

Cranes soar on thermal updrafts behind cold fronts as they migrate across the sea

Sasha Pekarsky*^{1†}, David Shohami^{1†}, Nir Horvitz^{1,2}, Rauri C. K. Bowie^{3,4}, Pauline L. Kamath⁵,
Yuri Markin⁶, Wayne M. Getz^{2,7}, Ran Nathan*¹

¹Movement Ecology Laboratory, Dept. of Ecology, Evolution & Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

²Current address: Dept. of Environmental Science, Policy & Management, University of California, Berkeley, 94720-3114, USA

³Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, 94720, USA

⁴Dept. of Integrative Biology, University of California, Berkeley, California, 94720-3114, USA

⁵School of Food and Agriculture, University of Maine, Orono, ME, 04469, USA

⁶Oksky State Reserve, pos. Brykin Bor, Spassky raion, Ryazanskaya oblast, 391072, Russia

⁷School Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa*Paste corresponding author name(s) here.

† These authors contributed equally to this work

* Corresponding authors: Sasha Pekarsky and Ran Nathan

Email: sasha.pekarsky@gmail.com, ran.nathan@mail.huji.ac.il

Competing Interest Statement: No competing interests

Classification: Behavioural Ecology

Keywords: movement ecology, sea-crossing, mid-latitude cyclones, ecological barrier, soaring-gliding, *Grus grus*

This PDF file includes:

Main Text
Figures 1 to 4

1 **Abstract**

2 Thermal soaring conditions above the sea have long been assumed absent or too weak for
3 terrestrial migrating birds, forcing large obligate soarers to take long detours and avoid sea
4 crossing, and facultative soarers to cross exclusively by costly flapping flight. Thus, while
5 atmospheric convection does develop at sea and is utilized by some seabirds, it has been largely
6 ignored in avian migration research. Here we provide direct evidence for routine thermal soaring
7 over open sea in the common crane, the heaviest facultative soarer known among terrestrial
8 migrating birds. Using high-resolution biologging from 44 cranes tracked across their

9 transcontinental migration over 4 years, we show that soaring characteristics and performance
10 were no different over sea than over land in mid-latitudes. Sea-soaring occurred predominantly in
11 autumn when large water-air temperature difference followed mid-latitude cyclones. Our findings
12 challenge a fundamental paradigm in avian migration research and suggest that large soaring
13 migrants avoid sea crossing not due to absence or weakness of thermals but due to their
14 uncertainty and the costs of prolonged flapping. Marine cold air outbreaks, imperative to the global
15 energy budget and climate system, may also be important for bird migration, calling for more
16 multidisciplinary research across biological and atmospheric sciences.

17 **Main Text**

18 **Introduction**

19 Sea crossing is highly challenging for migrating terrestrial soaring birds that regularly soar and glide
20 over land (1, 2), leading to interspecific variation in sea-crossing strategies explained by wing
21 morphology and flight modes (3; Fig. 1). Obligate soaring birds take long detours to circumvent the
22 sea (4-6) or cross it only in short sections (7). The prevailing paradigm in avian migration research
23 assumes that such detours are caused by the absence or weakness of thermal soaring conditions
24 above the sea. Most terrestrial soaring birds are facultative soarers that are also capable of
25 prolonged flapping and therefore, under the same paradigm, have been assumed to cross the sea
26 exclusively by costly flapping flight (1).

27 Nonetheless, ascending air through atmospheric convection does develop over oceans and seas,
28 encompassing atmospheric phenomena such as radiative cooling above cloud tops, trade-wind
29 convection over tropical waters, and marine cold air outbreaks outside the tropics (8-10). In the
30 latter, convection is generated when colder continental air flows over warmer sea-surface water.
31 Under such temperature difference (ΔT ; positive if sea surface is warmer than the overlying air),
32 the cold air layer is heated by the water, producing unstable upward-downward air motion in the
33 marine atmospheric boundary layer that may organize into convective cells (8, 9). Recent studies
34 have shown how the unique combination of trade-wind convection over tropical oceans and
35 extreme wing morphology of frigatebirds enables them to soar as they forage for extended periods
36 (11), and that gulls use soaring flight when foraging at sea relatively close to shore (12). Yet, despite
37 very early observations of soaring gulls that inspired the meteorological and physical study of
38 cellular convective systems over the oceans (13, 14), their utilization for soaring by terrestrial birds
39 over temperate and subtropical waters has been largely ignored in avian migration research (1, 15,
40 16) and the paradigm uncontested.

41 Recent studies have either suggested thermal soaring during sea crossing based on low-resolution
42 tracking of raptors (17) or examined uplift potential during raptor migration over the sea (18-20),

43 but lacked direct biologging evidence for the circling behavior typical of thermal soaring.
44 Consequently, sea crossing solely by flapping flight could not be excluded in these studies. The
45 first, and so far only, direct evidence based on high-resolution GPS tracking comes from ospreys
46 migrating across the Mediterranean Sea (21), which have a relatively low morphospace position
47 (Fig. 1). Moreover, the underlying meteorological conditions responsible for generating uplift
48 potential that can be (and are) used by migrating birds remain largely under-investigated both in
49 ecological and meteorological studies.

50 Among migratory birds, cranes are the heaviest facultative soarers that commonly use both low-
51 cost soaring and costly prolonged flapping flight when and where soaring is unfeasible (1, 22).
52 Cranes have a unique combination of wing morphology traits that neither fit terrestrial nor marine
53 facultative soarers, but lies well within a zone merging the largest obligate soarers (pelicans,
54 vultures and condors) that seldom or never cross the sea, and the largest obligate flapping birds
55 (swans and geese) that use prolonged flapping for sea crossing (Fig. 1). Common cranes (*Grus*
56 *grus*) routinely cross the Baltic, Black, Mediterranean and Red Seas during migration, including
57 long stretches of up to 850 km over open water (22, 23). The common and the white-naped cranes
58 (*Antigone vipio*) are the heaviest facultative soarers known to migrate long distances across the
59 sea and, as in other cases, have been assumed to do so by combining gliding and flapping (1, 24),
60 but not by thermal soaring.

61 Here, we used 1524 hours of high-resolution (1Hz) GPS, three-dimensional acceleration and
62 magnetometer measurements from 44 common cranes, tracked along the breadth of their cross-
63 continental migratory route between western Russia and Africa during 2018-2021, to provide the
64 first direct evidence that cranes repeatedly use thermal soaring over the sea and far from nearest
65 land (Fig. 2). Since cranes are terrestrial flight generalists and are thus expected to better exploit
66 the environmental heterogeneity available at their aerial habitat (3, 25), we analyzed soaring and
67 flapping flight performance and characteristics to investigate their sea crossing mechanisms, as
68 well as the underlying large scale meteorological conditions that enable them to soar and glide over
69 extended seascapes.

70 **Results**

71 High-resolution biologging of tracked cranes was configured in designated areas over three
72 regions: land north of 32N, sea (Black and Mediterranean), and land south of 32N (desert) (Fig.
73 2A, SI Appendix, Fig. S1). Consequently, the high-resolution dataset was divided into 8657 10-min
74 sections, with 3412 sections containing at least one thermal soaring event. In at least 40% of the
75 time, cranes migrated exclusively using flapping flight, even over land at southern latitudes (Fig
76 2B). The proportion of thermal soaring differed between regions ($\chi^2=1373.2$, d.f.=2, $p<0.001$) and
77 seasons ($\chi^2=1425.1$, d.f.=5, $p<0.001$), with the highest over the desert and lowest over the sea

78 (Fig. 2B, SI Appendix, Table S2), and lower during autumn than spring in the desert but much
79 higher over the sea (Fig. 2B, SI Appendix, Table S3). In diurnal trips with soaring activity, the
80 proportion of time soaring was 2.3 times lower over sea than land (Fig 3B). The mean (\pm SD) air
81 speed was 47.1 ± 16.1 and 38.4 ± 14.2 in sections with and without soaring, respectively (ART-
82 ANOVA: $F=201$, $p<0.001$), indicating that soaring flight is likely to be favored not only for energy-
83 but also for time-minimization, corroborating findings from large obligate soarers (27). Soaring-
84 gliding performance over the sea was not different than over land at northern latitudes, but both
85 were significantly different than over land at southern latitudes. Cranes tended to engage in more
86 risk-prone flight (28) and have higher climbing rates, higher thermal exit height and lower flapping
87 ratios in both the climbing and gliding phases, over southern latitude land ($p<0.001$; Fig 3, SI
88 Appendix, Fig S3).

89 The probability of thermal soaring when crossing the sea was significantly and positively related to
90 ΔT and wind speed at median flight height (395m), but wind speed effect was weak (Table SI
91 Appendix, S4). Generally, thermal soaring occurred mostly in $\Delta T>1$. To understand the broader
92 meteorological context, we examined meteorological conditions 3 days before and 1 day after
93 Mediterranean Sea crossing events during autumn (Fig. 4). For events including thermal soaring,
94 all environmental conditions two and three days prior to departure were significantly different than
95 the departure day ($p<0.05$, Fig. 4A blue lines). In contrast, sea crossing events that did not include
96 soaring did not show clear trends in any of the meteorological variables (Fig. 4A red lines). ΔT
97 levels were, on average, lowest 3 days before departure of soaring cranes (indicating relatively
98 high air temperature very close to the sea temperature, $p=0.02$) and reached a maximum one day
99 before departure. In contrast, crossings without soaring occurred during low ΔT levels without a
100 sharp increasing trend in the preceding days (Fig. 4B). Additionally, crossings that included thermal
101 soaring were preceded by a decrease, followed by a sharp increase, in sea level pressure, on
102 average reaching a minimum two days before departure ($p<0.05$). They also occurred during a
103 minimum in total cloud cover and daily precipitation, both reaching a maximum 2-3 days before
104 departure ($p=0.008$ and $p<0.001$ respectively). Tailwind was present but weak during departure
105 days of soaring cranes, but was strong headwind two and three days prior ($p<0.05$). Since autumn
106 departures for Mediterranean Sea crossings are in a southerly direction (mean \pm SD $285^\circ \pm 16$),
107 tail and headwinds generally correspond to northerly and southerly winds, respectively. The
108 synoptic interpretation of these results indicates the passing of a mid-latitude cyclone (low-pressure
109 area) and associated cold front two days, on average, prior to departures for Mediterranean Sea
110 crossings that include thermal soaring (Fig. 4C).

111

112 **Discussion**

113 Our data directly demonstrates thermal soaring over the sea by a large, heavy terrestrial migrant,
114 with wing loading up to twice that of all raptors and gulls for which this behavior was previously
115 documented (13, 14, 21) or suggested (17, 19, 20). Interestingly, we found that soaring crane climb
116 rates over the sea were comparable to over land in northern latitudes, but the time spent soaring
117 was considerably lower, suggesting lower frequency but not lower strength of thermals over the
118 sea (Fig. 3). These findings challenge fundamental assumptions in avian migration research that
119 have assigned a small, if any, role for thermals over the sea for migrating birds and explained sea
120 avoidance of obligate soarers by thermal absence or weakness (2, 21, 29).

121 Our study shows the ability of facultative soaring migrants to switch flight modes in response to
122 changes in the environmental conditions they encounter *en route*. Cranes heavily rely on powered
123 flapping flight, use it exclusively for more than half of their migratory flights, and frequently flap also
124 during thermal soaring-gliding (Fig. 3). Yet, unlike previous assertions that cranes use flapping as
125 their primary flight mode and switch to thermal soaring when available to reduce flight energetic
126 costs (22, 24), we found that soaring flight is also faster than flapping flight, hence likely favored
127 also to minimize migration time, as shown in large obligate soarers (27). In addition, cranes merge
128 soaring and flapping flight to “prolong” inter-thermal gliding, and to keep in tight flock formation also
129 during thermal circling (1, 22). The higher climb rates and lower flap rates observed during
130 migration over land at southern latitudes probably reflect stronger thermal activity in these areas
131 while having few, if any, opportunities to refuel (1, 23).

132 Mediterranean sea-crossing events in autumn that included thermal soaring occurred on average
133 two days after the passage of mid-latitude cyclones, when positive ΔT values occurred but the
134 precipitation and headwinds associated with the cold front have ceased (Fig. 4). The low-pressure
135 area draws in cold air behind it, which increases sea-air ΔT as the sea surface temperature is
136 hardly affected by synoptic variations (Fig. 4B). Winds also tend to have a strong southerly
137 component ahead of the low, which generates headwinds for the south-bound cranes. After the
138 passing of the cold front and during gradual clearing of the low, the northerly (tail) component of
139 the wind sets in, though cloudiness and precipitation may still linger. After that, even as ΔT
140 decreases from its maximum, meteorological conditions are favorable for departure and for thermal
141 soaring over the sea. During the spring, however, the same post-cyclonic cold air events generally
142 correspond to headwinds for the north-bound cranes. This may partly explain why soaring over the
143 Mediterranean was much rarer in spring.

144 In summary, we provide direct evidence based on rich high-resolution data for routine use of
145 thermal soaring over the sea in the heaviest facultative soarer among terrestrial migrating birds,
146 and investigate the mechanisms underlying this surprising finding, which calls to reconsider a
147 prevailing paradigm in bird migration research. These mechanisms encompass the ability of cranes

148 to adapt their flight mode to conditions *en route* and to flexibly select their migration route and
149 timing, and the atmospheric convective processes that enable thermal soaring of such heavy birds
150 over the sea. These atmospheric processes are imperative to understanding low cloud formation
151 and the global energy budget and climate system (8, 9, 30). Here, we show that even small-scale
152 marine cold air outbreaks such as those occurring in the eastern Mediterranean and Black Seas,
153 which may not even generate visible convective cells (organized clouds) that are of interest to the
154 atmospheric science community, still have significant global effects for biological processes such
155 as bird migration and are of interest to the biological science community. Migratory birds can serve
156 as sentinels of climatological and meteorological phenomena, sparking new opportunities for
157 multidisciplinary research across biology and atmospheric sciences.

158 **Materials and Methods**

159 **Tagging and data collection**

160 Between January 2016 and September 2018, 44 common cranes (SI Data S1) were trapped in
161 their pre-migration flocking areas in western Russia (Ryazan area; 54°56'N, 41°02'E). The cranes
162 were trapped using alpha-chlorolose (cf. 31, 32, 33) and processed in accordance with protocols
163 approved by the Department of Environment of the Ryazan district, Russia (permit CK19-7154).
164 Captured birds were color-ringed, fitted with leg-mounted solar-powered GPS-GSM transmitters
165 (58 OrniTrack-L40: Ornitela, Lithuania), morphological measurements were taken, and body
166 feathers were collected for molecular sexing. The maximal total mass of a transmitter plus rings
167 used for attachment was (mean±SD) 0.8±0.09% (range: 0.7-1%; 35g-42g) of the captured cranes'
168 average body mass.

169 GPS locations were sampled at a resolution of 2 min to 1 h over the whole annual cycle depending
170 on the measurement scheme and battery recharge (hereafter low-resolution dataset). Once a bird
171 was flying inside pre-set geographical areas along the migratory route, GPS data was sampled
172 continuously at 1 s intervals (hereafter high-resolution dataset; SI Appendix, Fig. S1). During 1Hz
173 GPS recording, three-dimensional acceleration and magnetometer data were recorded in
174 synchrony with the GPS position (Fig. 3B). Higher resolution (10Hz) 4-s bursts of three-dimensional
175 acceleration and magnetometer were recorded once every 1 minute; during this ultra-high
176 resolution sensor burst, GPS recording is paused. All data were downloaded remotely through a
177 GSM network connection.

178 In all our analyses we used data from individuals migrating mainly along the Russian-Pontic route
179 of the East Eurasian Flyway, leading from breeding grounds in Eastern Europe and the European
180 part of Russia, through the Black Sea and towards wintering grounds in the Near East and north-
181 east Africa (34). Smaller portion of individuals breeding in the European part of Russia also use the

182 Caucasus flyway, leading across the Caucasus mountains to wintering grounds in Iran, the Near
183 East and north-east Africa (23, 34). Age categories were assigned separately for every migration
184 year, leading to some individuals being included in juvenile category during the first year of data
185 collection and later assigned to adult category. Breeding adults were defined as adult birds
186 observed with juveniles in current or previous years. All movement data analyses were performed
187 using MATLAB R2020a (The Mathworks Inc., Natick, MA, USA).

188 **Movement analysis**

189 High-resolution (1Hz) data was recorded for various lengths of time depending on battery recharge
190 and point of entry/exit to/from the predefined preset geographical areas. We included in the analysis
191 only continuous 1Hz sections longer than 10 minutes. This data filtering resulted in a total of 1352
192 sections of 71.2 (range: 10-470) minutes. During the 4 second recording of 10Hz sensor burst, the
193 1Hz GPS and sensor data recording is not occurring. Thus, to create continuous 1Hz data series,
194 we subsampled the 10Hz data by selecting the first acceleration and magnetometer value of every
195 second during the burst. Linear interpolation was used to fill the 4 s gaps in GPS data occurring
196 during sensor burst. While dead-reckoning provides a more accurate approach to fill data gaps
197 (35), linear interpolation is not expected to introduce a significant bias in the current study due to
198 the overall low proportion of gaps (6±3% percent of all data) and the highly similar distribution at
199 different regions.

200 **Identifying thermal soaring-gliding**

201 Soaring-gliding events consist of an altitudinal gain phase performed using circular thermal
202 climbing, followed by a gliding phase during which altitude loss occurs (36). Thermal soaring and
203 inter-thermal gliding fundamental movement elements (FMEs) (37) were defined separately in our
204 dataset due to the tendency of the cranes to use a mixture of gliding and flapping flight (1), hence
205 not all thermal soaring phases were followed by clearly definable gliding phases.

206 To identify soaring phases, we first found all climbing events. Two main types of thermal soaring
207 were observed in our data: (1) classic soaring, or circling flights phases, were identified by a
208 continuous change in heading angle in one direction for at least two full circles during the climb
209 event (97% of all thermal sections) and (2) spring-like soaring pattern, which might be a result of
210 circling with high drift (3% of all thermal sections, 12% of thermal sections over the sea, Fig S2).
211 Those were identified by a continuous change in heading direction using the magnetometer data
212 (Fig. 3). For each local minimum point in the flight height, we found its following local maximum
213 point. If the time between the max and min points was at least 30 seconds, and if for each recorded
214 flight heights 10 seconds apart the later was higher, we considered it a climb. Climbs less than 15
215 seconds apart were merged. A consequent gliding phase was registered if 80% of the 1 s steps

216 were downwards without circling for at least 30 s and if it followed a soaring phase by less than 60
217 s. (36).

218 The mean (\pm SD) time of thermal soaring was 213 (\pm 116) s, and the mean (\pm SD) time of gliding was
219 109 (\pm 82) s. For each segment of thermal soaring, we calculated vertical speed (climb rate), thermal
220 starting and exit heights above terrain, and flapping proportion (see section 2.3.2). When a
221 matching gliding phase was coupled with the soaring phase (61% of the soaring FMEs), time of
222 gliding, ground speed, air speed, vertical speed (sink speed) and flapping rate were calculated (Fig
223 3).

224 **Flapping rate**

225 The tri-axial acceleration (in millivolts) was transformed to acceleration (ms^{-2}) units using calibration
226 values obtained for each azimuth collected prior to deployment. To obtain vertically aligned
227 acceleration we calculated tri-axial static acceleration and projected the raw acceleration. Flapping
228 frequency was determined by counting the number of detected wingbeats per second, using the
229 high 10 Hz recording during 4 s (cf. 38).

230 Since commonly used methods (39, 40) for determining the instantaneous flap rate during flight
231 using acceleration or magnitude data are not suitable at the sampling resolution of 1Hz, we
232 developed a model based on a two-layer, fully-connected, feedforward neural network (Python 3.9;
233 TensorFlow 2.8) to estimate flap rate when 10Hz data was not available. The input neurons were
234 the result of applying aggregate functions and calculating the Pearson correlation between axes
235 for acceleration and magnitude data. For model calibration we used 12,580 sections, divided into
236 80% for model training and 20% for model validation. Models were estimated for multiple
237 configurations and the best model was selected according to the goodness-of-fit of the flap-rate
238 projected from 1Hz data and the one calculated from 10Hz data. The best performing model ($R^2 =$
239 0.91) was based on 5 continuous samples of 1Hz acceleration (magnitude data was dropped in
240 model selection) with the flap rate estimated for the middle sample point. This model was used to
241 calculate flapping rate from 1Hz data for all our tracks (Fig. 2). The mean (\pm SD) calculated flapping
242 rate was 2.15 (\pm 0.79) flaps s^{-1} during flapping flight and 0.89 (\pm 0.83) flaps s^{-1} during thermal
243 soaring. Flapping rate was converted into flapping ratio to represent flapping proportion during each
244 fundamental movement element (see section 2.3.3).

245 **Other flight characteristics**

246 To assess thermal soaring under different conditions, we segmented the data into 10-minute
247 sections and only sections lasting 10 full minutes were analyzed. The sections were classified as
248 above sea or above land and only sections for which all points were classified to the same habitat

249 were analyzed. For this analysis only thermal soaring was considered and for each section, the
250 number of thermal soaring FMEs and total time in thermal soaring were recorded.

251 To understand the differences in crane flight performance at different geographical areas and
252 environmental conditions, we used only coupled soaring-gliding FMEs. We focused on the following
253 decision making proxies: (a) soaring-gliding efficiency calculated as distance traveled when gliding
254 divided by the time spent in the preceding thermal (cf. 41). (b) RAFI to assess risk minimization
255 (36). RAFI index is calculated based on the optimal speed that maximizes the cross-country flight
256 and the best-glide speed that minimizes the sink-rate. These theoretical speeds are calculated
257 based on mean body mass, wing area and wing span for each species using the FLIGHT (version
258 1.25) software (42). Crane morphological input values (mean body mass = 5.614 kg, wing area =
259 0.5853 m², wing span = 2.22 m, aspect ratio = 8.42) were obtained from data provided in (43) Lower
260 RAFI index values represent higher airspeed when more risky flight is used, and higher RAFI values
261 represent risk-averse flight behavior with lower sink rates (36). Theoretical RAFI index values, if
262 the bird flies optimally, range between 0 and 1; however, birds are not always using optimal flight
263 and thus the index values are not limited to these values. 3) Flapping ratio during soaring and
264 gliding phases, calculated by dividing the cumulative number of flaps in each FME by the maximal
265 possible number of flaps based on the mean calculated flapping rate during powered flight. This
266 method of flapping ratio calculation probably leads to overestimation of flapping, as a particular
267 second is considered flapping regardless of how many wing flaps were performed in that second
268 (38, 40). However, because the actual number of flaps was unknown and estimated based on a
269 running average over 4 seconds, our calculation is representative of the flapping ratio during the
270 different movement phases.

271 **Annotating environmental variables**

272 Flight height above ground level was calculated by subtracting from the altitude ASL (44) the
273 ground elevation (ASTER DEM, 1 arc-second spatial resolution) obtained from Env-DATA track
274 annotation service (4). To relate the flight behavior to the time of day, we classified diurnal locations
275 as those collected between sunrise and sunset and regarded the remaining locations as nocturnal.
276 To identify flight above the Black Sea and Mediterranean Sea we used the Marine Regions
277 shapefile (45) and annotated the corresponding position to the location inside or outside the
278 polygon. Sea crossing was identified if at least one point was located inside the sea polygon. All
279 data tracks were classified to three geographical areas: (a) over Black or Mediterranean Seas, (b)
280 over land north of latitude 32°N and (c) over land south of latitude 32°N. Latitude 32°N was chosen
281 to differentiate tracks above desert or elsewhere because the geographical areas in which the 1Hz
282 data was sampled do not include deserts north of this altitude (SI Appendix, Fig S1).

283 Atmospheric variables were obtained from the ERA5 hourly data on pressure levels (46) and single
284 levels (47) from 1979 to present, provided by ECMWF. We annotated all crane GPS locations with
285 the following single level variables: mean sea level pressure, air temperature at 2 meters above
286 the surface, sea surface temperature, total cloud cover, and boundary layer height (BLH).
287 Additionally, annotation was done on the 950 millibar pressure level with geopotential height and
288 U- and V- wind components. Since the ERA5 temporal resolution is one hour, the GPS location
289 timestamp was rounded to the nearest hour for the ERA5 annotation. Precipitation data were
290 obtained from the GPCC First Guess Daily Product at 1.0° (48).

291 For soaring-gliding flight performance analysis, we estimated the wind speed and direction using
292 bird drift in thermals from the horizontal displacement of thermals (49). We chose this estimation
293 because of the coarse resolution of the ERA5 data that may not correctly predict conditions in the
294 small scales of thermal soaring-gliding events. However, this estimate was not possible for 1Hz
295 sections with no thermal soaring; thus, for comparison between soaring and flapping sections, the
296 ERA5 data was used.

297 **Statistical analysis**

298 To identify factors influencing thermal probability at sea, we modelled the relationship between
299 thermal presence and meteorological predictor variables using binomial Generalized linear-mixed
300 model (GLMM) with the *glmer.nrd* function in the '*lme4*' package (50). Animal ID was included as
301 random factor in all models to account for repeated measures. Before fitting the GLMMs, all
302 continuous predictors were transformed to z-scores to standardize them (51). To rule out
303 collinearity we calculated Pearson's correlation coefficients (*r*) between each pair of explanatory
304 variables and selected variables with $|r| < 0.7$ (52) We compared the full model with a null model
305 (including only random and control variables) using likelihood-ratio tests (ANOVA function set to
306 'Chisq'). The response variable was presence/absence of thermal circling, and the predictor
307 meteorological variables included mean tailwinds, mean temperature difference between sea and
308 air (ΔT) and sea level pressure. Mean BLH was correlated with ΔT ($r = 0.72$, $p < 0.001$) and
309 excluded from the model. An additional predictor variable was individual age: adults versus birds
310 under the age of three. First year juveniles were not analyzed separately because our high-
311 resolution dataset included only one juvenile.

312 To compare the proportion of 10 minute sections with and without thermal presence at different
313 geographical regions and between autumn and spring, we applied Chi-squared contingency table
314 analyses to determine the overall effects, followed by post-hoc pairwise comparisons calculated
315 using the Marascuilo procedure (53) which allows comparison of proportion data among several
316 populations. To compare the decision-making proxies between the geographical regions, we
317 applied an aligned rank transformed ANOVA (ART-ANOVA) for non-parametric, factorial analyses

318 with crane ID as a random factor, using the *ARTool* package (54). We conducted within-group
319 comparisons using the *ARTool* pair-wise contrast function and between-group comparisons using
320 Mann-Whitney U-tests with Bonferroni corrected p-values.

321 We used repeated measures analysis of variance (RM-ANOVA) to compare conditions in the
322 Mediterranean Sea between three one-day timescales prior and one one-day timescale after crane
323 departure for Mediterranean Sea crossing in autumn. A common location (35°17'N, 35°36'E) was
324 selected for this analysis because most tracks crossed this area. For each individual, crossing flight
325 mode was set as thermal soaring if at least one 10-minute section with thermal soaring was present
326 during crossing; otherwise, it was set as flapping only. Each meteorological factor (ΔT , sea level
327 pressure, total cloud cover, precipitation, and tailwind) was analyzed separately. Tailwind was
328 calculated in relation to bird flight direction between the point of departure and the point of analysis
329 in sea. We then applied Dunnett's test (55) to compare the conditions at the departure day with the
330 ones measured at other days (-3, -2, -1 and +1).

331 **Author contributions**

332 Conceptualization, project administration and supervision: RN

333 Study design: RN, SP

334 Fieldwork: SP, YM

335 Data analysis: SP, DS, NH

336 Visualization: SP

337 Funding acquisition: RN, WMG, RCKB, PLK

338 Writing – original draft: SP, DS, RN

339 Writing – review & editing: SP, DS, RN, WMG, RCKB, PLK

340 **Acknowledgments**

341 The authors wish to thank to K. Postelnykh, K. Kondrakova, N. Yesraeli, S. Agmon, Y. Charka, G.
342 Shani, N. Valtzer and F. Argyle for help in fieldwork and trapping. We also thank the members of
343 Nathan's Movement Ecology lab and especially Y. Bartan and S. Turjeman for their help at various
344 stages of the research. This research was funded by BSF grant 904/2015 to RN and WMG, by GIF
345 grant 999-66.8/2008, ISF grant 2525/16 and JNF/KKL grant 14-093-01-6 to RN, and by NSF grant
346 1617982 to WMG, RCKB, and PLK. We also acknowledge financial support from the Adelina and
347 Massimo Della Pergola Chair of Life Sciences and the Minerva Center for Movement Ecology to
348 RN.

349

350 **References**

351 1. T. Alerstam, *Bird Migration* (Cambridge University Press, 1993).
352 2. I. Newton, *The Migration Ecology of Birds* (Academic Press, London, 2008).
353 3. U. Mellone, Sea crossing as a major determinant for the evolution of migratory strategies
354 in soaring birds. *Journal of Animal Ecology* **89**, 1298-1301 (2020).
355 4. S. Dodge *et al.*, Environmental drivers of variability in the movement ecology of turkey
356 vultures (*Cathartes aura*) in North and South America. *Philosophical Transactions of the
357 Royal Society B: Biological Sciences* **369**, 20130195 (2014).
358 5. A. Flack *et al.*, Costs of migratory decisions: A comparison across eight white stork
359 populations. *Sci. Adv.* **2**, e1500931 (2016).
360 6. W. L. Phipps *et al.*, Spatial and temporal variability in migration of a soaring raptor across
361 three continents. *Front. Ecol. Evol.*, 323 (2019).
362 7. P. Becciu *et al.*, Causes and consequences of facultative sea crossing in a soaring
363 migrant. *Functional Ecology* **34**, 840-852 (2020).
364 8. E. M. Agee, Mesoscale cellular convection over the oceans. *Dyn. Atmos. Oceans* **10**,
365 317-341 (1987).
366 9. B. W. Atkinson, W. J. Zhang, Mesoscale shallow convection in the atmosphere. *Reviews
367 of Geophysics* **34**, 403-431 (1996).
368 10. B. Stevens, Atmospheric moist convection. *Annual Review of Earth and Planetary
369 Sciences* **33**, 605-643 (2004).
370 11. H. Weimerskirch, C. Bishop, T. Jeanniard-du-Dot, A. Prudor, G. Sachs, Frigate birds
371 track atmospheric conditions over months-long transoceanic flights. *Science* **353**, 74
372 (2016).
373 12. J. Shamoun-Baranes, W. Bouten, E. E. van Loon, C. Meijer, C. J. Camphuysen, Flap or
374 soar? How a flight generalist responds to its aerial environment. *Philosophical
375 Transactions of the Royal Society B: Biological Sciences* **371**, 20150395 (2016).
376 13. A. H. Woodcock, Convection and soaring over the open sea. *J. Mar. Res.* **3**, 248-253
377 (1940).
378 14. A. H. Woodcock, Thermals over the sea and gull flight behavior. *Boundary-Layer
379 Meteorology* **9**, 63-68 (1975).
380 15. W. M. G. Vansteelant *et al.*, Regional and seasonal flight speeds of soaring migrants and
381 the role of weather conditions at hourly and daily scales. *Journal of Avian Biology* **46**, 25-
382 39 (2015).
383 16. K. L. Bildstein, *Migrating Raptors of the World: Their Ecology & Conservation* (Comstock
384 Publishing Associates, 2006).
385 17. N. M. Yamaguchi, Y. Arisawa, Y. Shimada, H. Higuchi, Real-time weather analysis
386 reveals the adaptability of direct sea-crossing by raptors. *Journal of Ethology* **30**, 1-10
387 (2012).
388 18. E. Nourani, N. M. Yamaguchi, A. Manda, H. Higuchi, Wind conditions facilitate the
389 seasonal water-crossing behaviour of Oriental Honey-buzzards *Pernis ptilorhynchus* over
390 the East China Sea. *Ibis* **158**, 506-518 (2016).
391 19. E. Nourani, W. M. G. Vansteelant, P. Byholm, K. Safi, Dynamics of the energy seascape
392 can explain intra-specific variations in sea-crossing behaviour of soaring birds. *Biology
393 Letters* **16**, 20190797 (2020).
394 20. E. Nourani *et al.*, The interplay of wind and uplift facilitates over-water flight in facultative
395 soaring birds. *Proceedings of the Royal Society B: Biological Sciences* **288**, 20211603
396 (2021).
397 21. O. Duriez, G. Peron, D. Gremillet, A. Sforzi, F. Monti, Migrating ospreys use thermal uplift
398 over the open sea. *Biology Letters* **14**, 20180687 (2018).
399 22. C. J. Pennycuick, T. Alerstam, B. Larsson, Soaring migration of the Common Crane *Grus
400 grus* observed by radar and from an aircraft. *Ornis Scand.* **10**, 241-251 (1979).
401 23. I. Ojaste *et al.*, From northern Europe to Ethiopia: long-distance migration of Common
402 Cranes (*Grus grus*). *Ornis Fennica* **97** (2020).

403 24. T. Alerstam, Crane *Grus grus* migration over sea and land. *Ibis* **117**, 489-495 (1975).

404 25. J. Shamoun-Baranes, F. Liechti, W. M. G. Vansteelant, Atmospheric conditions create
405 freeways, detours and tailbacks for migrating birds. *Journal of Comparative Physiology A*
406 **203**, 509-529 (2017).

407 26. R. Nathan *et al.*, Big-data approaches lead to an increased understanding of the ecology
408 of animal movement. *Science* **375**, eabg1780, doi: 1710.1126/science.abg1780 (2022).

409 27. R. Harel *et al.*, Decision-making by a soaring bird: time, energy and risk considerations at
410 different spatio-temporal scales. *Philos. Trans. R. Soc. B* **371**, 20150397 (2016).

411 28. N. Horvitz *et al.*, The gliding speed of migrating birds: slow and safe or fast and risky?
412 *Ecol. Lett.* **17**, 670-679 (2014).

413 29. C. J. Pennycuick, Thermal soaring compared in three dissimilar tropical bird species,
414 *Fregata Magnificens*, *Pelecanus Occidentalis* and *Coragyps Atratus*. *Journal of*
415 *Experimental Biology* **102**, 307-325 (1983).

416 30. J. Fletcher, S. Mason, C. Jakob, The climatology, meteorology, and boundary layer
417 structure of marine cold air outbreaks in both hemispheres. *Journal of Climate* **29**, 1999-
418 2014 (2016).

419 31. B. K. Hartup, L. Schneider, J. M. Engels, M. A. Hayes, J. A. Barzen, Capture of sandhill
420 cranes using Alpha-chloralose: A 10-year follow-up. *Journal of Wildlife Diseases* **50**, 143-
421 145 (2014).

422 32. Y. M. Markin, *Eurasian Crane In The European Part Of Russia* (Golos Gubernu press,
423 Ryazan, 2013).

424 33. M. A. Hayes, B. K. Hartup, J. M. Pittman, J. A. Barzen, Capture of sandhill cranes using
425 alpha-chloralose. *Journal of Wildlife Diseases* **39**, 859-868 (2003).

426 34. C. Mirande, J. Harris, *Crane Conservation Strategy* (International Crane Foundation,
427 Baraboo, Wisconsin, USA, 2019).

428 35. O. R. Bidder *et al.*, Step by step: reconstruction of terrestrial animal movement paths by
429 dead-reckoning. *Mov Ecol* **3**, 23 (2015).

430 36. N. Horvitz *et al.*, The gliding speed of migrating birds: slow and safe or fast and risky?
431 *Ecology Letters* **17**, 670-679 (2014).

432 37. W. M. Getz, D. Saltz, A framework for generating and analyzing movement paths on
433 ecological landscapes. *Proceedings of the National Academy of Sciences* **105**, 19066
434 (2008).

435 38. S. Rotics *et al.*, Corrigendum. *Journal of Animal Ecology* **86**, 1281-1281 (2017).

436 39. R. Efrat, R. Harel, O. Alexandrou, G. Catsadorakis, R. Nathan, Seasonal differences in
437 energy expenditure, flight characteristics and spatial utilization of Dalmatian Pelicans
438 *Pelecanus crispus* in Greece. *Ibis* **161**, 415-427 (2019).

439 40. S. Rotics *et al.*, The challenges of the first migration: movement and behaviour of juvenile
440 vs. adult white storks with insights regarding juvenile mortality. *Journal of Animal Ecology*
441 **85**, 938-947 (2016).

442 41. R. Harel *et al.*, Decision-making by a soaring bird: time, energy and risk considerations at
443 different spatio-temporal scales. *Philosophical Transactions of the Royal Society B:*
444 *Biological Sciences* **371**, 20150397 (2016).

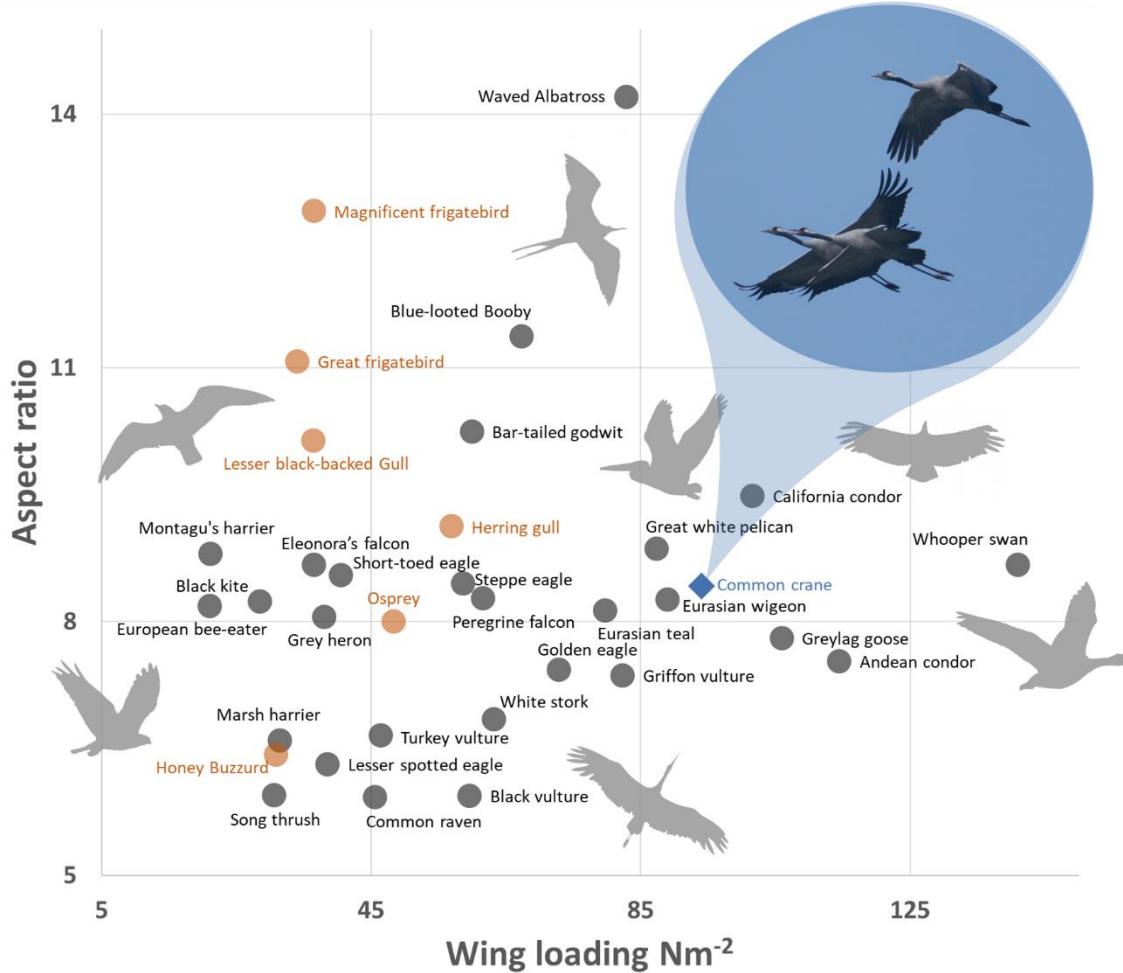
445 42. C. J. Pennycuick, *Modelling The Flying Bird*. F. L. M.-E. M. U. Ime4, Ed. (Elsevier, 2008).

446 43. T. Alerstam, M. Rosén, J. Bäckman, P. G. P. Ericson, O. Hellgren, Flight speeds among
447 bird species: allometric and phylogenetic effects. *PLOS Biology* **5**, e197 (2007).

448 44. S. A. Poessel, A. E. Duerr, J. C. Hall, M. A. Braham, T. E. Katzner, Improving estimation
449 of flight altitude in wildlife telemetry studies. *Journal of Applied Ecology* **55**, 2064-2070
450 (2018).

451 45. Anonymous, Flanders Marine Institute. IHO Sea Areas, version 3. Available online at:
452 <http://www.marineregions.org/>. (2018).

453 46. H. Hersbach *et al.*, ERA5 hourly data on pressure levels from 1979 to present.
454 Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (2018).


455 47. H. Hersbach *et al.*, ERA5 hourly data on single levels from 1979 to present. Copernicus
456 Climate Change Service (C3S) Climate Data Store (CDS). (2018).

457 48. K. Schamm *et al.*, Gpcc First Guess Daily Product at 1.0°: Near real-time first guess daily
458 land-surface precipitation from rain-gauges based on synop data. (2013).
459 49. J. Treep *et al.*, Using high-resolution GPS tracking data of bird flight for meteorological
460 observations. *Bulletin of the American Meteorological Society* **97**, 951-961 (2016).
461 50. D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting Linear Mixed-Effects models using
462 lme4. *Journal of Statistical Software; Vol 1, Issue 1 (2015)* 10.18637/jss.v067.i01 (2015).
463 51. H. Schielzeth, Simple means to improve the interpretability of regression coefficients.
464 *Methods in Ecology and Evolution* **1**, 103-113 (2010).
465 52. C. F. Dormann *et al.*, Collinearity: a review of methods to deal with it and a simulation
466 study evaluating their performance. *Ecography* **36**, 27-46 (2013).
467 53. L. A. Marascuilo, Large-sample multiple comparisons. *Psychological Bulletin* **65**, 280-290
468 (1966).
469 54. J. O. Wobbrock, L. Findlater, D. Gergle, J. J. Higgins (2011) The aligned rank transform
470 for nonparametric factorial analyses using only anova procedures. in *Proceedings of the*
471 *2011 annual conference on Human factors in computing systems - CHI '11* (ACM Press).
472 55. C. W. Dunnett, A multiple comparison procedure for comparing several treatments with a
473 control. *Journal of the American Statistical Association* **50**, 1096-1121 (1955).

474

475
476
477

Figures

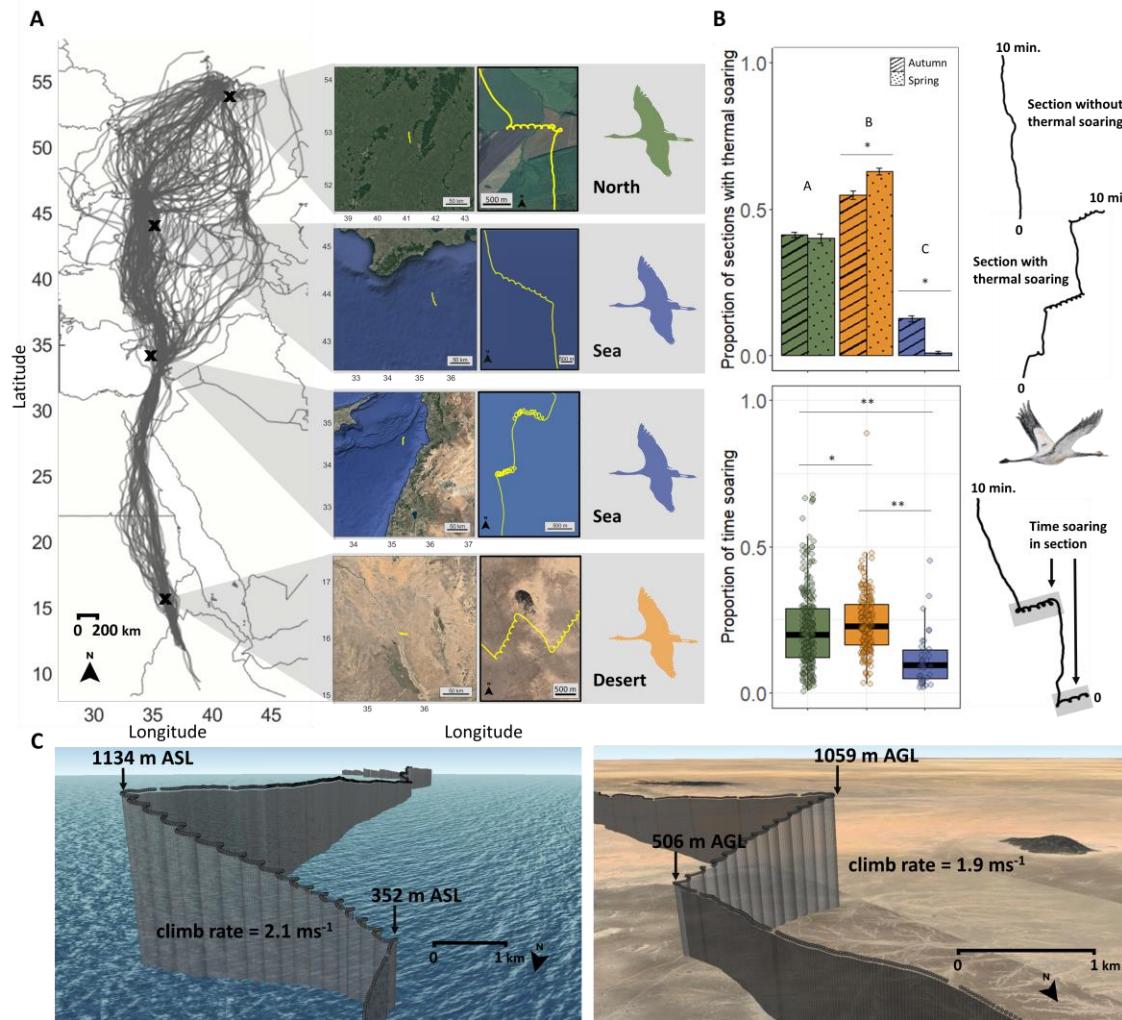
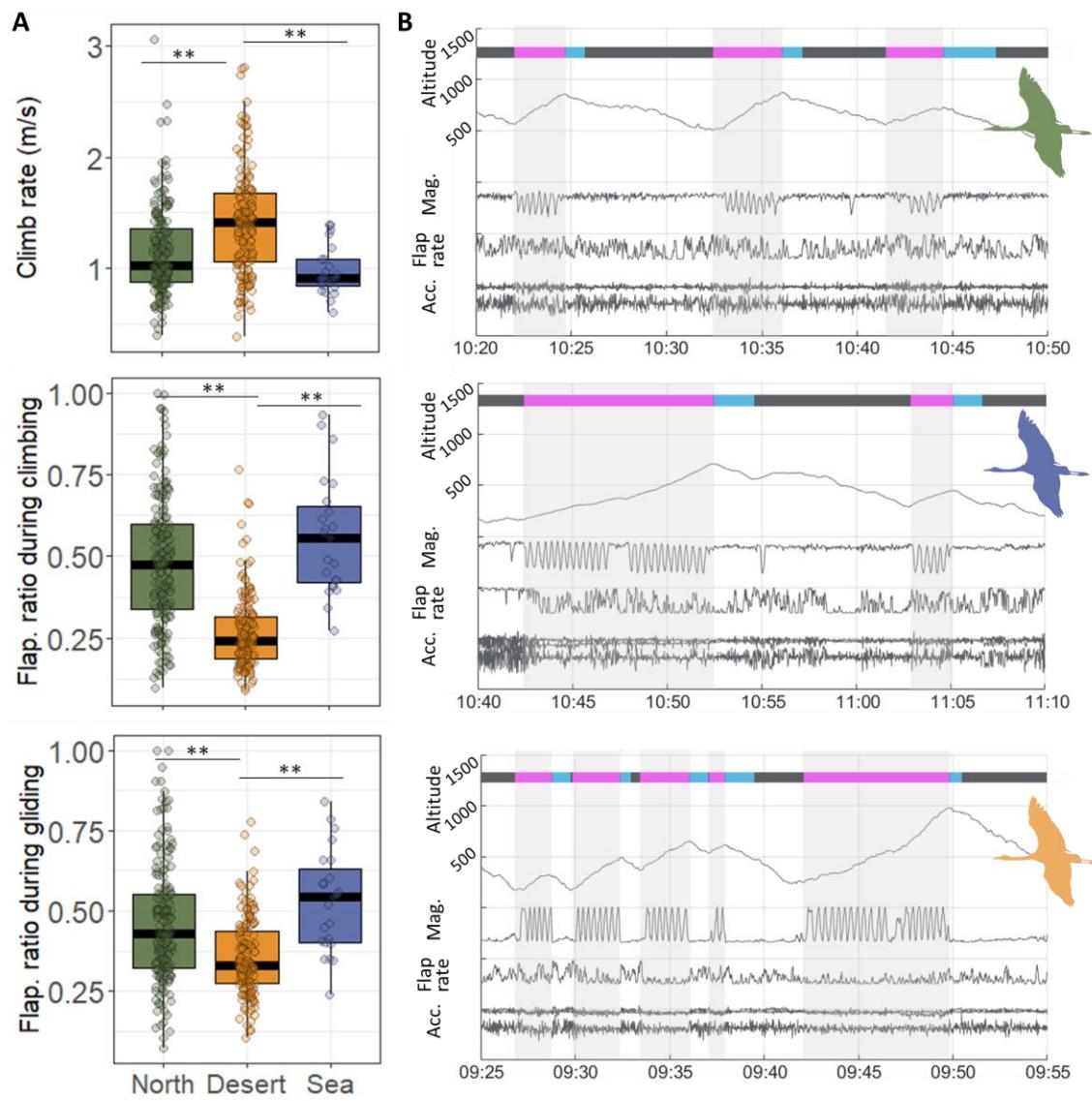

478

Figure 1. Morphospace defined by the relationship between wing loading and aspect ratio.

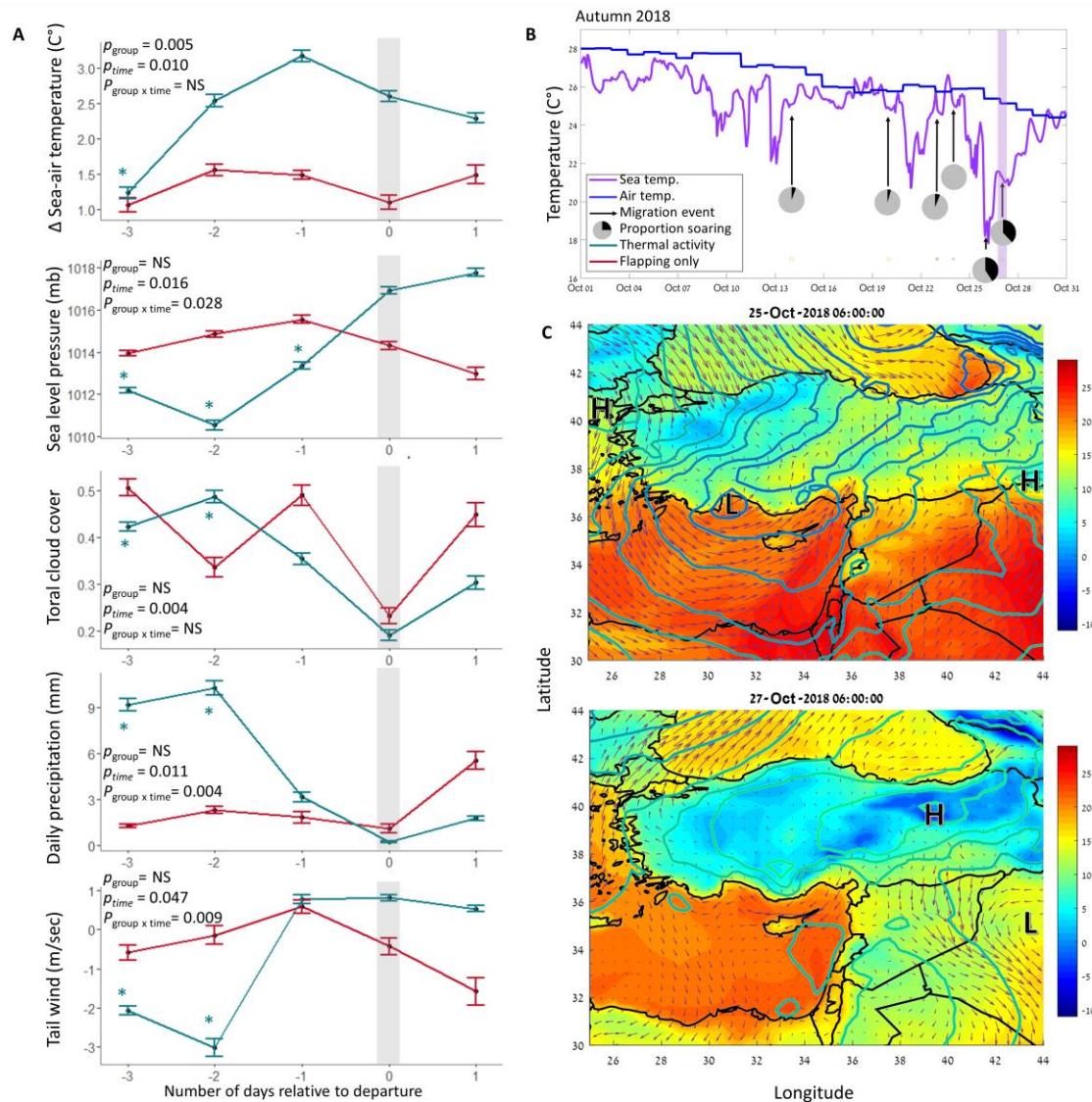
479
480
481
482
483
The common cranes (blue) positioned in the morphospace near obligatory soarers such as vultures and obligatory flappers such as geese (morphological data in SI Appendix, Table S1). Species shown or suspected to perform thermal soaring at sea (orange) generally have lower wing loading compared to cranes. Photo: R.N.

484

485


486

487


488 **Figure 2. Soaring during migration trips over sea and land.** (A) GPS tracks of 44 cranes for
489 135 autumn and spring migrations. To the right, examples of high temporal resolution (1-Hz) 10-
490 min sections with soaring over land >32N (green, “north”), the Black and Mediterranean seas (blue),
491 and land <32N (orange, “desert”). (B) Top: proportion of 10-min. sections with thermal soaring at
492 different geographical regions. Asterisks and letters indicate significant difference between
493 seasons and geographical regions, respectively (χ², Marascuilo post-hoc, $\alpha=0.05$; Table S2, S3);
494 Bottom: proportion of time soaring within 10-min. sections during migration days with at least one
495 soaring event. Asterisks indicate significant difference between regions (* $p<0.05$, ** $p<0.001$; ART-
496 ANOVA with pairwise Bonferroni post-hoc). (C) Three-dimensional view of a migratory track
497 segment in 1-Hz above the Black Sea (left) and above the Sahara Desert in Sudan (right).

498

499

500
501 **Figure 3. Soaring flight characteristics across three geographical regions.** See Fig. 2 for
502 region classifications and color codes. (A) Top: climb rate during soaring phase. Middle and
503 bottom: flapping ratio during soaring and gliding phases, respectively, based on 1-Hz tri-axial
504 acceleration. Boxplots represent averaged individual data of daily means (for days with more than
505 one soaring-gliding events) with population median of all samples (north, N=182; desert, N=154;
506 sea, N=23). Asterisks indicate significant difference between groups (* p<0.05, ** p<0.001; ART-
507 ANOVA with pairwise Bonferroni post-hoc). (B) Typical ethograms of flight types within a single
508 flight segment classified to circular thermal climbing (pink bar with grey shading) and gliding (blue
509 bar) according to flight height (GPS) and heading change (GPS and magnetometer). Height above
510 ground (m), magnetometer (x-axis; gauss), mean flap rate (flap s⁻¹) and tri-axial acceleration
511 shown (ms⁻²) over the north (top), sea (middle) and desert (bottom) regions. Time shown is UTC.
512

513

514 **Figure 4. Synoptic analysis of Mediterranean Sea crossing events.** (A) Time series of 4 days,
 515 with 0 being the day of departure from the stopover site in Turkey. Positive Δ sea-air temperature
 516 indicates cold air over a warm sea which is necessary for thermals to develop. Total cloud cover
 517 ranges between 0 (clear skies) and 1 (complete cloud cover). Tailwind is relative to travel direction.
 518 RM-ANOVA results shown of each metrological factor on bird flight mode (group) and timing (time)
 519 is shown. Asterisks denote significant ($P < 0.05$) Dunnett's pairwise comparisons between a certain
 520 time and departure time. (B) Time-series of sea surface temperature (°C) in blue, and 2-m air
 521 temperature (°C) in purple exemplifying conditions during October 2018. Arrows indicate
 522 Mediterranean Sea crossing events; the corresponding pie charts show, in black, the percentage
 523 of crossing time that contained thermal soaring. Purple shading indicates the event for which
 524 weather conditions are shown in panel C. (C) Example of a low-pressure weather system affecting

525 the eastern Mediterranean on October 25-27, 2018. Shaded areas are air temperature (°C) at 2-m
526 height; colored lines are isobars of sea-level pressure (mb), with colder (bluer) colors indicating
527 lower pressure; and arrows are wind vectors at an altitude of 950 mb (approximately 450 m a.s.l.).
528 “L” and “H” indicate low- and high-pressure areas, respectively. Top: October 25, 2018 (-2
529 timescales relative to departure), 0600 UTC: a relatively deep low-pressure area approaches the
530 eastern Mediterranean from the west. Bottom: October 27, 2018 (departure day), 0600 UTC, the
531 low-pressure area moved eastward and was replaced by high pressure over Turkey and a shallow
532 insignificant low south-east of Cyprus.