

# 1 MicroRNA-122-mediated liver detargeting enhances the tissue specificity of

## 2 cardiac genome editing

3 Lizi Yang<sup>1,2</sup>, Congting Guo<sup>1,2</sup>, Zhanzhao Liu<sup>1,2</sup>, Zhan Chen<sup>1,2</sup>, Yueshen Sun<sup>3</sup>, Xiaomin  
4 Hu<sup>3,4</sup>, Yanjiang Zheng<sup>5</sup>, Yifei Li<sup>5</sup>, Fei Gao<sup>6</sup>, Pingzhu Zhou<sup>7</sup>, William T. Pu<sup>7,8</sup>, Yuxuan  
5 Guo<sup>1,2,9,10\*</sup>

6 1. Peking University Health Science Center, School of Basic Medical Sciences,  
7 Beijing, 100191, China;

8 2. Peking University Institute of Cardiovascular Sciences, Beijing, 100191, China;

9 3. Peking Union Medical College Hospital, Department of Cardiology, Chinese  
10 Academy of Medical Science & Peking Union Medical College, Beijing, 100730,  
11 China;

12 4. State Key Laboratory of Complex Severe and Rare Diseases, Peking Union  
13 Medical College Hospital, Department of Medical Research Center, Chinese  
14 Academy of Medical Science & Peking Union Medical College, Beijing, 100730,  
15 China;

16 5. Ministry of Education Key Laboratory of Birth Defects and Related Diseases of  
17 Women and Children, Department of Pediatrics, West China Second University  
18 Hospital, Sichuan University, Chengdu, 610041, China;

19 6. Beijing Anzhen Hospital, Department of Cardiology, Capital Medical University,  
20 Beijing, 100029, China ;

21 7. Boston Children's Hospital, Department of Cardiology, Boston, MA 02115, USA;

22 8. Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA;

23 9. State Key Laboratory of Vascular Homeostasis and Remodeling, Peking  
24 University, Beijing, 100191, China;

25 10. Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191,  
26 China;

\* Correspondence to: Yuxuan Guo, guo@bjmu.edu.cn, 38 Xueyuan Road, Beijing, 100191, China

29

30 **Article Type** : Research Letter

31 **Running title:** Cardiac specific gene editing

32 **Abstract**

33 **Background:** The cardiac troponin T (*Tnnt2*) promoter is broadly utilized for cardiac  
34 specific gene expression, particularly via adeno-associated virus (AAV)-based gene  
35 transfer. However, these vectors drive lower-level ectopic gene expression in other  
36 tissues, most notably in the liver. Whether the AAV-*Tnnt2* vectors remain  
37 tissue-specific in applications sensitive to low or transient gene expression, such as  
38 gene editing, remains unclear.

39 **Methods:** The tissue specificity of AAV9-*Tnnt2* vectors was evaluated in mice using  
40 Cre-LoxP-based fluorescence reporters and CRISPR/Cas9-mediated somatic  
41 mutagenesis. CRISPR/Cas9-triggered AAV integration into host genome was further  
42 assessed by quantitative PCR.

43 **Results:** In mice treated with AAV-*Tnnt2*-GFP, GFP signal was specifically observed  
44 in the heart by confocal imaging. However, when AAV-*Tnnt2*-Cre was administered to  
45 mice carrying LoxP-STOP-LoxP fluorescence reporters, the reporter signals were  
46 observed in up to 50% hepatic cells. Similarly, the AAV-*Tnnt2*-SaCas9 vector  
47 extensively edited the hepatic genome as measured by targeted  
48 amplicon-sequencing. Cas9-triggered AAV integration into the host genome was also  
49 validated in the liver. Inclusion of target sequences for microRNA-122, a highly  
50 expressed, liver-specific microRNA, in the AAV transgene's 3' untranslated region (3'  
51 UTR) markedly reduced ectopic transgene expression, genome editing and AAV  
52 integration in the liver.

53 **Conclusions:** The heavily used AAV-*Tnnt2* system exhibits liver leakiness that  
54 severely impairs the cardiac specificity of AAV-based genetic manipulation. This  
55 problem can be mitigated via miR122-mediated liver detargeting.

56

57 **Key Words:** adeno-associated virus, cardiac gene editing, microRNA-122, liver  
58 detargeting

59 Recombinant adeno-associated virus (rAAV) is broadly applied in cardiovascular  
60 research and gene therapy. While the most widely used rAAV, serotype 9 (AAV9),  
61 robustly transduces the liver, the heart, and other organs, its gene expression can be  
62 selectively targeted to cardiomyocytes in the heart using a cardiac specific promoter,  
63 most commonly that from cardiac troponin T gene (Tnnt2 or cTnT)<sup>1</sup>. This AAV9-Tnnt2  
64 system is increasingly favored both in the investigation of cardiac disease  
65 mechanisms and gene therapy strategies. However, its specificity for the heart  
66 relative to other major AAV-targeted organs, especially the liver, requires greater  
67 investigation. This issue is especially important for AAV-delivered recombinase-based  
68 genome manipulation or CRISPR-mediated genome editing, where low or transient  
69 gene expression is sufficient to cause profound biological outcomes.

70

71 To assess AAV9-Tnnt2-driven gene expression, we constructed AAV9 vectors  
72 AAV-Tnnt2-GFP and AAV-Tnnt2-Cre (Figure A), which share the same vector  
73 backbone and only differ in the coding sequences. We injected  $5 \times 10^{10}$  vg/g (vector  
74 genome per gram body weight) rAAVs subcutaneously into postnatal day 1 (P1)  
75 R26<sup>fsCas9-GFP</sup> mice (Figure A), which harbor a Cre-activatable GFP reporter. At P14, we  
76 evaluated rAAV-mediated transgene expression by GFP fluorescence imaging. In  
77 AAV-Tnnt2-GFP treated mice, GFP signal was only detectable in the heart by  
78 confocal microscopy (Figure B-C). Strikingly, in AAV-Tnnt2-Cre treated animals, we  
79 observed GFP signal in up to 50% cells in the liver (Figure B-C). GFP signal was not  
80 detected in spleen, lung, kidney, brain, muscle, or gonads (Figure B-C).  
81 AAV-Tnnt2-Cre-triggered LoxP recombination was also confirmed in the liver of  
82 R26<sup>fsCas9tdTomato</sup> mice (Figure B-C), a reporter mouse that was independently  
83 generated using gene targeting vectors different from R26<sup>fsCas9-GFP</sup>. The above  
84 observation indicated that the commonly used AAV-Tnnt2-GFP assay does not have  
85 sufficient sensitivity to report transgene expression in the liver, which can be detected  
86 by the Cre-LoxP reporters.

87

88 Cre-LoxP is a permanent DNA recording system responsive to low or transient Cre  
89 expression. CRISPR/Cas9 gene editing is known exhibit a similar behavior. Thus, we  
90 next constructed an AAV-Tnnt2-SaCas9-U6-sgRNA vector to test if AAV-Tnnt2  
91 vectors could cause ectopic gene editing in the liver (Figure D). The backbone of this  
92 vector was distinct from the AAV-Tnnt2-GFP/Cre vectors to reduce the likelihood that  
93 backbone sequences contribute to the leaky rAAV transgene expression. SaCas9  
94 (*Staphylococcus aureus* Cas9) is a miniature Cas9 homolog that allows all  
95 CRISPR/Cas9 components to be delivered by a single AAV vector. We designed a  
96 SaCas9 single-guide RNA (sgRNA) targeting the exon 2 of *Camk2d*, an exon shared  
97 by all splicing variants of this gene (Figure D). *Camk2d* encodes the major cardiac  
98 isoform of calcium/calmodulin-dependent protein kinase II (CaMKII), a heavily studied  
99 therapeutic target that requires stringent cardiac specificity for the safe treatment of  
100 heart diseases <sup>2</sup>.

101

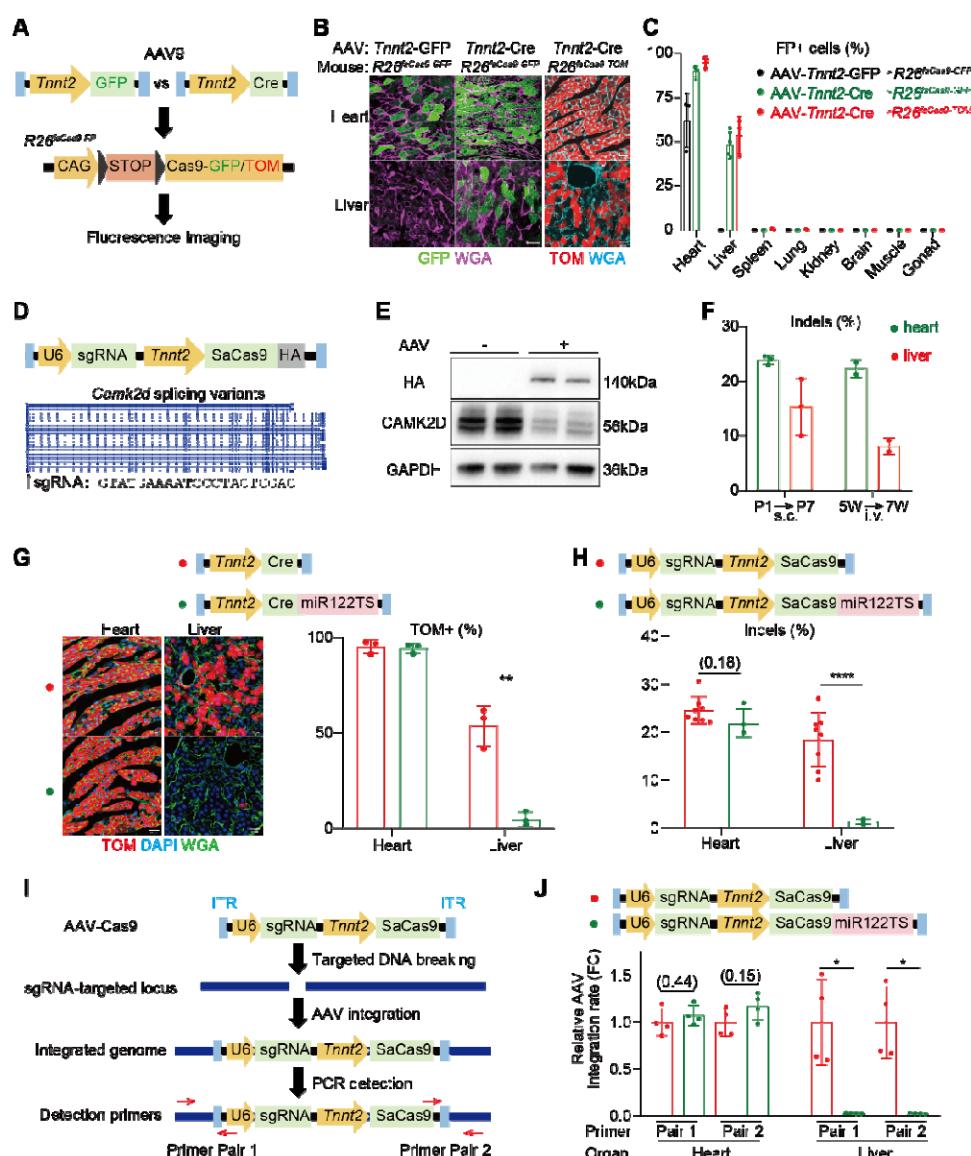
102 We first subcutaneously applied the AAV-Tnnt2-SaCas9-*Camk2d*-sgRNA vector to  
103 P1 wildtype mice and analyzed tissues at P7. Western blot analysis validated the  
104 efficient depletion of the CAMK2D protein in the heart (Figure E). Next-generation  
105 sequencing of the sgRNA-targeted genomic loci revealed more than 10% DNA  
106 insertions and deletions (indels) in the liver, confirming leaky gene editing by the  
107 AAV-Tnnt2 system (Figure F). We observed similar results when the vector was  
108 intravenously injected into 5-week-old animals (Figure F), thus the  
109 AAV-Tnnt2-mediated ectopic gene editing in the liver was independent of the animal  
110 ages or the routes of systemic administration.

111

112 MicroRNA-122 (miR122) is the most abundant microRNA that is specifically  
113 expressed in the liver. Incorporation of the miR122 target sequences (miR122TS) into  
114 the 3' untranslated region (3' UTR) of AAV transgenes suppressed their expression in  
115 the liver <sup>3, 4</sup>. Thus, we tested if the inclusion of miR122TS could reduce the liver  
116 leakage of the AAV-Tnnt2 system. We treated R26<sup>Cas9tdTomato</sup> mice with

117 AAV9-Tnnt2-Cre-miR122TS and strikingly observed more than 90% reduction of the  
118 ectopic tdTomato-positive cells in the liver as compared to mice treated with  
119 AAV9-Tnnt2-Cre (Figure G). Similarly, miR122TS also drastically reduced the hepatic  
120 gene editing by the AAV-Tnnt2-SaCas9-Camk2d-sgRNA vector without altering the  
121 cardiac gene editing rate (Figure H). The aforementioned AAV-Tnnt2-Cre-miR122TS  
122 and AAV-Tnnt2-SaCas9-miR122TS vectors harbor distinct 3'UTR-PolyA sequences,  
123 confirming that the miR122TS function is not dependent on its flanking sequences.

124


125 One major safety concern in AAV gene therapy is relevant to vector integration into  
126 liver genome. In particular, CRISPR-triggered DNA breaks enhance AAV integration  
127 into the sgRNA-targeted loci <sup>5</sup> (Figure I). Thus, we next tested if miR122TS could  
128 reduce Cas9-mediated AAV genome integration in the liver. We designed PCR  
129 assays to specifically detect the boundaries between AAV and host genome DNA  
130 (Figure I) and quantitatively assessed AAV integration by qPCR. Strikingly, we  
131 observed that the inclusion of miR122TS eliminated AAV integration into liver genome,  
132 while cardiac AAV integration was not affected (Figure J). Therefore, miR122TS can  
133 avoid the AAV genome integration that is secondary to the AAV-delivered genome  
134 editing in the liver.

135

136 In summary, this study evaluated the cardiac specificity of the broadly used  
137 AAV-Tnnt2 gene delivery system and uncovered extensive transgene leakage in the  
138 liver. This technical problem is particularly relevant to AAV-based gene editing, as  
139 AAV-Tnnt2-Cas9 vectors not only trigger hepatic mutagenesis but also enhance AAV  
140 integration into the liver genome. Fortunately, this problem can be solved by adding  
141 miR122TS to the 3'UTR of rAAV transgenes. Thus, the new AAV-Tnnt2-miR122TS  
142 system provides a powerful and essential tool to enhance the cardiac specificity of  
143 AAV-based cardiovascular research and gene therapy.

144

**Figure**



145

146 **Figure. MicroRNA-122 targeting sequence reduces the liver leakage of**  
 147 **AAV-Tnnt2-based cardiac gene delivery. A**, the study design to compare AAV  
 148 transgenic GFP reporter versus AAV-Cre-LoxP fluorescence protein (FP) reporters in  
 149 the assessment of AAV tissue specificity. TOM, tdTomato. Dark grey triangles, LoxP.  
 150 **B**, confocal images of tissue cryosections. **C**, quantification of FP-positive cells in the  
 151 various tissues. **D**, the vector design of AAV-Tnnt2-SaCas9 targeting *Camk2d* exon 2.  
 152 HA, hemagglutinin tag. **E**, western blot analysis of CAMK2D in AAV-SaCas9-treated  
 153 hearts. **F**, indel quantification via amplicon-sequencing and CRISPResso2 analysis.  
 154 AAV injection and sample collection ages labeled below the plots. s.c., subcutaneous;

155 i.v., intravenous. **G**, AAV-Tnnt2-Cre-miR122TS vector design and its impact on  
156 Cre-LoxP activation. **H**, AAV-Tnnt2-SaCas9-miR122TS vector design and its impact  
157 on gene editing. **I**, a schematic of AAV-Cas9-triggered AAV integration into  
158 sgRNA-targeted loci and the primer designs for quantitative PCR detection. ITR,  
159 inverted terminal repeats. **J**, qPCR-based analysis of AAV integration into the  
160 sgRNA-targeted genome. FC, quantitative PCR fold change. In all panels, scale bars  
161 stand for 20  $\mu$ m. Mean  $\pm$  SD. Student's t test: \*P<0.05, \*\*P<0.01, \*\*\*\*P<0.0001,  
162 non-significant P values in parenthesis.  
163

164 **Acknowledgements**

165 We thank PackGene Biotech for AAV production and Novogene for next-generation  
166 sequencing.

167

168 **Sources of Funding**

169 This work was funded by the National Key R&D Program of China (2022YFA1104800),  
170 the National Natural Science Foundation of China (82222006, 32100660 and  
171 82170367), Beijing Nova Program (Z211100002121003 and 20220484205) and  
172 Beijing Natural Science Foundation (7232094) to Y.G..

173

174 **Disclosures**

175 A patent has been filed to cover the vectors and applications involving the AAV-Tnnt2-  
176 miR122TS system.

177

178 **Author Contribution**

179 Y.G. conceived the research and supervised the study. L.Y., and P.Z., independently  
180 observed the liver leakiness of AAV-Tnnt2 system in two different labs. L.Y., C.G., Z.L.  
181 and Z.C. conducted the research and analysis. Y.S. and X.H. assisted in mouse  
182 experiments. Y.Z. and Y.L. independently validated the *Camk2d* gene editing results in  
183 a different lab. W.T.P. provided advice in AAV genome integration experiments and  
184 manuscript revision. Y.G. wrote and revised the manuscript.

185

186 **References**

187 1. Prasad KM, Xu Y, Yang Z, Acton ST and French BA. Robust  
188 cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo  
189 gene delivery follows a Poisson distribution. *Gene Ther.* 2011;18:43-52.

190 2. Reyes Gaido OE, Nkashama LJ, Schole KL, Wang Q, Umapathi P, Mesubi OO,  
191 Konstantinidis K, Luczak ED and Anderson ME. CaMKII as a Therapeutic Target in  
192 Cardiovascular Disease. *Annu Rev Pharmacol Toxicol.* 2023;63:249-272.

193 3. Geisler A, Jungmann A, Kurreck J, Poller W, Katus HA, Vetter R, Fechner H and  
194 Muller OJ. microRNA122-regulated transgene expression increases specificity of  
195 cardiac gene transfer upon intravenous delivery of AAV9 vectors. *Gene Ther.*  
196 2011;18:199-209.

197 4. Qiao C, Yuan Z, Li J, He B, Zheng H, Mayer C, Li J and Xiao X. Liver-specific  
198 microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits  
199 transgene expression in the liver. *Gene Ther.* 2011;18:403-10.

200 5. Hanlon KS, Kleinstiver BP, Garcia SP, Zaborowski MP, Volak A, Spirig SE, Muller  
201 A, Sousa AA, Tsai SQ, Bengtsson NE, Loov C, Ingelsson M, Chamberlain JS, Corey  
202 DP, Aryee MJ, Joung JK, Breakefield XO, Maguire CA and Gyorgy B. High levels of  
203 AAV vector integration into CRISPR-induced DNA breaks. *Nat Commun.*  
204 2019;10:4439.

205

# Figure

