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Abstract

State-dependent non-invasive brain stimulation (NIBS) informed by electroencephalography (EEG)
has contributed to the understanding of NIBS inter-subject and inter-session variability. While these
approaches focused on local EEG characteristics, it is acknowledged that the brain exhibits an
intrinsic long-range dynamic organization in networks.

This proof-of-concept study explores whether EEG connectivity of the primary motor cortex (M1) in
the pre-stimulation period aligns with the motor network (MN) and how MN state affects responses
to transcranial magnetic stimulation (TMS) of M1. One thousand suprathreshold TMS pulses were
delivered to left M1 in 8 subjects at rest, with simultaneous EEG. Motor evoked potentials (MEPs)
were measured from the right hand. Source-space functional connectivity of left M1 to the whole-
brain was assessed using the imaginary part of the Phase Locking Value at the frequency of the
sensorimotor p-rhythm in a 1-second window before the pulse. Group-level connectivity revealed

functional links between left M1, left supplementary motor area, and right M1. Also, pulses
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delivered at high MN connectivity states result in a greater MEP amplitude compared to low
connectivity states. At single-subject level, this relation is more expressed in subjects that feature
an overall high cortico-spinal excitability. In conclusion, this study paves the way for MN connectivity

based NIBS.

Keywords:
Functional connectivity, motor network, Electroencephalography (EEG), Transcranial Magnetic

Stimulation (TMS), Motor Evoked Potential (MEP), corticospinal excitability, brain state.

Highlights
® EEG pre-stimulus connectivity of left M1 largely corresponds to the motor network
e Stronger motor network (MN) connectivity corresponds to greater MEP amplitudes

e Linear regression models based on MN connectivity predicts MEP amplitude

1. Introduction

For over three decades, non-invasive brain stimulation (NIBS) has been used to modulate
brain activity in healthy subjects and patients (Hallett, 2007, 2000; Rossini et al.; 2015), for scientific,
diagnostic and therapeutic purposes. However, effects are highly variable, thus limiting its clinical
use (Ziemann and Siebner, 2015). Recently, it has become clear that, to reduce the variability of the
stimulation effects not only between subjects but also between sessions, the internal state of the
brain before NIBS must be taken into account (Bergmann, 2018; Silvanto et al.; 2008). For this
purpose, the integration of NIBS with techniques able to non-invasively measure neuronal activity,
such as electroencephalography (EEG; (Bergmann et al.; 2016; llmoniemi and Kici¢, 2010)), has
offered a window into the state of the brain before the stimulation (Bai et al.; 2022; Zrenner et al.;
2018). This brain state has largely been assessed by looking at the spectral characteristics of the EEG
signal at the channels nearby the stimulation site (Maki and llmoniemi, 2010). In particular, the
phase of the sensorimotor 9-13 Hz p-rhythm has been considered as an indicator of cortical
excitability that determines the response to Transcranial Magnetic Stimulation (TMS; Desideri et al.;
2019; Schaworonkow et al.; 2019; Zrenner et al.; 2018), although the observed phase effects vary
with varying stimulation and analysis parameters (Karabanov et al.; 2021; Madsen et al.; 2019).

In parallel with advances in EEG-informed NIBS, neuroscience has seen a paradigm shift from

a modular view, in which different functional units act as independent processors, to a large-scale
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network view, in which dynamic interactions between brain areas are crucial for cognition and
behavior (Bressler and Menon, 2010). While functional magnetic resonance studies have been
seminal in this regard (Fox and Raichle, 2007), non-invasive electrophysiology has contributed to
this view by the characterization of neuronal networks in terms of their oscillatory fingerprints
(Brookes et al.; 2011; de Pasquale et al.; 2010; Engel et al.; 2013; Ganzetti and Mantini, 2013;
Mantini et al.; 2007; Marzetti et al.; 2019, 2013), a view largely supported by the Communication
Through Coherence (CTC) hypothesis (Fries, 2015, 2005). In this framework, a brain state can be
described as the evolving dynamics of one or more large-scale networks (Kringelbach and Deco,
2020), including the so-called resting-state networks (Deco and Corbetta, 2011), that constrain
ongoing activity in the absence of any externally imposed task. Several studies have investigated the
effects of invasive and non-invasive stimulation on resting-state networks and, more in general, on
remote regions connected to the stimulation site (Beynel et al.; 2020; Boutet et al.; 2019; Pieramico
et al.; 2023). However, while the techniques for connectomic neuromodulation studies appear
mature (Horn and Fox, 2020; Ozdemir et al.; 2020), scarce evidence has been provided, so far, for
the impact of network dynamics on stimulation effects, explicitly using functional connectivity
approaches (Ferreri et al.; 2014). In addition, so far only one study (Vetter et al.; 2023) has
investigated sensor level functional connectivity as a feature for brain-state dependent stimulation,
although the accuracy in space and time is limited by the sensor-level analysis and by the real-time
software implementation.

The aim of this work is to bridge the gap between the study of brain networks with non-
invasive electrophysiology and brain state-dependent stimulation, with the long term goal of
systematically using EEG-derived brain networks to drive the stimulation in space and time with
millimeters and milliseconds resolution (Marzetti et al.; 2024; Sinisalo and Rissanen et al.; 2024).
Here, we provide a proof-of-concept that fast-dynamic brain networks (Marzetti et al.; 2024) can be
derived from combined EEG-TMS data in the pre-stimulation resting period and that the momentary
connectivity state of such networks is related to the stimulation end-point. Specifically, our proof-
of-concept assessed, using data from a previous study (Metsooma et al.; 2021) and the phase-
locking of the oscillatory p-rhythm, the functional connectivity between the primary motor cortex
(M1) signal and the signals at all other brain locations, and its putative relation to the amplitude of
the Motor Evoked Potentials (MEPs). The choice of the p-rhythm frequency for our analysis is driven
by the observation that ongoing oscillations in the Motor Network (MN) at rest are expected to

synchronize at this frequency (Hari, 2006). Specifically, we hypothesized that: 1) the pattern of long-
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range functional connectivity of the primary motor cortex (M1) in the pre-stimulation period largely
overlaps the spatial topography of the MN; 2) the connectivity state of this network impacts the
effect of TMS pulses delivered at M1 on a trial-by-trial basis; 3) such impact is augmented if not only

connectivity properties but also local properties are considered.

2. Material and methods

2.1 Participants and experiment

Eight right-handed adults (5 female, 3 male; meantSD age 23.5%3.3 years) with no history of
neurological and/or psychiatric pathologies were enrolled and correctly completed the study. All
participants gave written informed consent before participation. The study was approved by the
local ethics committee at the University of Tibingen and conducted in accordance with the
Declaration of Helsinki. Data were acquired at the University of Tlbingen using a concurrent
EEG-TMS setup in a single session for each participant (duration about 3 hours). EEG and
electromyography (EMG) were simultaneously recorded (sampling rate 5 kHz). EEG was recorded
using a TMS-compatible 128-channel cap (EasyCap BC-TMS-128, EasyCap, Herrsching, Germany)
positioned according to the International 10-5 system. EMG was recorded from the abductor
pollicis brevis (APB) and first dorsal interosseous (FDI) muscles of the right hand in a bipolar belly-
tendon montage. A TMS stimulator (PowerMAG Research 100, MAG & More, Munich, Germany)
was used to deliver biphasic pulses through a figure-of-eight coil (PMD70-pCool, 70-mm winding
diameter, MAG & More, Munich, Germany). The relative head and coil positions were tracked using
optical neuronavigation (Localite GmbH). After preparation of EEG, EMG, neuronavigation and
pinpointing the EEG electrodes, the hand representation of left M1 (IM1) was targeted orienting the
coil such that the strongest field was induced in a posterior-lateral to anterior-medial direction. The
motor hotspot was defined as the position and orientation of the coil requiring the smallest
stimulation intensity to evoke MEPs in either of the two hand muscles. Resting Motor Threshold
(rMT) was defined as the minimum stimulation intensity able to elicit MEPs with peak-to-peak
amplitudes > 50 pV in 50% of test pulses (Groppa et al.; 2012). During the experiment, participants
were seated comfortably and fixated a cross located approximately 1 m in front of them. One
thousand single TMS biphasic pulses were then applied, in a single session with an interstimulus
interval of 2+£0.25 s at a stimulation intensity of 110% rMT. A different analysis using the same

dataset has been previously reported (Metsomaa et al.; 2021).
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2.2 Data processing

EEG data were downsampled to 1 kHz and split into windows ranging from —1004 to —4 ms relative
to the TMS pulse. A Laplacian-based trend detection was applied to remove slow trends in the data,
and noisy or bad channels/trials were identified and removed. A subject-level independent
component analysis (ICA) was then performed using the FastICA technique (Hyvarinen, 1999) in the
subspace generated by the 35 largest principal vectors. Further details are given in (Metsomaa et
al.; 2021) and in the preprocessing source code at www.github.com/bnplab/causaldecoding.

For each independent component (IC), the channel-level topographies and power spectra were
calculated and visually inspected by two experienced researchers; ICs with a clear artifactual
hallmark were discarded. The remaining ICs were projected to the source-space using the eLORETA
spatial filter (Pascual-Marqui et al.; 2011) to identify the corresponding neural generators. ICs whose
source-space topography showed maxima over the motor cortices were considered for the
identification of the individual p-rhythm frequency, defined as the frequency in the 9-13-Hz range
at which a maximum in IC power spectrum occurs. Among all ICs, only those with a clear peak at the
n frequency and a motor signature in source space were used to reconstruct channel-level cleaned
signals for further analysis. This step allowed us to disentangle the contribution of p-rhythm activity
from the original signal.

EMG data were divided into stimulus-locked trials ranging from —500s to 500 ms relative to the TMS
pulse. First, slow drifts were removed by trendline fitting; then, 50-Hz noise was removed
(Metsomaa et al.; 2021). Visual inspection of EMG data allowed to remove bad trials, such as those
presenting clear EMG activity before the pulse. TMS-related artifacts were removed by relying on
an exponential fitting. For each trial and channel, the peak-to-peak MEP amplitude was estimated
as the EMG signal range of the manually defined window of data that contains the MEP (Metsomaa
et al.; 2021). Finally, an across-trials principal component analysis was applied to the log-
transformed MEP amplitudes estimated from the FDI and APB muscles; the first principal
component was used in the subsequent analyses as it explained 99.3+0.5% of the variance (mean

and standard deviation across subjects).

2.3 Source estimation
Source estimation from the cleaned channel-level signals was performed with the FieldTrip toolbox

(Oostenveld et al.; 2011) by relying on a source model based on a standard template composed of
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15684 uniformly distributed sources in the Montreal Neurological Institute (MNI) space. A non-
linear transformation was applied to realign individual EEG sensor positions to the nearest vertex of
the scalp mesh (Dykstra et al.; 2012). The geometrical mapping of sources to sensors (namely, the
lead-field matrix) was derived by solving the electromagnetic forward problem using a 3-shell
boundary element model (BEM) between the vertices of the standard template and the realigned
electrodes with the conductivity values of the head tissues set to 0.33 S/m for the skin, 0.0041 S/m
for the bone, and 0.33 S/m for the brain. The dimensionality of the obtained lead fields was reduced
for each voxel by retaining the source orientation explaining most of the variance. Then, the reduced
lead field matrix was used to derive the spatial filter operator by the eLORETA method (Pascual-
Marqui et al.; 2011). Finally, the cleaned EEG signals were projected to the source space with the

spatial filter matrix, thus obtaining a time-course for each of the 15684 sources.

2.4 Connectivity analysis

A seed-based connectivity analysis was performed based on the reconstructed source time-courses.
The seed was chosen according to the position of IM1 in the MNI space [-45.9 —9.9 54.6]. The time-
courses of the seed and target sources, i.e.; all the other 15683 sources, in the 1-second window
prior to the stimulation were band-pass filtered around the individual p-rhythm frequency, with a
bandwidth of 2 Hz, by using a two-pass fourth-order Butterworth filter. The filtered time-courses
were padded at both ends by 64 ms and then transformed into their analytic representations by
means of the Hilbert transform. Padding was necessary to reduce the edge effects of the filter and
the Hilbert transform. Specifically, padding was performed by applying an autoregressive model
(Yule-Walker, order 30) in which coefficients were generated from the filtered time-courses. Given
the analytic signals of the seed Z5(f, t) and of each target - (f, t), we extracted the spectral phases
¢s(f) = arg{Zs(f)} and ¢ (f) = arg{Z+(f)} where arg{-} represents the argument of a
complex-valued number. Finally, the imaginary part of the phase-locking value (iPLV) (Palva and
Palva, 2012) was estimated as iPLVsr(f) = | (S{ exp{L A¢5_T(f)}})|, where || denotes the
absolute value, 3{'} is the imaginary part of a complex-valued number, ( - ) indicates expectation
value across data epochs and the phase difference 4¢s +(f) was calculated as A¢s +(f) = ¢s(f) —
¢r(f). We relied on the iPLV metric, because we aimed at characterizing connectivity through
phase coupling of neuronal oscillations in line with the CTC hypothesis (Fries, 2015, 2005) with an

approach robust to EEG mixing artifacts (Marzetti et al.; 2019).
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The procedure described above led to an individual seed-based functional connectivity map at the
pu-rhythm frequency. The group averaged functional connectivity map was then computed to
identify sources functionally connected to the left M1, in the following termed connectivity Regions
of Interest (cROIls), that were considered for subsequent analysis.

Of note, we explicitly decided not to a priori select trials with high signal-to-noise ratio, a procedure
employed e.g. in Zrenner et al.; 2018 for phase detection, to avoid potential biases in connectivity

analysis or subsequent analyses.

2.5 Relation between functional connectivity and Motor Evoked Potential

To assess if the observed functional connectivity is related to the amplitude of the MEP signal at the
individual level, for each of the cROIs, we split the trials into two subsets according to the median
of the iPLV values: high-connectivity (HC) and low-connectivity (LC) trials. Then, for each cROI and
subject, we calculated the MEP change relative to the mean MEP amplitude for the HC and LC trials
separately and determined with a paired sample t-test whether a difference in these classes of trials
exists.

Additionally, we asked whether a set of trials exists for which, taken together, all cROIs exhibit a
high or low connectivity to IM1. We termed these subsets as high-connectivity trials for the network
(HC_network) and low-connectivity trials for the network (LC_network). The modulation of MEP
amplitudes in the HC_network and LC_network trials was assessed, similarly to that between HC
and LC trials, by a paired sample t-test.

Control analyses were run for the modulation of MEP in different trial subsets defined at subject
level according to criteria that do not consider functional connectivity: i) splitting the trials into the
first and second part of the recording; ii) splitting the trials into even and odd. For each of these
different trial-splitting approaches, median MEP amplitudes across the first and second subsets
were calculated for each subject and a paired sample t-test (two-tails) was run to assess

modulations of MEP amplitudes between the two subsets.

2.6 Coupling directionality
To assess coupling directionality, we relied on the Multivariate Phase Slope Index (MPSI), known to
be more reliable than the corresponding bivariate approaches (Basti et al.; 2018). The calculation of

MPSI is based on the estimation of the cross-spectra among time courses of the cROIs and time
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courses of the voxels surrounding the seed. Specifically, to apply the multivariate directionality
metric, we selected all voxels the distance of which is smaller than 4 mm from the seed (subset of
dimensionality n) and from the cROI centroids. Each multivariate time series was then built as a
matrix with the first dimension being n and the second being the total data length obtained by
concatenating one second prestimulus data for the HC_network and LC_network trials. These time
series were used to calculated MPSI over each pair of frequencies in a range spanning 4 Hz centered
at the individual p frequency and with a 1-Hz frequency resolution. To assess the statistical
significance of the observed results, we considered a standardized version of MPSI that allows us to
interpret the ratio between MPSI and its standard deviation across estimation segments (jackknife
approach) as a pseudo-Z score. Finally, a group-level Z-score was obtained by averaging the
individual pseudo-Z score values multiplied by the square root of the number of subjects to
normalize the variance of the averaged pseudo-Z score distribution. Of note, the coupling
directionality measured by MPSI pseudo-Z score cannot be directly interpreted as a measure of the
coupling strength, rather it estimates the leader and follower role between a pair of

multidimensional signals.

2.7 Phase estimation

The phase of p-rhythm signal at stimulation was estimated by following the approach of (Zrenner
et al.; 2018). Specifically, we extracted the signal from the 500 ms preceding the TMS stimulation
from the IM1 region in source space, then a forward-backward filter in the individual p-band (order
= 64) was applied and, finally, the filtered signal was trimmed at the beginning and end by 64 ms, to
remove the edge effects of the filter. An autoregressive model of order 30 was then used to predict
the signal from —64 to +64 ms centered around the TMS stimulation. The phase of the signal was
then obtained by applying the Hilbert-transform to the predicted signal and by extracting the phase
at time zero. Of note, the phase values and the connectivity values were estimated for all trials that
survived artifact rejection. As mentioned in the previous paragraph, no trials were discarded based

on EEG power.

2.8 Linear regression analysis
To investigate the relation between long-range motor network connectivity, as measured by phase

locking (i.e.; phase differences) of p-rhythm oscillations, and local properties of M1, as measured by
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the phase of the p-rhythm oscillation at M1, we tested five different linear models for MEP
amplitude prediction at the individual level across all trials.
First, we tested a model in which the connectivity values between IM1 and a single cROI were used

as independent variable [a + by iPLV)4, CRO,l]; then, we added the connectivity between IM1 and

all other (n — 1) cROls to the first model [a + 27:1 b; iPLVip, CRO,J.]. The phase at IM1 was used as

the only independent variable in a third model [a + ¢ cos ¢ + d sin ¢], analogously to Zrenner et
al. 2020. Then, all the variables were used in a fourth model including all connectivity and phase as

independent variables [a + Z?zl bj iPLVyyy, cro1; T € COS ¢ + dsin qb]. In the above equations

a, by, bj, ¢, d are the model parameters, ¢ is the phase and iPLVzM1,cR01j is the connectivity

between [M1 and all the cROIs. Finally, a constant model was used as control analysis.

The Akaike Information Criterion (AIC) value (Akaike, 1998) was calculated to compare these
different models. Indeed, the AlC-based model selection weights model performance and
complexity in a single metric, and the difference between AICs of different models is an indicator of
their relative plausibility (Burnham and Anderson, 2004). Specifically, we used AIC to answer the
guestion whether it is worth adding another variable in the model for: connectivity-based model
with one cROI versus connectivity-based model with all cROls; connectivity-based model versus
connectivity and phase-based model; phase-based model versus functional connectivity and phase-

based model.

3. Results

3.1 Functional connectivity at the p-rhythm frequency highlights coupling within the motor network
EEG preprocessing evidenced that, on average, 23% of the channels and 18% of the trials were
contaminated by artifacts and were therefore excluded from the following analysis. The average p-
rhythm peak frequency across subjects was 10.5+1.5 Hz. For each subject, a map of iPLV with
respect to IM1 was obtained at the individual u-rhythm peak frequency; the grand average of these
individual iPLV maps is shown in Figure 1. The surface-based top view of Figure 1 middle panel shows
the location of IM1 (black dot) and the regions functionally connected to it in a color-coded
representation in which red indicates high connectivity to IM1. The orthographic views of Figure 1

left and right panels better show the location for the red spots of Figure 1 middle panel and highlight
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that IM1 is functionally connected to the left Supplementary Motor Area (ISMA, centroid MNI
coordinates [-12 —11 74]) and to the right motor cortex (rM1, centroid MNI coordinates [40 —25
52]). While recent EEG reports have detected a correlated pattern of functional connectivity
resembling the motor system at broadband (Marino et al.; 2019) and at alpha band (Samogin et al.;
2020) frequencies, current findings indicate the emergence of the motor network at the individual
u-rhythm peak frequency in resting state activity preceding TMS. For following analyses, ISMA and

rM1 regions obtained with the described approach were employed as the set of cROls.
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Figure 1. Group averaged functional connectivity (iPLV) to the left primary motor cortex (IM1, black dot in
the left hemisphere in the middle panel). The middle panel shows a surface-based projection, and the left
and right panels show two different orthographic projections of the same map. All views highlight that the
IM1 is functionally connected to the right motor cortex (rM1) and to the left Supplementary Motor Area
(ISMA), as defined by the MNI coordinates of their centroids.

3.2 MEP amplitude modulates with functional connectivity of the motor network

The modulation of MEP amplitude in the IM1-ISMA HC trials, defined as the percent change of the
MEP amplitude with respect to MEP mean value, was calculated for each subject and the average
value and its standard error are shown in Figure 2A together with the modulation in IM1-ISMA LC
trials. On average, a difference of 21.8 + 2.5%, (mean * standard error of the mean) in MEP
amplitudes is observed for IM1-ISMA HC trials with respect to IM1-ISMA LC trials (one tail paired-
sample t-test, p=0.03). This result points towards a spontaneous facilitation effect of SMA on M1 at
rest, i.e.; a high IM1-ISMA connectivity enhances MEP amplitude, in line with the facilitation
obtained by conditioning M1 by stimulating SMA with a cortico-cortical paired associative
stimulation protocol (Arai et al.; 2011).

Similarly, Figure 2B shows that a modulation of 11.4 + 1.0% is featured by MEP amplitude in the
IM1-rM1 HC trials with respect to IM1-rM1 LC trials (one tail paired-sample t-test, p=0.01). It should
be noted that, in general, IM1-ISMA HC trials are a different subset than IM1-rM1 HC trials and
similarly for LC trials and that the facilitatory effect of IM1-rM1 connectivity found here is smaller in
extent with respect to the IM1-ISMA effect, in line with our observation that the overall functional
connectivity between IM1 and rM1 is weaker than that of IM1 with ISMA.

Figure 2C shows the MEP modulation in the subset of trials in which IM1-ISMA and IM1-rM1
functional connectivity trials are both above or both below their corresponding median level. The

overlap between HC trials for IM1-ISMA and that for IM1-rM1, across all subjects, is 57% (median
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value) with an interquartile range of 7%, meaning that the number of trials in which a consistent
high or low coupling of the whole network (HC_network or LC_network trials) is observed is above
chance level. A significant increase of about 27.9 + 2.3% for MEP in the HC_network trials is observed
with respect to LC_network trials (one tail paired-sample t-test, p=0.01). The network-level MEP
modulation is thus increased by about 28% with respect to the largest modulation observed for
single node pairs, i.e. IM1-ISMA connectivity.

Finally, Figure 2D shows the modulation of MEP in HC_network and LC_network at the individual
level for the eight subjects. While for some of the subjects the positive relation was more evident,
other did not show a clear effect. Interestingly, the subjects that show weak or no effect are those
which feature low cortico-spinal excitability as indicated by their low MEP amplitude values (subj3,

subj5, subj8).
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Figure 2. MEP amplitude modulation, percentage values, in trials with high (HC) and low (LC) connectivity,
median split based definition. Bars indicate mean MEP amplitude, in the corresponding set of trials, across
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all subjects and whiskers indicate the standard error of the mean. A) MEP modulation (one-tail paired sample
t-test, *p=0.03) for connectivity between the left motor cortex (IM1) and the left Supplementary Motor Area
(ISMA). B) MEP modulation (one-tail paired sample t-test, *p=0.01) for connectivity between IM1 and the
right Motor Cortex (rM1). C) MEP modulation (one-tail paired sample t-test, *p=0.01) in the subset of trials
in which connectivity between IM1 and ISMA and connectivity between IM1 and rM1 are simultaneously low
(LC_network) or high (HC_network). D) A positive modulation of connectivity with MEP amplitude
(logarithmic value of MEP amplitudes is shown on the y axis) is observed in the majority of the subjects.

Notably, no significant difference is observable between MEP amplitudes in the first half versus the
second half of the trials in the recording (paired-sample t-test, p=0.20). This analysis allowed us to
rule out possible habituation or potentiation effects induced by the high number of stimuli delivered
in each experimental session. Similarly, MEP amplitudes in even versus odd trials were not
significantly different (paired-sample t-test, p=0.88), thus allowing to exclude chance effects
induced by the trial splitting procedure. Finally, we calculated functional connectivities between IM1
and ISMA and between IM1 and rM1 and their relation to MEP amplitudes for the theta (average
value across subjects: 5.0 + 0.7 Hz) and beta (average value across subjects: 21 + 3 Hz) frequencies.
These analyses revealed no significant effect of functional connectivity between IM1 and ISMA or
between IM1 and rM1 on MEP amplitude modulation for theta (IM1-ISMA: one tail paired-sample
t-test, p=0.10; IM1-rM1: one tail paired-sample t-test, p=0.23) and beta (IM1-ISMA: one tail paired-

sample t-test, p=0.47; IM1-rM1: one tail paired-sample t-test, p=0.09).

3.3 Coupling directionality reveals a top-down control of SMA on bilateral M1

The MPSI analysis revealed that in the high functional connectivity trials, coupling directionality,
averaged across subjects, indicates a connectivity from ISMA to IM1 (pseudo-Z = =3.61, p=3*10%)
and to rM1 (pseudo-Z = -2.53, p=0.01). Conversely, no significant directionality could be assessed
for the connectivity between IM1 and rM1 (pseudo-Z =—1.88, p=0.06). Similar results were obtained
for low connectivity trials (ISMA-IM1 pseudo-Z = —4.78 p=2*10°, ISMA-rM1 pseudo-Z = —2.48
p=0.01, IM1-rM1 pseudo-Z =-1.21 p=0.23).

3.4 A linear regression model that relies on network connectivity and IM1 phase best predicts MEP
The results for the comparison between a linear regression model, at single subject level, in which
the MEP amplitude is predicted only by the functional connectivity between IM1 and ISMA and a

model in which functional connectivity of IM1-rM1 is added as second independent variable (i.e.;

13


https://doi.org/10.1101/2023.06.29.547027
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.29.547027; this version posted March 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Motor Network model) are reported in Supplementary Material Table SM1 and Table SM2. These
data indicate that the Motor Network model performs overall better than the IM1-ISMA model.

In the following, we will thus further compare, in terms of their respective AIC values, the Motor
Network model with different linear regression models in which MEP amplitude is predicted only by
the phase at IM1 (Table 1, column 3), a model in which MEP is predicted by network-level functional
connectivity (Table 1, column 4), and a model in which both are used as independent variables to
predict MEP (Table 1, column 5). Additionally, AIC of MEP prediction by a constant model is reported
(Table 1, column 2). Column 6 of Table 1 indicates the model to be preferred according to the criteria
defined in (Burnham and Anderson, 2004).

Overall, the model with Motor Network and IM1 Phase as independent variables was preferred in 4
out of 8 subjects, while a model with Motor Network only as independent variable is preferred in 2
out of 8 subjects. In the remaining 2 subjects, either the Phase only model or the constant model

are preferred.

Table 1
AIC
Subject # AIC AlC AlC Motor Network & Preferred model
Constant model IM1 Phase Motor Network IM1 Phase

1 Motor Network &
2106,5 2004,8 2071,6 1971,0 IM1 Phase

2 Motor Network &
1416,8 1414,6 1299,5 1298,6 IM1 Phase
3 1724,4 1716,9 1726,9 1719,1 IM1 Phase

4 Motor Network &
1867,0 1863,6 1858,4 1855,5 IM1 Phase
5 1931,0 1933,8 1932,9 1935,7 Constant

6 1823,4 1830,1 1822,4 1824,8 Motor Network

7 2178,2 2180,3 2173,6 2176,2 Motor Network

8 Motor Network &
1626,0 1622,9 1602,1 1597,7 IM1 Phase
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Table 2 shows the plausibility of all the tested models.

Table 2
Subject # Constant model IM1 Phase Motor Network Motor Network &

IM1 Phase
1 Not plausible Not plausible Not plausible Preferred
2 Not Plausible Not Plausible Plausible Preferred

3 (Mildly)
Not plausible Preferred Not plausible Plausible
4 Not Plausible Not Plausible Plausible Preferred
5 Preferred Plausible Plausible Plausible
6 Plausible Not Plausible Preferred Plausible
7 Not Plausible Not Plausible Preferred Plausible
8 Not plausible Not plausible Not plausible Preferred

Overall, tables 1 and 2 indicate that including local (IM1 phase) and long-range (Motor Network)
characteristics of the source-space EEG signal results in the best or in a plausible predictive model

for single trial MEP amplitudes.

4. Discussion

In the present proof-of-concept study, we show that EEG-derived long-range connectivity of the
primary motor cortex (M1) in the pre-stimulation period at individual p-rhythm peak frequency is
largely congruent with the motor network and that the connectivity state of this network modulates
the motor responses evoked by transcranial magnetic stimulation of the primary motor cortex.
Specifically, stronger coupling of left M1 with left supplementary motor area (SMA) and right M1,
as measured by phase locking of p-rhythm oscillations, was related to larger motor evoked potential
(MEP) amplitudes and vice versa. These findings indicate that the corticospinal excitability is
associated with the coordinated interaction among key areas of the motor network rather than only
with the local activity of M1. Importantly, the observed positive relation between motor network
connectivity and MEP amplitudes holds at the individual level, even if not for all subjects. Subjects

that do not show the effect feature an overall low cortico-spinal excitability, as indexed by low MEP
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values, across the whole recording. Thus, we speculate that lack of modulation is due to a generally
low responsiveness and not to the relation to motor network connectivity.

Previous work investigating an association between MEP amplitude and pre-stimulus EEG phase-
locking, as measured by coherence magnitude, has observed a coupling between the stimulated
primary motor cortex and a large swath of centro-parietal cortex in the delta band and of frontal
cortex in the high beta band (Ferreri et al.; 2014). Yet, the present findings indicate that brain
connectivity states affect the corticospinal excitability in a topographically selective (i.e.; motor
network) fashion. Our result was likely obtained by using a source level functional connectivity
approach based on a metric robust to field spread and volume conduction effects (Marzetti et al.;
2019), as compared to the approach used in (Ferreri et al.; 2014). The more recent study from Vetter
et al. (2021) investigates, in a real time EEG-TMS experiment, the association between MEP
amplitude and pre-stimulus EEG phase-locking between two specific EEG channels (after application
of a Hjorth montage) located approximately above the motor cortices. Overall, the study concludes
that functional connectivity was predictive of cortico-spinal excitability together with power and
phase. Nevertheless, this study employs seed-based sensor-level connectivity analysis which makes
it impossible to assess whether the considered signals actually come from motor areas. Similarly,
the real-time setting available for the experiment did not allow to consider more than two channels
and thus to investigate the potential augmentation of the observed effect when more than just two
regions in a network are connected.

The positive relationship between MEP amplitude and pre-stimulus motor network connectivity is
consistent with neurophysiological and neuroimaging lines of evidence from functional Magnetic
Resonance Imaging indicating that such functional interactions are relevant for MEP (Cardenas-
Morales et al.; 2014) and for hand function in healthy individuals (Pool et al.; 2013). Clinically, it has
been observed that intra-hemispheric M1-SMA (Grefkes et al.; 2010; Liu et al.; 2021) and inter-
hemispheric M1-M1 (Carter et al.; 2010; Grefkes et al.; 2010) functional connections are
behaviorally relevant for recovery after motor stroke as well as predictive of functional
improvement induced by theta-burst TMS stimulation (Diekhoff-Krebs et al.; 2017). Moreover, our
results for coupling directionality within the motor network indicate an overall stable intrinsic
coupling directionality from ISMA to IM1 and rM1, in line with previous evidence of SMA
conditioning effect on M1 excitability (Arai et al.; 2011) as well as with dynamic causal modelling-

based SMA bilateral control over primary motor cortices (Pool et al.; 2013).
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In addition, the lack of a dominant directionality between the two motor cortices in the resting brain
is in line with Grefkes et al. (2008).

Furthermore, our individual analysis results show that, for the majority of the subjects, a model
including both long-range phase locking within the motor network and the phase of M1 oscillation
results in a better prediction of MEP amplitudes than either one of these factors alone. A model
based on motor network connectivity alone is, in general, more plausible than a model based on
M1 phase alone. Of note, in contrast to previous works investigating the role of phase in predicting
MEP amplitudes, e.g. (Zrenner et al.; 2018), we did not select trials on a power-based criterion
(Zrenner et al.; 2020); this might justify the difference between our results and previous ones for
phase-based prediction.

Finally, our findings pair to the work by Stefanou et al. (Stefanou et al.; 2018) in supporting the idea
that functional connectivity can be directly exploited to design paired- or multi-coil stimulation
protocols in which the stimulation is delivered when nodes in the network are phase-coupled.
Indeed, the functional connectivity approach used in our paper can be extended to real-time
estimation (Sommariva et al.; 2019; Basti et al.; 2022) and, thus, translated into protocols for state-

dependent connectivity-based stimulation.

Although we acknowledge that a limitation of this study is in the limited size of our cohort, it must
be noted that our data rely on a high number of trials for each subject (overall number of trails
about 8000). The final aim of our study is to provide a proof-of-concept of the possibility to extract
an EEG-based motor network from EEG-TMS data, as well as to assess the relation between motor
network connectivity and cortico-spinal excitability at single subject level and to possibly take
advantage of our results for an individualized connectivity targeted stimulation. For this reason,
relying on many trials per subjects allows us to perform such an investigation in a robust manner in
this study in which a subset of trials with high or low functional connectivity must be considered to

these purposes.

5. Conclusions

To the best of our knowledge, this is the first study that investigates to what extent the connectivity
state of a brain network in source space prior to transcranial magnetic stimulation influences its
outcome. Here, we specifically addressed this question for the network linked to the left primary

motor cortex at the individual peak frequency of the sensorimotor p-rhythm. We demonstrate that
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a high-connectivity state within this network, which largely overlaps with the motor network
topography, features a facilitation effect on the amplitude of the motor evoked potential induced
by left primary motor cortex stimulation. Notably, the increase of MEP amplitude with enhanced
motor network connectivity supports the idea that connectivity-informed real-time state-

dependent stimulation may have a high potential including a therapeutic efficacy.
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