted in a resistance
100 increase of 40-fold in contrast to the 3.4-fold predicted increase for strictly additive gains from
101 single point mutations (Fig. 1e, Fig. S1a). To quantify the apparent positive epistasis, we
102 analyzed the contribution of each mutation to the IC_{50} fold-change across every possible
103 genetic background (Fig. S1b). Strikingly, epistasis is primarily driven by interactions with
104 F72L, the first mutation acquired during evolution and the only single-point mutation that
105 significantly (2-fold) increased resistance in the wild-type background (analysis of variance
106 [ANOVA], df=4, $P < 0.001$, Tab. S3). For example, the combination of F72L with either S212A
107 or T213A (referred to as alanine mutations hereafter) confers 8.2-fold and 11.7-fold higher
108 resistance than expected (Fig. S1c). We note that changes in thermostability (T_m) did not drive
109 epistatic adaptation (Fig. S1d, Tab. S4). Except for F72L, which reduced the T_m by 6°C, the

110 selected mutations barely affected the thermostability. Thus, the observed epistasis does not
111 stem from changes in protein stability, but from specific intramolecular interactions that affect
112 the enzyme's function. Interestingly, we observed diminishing return epistasis in resistance
113 development for higher-order variants along the evolutionary trajectory (Fig. 1f). As described
114 above, F72L increased the IC_{50} by 2-fold, followed by a 5-fold gain in IC_{50} through S212A. All
115 later mutations, however, provided lower overall improvements. For instance, addition of
116 T213A to F72L/S212A, resulting in Q3, showed diminishing returns and only conferred a 3-
117 fold increase in resistance, which is lower than expected based on the 6.3-fold effect of T213A
118 in F72L. Given that the alanine mutations are located in neighboring positions, they probably
119 have redundant effects on the CAZ IC_{50} . Thus, their effects do not combine additively and lead
120 to lower-than-expected improvements.

121
122 **Figure 1: Positive epistasis drives the evolution of OXA-48.** **a.** During directed evolution of OXA-48, selection
123 for resistance against the oxyimino-cephalosporin ceftazidime (CAZ) was performed at increasing CAZ
124 concentrations from 0.5 to 14 μ M. **b.** CAZ resistance conferred by OXA-48 was improved 43-fold over five rounds
125 of evolution. **c.** Mutations acquired during evolution, such as F72L, S212, and T213A, cluster around the active
126 site serine (S70) and the Ω - and β 5- β 6 loops that affect substrate specificity (purple). **d.** The adaptive landscape
127 of the mutations found during evolution shows high epistasis. Each node represents a unique variant indicated by
128 single-letter amino acid codes. Values within each node reflect the CAZ IC_{50} fold-change relative to wtOXA-48.
129 Purple arrows indicate the trajectory followed during evolution. **e.** Comparison of the effects of single mutations
130 (grey = F72L, dark grey = S212A, black = A33V, no expected effect of T213A) on the IC_{50} fold-changes along the
131 evolutionary trajectory reveals a high degree of epistasis (purple). **f.** Comparison of the fold-change improvements
132 relative to the previous variants reveals diminishing returns (purple area) in CAZ resistance.

133 **Evolution selects for an epistatic burst phase.**

134 To understand the molecular origins of epistasis, we studied the reaction kinetics of the OXA-
135 48 variants (Fig. 2a). We monitored the conversion of CAZ by wtOXA-48, F72L, and Q4 using
136 a stopped-flow and discovered that all enzymes catalyzed the conversion of CAZ with an initial
137 activity burst (Fig. 2b). At 400 μ M CAZ, wtOXA-48 possessed a 1.5-fold higher rate in the burst
138 phase than in its subsequent steady-state phase. Interestingly, the burst phase became more
139 pronounced during evolution. F72L and Q4 show 4.6-fold and 48-fold higher burst-phase rates
140 than their respective steady states. Evolution thus selectively improved the burst-phase over
141 the steady-state activity.


142 To obtain kinetic parameters for the burst phase for a range of variants along the
143 evolutionary trajectory, we assayed substrate conversion with a microtiter plate reader at 4°C
144 (Tab. 1, Fig. S2). As expected, F72L improved the $k_{\text{cat}}/K_{\text{M}}$ of the burst phase by 8-fold
145 compared to wtOXA-48, while S212A and T213A provided only marginal improvements (~1.5-
146 fold). Similar to the IC_{50} effects, F72L displayed strong pairwise epistasis with either S212A or
147 T213A at the kinetic level and improved $k_{\text{cat}}/K_{\text{M}}$ by 70-fold and 60-fold compared to wtOXA-48,
148 respectively. Positive epistasis shaped the evolution of $k_{\text{cat}}/K_{\text{M}}$, culminating in a 470-fold and
149 800-fold improvement in Q3 and Q4, respectively. The burst-phase $k_{\text{cat}}/K_{\text{M}}$ values thus show
150 excellent correlation with the *in vivo* IC_{50} values ($R^2 = 0.97$; Pearson correlation, $df = 7$, $P <$
151 0.001; Fig. 2c), much better than the correlation between IC_{50} and steady-state turnover ($R^2 =$
152 0.85; Pearson correlation, $df = 7$, $P < 0.001$; Fig. S2 to S4, Tab. 1 and S5). Consequently, our
153 kinetic data suggest that evolution selected for burst phases with high epistasis and catalytic
154 efficiency.

155 The kinetics of the burst phase unveiled fundamentally different catalytic effects
156 between F72L and either the S212A or T213A variants (Fig. 2d and S2). Michaelis-Menten
157 kinetics of wtOXA-48 did not show saturation due to its high K_{M} ($\gg 300 \mu\text{M}$). Introduction of
158 F72L led to saturation kinetics and substantially decreased the K_{M} to $165 \pm 15 \mu\text{M}$. In contrast,
159 the Michaelis-Menten plots remained linear upon introducing S212A or T213A and only
160 showed marginal increases in $k_{\text{cat}}/K_{\text{M}}$ (1.6-fold). Interestingly, the double mutants F72L/S212A

161 and F72L/T213A maintained lower K_M values than F72L while increasing k_{cat} by 5 to 7-fold
162 (Tab. 1, Fig. S2). Thus, epistasis between F72L and S212A or T213A probably originates from
163 an interplay between improved binding and catalysis.

164 Burst phases have been previously observed in β -lactamases, where the fast formation
165 of an acyl-enzyme intermediate during the first turnover is followed by rate-limiting
166 deacylation.^{26,27} Surprisingly, the burst phases observed here have amplitudes much larger
167 than a single turnover. For example, Q4 displayed a burst-phase amplitude corresponding to
168 3.8 turnovers at 400 μ M CAZ (Fig. 2b). Such super-stoichiometric bursts cannot be explained
169 by a simple two-step reaction mechanism comprising a fast followed by a slow step.^{26,27}
170 Instead, super-stoichiometric bursts are likely caused by the inactivation of the enzyme during
171 substrate conversion over several catalytic cycles.^{26,27} Notably, substrate-induced inactivation
172 appeared fully reversible, as indicated by activity assays after incubating Q4 with CAZ (Fig.
173 S5a). In addition, inactivation is not caused by a change in the oligomeric state, as shown by
174 both dynamic light scattering and size exclusion chromatography (Fig. S5b). Thus, turnover
175 apparently triggers a reversible conformational change to a less active state, resulting in the
176 observed burst.

177 The dependence of the burst phase on the CAZ concentration provides important
178 insights into its role in evolutionary adaptation. With decreasing CAZ concentrations, the rates
179 of the burst and steady-state phases become similar, and the burst phase amplitude
180 decreases. The burst thus became less pronounced at substrate concentrations down to 50
181 μ M at 25°C (Fig. 2b). This is probably because at lower concentrations, substrate-induced
182 inactivation is rarer, and any enzyme that is deactivated has more time to recover to the active
183 state before encountering another substrate molecule. Notably, selection was performed
184 under even lower substrate concentrations ($\leq 14 \mu$ M) compared to the *in vitro* kinetic analysis.
185 Thus, the enzymes probably remained predominantly in the burst state under the selection
186 conditions. Taken together, while evolution boosted resistance at the evolutionarily relevant
187 CAZ concentrations, a catalytic bottleneck emerged at high and physiologically irrelevant
188 concentrations that limits activity after the initial burst.

189

190 **Figure 2: Kinetic changes drive the evolution of OXA-48.** **a.** Enzymatic hydrolysis of β -lactams proceeds via an
 191 enzyme-substrate complex (ES), formation of an acyl-enzyme intermediate (EI), and hydrolytic deacylation (E+P).
 192 **b.** Evolution amplified the super-stoichiometric burst behavior of OXA-48 (CAZ concentration: 50 to 400 μ M, light
 193 to dark colors). **c.** *In vitro* burst phase activities correlate well with the *in vivo* IC_{50} fold changes. **d.** Michaelis-Menten
 194 kinetics of the burst phase determined at 4°C. **e.** Substrate binding was measured by W-fluorescence and was
 195 substantially accelerated during evolution (CAZ concentration: 100 to 1200 μ M, light to dark colors). **f.** Comparison
 196 of k_1 and k_{cat}/K_M between wtOXA-48 (red), F72L (purple), and Q4 (blue) reveals that binding is no longer rate-
 197 limiting in the burst phase of Q4 (determined at 25°C, point above the diagonal line at $k_1 = k_{cat}/K_M$ indicates that
 198 binding is not rate-limiting).

199 **Faster binding and reaction drive positive epistasis.**

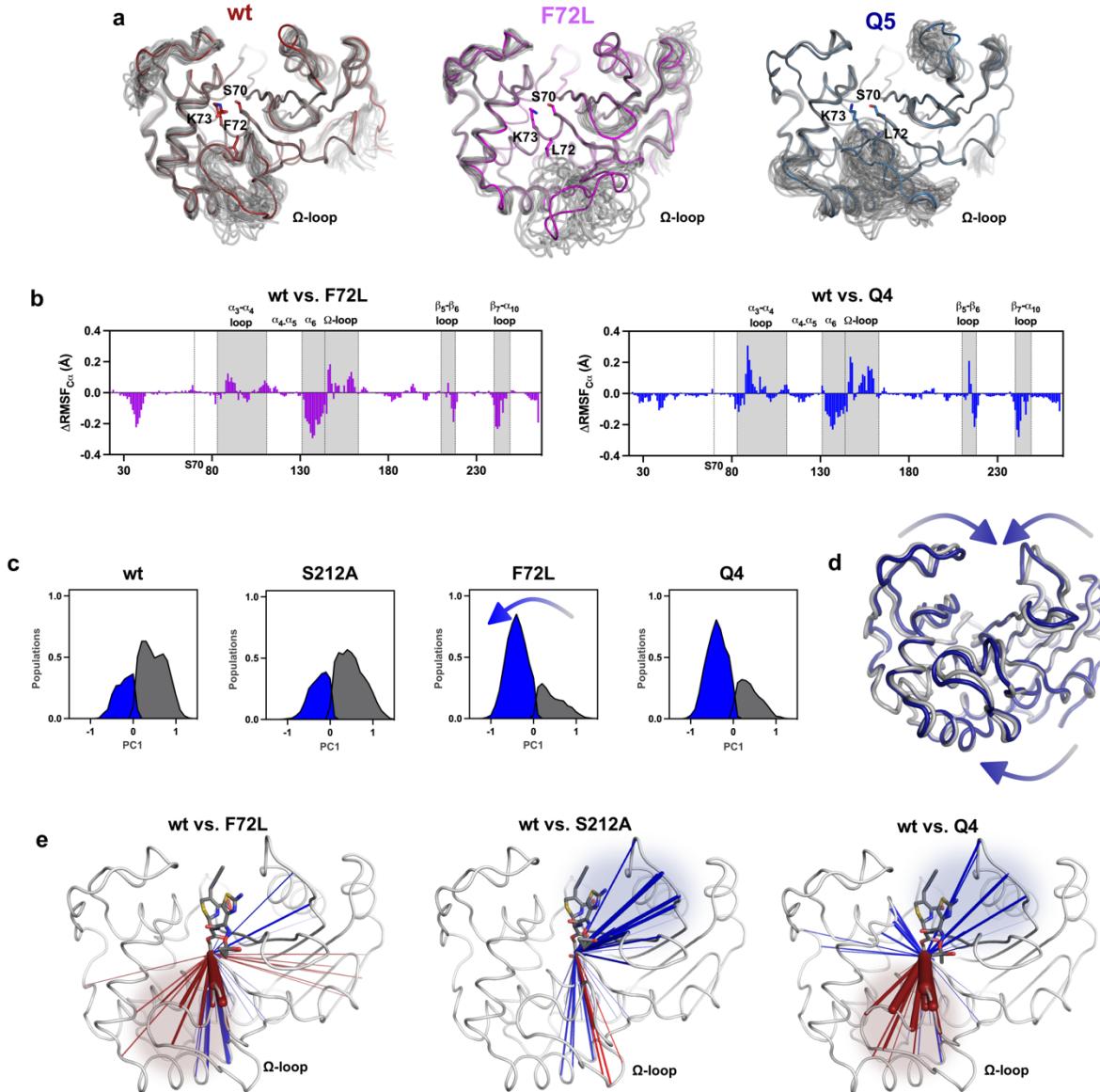
200 Based on our Michaelis-Menten kinetics, we hypothesized that epistasis in OXA-48 resulted
201 from an interplay between binding and the chemical reaction. F72L apparently unlocked the
202 accessibility of the fitness landscape by substantially accelerating substrate binding, which
203 allowed S212A and T213A to take effect and further boost catalysis (Fig. 2). We dissected this
204 relationship by assaying CAZ binding (k_1 and k_{-1} , Fig. 2a) and solvent isotope effects in
205 wtOXA-48, F72L, and Q4. By focusing on wtOXA-48 and F72L, we aimed to reveal the
206 mechanistic role of F72L and its ability to recruit subsequent mutations. Comparison to the
207 evolved variant Q4 then allowed us to shed light on the combinatorial effect of F72L with the
208 other mutations.

209 CAZ binding was assayed by monitoring changes in protein tryptophan fluorescence.
210 In agreement with our burst phase results, CAZ binding progressed with biphasic kinetics
211 (Fig. 2e), where the fast phase probably reflects binding to the burst phase ensemble. The
212 slow phase indicates the presence of a second state that is likely related to the steady-state
213 ensemble. Since the slow phase occurs on a similar timescale as enzyme deactivation and
214 the chemical reaction (Fig. 2b and 2e), it probably reflects a combination of these processes
215 and binding to the less active state. Given that the burst phase is most likely the physiologically
216 relevant phase, we decided to focus our analysis on the fast-binding phase (Tab. 2). For
217 wtOXA-48, CAZ binding (k_1) is 1.5-fold slower than the burst-phase k_{cat}/K_M which suggests
218 that binding – and not bond-breaking or product release – limits catalytic efficiency in the wild-
219 type. Notably, k_1 constantly increases during evolution (3.2-fold in F72L and 6000-fold in Q4).
220 In Q4, k_1 is 10-fold faster than k_{cat}/K_M , indicating that evolution shifted the catalytic bottleneck
221 from substrate binding to either the chemical steps or product release (Fig. 2f).
222 Counterintuitively, the K_D determined from k_{-1}/k_1 did not follow the trends observed for K_M and
223 was 2.6-fold higher for F72L than for wtOXA-48. This observation serves as a reminder that
224 K_M is an imperfect approximation for substrate affinity and supports our hypothesis that
225 epistasis in OXA-48 has kinetic and not thermodynamic origins. Epistasis is most likely driven

226 by a change in the rate-limiting step resulting from faster substrate binding (k_1) and not by
227 improved substrate affinity (K_D).

228 To further test our hypothesis that evolution shifted the rate-limiting step, we
229 determined solvent isotope effects by assaying product formation at 400 μ M CAZ in 80% D₂O
230 (Tab. 2). Solvent isotope effects >1 indicate rate-limiting deprotonation during the hydrolysis
231 of the acyl-enzyme complex (k_3). The burst-phase isotope effects for wtOXA-48 and Q4 are
232 close to 1, whereas a small isotope effect was observed for F72L (1.4). These isotope effects
233 suggest that hydrolysis of the acyl-enzyme affects the overall rate in F72L, while deacylation
234 is not rate-limiting in wtOXA-48 and Q4. In contrast to the burst-phase effect, F72L and Q4
235 had pronounced isotope effects of 2.8 and 2.5 in their steady state. Since our data on the
236 evolution of super-stoichiometric burst phases suggest that a conformational change triggers
237 inactivation, the observed increase in isotope effects from the burst phase to the steady state
238 likely indicates that hydrolysis becomes rate-limiting in the less active state. Alternatively, the
239 conformational equilibrium itself could have an isotope effect causing the differences in
240 activity.

241 Our combined data on binding and activity demonstrate how evolution successively
242 optimized the catalytic cycle and gradually changed the rate-limiting step. In the burst phase,
243 which is probably the physiologically relevant phase, the slowest step appears to be substrate
244 binding in wtOXA-48, binding or deacylation in F72L, and acylation in Q4. Our analysis
245 indicates that the apparent change in rate-limiting step causes the observed epistatic effects.
246 In other words, because substrate binding is slow in wtOXA-48, it is likely that neither S212A
247 nor T213A substantially affect activity in the wild-type background and require F72L to
248 accelerate substrate binding for their improvements to take effect fully.


249 **F72L and alanine mutations orthogonally tune the protein dynamics**

250 To understand how evolution modulated the conformational dynamics of OXA-48, we
251 determined the crystal structures of F72L, Q5, and Q5 covalently bound to CAZ (PDB IDs:
252 8PEA, 8PEB and 8PEC, Tab. S6). To extract dynamical information from these structures, we
253 performed ensemble refinements for wtOXA-48 (PDB ID: 4S2P²⁸), F72L, and Q5 (Fig. 3a).
254 Firstly, the overall architecture of the active site in Q5, including the catalytic residues, was
255 generally maintained (Fig. S6). Despite the introduction of S212A and T213A in the β 5- β 6
256 loop, the overall shape of this loop is preserved. As expected, the ensemble refinement
257 confirmed that F72L increased the protein flexibility, primarily resulting in the Ω -loop adopting
258 various alternate conformations. This increase in Ω -loop dynamics likely accelerated substrate
259 binding and caused the observed change in rate-limiting step.^{19,29}

260 To understand how evolution affected the conformational dynamics while giving rise
261 to synergy, we performed extensive molecular dynamics (MD) simulations of various OXA-48
262 variants in the acyl-enzyme complex (Fig. S7 to S11). We determined per-residue root-mean-
263 square fluctuations (RMSF) for all variants to explore how evolution affected enzyme flexibility
264 (Fig. 3b and S8). Consistent with the crystallographic observations, introducing F72L
265 increased the RMSF values of the Ω loop region. While our simulations are of the acyl-enzyme
266 state, the increased flexibility will likely also aid substrate entry.^{19,29}

267 To further dissect how the mutations affect the protein dynamics, we analyzed the
268 conformational landscape of the active-site loops by principal component and cluster analysis
269 (Fig. 3c, S9, and S10a). As expected, F72L significantly modulated the conformational
270 landscape, while introducing the S212A or T213A mutations did not change the sampled
271 conformational space (Fig. 3c and Fig. S10a). Notably, F72L allows the protein to populate a
272 different conformational ensemble, in which the space created by the loss of the phenylalanine
273 sidechain allows the neighboring α -helix to slide toward the center of the protein while
274 increasing the conformational freedom of the Ω -loop (Fig. 3d and S10b). That movement,
275 which provides space for substrate entry, is accompanied by tightening of an H-bonding
276 network below the Ω -loop involving T71, Y144, and N169 (Fig. S10c).

277 While our MD analysis supports that F72L accelerates substrate binding and thereby
278 shifts the rate-limiting step, the structural role of S212A and T213A is more elusive. Since
279 these mutations did not affect the sampled conformational space, we hypothesized that
280 dynamical cross-correlation analysis might allow us to identify regions that show correlated
281 movements – and thus likely tighter interaction – with the substrate covalently bound to S70
282 (Fig. 3e and S11). When analyzing the changes in the correlation of the acylated S70 with the
283 rest of the protein, we observed distinct dynamical changes wrought by either F72L or the
284 alanine mutations on the protein scaffold. F72L primarily decreased the dynamical correlation
285 between S70 and the Ω -loop, which agrees with the increased flexibility and improved
286 substrate binding conferred by F72L. In contrast to F72L, S212A and T213 had an entirely
287 different effect on the protein dynamics. Notably, S212A and T213A enhanced the correlation
288 of S70 with the neighboring β -strands which harbor the oxyanion hole (Fig. 3e and S11).³⁰
289 Dynamical correlations between the nucleophile and the oxyanion hole may explain increases
290 in k_{cat} , because they signify better preorganization and the ability to stabilize the transition
291 state intermediate.^{15,31,32} Overall, the effects of F72L and the alanine mutations on the
292 correlations were largely orthogonal, like their effects on conformational sampling. Such
293 orthogonal dynamical relationships are probably central to the epistatic effects not only in
294 OXA-48, but also for the evolution of other natural and designer enzymes.^{25,33}

295

296 **Figure 3: Evolution of a catalytically superior ensemble.** **a.** Ensemble refinement of wtOXA-48, F72L, and Q5
297 reveal increased mobility of the Ω-loop. **b.** ΔRMSF values relative to wtOXA-48, F72L, and Q4 from MD simulations
298 reproduce the increased flexibility of the Ω-loop region (see Fig. S8 for other variants). **c.** Principal component and
299 cluster analysis show that F72L modulates the conformational landscape in ways likely to accelerate binding (see
300 Fig. S9 for other variants). **d.** Cluster representatives indicate that evolution displaced the Ω-loop but closed the
301 other solvent-exposed loops (see Fig. S10 for other variants). **e.** Dynamical correlation analysis reveals that the
302 movement of the acylated S70 becomes tightly coupled with the protein scaffold, particularly the oxyanion hole, by
303 means of the alanine mutations. In contrast, F72L predominantly decreases the interaction of S70 with the Ω-loop
304 (increased and decreased correlations relative to wtOXA-48 are shown in blue and red, respectively. Only
305 statistically significant changes compared to wtOXA-48 are shown (T-test, $\alpha = 0.05$; see Fig. S11 for other variants).

306 **DISCUSSION**

307 Unraveling the molecular mechanisms underlying epistasis is vital for understanding enzyme
308 evolution.¹⁴ Many previous studies on epistatic enzyme evolution focused on exploring
309 epistatic mechanisms from a structural perspective, for instance, by demonstrating direct
310 interactions between mutations or synergistic effects on conformational dynamics.^{7,11,34} By
311 contrast, our observations highlight that the molecular basis for intramolecular epistasis is
312 rooted in changes in the catalytic cycle. We describe how distinct mutations shifted the rate-
313 limiting step from substrate binding to the chemical reaction in the β -lactamase OXA-48,
314 thereby causing strong phenotypic epistasis (Fig. 1 and 2). Intriguingly, the adaptive mutations
315 introduced into OXA-48 are structurally orthogonal, but mechanistically epistatic: F72L
316 induces dynamical and structural perturbations that are largely independent of the S212A and
317 T213A, and *vice versa* (Fig. 3). Since CAZ binding is rate-limiting, F72L must be incorporated
318 first to accelerate binding and unlock the effect of S212A and T213A on the chemical step. In
319 addition to the observed change in the slowest step from binding to chemistry, shifting the
320 rate-limiting step between other stages of the catalytic cycle could also result in epistasis.
321 While genetic context-dependent effects on k_{cat} and K_M have been previously reported,³⁵
322 deciphering their underlying epistatic relationship has remained challenging. Here, gaining
323 detailed insights into the origins of epistasis was only possible by in-depth characterizations
324 through pre-steady state kinetics, isotope effects, and dynamical analysis. To the best of our
325 knowledge, this is the first report on how changing the reaction bottleneck from binding to the
326 chemical step leads to synergy in evolution. We hypothesize that similar effects are likely to
327 be of vast importance in the evolution of other biocatalysts.

328 'Catalytically perfect' enzymes, in which the reaction rate is only limited by substrate
329 diffusion, display catalytic efficiencies (k_{cat}/K_M) of $>10^8 \text{ M}^{-1} \text{ s}^{-1}$. Despite its k_{cat}/K_M being orders
330 of magnitude below the diffusion limit, our analysis unexpectedly revealed that CAZ binding is
331 the rate-limiting step in OXA-48 (Fig. 2). In contrast, acylation and deacylation are often
332 catalytic bottlenecks in serine β -lactamases.^{21,36} Nevertheless, the extended size of CAZ has
333 led to the hypothesis that its binding is more challenging than that of other β -lactams.^{12,36} OXA-

334 48 furthermore differs from other serine β -lactamases in that it accommodates the carboxylate
335 group adjacent to the oxyimino-moiety of CAZ within its active site (Fig. S12),^{20,24} which
336 probably additionally slows down CAZ binding resulting in rate-limiting complex formation.
337 Understanding how individual steps affect overall catalytic activity is crucial for understanding
338 and predicting enzyme evolution and designing more efficient drugs that exploit mechanistic
339 bottlenecks.

340 Our findings show the selection of a super-stoichiometric burst phase that correlates
341 with increasing levels of antibiotic resistance (Fig. 2). The origin of such a burst phase cannot
342 be described by a simple two-step reaction mechanism and is probably driven by the selection
343 of pre-existing conformational sub-states and changes in conformational dynamics
344 (Fig. 3).^{11,14,37,38} The evolution of burst phase kinetics introduces a kinetic bottleneck that
345 restricts efficiency at CAZ concentrations above K_M (Fig. 2b). Importantly, this bottleneck is
346 irrelevant at the substrate concentrations used during selection, where the burst behavior
347 vanishes. We hypothesize that offsetting activity enhancements under physiologically
348 irrelevant steady-state conditions likely relieved selection pressure and facilitated
349 improvements under the selective conditions.

350 In conclusion, our study demonstrates that mutations can orthogonally impact different
351 steps along the catalytic cycle, ultimately shifting the catalytic bottleneck. The combined effect
352 of these mutations results in positive epistasis, which drives enzyme evolution. Understanding
353 the mechanistic origins of such epistatic phenomena is crucial to enhancing the predictability
354 of evolutionary outcomes and advancing the overall field of enzyme engineering.

355

356 **Funding**

357 The authors have declared no competing interest. CF thanks the PhD schools NFIF, IBA and
358 Biocat for their funding. HAB thanks the SNSF for funding (P5R5PB_210999,
359 PZ00P3_208691, P400PB_194329). MWvdK thanks BBSRC for funding (BB/M026280/1). NT
360 thanks the Canadian Institute of Health Research (CIHR) for the project grant (AWD-019305).
361 HKSL thanks CANS for the project grant. This work is part of a project that has received

362 funding from the European Research Council under the European Horizon 2020 research and
363 innovation program (PREDACTED Advanced Grant Agreement no. 101021207) to AJM. AJM
364 and HAB also thank BBSRC (grant no. BB/R016445/1) and EPSRC (EP/M013219/1 and
365 EP/M022609/1) for funding.

366

367 **Acknowledgements**

368 Molecular dynamics simulations were conducted using the computational facilities of the
369 Advanced Computing Research Centre, University of Bristol.

370 **MATERIALS AND METHODS**

371 **General material**

372 LB agar, broth, chloramphenicol, ampicillin, CAZ were purchased from Sigma-Aldrich (MO,
373 USA). Primers (P) used for this study are shown in Tab. S7. All cloning enzymes were
374 purchased from Thermo Fisher Scientific (MA, USA), if not stated otherwise. The *E. coli*
375 *E. cloni*® 10G (MP21-5) was obtained from Lucigen (WI, USA). All strains used and
376 constructed in this study are shown in Tab. S8. Kinetic data was fitted using Prism v. 9.0
377 (GraphPad Software, CA, USA).

378

379 **Directed evolution and cloning**

380 The construction of the low copy number vector pUN-*bla*_{OXA-48} (pA15 origin; 10-20 copies per
381 cell) was previously published.³⁹ Error-prone PCR was performed using 10 ng pUNE-4-*bla*_{OXA-}
382₄₈, GoTag (Promega, WI, USA), 25 mM MgCl₂ (Promega), 10 µM P7/P8 and either 50 µM oxo-
383 dGTP or 1 µM dPTP (Jena Bioscience, Germany). PCR products were *Dpn*I digested for 1 h
384 and 37°C and 5 ng of each product were used for a second PCR, which was performed as
385 described above, but without mutagenic nucleotides. PCR amplicons were digested using
386 *Ncol*, *Xhol*, *Dpn*I for 1 h at 37°C, purified for ligation with the vector backbone and transformed
387 into MP21-5. To insure a sufficient mutational depth, we aimed for library sizes of at least 5000
388 colonies which was determined by plating on agar plates supplemented with 25 mg/L
389 chloramphenicol LB and one to two amino acid changes per round of evolution which was
390 determined by Sanger sequencing (Azenta, Germany).

391 The fitness landscape was constructed in the pUN vector background using Goldengate
392 cloning and the corresponding primers in Tab. S7. In short, we performed whole vector
393 amplification followed by digestions with *Lgul* and *Dpn*I for 1 h 37°C. Ligations were performed
394 using 10-20 ng of DNA for 1 h at room temperature using T4 ligase, transformed into MP21-5
395 and clones were grown on 25 mg/L chloramphenicol LB agar plates and verified using Sanger
396 sequencing (Azenta).

397 For protein expression, OXA-48 variants were sub-cloned into a pDEST-17 (pURR)
398 expression vector without the leader sequence and with a 6-His-tag using P2/P37 and
399 P35/P36. Amplicons were digested using *Not*I and *Xba*I, ligated as described above and
400 transformed into MP21-5. Vectors were isolated using the plasmid miniprep kit (Qiagen,
401 Germany). pURR expression vectors were transformed into *E. coli* BL21 AI. Clones were
402 selected on agar containing ampicillin 100 mg/L and verified using Sanger sequencing
403 (Azenta).

404

405 **Selective plating**

406 MP21-5 cultures harboring either pUNE-4-*bla*_{OXA-48} or a library of OXA-48 were plated on LB
407 agar plates containing increasing concentrations of CAZ and grown over night at 37°C
408 (Tab. S1). Up to eight colonies grown on the highest concentrations were recovered and their
409 genotype characterized by Sanger sequencing (Azenta). Before determining their *IC*₅₀ values,
410 the corresponding mutant alleles were sub-cloned into an isogenic pUN vector backbone and
411 transformed into MP21-5, to exclude mutational effects outside of the target gene.

412

413 ***IC*₅₀ determination**

414 *IC*₅₀ values were determined as described previously.^{19,39} In brief, cultures were grown to full
415 density under 700 rpm shaking over night at 37°C. Overnight cultures were diluted in PBS to
416 a density of 10⁶ cells/ mL and used to inoculate a 384 well plate (Thermo Fisher Scientific)
417 with a CAZ gradient (0 to 32 mg/L) at a final cell density of 10⁵ cells/ mL. Plates were incubated
418 statically at 37°C for 20 h. The absorbance was determined as OD₆₀₀ using an Epoch
419 spectrophotometer (Biotek, VT, USA). Dose-response curves were and their *IC*₅₀ value were
420 determined based on a non-linear fit.

421

422 **Protein expression and purification**

423 Cultures of *E. coli* BL21AI harboring modified pURR expression vector with *bla*_{OXA-48} or mutant
424 alleles were grown in TB supplemented with 100 mg/L ampicillin at 30°C and 220 rpm. Protein

425 expression was induced by adding L-arabinose (Sigma-Aldrich) to a final concentration of
426 0.2% when the cultures reached a OD₆₀₀ of 0.4. Cultures were expressed for 16 h at 15°C,
427 centrifuged at 4°C for 30 min and the cell pellets were stored at -20°C for purification. Protein
428 purification was performed using HisPur® Ni-NTA spin columns (Thermo Fisher Scientific) as
429 published previously.^{19,40} For crystallization, the His-tag was cleaved over night at 4°C using
430 in-house produced TEV and the TEV-cleaved product was purified through an additional round
431 of HisPur® Ni-NTA columns (Thermo Fisher Scientific).

432

433 **Fluorescence-based thermostability**

434 Thermostability was performed as previously published using purified OXA-48 enzymes,
435 containing 6-His tag and TEV cleaving site.¹⁹ In 50 mM HEPES (VWR, PA, USA), pH 7.5
436 including 50 mM potassium sulfate (Honeywell, NC, USA), enzymes were diluted to 0.2 mg/mL
437 and mixed with 5xSYPRO orange (Sigma-Aldrich). Using an MJ minicycler (Bio-Rad, CA,
438 USA), a temperature gradient (25 to 70°C) was performed with a heating rate of 1°C per min
439 was. All experiments were performed in triplicates and the melting temperatures (T_M) were
440 determined as the inflection point of the melting transition found from the first derivative.

441

442 **Pre-steady-state burst and steady-state enzyme kinetics**

443 Room-temperature burst kinetics were obtained under pre-steady state conditions using an
444 SX20 stopped flow (Applied Photophysics, UK) by monitoring substrate depletion by
445 absorbance at 260 nm. Enzyme and substrate were mixed 1:1 at 25°C and in 0.1 M phosphate
446 buffer (Sigma-Aldrich, pH 7.2) supplemented with 50 mM NaHCO₃ (Sigma-Aldrich). Burst
447 kinetics were assayed at final enzyme concentrations of 10 μM and final substrate
448 concentrations varying between 50 to 400 μM (Eq. 1).

$$\frac{P}{E_0} = v_{\text{steady}} * t - (v_{\text{steady}} - v_{\text{burst}}) * (1 - e^{-k*t})/k \quad \text{Eq. 1}$$

449

450 Catalytic parameters (k_{cat} , K_M and k_{cat}/K_M) were determined under burst and steady-state
451 conditions using ceftazidime ($\Delta\xi = -9,000 \text{ M}^{-1} \text{ cm}^{-1}$) at 260 nm by measuring the initial
452 enzymatic reaction rate in a Epoch plate-reader (Biotek). Burst phase rates were determined
453 at 4°C and steady-state parameters were determined at 25°C. Reactions rates were obtained
454 in at least duplicates at a final enzyme concentration of 1 μM (final assay volume of 100 μL).
455 UV-transparent 96-well plates (Corning, ME, USA) were used. Assays were performed in 0.1
456 M phosphate buffer (Sigma-Aldrich, pH 7.2), supplemented with 50 mM NaHCO_3 (Sigma-
457 Aldrich).

458

459 **Solvent isotope effects**

460 Solvent isotope effects were determined at 25°C using an SX20 stopped flow (Applied
461 Photophysics) from burst kinetics obtained at 400 μM CAZ. Solvent isotope effects (KIE) were
462 calculated from the ratio of the rate in 80% D_2O (Sigma-Aldrich, k_D) and water (k_H , Eq. 2).

463

$$464 \text{KIE} = \frac{k_H}{k_D} \quad \text{Eq. 2}$$

465

466 **Pre-steady state binding kinetics**

467 CAZ binding was determined under pre-steady state condition using an SX20 stopped flow
468 (Applied Photophysics) by tryptophane fluorescence, with an excitation wavelength of 280 nm,
469 a 305 nm lower cut off emission filter and a 0.2 mm excitation pathlength. Enzyme and
470 substrate were mixed 1:1 at a final enzyme concentration of 1 μM , and the final substrate
471 concentration was varied between 100 to 1200 μM . Binding was assayed at 25°C and in 0.1
472 M phosphate buffer (pH 7.2) supplemented with 50 mM NaHCO_3 (Sigma Aldrich). Binding
473 rates were obtained by global fitting of the observed biphasic curves to a double-exponential
474 decay (Eq. 3).

$$\text{Fluorescence} = A_1 * \exp^{-k_1*t} + A_2 * \exp^{-k_2*t} + c \quad \text{Eq. 3}$$

475

476 where k_1 and k_2 are the observed binding rates and A_1 and A_2 are the amplitudes of the two
477 signals with an offset of c . To enable global fitting, k_1 and k_2 were fitted to a linear equation
478 each (Eq. 4, Eq. 5), where $k_{1,\text{on}}$, $k_{2,\text{on}}$, $k_{1,\text{off}}$ and $k_{2,\text{off}}$ were shared between all datasets.

479

$$k_1 = k_{1,\text{on}} * c(\text{CAZ}) + k_{1,\text{off}} \quad \text{Eq. 4}$$

$$k_2 = k_{2,\text{on}} * c(\text{CAZ}) + k_{2,\text{off}} \quad \text{Eq. 5}$$

480

481 **Size exclusion chromatography**

482 Changes in the molecular size were understudied using size exclusion chromatography:
483 50 nM, 10 μM wtOXA-48 and 10 μM of the mutant R189A/R206A mutants. R189A/R206A has
484 been previously described to disrupt the dimer interface of OXA-48 and elute significantly
485 later.⁴¹ Separation was performed in 0.1 M phosphate buffer (Sigma-Aldrich, pH 7.0) using a
486 Superdex 200 10/300 GL column with a flow rate of 0.5 mL per min at 4°C. Elution was
487 monitored by recording the absorbance at 280 nm.

488

489 **Dynamic light scattering**

490 The hydrodynamic radius of Q4 was determined using a zetasizer (Malvern Panalytical, UK).
491 To that end, 1 mL of 10 μM Q4 was assayed either in the presence or absence of 400 μM
492 CAZ in 0.1 M phosphate buffer (Sigma-Aldrich, pH 7.0) supplemented with 50 mM NaHCO₃
493 (Sigma-Aldrich). The experiment with CAZ was repeated after a 15 min incubation.

494

495 **Sequential mixing**

496 To assess the reversibility of the burst phase, 20 μM Q4 was pre-incubated with 400 μM CAZ,
497 and mixed with a second batch of 400 μM CAZ after a delay of 1000, 2000, and 3000 s in an

498 SX20 stopped flow (Applied Photophysics) by monitoring substrate depletion by absorbance
499 at 260 nm.

500

501 **Crystallography, structure determination and refinement**

502 Crystallization was performed in a 1 μ L hanging drop containing 10 mg/mL enzyme and mixed
503 1:1 with reservoir solution containing 0.1 M Tris, pH 9.0 (Sigma-Aldrich), and 28 to 30%
504 polyethylene glycol (PEG) mono ethylene ether 500 (Sigma-Aldrich) at 4°C. Crystals were
505 cryoprotected by using 15% ethylene glycol (Sigma-Aldrich) in addition to the reservoir
506 solution, and subsequently frozen in liquid nitrogen. Diffraction data were collected on ID23-
507 EH2 (F72L) and ID30B (Q5 and Q5-CAZ), ESRF, France, at 100 K, wavelength 0.9184 Å, and
508 the diffraction images were indexed and integrated using XDS⁴². For data scaling, AIMLESS
509 was used⁴³ and an overall high completeness and CC1/2 > 0.5 and a mean intensity above
510 1.0 in the outer resolution shell was aimed for (Tab. S6). Molecular replacement was
511 performed using chain A of PDB ID 6Q5F¹⁹ and the program PHENIX 1.12⁴⁴. Parts of the
512 model were manually rebuilt using Coot⁴⁵. Average structure refinement and ensemble
513 refinement was performed using PHENIX 1.12. PyMOL 1.8 was used for illustrations
514 (Schrödinger, NY, USA).

515

516 **Molecular dynamics simulations: System setup**

517 MD simulations were set up analogously to our previous work.^{19,24} See Fig. S7 to S11 for all
518 simulated structures. Acyl-enzyme structures of the OXA-48 variants with covalently bound
519 CAZ were built based on the structure of apo wtOXA-48 (PDB ID: 4S2P²⁸), with CAZ added
520 from the holo structure of Q5 (PDB ID: 8PEC). All OXA-48 variants were modelled based on
521 this structure using the mutagenesis tool in PyMOL, choosing the rotamer with the least steric
522 clashes with surrounding atoms. For comparison, MD simulations for Q4 were also performed
523 based on the holo structure of Q5 (PDB ID: 8PEC) and the Ω -loop of apo wtOXA-48 (residues
524 D143 – I164). This variant is indicated as Q4 (template Q5) in Fig. S7 - S11. The results from
525 those simulations agreed qualitatively well with those obtained from the Q4. The system was

526 parametrized using tleap,⁴⁶ and enzymes were solvated in a 10.0 Å octahedral box of TIP3P
527 water^{47,48} with net charge neutralized using the Amber uniform neutralizing plasma.⁴⁶ The
528 ff14SB force field⁴⁹ was used to describe the protein. Parameters for the carbamylated lysine
529 (KCX) were previously obtained²⁴ from restrained electrostatic potential (RESP) fitting as
530 implemented in the RED Server.⁵⁰ Parameters for the CAZ-acetylated serine were likewise
531 obtained with the RED Server.

532 Several restraints were applied during the simulations to maintain a productive conformation.
533 The restraints include a ≤ 4.0 Å distance restraint from the nucleophilic water to either the KCX
534 base oxygen or CAZ carbonyl carbon using one-sided harmonic potentials. The distance of
535 the KCX N_ζ and catalytic Ser70 O_γ was likewise restrained to ≤ 4.0 Å. Lastly, flat-bottom
536 potentials were applied to the C_δC_εN_ζC_η ($\leq -130^\circ$ and $\geq -80^\circ$) and C_γC_δC_εN_ζ ($\leq 45^\circ$ and $\geq 5=95^\circ$)
537 dihedral angles. All restraint force constants were 10 kcal/mol/Å² during the equilibration MD
538 and 100 kcal/mol/Å² during minimization.

539

540 **Molecular dynamics simulations: Simulations**

541 All systems were minimized using 10,000 steps of steepest descent followed by 10,000 steps
542 of conjugate gradient. During both minimization steps, the position of all protein atoms was
543 restraint with a weight of 10 kcal/mol/Å². The minimization was subsequently repeated without
544 positional restraints. Subsequently, the system was heated from 50 K to 300 K in 20 ps, and
545 then simulated for 50 ns in the NPT ensemble saving a frame every 100 ps. Langevin
546 dynamics were used with a collision frequency of 0.2 and a 2 fs time step. The Berendsen
547 barostat was used with isotropic position scaling. All bonds involving hydrogens were
548 constrained using the SHAKE algorithm. 20 independent simulations were run per enzyme
549 variant (for a total of 1.0 μs per variant). All calculations were performed with the Amber18
550 program package (sander.MPI for minimization and pmemd.cuda for MD simulations).⁴⁶

551

552 **Molecular dynamics simulations: Analysis**

553 MD simulations were analyzed using CPPTRAJ⁵¹. All analyses were based on C_α positions.
554 The first 10 ns of each production MD run were excluded to allow sufficient time for system
555 equilibration. RMSD values were calculated compared to the minimized starting structures.
556 Root mean square fluctuations (RMSF) were determined by first calculating an average
557 structure for each replicate, aligning the trajectory against the average structure, and then
558 calculating the RMSF for each protein residue. Errors indicate the standard error of the 20
559 independent replicates.
560 For each variant, cluster and principal component analysis were performed on their combined
561 20 replicates. To that end, a global average structure over all variants was first determined
562 and all trajectories snapshots were aligned by C_α to that average. After the alignment, the
563 analyses were performed for the active-site loops (residues 96-106, 151-160, 213-218, 242-
564 246) without re-aligning the loops. To perform the analyses in the same space, both the cluster
565 and principal component analysis were performed simultaneously for all variants. Clustering
566 based on C_α RMSD of the loops was performed with cpptraj using the kmeans algorithm to
567 split each trajectory into two clusters. Principal component analysis was performed using
568 mdtraj⁵² and sklearn.⁵³

569 **REFERENCES**

570 1. Miton, C.M., Buda, K. & Tokuriki, N. Epistasis and intramolecular networks in protein
571 evolution. *Curr Opin Struct Biol* **69**, 160-168 (2021).

572 2. Miton, C.M., Chen, J.Z., Ost, K., Anderson, D.W. & Tokuriki, N. Statistical analysis of
573 mutational epistasis to reveal intramolecular interaction networks in proteins. *Methods
574 Enzymol* **643**, 243-280 (2020).

575 3. Miton, C.M. & Tokuriki, N. How mutational epistasis impairs predictability in protein
576 evolution and design. *Protein Sci* **25**, 1260-72 (2016).

577 4. Khersonsky, O. & Tawfik, D.S. Enzyme promiscuity: a mechanistic and evolutionary
578 perspective. *Annu Rev Biochem* **79**, 471-505 (2010).

579 5. Buda, K., Miton, C.M. & Tokuriki, N. Higher-order epistasis creates idiosyncrasy,
580 confounding predictions in protein evolution. *bioRxiv*, 2022.09.07.505194 (2022).

581 6. Yang, G. et al. Higher-order epistasis shapes the fitness landscape of a xenobiotic-
582 degrading enzyme. *Nat Chem Biol* **15**, 1120-1128 (2019).

583 7. Campbell, E.C. et al. Laboratory evolution of protein conformational dynamics. *Curr
584 Opin Struct Biol* **50**, 49-57 (2018).

585 8. Romero-Rivera, A., Garcia-Borras, M. & Osuna, S. Role of Conformational Dynamics
586 in the Evolution of Retro-Aldolase Activity. *ACS Catal* **7**, 8524-8532 (2017).

587 9. Sethi, A., Eargle, J., Black, A.A. & Luthey-Schulter, Z. Dynamical networks in
588 tRNA:protein complexes. *Proc Natl Acad Sci U S A* **106**, 6620-5 (2009).

589 10. Jimenez-Oses, G. et al. The role of distant mutations and allosteric regulation on LovD
590 active site dynamics. *Nat Chem Biol* **10**, 431-6 (2014).

591 11. Otten, R. et al. How directed evolution reshapes the energy landscape in an enzyme
592 to boost catalysis. *Science* **370**, 1442-1446 (2020).

593 12. Rossi, M.-A., Palzkill, T., Almeida, F.C.L. & Vila, A.J. Slow Protein Dynamics Elicits
594 New Enzymatic Functions by Means of Epistatic Interactions. *Molecular Biology and
595 Evolution* **39**, msac194 (2022).

596 13. Liao, Q. et al. Loop Motion in Triosephosphate Isomerase Is Not a Simple Open and
597 Shut Case. *J Am Chem Soc* **140**, 15889-15903 (2018).

598 14. Dellus-Gur, E. et al. Negative Epistasis and Evolvability in TEM-1 β -Lactamase-The
599 Thin Line between an Enzyme's Conformational Freedom and Disorder. *J Mol Biol*
600 **427**, 2396-409 (2015).

601 15. Kries, H., Bloch, J.S., Bunzel, H.A., Pinkas, D.M. & Hilvert, D. Contribution of Oxyanion
602 Stabilization to Kemp Eliminase Efficiency. *ACS Catal* **10**, 4460-4464 (2020).

603 16. Buller, A.R. et al. Directed Evolution Mimics Allosteric Activation by Stepwise Tuning
604 of the Conformational Ensemble. *J Am Chem Soc* **140**, 7256-7266 (2018).

605 17. Zeymer, C., Zschoche, R. & Hilvert, D. Optimization of Enzyme Mechanism along the
606 Evolutionary Trajectory of a Computationally Designed (Retro-)Aldolase. *J Am Chem
607 Soc* **139**, 12541-12549 (2017).

608 18. Blazeck, J. et al. Bypassing evolutionary dead ends and switching the rate-limiting step
609 of a human immunotherapeutic enzyme. *Nat Catal* **5**, 952-967 (2022).

610 19. Fröhlich, C. et al. Cryptic β -Lactamase Evolution Is Driven by Low β -Lactam
611 Concentrations. *mSphere* **6**, e00108-21 (2021).

612 20. Fröhlich, C. et al. OXA-48-Mediated Ceftazidime-Avibactam Resistance Is Associated
613 with Evolutionary Trade-Offs. *mSphere* **4**, e00024-19 (2019).

614 21. Stojanoski, V. et al. Mechanistic Basis of OXA-48-like β -Lactamases' Hydrolysis of
615 Carbapenems. *ACS Infect Dis* **7**, 445-460 (2021).

616 22. Tooke, C.L. et al. β -Lactamases and β -Lactamase Inhibitors in the 21st Century. *J Mol
617 Biol* **431**, 3472-3500 (2019).

618 23. Pitout, J.D.D., Peirano, G., Kock, M.M., Strydom, K.A. & Matsumura, Y. The Global
619 Ascendancy of OXA-48-Type Carbapenemases. *Clin Microbiol Rev* **33**, e00102-19
620 (2019).

621 24. Hirvonen, V.H.A., Mulholland, A.J., Spencer, J. & van der Kamp, M.W. Small Changes
622 in Hydration Determine Cephalosporinase Activity of OXA-48 β -Lactamases. *ACS
623 Catal* **10**, 6188-6196 (2020).

624 25. Bunzel, H.A., Anderson, J.L.R. & Mulholland, A.J. Designing better enzymes: Insights
625 from directed evolution. *Curr Opin Struct Biol* **67**, 212-218 (2021).

626 26. Page, M.G.P. The kinetics of non-stoichiometric bursts of β -lactam hydrolysis
627 catalysed by class C β -lactamases. *Biochem J* **295**, 295-304 (1993).

628 27. Page, M.G.P. Extended-spectrum β -lactamases: structure and kinetic mechanism.
629 *Clinical Microbiology and Infection* **14**, 63-74 (2008).

630 28. King, D.T., King, A.M., Lal, S.M., Wright, G.D. & Strynadka, N.C. Molecular Mechanism
631 of Avibactam-Mediated β -Lactamase Inhibition. *ACS Infect Dis* **1**, 175-84 (2015).

632 29. Tooke, C.L. et al. Tautomer-Specific Deacylation and Ω -Loop Flexibility Explain the
633 Carbapenem-Hydrolyzing Broad-Spectrum Activity of the KPC-2 β -Lactamase. *J Am
634 Chem Soc* **145**, 7166-7180 (2023).

635 30. Docquier, J.D. et al. Crystal structure of the OXA-48 β -lactamase reveals mechanistic
636 diversity among class D carbapenemases. *Chem Biol* **16**, 540-7 (2009).

637 31. Schneider, S.H., Kozuch, J. & Boxer, S.G. The Interplay of Electrostatics and Chemical
638 Positioning in the Evolution of Antibiotic Resistance in TEM β -Lactamases. *ACS Cent
639 Sci* **7**, 1996-2008 (2021).

640 32. Bunzel, H.A. et al. Evolution of dynamical networks enhances catalysis in a designer
641 enzyme. *Nat Chem* **13**, 1017-1022 (2021).

642 33. Buda, K., Miton, C.M., Fan, X.C. & Tokuriki, N. Molecular determinants of protein
643 evolvability. *Trends Biochem Sci* (2023).

644 34. Tokuriki, N. & Tawfik, D.S. Protein dynamism and evolvability. *Science* **324**, 203-7
645 (2009).

646 35. Tamer, Y.T. et al. High-Order Epistasis in Catalytic Power of Dihydrofolate Reductase
647 Gives Rise to a Rugged Fitness Landscape in the Presence of Trimethoprim Selection.
648 *Mol Biol Evol* **36**, 1533-1550 (2019).

649 36. Palzkill, T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance
650 Mutations in Altering the Specificity of TEM, CTX-M, and KPC β -lactamases. *Front Mol
651 Biosci* **5**, 16 (2018).

652 37. Maria-Solano, M.A., Serrano-Hervas, E., Romero-Rivera, A., Iglesias-Fernandez, J. &
653 Osuna, S. Role of conformational dynamics in the evolution of novel enzyme function.
654 *Chem Commun* **54**, 6622-6634 (2018).

655 38. Campbell, E. et al. The role of protein dynamics in the evolution of new enzyme
656 function. *Nat Chem Biol* **12**, 944-950 (2016).

657 39. Fröhlich, C., Sørum, V., Tokuriki, N., Johnsen, P.J. & Samuelsen, Ø. Evolution of β -
658 lactamase-mediated cefiderocol resistance. *J Antimicrob Chemother*, 2429–2436
659 (2022).

660 40. Lund, B.A., Christopeit, T., Guttormsen, Y., Bayer, A. & Leiros, H.K. Screening and
661 Design of Inhibitor Scaffolds for the Antibiotic Resistance Oxacillinase-48 (OXA-48)
662 through Surface Plasmon Resonance Screening. *J Med Chem* **59**, 5542-54 (2016).

663 41. Lund, B.A. et al. The biological assembly of OXA-48 reveals a dimer interface with high
664 charge complementarity and very high affinity. *FEBS J* **285**, 4214-4228 (2018).

665 42. Kabsch, W. Xds. *Acta Crystallogr D Biol Crystallogr* **66**, 125-32 (2010).

666 43. Evans, P.R. & Murshudov, G.N. How good are my data and what is the resolution?
667 *Acta Crystallogr. D* **69**, 1204-1214 (2013).

668 44. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for
669 macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-21
670 (2010).

671 45. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of
672 Coot. *Acta Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).

673 46. D.A. Case, I.Y.B.-S., S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D. Cruzeiro,
674 T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz, D. Greene,
675 R Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S.
676 LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M. Merz, Y. Miao,
677 G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D.R. Roe,
678 A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, J. Smith, R.
679 Salomon-Ferrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X. Wu, L. Xiao,
680 D.M. York and P.A. Kollman. *AMBER 2018*, (2018).

681 47. Le Grand, S., Gotz, A.W. & Walker, R.C. SPFP: Speed without compromise-A mixed
682 precision model for GPU accelerated molecular dynamics simulations. *Comput Phys
683 Commun* **184**, 374-380 (2013).

684 48. Salomon-Ferrer, R., Gotz, A.W., Poole, D., Le Grand, S. & Walker, R.C. Routine
685 Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit
686 Solvent Particle Mesh Ewald. *J Chem Theory Comput* **9**, 3878-88 (2013).

687 49. Maier, J.A. et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone
688 Parameters from ff99SB. *J Chem Theory Comput* **11**, 3696-713 (2015).

689 50. Vanquelef, E. et al. R.E.D. Server: a web service for deriving RESP and ESP charges
690 and building force field libraries for new molecules and molecular fragments. *Nucleic
691 Acids Res* **39**, W511-7 (2011).

692 51. Roe, D.R. & Cheatham, T.E., 3rd. PTraj and CPPTRAJ: Software for Processing and
693 Analysis of Molecular Dynamics Trajectory Data. *J Chem Theory Comput* **9**, 3084-95
694 (2013).

695 52. McGibbon, R.T. et al. MDTraj: A Modern Open Library for the Analysis of Molecular
696 Dynamics Trajectories. *Biophys J* **109**, 1528-32 (2015).

697 53. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. *J. Mach. Learn. Res.*
698 **12**, 2825–2830 (2011).

699

700 **Table 1: IC_{50} and burst-phase catalytic parameters of OXA-48 variants^{a,b}**

	IC_{50} (mg/L)	k_{cat} (s ⁻¹)	K_M (μM)	k_{cat}/K_M (M ⁻¹ s ⁻¹)
wtOXA-48	0.013 ± 0.002	-	-	3.6
F72L	0.029 ± 0.003	0.005 ± 0.001	165 ± 15	30
S212A	0.015 ± 0.001	-	-	6.0
T213A	0.013 ± 0.001	-	-	5.4
F72L/S212A	0.140 ± 0.002	0.025 ± 0.002	95 ± 20	260
F72L/T213A	0.177 ± 0.037	0.036 ± 0.009	160 ± 70	225
S212A/T213A	0.023 ± 0.003	-	-	35
Q3	0.389 ± 0.015	0.018 ± 0.002	10 ± 3	1700
Q4	0.513 ± 0.054	0.077 ± 0.006	27 ± 5	2900

701 ^a Errors are reported as the standard deviation of the mean.

702 ^b Catalytic parameters were determined at 4°C.

703 - Not calculated due to linearity of the Michaelis-Menten plot.

704

705

706 **Table 2: Burst-phase binding and catalysis kinetics.^a**

	wtOXA-48	F72L	Q4
k_1 (M ⁻¹ s ⁻¹)	15.2 ± 0.5	29 ± 3	90600 ± 700
k_{-1} (s ⁻¹)	0.026 ± 0.001	0.127 ± 0.001	2.0 ± 0.1
K_D (μM)	1700	4500	22
k_{cat}/K_m (M ⁻¹ s ⁻¹)	24	320	9600
Burst-phase KIE ^b	0.7	1.4	1.0
Steady-state KIE ^b	0.8	2.8	2.5

707 ^a Obtained by stopped-flow at 25°C. Errors are reported as the standard deviation of the mean.

708 ^b determined at 400 μM CAZ.