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Highlight 

Super-resolution STED microscopy uncovered detailed chromatin ultrastructure; high level of

differences  in  chromatin  condensation  and  mutual  positioning  of  chromosome  territories

between and within leaf and root meristem G1 were observed.

Abstract

Chromatin  organization  and its  interactions  are  essential  for  biological  processes  such as

DNA repair,  transcription,  and DNA replication.  Detailed  cytogenetics  data  on chromatin

conformation,  and  the  arrangement  and  mutual  positioning  of  chromosome  territories  in
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interphase  nuclei  are  still  widely  missing  in  plants.  In  this  study,  level  of  chromatin

condensation in interphase nuclei of rice (Oryza sativa) and the distribution of chromosome

territories  (CTs)  were  analyzed.  Super-resolution,  stimulated  emission  depletion  (STED),

microscopy showed different  level  of  chromatin  condensation  in  leaf  and root  interphase

nuclei. 3D immuno-FISH experiments with painting probes specific to chromosomes 9 and 2

were conducted to investigate their spatial distribution in root and leaf nuclei. Six different

configurations  of  chromosome  territories,  including  their  complete  association,  weak

association,  and complete  separation,  were observed in root meristematic  nuclei,  and four

configurations  were  observed  in  leaf  nuclei.  The  volume  of  CTs  and  frequency  of  their

association varied between the tissue types. The frequency of association of CTs specific to

chromosome 9, containing NOR region, is also affected by the activity of the 45S rDNA

locus.  Our data suggested that the arrangement of chromosomes in the nucleus is connected

to the position and the size of the nucleolus.

Introduction

Nuclear  DNA  is  condensed  together  with  structural  proteins  into  higher-order

chromatin structures,  which serve as substrates for important  biological  processes such as

DNA replication, transcription, and genome repair (Misteli,  2020). While the chromatin is

packed  into  visible,  highly  condensed  chromosome  structures  during  mitosis,  it  is

decondensed in the interphase of the cell cycle, and the borders of individual chromosomes

can not  be recognized.  The fundamental  questions  are:  how is  the chromatin packed into

chromosomes, how are the chromosomes organized during the interphase of the cell cycle,

and  how  does  the  chromatin  packing  and  chromosome  positioning  influence  biological

processes?

The  organization  of  chromatin  during  the  interphase  can  be  analyzed  by  two

methodological  approaches:  by high-throughput  chromosome conformation  capture (Hi-C)

technique,  followed by polymer modeling (Lieberman-Aiden  et al.,  2009; Giorgetti  et al.,

2014; Gibcus et al., 2018), and by three-dimensional fluorescence in situ hybridization (3D-

FISH)  and  microscopic  techniques  (Bass  et  al.,  1997).  The  Hi-C  method  combines  3C

technique  (Dekker  et  al.,  2002)  and next-generation  sequencing (Lieberman-Aiden  et  al.,

2009) to find out chromatin compaction. Recently, Hi-C techniques have been used in many

living  organisms  to  describe  chromosome  contact  patterns,  genome  packing,  and  3D

chromatin  architecture  at  much  higher  resolution  (tens  to  hundreds  of  kilobases)  than  is
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provided by 3D-FISH (Dong et al., 2018; Dumur et al., 2019; Concia et al., 2020; Golicz et

al., 2020). On the other hand, majority of Hi-C studies in plant species were performed on

pooled  tissues  and  thus  could  not  provide  information  about  the  variability  in  spatial

organization of individual chromosomes in 3D space of the interphase nuclei (Wang  et al.,

2015; Dong et al., 2017; Concia et al., 2020). This information can be achieved by application

of recently developed cytogenetic techniques, oligo-painting, and 3D-FISH, which enable to

visualize individual genome regions in 3D space of nuclei (Howe  et al., 2013;  Han  et al.,

2015). 

Hi-C studies  in  metazoans  and mammals  revealed  the existence  of  megabase-long

chromatin compartments containing either active and open chromatin (A compartments), or

inactive and closed chromatin (B compartments). Hi-C also allowed to describe organization

into smaller (in average 800 kb long in mammals), self-interacting topologically associated

domains  (TADs),  regulatory  landscapes  of  chromosomes,  which  were  revealed  in  animal

interphase nuclei (e.g.  Sexton and Cavalli, 2015; Ramírez  et al., 2018; Szabo  et al., 2018).

Genes belonging to the same TADs display similar expression dynamics suggesting that their

physical association is functionally related to gene expression control (de Graaf et al., 2013).

In plants, 3D chromatin architecture is different. For instance, TADs were not observed in A.

thaliana (Feng et al., 2014; Wang et al., 2015; Liu et al., 2017), instead their presence seems

to be linked to species with larger genomes (Dong et al., 2017; Liu et al., 2017; Concia et al.,

2020; Golicz  et al., 2020). Since TADs have not been recognized in all plant species, the

question arises whether they play an important role in the dynamics of plant chromosomes. 

Complementary cytogenetic data to Hi-C studies are still missing. In plant research,

chromosome distribution in interphase nuclei was studied by FISH with probes specific to

functional chromosome domains such as centromeres and telomeres (Hou et al., 2018; Liu et

al., 2020). The aim of these studies was to confirm the first microscopic observations done by

Carl  Rabl,  who predicted  that  chromosome positioning  in  interphase  nuclei  follows  their

orientation in the preceding mitosis (Rabl, 1885; reviewed by Cremer et al., 2006).  The so-

called  Rabl  configuration,  with  centromeres  and  telomeres  oriented  on  opposite  poles  of

nuclei, was originally assigned to plants with large genomes (wheat, rye, barley) (Cremer et

al., 2001).  The concept of a Rabl-like pattern in plant species with large genomes and non-

Rabl organization of interphase chromosomes in plants with small and medium genomes has

been disproved early after it was proposed (Fujimoto  et al., 2005). In rice, the majority of

nuclei in somatic cells lack Rabl configuration (Prieto et al., 2004; Santos and Show, 2004;

Němečková  et al., 2020), however, chromosomes of pre-meiotic cells in anthers or xylem-
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vessel precursor cells seem to assume the Rabl configuration (Prieto et al., 2004; Santos and

Show,  2004).  Compared  to  numerous  studies  on  the  centromere-telomere  organization  in

plant interphase nuclei  (Fujimoto  et al., 2005; Idziak  et al., 2015; Nemečková  et al., 2020;

Shan  et al.,  2021),  the visualization of the spatial  positioning of individual  chromosomes

during  interphase  stays  widely  unknown.  The  mutual  position  of  chromosomes  during

interphase was studied in Arabidopsis thaliana using BAC pools-based chromosome painting

technique, showing that individual chromosomes tend to occupy separated territories (Pečinka

et  al.,  2004).  The extremely  small  genome of  Arabidopsis  is  characterized  by a  specific,

rosette-like, chromosome configuration (Armstrong  et al.,2001; Fransz  et al., 2002), which

was not observed in any other plant species, thus we can not expect that the chromosome

organization  and  dynamics  revealed  in  Arabidopsis is  universal  to  other  plant  species.

Robaszkiewicz  et  al. (2016)  later  analyzed  chromosome  positioning  in  the  3D  space  of

Brachypodium distachyon, which possesses Rabl orientation, and provided the first insight

into the large variability of the interphase chromosome organization. However, the high level

of variability in mutual chromosome organization shown in the study, could have been caused

by the use of nuclei isolated from the pooled root tissue (Robaszkiewicz et al., 2016). 

Our present study provides the first insight into chromatin compaction and variability

of the spatial organization of CTs during the interphase of the cell cycle in highly dynamic

root  meristematic  cells  and  diversified  leaf  nuclei.  The  use  of  super-resolution  STED

microscopy revealed different  levels of chromatin compaction in root and leaf nuclei.  3D

immuno-FISH experiments with chromosome-specific painting probes showed different types

of mutual CTs positioning which varied between the root and leaf interphase nuclei. 

Key words

3D Immuno-FISH, chromosome painting,  chromosome territory,  rice,  spatial  organization,

microscopy

Abbreviations

3D – three-dimensional

CenH3 – centromere-specific variant of histone H3

CT  – chromosome territory

FISH – fluorescence in situ hybridization
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HiC – high-throughput chromosome conformation capture

NOR – nucleolar organizer region

PAA – polyacrylamide

rDNA – ribosomal deoxyribonucleic acid 

ROI – region of interest

RT – room temperature

STED – stimulated emission depletion

TADs – topologically associated domains

Material and methods

Plant material, seeds germination and sample preparation

Seeds of rice (Oryza sativa) cultivar Nipponbare (2n=2x=24) were obtained from Prof.

Ohmido Nobuko, Kobe University, Japan. Seeds were soaked in distilled water and bubbled

for 24 h. After that, seeds germinated in a biological incubator at 24°C in a glass Petri dish on

moistened filter paper until the primary roots were 3-4 cm long. Suspension of intact nuclei

was prepared according to Doležel et al. (1992). Briefly, root tips were cut and fixed with 2%

(v/v) formaldehyde in Tris buffer (10 mM Tris, 10 mM Na2EDTA, 100 mM NaCl, 0.1%

Triton X-100, 2 % formaldehyde, pH 7.5) at 4°C for 30 min and washed three times with Tris

buffer at 4°C. Meristematic parts of root tips (~1 mm long) were excised from 70 roots per

sample. Root meristems were homogenized in 500 µl LB01 buffer (Doležel et al., 1989) by

Polytron PT 1200 homogenizer (Kinematica AG, Littua, Switzerland) for 13 s at 14 500 rpm.

Finally,  the suspensions were filtered through a 20 µm nylon mesh and analyzed using a

FASCAria  II  SORP flow cytometer  and  sorter  (BD Bioscience,  San Jose,  USA).  Nuclei

representing the G1 phase of  the cell  cycle  were sorted into 1x meiocyte  buffer  (Bass et

al., 1997; Howe et al., 2013).

Root microtome sectioning and FISH

Roots fixed with 2% (v/v) formaldehyde in Tris were embedded in Cryo-Gel (Leica

Biosystems, ID:39475237) and cut onto a cryostat (Leica CM1950) at a thickness of 20 µm.

The resulting segments were transferred to super-frost slide (Thermo Scientific). Slides were

allowed to dry overnight at room temperature and then either immediately utilized for FISH

or stored at 4 °C until use. Prior to FISH, slides with root segments in cryo-gel were washed

for  10  min  in  1x  PBS and  subsequently  dehydrated  in  ethanol  series  (70%,  85%,  100%
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ethanol), each for 2 min. Hybridization mix (50 µl) containing 50% (v/v) formamide, 10%

(w/v) dextran sulfate in 2x SSC, 1 µg sheared salmon sperm DNA (Invitrogen, AM9680) and

200 ng per probe was added onto the slides and denatured for 8 min at 78°C and cooled

slowly (50 °C 1 min,  45 °C 1 min,  40 °C 1 min,  38 °C 5 min).  After  that,  slides were

hybridized overnight at 37 °C. The next day, slides were washed 3x5 min in 4xSSC, and root

sections  were  counterstained  with  DAPI  in  VECTASHIELD Antifade  Mounting  Medium

(Vector Laboratories, Burlingame, CA, USA).

Probes for FISH

Oligonucleotides specific for individual chromosomes were identified in the reference

genome  sequence  of  Oryza  sativa cv.  Nipponbare  (version_7.0;  http://rice.uga.edu/;

Kawahara et al., 2013) using the Chorus v2 program pipeline (Zhang et al., 2021). Two sets

of oligomers were synthesized by Arbor Biosciences (Ann Arbor, Michigan, USA). Labeled

oligomer probes were prepared according to Han et al. (2015). Probes specific for the long

and short arms of chromosome 2 were labeled by biotin-16-dUTP and by aminoallyl-dUTP-

CY3, and chromosome 9 was labeled by digoxigenin-11-dUPT and aminoallyl-dUTP-CY5

(Jena Biosciences, Jena, Germany). The painting probe of longer chromosome 2 contained

40,000 unique 45-mers  and the painting  probe specific  to  short  chromosome 9 contained

20,000 unique 45-mers. Probes specific for 45S ribosomal DNA were amplified using specific

primers (Ohmido and Fukui,  1995) and directly  labeled with aminoallyl-dUTP-CY5 (Jena

Biosciences, Jena, Germany).

Immuno-staining and fluorescence in situ hybridization (FISH)

Flow sorted nuclei were mounted in polyacrylamide gel according to Němečková et

al. (2020).  To  visualize  45S  rDNA,  chromosome  2  and  chromosome  9  together  with

fibrillarin, staining procedures, and washes were performed according to Němečková  et al.

(2020). Primary antibody anti-fibrillarin was diluted at 1:100 (ab4566, Abcam, Cambridge,

UK). The hybridization mix for FISH contained 400 ng of individual probes.

Spirochrome staining and sample preparation for STED

Flow sorted nuclei were mounted in polyacrylamide gel onto silane-cover glass. High-

precision  cover  glasses  were  prepared  according  to  de  Almeida  Engler  (2001)  with

modifications. Slides were washed in water for 15 min and in ethanol for 30 min. Slides were

air dried for 10 minutes and then freshly prepared 2% 3-aminopropyltriethoxysilane (Sigma)
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in  acetone  was  applied  for  30  min.  Slides  were  washed  twice  in  distilled  water,  dried

overnight  at  37°C,  and  stored  at  room  temperature  (RT).  After  gel  polymerization,

polyacrylamide pads were washed in MBA buffer (Howe et al., 2013; Bass et al., 2014) and

let  dry  at  RT.  Next,  glycerol  mounting  medium  AD-MOUNT  S  (ADVi,  Říčany,  Czech

Republic)  with  SPY650-DNA (diluted  1:1000)  (Spirochrome  AG,  cat#: SC501, Stein  am

Rhein, Switzerland) was applied onto the pads and covered with a microscopic slide.

Confocal and STED microscopy, and image analysis

Images were acquired using Leica TCS SP8 STED 3X confocal microscope (Leica

Microsystems, Wetzlar, Germany) equipped with 63x/1.4 NA Oil Plan Apochromat objective

and  Leica  LAS-X  software  with  Leica  Lightning  module.  Image  stacks  were  captured

separately for each chromosome using 647 nm, 561 nm, 488, and 405 nm laser lines  for

excitation and appropriate emission filters. Typically, an image stack of about 50 slides with

0.15 µm spacing was acquired. Root sections were acquired via the Navigator module using a

63x objective  and the  final  picture  was  created  by  the  mosaic  merge  function.  Different

chromatin structure of leaf and root was captured in the STED mode with 100x 1.4 NA STED

oil objective. The pinhole was set to 0.75 AU. The resolution was estimated using LAS-X

software according to full width at half maximum criterion. The chromatin signal labeled by

spirochrom  (SPY650-DNA)  was  captured  with  a  lateral  resolution  of  c.  52  nm.  LAS-X

software was also used to produce color heat maps of individual nuclei.

3D models of microscopic images and volume calculations were performed using Imaris 9.7

software (Bitplane, Oxford Instruments, Zurich, Switzerland). The volume of each nucleus,

nucleolus,  and  chromosome  territories  was  estimated  based  on  the  primary  intensity  of

fluorescence obtained by microscopy. Imaris function ‘Surface’ was used for modeling the

chromosome arrangement in the nucleus and for modeling the 45S rDNA, chromosomes, and

fibrillarin. Chanel contrast was adjusted using ‘Chanel Adjustment’ and videos were created

using the ‘Animation function’. About 100 nuclei were analyzed for each selected variant.

Results

Variation in chromatin condensation and nuclei features

To analyze and compare the level of chromatin condensation in G1 interphase nuclei

of  young  leaves  and  root  meristems,  we  applied  stimulated  emission  depletion  (STED)

microscopy.  With  this  aim,  mildly  fixed  flow  sorted  G1  nuclei  from  leaves  and  root
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meristems were mounted in polyacrylamide gel onto silane-coated high-precision cover glass

to ensure their 3D structure will be preserved. STED analysis uncovered detailed chromatin

ultrastructure  and revealed  differences  in  the  level  of  chromatin  compaction  between  G1

nuclei isolated from leaves and root meristems. G1 nuclei of root meristem,  which undergo

repeated and rapid cell division, were characterized by more relaxed chromatin and apparent

ultra-structures  (Figure  1A).  In  comparison,  a  more  compact  structure  of  chromatin  and

presence of lower amount of interchromatin compartments was found in G1 nuclei isolated

from differentiated leaf cells (Figure 1A). The chromatin condensation in G1 nuclei isolated

from both tissues were also visualized as color heat maps (e.g. Cremer et al., 2017; Cremer

and Cremer, 2019), which display differences in the general chromatin organization between

root meristem and leaf G1 nuclei (Figure 1A). The width of chromatin fiber in G1 nuclei from

leaf reached 240 nm on average, while in root, the chromatin fiber was three times narrower,

about 83 nm in width (Figure 1B)  

Likewise, the nuclei volume of G1 nuclei isolated from root meristematic zones was

more  than  three  times  higher  (199  µm3)  compared  to  leaf  nuclei  (59.6  µm3)  (Table  1).

Similarly, volumes of nucleoli, which were visualized by immunodetection with nucleolus-

specific  protein  fibrillarin,  varied  between leaves  and root  meristem.  The volume of  root

nucleoli occupied 14.13 µm3 on average, which represents 7.1 % of the volume of the root

nucleus (Supplementary video 1).  Leaf nucleolus occupied 0.7 µm3, representing only 1.2 %

of the leaf nucleus. (Table 1; Supplementary video 2).

Further analyses of about 200 G1 nuclei specific for both analyzed tissues revealed

also variation in their shapes (Figure 2A). Majority of the nuclei had elliptical shape (~ 67 %),

and the rest of the G1 nuclei had spindle-like (~ 21 %) and donut-like (~ 13 %) shapes in root

meristematic cells. Proportion of the G1 nuclei shapes was almost identical for both studied

tissues (Table 1, Figure 2A).

Chromosome specific painting probes

With the aim to analyze positioning of whole chromosomes during the interphase, we

prepared oligo-painting probes for two rice chromosomes. Based on the previous Hi-C results,

which proposed presence of two sets of chromosomes differing in level of their association

(Dong et al., 2018), we analyzed detailed positioning of two chromosomes representing the

two different sets. Long, sub-metacentric chromosome 2 (member of chromosome set which

showed close association), and short acrocentric chromosome 9 containing NOR region and

belonging to the set of chromosomes which did not show apparent association (Dong et al.,
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2018).  Painting  probes  specific  for  both  chromosomes  were designed from a set  of  non-

overlapping unique oligomers identified in reference genome sequence of  Oryza sativa cv.

Nipponbare v.7.0 (Kawahara  et al., 2013) using Chorus v2 program pipeline (Zhang  et al.,

2021). Both oligos libraries were designed to achieve a density of at least 0.9 oligo per kb to

ensure good visibility of hybridization signals after FISH. Sensitivity and suitability of the

painting  probe  for  chromosome  identification  in  situ was  confirmed  by  FISH  on

prometaphase and metaphase chromosomes (Figure 2C, 2D), and further on flow sorted G1

nuclei  of  root  (Figure  3A,  3C,  3D)  meristem  and  leaf  tissue  (Figure  3B).  Both  probes

produced bright signals without any cross-hybridization. As expected, painting probes were

strongly localized to chromosome arms, and centromeric regions and NOR region (containing

specific repetitive DNA sequences) remained without good visible signal (Figure 2C, 2D).

Mutual position of chromosomes in G1 interphase nuclei

3D-FISH with the chromosome painting probes on G1 nuclei of rice revealed presence

of compact  structures  in  both examined tissue types and confirmed presence of so-called

chromosome territories  (CTs),  which were predicted by Hi-C studies (Dong  et al.,  2018).

Painting FISH revealed variability in constitution of the CTs, which were present either as

two separated territories corresponding to two homologous chromosomes in G1 nuclei (Figure

2E,  3A,  3C),  or  as  one  large  territory  in  which  homologous  chromosomes  were  tightly

connected (Figure 3B). In general, higher proportion of G1 nuclei isolated from leave tissue

showed close association of homologous chromosomes which were visualized as one large

CT (63 % for chromosome 9; and 59 % for chromosome 2) compared to root meristem, which

mostly contained G1 nuclei with two separated CTs (87 % for chromosome 9; and 59 % for

chromosome 2) (Figure 4).

Comparison of both territory volumes corresponding to homologous chromosomes did

not reveal significant differences. Both chromosome territories represented 8.2 % of nucleus

volume in  root  meristematic  cells  and 8.8% of  the  nucleus  of  leaf  cells.  The volume of

separated territories of chromosome 2 was estimated to occupy approximately 4 % of the

nucleus volume in both plant tissues (Table 2).

Co-hybridization and visualization of both chromosomes showed six different types of

their  mutual  arrangement  in  G1  nuclei  of  root  meristem  (Figure  4A).  About  45,3  % of

examined root meristematic nuclei contained chromosomes 2 and 9 organized in two separate

CTs concurrently, and additional 27,4 % of the nuclei contained chromosome 9 arranged in

two separate CTs, and chromosome 2 in one large CT. 14,7 % of analyzed nuclei contained
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two nucleoli and in all these cases, CTs of chromosome 9 were separated. (Figure 4A).

In  comparison,  only  four  different  arrangements  of  chromosome  2  and  9  were

observed in leaf G1 nuclei. Nuclei containing two nucleoli were not present. 36.7 % of leaf

nuclei  contained  two  large  CTs  corresponding  to  chromosomes  2  and  9,  other  nuclei

contained one large CT of chromosome 9 and two separated CTs specific to chromosome 2

(26.4 %). In the similar number of nuclei (22.2 %) CTs of homologous chromosome 2 were

associated,  and CTs of  chromosome 9 were separated.  Finally,  14.4 % of  leaf  G1 nuclei

contained both chromosomes arranged in separate CTs (Figure 4A).

The  difference  in  the  proportion  of  separated  and  associated  CTs  between

chromosomes 2 and 9 can be caused by the presence of NOR region on the short arm of

chromosome 9. NOR region consists of 45S rRNA genes which constitute nucleoli,  so the

position of chromosome 9 in interphase nuclei also depends on the position and nature of the

nucleolus/nucleoli  (Supplementary  Figure  1).  A  detailed  3D  analysis  revealed  different

numbers of 45S rDNA loci in the root and leaf.  In the root, two major loci were usually

observed on the periphery of the nucleolus and 2-4 small signals were observed inside the

nucleolus (Supplementary Figure 1, Table 3). In comparison, only 1-2 45S rDNA loci situated

on the periphery of the nucleolus were observed in the leaf, where the nucleolus occupies

much lower volume (Supplementary Figure 1, Table 3).

Detailed image analysis of leaf G1 nuclei revealed that the position of chromosome 2 is more

random compared to chromosome 9. Large sub-metacentric chromosome 2 was in most cases

arranged through the entire nucleus volume in the z-axis, with a large region located on the

nuclear periphery (Figure 5). Even though, chromosome 2 does not contain rRNA genes and

is not directly  connected to nucleoli,  its spatial  positioning seems to be influenced by the

nature of nucleoli (size, number, and position inside the nucleus).

As we mentioned above, the G1 nuclei of both tissues varied also in their shape (Table

1, Figure 2A), thus we investigated relations between the CTs arrangement and nuclei shapes.

Our data showed, that specific arrangements of CTs did not correlate with different shapes of

nuclei. Despite lower proportion of spindle and donut-like nuclei (Table 1, Figure 2B), all

CTs  rearrangements  (two  separated  territories,  and  homologous  chromosome  associated

territory specific to chromosomes 2 and 9) were present in all examined nuclei (Figure 2B).

Nevertheless, the potential connection between dominant pattern of CTs and the nuclear shape

needs to be investigated in more detail on larger sample set due to unequal representation of

spindle and donut-like nuclei (Table 1, Figure 2B).

Finally, we investigated the patterns of chromosome positioning in different cell types
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of the root meristem tissue. As we showed earlier, rice root meristematic cells did not show

Rabl configuration of chromosomes during the interphase of the cell cycle (Němečková et al.,

2020). The only exception was described by Prieto  et al. (2004). They showed that xylem

vessel  cells,  which  are  bigger  and  probably  containing  endoreduplicated  nuclei,  tend  to

achieve  Rabl  configuration.  To confirm these  findings  by  3D FISH,  we localized  probes

specific  to  centromeric  and  telomeric  sequences  on  ultra-thin  root  sections  prepared  by

cryomicrotome.  Rabl  configuration  was observed in  rice xylem vessel  cells  as well  as  in

cortex cells (Figure 6A, B). Both cell types are bigger and the volume measurements of their

nuclei  performed  in  Imaris  software  indicate  the  presence  of  the  endoreduplication.

Unfortunately, proportion of these specific cell types in roots of rice is very low, so it is not

possible to identify them by flow cytometry, estimate their DNA content and thus confirm

presence of endoreduplication.

Disscusion

Early studies  of chromatin  structure  which  used electron  microscopy suggested its

helical arrangement into 30 nm nucleosome fiber (Finch and Klug, 1976; Woodcock  et al.,

1984; Bordas  et al., 1986). However, this model of chromatin folding and its higher-order

organization became controversial due to the difference in observation between in vivo and in

vitro conditions (Maeshima et al., 2019; Prieto et Maeshima, 2019). Recent development of

super-resolution microscopy techniques, which enable to reach a resolution of about 1-250 nm

(reviewed in Valli  et al., 2021), allowed to describe a presence of 100-200 nm higher-order

chromonema fibers (Kireeva  et al., 2004; Maison  et al., 2010; Belmont, 2014). Studies of

DNA replication foci in human cells proposed a globular folding of chromatin with a diameter

of about 110-150 nm (Jackson and Pombo, 1998; Albiez et al., 2006; Cseresnyes et al., 2009;

Markaki et al., 2012). 

In  our  study,  we have analyzed chromatin  compaction  in  the interphase  nuclei  of  highly

dynamic root meristematic cells and nuclei isolated from differentiated leaf cells. We have

used STED super-resolution microscopy which can reach xy-resolution less than 60 nm, and

also enables acquisition of three-dimensional images (Dumur et al., 2019; Moors et al., 2021;

Frolikova  et  al.,  2023).  To  provide  information  on  chromatin  compaction  during  the

interphase  of  the  cell  cycle,  mild  formaldehyde  fixation  of  the  nuclei  and  their  further

mounting in polyacrylamide gel was used to preserve 3D chromatin structure and to avoid

chromatin  destruction  during  sample  preparation  (Bass  et  al., 2014;  Howe  et  al.,  2013;

Němečková  et  al.,  2020).  Another  important  feature of  the sample preparation  for  STED
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microscopy was the selection of appropriate mounting media, which would not have negative

effect on 3D structure of the nuclei (Koláčková et al., in preparation). 

Striking  difference  in  chromatin  compaction  in  G1  nuclei  of  root  and  leaf  tissues  were

observed  (Figure  1).   Presence  of  80  nm  chromatin  fibers  was  revealed  in  rice  root

meristematic G1 nuclei. Similar width of chromatin fiber (70 nm) was observed in metaphase

chromosomes of Drosophila (Matsuda et al., 2010) and recently in mitotic chromosomes of

barley root meristem (Kubalová et al., 2023). These results could indicate that the higher level

of  chromatin  spiralization,  which  is  typical  for  mitotic  chromosomes,  is  maintained  in

interphase nuclei of highly dynamic meristematic cells. On the contrary, the diameter of rice

leaf  chromatin  fibers  was  three  times  higher,  reaching  240  nm.  Similar  variability  in

chromatin fibers was observed in human and animal studies, including metazoans (reviewed

by Hansen et al., 2018). Actually, studies of Belmont et al. (1994) and Dehghani et al. (2005)

showed presence of two classes of chromatin fibers, with diameters 60-80 nm, and 100-130

nm in  early  G1  and  late  G1/early  S.  Described  diameter  of  rice  higher  order  chromatin

structure correlates with the diameter of the He-la cells' higher-order chromatin structure (220

nm) (Nozaki et al., 2017). Root meristem and leaf nuclei varied also in the volume and level

of chromatin compactness. Root meristem G1 nuclei were more than three times larger and

consist of more relaxed chromatin with higher proportion of interchromatin compartments

(Figure  1).   As  we  analyzed  G1  nuclei  of  highly  dynamic  root  meristem  cells,  we  can

speculate,  that  the  bigger  size  of  these  nuclei  and  higher  proportion  of  interchromatin

compartments are needed for the synthesis of mRNA and proteins, which are required for

DNA synthesis in the following S phase. In comparison, differentiated cells of leaf tissues

contained smaller G1 nuclei consisting of more compact chromatin with lower proportion of

interchromatin  compartments,  where  transcription  takes  a  place,  as  was  demonstrated  in

human studies (Hübner et al., 2015; Cremer et Cremer, 2019). 

Recently, it was shown that nuclear architecture, the size and shape, and positioning of CTs

during  interphase,  can  be  influenced  by  several  factors,  especially  the  size  of  a  given

chromosome,  position  of  centromere,  and  the  shape  of  nucleolus.  In  Brachypodium

distachyon, a plant species that maintains Rabl configuration, a high level of homologous CTs

associations was found in spherical nuclei, while it was negatively correlated with elongated

nuclei (Robaszikewicz et al., 2016). Similar results were described for plants with rosette-like

chromosome conformation in the nuclei of both, root and leaf, tissues (Pečinka et al., 2004).

In our study, mutual position of two morphologically different chromosomes in interphase

nuclei was not correlated with the nuclei shape. On the other hand, we revealed differences in
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organization and mutual chromosome position between root meristem and leaf G1 nuclei. We

observed  presence  of  discrete  chromosome  territories  specific  to  both  visualized

chromosomes.  CTs of NOR bearing chromosome 9 were mostly separated in root meristem

nuclei, while their (CTs) association prevailed in leaf G1 nuclei, regardless their shape. Our

findings are not in agreement with the organization and distribution of CTs of NOR bearing

chromosome  in  Brachypodium,  which  were  predominantly  associated  (59,3  %)

(Robaszkiewicz et al., 2016). Robaszkiewicz et al. (2016) also suggested, that the length of a

particular chromosome may influence the dominant pattern of its spatial arrangement inside

the  nucleus,  and  showed  that  CTs  of  the  longest  chromosome  were  usually  associated.

However, the high level of variability in mutual chromosome organization shown in the study

of Robaszkiewicz  et al. (2016) could be caused by the analysis of nuclei isolated from the

pooled root tissue. Random positioning of most CTs was observed in Arabidopsis. The only

exception was the position of NOR bearing chromosomes, which seemed to be connected to

the position of nucleoli (Lysak et al., 2001; Pecinka et al., 2004; Berr and Schubert, 2007). 

Spatial organization and mutual position of CTs in 3D space of large plant genomes with Rabl

configuration have not yet been analyzed by in situ techniques. The only exception was the

visualization  of  alien  chromosomes  in  wheat-rye  and  wheat-barley  introgression  lines

(Koláčková et al., 2019; Perníčková et al., 2019).  In both cases, a complete separation of CTs

corresponding to alien chromosomes was observed in majority (83 – 89 %) of studied root

meristem cells (Koláčková et al., 2019; Perníčková et al., 2019). 

The discrepancies in CTs organization and positioning in 3D nuclear space between our work

and previous studies, especially those of Robaszkiewicz et al. (2016), could be also caused by

the  difference  of  chromosome  configuration  (Rabl  and  non-Rabl)  in  the  studied  species.

Further  investigation  has  to  be  done to  find  out  if  chromosome configuration  affects  the

organization and mutual position of CTs during the interphase of the cell cycle.     

As we already mentioned, the shape and number of nucleoli represent another factor, which

can affect  the CTs positioning. Derenzini  et al. (1998) showed, that  cancer  dividing cells

produced  elevated  amounts  of  rRNA  and  often  possessed  large  nucleoli  whereas  down-

regulation of rRNA gene transcription led to reduction in nucleolar size. More recently, Tiku

et al. (2018) showed, that size of the nucleolus positively correlates with rRNA synthesis.

Analysis of purified nucleoli of A. thaliana showed that active rRNA genes are present within

nucleoli  whereas  silent  copies  are  excluded (Pontviane  et  al.,  2013).  Correlation  between

rRNA activity and arrangement of chromosome territories was indicated also in our study.

Homologs of chromosome 9 were organized into separated territories (in 93 % of all events)
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in G1 nuclei of root meristem, where the rRNA genes are being highly expressed (Tulpová et

al., 2022). On the other hand, chromosome 9 was more associated (59 % associated, 41 %

separated) in leaf tissue, in which smaller volume of nucleolus and only 1-2 clusters of 45s

rDNA were observed.

Our study showed high rate of variability in mutual chromosome positioning in the 3D space

of G1 nuclei isolated from both plant tissues. This variability in the association/separation of

homologous CTs may reflect  the interphase chromatin dynamics.  Movement of chromatin

was  described  in  Arabidopsis interphase  nuclei  by  visualization  of  tagged  loci  in  live

seedlings (Kato and Lam, 2003), and in yeast (e.g. Heun, 2001; Bystricky et al., 2004; Hajjoul

et al., 2013), animal and human cells (e.g. Chubb et al., 2002; Levi et al., 2005, Germier et

al., 2017; Nozaki et al., 2023). 

The  observed  heterogeneity  in  chromosome  positioning  and  variability  in  chromatin

condensation within different tissues explain the discrepancy between contact frequencies and

distance distributions obtained by Hi-C and 3D-FISH (Fudenberg et al., 2017). In plants, most

Hi-C studies, which can be also used to create putative models of chromatin condensation and

chromosome positioning, were done on pooled tissues (Wang et al., 2015; Dong et al., 2017;

Concia  et  al.,  2020).  Therefore,  3D modeling  was performed based on averages  of  large

numbers of cells, and the information on potential variability in 3D structure among different

cells or cell types was lost. This can be overcome by single-cell Hi-C (scHi-C) experiments

(Nagano  et  al.,  2013; Ramani  et  al.,  2017; Tan  et  al.,  2018).  In  plant  research,  scHi-C

experiments  are  not  numerous.  For  instance,  in  rice,  this  technique  was  used  to  study

variability  in  chromatin  organization  in  eggs,  sperm cells,  unicellular  zygotes,  and  shoot

mesophyll cells. Even though the analysis was performed only on four cells representing each

tissue type, theoretical models of chromosome folding and their mutual organization indicated

variability in the positioning of chromosome territories among the analyzed nuclei (Zhou et

al., 2019).

To  conclude  our  study,  we  showed  that  advanced  microscopy  combined  with  recent

cytogenetics  techniques  is  a  powerful  tool  for  analysis  and  comparison  of  mutual

chromosomes positions in the nuclei during the interphase of the cell cycle. Our experiments

support the hypothesis,  that chromatin organization is not determined by the shape of the

nucleus. On the other hand, it appears that the size of the nucleolus and its position in the

nucleus  plays  a  role  in  chromosome positioning  during  interphase.  The  analysis  of  large

number of nuclei confirms variability in chromosome organization into nuclear territories and

their mutual positioning within and also between nuclei isolated from different tissue types.
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Furthermore, the use of super-resolution STED microscopy corroborates striking differences

in chromatin folding and organization in the interphase nuclei isolated from the two studied

plant tissues.
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Legends to figures

Table 1

Analysis of all tested G1 nuclei specific for both analyzed tissues revealing variation in shape

and volume of nucleus and nucleolus.

Table 2

Characteristics of analyzed G1 nuclei and CTs.

Table 3

Analysis of G1 nuclei and 45s rDNA.

Figure 1

Chromatin condensation in G1 nuclei of young leaves and root meristem. DNA was stained

by spirochrome (white). Differences in DNA structure are clearly visible in zoomed pictures

and heat maps (A). (B) Graph of chromatin fiber width measurement. Bar 2 µm.

Figure 2

Representative figures of oligo-painting FISH and immunolabeling. (A) Differences in shape

of analyzed nuclei  (nuclear DNA stained by DAPI, blue). Nucleolus was visualized using

fibrillarin  immunolabeling  (red).  (B)  Correlation  between  shape  of  the  nucleus  and  CTs

association. (C) Visualization of centromere (yellow), short arm of chromosome 2 (2S) (pink),

and long arm (2L) (green) on metaphase chromosomes.  (D) Visualization of chromosome 2

(pink) and chromosome 9 (green) by oligo-painting FISH on prometaphase chromosomes.

Chromosomes were counterstained with DAPI (blue). (E) Maximal intensity projection of G1

nuclei. Two separate chromosome territories correspond to two homologues chromosomes.

Long arm (2L) of chromosome in pink, short arm of chromosome (2S) in yellow. DNA was

counterstained with DAPI (blue). Bar 3 µm.

Figure 3

Maximal intensity projection of G1 nuclei of rice with immuno-FISH localization of different

specific probes on flow sorted G1 nuclei of root meristem (A, C, D) and leaf tissue (B). DNA

was counterstained with DAPI (blue). Bar 2 µm.

Figure 4
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Comparison  between  root  and  leaf  chromosome  arrangement.  (A)  Models  of  individual

arrangements created with BioRender.com. based on raw data observation. (B) Graph of both

chromosome association comparison. Association and separation in displayed in root and leaf

tissue.

Figure 5

3D models of CTs positioning in root and leave G1 nuclei. (A) Spatial positioning of CTs

specific  to chromosome 2 (yellow) and 9 (green) and nucleoli  (red).  (B) Model showing

spatial arrangement of the CTs and nucleoli with respect to the center and periphery of the

nucleus.

Shells  of  equal  area  depict  regions  of  the  nuclei,  where  signals  of  DAPI  (white)  and

chromosome 2 (yellow) and chromosome 9 (green) were localized.

Figure 6

Oligo-painting  FISH on root  ultra-thin  sections  prepared  by  cryomicrotome.  Centromeric

probe (red),  telomeric  probe  (green)  and specific  probe  for  chromosome 2 (yellow) were

applied. Pictures displayed evidence of Rabl configuration in xylem (A) and in cortex (B)

cells.

Supplemental data

Supplementary Figure 1

Differences in chromosome 9 arrangement (green) and 45s rDNA (yellow) activity in root and

leaf. Models of individual arrangements were created based on raw data observation using

BioRender.com.

Supplementary Video 1

Rice root nucleus in G1 phase.  Chromosome 2 (yellow) and chromosome 9 (green) were

visualized  using  oligo-painting  FISH.  Nucleolus  was  stained  by  immunolabeling  with

fibrillarin (red). Nuclear DNA was counterstained with DAPI (blue)

Supplementary Video 2

Rice leaf nucleus  in G1 phase.  Chromosome 2 (yellow) and chromosome 9 (green)  were
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visualized using oligo-painting FISH. Nucleolus was stained by immunolabeling fibrillarin

(red). Nuclear DNA was counterstained with DAPI (blue)
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