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Abstract

Phenome-wide association studies (PheWAS) facilitate the discovery of associations between
a single genetic variant with multiple phenotypes. For variants which impact a specific protein,
this can help identify additional therapeutic indications or on-target side effects of intervening
on that protein. However, PheWAS is restricted by an inability to distinguish confounding due
to linkage disequilibrium (LD) from true pleiotropy. Here we describe CoPheScan (Coloc
adapted Phenome-wide Scan), a Bayesian approach that enables an intuitive and systematic
exploration of causal associations while simultaneously addressing LD confounding. We
demonstrate its performance through simulation, showing considerably better control of false
positive rates than a conventional approach not accounting for LD. We used CoPheScan to
perform PheWAS of protein-truncating variants and fine-mapped variants from disease and
pQTL studies, in 2275 disease phenotypes from the UK Biobank. Our results identify the
complexity of known pleiotropic genes such as APOE, and suggest a new causal role for
TGM3 in skin cancer.

Main

Phenome-wide association studies (PheWAS) are an inversion of the GWAS (Genome-Wide
Association Studies) paradigm, where a single genetic variant is tested against a broad range
of phenotypes. Phenome scale studies are facilitated by the availability of a broad array of
phenotypes linked to genomic data in large-scale biobanks. PheWAS are a promising tool in
the field of pharmacogenomics as they facilitate drug repurposing efforts and identification of
potential adverse effects due to their ability to detect pleiotropy -2. Often, PheWAS has been
paired with other approaches such as Mendelian Randomisation to identify causal effects of

exposures on outcomes and network analysis to identify interactions between phenotypes 4
6

Prevailing methods for phenome-wide testing are built upon single variant tests and do not
inherently tackle the spurious associations that can arise when traits are causally associated
not with the index variant, but with another variant in LD with the index variant. For instance,
a PheWAS of UK Biobank phenotypes with protein-truncating variants by DeBoever et al.” first
revealed an association between an ANKDD1B variant, and high cholesterol, which was found
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to reflect an indirect association, through LD with an intronic variant in HMGCR which is known
to be associated with cholesterol levels. Thus LD confounding necessitates the use of
additional follow-up tests such as colocalisation analyses, where pairs of traits are tested for
shared causal variants within a genomic region, to isolate associations that are truly causal
3,8

PheWAS hits are colocalised with molecular QTLs or disease traits on which the identified
variants have a prior known effect. However, this two-step approach is not feasible for variants
with known biological effects for which summary statistics are unavailable, such as those
involved in protein truncation.

In this work, we introduce a Bayesian approach to PheWAS, Coloc adapted Phenome-wide
Scan, (CoPheScan), that tests phenome-scale causal associations with a set of index variants
while handling confounding due to LD at the same time. CoPheScan can exploit external
covariate data, such as the genetic correlation between phenotypes, and can be run in
different ways depending on whether accurate LD information is available and whether the
analyst is prepared to make assumptions about the number of causal variants in the tested
genomic region. We demonstrate the utility and robustness of these different approaches on
simulated datasets. We also analysed causal variants selected from three real-world sources
and tested for causal associations against 2275 phenotypes from the UK Biobank using
CoPheScan.

Results

Overview of CoPheScan

CoPheScan is an adaptation of the coloc °-*! approach, for the case where a variant known
to be causal either through fine-mapping or functional studies, is subjected to a phenome-wide
scan to test for causal associations with other phenotypes/traits. Coloc considers the genetic
association patterns for two traits in a genomic region and assesses whether it is likely they
share a causal variant in that region. It is a Bayesian approach and assumes prior probabilities
for each of the five possible hypotheses (no association with either trait, association with just
one trait or the other, association with both traits and different causal SNPs, or association
with both traits at the same causal SNP) are fixed and known.

We consider the case where a SNP of interest is known to be causal for a phenotype which is
often the case in PheWAS, and we are interested in determining if it is also causally associated
with another phenotype (Figure 1a). We will hereafter refer to the variant of interest as the
guery variant, the phenotype for which the query variant is known to be causally associated
as the primary trait and the phenotype to be tested as the query trait. In a genomic region with
Q SNPs, and under the initial assumption of a single causal variant (which we will relax later),
there are Q+1 possible ways or “configurations”, (Supplementary Figure 1) to describe where
the single causal variant may lie, each corresponding to exactly one of three hypotheses:

H,,: No association of any variant with the query trait (one configuration)

H,: Causal association of a variant other than the query variant with the query trait (Q-1
configurations)

H.: Causal association of the query variant with the query trait (one configuration)
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91 The posterior odds for each hypothesis (H) given the data (D) for the query trait with respect
92 to the null hypothesis (H,,) is given by,
93

P(H|D) _ P(H)  P(D|H)

P(H,D) _ P(H,) = P(DH,) W

94

95 In equation (1), the first ratio in the right-hand side is the prior odds and the second ratio is the

96 Bayes Factor (BF). Thus, the three prior probabilities that have to be specified are: p,, = P(H,),

97 p,=P(H,)/(Q—1),and p, = P(H.), subject to the constraint that p,, + (Q — D)p, + p. = 1.

98 Beyond the difference in the hypothesis space described above, CoPheScan differs from coloc

99 in two further ways. First, because we have reduced the hypothesis space, we can examine
100 many variants simultaneously, allowing us to learn the priors from the data in a hierarchical
101 Bayesian manner with Markov Chain Monte Carlo (MCMC) sampling (Supplementary
102 methods). In contrast, coloc assumes priors are fixed and known, which is a weakness
103 because inference must rely on the investigators’ judgement on prior probabilities of
104 colocalisation. Second, because we are using this hierarchical approach, we can exploit
105 additional external information about the variants and/or the traits in the form of covariates
106 which can be included when learning the priors. This allows the priors to vary depending on
107 the query trait/query variant pairs being considered. Here, we include the genetic correlation
108 (rg) between the primary trait and each query trait tested (see Supplementary Methods).
109
110 The restriction to a single causal variant allows us to count the possible configurations (Q+1),

111 and if the assumption is deemed valid, CoPheScan can be run directly on summary GWAS
112 data using Wakefield’s method?!?, to compute approximate Bayes factors summarising the
113 relative support for a model where the SNP is associated with a trait compared to the null
114 model of no association. However, this assumption is not broadly valid, and an alternative is
115 to use the Sum of Single Effects (SuSIE) Bayesian fine mapping regression framework?*34 to
116 partition the evidence into configurations corresponding to each of multiple possible causal
117 variants and use these in a similar manner to allowing for multiple causal variants in coloc?®.
118 The SuSiE approach works best with either raw genotype data or summary GWAS data when
119 in-sample LD information is available®®.

120

121 Hence, CoPheScan has the flexibility to be run in several ways (Figure 1b) depending on: (i)
122 the assumption about the number of causal variants, (ii) the specification of either fixed or
123 hierarchical priors, and (iii) the inclusion/exclusion of covariates if the hierarchical model is
124 used to infer priors. A detailed description of the CoPheScan method is available in the
125 Supplementary methods. A summary of the simulated data, variant and phenotype sources
126 used for the analysis with the real data can be found in (Figure 1c), while a detailed description
127 s provided in the Methods.
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Figure 1: Introduction and evaluation of the CoPheScan method.
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(a) CoPheScan methodology: Hypotheses with illustrations of the configurations of genetic variants
within the genomic region and corresponding priors. (b) Schematic of the CoPheScan workflow. The
inputs are GWAS summary statistics from multiple traits and the position of the query variant.
Computation of the posterior probabilities of the three hypotheses is performed with priors and Bayes
factors computed using different CoPheScan approaches. (¢) Study design for evaluation: Simulated
data - Generated using SImGWAS and all CoPheScan approaches were run on this set. Real data -
Phenotypes tested were obtained from UK Biobank and variants from fine-mapping FinnGen and a
proteome dataset'8. Hierarchical priors and SuSIE BF were used on the real data to identify SNP-
disease associations. (QV - query variant, QT - query trait)
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128 Simulations show CoPheScan is more accurate than a standard method which
129 does not account for LD confounding

130 We simulated regional GWAS summary data for traits with either zero, one or two causal
131 variants (Methods) such that they corresponded to the three CoPheScan hypotheses. We also
132 allowed the probability of Hc to vary according to a simulated genetic covariance between
133 primary and query traits and considered whether including this information in the analysis
134 increased inferential accuracy. We analysed the same data in parallel using a conventional
135 PheWAS approach of testing each of the set of query SNPs for association, controlling either
136 the FDR or the family-wise error rate via Bonferroni correction. We compared these to the
137 results from CoPheScan, using a hierarchical model (with and without the covariate data) or
138 fixed priors chosen as described in the Supplementary methods which broadly matched the
139 proportion of Hn, Ha, and Hc in the sample.

140

141 First, we considered the appropriate threshold on the posterior probability of Hc, ppHc, to call
142 an association. We estimated the FDR internally, as 1-mean(ppHc) | ppHc > t for different
143 values of threshold t (Supplementary Figure 4). We found that ppHc > 0.6 maintained an FDR
144 < 0.05 across all analyses of simulated data. Using this threshold, CoPheScan appeared less
145 sensitive to the presence of a single causal variant (true Hc) than the conventional BH
146 approach but more sensitive than the Bonferroni approach (Figure 2). CoPheScan
147 demonstrated control of the FDR (0.026-0.039) estimated as the proportion of significant calls
148 that were truly Hn or Ha , traits where the query variant was not causal, for the different
149 CoPheScan approaches compared to 0.219 and 0.308 for the conventional BH and
150 Bonferroni approaches respectively, (Supplementary Table 1). The majority of the false
151 positives obtained from these conventional approaches were true Ha but called as associated
152 due to LD confounding. All CoPheScan approaches performed well in the case of a single
153 causal variant, but when there were two causal variants (True Hc2), using SUSIE resulted in
154 approximately 30% higher sensitivity to correct Hc predictions than the ABF approach (Figure
155 2). This was balanced against marginally lower (<0.5%) sensitivity to Hc with SUSIE when
156 traits truly had only a single causal variant (True Hc) when compared to the CoPheScan
157 approaches that assumed a single causal variant.
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Figure 2: Results for hypotheses discrimination in simulated data.
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We called a single result for each simulated trait as described in Methods. The x axis shows the
percentage of hypothesis calls using the different approaches shown on the y axis. For CoPheScan
(top 6 rows), the three labelled columns on the y-axis, from right to left, indicate the type of priors
used, the method used to calculate Bayes factors, and whether or not genetic correlation (rWe called
a single result for each simulated trait as described in Methods. The x axis shows the percentage of
hypothesis calls using the different approaches shown on the y axis. For CoPheScan (top 6 rows),
the three labelled columns on the y-axis, from right to left, indicate the type of priors used, the method
used to calculate Bayes factors, and whether or not genetic correlation (rg) was used. The last two
rows show conventional approaches controlling the FDR (BH - Benjamini-Hochberg) or the FWER
(Bonf - Bonferroni) at 0.05. The top bar shows an illustration of the configuration of SNPs in the
genomic region corresponding to the different simulated traits (Methods), with the queried variant at
position 1 and causally associated (non-associated) variants indicated by filled (open) circles. [True
Hn: no causal variant, True Ha/Ha2: one/two causal non-query variants, True Hc: causal query
variant, True Hc2: causal query variant and one causal non-query variant].

172

173 Although the effect of including covariate information was minor overall, Figure 3a shows that it
174 had a substantial effect in a minority of cases, bringing ppHc from below to above 0.6 in 2.79%
175 of true Hc and Hc2 cases (80/2867), although also in 0.088% of true Hn and 0.011% of true Ha
176 and Ha2.

177 Finally, these initial simulations showed that the hierarchical model recovered very similar
178 results to the fixed prior model, where we chose our fixed prior values to broadly match the
179 simulation scenarios, i.e., an optimal scenario. This offers reassurance that the hierarchical
180 model can perform just as well as a method that “knows” the correct prior values. However, in
181 real data, we will not know the true proportion of Hn, Hc, or Ha in our data, so we explored the
182 robustness of both approaches to variations in these proportions. We found that using over-
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183 optimistic fixed priors, i.e. when the prior probability for Hc (P(Hc)=0.091) exceeded the
184 proportion of Hc in our data, led to dramatically high FDR, whilst the hierarchical model
185 correctly adapted to the different datasets so that the FDR was controlled except at the very
186 lowest true proportions of Hc (Figure 3b).

187
Figure 3: Effects of covariate inclusion and varying proportions of simulated
hypotheses.
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(a) Comparison of the posterior probability of Hc (ppHc) obtained with (y axis) and without (x axis)
the inclusion of genetic correlation (rg) in the hierarchical model (using ABF). The panels represent
the traits of different simulated hypotheses (Methods). (b) The proportion of Hc traits was varied as
shown in the x axis (dotted vertical lines), to compare Hc predictions using the fixed and hierarchical
priors with different BF, both with and without the inclusion of the genetic correlation (rg) covariate.
The y axis represents the estimated FDR - the proportion of traits assigned as Hc in each dataset
which were simulated as Hn or Ha with 95% confidence intervals (dashed line - 0.05 FDR).
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188 Using genetic correlation as a covariate increases detection of associations
189 with disease-causal variants

190 We explored the performance of CoPheScan (Supplementary Figure 5) using a variety of
191 causal variants sets to perform PheWAS in three sets of query variants in up to 2275 query
192 traits (Supplementary Figures 6 and 7) from the UK Biobank summary data provided by the
193 Neale Lab (http://www.nealelab.is/uk-biobank/). First, 136 disease-causal variants were
194 identified as single variant credible sets in fine mapping data from FinnGen disease endpoints
195 (primary traits, https://www.finngen.fi/en/access results). We identified causal associations in
196 UKBB at 43 (31.62%) of these, predominantly amongst query traits identical or related to the
197 primary trait. Out of 101 unique query-variant-primary trait pairs with exact query variant-query
198 trait matched pairs in UKBB, 32 were found to be Hc (Supplementary Figure 7), and 65 Hn
199 due to a lack of power in UKBB (p-value> 10®°). Four cases were called Ha, and in these the
200 UKBB p value was small, but the fine mapping produced different results in UKBB and
201 FinnGen (Supplementary Figure 8).

202

203 Genetic correlation information (rg) for only 1582 out of the 2275 traits used in analysis without
204 rg was available. ryg values between the 1582 query traits and 69 UKBB traits which were
205 matched with the FinnGen primary traits were used as a covariate (130697 query trait-query
206 variant pairs tested). Including rg in the hierarchical model made a larger difference here than
207 in the simulated data, perhaps reflecting a stronger effect than we anticipated in our
208 simulations. Overall, ppHc values for traits with higher rg with the primary traits increased and,
209 conversely, decreased for traits with lower (negative) rg (Figure 4). Incorporating the ry resulted
210 in the identification of 19 additional associations (Supplementary Table 8). For example, the
211 variants rs3217893 C>T and rs2476601_A>G, fine-mapped for type 2 diabetes and
212 rheumatoid arthritis (RA) in FinnGen respectively, were found to have associations with
213 medications gliclazide, which is a sulfonylurea used in the treatment of Type 2 diabetes, and
214 steroid prednisolone which can be used to treat RA, only when the genetic correlation
215 information was included.
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Figure 4: Genetic correlation detects additional phenotypes
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Hierarchical models of the FinnGen/UKBB dataset with/without genetic correlation (rg). The posterior
probability of Hc (ppHc) of traits with and without the inclusion of genetic correlation (ry) are shown
on the y and x axes respectively. The arrows represent the traits which show a difference of > 0.1
ppHc after inclusion of ry (compared to the model without) and also have a ppHc > 0.6. The traits are
coloured to represent their rg with the primary trait.

230

231 Query variants were often associated with multiple UKBB traits (median 5) that reflected
232 related diseases and medications (Supplementary Table 8). For instance, rs11591147_G>T,
233 a missense variant of PCSK9, identified as a disease-causal variant in FinnGen for statin
234 medication was found associated with the UKBB traits related to different statin medications
235 along with several cardiovascular traits. Less commonly, we found evidence for causal
236 association of variants to seemingly unrelated traits. For example, rs9349379_ A>G, an intron
237 variantand eQTL for PHACTR1, identified by fine-mapping the FinnGen primary trait - triptan,
238 which is a medication used to manage migraine, was found to be associated with several
239 UKBB traits related to migraine such as the phenotype itself, migraine medications such as
240 sumatriptan, ibuprofen and paracetamol and also the presence of family history. However, we
241 also found associations with angina, myocardial infarction and ischaemic heart disease, with
242 the migraine-protective allele acting as a risk factor for cardiovascular traits. This matches
243 results from a Mendelian randomisation study of migraine and cardiovascular disease'’ but is
244  in contrast to observational studies where migraine is considered positively associated with
245 cardiovascular traits'®. Such discrepancies between genetic and observational studies in other
246 traits have often been resolved in favour of the genetic result, through the identification of
247 some confounding factor which led the observational studies to report inverse relationships,
248 and it has been suggested that certain non-triptan migraine therapies might act to increase
249 cardiovascular risk'’. However, this pleiotropy did not appear at another migraine-identified
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250 variant, rs11172113 T>C, an intronic variant of LRP1, which was fine-mapped for the same
251 FinnGen primary trait of migraine, and found to be independently associated with several
252 migraine-related phenotypes in UKBB but not with any of the cardiovascular traits (Figure 5).
253

Figure 5: Causal associations of Migraine related variants
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254
255 Other examples of pleiotropic variants include rs2476601, a non-synonymous variant in
256 PTPN22 which we found to be causally associated with multiple autoimmune diseases and
257 their treatments as well as skin cancer, with the autoimmune-protective allele increasing risk
258 of cancer (Supplementary Figure 9). We also found a complex set of associations with two
259 variants in APOE, rs429358 and rs7412 that jointly define the three major structural isoforms
260 of APOE?'®, &4, €3 and €2 (Supplementary Figure 10). €2 represents the TT haplotype
261 corresponding to the rs429358 and rs7412 variants, €3 is represented by TC and &4 by the
262 CC haplotype?. We found associations with increased risk of Alzheimer’'s disease, statin
263 medication, angina and ischemic heart disease with the &4 allele with reference to the £2/e3
264 genotype. We also found a protective effect of €4 compared to €2/e3 on traits related to a
265 family history of diabetes and blood pressure which correspond to similar traits found in
266 FinnGen as well as a protective effect of £3/e4 compared to €2 for deep venous thrombosis
267 might be related to the €3/e4 genotype with reference to €2 and might indicate the €2 allele.
268 These findings align with previous studies on disease associations with different APOE
269 genotypes?' and highlight the ability of SUSIE to map traits to distinct alleles in LD.
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Individual variant analyses

CoPheScan can also be used to study single variants if sensible prior values can be supplied.
We considered exemplar non-synonymous variants in two genes, TYK2 with established
allelic heterogeneity and associations to multiple immune-mediated diseases, and SLC39A8,
with established pleiotropic function. We ran CoPheScan with SuSiE BF and priors inferred
from the disease-causal variant analysis above (p, ~ 3.82e-5 and p, = 1.82e-3),
considering as query traits 2275 UKBB and 56 additional traits potentially related to either
gene from the GWAS catalog (Supplementary Table 3).

TYK2 which encodes the tyrosine kinase 2 enzyme has multiple missense variants that have
been associated with a range of immune-mediated diseases (Supplementary Table 11). We
considered four: rs35018800_G>A (MAF: 0.0082), rs34536443_G>C (MAF: 0.0465),
rs12720356_A>C (MAF: 0.0979), and rs55882956_G>A (MAF: 0.0017). rs35018800_G>A
and rs55882956 G>A with the lowest MAF showed no association with any trait.
rs34536443_G>C was associated with 3 UKBB and 5 GWAS catalog traits, all immune-related
and previously established associations, including psoriasis, RA, JIA (Juvenile Idiopathic
Arthritis), Type 1 DM, and hypothyroidism. The variant rs12720356_A>C was associated with
ulcerative colitis, psoriasis, Crohn's disease, SLE (Systemic Lupus Erythematosus) and RA
traits from the GWAS catalog, but not with any of the UKBB traits (Figure 6).

Figure 6: CoPheScan analysis of a gene with allelic heterogeneity: TYK2

JIA_Lopezlsac 33106285 non_cancer iliness code, CD_Delange_28067908

self-reported: rheumatoid

arthritis
Non-cancer illness code,
self-reported:
hypothyroidism/myxoedema Beta
PSO_Tsoi 23143594 Positive

rs34536443 [TYK2] - rs12720356 [TYK2] Negative
—
RA_Okada_24390342
T1D Cooper doi101101120022
Non-cancer iliness code, UC Delange 28067908

self-reported: psoriasis SLE_Bentham_26502338

Plots showing Hc associations (ppHc > 0.6) of TYK2 variants rs34536443 G>C and
rs12720356_A>C. The direction of beta is shown with respect to the ALT allele (C in both cases).
T1D = Type 1 Diabetes Mellitus, JIA = Juvenile Idiopathic Arthritis, PSO = Psoriasis, RA = Rheumatoid Arthritis,
SLE = Systemic Lupus Erythematosus, CD = Crohn’s Disease, UC = Ulcerative Colitis

The highly pleiotropic variant, rs13107325_ C>T, of SLC39A8 (solute-carrier family gene which
encodes the ZIP8 protein), was associated with 14 UKBB and 3 GWAS catalog phenotypes,
replicating several known associations?? with hypertension, schizophrenia, Crohn’s disease,
urinary incontinence, musculoskeletal system-related traits such as osteoarthritis and traits
related to alcohol dependence.
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297 We used this region to perform a sensitivity analysis, selecting four variants - rs6855246,
298 rs35225200, rs35518360, rs13135092, in LD with rs13107325_C>T (r2=0.816 - 0.943) and
299 running CoPheScan as if each had been selected as the causal variant. This allows us to
300 explore two related questions: either, to what extent can two causal variants in LD cause false
301 positive findings, or, to what extent CoPheScan might still detect an association if the “causal”
302 variants supplied to CoPheScan are not really causal, but in LD with the causal variant. We
303 found that CoPheScan was indeed sensitive to this misspecification, where out of the 17 traits
304 identified as causally associated with rs13107325, 4 had ppHc < 0.6 with rs13135092
305 (r2=0.943) and 11 with rs6855246 (r2=0.816). The results were increasingly discrepant as the
306 r2 with rs13107325_C>T decreased (Figure 7 and Supplementary Figure 11). The group of
307 traits with high ppHc across multiple variants tended to have larger minimum p values in the
308 region compared to those for which ppHc was low across multiple variants, suggesting that
309 CoPheScan will be best at discriminating between potential causal variants in LD when the
310 association signal in the query data is strong.
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Figure 7: Sensitivity analysis with SLC39A8 variants
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Query variant [LD with rs13107325]
Heatmap of ppHc of SLC39A8 variants with LD r?> 0.8 with the rs13107325_C>T (bottom row)

variant. The points are scaled based on their -log10(pval) and a red border indicates a ppHc of >
0.6. CD=Crohn’s disease; SCZ = schizophrenia.

341

342 Finally, we sought to verify previously proposed causal associations between the HMGCR
343 variant rs12916_T>C and metabolic traits. HMGCR encodes HMG-CoA reductase which is
344 targeted by statins to lower LDL cholesterol. Previously, HMGCR variants have been used as
345 a proxy for statin effect to show a higher risk of type 2 diabetes and body mass index (BMI) in
346 MR studies?. But the validity of this has been challenged with evidence that there may be
347 distinct causal variants underlying type 2 diabetes, BMI and HMGCR levels?*. We performed
348 CoPheScan analysis on the UKBB traits: LDL, BMI, type 2 diabetes, waist circumference and
349 weight. We identified a known causal association with LDL (ppHc = 1). Despite significant
350 observed p-values at rs12916 at BMI, weight and waist circumference, however, CoPheScan
351 consistently concluded that while the region contained a causal variant for each trait, it was
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352 notrs12916 (ppHa > 0.99). In fact, no credible sets were identified in the HMGCR gene region
353 and the SuSIE signals from these traits indicate the presence of an alternative causal POC5
354 variant (Supplementary Figure 12). This implies that genetic studies that demonstrated a
355 relationship between statin therapy and BMI/T2DM through HMGCR variants as a proxy might
356 be incorrect?* as they studied the SNPs in isolation while ignoring their regional context®.
357 CoPheScan is thus valuable in verifying assumptions in instrumental variable analyses.

358 PheWAS of protein-associated variants

359 One challenge of GWAS has been to link disease associations to their causal genes. PheWAS
360 allows us to start with variants with known causal function on a protein and ask which diseases
361 are also causally associated, exploiting the low false positive rate of CoPheScan. We began
362 with 505 plasma protein QTLs!® identified as single variant credible sets in fine-mapping of
363 527 plasma proteins. Nine variants were identified to be associated with UKBB traits (Table 1
364 and Supplementary Table 9). Among the established associations, we found an association
365 between a pQTL for APOCL1 and high cholesterol, as well as reported treatment with the
366 cholesterol-lowering simvastatin. Both associations make sense given the known biology of
367 APOCI1, but only the first would have been detected in scanning for significant p values, as
368 the p-value for high cholesterol at this SNP (p=6.19 x 10-'°) is much lower than for simvastatin
369 (p=9.59 x 104), emphasising the value of exploiting the additional information that we believe
370 the variant to have a causal effect on a measurable phenotype (Supplementary Figure 13).
371
Table 1: Hc associations detected with pQTL variants

Query variant Protein Direction UKBB traits detected as Hc
High cholesterol, cholesterol-lowering
rs11591147 PCSK9 risk medication, ischaemic heart disease
rs5743618 TLR1 protect Asthma
rs3775291 TLR3 risk Hypothyroidism/myxoedema
rs3136516 F2_Prothrombin risk Venous thromboembolism
rs34324219 TCN1 protect Pernicious anaemia
rs964184 APOC3 risk Cholesterol-lowering medication
rs116843064 ANGPTL4 risk High cholesterol
High cholesterol, cholesterol-lowering
rs5112 APOC1 risk medication
rs214830 TGM3 risk Skin cancer
372
373

374 We also found a novel association, rs214830_G>C, a pQTL for TGM3, was associated with
375 skin cancer (ppHc=0.75). TGMS is required for skin development and is normally expressed
376 in the spinous/granular layers of the epidermis. Its expression was found to be absent in
377 melanoma and squamous cell carcinoma of the skin but strongly expressed in basal cell
378 carcinoma (BCC), suggesting it could be a specific marker for BCC diagnosis?® . Association
379 of variants in TGM3 with BCC have also been reported?’-2° but rs214830_G>C was not
380 always the top variant and GWAS associations can mark causal effects in neighbouring
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381 genes®. Our analysis suggests this association could be directly causal, with TGMS3 involved
382 in the development of BCC as well as acting as a biomarker.

383

384 Finally, we considered 3586 variants labelled as protein-truncating (PTV) in the UKBB
385 summary data with MAF > 0.001, consisting of those predicted by VEP to be stop_gained,
386 frameshift, splice_acceptor and splice_donor. The fraction of query variants that were found
387 to be causally associated with at least one trait in UKBB was much lower for PTV (~0.31%)
388 than for disease-causal variants identified in FinnGen (~40%) and pQTL (~1.8%) (Table 2,
389 Supplementary Figures 5 and 6).

390

391 Examination of the Markov chain Monte Carlo (MCMC) chains showed issues with mixing for
392 the PTV example which were not seen with the other datasets (Supplementary Figure 5).
393 When we examined the inferred priors (Supplementary Table 12) obtained from this model,
394 we observed that the p/pa ratio was ~1.02, indicating that the inferred p. and pc priors were
395 almost the same. Our PTV consisted of four VEP classes, but while the MAF distribution of
396 the stop-gained PTV was similar to missense variants, those of the other PTV (frameshift,
397 splice donor and splice acceptor) were similar to synonymous variants (Supplementary Figure
398 14a). As selection can constrain MAF, we hypothesised that the VEP stop_gained class might
399 be more enriched for functional variation than the set of four classes we had used. We
400 considered two ways to enrich the PTV set for functional variation: either using just this subset
401 of the stop-gained PTVs or using the PTVs which were also defined as high confidence
402 homozygous predicted loss-of-function (pLoF) variants in gnomAD.3* pLoF were
403 predominantly rare, such that the pLoF subset of PTV variants had a higher number of rare
404 variants compared to the stop-gained subset (Supplementary Figure 14b).

405

406 We ran the hierarchical models for these two subsets of PTVs (Supplementary Figure 15).
407 Comparing the priors (Supplementary Table 12) across the different datasets tested we
408 observed that the ratio of prior probabilities for the query variant or a non-query variant to be
409 causal, pd/pa (Table 2) obtained using the pLoF variants (2.59) was second only to the ones
410 obtained using the FinnGen disease-related variants. The ratio from the stop-gained variant
411 model (1.39) was similar to the pQTL variant model (1.28). This shows that sets of query
412 variants which have a higher functional enrichment are expected to have a high p/pa ratio.
413
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Table 2: Summary of tested variants and phenotypes from real data
N QV-QT N (%) unique

N QV-QT
Query variant set | NQV | NQT airs? detected | variants detected pc/pa
P as Hc as Hc

FinnGen (with ry) 75 1582 130697 184 30 (40%) 95.6
FinnGen (no rg) 136 2275 193706 328 43 (31.62%) 47.5
pQTL (no rg) 505 2275 954616 29 9 (1.78%) 1.28
PTV all (no rg) 3586 | 2275 | 4359271 26 11 (0.31%) 1.02
fIV gnomAD (N0 | 366 | 2975 | 202787 7 2 (0.54%) 2,59
[¢]

PTVstopgained | 417 | 275 | 837060 15 6 (0.66%) 1.39

(no rg)
425 QV - query variant, QT - query trait, N QV-QT number of trait-variant associations. The number of QT
426 were lower for the FinnGen/UKBB dataset for the ‘with ry’ case as only traits having ry data with the
427  primary traits available were retained (Methods).
428
429 26 associations were identified using all the PTV variants. All 15 associations detected with
430 the stop-gained PTVs and 7 from the pLOF overlapped with those from the whole set. Of the
431 combined 26 PTV-trait associations (Supplementary Table 10), many corresponded to known
432 effects. One of them is, rs2066847_G>GC, a NOD2 frameshift mutation, which is reported as
433 a pathogenic variant for inflammatory bowel disease in ClinVar and was associated with
434 several phenotypes related to Crohn’s disease and mouth ulcers in our analysis
435 (Supplementary Figure 16). However, as seen with migraine and cardiovascular disease
436 above, the association with mouth ulcers occurs in the opposite direction to the established
437 comorbidity of Crohn’s disease and mouth ulcers in the population, with the Crohn’s disease
438 risk allele appearing protective for mouth ulcers. Note that in the mouth ulcer trait, the effect
439 sizes were opposite in two other SNPs identified as a credible set in SuUSIE analyses of both
440 traits (Supplementary Figure 16).

441 Discussion

442 Detection of pleiotropic effects of genetic variants is an essential component of target
443 discovery and drug repositioning. PheWAS typically takes information from marginal statistics
444  at query variants in isolation of their neighbours, which can lead to false positives when
445 multiple causal variants exist in some LD. CoPheScan considers not only how small a p-value
446 is at a given variant, but how small it is in comparison to its neighbours, and estimates how
447  much upweighting should be applied due to the information that the variantis in a query variant
448 set. In our simulations, CoPheScan showed considerably better control of false positive calls
449 compared to a standard PheWAS approach, at the cost of lower sensitivity where multiple
450 causal variants exist in a region. Whilst the higher false positive rate for standard PheWAS
451 testing can be mitigated by the use of a second-stage analysis testing for colocalisation, that
452 is not possible in the case of query SNPs selected for their known effects on a protein, such
453 asthe PTV considered here.

454
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455 CoPheScan learns how much to upweight query variants through the prior parameter p. and
456 the ratio of average p¢ to average pa is a useful measure of enrichment of causal variants for
457 the set of query traits amongst the set of query variants. This measure can be used to assess
458 the quality of any choice of variant set, with values close to 1 indicating a weak choice. It may
459 vary considerably across query variant sets for the same set of query traits, as seen in the
460 PTV analyses. However, while restriction to a smaller set of query variants with greater
461 enrichment is likely to find a higher proportion of causal associations with the smaller set, this
462 will not necessarily enhance discovery: whilst the majority of the discoveries found using the
463 smaller, more enriched sets of PTV were also found in the larger unfiltered set, this restriction
464 also meantlosing plausible discoveries that didn’t fall into either of the more restricted classes.
465

466 We allow p. to vary between variants by exploiting additional external information in a
467 regression framework. In our disease-variant focused analysis, we used the genetic
468 correlation between index and query traits, but this could also be a categorical variable, such
469 as the predicted deleteriousness of a missense variant, or the level of evidence for the
470 functional effect of a PTV. Our model can exploit covariate information that relates to query
471 trait-query variant pairs, but would need to be extended to accommodate other information.
472 For example, we might see modest evidence for causal association of a medication trait with
473 agiven query variant, but intuitively trust the result is true because of stronger evidence at the
474 same variant with the disease itself. The difference in inference in such a case might be
475 explained by the smaller numbers of individuals reporting use of a specific medication. We
476 could consider exploiting genetic correlation between query traits by using a multivariate prior,
477  with covariance linked to the genetic correlations. While this is beyond the scope of the current
478 study, we hope our use of covariate-informed priors illustrates the potential for external
479 information to be exploited when conducting PheWAS and other genetic studies.

480

481 While the simulations emphasised the importance of learning pc¢ in a hierarchical model for
482 accurate inference, point estimates can be substituted if required. This borrowing of priors
483 from a larger dataset is beneficial in scenarios where we might want to use CoPheScan to test
484 associations between a small set of variants and phenotypes, as running a hierarchical model
485 on limited data will not result in optimal prior estimates. However, we strongly advise that
486 careful consideration is needed to ensure the larger dataset in which the priors are learnt is a
487 good match for the limited dataset under consideration.

488

489 One of the advantages of incorporating SUSIE in CoPheScan is the ability to detect allelic
490 heterogeneity at a locus. We demonstrated this with two well-known distinct variants in the
491 TYK2 gene which were associated with overlapping sets of immune-mediated disorders. This
492 analysis also highlighted the importance of surveying disease-specific GWAS studies and not
493 relying solely on biobanks which may hold relatively low numbers of cases of any individual
494 disease. For example, only three UKBB traits showed any association compared to seven of
495  our curated immune-mediated disease GWAS, and while psoriasis in UKBB (4192 cases) was
496 identified with one variant, psoriasis in Tsoi's GWAS study (10558 cases) was identified with
497 two. While biobanks remain incredibly useful for common traits such as cardiovascular and
498 metabolic diseases, carefully curated bespoke GWAS of less common traits should be
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499 included in any PheWAS to complement the biobank resources and reveal the full spectrum
500 of pleiotropy. This is particularly important because predicted beneficial effects of targeting a
501 protein may be countered by on-target side effects on other traits, as we saw where the
502 autoimmune-protective variant in PTPN22 was associated with an increased risk of skin
503 cancer.

504

505 Our CoPheScan approach has some specific limitations. The signals obtained from the
506 multiple variant assumption rely on the available LD information. Zou et al. demonstrated that
507 the performance of SuSIE degrades when presented with out-of-sample LD matrices4. In
508 cases where in-sample LD matrices are not accessible, it is recommended to utilise out-of-
509 sample LD from large reference panels. Our experience with SuSIE is that as the number of
510 causal variants increase, the performance (ability to detect all causal variants and/or ability to
511 detect the correct causal variants) may decrease. In the case that a true causal variant signal
512 is missed for our query variant, as occurred in around 35% of our simulations with two causal
513 variants, CoPheScan concludes Ha - ie a false negative. SUSIE is likely to miss a higher
514 fraction of secondary causal variants when the true number of causal variants increase, which
515 would be expected to lead to greater false negatives for CoPheScan. Importantly, we do not
516 see any increase in false positives when simulating two compared to one causal variant
517 Analysis of rare events in large samples with standard methods can cause bias in regression
518 summary statistics. Here, we used careful QC, thresholding on the number of events / MAF,
519 but a better approach would be to use methods specifically developed to deal with this such
520 as REGENIE®? to generate input to CoPheScan. The current form of CoPheScan only allows
521 single-ancestry studies which will be addressed in future iterations and allow an increase in
522 power to detect rare variants.

523

524 GWAS causal variants, even when identified with confidence, remain challenging to interpret
525 partly because it can be hard to link them with confidence to their causal genes. Protein-
526 altering variants have thus become increasingly important because their function on a gene is
527 presumed known. The different relative enrichments in different sets of PTV we ran suggests
528 that incorporating external evidence on the plausibility of a putative PTV having a functional
529 effect will increase accuracy in PheWAS of these variants. However, as highlighted here, they
530 often have very low minor allele frequencies. Thus, larger biobanks are still needed both for
531 analysis of less common traits with common variants and for analysis of rare functional
532 variants. Itis thus encouraging that UKBiobank and FinnGen studied here are complemented
533 by the Japan Biobank33, the Million Veteran Program3* and the Uganda Genome Resource®,
534  which should allow CoPheScan, together with efforts at multiple ancestry fine mapping®¢, to
535 reveal more completely the pleiotropic spectrum of protein-altering genetic variation.

536 Methods

537 Simulated data

538 We simulated case-control summary statistics using the EUR samples in the 1000 Genomes
539 phase 3 reference data®’. LD-independent blocks were identified using Iddetect®® and
540 haplotypes containing 1000 SNPs with MAF > 0.01 were extracted from the reference data°-%.
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541 We used simGWAS? to simulate summary statistics with either one or two causal variants for
542 the corresponding LD blocks with 10000 cases and 10000 controls.

543 We simulated GWAS summary statistics for 110000 traits to evaluate hypothesis
544  discrimination, with all genomic regions containing 1000 SNPs. We sampled query causal
545 variants at random from the 1000 SNPs and simulated each trait to correspond to one of the
546 three hypotheses. The traits within the simulated dataset were divided based on the number
547 and position of the causal variants within their genomic region:

548 1. True Hn: No causal variants within the genomic region.

549 2. True Ha: A trait with a single causal variant that is not the query variant.

550 3. True Ha2: A genomic region simulated with two distinct causal variants, none of which
551 are the query variant.

552 4. True Hc: A trait with a single causal variant that is the same as the query variant.

553 5. True Hc2: Two distinct causal variants, where one of them is the same as the query
554 variant.

555 The 110000 simulated traits were comprised of 88048 true Hn, 6276 each of true Hc and Hc2,
556 and 4700 each of Ha and Haz2 traits. We also simulated genetic correlation values for each of
557 these traits where the Hc traits were assigned a higher proportion of high rg values when
558 compared to the Hn and Ha traits (Supplementary Figure 2).

559 We used conventional PheWAS approaches, based on selecting associations that cross a
560 threshold p-value after accounting for multiple testing. We used the Benjamini & Hochberg to
561 control the FDR < 0.05 which corresponded to a p-value < 7.5e-3 and Bonferroni correction
562 with a p-value < 4.55e-7 to control the family-wise error rate (FWER) at 0.05. In parallel, we
563 used different approaches of CoPheScan to analyse this dataset:

564 1. Fixed priors and Approximate Bayes Factors (ABF).

565 Fixed priors used with the simulated data were adapted from coloc (described in the
566 Supplementary Methods) where p, = 0.8l and p, = 0.091.

567 2. Fixed priors and SuSIE Bayes factors

568 3. Hierarchical priors, ABF, with and without genetic correlation (rg)

569 4. Hierarchical priors, SUSIE Bayes factors, with and without rq

570

571 The hierarchical model of CoPheScan was run for 3e5 iterations for the models without rgand
572 1e6 iterations for the ones with rq and the chain was thinned by retaining every 30th and 100th
573 observation respectively (Supplementary Figure 3). The first 50% of the remaining 1le4
574 observations were discarded and the average prior (p,, ps, Pc.) and posterior probabilities
575 (ppH,, ppH,, ppH.) were calculated.

576
577 Therefore, the output of each analysis for each trait was summarised by the Hc hypothesis
578 when ppH, > 0.6, and Hn when ppH, > 0.2 and Ha for the remaining traits. When

579 multiple signals were detected by SUSIE in the same genomic region, CoPheScan was run on
580 each of them. Here, we assigned the hypothesis to each signal as the thresholds specified
581 above. The first hypothesis to occur in the ranking order of Hc, Hn, and Ha was assigned to
582 thetrait, i.e., when there was at least one signal which was assigned as Hc, the trait was taken
583 to be Hc. Next, any signal with Hn but no Hc was assigned as Hn, because we wanted to be
584 conservative in calling Ha which might rule out a pleiotropic effect. In the absence of a Hc and
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585 Hn signal, we checked for the presence of Ha and where there were multiple Ha signals we
586 report the minimum Ha of all the signals.

587

588 We also simulated datasets where we varied the number of true Hc traits {50, 100, 200, 500,
589 1000, 2000, 4000, 5000} while maintaining the true Hn and Ha traits the same at 88048 and
590 4700 respectively. The percentage of Hc traits in the datasets corresponded to {0.05%, 0.11%,
591 0.22%, 0.54%, 1.07%, 2.11%, 3.13%, 4.13%, 5.12%}.

592 Disease causal query variants from FinnGen

593 We downloaded SuSIE*** fine-mapping results from FinnGen*° release R5, which has a
594 sample size of 218,792 with 2,803 endpoints (https://www.finngen.fi/en/access results). For
595 each endpoint, we filtered variants that belonged to a credible set of size 1 and were also
596 presentinthe UKBB dataset. We retained 136 variants, fine-mapped from 141 FinnGen traits,
597 for further analysis. 69 out of these 141 FinnGen primary traits, had closely matching UKBB
598 traits with pre-computed genetic correlation data. Thus, 75 variants from these matching traits
599 were used for the hierarchical model using ry (Supplementary Tables 4 and 5).

600 pQTL variants

601 We downloaded summary data from a GWAS of plasma protein levels measured with 4,907
602 aptamers (corresponding to 4719 proteins) in 35,559 Icelanders from Ferkingstad et al.6. We
603 fine-mapped the region around each signal under a single variant assumption. This is
604 equivalent to taking only the first signal in a stepwise fine-mapping procedure. We made this
605 conservative choice to address the lack of access to an LD matrix for the Icelandic population,
606 making it difficult to trust secondary signals found by stepwise regression or other multiple
607 causal variant methods such as SuSIE. We obtained 505 SNPs associated with 527 proteins
608 for testing associations with the UKBB phenotypes (Supplementary Table 6).

609 Protein truncating variants

610 We selected 3586 protein truncating variants (PTV) with MAF > 0.001 (Supplementary Table
611 7) from the UKBB variants (https://broad-ukb-sumstats-us-east-

612 1.s3.amazonaws.com/round2/annotations/variants.tsv.bgz), which were annotated as

613 frameshift (883), stop gained (911), splice acceptor (682) and splice donor (1110) variants,
614 using VEP*! (The Ensembl Variant Effect Predictor, 85).

615 We also downloaded homozygous pLoF from gnomAD (v2.1.1). Out of these, we selected 366
616 variants, which were classified as either ‘lof or ‘likely_lof and were in common with the 3586
617 UKBB PTV variants®! .

618 Individual variant analyses

619 We chose four TYK2 variants: rs35018800, rs34536443, rs12720356 and rs55882956 a
620 SLC39A8 variant, rs13107325, and a HMGCR variant, rs12916, to examine the performance
621 of CoPheScan for region-specific analyses*>44,
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622 Query phenotypes

623 We used 2275 phenotypes from the UK Biobank (http://www.nealelab.is/uk-biobank). We
624 obtained in-sample linkage disequilibrium matrices from https://broad-alkesgroup-ukbb-
625 |d.s3.amazonaws.com/UKBB_LD*. We included all the 2275 traits in the CoPheScan analysis
626 of the FinnGen, pQTL and PTV variants.

627 We downloaded genetic correlation*® data between UK Biobank traits and disorders estimated
628 using LD score regression“® from https://ukbb-rg.hail.is/. In the FinnGen/UKBB dataset, only
629 1582 out of the 2275 traits had genetic correlation (rg) estimates with the UKBB traits mapped
630 to the FinnGen primary traits. So, only these traits were used for the hierarchical model that
631 included ry. Additionally, we checked the allele counts (AC) of the query variant in the
632 phenotype files and only retained the QV-QT pairs for association testing when the AC in the
633 cases > 25. After reviewing the results, to increase stringency, we further removed QV-QT
634 pairs, identified as being causally associated with AC < 30 to reduce false positive detection.
635 Individual results presented in tables have been trimmed to reflect this more stringent criterion
636 (removing five Hc results), but estimates directly from models (eg pa/pc) include observations
637 with AC between 26 and 30.

638

639 For the phenome-wide scan of the TYK2 and SLC39A8 variants, we downloaded 56 additional
640 publicly available GWAS summary statistics of phenotypes related to immune-mediated and
641 psychiatric diseases (Supplementary Table 3)47-4°. In the case of the HMGCR variant we used
642 additional quantitative UKBB phenotypes: LDL direct, Body mass index (BMI) and Weight,
643 We used UKBB LD matrices for data from European populations, and for other populations,
644 we extracted LD from the 1000 genomes phase 3 reference data®’.

645 The lists of phenotypes used with the different variants are provided in Supplementary Tables
646 2 and 3. We used Phase Il HapMap®° obtained from
647 (https://ftp.ncbi.nim.nih.gov/hapmap/recombination/2011-01 phasell B37/) to subset regions
648 from the summary statistics data around the query variants. We excluded variants in the HLA
649 region (20MB - 40MB) from the analysis.

650

651 Visualisations of the causal trait-variant associations identified with CoPheScan were done
652 using Cytoscape®! 3.9.0.

653 Functional annotation

654 Previously reported variant/gene associations with diseases were obtained from the Open
655 Target Platform and Open Target Genetics*®52, We used the DrugBank online resource for
656 indications of medications that were associated with the variants®3.

657 Data availability

658 The simulated summary statistics and processed files are available on figshare. Source data
659 are provided with this paper.
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Code availability

The CoPheScan R package is available on CRAN at https://cran.r-
project.org/package=cophescan.

A shiny app to browse the results is available here:https://ichcha-m.shinyapps.io/cophescan-
app/, the code for which can be found at https://github.com/ichcha-m/cophescan-app.

The code to reproduce the simulated summary statistics and processed datasets are
available here: https://github.com/chrlswallace/cophescan-manuscript-sim-summary-data
and https://github.com/ichcha-m/cophescan-paper.

URLs

UKBB summary statistics, http://www.nealelab.is/uk-biobank); Phase Il HapMap,
https://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01 phasell B37/; UKBB in-sample
LD matrices, https://broad-alkesqgroup-ukbb-ld.s3.amazonaws.com/UKBB LD ; FinnGen

Freeze 5 cohort, https://www.finngen.fi/en/access results; GWAS catalog,

https://www.ebi.ac.uk/gwas/; GWAS of plasma protein levels used for pQTL fine-mapping:
https://www.decode.com/summarydata/, ClinVar variant annotation:
https://platform.opentargets.org/downloads; gnomAD:
https://gnomad.broadinstitute.org/downloads; DrugBank, https://go.drugbank.com/drugs/
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