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Abstract       

Healthy aging is associated with structural and functional network changes in the brain, which 

have been linked to deterioration in executive functioning (EF), while their neural 

implementation at the individual level remains unclear. As the biomarker potential of individual 

resting-state functional connectivity (RSFC) patterns has been questioned, we investigated to 

what degree individual EF abilities can be predicted from gray-matter volume (GMV), regional 

homogeneity, fractional amplitude of low-frequency fluctuations (fALFF), and RSFC within EF-

related, perceptuo-motor, and whole-brain networks in young and old adults. We examined 

whether differences in out-of-sample prediction accuracy were modality-specific and depended 

on age or task-demand levels. Both uni- and multivariate analysis frameworks revealed overall 

low prediction accuracies and moderate to weak brain–behavior associations (R2 < .07, r < .28), 

further challenging the idea of finding meaningful markers for individual EF performance with 

the metrics used. Regional GMV, well linked to overall atrophy, carried the strongest 

information about individual EF differences in older adults, whereas fALFF, measuring 

functional variability, did so for younger adults. Our study calls for future research analyzing 

more global properties of the brain, different task-states and applying adaptive behavioral testing 

to result in sensitive predictors for young and older adults, respectively. 

 

Keywords: mental abilities, cognitive aging, multi-level resting-state fMRI, structural MRI, 

predictive modelling, machine learning  
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Introduction 

Healthy, cognitive aging is associated with significant structural changes in the brain like 

cortical thinning, volumetric shrinkage, and decline in white-matter integrity (Park and Reuter-

Lorenz, 2008; Reuter-Lorenz and Park, 2014), as well as changes in the functional network 

architecture (Spreng and Turner, 2019). These brain changes are thought to be accompanied by a 

decline in cognitive capacities, in which information processing in several cognitive tasks 

becomes less efficient, especially in demanding tasks that tap into executive functioning (EF) 

(Park et al., 2002; Park and Reuter-Lorenz, 2008). In contrast, performance appears to remain 

rather stable in tasks taxing semantic abilities (Salthouse, 1996; Park et al., 2002), implicit 

memory, or general knowledge (Park et al., 2002). Therefore, the effects of aging on the brain, 

but also implications on the behavioral performance, are quite heterogeneous. Overall, previous 

studies indicate that the cognitive system is highly adaptive and dynamic (Greenwood, 2007; 

Park and Reuter-Lorenz, 2008), which implies that modifications of the neural architecture such 

as functional reorganization occur to maintain sufficient levels of cognitive functioning. 

EF abilities are relevant for goal-directed thought and adaptive behavior in complex 

environments and are thus critical for everyday life. Rather than being defined as a single 

process, EF is a multidimensional construct that involves diverse cognitive abilities. Different 

lines of research suggest three core subcomponents: inhibitory control, working memory, and 

cognitive flexibility (Lehto, 1996; Miyake et al., 2000; Alvarez and Emory, 2006; Diamond, 

2013). Inhibitory control has been linked to controlling one’s attention, thoughts or emotions to 

attain higher-order or long-term goals. Working memory is associated with holding content in 

mind and working with it. For instance, when incorporating new information in plans or 

considering alternatives. Finally, cognitive flexibility is important in the context of changing 
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one’s perspective or adapting to changing rules/demands. At the neural level, EF has been linked 

to a distributed set of brain regions that have been unified into the so-called multiple-demand 

network [intraparietal sulcus, inferior frontal sulcus, dorsolateral prefrontal cortex, anterior 

insula/frontal operculum, pre-supplementary motor area, anterior cingulate cortex], but also to 

other brain areas, depending on specific task demands (Teuber, 1972; Duncan and Owen, 2000; 

Duncan, 2010; Miyake and Friedman, 2012; Camilleri et al., 2018). 

Earlier studies found age-related differences in EF performance to be partially accounted 

for by changes in resting-state functional connectivity (RSFC) within brain networks associated 

with EF (Steffener et al., 2009; Langner et al., 2015; Hausman et al., 2020) and were able to 

predict EF abilities of previously unseen individuals from RSFC (Reineberg et al., 2015; He et 

al., 2021). However, in our companion study (Heckner et al., 2023), investigating the same 

dataset and applying the same data analysis strategy as in the current study but focusing on 

network specificity, we demonstrated overall low prediction accuracies (as indicated by the root 

mean squared error [RMSE], mean absolute error [MAE], and correlation coefficient [Pearson’s 

r]) for individual EF performance levels from within-network RSFC. Furthermore, we did not 

identify any network specificity, that is, EF performance was not better predicted from an EF-

related brain network than from EF-unrelated networks (i.e., perceptuo-motor network, whole 

brain approach). The overall low prediction accuracies and brain–behavior associations 

(coefficients of determination R2 ≤ .04) raised the question of whether the associations found are 

indeed meaningful. Together with previous research (Finn, 2021; Finn and Bandettini, 2021), 

these findings challenged the notion that biomarkers for individual EF performance can be found 

using RSFC patterns.  
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Since the effects of cognitive aging as well as the behavioral consequences appear quite 

heterogeneous, MRI metrics capturing different aspects of brain structure and function may need 

to be applied. A commonly used metric derived from resting-state fMRI, regional homogeneity 

(ReHo), has shown to be sensitive in identifying age differences during rest (Wu et al., 2007) and 

offered a better prediction accuracy of crystallized intelligence compared to RSFC (Larabi et al., 

2021). ReHo measures the local similarity of a voxel’s time series to its neighboring voxels and 

is based on the assumption that meaningful brain activity is represented in clusters of 

neighboring voxels rather than single voxels (Zang et al., 2004). It has been discussed as local 

connectivity that is necessary to induce global connectivity (Jiang and Zuo, 2016). Another 

metric derived from resting-state fMRI is fractional amplitude of low-frequency fluctuations 

(fALFF), which reflects the relative contribution of low-frequency fluctuations within a specific 

frequency band to the whole frequency range (Zou et al., 2008) and can thus be taken as a 

measure of functional within-subject brain variability. Previous studies have identified a negative 

association between functional brain variability, as measured through fALFF, and age. These 

changes were associated with cortical atrophy, measured through cortical thickness or gray-

matter volume (GMV), and a decline in inhibitory control (Hu et al., 2014; Vieira et al., 2020). 

As our recent companion paper questioned RSFC’s potential as a biomarker for 

individual EF abilities, the aim of the current study was to investigate further functional and 

structural brain metrics for their potential as a biomarker. For this purpose, we defined an EF 

network (EFN) in the brain by integrating the results of previous neuroimaging meta-analyses 

(Rottschy et al., 2012; Langner et al., 2018; Worringer et al., 2019), each encompassing diverse 

facets of EF. As EF-unrelated control networks, we further included a perceptuo-motor (Heckner 

et al., 2021) and a whole-brain network (Power et al., 2011) for prediction. Then, we examined 
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to what degree individual abilities in three main EF subcomponents (i.e., inhibitory control, 

cognitive flexibility, and working memory) could be predicted from GMV, RSFC, ReHo, and 

fALFF within these networks in young and older adults, respectively. For each to-be-predicted 

EF performance score, we separately sought to predict performance in a high-demand task 

(representative of increased EF demand) and a low-demand EF control condition. We 

implemented a linear approach using partial least squares regression (PLSR) for prediction, as 

previous studies revealed comparable prediction accuracies using a non-linear approach (random 

forest) or connectome-based predictive modelling (Finn et al., 2015; Shen et al., 2017; Heckner 

et al., 2023). Overall, we investigated (i) whether one of the structural or functional metrics 

(GMV, RSFC, ReHo, fALFF) outperforms the others in predicting EF, (ii) if this pattern changes 

depending on the network, task-demand level, or age group, and (iii) if young and older adults 

differ in their predictability depending on the structural or functional metric, network, or task-

demand level. 
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Methods 

Sample 

Whole-brain magnetic resonance images of 116 healthy young (age range = 20-40 years, 

mean age = 26.67, SD = 5.80, 64 females) and 111 old (age range = 60-80 years, mean age = 

68.19, SD = 5.66, 72 females) adults were obtained from the publicly available enhanced Nathan 

Kline Institute - Rockland Sample (eNKI-RS; Nooner et al., 2012). These age bins were chosen 

to maximize the age variance for studying age-related differences in the association between 

brain features and behavioral target variables. We excluded participants with acute and/or severe 

psychiatric or neurological disorders in the past or when currently taking medication presumably 

affecting brain activity. The re-analysis of the data was approved by the local ethics committee 

of the Medical Faculty at the Heinrich Heine University Düsseldorf. All participants underwent 

the same protocol. The sample used was the same as in our companion paper (Heckner et al., 

2023). The specific sample used is available upon request. 

 

Neuroimaging Data Acquisition and Processing 

Brain images were acquired on a Siemens TimTrio 3T MRI scanner (Siemens Medical 

Systems, Erlangen, Germany). T1-weighted structural images were obtained using a MPRAGE 

sequence [TR = 1.9 s, TE = 2.52 ms, flip angle = 8°, in-plane resolution = 1.0 × 1.0 × 1.0 mm3] 

and further analyzed using SPM12 (Wellcome Trust Centre Neuroimaging, London, 

https://www.fil.ion.ucl.ac.uk/spm/) and the CAT12 toolbox (Gaser et al., 2022). Whole-brain 

resting-state fMRI data was obtained using BOLD (blood oxygen level–dependent) contrast 

[gradient-echo EPI (echo planar imaging) pulse sequence, TR = 1.4 s, TE = 30 ms, flip angle = 

65°, voxel size = 2.0 × 2.0 × 2.0 mm3, 64 slices, 404 volumes]. Participants were instructed to 
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keep their eyes open and maintain fixation on a central dot. Physiological and movement 

artifacts were removed from RS data by using FIX (FMRIB’s ICA-based Xnoiseifier, version 

1.061 as implemented in FSL 5.0.9; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), which 

decomposes the data into independent components and identifies noise components using a large 

number of distinct spatial and temporal features via pattern classification. Unique variance 

related to the identified artifactual components is then regressed from the data. Data was further 

preprocessed using SPM12 and in-house MATLAB scripts. After removing the first four 

functional dummy volumes, the remaining EPI volumes were corrected for head movement by a 

two-pass affine registration procedure. First, images were aligned to the initial volume and, 

subsequently, to the mean of all volumes. The mean EPI image was then co-registered to the 

gray-matter probability map provided by SPM12 using normalized mutual information and 

keeping all EPI volumes aligned. Next, the mean EPI image of each participant was spatially 

normalized to MNI-152 space using the “unified segmentation” approach (Ashburner and 

Friston, 2000). The resulting deformation parameters were then applied to all other EPI volumes. 

 

Brain Networks 

We used three different networks for our prediction analyses, which were the same as in 

our companion study (Heckner et al., 2023): (1) An EF-related network (EFN) based on the 

maximum conjunction of three pertinent meta-analyses investigating working memory (Rottschy 

et al., 2012), cognitive action regulation (Langner et al., 2018), and multi-tasking (Worringer et 

al., 2019). The resulting network comprised 50 nodes (i.e., brain coordinates). (2) An EF-

unrelated, perceptuo-motor network that integrated visual, auditory, and motor processes and 

comprised 59 nodes (Heckner et al., 2021). (3) A whole-brain network as a control. We 
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employed Power et al.'s (2011) graph of putative functional areas, which includes 264 nodes. All 

networks are displayed in Figure 1. 

 

Figure 1. Nodes of meta-analytically defined A) executive function and B) perceptuo-motor 

networks, and C) Power et al.’s coordinates of putative functional areas. Taken with permission 

and modified from Heckner et al. (2023), copyright Ó 2023 Oxford University Press. 

 

Brain Metrics 

Considering our multi-modal approach, we computed metrics for structural (GMV) and 

functional (RSFC, ReHo, and fALFF) modalities for every node in each network. Network nodes 

covered a sphere with 6-mm radius around each peak coordinate. Apart from the whole-brain 

network based on Power et al. (2011), peaks of meta-analytic convergence were extracted using 

the SPM Anatomy Toolbox version 3 (Eickhoff et al., 2005, 2007) and manually checked so that 

they would not overlap with each other or exceed the cortex when spheres were added. A gray-
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matter mask, including subcortical regions, was used to ascertain nodes comprised gray-matter 

(https://zenodo.org/record/6463123#.YlltJsjMJ3h). 

 

Gray-matter volume 

Structural T1-weighted images were preprocessed and analyzed using SPM12 and the 

CAT12 toolbox. Within a unified segmentation model (Ashburner and Friston, 2000), images 

were corrected for bias-field inhomogeneities, brain tissue classified into gray matter, white 

matter, and cerebrospinal fluid, and spatially normalized to the Montreal Neurological Institute 

(MNI) template using DARTEL (Ashburner and Friston, 2011). Then, the segmented images 

were nonlinearly modulated using the Jacobian determinant derived from the normalization 

process to adjust them to the amount of expansion and contraction applied during normalization. 

GMV values were then obtained for each voxel in a given node as computed in CAT12 and then 

averaged across the node. 

 

Resting-state functional connectivity 

The variance explained by the mean white-matter and cerebrospinal-fluid signal was 

removed from the time series to reduce spurious correlations. Subsequently, the data were band-

pass filtered with the cut-off frequencies of 0.01 and 0.1 Hz.  

There were no significant correlations between the target variables (i.e., task scores) and 

sex in either subgroup. The correlation between within-scanner movement (derivative of root 

mean square variance over voxels [DVARS]) and age was significant in the older subgroup. 

However, we refrained from additionally correcting for movement (i.e., removing movement-

related variance that is partially shared with age). In our companion study, we additionally 
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computed RSFC without global signal regression and with statistically removing the influence of 

the six head movement parameters (x, y, z translations and 𝛼, 𝛽, 𝛾 rotations) derived from 

realignment, their squared values as well as their derivatives to control for possible age-specific 

effects of global signal regression and movement. Importantly, both corrections did not alter the 

results, except for the main effect of age after movement correction, which was, however, 

qualified by the crossed age × task-demand level interaction and was therefore not interpreted. 

As such, movement regression may have removed age-related variance from the BOLD signal 

time series (Heckner et al., 2023) and was therefore not applied here. 

In each network, RSFC was computed by first extracting the BOLD signal time-courses 

of all voxels within each network node expressed as the first eigenvariate. Then, pair-wise 

functional connectivity was computed as Fisher’s Z-transformed linear (Pearson) correlation 

between the first eigenvariate of the time series of each network’s nodes. 

 

Regional homogeneity 

ReHo represents the homogeneity of a voxel’s time series with respect to its nearest local 

neighbors’ time courses (Zang et al., 2004) and is computed through Kendall’s coefficient of 

concordance (KCC; Kendall and Gibbons, 1990). Thus, each voxel is assigned a KCC value 

based on its time-series homogeneity towards its nearest neighbors and then averaged across the 

node. 

 

Fractional amplitude of low-frequency fluctuations 

fALFF was computed as the ratio between power-spectrum in the frequency range (0.01 - 

0.1 Hz) and spectral power in the entire frequency range. Therefore, the time series of each voxel 
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was transformed to the frequency domain without band-pass filtering. Then, the square root was 

calculated at each frequency range of the power spectrum. Per voxel, the sum of power in the 

0.01 - 0.1 Hz frequency range was divided by the summed power spectrum across the entire 

frequency range (Zou et al., 2008).  

 

Behavioral Measures 

Executive function target variables were obtained from the eNKI-RS and comprised a 

high-demand (HD) and low-demand (LD; i.e., control) condition for each of three classical EF 

tasks (i.e., working memory, inhibitory control, and cognitive flexibility). All tasks used were 

previously evaluated and shown to have moderate to high reliability (Delis et al., 2001; Homack 

et al., 2005; Gur et al., 2010). 

 

Working memory 

Working memory ability was quantified using reaction times (RT) of correct responses of 

the 1-back (HD) and 0-back (LD) conditions of the Short Letter-N-Back Test, which is part of 

Penn’s Computerized Neurocognitive Battery (CNB; Gur et al., 2010). In this test, participants 

are required to press a button if the letter on the screen is the same as the one presented N trials 

before.  

 

Inhibitory control 

Inhibition performance was measured using RT of the incongruent (HD) and congruent 

(LD) conditions of the Color-Word Interference (CWI) Test, which is part of the Delis-Kaplan 

Executive Function System (D-KEFS; Delis et al., 2004). Here, participants are asked to name 
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the ink color of a written word but inhibit the response to the word naming a color (same or 

different as the ink) itself.  

 

Cognitive flexibility 

For quantifying cognitive flexibility, we used RT of the number and letter switching and 

sequencing conditions of the Trail Making Test (TMT), which is part of the D-KEFS. In this test, 

participants are asked to connect consecutive targets of one type (e.g., numbers; LD) or of two 

types (numbers and letters; HD) in an alternating fashion.  

Raw performance scores for all tasks were z-transformed and outliers with more than 

three times the standard deviation below or above the mean were removed.  

 

Prediction 

Individual z-transformed performance scores were then predicted from within-network 

GMV, RSFC, ReHo, and fALFF using partial least squares regression (PLSR; Krishnan et al., 

2011). PLSR is similar to a supervised principal component regression (based on eigen-

decomposition) and is thus advantageous when dimensionality reduction is beneficial for the 

analysis. In contrast to principal component regression, dimensionality reduction in PLSR is 

supervised (i.e., it uses information about the target variables), yielding the advantage that the 

resulting latent variables are all related to the target variables. After dimensionality reduction, a 

linear regressor was applied to the transformed data. 

For prediction, a 10-fold cross-validation was performed for which the data were split 

into 10 sets, 9 of which were used for training while the 10th was held back as a test set and 

subsequently used for prediction of the unseen data. This was done with each set being the test 
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set once. In total, 100 repetitions of this 10-fold cross-validation were computed to ensure 

robustness. Prediction accuracy was assessed via RMSE, MAE, and Pearson’s r. 

Prediction accuracy, as indicated by RMSE for the 100 repetitions, was then submitted to 

a 2 (age group) × 3 (network) × 2 (task-demand level) × 4 (modalities) mixed-measures 

ANOVA (p < .00005, Bonferroni-adjusted for the 10 × 100 cross-validation scheme), to further 

assess age differences in prediction accuracy, modality specificity, and the impact of task-

demand level. Therefore, prediction results for low-demand (i.e., 0-back, CWI congruent, TMT 

consecutive) and high-demand (i.e., 1-back, CWI incongruent, TMT switch) conditions were 

averaged into LD and HD compound scores, respectively. When Mauchly’s test of sphericity 

was significant, Greenhouse-Geisser corrected results were interpreted.  

To further corroborate the ANOVA main effects, machine-learning-adjusted t-tests for 

significant differences were computed (Nadeau and Bengio, 2003). To account for violating the 

independence assumption in a paired Student’s t-test, here, the variance estimate is adjusted by 

training and sample size. 
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Results 

Prediction 

The averaged prediction results from the test set as indicated by RMSE are displayed in 

Figure 2 and by Pearson’s r in Table 1. Additional accuracy measures, including RMSE and MAE, 

can be found in Tables S1-S6. 

 

 

Figure 2. Prediction accuracies expressed as root mean squared error (RMSE) for Color Word 

Interference (CWI) low-demand (LD) congruent condition, CWI high-demand (HD) incongruent 

condition, Trail Making Test (TMT) LD consecutive condition, TMT HD switch condition, 0-

back, and 1-back for old (dark) and young (light) adults from prediction within the executive 

function network, perceptuo-motor network, and Power’s graph of putative functional areas. 
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Table 1 

Prediction Results as indicated by Pearson’s r according to Brain Modality, Brain Network and 

Target Variable for the Young and Old Subgroup 

  CWI_LD CWI_HD TMT_LD TMT_HD 0-back 1-back 

GMV        

EFN Old .19 .19 .13 .24 .01 .22 

 Young -.09 .10 .18 -.01 -.18 .10 

PercMot Old .15 .21 .08 .27 .08 .19 

 Young -.08 .08 .25 -.02 -.06 .12 

Power Old .18 .24 .11 .20 .07 .12 

 Young -.07 .11 .26 .08 -.16 .02 

RSFC        

EFN Old .10 -.12 .04 .22 .04 -.13 

 Young -.04 -.02 .02 -.27 .10 .01 

PercMot Old .01 -.06 -.21 -.06 .11 .15 

 Young .05 -.01 .06 -.22 -.02 -.04 

Power Old .13 .03 .11 -.15 -.05 .10 

 Young .12 .05 .19 .12 -.15 -.07 

ReHo        

EFN Old .04 .12 -.07 .07 .05 .02 

 Young -.04 .12 -.15 -.26 .12 .12 

PercMot Old -.17 .09 -.07 -.10 .16 -.18 

 Young -.07 .10 -.10 -.22 .01 -.11 
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Power Old .03 .09 -.07 -.12 .16 -.04 

 Young -.01 -.14 -.02 -.23 .10 .10 

fALFF        

EFN Old -.02 .06 .01 -.13 .14 .08 

 Young .06 .09 -.15 0 .07 .10 

PercMot Old -.06 .04 -.14 -.04 .18 .05 

 Young .06 .09 -.18 .03 .04 .06 

Power Old -.14 .01 .04 -.15 .18 .05 

 Young .04 .07 -.10 .04 .07 .08 

Note. EFN = Executive Function Network, PercMot = Perceptuo-Motor Network, GMV = Gray-

Matter Volume, RSFC = Resting-State Functional Connectivity, ReHo = Regional Homogeneity, 

fALFF = Fractional Amplitude of Low-Frequency Fluctuations, CWI = Color-Word Interference, 

TMT = Trail Making Test, LD = Low-Demand, HD = High-Demand. 

 

Mixed-Measures ANOVA 

To further assess age differences in prediction accuracy as well as network specificity 

and the impact of the task-demand level, we submitted the prediction accuracies as given by 

RMSE values for each of the 100 repetitions to a 2 (age group) × 3 (network) × 2 (task-demand 

level) × 4 (modalities) mixed-measures ANOVA (p < .00005, Bonferroni-adjusted for the 10 × 

100 cross-validation scheme).  

In a first step, prediction results for low-demand (i.e., 0-back, CWI congruent, TMT 

consecutive) and high-demand (i.e., 1-back, CWI incongruent, TMT switch) conditions were 

averaged into LD and HD compound scores, respectively. The ANOVA yielded significant main 
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effects for the factors modality, network, task-demand level, and age group. These effects were 

qualified by two-way, three-way, and a four-way interaction among all factors (see Table 2).  

 

Table 2 

ANOVA Results. 

ANOVA Results F df p 𝜂2p 

Main Effects     

Modality 5694.22 2.88, 569.45 0 .966 

Network 79.76 2, 396 < .001 .287 

Demand Level 8387.54 1, 198 < .001 .977 

Age 1373.24 1, 198 < .001 .874 

Two-way Interactions     

Age × Modality 4192.85 2.88, 569.45 0 .955 

Age × Network 231.43 2, 396 < .001 .539 

Age × Demand Level 36476.45 1, 198 < .001 .995 

Modality × Network  1701.77 5.64, 1116.63 0 .896 

Modality × Demand Level 1514.61 2.80, 554.22 < .001 .884 

Network × Demand Level 173.28 2, 396 < .001 .467 

Three-way Interactions     

Modality × Network × Age 54.16 6, 1188 < .001 .215 

Modality × Network × Demand Level 115.27 5.46, 1080.37 < .001 .368 

Age × Modality × Demand Level 368.65 2.80, 554.22 < .001 .651 

Age × Network × Demand Level 117.33 2, 396 < .001 .372 
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Four-way Interaction     

Age × Network × Demand Level × Modality 32.16 6, 1188 < .001 .140 

 

The complementary machine-learning-adjusted t-tests conducted to corroborate the main 

effects did not confirm the main effects of age and task-demand level. Network differences were 

only significant for perceptuo-motor vs. Power networks, but not for EF vs. perceptuo-motor and 

EF vs. Power networks, respectively. All modality differences but fALFF vs. GMV were 

significant (see Table S7). 

 

We obtained the following results from the two-way interactions. While prediction 

accuracy in older participants was significantly better for LD than HD task conditions, prediction 

accuracy in younger participants was better for HD than LD conditions (see Figure 3A and Table 

3). Regarding network differences, prediction accuracy for LD conditions was best for the 

whole-brain approach, as compared to the perceptuo-motor network and the EFN, whereas for 

HD conditions, it was best for the EFN (see Figure 3B and Table 3). Furthermore, in older 

adults, prediction accuracy was best for the EFN, relative to the whole-brain and perceptuo-

motor networks. Conversely, for younger adults, prediction accuracy was generally best for the 

whole-brain network (see Figure 3C and Table 3).  

For LD conditions, prediction accuracy was generally best for fALFF, as compared to 

RSFC, GMV, and ReHo, while for HD conditions, prediction accuracy was generally best for 

GMV (see Figure 3D and Table 3). For ReHo and fALFF, prediction accuracy was generally 

best for the EFN, while for RSFC, prediction accuracy was best for the whole-brain network, and 

for GMV for the perceptuo-motor network (see Figure 3E and Table 3). For older adults, 
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prediction accuracy was generally the highest for GMV, as compared to fALFF, RSFC, and 

ReHo, while for younger adults, prediction accuracy was best for fALFF (see Figure 3F and 

Table 3). 

 

Figure 3. Interaction effects for (A) age × demand level, (B) demand level × network, (C) age × 

network, (D) demand level × modality, (E) network × modality, and (F) age × modality.  

 

Table 3 

ANOVA Interaction Effects Displayed as Mean and Standard Error. 
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GMV .754 (.0004) .804 (.0005) .805 (.0004) .753 (.0003) 
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odality  

RSFC .795 (.0003) .802 (.0006) .803 (.0003) .795 (.0003) 

ReHo .803 (.0004) .818 (.0004) .816 (.0004) .805 (.0005) 

fALFF .783 (.0003) .751 (.0004) .779 (.0003) .755 (.0003) 

A
ge

 ×
 

N
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w
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EFN .781 (.0003) .799 (.0003) .804 (.0003) .776 (.0003) D
em

and ×
 

N
etw

ork  

PercMot .786 (.0003) .793 (.0003) .803 (.0003) .777 (.0003) 

Power .784 (.0003) .789 (.0003) .795 (.0003) .778 (.0004) 

A
ge

 ×
 

D
em

an
d  LD .771 (.0003) .831 (.0003)    

HD .797 (.0003) .757 (.0003)    

  GMV RSFC ReHo fALFF  

M
od

al
ity

 ×
 

N
et

w
or

k  

EFN .778 (.0003) .820 (.0005) .800 (.0005) .763 (.0003)  

PercMot .771 (.0004) .809 (.0004) .713 (.0005) .765 (.0004)  

Power .788 (.0005) .767 (.0003) .818 (.0006) .773 (.0005)  

Note. EFN = Executive-Function-related Network, PercMot = Perceptuo-Motor-related Network, 

Power = Power et al.’s (2011) graph of putative functional areas, HD = High-Demand, LD = Low-

Demand, GMV = Gray-Matter Volume, RSFC = Resting-State Functional Connectivity, ReHo = 

Regional Homogeneity, fALFF = Fractional Amplitude of Low-Frequency Fluctuations. 

 

Post-hoc pairwise comparisons revealed that prediction accuracy (i.e., RMSE) was better 

for older than younger participants (see Figure 4A and Table 4). Prediction accuracy was better 

for HD as compared to LD (see Figure 4B and Table 4) conditions across networks, modalities, 

and age groups. Across demand level, networks, and age groups, prediction accuracy was best 
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for fALFF as compared to GMV, RSFC, and ReHo (see Figure 4C and Table 4). Prediction 

accuracy was best for the Power nodes as compared to the EFN, and perceptuo-motor network 

(see Figure 4D and Table 4). The EFN and perceptuo-motor network did not differ significantly. 

 

 

Figure 4. Main effect for age, task, modality, and network (mean ± standard error). 

 

Table 4 

Post-hoc Pairwise Comparisons of ANOVA Effects. 

Post-hoc Pairwise Comparisons 

Factor Mean (SE)group1 Mean (SE)group2 p 

Age .784 (.0002)old .794 (.0002)young 5.30 × 10-91 

Modality .779 (.0002)GMV .767 (.0002)fALFF  3.27 × 10-87 
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 .779 (.0002)GMV .799 (.0002)RSFC 4.33 × 10-129 

 .779 (.0002)GMV .810 (.0003)ReHo 7.67 × 10-153 

 .799 (.0002)RSFC .767 (.0002)fALFF 3.75 × 10-166 

 .799 (.0002)RSFC .810 (.0003)ReHo 3.27 × 10-74 

 .767 (.0002)fALFF .819 (.0003)ReHo 4.48 × 10-161 

Network .790 (.0002)EFN .790 (.0002)PercMot .583 

 .790 (.0002)EFN .787 (.0002)Power 5.01 × 10-25 

 .790 (.0002)PercMot .787 (.0002)Power 1.24 × 10-25 

Demand Level  .777 (.0002)HD .801 (.0002)LD 4.84 × 10-180 

Note. GMV = Gray-Matter Volume, RSFC = Resting-State Functional Connectivity, ReHo = 

Regional Homogeneity, fALFF = Fractional Amplitude of Low-Frequency Fluctuations, EFN = 

Executive-Function-related Network, PercMot = Perceptuo-Motor-related Network, Power = 

Power et al.’s (2011) graph of putative functional areas, HD = High-Demand, LD = Low-Demand, 

SE = Standard Error. 
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Discussion 

The current study investigated to what extent regional brain morphology (GMV) and 

three different functional brain metrics (RSFC, ReHo, and fALFF) predict individual differences 

in EF abilities, and if these brain–behavior associations are modality- and/or age-specific. For 

this purpose, we defined three brain networks: an EF-related network, a perceptuo-motor 

network linked to visual, auditory, and motor processing, and a whole-brain network. We 

predicted individual EF performance scores of three critical EF subcomponents (i.e., working 

memory, inhibitory control, and cognitive flexibility) from within-network GMV, RSFC, ReHo, 

and fALFF. Finally, we submitted the prediction results to a 2 (age group) × 4 (modalities) × 3 

(network) × 2 (task-demand level) mixed-measures ANOVA to assess the effects of modality 

and age. While prediction accuracy was overall rather low to moderate, it was better for high- 

than low-demand task conditions. This difference was especially pronounced for fALFF and 

GMV. However, this effect might be driven by the age × task-demand level interaction, as 

prediction accuracy for younger adults was better for HD (vs. LD), whereas for older adults, it 

was better for LD (vs. HD) conditions. Prediction accuracy for younger adults was best with 

fALFF, while for older adults, the highest accuracy was achieved with GMV. 

 

Prediction of EF Abilities 

In line with our companion study (Heckner et al., 2023) as well as published guidelines 

for prediction analyses (Scheinost et al., 2019; Poldrack et al., 2020), we assessed our prediction 

results with RMSE, MAE, as well as Pearson’s correlation coefficient (r) as these scores offer 

different, yet complementary, information about the accuracy of predictive models and the 

association between brain metrics and behavioral target variables. Here, we will discuss 
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prediction accuracy as measured with RMSE (< .8) and the respective Pearson’s r correlation 

coefficient (note that cognitive performance was z-scored). As mentioned above, prediction 

accuracies and brain–behavior associations were moderate at best, and this was also evident from 

the explained variance of the prediction models, as measured with the coefficient of 

determination R2 (Scheinost et al., 2019). In our study, the explained variance did not exceed 

6%. Whole-brain RSFC was, for example, only able to explain 3.7% of the variance in the TMT 

LD condition for younger adults (r = .19). GMV within the EFN was able to explain 3.7% of the 

variance in the TMT HD condition for older adults (r = .24). Similarly, but using the perceptuo-

motor network, 5.2% variance was explained for the same target for older adults (r = .27) and 

only 2.1% targeting TMT LD condition in the young (r = .25). Additionally, using GMV from 

whole-brain features, 1.5% variance in TMT HD condition was explained for older adults (r = 

.20) and 2.7% in the TMT LD condition for the young (r = .26).  

Predictions based on ReHo were not able to explain any variance in the target variables. 

Within-EFN fALFF, on the other hand, explained 2.1% of variance in the working memory LD 

condition for older adults (r = .14) and 2.6% when predicting from the whole-brain (r = .18). 

From these results, it is surprising to note that, while prediction from within-network fALFF 

resulted in the best overall prediction accuracy, only very little variance could be eventually 

explained. GMV was able to explain variance in more tasks and conditions. Nevertheless, the 

amount of explained variance was overall still quite low (R2 < 0.06). Thus, the question arises 

how to harmonize the finding of better prediction accuracies but quite low brain–behavior 

associations for features extracted from fALFF. One possibility would be that within-subject 

functional brain variability may be highly important, even necessary, for EF but that 

interindividual differences in this variability, as reflected by fALFF, do not scale with individual 
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EF abilities, at least not in the normal range of performance. More work is needed to understand 

the neural mechanisms and functional meaning of fALFF. 

Summing up, age group, as well as task and demand levels, show moderate modality 

specificity. Brain–behavior associations were generally rather low but more pronounced when 

predicting from structural as compared to functional features. These findings bring into question 

whether it is feasible to predict individual EF abilities from functional metrics at rest as well as 

from a priori brain networks defined via group-level analyses. Together with recent evidence 

from RSFC-based predictive modelling (Heckner et al., 2023), the present results argue against 

network specificity, but this time even across different brain feature modalities. Importantly, the 

results across both of our studies stress the need for brain measures that are not just somewhat 

associated with EF but can actually explain variance in individual EF abilities. While brain–

behavior associations found in the present study are generally low, they are comparable to other 

results in the field (Ferguson et al., 2017; Greene et al., 2018; He et al., 2021), calling for more 

informative measures or methods and for a critical re-evaluation of the predictive and 

explanatory value of the models examined so far. 

 

Modality Specificity and Age Effects 

The ANOVA yielded a main effect of modality on prediction accuracy, and post-hoc 

pairwise comparisons revealed significant differences between all modalities. Overall, the best 

prediction accuracy was achieved when predicting from fALFF, followed, in descending order, 

by GMV, RSFC, and ReHo. However, this main effect may be explained by the age × modality 

interaction. While for younger adults, prediction was best from fALFF, followed, in descending 

order, by GMV, RSFC, and ReHo, for older it was best from GMV, followed by RSFC, fALFF, 
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and ReHo. RSFC’s better prediction accuracy, however, may be explained by the modality × 

network interaction. This interaction revealed that prediction from RSFC was best for the whole-

brain approach. One possible explanation for this finding might be the greater feature space gain 

for the whole-brain approach with 34,716 connections as compared to 1,225 connections for the 

EFN. However, in our companion study (Heckner et al., 2023), 10 random networks of the same 

size as the EFN still resulted in a significantly better prediction accuracy than the EFN and the 

perceptuo-motor network. Therefore, it does not seem to be the sheer number of features that is 

responsible for the prediction outcome. Lastly, all metrics were better at predicting HD (vs. LD) 

task conditions. This effect was especially pronounced for features extracted from GMV and 

fALFF. Again, this main effect is qualified by the age × demand level interaction, which 

revealed best prediction accuracies for older adults for LD conditions, whereas for younger 

adults, best prediction accuracies were achieved for HD conditions. As such, the main effect of 

task demand appears to be driven by older adults and should not be interpreted because of the 

underlying crossed interaction. 

Our results revealed that GMV and fALFF contained more information on individual EF 

performance than did the other modalities and that this effect was age-dependent. Regional GMV 

is very well linked to global atrophy observed in advanced age. Previous research, however, has 

shown that the age-related decline in GMV is especially pronounced in brain regions associated 

with EF, such as fronto-parietal areas (Taki et al., 2004; Chee et al., 2006; Hu et al., 2014). 

Furthermore, the pattern of global decline is thought to be rather consistent across older adults 

(bilateral pre-supplementary motor area [pre-SMA], supplementary motor area [SMA], insula, 

anterior cingulate cortex [ACC], dorsolateral prefrontal cortex [DLPFC], inferior parietal lobule 

[IPL], and caudate; Bergfield et al., 2010; Giorgio et al., 2010; Taki et al., 2011). In line with 
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these findings, the current results suggest that GMV may be a possible marker for individual EF 

ability levels in older adults – although one must keep in mind that prediction accuracies were 

still only small to moderate. 

For younger adults, the best prediction accuracy was achieved with fALFF. Previous 

research suggested that low-frequency fluctuations of the BOLD signal are spontaneous and 

reflect the intrinsic connectivity of the brain (Biswal et al., 1995; Fox and Raichle, 2007). Thus, 

fALFF is understood as a measure of functional within-subject variability that possibly reflects 

cognitive adaptability (i.e., the ease of mental set reconfiguration) to task demands (Bolt et al., 

2018; Uddin, 2020). In young adults, the fALFF pattern appears to be linked to behavior more 

closely, while in older adults, fALFF does not seem to contain relevant information about 

individual EF performance. Previous research has shown that an age-related decrease in fALFF 

and GMV overlapped in prefrontal/frontal brain regions including pre-SMA, SMA, and DLPFC 

(Hu et al., 2014). It was concluded that prefrontal brain regions, critical for EF, show concurrent 

age-related changes in structure and function. Earlier it had been suggested that younger, faster 

participants show a higher variability in brain activity across tasks and greater regional 

dedifferentiation of signal variability than older adults (Garrett et al., 2011). As variability may 

provide the kinetic energy for brain networks to explore possible functional architectures 

(McIntosh et al., 2010; Deco et al., 2011), an intrinsically more variable brain might be able to 

configure optimal networks for processing a given input towards a particular behavioral goal 

more flexibly and efficiently (Garrett et al., 2011). 

One reason for the rather low brain–behavior associations achieved from within-network 

RSFC might be its unconstrained nature, as discussed in detail in our companion paper (Heckner 

et al., 2023). Several recent studies have shown that behavioral prediction from brain 
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connectivity during tasks (or movie watching) may work somewhat better than from rest (Greene 

et al., 2018; Sripada et al., 2020; Finn and Bandettini, 2021; Kraljević et al., 2023). Tasks 

modulate functional brain states and may thus offer important information about individual 

differences in brain functional organization and their association with behavior (Greene et al., 

2018). ReHo, a measure of local synchronicity/connectivity, is thought to induce global 

connectivity (i.e., RSFC; Jiang and Zuo, 2016). Therefore, it would not be surprising if both 

local and global connectivity measures may be affected by, for example, mind wandering or 

thinking about a task during rest (Gregory et al., 2016). fALFF, on the other hand, as a measure 

of local variability or adaptability, reflecting the spontaneous, intrinsic connectivity of the brain, 

may therefore be influenced to a lesser degree by unconstrained thoughts during rest. Such a 

differential susceptibility to state effects might possibly explain the lower prediction accuracies 

observed for RSFC and ReHo and the superiority of fALFF, even though all metrics are based on 

brain activity during “rest” (i.e., in a state without an externally driven task). 

Differential susceptibility to state effects might have also contributed to the relatively 

better prediction performance observed for within-network GMV, which was best for older 

adults and second best for younger adults, as compared to the other brain metrics. In particular, 

functional metrics might be overall more susceptible to state effects and, thus, have a reliability 

disadvantage, relative to structural metrics. Hence, lower prediction accuracies achieved for the 

functional metrics, especially RSFC and ReHo, should not prematurely be marked as weak 

markers for any individual performance differences but rather as a product of state–trait 

interactions – which would make these metrics less suitable for capturing stable, trait-level 

aspects of brain activity that are thought to share variance with stable cognitive traits, in 

particular when the amount of brain activity data available per participant is relatively limited. 
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For more conclusive answers, future studies are needed that investigate the comparative 

reliability of different functional and structural brain metrics a well as the impact of age on this 

issue (see, e.g., Song et al., 2012, for reporting on age-related RSFC reliability differences). 

Similar to previous studies (Pläschke et al., 2020; Heckner et al., 2023), prediction 

accuracy across modalities, networks, and task-demand levels was better for older (vs. younger) 

subjects, suggesting that brain–behavior associations become tighter with advancing age. 

Possibly, such increased associations might be due to overall age-related neural decline, such as 

brain atrophy or white-matter degeneration, influencing network integrity (Cabeza et al., 2016) 

and reorganization that is linked to EF performance. However, this main effect is qualified by the 

crossed age × demand level interaction and should thus only be interpreted with great caution.  

Interestingly, we replicated this age × demand level interaction already reported in 

Heckner et al. (2023) across all structural and functional modalities, such that prediction 

accuracy for younger adults was consistently better when predicting HD (vs. LD) conditions, 

while for older adults, the reverse pattern was observed. One possible explanation is that age-

related effects on the network-level might still be compensated for in low-demand conditions, 

but they might not in high-demand conditions taxing EF abilities. This is in line with the 

compensation-related utilization of neural circuits hypothesis of cognitive aging (Reuter-Lorenz 

and Cappell, 2008) and previous research showing that age-related neurobiological decline 

comprises BOLD responsivity during task state. Older adults might be able to compensate LD 

task conditions but reach a ceiling at a certain level of processing demands such that 

compensatory activation cannot be further increased in HD conditions (Nagel et al., 2011). 

Hence, our results emphasize the relevance of behavioral testing procedures that are more 

adaptive to performance differences (e.g., because of compensatory efforts) in order to have tests 
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that are sensitive enough to capture meaningful brain–behavior associations across ability levels 

(cf. Heckner et al., 2023). Interestingly, our results revealed a trend toward better prediction 

accuracies as well as stronger brain–behavior associations for TMT scores, as compared to CWI 

and n-back performance, across demand level, networks, and age groups for features extracted 

from GMV and RSFC. Although we did not specifically aim to investigate prediction 

performance depending on the individual EF tasks, the TMT might be a more sensitive target 

variable in capturing individual differences in EF performance as compared to the other tests 

used. Possibly, because the TMT measures different facets and stages of cognitive processing 

and might therefore be sensitive to several changes in cognition. This might especially be the 

case, when targeting LD and HD conditions separately and not subtracted (i.e., HD-LD). 

Overall, despite generally low prediction accuracies, our results point out the superiority 

of GMV and fALFF in predicting individual differences in EF performance, and indicate that 

this effect is age dependent. While older adults’ EF performance was predicted best by features 

extracted from GMV, younger adults’ EF performance was predicted best by fALFF features. 

For older adults, overall patterns, like global atrophy, seem to be most predictive of EF 

performance in comparison to the other metrics applied. For younger adults, fALFF appears to 

be most predictive of EF performance. As a measure of neural variability, fALFF may reflect the 

ease of exploring the best suited network constellation for a given task. Additionally, our results 

stress the importance of adaptive testing in order to find meaningful brain–behavior associations. 

 

Conclusion and Outlook 

The current study investigated to what extent individual differences in EF performance 

can be predicted from structural (GMV), as well as resting-state functional (RSFC, ReHo, and 
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fALFF) modalities. In addition, we examined whether the pattern in prediction changes with age, 

brain network, or task-demand level. Our results revealed overall rather low to moderate 

prediction accuracies and brain–behavior associations. Explained variance in the target variables 

did not exceed 6%. These findings generally question the utility of the brain metrics examined 

here for predicting individual differences in EF abilities. However, our results did point out the 

superiority of GMV and fALFF as compared to ReHo and RSFC in predicting individual EF 

performance. One possibility could be that individual differences in EF abilities are more 

strongly driven by global brain characteristics that can be better assessed with metrics for global 

atrophy or variability. Furthermore, our results revealed an age-related modality specificity: For 

older adults, structural measures of overall atrophy might be more informative, while for 

younger adults, functional measures of brain variability seem to contain more information about 

individual EF abilities. 

The overall low to moderate prediction accuracy as well as the missing network 

specificity questions the potential of the single metrics to be applied as biomarkers for individual 

differences in EF performance. Rather, our findings suggest that future research may need to 

analyze more global properties of the brain, possibly combining different structural and 

functional metrics, to result in more sensitive predictors for young and older adults, respectively. 

This also applies to adaptive behavioral testing as our results revealed better prediction 

accuracies in LD (vs. HD) task conditions for older adults, while for younger adults, prediction 

accuracies were better for HD (vs. LD) task conditions. Furthermore, it is important to consider 

the possible impact of the feature space size, especially when comparing different metrics (e.g., 

edge-level RSFC vs. node-level ReHo). A replication with a different, larger sample as well as 

different cognitive states (i.e., task performance, movie watching) and a continuous age 
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distribution might prove useful for revealing more information contained in the brain about 

individual mental abilities. Lastly, considering the complexity of machine learning outputs and 

the increased use and relevance of these approaches in the field of behavioral neuroscience, 

developing appropriate methods for comparing the outcomes of different models accounting for 

intrinsic dependencies in the cross-validation scheme is strongly warranted. 
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