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Abstract 16 

Phenome-wide association studies (PheWAS) facilitate the discovery of associations between 17 

a single genetic variant with multiple phenotypes. For variants which impact a specific protein, 18 

this can help identify additional therapeutic indications or on-target side effects of intervening 19 

on that protein. However, PheWAS is restricted by an inability to distinguish confounding due 20 

to linkage disequilibrium (LD) from true pleiotropy. Here we describe CoPheScan (Coloc 21 

adapted Phenome-wide Scan), a Bayesian approach that enables an intuitive and systematic 22 

exploration of causal associations while simultaneously addressing LD confounding. We 23 

demonstrate its performance through simulation, showing considerably better control of false 24 

positive rates than a conventional approach not accounting for LD. We used CoPheScan to 25 

perform PheWAS of protein-truncating variants and fine-mapped variants from disease and 26 

pQTL studies, in 2275 disease phenotypes from the UK Biobank. Our results identify the 27 

complexity of known pleiotropic genes such as APOE, and suggest a new causal role for 28 

TGM3 in skin cancer. 29 

Main 30 

Phenome-wide association studies (PheWAS) are an inversion of the GWAS (Genome-Wide 31 

Association Studies) paradigm, where a single genetic variant is tested against a broad range 32 

of phenotypes. Phenome scale studies are facilitated by the availability of a broad array of 33 

phenotypes linked to genomic data in large-scale biobanks.  PheWAS are a promising tool in 34 

the field of pharmacogenomics as they facilitate drug repurposing efforts and identification of 35 

potential adverse effects due to their ability to detect pleiotropy 1–3. Often, PheWAS has been 36 

paired with other approaches such as Mendelian Randomisation to identify causal effects of 37 

exposures on outcomes and network analysis to identify interactions between phenotypes 4–38 
6. 39 

 40 

Prevailing methods for phenome-wide testing are built upon single variant tests and do not 41 

inherently tackle the spurious associations that can arise when traits are causally associated 42 

not with the index variant, but with another variant in LD with the index variant. For instance, 43 

a PheWAS of UK Biobank phenotypes with protein-truncating variants by DeBoever et al.7 first 44 

revealed an association between an ANKDD1B variant, and high cholesterol, which was found 45 
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to reflect an indirect association, through LD with an intronic variant in HMGCR which is known 46 

to be associated with cholesterol levels. Thus LD confounding necessitates the use of 47 

additional follow-up tests such as colocalisation analyses, where pairs of traits are tested for 48 

shared causal variants within a genomic region, to isolate associations that are truly causal 49 
3,8.   50 

PheWAS hits are colocalised with molecular QTLs or disease traits on which the identified 51 

variants have a prior known effect. However, this two-step approach is not feasible for variants 52 

with known biological effects for which summary statistics are unavailable, such as those 53 

involved in protein truncation. 54 

 55 

In this work, we introduce a Bayesian approach to PheWAS, Coloc adapted Phenome-wide 56 

Scan, (CoPheScan), that tests phenome-scale causal associations with a set of index variants 57 

while handling confounding due to LD at the same time. CoPheScan can exploit external 58 

covariate data, such as the genetic correlation between phenotypes, and can be run in 59 

different ways depending on whether accurate LD information is available and whether the 60 

analyst is prepared to make assumptions about the number of causal variants in the tested 61 

genomic region. We demonstrate the utility and robustness of these different approaches on 62 

simulated datasets. We also analysed causal variants selected from three real-world sources 63 

and tested for causal associations against 2275 phenotypes from the UK Biobank using 64 

CoPheScan. 65 

 66 

Results 67 

Overview of CoPheScan 68 

CoPheScan is an adaptation of the  coloc 9–11 approach, for the case where a variant  known 69 

to be causal either through fine-mapping or functional studies, is subjected to a phenome-wide 70 

scan to test for causal associations with other phenotypes/traits. Coloc considers the genetic 71 

association patterns for two traits in a genomic region and assesses whether it is likely they 72 

share a causal variant in that region. It is a Bayesian approach and assumes prior probabilities 73 

for each of the five possible hypotheses (no association with either trait, association with just 74 

one trait or the other, association with both traits and different causal SNPs, or association 75 

with both traits at the same causal SNP) are fixed and known.  76 

 77 

We consider the case where a SNP of interest is known to be causal for a phenotype which is 78 

often the case in PheWAS, and we are interested in determining if it is also causally associated 79 

with another phenotype (Figure 1a). We will hereafter refer to the variant of interest as the 80 

query variant, the phenotype for which the query variant is known to be causally associated 81 

as the primary trait and the phenotype to be tested as the query trait. In a genomic region with 82 

Q SNPs, and under the initial assumption of a single causal variant (which we will relax later), 83 

there are Q+1 possible ways or “configurations”, (Supplementary Figure 1) to describe where 84 

the single causal variant may lie, each corresponding to exactly one of three hypotheses: 85 

𝐻𝑛: No association of any variant with the query trait (one configuration) 86 

𝐻𝑎: Causal association of a variant other than the query variant with the query trait (Q-1 87 

configurations) 88 

𝐻𝑐: Causal association of the query variant with the query trait (one configuration) 89 

 90 
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The posterior odds for each hypothesis (𝐻) given the data (𝐷) for the query trait with respect 91 

to the null hypothesis (𝐻𝑛) is given by, 92 

 93 

 

(1)  

 94 

In equation (1), the first ratio in the right-hand side is the prior odds and the second ratio is the 95 

Bayes Factor (BF). Thus, the three prior probabilities that have to be specified are: 𝑝𝑛 = 𝑃(𝐻𝑛), 96 

𝑝𝑎 = 𝑃 (𝐻𝑎) (𝑄 − 1)⁄ , and 𝑝𝑐 = 𝑃(𝐻𝑐), subject to the constraint that 𝑝𝑛 + (𝑄 − 1)𝑝𝑎 + 𝑝𝑐 = 1.  97 

Beyond the difference in the hypothesis space described above, CoPheScan differs from coloc 98 

in two further ways. First, because we have reduced the hypothesis space, we can examine 99 

many variants simultaneously, allowing us to learn the priors from the data in a hierarchical 100 

Bayesian manner with Markov Chain Monte Carlo (MCMC) sampling (Supplementary 101 

methods). In contrast, coloc assumes priors are fixed and known, which is a weakness 102 

because inference must rely on the investigators’ judgement on prior probabilities of 103 

colocalisation. Second, because we are using this hierarchical approach, we can exploit 104 

additional external information about the variants and/or the traits in the form of covariates 105 

which can be included when learning the priors. This allows the priors to vary depending on 106 

the query trait/query variant pairs being considered. Here, we include the genetic correlation 107 

(rg) between the primary trait and each query trait tested (see Supplementary Methods).   108 

 109 

The restriction to a single causal variant allows us to count the possible configurations (Q+1), 110 

and if the assumption is deemed valid, CoPheScan can be run directly on summary GWAS 111 

data using Wakefield’s method12, to compute approximate Bayes factors summarising the 112 

relative support for a model where the SNP is associated with a trait compared to the null 113 

model of no association. However, this assumption is not broadly valid, and an alternative is 114 

to use the Sum of Single Effects (SuSiE) Bayesian fine mapping regression framework13,14 to 115 

partition the evidence into configurations corresponding to each of multiple possible causal 116 

variants and use these in a similar manner to allowing for multiple causal variants in coloc10. 117 

The SuSiE approach works best with either raw genotype data or summary GWAS data when 118 

in-sample LD information is available15. 119 

 120 

Hence, CoPheScan has the flexibility to be run in several ways (Figure 1b) depending on: (i) 121 

the assumption about the number of causal variants, (ii) the specification of either fixed or 122 

hierarchical priors, and (iii) the inclusion/exclusion of covariates if the hierarchical model is 123 

used to infer priors. A detailed description of the CoPheScan method is available in the 124 

Supplementary methods. A summary of the simulated data, variant and phenotype sources 125 

used for the analysis with the real data can be found in (Figure 1c), while a detailed description 126 

is provided in the Methods. 127 
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Figure 1: Introduction and evaluation of the CoPheScan method. 

 
(a) CoPheScan methodology: Hypotheses with illustrations of the configurations of genetic variants 

within the genomic region and corresponding priors. (b) Schematic of the CoPheScan workflow. The 

inputs are GWAS summary statistics from multiple traits and the position of the query variant. 

Computation of the posterior probabilities of the three hypotheses is performed with priors and Bayes 

factors computed using different CoPheScan approaches. (c) Study design for evaluation: Simulated 

data - Generated using SimGWAS and all CoPheScan approaches were run on this set. Real data - 

Phenotypes tested were obtained from UK Biobank and variants from fine-mapping FinnGen and a 

proteome dataset16. Hierarchical priors and SuSIE BF were used on the real data to identify SNP-

disease associations. (QV - query variant, QT - query trait) 
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Simulations show CoPheScan is more accurate than a standard method which 128 

does not account for LD confounding 129 

We simulated regional GWAS summary data for traits with either zero, one or two causal 130 

variants (Methods) such that they corresponded to the three CoPheScan hypotheses. We also 131 

allowed the probability of Hc to vary according to a simulated genetic covariance between 132 

primary and query traits and considered whether including this information in the analysis 133 

increased inferential accuracy. We analysed the same data in parallel using a conventional 134 

PheWAS approach of testing each of the set of query SNPs for association, controlling either 135 

the FDR or the family-wise error rate via Bonferroni correction. We compared these to the 136 

results from CoPheScan, using a hierarchical model (with and without the covariate data) or 137 

fixed priors chosen as described in the Supplementary methods which broadly matched the 138 

proportion of Hn, Ha, and Hc in the sample.  139 

 140 

First, we considered the appropriate threshold on the posterior probability of Hc, ppHc, to call 141 

an association. We estimated the FDR internally, as 1-mean(ppHc) | ppHc > t for different 142 

values of threshold t (Supplementary Figure 4).  We found that ppHc > 0.6 maintained an FDR 143 

< 0.05 across all analyses of simulated data. Using this threshold, CoPheScan appeared less 144 

sensitive to the presence of a single causal variant (true Hc) than the conventional BH 145 

approach but more sensitive than the Bonferroni approach (Figure 2). CoPheScan 146 

demonstrated control of the FDR (0.026-0.039) estimated as the proportion of significant calls 147 

that were truly Hn or Ha , traits where the query variant was not causal, for the different 148 

CoPheScan approaches compared to  0.219 and 0.308 for the conventional BH and 149 

Bonferroni approaches respectively, (Supplementary Table 1). The majority of the false 150 

positives obtained from these conventional approaches were true Ha but called as associated 151 

due to LD confounding. All CoPheScan approaches performed well in the case of a single 152 

causal variant, but when there were two causal variants (True Hc2), using SuSIE resulted in 153 

approximately 30% higher sensitivity to correct Hc predictions than the ABF approach (Figure 154 

2). This was balanced against marginally lower (<0.5%) sensitivity to Hc with SuSiE when 155 

traits truly had only a single causal variant (True Hc) when compared to the CoPheScan 156 

approaches that assumed a single causal variant.  157 

     158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 
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Figure 2: Results for hypotheses discrimination in simulated data. 

 

 

We called a single result for each simulated trait as described in Methods. The x axis shows the 

percentage of hypothesis calls using the different approaches shown on the y axis. For CoPheScan 

(top 6 rows), the three labelled columns on the y-axis, from right to left, indicate the type of priors 

used, the method used to calculate Bayes factors, and whether or not genetic correlation (rWe called 

a single result for each simulated trait as described in Methods. The x axis shows the percentage of 

hypothesis calls using the different approaches shown on the y axis. For CoPheScan (top 6 rows), 

the three labelled columns on the y-axis, from right to left, indicate the type of priors used, the method 

used to calculate Bayes factors, and whether or not genetic correlation (rg) was used. The last two 

rows show conventional approaches controlling the FDR (BH - Benjamini-Hochberg) or the FWER 

(Bonf - Bonferroni) at 0.05. The top bar shows an illustration of the configuration of SNPs in the 

genomic region corresponding to the different simulated traits (Methods), with the queried variant at 

position 1 and causally associated (non-associated) variants indicated by filled (open) circles. [True 

Hn: no causal variant, True Ha/Ha2: one/two causal non-query variants, True Hc: causal query 

variant, True Hc2:  causal query variant and one causal non-query variant]. 

 172 

Although the effect of including covariate information was minor overall, Figure 3a shows that it 173 

had a substantial effect in a minority of cases, bringing ppHc from below to above 0.6 in 2.79% 174 

of true Hc and Hc2 cases (80/2867), although also in 0.088% of true Hn and 0.011% of true Ha 175 

and Ha2. 176 

Finally, these initial simulations showed that the hierarchical model recovered very similar 177 

results to the fixed prior model, where we chose our fixed prior values to broadly match the 178 

simulation scenarios, i.e., an optimal scenario. This offers reassurance that the hierarchical 179 

model can perform just as well as a method that “knows” the correct prior values. However, in 180 

real data, we will not know the true proportion of Hn, Hc, or Ha in our data, so we explored the 181 

robustness of both approaches to variations in these proportions. We found that using over-182 
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optimistic fixed priors, i.e. when the prior probability for Hc (P(Hc)=0.091) exceeded the 183 

proportion of Hc in our data, led to dramatically high FDR, whilst the hierarchical model 184 

correctly adapted to the different datasets so that the FDR was controlled except at the very 185 

lowest true proportions of Hc (Figure 3b).   186 

 187 

Figure 3: Effects of covariate inclusion and varying proportions of simulated  

hypotheses. 

 

 

(a) Comparison of the posterior probability of Hc (ppHc) obtained with (y axis) and without (x axis) 

the inclusion of genetic correlation (rg) in the hierarchical model (using ABF). The panels represent 

the traits of different simulated hypotheses (Methods). (b) The proportion of Hc traits was varied as 

shown in the x axis (dotted vertical lines), to compare Hc predictions using the fixed and hierarchical 

priors with different BF, both with and without the inclusion of the genetic correlation (rg) covariate. 

The y axis represents the estimated FDR - the proportion of traits assigned as Hc in each dataset 

which were simulated as Hn or Ha with 95% confidence intervals (dashed line - 0.05 FDR). 
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Using genetic correlation as a covariate increases detection of associations 188 

with disease-causal variants  189 

We explored the performance of CoPheScan (Supplementary Figure 5) using a variety of 190 

causal variants sets to perform PheWAS in three sets of query variants in up to 2275 query 191 

traits (Supplementary Figures 6 and 7) from the UK Biobank summary data provided by the 192 

Neale Lab (http://www.nealelab.is/uk-biobank/). First, 136 disease-causal variants were 193 

identified as single variant credible sets in fine mapping data from FinnGen disease endpoints 194 

(primary traits, https://www.finngen.fi/en/access_results). We identified causal associations in 195 

UKBB at 43 (31.62%) of these, predominantly amongst query traits identical or related to the 196 

primary trait. Out of 101 unique query-variant-primary trait pairs with exact query variant-query 197 

trait matched pairs in UKBB, 32 were found to be Hc (Supplementary Figure 7), and 65 Hn 198 

due to a lack of power in UKBB (p-value> 10-5). Four cases were called Ha, and in these the 199 

UKBB p value was small, but the fine mapping produced different results in UKBB and 200 

FinnGen (Supplementary Figure 8). 201 

 202 

Genetic correlation information (rg) for only 1582 out of the 2275 traits used in analysis without 203 

rg was available. rg values between the 1582 query traits and 69 UKBB traits which were 204 

matched with the FinnGen primary traits were used as a covariate (130697 query trait-query 205 

variant pairs tested). Including rg in the hierarchical model made a larger difference here than 206 

in the simulated data, perhaps reflecting a stronger effect than we anticipated in our 207 

simulations. Overall, ppHc values for traits with higher rg with the primary traits increased and, 208 

conversely, decreased for traits with lower (negative) rg (Figure 4). Incorporating the rg  resulted 209 

in the identification of 19 additional associations (Supplementary Table 8). For example, the 210 

variants rs3217893_C>T and rs2476601_A>G, fine-mapped for type 2 diabetes and 211 

rheumatoid arthritis (RA) in FinnGen respectively, were found to have associations with 212 

medications gliclazide, which is a sulfonylurea used in the treatment of Type 2 diabetes, and 213 

steroid prednisolone which can be used to treat RA, only when the genetic correlation 214 

information was included.  215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 
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Figure 4: Genetic correlation detects additional phenotypes 

 

Hierarchical models of the FinnGen/UKBB dataset with/without genetic correlation (rg). The posterior 

probability of Hc (ppHc) of traits with and without the inclusion of genetic correlation (rg) are shown 

on the y and x axes respectively. The arrows represent the traits which show a difference of > 0.1 

ppHc after inclusion of rg (compared to the model without) and also have a ppHc > 0.6. The traits are 

coloured to represent their rg with the primary trait. 

 230 

Query variants were often associated with multiple UKBB traits (median 5) that reflected 231 

related diseases and medications (Supplementary Table 8). For instance, rs11591147_G>T, 232 

a missense variant of PCSK9, identified as a disease-causal variant in FinnGen for statin 233 

medication was found associated with the UKBB traits related to different statin medications 234 

along with several cardiovascular traits. Less commonly, we found evidence for causal 235 

association of variants to seemingly unrelated traits. For example, rs9349379_A>G, an intron 236 

variant and eQTL for PHACTR1, identified by fine-mapping the FinnGen primary trait - triptan, 237 

which is a medication used to manage migraine, was found to be associated with several 238 

UKBB traits related to migraine such as the phenotype itself, migraine medications such as 239 

sumatriptan, ibuprofen and paracetamol and also the presence of family history. However, we 240 

also found associations with angina, myocardial infarction and ischaemic heart disease, with 241 

the migraine-protective allele acting as a risk factor for cardiovascular traits. This matches 242 

results from a Mendelian randomisation study of migraine and cardiovascular disease17 but is 243 

in contrast to observational studies where migraine is considered positively associated with 244 

cardiovascular traits18. Such discrepancies between genetic and observational studies in other 245 

traits have often been resolved in favour of the genetic result, through the identification of 246 

some confounding factor which led the observational studies to report inverse relationships, 247 

and it has been suggested that certain non-triptan migraine therapies might act to increase 248 

cardiovascular risk17. However, this pleiotropy did not appear at another migraine-identified 249 
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variant, rs11172113_T>C, an intronic variant of LRP1, which was fine-mapped for the same 250 

FinnGen primary trait of migraine, and found to be independently associated with several 251 

migraine-related phenotypes in UKBB but not with any of the cardiovascular traits (Figure 5). 252 

 253 

Figure 5: Causal associations of Migraine related variants  

 
Hc associations (ppHc > 0.6) of the PHACTR1 variant rs9349379_A>G and  

rs11172113_T>C, a LRP1 variant.  The direction of effect (beta) is shown with respect to 

the G and C allele respectively.  

 254 

Other examples of pleiotropic variants include rs2476601, a non-synonymous variant in 255 

PTPN22 which we found to be causally associated with multiple autoimmune diseases and 256 

their treatments as well as skin cancer, with the autoimmune-protective allele increasing risk 257 

of cancer (Supplementary Figure 9). We also found a complex set of associations with two 258 

variants in APOE, rs429358 and rs7412 that jointly define the three major  structural isoforms 259 

of APOE19, ε4, ε3 and ε2 (Supplementary Figure 10). ε2 represents the TT haplotype 260 

corresponding to the rs429358 and rs7412 variants, ε3 is represented by TC and ε4 by the 261 

CC haplotype20. We found associations with increased risk of Alzheimer’s disease, statin 262 

medication, angina and ischemic heart disease with the ε4 allele with reference to the ε2/ε3 263 

genotype. We also found a protective effect of ε4 compared to ε2/ε3 on traits related to a 264 

family history of diabetes and blood pressure which correspond to similar traits found in 265 

FinnGen as well as a protective effect of  ε3/ε4 compared to ε2 for deep venous thrombosis 266 

might be related to the ε3/ε4 genotype with reference to ε2 and might indicate the ε2 allele. 267 

These findings align with previous studies on disease associations with different APOE 268 

genotypes21 and highlight the ability of SuSiE to map traits to distinct alleles in LD. 269 
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Individual variant analyses                                                          270 

CoPheScan can also be used to study single variants if sensible prior values can be supplied. 271 

We considered exemplar non-synonymous variants in two genes, TYK2 with established 272 

allelic heterogeneity and associations to multiple immune-mediated diseases, and SLC39A8, 273 

with established pleiotropic function. We ran CoPheScan with SuSiE BF and priors inferred 274 

from the disease-causal variant analysis above (𝑝𝑎 ≈ 3.82e-5 and  𝑝𝑐 ≈        1.82e-3), 275 

considering as query traits 2275 UKBB and 56 additional traits potentially related to either 276 

gene from the GWAS catalog (Supplementary Table 3).  277 

 278 

TYK2 which encodes the tyrosine kinase 2 enzyme has multiple missense variants that have 279 

been associated with a range of immune-mediated diseases (Supplementary Table 11). We 280 

considered four: rs35018800_G>A (MAF: 0.0082), rs34536443_G>C (MAF: 0.0465), 281 

rs12720356_A>C (MAF: 0.0979), and rs55882956_G>A (MAF: 0.0017). rs35018800_G>A 282 

and rs55882956_G>A with the lowest MAF showed no association with any trait.  283 

rs34536443_G>C was associated with 3 UKBB and 5 GWAS catalog traits, all immune-related 284 

and previously established associations, including psoriasis, RA, JIA (Juvenile Idiopathic 285 

Arthritis), Type 1 DM, and hypothyroidism. The variant rs12720356_A>C was associated with 286 

ulcerative colitis, psoriasis, Crohn's disease, SLE (Systemic Lupus Erythematosus) and RA 287 

traits from the GWAS catalog, but not with any of the UKBB traits (Figure 6).  288 

 289 

Figure 6: CoPheScan analysis of a gene with allelic heterogeneity: TYK2 

 
Plots showing Hc associations (ppHc > 0.6) of TYK2 variants rs34536443_G>C and 

rs12720356_A>C. The direction of beta is shown with respect to the ALT allele (C in both cases). 

T1D = Type 1 Diabetes Mellitus, JIA = Juvenile Idiopathic Arthritis, PSO = Psoriasis, RA = Rheumatoid Arthritis, 

SLE = Systemic Lupus Erythematosus, CD = Crohn’s Disease, UC = Ulcerative Colitis 

 290 

The highly pleiotropic variant, rs13107325_C>T, of SLC39A8 (solute-carrier family gene which 291 

encodes the ZIP8 protein), was associated with 14 UKBB and 3 GWAS catalog phenotypes, 292 

replicating several known associations22 with hypertension, schizophrenia, Crohn’s disease, 293 

urinary incontinence, musculoskeletal system-related traits such as osteoarthritis and traits 294 

related to alcohol dependence.  295 

 296 
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We used this region to perform a sensitivity analysis, selecting four variants - rs6855246,  297 

rs35225200, rs35518360, rs13135092, in LD with rs13107325_C>T (r2=0.816 - 0.943) and 298 

running CoPheScan as if each had been selected as the causal variant.  This allows us to 299 

explore two related questions: either, to what extent can two causal variants in LD cause false 300 

positive findings, or, to what extent CoPheScan might still detect an association if the “causal” 301 

variants supplied to CoPheScan are not really causal, but in LD with the causal variant. We 302 

found that CoPheScan was indeed sensitive to this misspecification, where out of the 17 traits 303 

identified as causally associated with rs13107325, 4 had ppHc < 0.6 with rs13135092 304 

(r2=0.943) and 11 with rs6855246 (r2=0.816). The results were increasingly discrepant as the 305 

r2 with rs13107325_C>T decreased (Figure 7 and Supplementary Figure 11). The group of 306 

traits with high ppHc across multiple variants tended to have larger minimum p values in the 307 

region compared to those for which ppHc was low across multiple variants, suggesting that 308 

CoPheScan will be best at discriminating between potential causal variants in LD when the 309 

association signal in the query data is strong. 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 
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Figure 7: Sensitivity analysis with SLC39A8 variants 

 
Heatmap of ppHc of SLC39A8 variants with LD r2 > 0.8 with the  rs13107325_C>T (bottom row) 

variant.  The points are scaled based on their -log10(pval) and a red border indicates a ppHc of  > 

0.6. CD=Crohn’s disease; SCZ = schizophrenia. 

 341 

Finally, we sought to verify previously proposed causal associations between the HMGCR 342 

variant rs12916_T>C and metabolic traits. HMGCR encodes HMG-CoA reductase which is 343 

targeted by statins to lower LDL cholesterol.  Previously, HMGCR variants have been used as 344 

a proxy for statin effect to show a higher risk of type 2 diabetes and body mass index (BMI) in 345 

MR studies23. But the validity of this has been challenged with evidence that there may be 346 

distinct causal variants underlying type 2 diabetes, BMI and HMGCR levels24.  We performed 347 

CoPheScan analysis on the UKBB traits: LDL, BMI, type 2 diabetes, waist circumference and 348 

weight. We identified a known causal association with LDL (ppHc = 1). Despite significant 349 

observed p-values at rs12916 at BMI, weight and waist circumference, however, CoPheScan 350 

consistently concluded that while the region contained a causal variant for each trait, it was 351 
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not rs12916 (ppHa > 0.99). In fact, no credible sets were identified in the HMGCR gene region 352 

and the SuSIE signals from these traits indicate the presence of an alternative causal POC5 353 

variant (Supplementary Figure 12). This implies that genetic studies that demonstrated a 354 

relationship between statin therapy and BMI/T2DM through HMGCR variants as a proxy might 355 

be incorrect24 as they studied the SNPs in isolation while ignoring their regional context25. 356 

CoPheScan is thus valuable in verifying assumptions in instrumental variable analyses. 357 

PheWAS of protein-associated variants 358 

One challenge of GWAS has been to link disease associations to their causal genes. PheWAS 359 

allows us to start with variants with known causal function on a protein and ask which diseases 360 

are also causally associated, exploiting the low false positive rate of CoPheScan.  We began 361 

with 505 plasma protein QTLs16 identified as single variant credible sets in fine-mapping of 362 

527 plasma proteins. Nine variants were identified to be associated with UKBB traits (Table 1 363 

and Supplementary Table 9). Among the established associations, we found an association 364 

between a pQTL for APOC1 and high cholesterol, as well as reported treatment with the 365 

cholesterol-lowering simvastatin. Both associations make sense given the known biology of 366 

APOC1, but only the first would have been detected in scanning for significant p values, as 367 

the p-value for high cholesterol at this SNP (p=6.19 x 10-19) is much lower than for simvastatin 368 

(p=9.59 x 10-4), emphasising the value of exploiting the additional information that we believe 369 

the variant to have a causal effect on a measurable phenotype (Supplementary Figure 13). 370 

 371 

Table 1: Hc associations detected with pQTL variants  

Query variant Protein Direction UKBB traits detected as Hc 

rs11591147 PCSK9 risk 

High cholesterol, cholesterol-lowering 

medication, ischaemic heart disease 

rs5743618 TLR1 protect Asthma 

rs3775291 TLR3 risk Hypothyroidism/myxoedema 

rs3136516 F2_Prothrombin risk Venous thromboembolism 

rs34324219 TCN1 protect Pernicious anaemia 

rs964184 APOC3 risk Cholesterol-lowering medication 

rs116843064 ANGPTL4 risk High cholesterol 

rs5112 APOC1 risk 

High cholesterol, cholesterol-lowering 

medication 

rs214830 TGM3 risk Skin cancer 

 372 

 373 

We also found a novel association, rs214830_G>C, a pQTL for TGM3, was associated with 374 

skin cancer (ppHc=0.75). TGM3 is required for skin development and is normally expressed 375 

in the spinous/granular layers of the epidermis. Its expression was found to be absent in 376 

melanoma and squamous cell carcinoma of the skin but strongly expressed in basal cell 377 

carcinoma (BCC), suggesting it could be a specific marker for BCC diagnosis26 . Association 378 

of variants in TGM3 with BCC have also been reported27–29 but rs214830_G>C was not  379 

always the top variant and GWAS associations can mark causal effects in neighbouring 380 
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genes30. Our analysis suggests this association could be directly causal, with TGM3 involved 381 

in the development of BCC as well as acting as a biomarker.  382 

 383 

Finally, we considered 3586 variants labelled as protein-truncating (PTV) in the UKBB 384 

summary data with MAF > 0.001, consisting of those predicted by VEP to be stop_gained, 385 

frameshift, splice_acceptor and splice_donor. The fraction of query variants that were found 386 

to be causally associated with at least one trait in UKBB was much lower for PTV (~0.31%) 387 

than for disease-causal variants identified in FinnGen (~40%) and pQTL (~1.8%) (Table 2, 388 

Supplementary Figures 5 and 6).  389 

 390 

Examination of the Markov chain Monte Carlo (MCMC) chains showed issues with mixing for 391 

the PTV example which were not seen with the other datasets (Supplementary Figure 5). 392 

When we examined the inferred priors (Supplementary Table 12) obtained from this model, 393 

we observed that the pc/pa ratio was ~1.02, indicating that the inferred pa and pc priors were 394 

almost the same. Our PTV consisted of four VEP classes, but while the MAF distribution of 395 

the stop-gained PTV was similar to missense variants, those of the other PTV (frameshift, 396 

splice donor and splice acceptor) were similar to synonymous variants (Supplementary Figure 397 

14a). As selection can constrain MAF, we hypothesised that the VEP stop_gained class might 398 

be more enriched for functional variation than the set of four classes we had used. We 399 

considered two ways to enrich the PTV set for functional variation: either using just this subset 400 

of the stop-gained PTVs or using the PTVs which were also defined as high confidence 401 

homozygous predicted loss-of-function (pLoF) variants in gnomAD.31 pLoF were 402 

predominantly rare, such that the pLoF subset of PTV variants  had a higher number of rare 403 

variants compared to the stop-gained subset (Supplementary Figure 14b). 404 

 405 

We ran the hierarchical models for these two subsets of PTVs (Supplementary Figure 15). 406 

Comparing the priors  (Supplementary Table 12) across the different datasets tested we 407 

observed that the ratio of prior probabilities for the query variant or a non-query variant to be 408 

causal, pc/pa (Table 2) obtained using the pLoF variants (2.59) was second only to the ones 409 

obtained using the FinnGen disease-related variants. The ratio from the stop-gained variant 410 

model (1.39) was similar to the pQTL variant model (1.28). This shows that sets of query 411 

variants which have a higher functional enrichment are expected to have a high pc/pa ratio. 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 
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Table 2: Summary of tested variants and phenotypes from real data  

Query variant set N QV N QT 
N QV-QT 

pairs* 

N QV-QT 

detected 

as Hc 

N (%) unique 

variants detected 

as Hc 

pc/pa 

FinnGen (with rg) 75 1582 130697 184 30 (40%) 95.6  

FinnGen (no rg) 136 2275 193706 328 43 (31.62%) 47.5  

pQTL (no rg) 505 2275 954616 29 9 (1.78%) 1.28 

PTV all (no rg) 3586 2275 4359271 26 11 (0.31%) 1.02 

PTV gnomAD (no 

rg) 
366 2275 292787 7 2 (0.54%) 2.59 

PTV stop gained 

(no rg) 
911 2275 837060 15 6 (0.66%) 1.39 

QV - query variant, QT - query trait, N QV-QT number of trait-variant associations. The number of QT 425 

were lower for the FinnGen/UKBB dataset for the ‘with rg’ case as only traits having rg data with the 426 

primary traits available were retained (Methods). 427 

 428 

26 associations were identified using all the PTV variants. All 15 associations detected with 429 

the stop-gained PTVs and 7 from the pLOF overlapped with those from the whole set. Of the 430 

combined 26 PTV-trait associations (Supplementary Table 10), many corresponded to known 431 

effects. One of them is, rs2066847_G>GC, a NOD2 frameshift mutation, which is reported as 432 

a pathogenic variant for inflammatory bowel disease in ClinVar and was associated with 433 

several phenotypes related to Crohn’s disease and mouth ulcers in our analysis 434 

(Supplementary Figure 16). However, as seen with migraine and cardiovascular disease 435 

above, the association with mouth ulcers occurs in the opposite direction to the established 436 

comorbidity of Crohn’s disease and mouth ulcers in the population, with the Crohn’s disease 437 

risk allele appearing protective for mouth ulcers. Note that in the mouth ulcer trait, the effect 438 

sizes were opposite in two other SNPs identified as a credible set in SuSiE analyses of both 439 

traits (Supplementary Figure 16). 440 

Discussion 441 

Detection of pleiotropic effects of genetic variants is an essential component of target 442 

discovery and drug repositioning. PheWAS typically takes information from marginal statistics 443 

at query variants in isolation of their neighbours, which can lead to false positives when 444 

multiple causal variants exist in some LD. CoPheScan considers not only how small a p-value 445 

is at a given variant, but how small it is in comparison to its neighbours, and estimates how 446 

much upweighting should be applied due to the information that the variant is in a query variant 447 

set. In our simulations, CoPheScan showed considerably better control of false positive calls 448 

compared to a standard PheWAS approach, at the cost of lower sensitivity where multiple 449 

causal variants exist in a region. Whilst the higher false positive rate for standard PheWAS 450 

testing can be mitigated by the use of a second-stage analysis testing for colocalisation, that 451 

is not possible in the case of query SNPs selected for their known effects on a protein, such 452 

as the PTV considered here. 453 

 454 
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CoPheScan learns how much to upweight query variants through the prior parameter p c and 455 

the ratio of average pc to average pa is a useful measure of enrichment of causal variants for 456 

the set of query traits amongst the set of query variants. This measure can be used to assess 457 

the quality of any choice of variant set, with values close to 1 indicating a weak choice. It may 458 

vary considerably across query variant sets for the same set of query traits, as seen in the 459 

PTV analyses. However, while restriction to a smaller set of query variants with greater 460 

enrichment is likely to find a higher proportion of causal associations with the smaller set, this 461 

will not necessarily enhance discovery: whilst the majority of the discoveries found using the 462 

smaller, more enriched sets of PTV were also found in the larger unfiltered set, this restriction 463 

also meant losing plausible discoveries that didn’t fall into either of the more restricted classes. 464 

 465 

We allow pc to vary between variants by exploiting additional external information in a 466 

regression framework. In our disease-variant focused analysis, we used the genetic 467 

correlation between index and query traits, but this could also be a categorical variable, such 468 

as the predicted deleteriousness of a missense variant, or the level of evidence for the 469 

functional effect of a PTV. Our model can exploit covariate information that relates to query 470 

trait-query variant pairs, but would need to be extended to accommodate other information. 471 

For example, we might see modest evidence for causal association of a medication trait with 472 

a given query variant, but intuitively trust the result is true because of stronger evidence at the 473 

same variant with the disease itself. The difference in inference in such a case might be 474 

explained by the smaller numbers of individuals reporting use of a specific medication. We 475 

could consider exploiting genetic correlation between query traits by using a multivariate prior, 476 

with covariance linked to the genetic correlations. While this is beyond the scope of the current 477 

study, we hope our use of covariate-informed priors illustrates the potential for external 478 

information to be exploited when conducting PheWAS and other genetic studies. 479 

 480 

While the simulations emphasised the importance of learning pc in a hierarchical model for 481 

accurate inference, point estimates can be substituted if required. This borrowing of priors 482 

from a larger dataset is beneficial in scenarios where we might want to use CoPheScan to test 483 

associations between a small set of variants and phenotypes, as running a hierarchical model 484 

on limited data will not result in optimal prior estimates. However, we strongly advise that 485 

careful consideration is needed to ensure the larger dataset in which the priors are learnt is a 486 

good match for the limited dataset under consideration. 487 

 488 

One of the advantages of incorporating SuSIE in CoPheScan is the ability to detect allelic 489 

heterogeneity at a locus. We demonstrated this with two well-known distinct variants in the 490 

TYK2 gene which were associated with overlapping sets of immune-mediated disorders. This 491 

analysis also highlighted the importance of surveying disease-specific GWAS studies and not 492 

relying solely on biobanks which may hold relatively low numbers of cases of any individual 493 

disease. For example, only three UKBB traits showed any association compared to seven of 494 

our curated immune-mediated disease GWAS, and while psoriasis in UKBB (4192 cases) was 495 

identified with one variant, psoriasis in Tsoi’s GWAS study (10558 cases) was identified with 496 

two. While biobanks remain incredibly useful for common traits such as cardiovascular and 497 

metabolic diseases, carefully curated bespoke GWAS of less common traits should be 498 
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included in any PheWAS to complement the biobank resources and reveal the full spectrum 499 

of pleiotropy. This is particularly important because predicted beneficial effects of targeting a 500 

protein may be countered by on-target side effects on other traits, as we saw where the 501 

autoimmune-protective variant in PTPN22 was associated with an increased risk of skin 502 

cancer. 503 

 504 

Our CoPheScan approach has some specific limitations. The signals obtained from the 505 

multiple variant assumption rely on the available LD information. Zou et al. demonstrated that 506 

the performance of SuSIE degrades when presented with out-of-sample LD matrices14. In 507 

cases where in-sample LD matrices are not accessible, it is recommended to utilise out-of-508 

sample LD from large reference panels. Our experience with SuSIE is that as the number of 509 

causal variants increase, the performance (ability to detect all causal variants and/or ability to 510 

detect the correct causal variants) may decrease. In the case that a true causal variant signal 511 

is missed for our query variant, as occurred in around 35% of our simulations with two causal 512 

variants, CoPheScan concludes Ha - ie a false negative. SuSiE is likely to miss a higher 513 

fraction of secondary causal variants when the true number of causal variants increase, which 514 

would be expected to lead to greater false negatives for CoPheScan. Importantly, we do not 515 

see any increase in false positives when simulating two compared to one causal variant 516 

Analysis of rare events in large samples with standard methods can cause bias in regression 517 

summary statistics. Here, we used careful QC, thresholding on the number of events / MAF, 518 

but a better approach would be to use methods specifically developed to deal with this such 519 

as REGENIE32 to generate input to CoPheScan. The current form of CoPheScan only allows 520 

single-ancestry studies which will be addressed in future iterations and allow an increase in 521 

power to detect rare variants. 522 

 523 

GWAS causal variants, even when identified with confidence, remain challenging to interpret 524 

partly because it can be hard to link them with confidence to their causal genes. Protein-525 

altering variants have thus become increasingly important because their function on a gene is 526 

presumed known. The different relative enrichments in different sets of PTV we ran suggests 527 

that incorporating external evidence on the plausibility of a putative PTV having a functional 528 

effect will increase accuracy in PheWAS of these variants. However, as highlighted here, they 529 

often have very low minor allele frequencies. Thus, larger biobanks are still needed both for 530 

analysis of less common traits with common variants and for analysis of rare functional 531 

variants. It is thus encouraging that UKBiobank and FinnGen studied here are complemented 532 

by the Japan Biobank33, the Million Veteran Program34 and the Uganda Genome Resource35, 533 

which should allow CoPheScan, together with efforts at multiple ancestry fine mapping36, to 534 

reveal more completely the pleiotropic spectrum of protein-altering genetic variation. 535 

Methods 536 

Simulated data 537 

We simulated case-control summary statistics using the EUR samples in the 1000 Genomes 538 

phase 3 reference data37. LD-independent blocks were identified using lddetect38 and 539 

haplotypes containing 1000 SNPs with MAF > 0.01 were extracted from the reference data10,39. 540 
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We used simGWAS39 to simulate summary statistics with either one or two causal variants for 541 

the corresponding LD blocks with 10000 cases and 10000 controls.  542 

We simulated GWAS summary statistics for 110000 traits to evaluate hypothesis 543 

discrimination, with all genomic regions containing 1000 SNPs. We sampled query causal 544 

variants at random from the 1000 SNPs and simulated each trait to correspond to one of the 545 

three hypotheses. The traits within the simulated dataset were divided based on the number 546 

and position of the causal variants within their genomic region: 547 

1. True Hn: No causal variants within the genomic region. 548 

2. True Ha: A trait with a single causal variant that is not the query variant. 549 

3. True Ha2: A genomic region simulated with two distinct causal variants, none of which 550 

are the query variant. 551 

4. True Hc: A trait with a single causal variant that is the same as the query variant. 552 

5. True Hc2: Two distinct causal variants, where one of them is the same as the query 553 

variant. 554 

The 110000 simulated traits were comprised of 88048 true Hn, 6276 each of true Hc and Hc2, 555 

and 4700 each of Ha and Ha2 traits. We also simulated genetic correlation values for each of 556 

these traits where the Hc traits were assigned a higher proportion of high rg values when 557 

compared to the Hn and Ha traits (Supplementary Figure 2). 558 

We used conventional PheWAS approaches, based on selecting associations that cross a 559 

threshold p-value after accounting for multiple testing. We used the Benjamini & Hochberg to 560 

control the FDR < 0.05 which corresponded to a p-value < 7.5e-3 and Bonferroni correction 561 

with a p-value < 4.55e-7 to control the family-wise error rate (FWER) at 0.05. In parallel, we 562 

used different approaches of CoPheScan to analyse this dataset: 563 

1. Fixed priors and Approximate Bayes Factors (ABF).  564 

Fixed priors used with the simulated data were adapted from coloc (described in the 565 

Supplementary Methods) where 𝑝𝑎 ≈         0.81 and  𝑝𝑐 ≈         0.091. 566 

2. Fixed priors and SuSIE Bayes factors 567 

3. Hierarchical priors, ABF, with and without genetic correlation (rg) 568 

4. Hierarchical priors, SuSIE Bayes factors, with and without rg 569 

 570 

The hierarchical model of CoPheScan was run for 3e5 iterations for the models without rg
 and 571 

1e6 iterations for the ones with rg and the chain was thinned by retaining every 30th and 100th 572 

observation respectively (Supplementary Figure 3). The first 50% of the remaining 1e4 573 

observations were discarded and the average prior (𝑝𝑛,  𝑝𝑎, 𝑝𝑐) and posterior probabilities 574 

(𝑝𝑝𝐻𝑛, 𝑝𝑝𝐻𝑎, 𝑝𝑝𝐻𝑐) were calculated.  575 

 576 

Therefore, the output of each analysis for each trait was summarised by the Hc hypothesis 577 

when 𝑝𝑝𝐻𝑐         > 0.6, and Hn when  𝑝𝑝𝐻𝑛         > 0.2 and Ha for the remaining traits. When 578 

multiple signals were detected by SuSIE in the same genomic region, CoPheScan was run on 579 

each of them. Here, we assigned the hypothesis to each signal as the thresholds specified 580 

above. The first hypothesis to occur in the ranking order of Hc, Hn, and Ha was assigned to 581 

the trait, i.e., when there was at least one signal which was assigned as Hc, the trait was taken 582 

to be Hc. Next, any signal with Hn but no Hc was assigned as Hn, because we wanted to be 583 

conservative in calling Ha which might rule out a pleiotropic effect. In the absence of a Hc and 584 
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Hn signal, we checked for the presence of Ha and where there were multiple Ha signals we 585 

report the minimum Ha of all the signals.  586 

 587 

We also simulated datasets where we varied the number of true Hc traits {50, 100, 200, 500, 588 

1000, 2000, 4000, 5000} while maintaining the true Hn and Ha traits the same at 88048 and 589 

4700 respectively. The percentage of Hc traits in the datasets corresponded to {0.05%, 0.11%, 590 

0.22%, 0.54%, 1.07%, 2.11%, 3.13%, 4.13%, 5.12%}. 591 

Disease causal query variants from FinnGen 592 

We downloaded SuSIE13,14 fine-mapping results from FinnGen40 release R5, which has a 593 

sample size of 218,792 with 2,803 endpoints (https://www.finngen.fi/en/access_results). For 594 

each endpoint, we filtered variants that belonged to a credible set of size 1 and were also 595 

present in the UKBB dataset. We retained 136 variants, fine-mapped from 141 FinnGen traits, 596 

for further analysis. 69 out of these 141 FinnGen primary traits, had closely matching UKBB 597 

traits with pre-computed genetic correlation data. Thus, 75 variants from these matching traits 598 

were used for the hierarchical model using rg  (Supplementary Tables 4 and 5).  599 

pQTL variants 600 

We downloaded summary data from a GWAS of plasma protein levels measured with 4,907 601 

aptamers (corresponding to 4719 proteins) in 35,559 Icelanders from Ferkingstad et al.16. We 602 

fine-mapped the region around each signal under a single variant assumption. This is 603 

equivalent to taking only the first signal in a stepwise fine-mapping procedure. We made this 604 

conservative choice to address the lack of access to an LD matrix for the Icelandic population, 605 

making it difficult to trust secondary signals found by stepwise regression or other multiple 606 

causal variant methods such as SuSIE. We obtained 505 SNPs associated with 527 proteins 607 

for testing associations with the UKBB phenotypes  (Supplementary Table 6). 608 

Protein truncating variants  609 

We selected 3586 protein truncating variants (PTV) with MAF > 0.001 (Supplementary Table 610 

7) from the UKBB variants (https://broad-ukb-sumstats-us-east-611 

1.s3.amazonaws.com/round2/annotations/variants.tsv.bgz), which were annotated as 612 

frameshift (883), stop gained (911), splice acceptor (682) and splice donor (1110) variants, 613 

using VEP41 (The Ensembl Variant Effect Predictor, 85).  614 

We also downloaded homozygous pLoF from gnomAD (v2.1.1). Out of these, we selected 366 615 

variants, which were classified as either ‘lof’ or ‘likely_lof’ and were in common with the 3586 616 

UKBB PTV variants31 .  617 

Individual variant analyses 618 

We chose four TYK2 variants: rs35018800, rs34536443, rs12720356 and rs55882956 a 619 

SLC39A8 variant, rs13107325, and a HMGCR variant,  rs12916, to examine the performance 620 

of CoPheScan for region-specific analyses42–44. 621 
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Query phenotypes 622 

We used 2275 phenotypes from the UK Biobank (http://www.nealelab.is/uk-biobank). We 623 

obtained in-sample linkage disequilibrium matrices from  https://broad-alkesgroup-ukbb-624 

ld.s3.amazonaws.com/UKBB_LD15. We included all the 2275 traits in the CoPheScan analysis 625 

of the FinnGen, pQTL and PTV variants.  626 

We downloaded genetic correlation45 data between UK Biobank traits and disorders estimated 627 

using LD score regression46 from https://ukbb-rg.hail.is/. In the FinnGen/UKBB dataset, only 628 

1582 out of the 2275 traits had genetic correlation (rg) estimates with the UKBB traits mapped 629 

to the FinnGen primary traits. So, only these traits were used for the hierarchical model that 630 

included rg. Additionally, we checked the allele counts (AC) of the query variant in the 631 

phenotype files and only retained the QV-QT pairs for association testing when the AC in the 632 

cases > 25. After reviewing the results, to increase stringency, we further removed QV-QT 633 

pairs, identified as being causally associated with AC < 30 to reduce false positive detection. 634 

Individual results presented in tables have been trimmed to reflect this more stringent criterion 635 

(removing five Hc results), but estimates directly from models (eg pa/pc) include observations 636 

with AC between 26 and 30. 637 

 638 

For the phenome-wide scan of the TYK2 and SLC39A8 variants, we downloaded 56 additional 639 

publicly available GWAS summary statistics of phenotypes related to immune-mediated and 640 

psychiatric diseases (Supplementary Table 3)47–49. In the case of the HMGCR variant we used 641 

additional quantitative UKBB phenotypes: LDL direct, Body mass index (BMI) and Weight,  642 

We used UKBB LD matrices for data from European populations, and for other populations, 643 

we extracted LD from the 1000 genomes phase 3 reference data37.  644 

The lists of phenotypes used with the different variants are provided in Supplementary Tables 645 

2 and 3. We used Phase II HapMap50 obtained from 646 

(https://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37/) to subset regions 647 

from the summary statistics data around the query variants. We excluded variants in the HLA 648 

region (20MB - 40MB) from the analysis.  649 

 650 

Visualisations of the causal trait-variant associations identified with CoPheScan were done 651 

using Cytoscape51 3.9.0. 652 

Functional annotation 653 

Previously reported variant/gene associations with diseases were obtained from the Open 654 

Target Platform and Open Target Genetics48,52. We used the DrugBank online resource for 655 

indications of medications that were associated with the variants53.  656 

Data availability 657 

The simulated summary statistics and processed files are available on figshare. Source data 658 

are provided with this paper. 659 
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Code availability 660 

The CoPheScan R package is available on CRAN at https://cran.r-661 

project.org/package=cophescan. 662 

A shiny app to browse the results is available here:https://ichcha-m.shinyapps.io/cophescan-663 

app/, the code for which can be found at https://github.com/ichcha-m/cophescan-app. 664 

 665 

The code to reproduce the simulated summary statistics and processed datasets are 666 

available here: https://github.com/chr1swallace/cophescan-manuscript-sim-summary-data 667 

and https://github.com/ichcha-m/cophescan-paper. 668 

URLs 669 

UKBB summary statistics, http://www.nealelab.is/uk-biobank); Phase II HapMap, 670 

https://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37/; UKBB in-sample 671 

LD matrices, https://broad-alkesgroup-ukbb-ld.s3.amazonaws.com/UKBB_LD ; FinnGen 672 

Freeze 5 cohort, https://www.finngen.fi/en/access_results; GWAS catalog, 673 

https://www.ebi.ac.uk/gwas/; GWAS of plasma protein levels used for pQTL fine-mapping: 674 

https://www.decode.com/summarydata/, ClinVar variant annotation: 675 

https://platform.opentargets.org/downloads; gnomAD: 676 

https://gnomad.broadinstitute.org/downloads; DrugBank, https://go.drugbank.com/drugs/  677 
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