

1 **Chromatin compaction and spatial organization in rice interphase nuclei**

2

3 Alžběta Doležalová¹, Denisa Beránková¹, Veronika Koláčková¹, Eva Hřibová^{1*}

4

5 ¹ Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant

6 Structural and Functional Genomics, 77900 Olomouc, Czech Republic

7

8 Short title: Chromatin compaction and spatial organization in rice

9

10 *Corresponding Author:

11 Eva Hřibová

12 Institute of Experimental Botany

13 Šlechtitelů 31

14 779 00 Olomouc

15 Czech Republic

16 Tel: +420 585 238 713

17 E-mail:hribova@ueb.cas.cz

18

19 E-mail addresses:

20 Doležalová A. - dolezalova@ueb.cas.cz

21 Beránková D. - berankova@ueb.cas.cz

22 Koláčková V. - kolackova@ueb.cas.cz

23

24

25 **Highlight**

26 Super-resolution STED microscopy uncovered detailed chromatin ultrastructure; high level of
27 differences in chromatin condensation and mutual positioning of chromosome territories
28 between and within leaf and root meristem G1 were observed.

29

30

31 **Abstract**

32 Chromatin organization and its interactions are essential for biological processes such as
33 DNA repair, transcription, and DNA replication. Detailed cytogenetics data on chromatin
34 conformation, and the arrangement and mutual positioning of chromosome territories in

35 interphase nuclei are still widely missing in plants. In this study, level of chromatin
36 condensation in interphase nuclei of rice (*Oryza sativa*) and the distribution of chromosome
37 territories (CTs) were analyzed. Super-resolution, stimulated emission depletion (STED),
38 microscopy showed different level of chromatin condensation in leaf and root interphase
39 nuclei. 3D immuno-FISH experiments with painting probes specific to chromosomes 9 and 2
40 were conducted to investigate their spatial distribution in root and leaf nuclei. Six different
41 configurations of chromosome territories, including their complete association, weak
42 association, and complete separation, were observed in root meristematic nuclei, and four
43 configurations were observed in leaf nuclei. The volume of CTs and frequency of their
44 association varied between the tissue types. The frequency of association of CTs specific to
45 chromosome 9, containing NOR region, is also affected by the activity of the 45S rDNA
46 locus. Our data suggested that the arrangement of chromosomes in the nucleus is connected
47 to the position and the size of the nucleolus.

48
49

50 **Introduction**

51 Nuclear DNA is condensed together with structural proteins into higher-order
52 chromatin structures, which serve as substrates for important biological processes such as
53 DNA replication, transcription, and genome repair (Misteli, 2020). While the chromatin is
54 packed into visible, highly condensed chromosome structures during mitosis, it is
55 decondensed in the interphase of the cell cycle, and the borders of individual chromosomes
56 can not be recognized. The fundamental questions are: how is the chromatin packed into
57 chromosomes, how are the chromosomes organized during the interphase of the cell cycle,
58 and how does the chromatin packing and chromosome positioning influence biological
59 processes?

60 The organization of chromatin during the interphase can be analyzed by two
61 methodological approaches: by high-throughput chromosome conformation capture (Hi-C)
62 technique, followed by polymer modeling (Lieberman-Aiden *et al.*, 2009; Giorgetti *et al.*,
63 2014; Gibcus *et al.*, 2018), and by three-dimensional fluorescence in situ hybridization (3D-
64 FISH) and microscopic techniques (Bass *et al.*, 1997). The Hi-C method combines 3C
65 technique (Dekker *et al.*, 2002) and next-generation sequencing (Lieberman-Aiden *et al.*,
66 2009) to find out chromatin compaction. Recently, Hi-C techniques have been used in many
67 living organisms to describe chromosome contact patterns, genome packing, and 3D
68 chromatin architecture at much higher resolution (tens to hundreds of kilobases) than is

69 provided by 3D-FISH (Dong *et al.*, 2018; Dumur *et al.*, 2019; Concia *et al.*, 2020; Golicz *et*
70 *al.*, 2020). On the other hand, majority of Hi-C studies in plant species were performed on
71 pooled tissues and thus could not provide information about the variability in spatial
72 organization of individual chromosomes in 3D space of the interphase nuclei (Wang *et al.*,
73 2015; Dong *et al.*, 2017; Concia *et al.*, 2020). This information can be achieved by application
74 of recently developed cytogenetic techniques, oligo-painting, and 3D-FISH, which enable to
75 visualize individual genome regions in 3D space of nuclei (Howe *et al.*, 2013; Han *et al.*,
76 2015).

77 Hi-C studies in metazoans and mammals revealed the existence of megabase-long
78 chromatin compartments containing either active and open chromatin (A compartments), or
79 inactive and closed chromatin (B compartments). Hi-C also allowed to describe organization
80 into smaller (in average 800 kb long in mammals), self-interacting topologically associated
81 domains (TADs), regulatory landscapes of chromosomes, which were revealed in animal
82 interphase nuclei (e.g. Sexton and Cavalli, 2015; Ramírez *et al.*, 2018; Szabo *et al.*, 2018).
83 Genes belonging to the same TADs display similar expression dynamics suggesting that their
84 physical association is functionally related to gene expression control (de Graaf *et al.*, 2013).
85 In plants, 3D chromatin architecture is different. For instance, TADs were not observed in *A.*
86 *thaliana* (Feng *et al.*, 2014; Wang *et al.*, 2015; Liu *et al.*, 2017), instead their presence seems
87 to be linked to species with larger genomes (Dong *et al.*, 2017; Liu *et al.*, 2017; Concia *et al.*,
88 2020; Golicz *et al.*, 2020). Since TADs have not been recognized in all plant species, the
89 question arises whether they play an important role in the dynamics of plant chromosomes.

90 Complementary cytogenetic data to Hi-C studies are still missing. In plant research,
91 chromosome distribution in interphase nuclei was studied by FISH with probes specific to
92 functional chromosome domains such as centromeres and telomeres (Hou *et al.*, 2018; Liu *et*
93 *al.*, 2020). The aim of these studies was to confirm the first microscopic observations *done by*
94 Carl Rabl, who predicted that chromosome positioning in interphase nuclei follows their
95 orientation in the preceding mitosis (Rabl, 1885; reviewed by Cremer *et al.*, 2006). The so-
96 called Rabl configuration, with centromeres and telomeres oriented on opposite poles of
97 nuclei, was originally assigned to plants with large genomes (wheat, rye, barley) (Cremer *et*
98 *al.*, 2001). The concept of a Rabl-like pattern in plant species with large genomes and non-
99 Rabl organization of interphase chromosomes in plants with small and medium genomes has
100 been disproved early after it was proposed (Fujimoto *et al.*, 2005). In rice, the majority of
101 nuclei in somatic cells lack Rabl configuration (Prieto *et al.*, 2004; Santos and Show, 2004;
102 Němečková *et al.*, 2020), however, chromosomes of pre-meiotic cells in anthers or xylem-

103 vessel precursor cells seem to assume the Rabl configuration (Prieto *et al.*, 2004; Santos and
104 Show, 2004). Compared to numerous studies on the centromere-telomere organization in
105 plant interphase nuclei (Fujimoto *et al.*, 2005; Idziak *et al.*, 2015; Nemečková *et al.*, 2020;
106 Shan *et al.*, 2021), the visualization of the spatial positioning of individual chromosomes
107 during interphase stays widely unknown. The mutual position of chromosomes during
108 interphase was studied in *Arabidopsis thaliana* using BAC pools-based chromosome painting
109 technique, showing that individual chromosomes tend to occupy separated territories (Pečinka
110 *et al.*, 2004). The extremely small genome of *Arabidopsis* is characterized by a specific,
111 rosette-like, chromosome configuration (Armstrong *et al.*, 2001; Fransz *et al.*, 2002), which
112 was not observed in any other plant species, thus we can not expect that the chromosome
113 organization and dynamics revealed in *Arabidopsis* is universal to other plant species.
114 Robaszkiewicz *et al.* (2016) later analyzed chromosome positioning in the 3D space of
115 *Brachypodium distachyon*, which possesses Rabl orientation, and provided the first insight
116 into the large variability of the interphase chromosome organization. However, the high level
117 of variability in mutual chromosome organization shown in the study, could have been caused
118 by the use of nuclei isolated from the pooled root tissue (Robaszkiewicz *et al.*, 2016).

119 Our present study provides the first insight into chromatin compaction and variability
120 of the spatial organization of CTs during the interphase of the cell cycle in highly dynamic
121 root meristematic cells and diversified leaf nuclei. The use of super-resolution STED
122 microscopy revealed different levels of chromatin compaction in root and leaf nuclei. 3D
123 immuno-FISH experiments with chromosome-specific painting probes showed different types
124 of mutual CTs positioning which varied between the root and leaf interphase nuclei.

125

126

127 **Key words**

128 3D Immuno-FISH, chromosome painting, chromosome territory, rice, spatial organization,
129 microscopy

130

131

132 **Abbreviations**

133 **3D** – three-dimensional

134 **CenH3** – centromere-specific variant of histone H3

135 **CT** – chromosome territory

136 **FISH** – fluorescence *in situ* hybridization

137 **HiC** – high-throughput chromosome conformation capture

138 **NOR** – nucleolar organizer region

139 **PAA** – polyacrylamide

140 **rDNA** – ribosomal deoxyribonucleic acid

141 **ROI** – region of interest

142 **RT** – room temperature

143 **STED** – stimulated emission depletion

144 **TADs** – topologically associated domains

145

146

147 **Material and methods**

148 **Plant material, seeds germination and sample preparation**

149 Seeds of rice (*Oryza sativa*) cultivar Nipponbare ($2n=2x=24$) were obtained from Prof. 150 Ohmido Nobuko, Kobe University, Japan. Seeds were soaked in distilled water and bubbled 151 for 24 h. After that, seeds germinated in a biological incubator at 24°C in a glass Petri dish on 152 moistened filter paper until the primary roots were 3-4 cm long. Suspension of intact nuclei 153 was prepared according to Doležel *et al.* (1992). Briefly, root tips were cut and fixed with 2% 154 (v/v) formaldehyde in Tris buffer (10 mM Tris, 10 mM Na2EDTA, 100 mM NaCl, 0.1% 155 Triton X-100, 2 % formaldehyde, pH 7.5) at 4°C for 30 min and washed three times with Tris 156 buffer at 4°C. Meristematic parts of root tips (~1 mm long) were excised from 70 roots per 157 sample. Root meristems were homogenized in 500 µl LB01 buffer (Doležel *et al.*, 1989) by 158 Polytron PT 1200 homogenizer (Kinematica AG, Littua, Switzerland) for 13 s at 14 500 rpm. 159 Finally, the suspensions were filtered through a 20 µm nylon mesh and analyzed using a 160 FASCAria II SORP flow cytometer and sorter (BD Bioscience, San Jose, USA). Nuclei 161 representing the G1 phase of the cell cycle were sorted into 1x meiocyte buffer (Bass *et* 162 *al.*, 1997; Howe *et al.*, 2013).

163

164 **Root microtome sectioning and FISH**

165 Roots fixed with 2% (v/v) formaldehyde in Tris were embedded in Cryo-Gel (Leica 166 Biosystems, ID:39475237) and cut onto a cryostat (Leica CM1950) at a thickness of 20 µm. 167 The resulting segments were transferred to super-frost slide (Thermo Scientific). Slides were 168 allowed to dry overnight at room temperature and then either immediately utilized for FISH 169 or stored at 4 °C until use. Prior to FISH, slides with root segments in cryo-gel were washed 170 for 10 min in 1x PBS and subsequently dehydrated in ethanol series (70%, 85%, 100%

171 ethanol), each for 2 min. Hybridization mix (50 μ l) containing 50% (v/v) formamide, 10%
172 (w/v) dextran sulfate in 2x SSC, 1 μ g sheared salmon sperm DNA (Invitrogen, AM9680) and
173 200 ng per probe was added onto the slides and denatured for 8 min at 78°C and cooled
174 slowly (50 °C 1 min, 45 °C 1 min, 40 °C 1 min, 38 °C 5 min). After that, slides were
175 hybridized overnight at 37 °C. The next day, slides were washed 3x5 min in 4xSSC, and root
176 sections were counterstained with DAPI in VECTASHIELD Antifade Mounting Medium
177 (Vector Laboratories, Burlingame, CA, USA).

178

179 **Probes for FISH**

180 Oligonucleotides specific for individual chromosomes were identified in the reference
181 genome sequence of *Oryza sativa* cv. Nipponbare (version_7.0; <http://rice.uga.edu/>;
182 Kawahara et al., 2013) using the Chorus v2 program pipeline (Zhang et al., 2021). Two sets
183 of oligomers were synthesized by Arbor Biosciences (Ann Arbor, Michigan, USA). Labeled
184 oligomer probes were prepared according to Han et al. (2015). Probes specific for the long
185 and short arms of chromosome 2 were labeled by biotin-16-dUTP and by aminoallyl-dUTP-
186 CY3, and chromosome 9 was labeled by digoxigenin-11-dUTP and aminoallyl-dUTP-CY5
187 (Jena Biosciences, Jena, Germany). The painting probe of longer chromosome 2 contained
188 40,000 unique 45-mers and the painting probe specific to short chromosome 9 contained
189 20,000 unique 45-mers. Probes specific for 45S ribosomal DNA were amplified using specific
190 primers (Ohmido and Fukui, 1995) and directly labeled with aminoallyl-dUTP-CY5 (Jena
191 Biosciences, Jena, Germany).

192

193 **Immuno-staining and fluorescence in situ hybridization (FISH)**

194 Flow sorted nuclei were mounted in polyacrylamide gel according to Němečková et
195 al. (2020). To visualize 45S rDNA, chromosome 2 and chromosome 9 together with
196 fibrillarin, staining procedures, and washes were performed according to Němečková et al.
197 (2020). Primary antibody anti-fibrillarin was diluted at 1:100 (ab4566, Abcam, Cambridge,
198 UK). The hybridization mix for FISH contained 400 ng of individual probes.

199

200 **Spirochrome staining and sample preparation for STED**

201 Flow sorted nuclei were mounted in polyacrylamide gel onto silane-cover glass. High-
202 precision cover glasses were prepared according to de Almeida Engler (2001) with
203 modifications. Slides were washed in water for 15 min and in ethanol for 30 min. Slides were
204 air dried for 10 minutes and then freshly prepared 2% 3-aminopropyltriethoxysilane (Sigma)

205 in acetone was applied for 30 min. Slides were washed twice in distilled water, dried
206 overnight at 37°C, and stored at room temperature (RT). After gel polymerization,
207 polyacrylamide pads were washed in MBA buffer (Howe *et al.*, 2013; Bass *et al.*, 2014) and
208 let dry at RT. Next, glycerol mounting medium AD-MOUNT S (ADVi, Říčany, Czech
209 Republic) with SPY650-DNA (diluted 1:1000) (Spirochrome AG, cat#: SC501, Stein am
210 Rhein, Switzerland) was applied onto the pads and covered with a microscopic slide.

211

212 **Confocal and STED microscopy, and image analysis**

213 Images were acquired using Leica TCS SP8 STED 3X confocal microscope (Leica
214 Microsystems, Wetzlar, Germany) equipped with 63x/1.4 NA Oil Plan Apochromat objective
215 and Leica LAS-X software with Leica Lightning module. Image stacks were captured
216 separately for each chromosome using 647 nm, 561 nm, 488, and 405 nm laser lines for
217 excitation and appropriate emission filters. Typically, an image stack of about 50 slides with
218 0.15 µm spacing was acquired. Root sections were acquired via the Navigator module using a
219 63x objective and the final picture was created by the mosaic merge function. Different
220 chromatin structure of leaf and root was captured in the STED mode with *100x 1.4 NA STED*
221 *oil objective*. The pinhole was set to 0.75 AU. The resolution was estimated using LAS-X
222 software according to full width at half maximum criterion. The chromatin signal labeled by
223 spirochrom (SPY650-DNA) was captured with a lateral resolution of c. 52 nm. LAS-X
224 software was also used to produce color heat maps of individual nuclei.

225 3D models of microscopic images and volume calculations were performed using Imaris 9.7
226 software (Bitplane, Oxford Instruments, Zurich, Switzerland). The volume of each nucleus,
227 nucleolus, and chromosome territories was estimated based on the primary intensity of
228 fluorescence obtained by microscopy. Imaris function ‘Surface’ was used for modeling the
229 chromosome arrangement in the nucleus and for modeling the 45S rDNA, chromosomes, and
230 fibrillarin. Chanel contrast was adjusted using ‘Chanel Adjustment’ and videos were created
231 using the ‘Animation function’. About 100 nuclei were analyzed for each selected variant.

232

233

234 **Results**

235 **Variation in chromatin condensation and nuclei features**

236 To analyze and compare the level of chromatin condensation in G1 interphase nuclei
237 of young leaves and root meristems, we applied stimulated emission depletion (STED)
238 microscopy. With this aim, mildly fixed flow sorted G1 nuclei from leaves and root

239 meristems were mounted in polyacrylamide gel onto silane-coated high-precision cover glass
240 to ensure their 3D structure will be preserved. STED analysis uncovered detailed chromatin
241 ultrastructure and revealed differences in the level of chromatin compaction between G1
242 nuclei isolated from leaves and root meristems. G1 nuclei of root meristem, which undergo
243 repeated and rapid cell division, were characterized by more relaxed chromatin and apparent
244 ultra-structures (Figure 1A). In comparison, a more compact structure of chromatin and apparent
245 presence of lower amount of interchromatin compartments was found in G1 nuclei isolated
246 from differentiated leaf cells (Figure 1A). The chromatin condensation in G1 nuclei isolated
247 from both tissues were also visualized as color heat maps (e.g. Cremer *et al.*, 2017; Cremer
248 and Cremer, 2019), which display differences in the general chromatin organization between
249 root meristem and leaf G1 nuclei (Figure 1A). The width of chromatin fiber in G1 nuclei from
250 leaf reached 240 nm on average, while in root, the chromatin fiber was three times narrower,
251 about 83 nm in width (Figure 1B)

252 Likewise, the nuclei volume of G1 nuclei isolated from root meristematic zones was
253 more than three times higher (199 μm^3) compared to leaf nuclei (59.6 μm^3) (Table 1).
254 Similarly, volumes of nucleoli, which were visualized by immunodetection with nucleolus-
255 specific protein fibrillarin, varied between leaves and root meristem. The volume of root
256 nucleoli occupied 14.13 μm^3 on average, which represents 7.1 % of the volume of the root
257 nucleus (Supplementary video 1). Leaf nucleolus occupied 0.7 μm^3 , representing only 1.2 %
258 of the leaf nucleus. (Table 1; Supplementary video 2).

259 Further analyses of about 200 G1 nuclei specific for both analyzed tissues revealed
260 also variation in their shapes (Figure 2A). Majority of the nuclei had elliptical shape (~ 67 %),
261 and the rest of the G1 nuclei had spindle-like (~ 21 %) and donut-like (~ 13 %) shapes in root
262 meristematic cells. Proportion of the G1 nuclei shapes was almost identical for both studied
263 tissues (Table 1, Figure 2A).

264

265 **Chromosome specific painting probes**

266 With the aim to analyze positioning of whole chromosomes during the interphase, we
267 prepared oligo-painting probes for two rice chromosomes. Based on the previous Hi-C results,
268 which proposed presence of two sets of chromosomes differing in level of their association
269 (Dong *et al.*, 2018), we analyzed detailed positioning of two chromosomes representing the
270 two different sets. Long, sub-metacentric chromosome 2 (member of chromosome set which
271 showed close association), and short acrocentric chromosome 9 containing NOR region and
272 belonging to the set of chromosomes which did not show apparent association (Dong *et al.*,

273 2018). Painting probes specific for both chromosomes were designed from a set of non-
274 overlapping unique oligomers identified in reference genome sequence of *Oryza sativa* cv.
275 Nipponbare v.7.0 (Kawahara *et al.*, 2013) using Chorus v2 program pipeline (Zhang *et al.*,
276 2021). Both oligos libraries were designed to achieve a density of at least 0.9 oligo per kb to
277 ensure good visibility of hybridization signals after FISH. Sensitivity and suitability of the
278 painting probe for chromosome identification *in situ* was confirmed by FISH on
279 prometaphase and metaphase chromosomes (Figure 2C, 2D), and further on flow sorted G1
280 nuclei of root (Figure 3A, 3C, 3D) meristem and leaf tissue (Figure 3B). Both probes
281 produced bright signals without any cross-hybridization. As expected, painting probes were
282 strongly localized to chromosome arms, and centromeric regions and NOR region (containing
283 specific repetitive DNA sequences) remained without good visible signal (Figure 2C, 2D).

284

285 **Mutual position of chromosomes in G1 interphase nuclei**

286 3D-FISH with the chromosome painting probes on G1 nuclei of rice revealed presence
287 of compact structures in both examined tissue types and confirmed presence of so-called
288 chromosome territories (CTs), which were predicted by Hi-C studies (Dong *et al.*, 2018).
289 Painting FISH revealed variability in constitution of the CTs, which were present either as
290 two separated territories corresponding to two homologous chromosomes in G1 nuclei (Figure
291 2E, 3A, 3C), or as one large territory in which homologous chromosomes were tightly
292 connected (Figure 3B). In general, higher proportion of G1 nuclei isolated from leave tissue
293 showed close association of homologous chromosomes which were visualized as one large
294 CT (63 % for chromosome 9; and 59 % for chromosome 2) compared to root meristem, which
295 mostly contained G1 nuclei with two separated CTs (87 % for chromosome 9; and 59 % for
296 chromosome 2) (Figure 4).

297 Comparison of both territory volumes corresponding to homologous chromosomes did
298 not reveal significant differences. Both chromosome territories represented 8.2 % of nucleus
299 volume in root meristematic cells and 8.8% of the nucleus of leaf cells. The volume of
300 separated territories of chromosome 2 was estimated to occupy approximately 4 % of the
301 nucleus volume in both plant tissues (Table 2).

302 Co-hybridization and visualization of both chromosomes showed six different types of
303 their mutual arrangement in G1 nuclei of root meristem (Figure 4A). About 45,3 % of
304 examined root meristematic nuclei contained chromosomes 2 and 9 organized in two separate
305 CTs concurrently, and additional 27,4 % of the nuclei contained chromosome 9 arranged in
306 two separate CTs, and chromosome 2 in one large CT. 14,7 % of analyzed nuclei contained

307 two nucleoli and in all these cases, CTs of chromosome 9 were separated. (Figure 4A).

308 In comparison, only four different arrangements of chromosome 2 and 9 were
309 observed in leaf G1 nuclei. Nuclei containing two nucleoli were not present. 36.7 % of leaf
310 nuclei contained two large CTs corresponding to chromosomes 2 and 9, other nuclei
311 contained one large CT of chromosome 9 and two separated CTs specific to chromosome 2
312 (26.4 %). In the similar number of nuclei (22.2 %) CTs of homologous chromosome 2 were
313 associated, and CTs of chromosome 9 were separated. Finally, 14.4 % of leaf G1 nuclei
314 contained both chromosomes arranged in separate CTs (Figure 4A).

315 The difference in the proportion of separated and associated CTs between
316 chromosomes 2 and 9 can be caused by the presence of NOR region on the short arm of
317 chromosome 9. NOR region consists of 45S rRNA genes which constitute nucleoli, so the
318 position of chromosome 9 in interphase nuclei also depends on the position and nature of the
319 nucleolus/nucleoli (Supplementary Figure 1). A detailed 3D analysis revealed different
320 numbers of 45S rDNA loci in the root and leaf. In the root, two major loci were usually
321 observed on the periphery of the nucleolus and 2-4 small signals were observed inside the
322 nucleolus (Supplementary Figure 1, Table 3). In comparison, only 1-2 45S rDNA loci situated
323 on the periphery of the nucleolus were observed in the leaf, where the nucleolus occupies
324 much lower volume (Supplementary Figure 1, Table 3).

325 Detailed image analysis of leaf G1 nuclei revealed that the position of chromosome 2 is more
326 random compared to chromosome 9. Large sub-metacentric chromosome 2 was in most cases
327 arranged through the entire nucleus volume in the z-axis, with a large region located on the
328 nuclear periphery (Figure 5). Even though, chromosome 2 does not contain rRNA genes and
329 is not directly connected to nucleoli, its spatial positioning seems to be influenced by the
330 nature of nucleoli (size, number, and position inside the nucleus).

331 As we mentioned above, the G1 nuclei of both tissues varied also in their shape (Table
332 1, Figure 2A), thus we investigated relations between the CTs arrangement and nuclei shapes.
333 Our data showed, that specific arrangements of CTs did not correlate with different shapes of
334 nuclei. Despite lower proportion of spindle and donut-like nuclei (Table 1, Figure 2B), all
335 CTs rearrangements (two separated territories, and homologous chromosome associated
336 territory specific to chromosomes 2 and 9) were present in all examined nuclei (Figure 2B).
337 Nevertheless, the potential connection between dominant pattern of CTs and the nuclear shape
338 needs to be investigated in more detail on larger sample set due to unequal representation of
339 spindle and donut-like nuclei (Table 1, Figure 2B).

340 Finally, we investigated the patterns of chromosome positioning in different cell types

341 of the root meristem tissue. As we showed earlier, rice root meristematic cells did not show
342 Rabl configuration of chromosomes during the interphase of the cell cycle (Němečková *et al.*,
343 2020). The only exception was described by Prieto *et al.* (2004). They showed that xylem
344 vessel cells, which are bigger and probably containing endoreduplicated nuclei, tend to
345 achieve Rabl configuration. To confirm these findings by 3D FISH, we localized probes
346 specific to centromeric and telomeric sequences on ultra-thin root sections prepared by
347 cryomicrotome. Rabl configuration was observed in rice xylem vessel cells as well as in
348 cortex cells (Figure 6A, B). Both cell types are bigger and the volume measurements of their
349 nuclei performed in Imaris software indicate the presence of the endoreduplication.
350 Unfortunately, proportion of these specific cell types in roots of rice is very low, so it is not
351 possible to identify them by flow cytometry, estimate their DNA content and thus confirm
352 presence of endoreduplication.

353

354 **Disscusion**

355 Early studies of chromatin structure which used electron microscopy suggested its
356 helical arrangement into 30 nm nucleosome fiber (Finch and Klug, 1976; Woodcock *et al.*,
357 1984; Bordas *et al.*, 1986). However, this model of chromatin folding and its higher-order
358 organization became controversial due to the difference in observation between *in vivo* and *in*
359 *vitro* conditions (Maeshima *et al.*, 2019; Prieto et Maeshima, 2019). Recent development of
360 super-resolution microscopy techniques, which enable to reach a resolution of about 1-250 nm
361 (reviewed in Valli *et al.*, 2021), allowed to describe a presence of 100-200 nm higher-order
362 chromonema fibers (Kireeva *et al.*, 2004; Maison *et al.*, 2010; Belmont, 2014). Studies of
363 DNA replication foci in human cells proposed a globular folding of chromatin with a diameter
364 of about 110-150 nm (Jackson and Pombo, 1998; Albiez *et al.*, 2006; Cseresnyes *et al.*, 2009;
365 Markaki *et al.*, 2012).

366 In our study, we have analyzed chromatin compaction in the interphase nuclei of highly
367 dynamic root meristematic cells and nuclei isolated from differentiated leaf cells. We have
368 used STED super-resolution microscopy which can reach xy-resolution less than 60 nm, and
369 also enables acquisition of three-dimensional images (Dumur *et al.*, 2019; Moors *et al.*, 2021;
370 Frolikova *et al.*, 2023). To provide information on chromatin compaction during the
371 interphase of the cell cycle, mild formaldehyde fixation of the nuclei and their further
372 mounting in polyacrylamide gel was used to preserve 3D chromatin structure and to avoid
373 chromatin destruction during sample preparation (Bass *et al.*, 2014; Howe *et al.*, 2013;
374 Němečková *et al.*, 2020). Another important feature of the sample preparation for STED

375 microscopy was the selection of appropriate mounting media, which would not have negative
376 effect on 3D structure of the nuclei (Koláčková *et al.*, in preparation).

377 Striking difference in chromatin compaction in G1 nuclei of root and leaf tissues were
378 observed (Figure 1). Presence of 80 nm chromatin fibers was revealed in rice root
379 meristematic G1 nuclei. Similar width of chromatin fiber (70 nm) was observed in metaphase
380 chromosomes of *Drosophila* (Matsuda *et al.*, 2010) and recently in mitotic chromosomes of
381 barley root meristem (Kubalová *et al.*, 2023). These results could indicate that the higher level
382 of chromatin spiralization, which is typical for mitotic chromosomes, is maintained in
383 interphase nuclei of highly dynamic meristematic cells. On the contrary, the diameter of rice
384 leaf chromatin fibers was three times higher, reaching 240 nm. Similar variability in
385 chromatin fibers was observed in human and animal studies, including metazoans (reviewed
386 by Hansen *et al.*, 2018). Actually, studies of Belmont *et al.* (1994) and Dehghani *et al.* (2005)
387 showed presence of two classes of chromatin fibers, with diameters 60-80 nm, and 100-130
388 nm in early G1 and late G1/early S. Described diameter of rice higher order chromatin
389 structure correlates with the diameter of the He-la cells' higher-order chromatin structure (220
390 nm) (Nozaki *et al.*, 2017). Root meristem and leaf nuclei varied also in the volume and level
391 of chromatin compactness. Root meristem G1 nuclei were more than three times larger and
392 consist of more relaxed chromatin with higher proportion of interchromatin compartments
393 (Figure 1). As we analyzed G1 nuclei of highly dynamic root meristem cells, we can
394 speculate, that the bigger size of these nuclei and higher proportion of interchromatin
395 compartments are needed for the synthesis of mRNA and proteins, which are required for
396 DNA synthesis in the following S phase. In comparison, differentiated cells of leaf tissues
397 contained smaller G1 nuclei consisting of more compact chromatin with lower proportion of
398 interchromatin compartments, where transcription takes a place, as was demonstrated in
399 human studies (Hübner *et al.*, 2015; Cremer et Cremer, 2019).

400 Recently, it was shown that nuclear architecture, the size and shape, and positioning of CTs
401 during interphase, can be influenced by several factors, especially the size of a given
402 chromosome, position of centromere, and the shape of nucleolus. In *Brachypodium*
403 *distachyon*, a plant species that maintains Rabl configuration, a high level of homologous CTs
404 associations was found in spherical nuclei, while it was negatively correlated with elongated
405 nuclei (Robaszkiewicz *et al.*, 2016). Similar results were described for plants with rosette-like
406 chromosome conformation in the nuclei of both, root and leaf, tissues (Pečinka *et al.*, 2004).
407 In our study, mutual position of two morphologically different chromosomes in interphase
408 nuclei was not correlated with the nuclei shape. On the other hand, we revealed differences in

409 organization and mutual chromosome position between root meristem and leaf G1 nuclei. We
410 observed presence of discrete chromosome territories specific to both visualized
411 chromosomes. CTs of NOR bearing chromosome 9 were mostly separated in root meristem
412 nuclei, while their (CTs) association prevailed in leaf G1 nuclei, regardless their shape. Our
413 findings are not in agreement with the organization and distribution of CTs of NOR bearing
414 chromosome in *Brachypodium*, which were predominantly associated (59,3 %)
415 (Robaszkiewicz *et al.*, 2016). Robaszkiewicz *et al.* (2016) also suggested, that the length of a
416 particular chromosome may influence the dominant pattern of its spatial arrangement inside
417 the nucleus, and showed that CTs of the longest chromosome were usually associated.
418 However, the high level of variability in mutual chromosome organization shown in the study
419 of Robaszkiewicz *et al.* (2016) could be caused by the analysis of nuclei isolated from the
420 pooled root tissue. Random positioning of most CTs was observed in *Arabidopsis*. The only
421 exception was the position of NOR bearing chromosomes, which seemed to be connected to
422 the position of nucleoli (Lysak *et al.*, 2001; Pecinka *et al.*, 2004; Berr and Schubert, 2007).
423 Spatial organization and mutual position of CTs in 3D space of large plant genomes with Rabl
424 configuration have not yet been analyzed by *in situ* techniques. The only exception was the
425 visualization of alien chromosomes in wheat-rye and wheat-barley introgression lines
426 (Koláčková *et al.*, 2019; Perníčková *et al.*, 2019). In both cases, a complete separation of CTs
427 corresponding to alien chromosomes was observed in majority (83 – 89 %) of studied root
428 meristem cells (Koláčková *et al.*, 2019; Perníčková *et al.*, 2019).
429 The discrepancies in CTs organization and positioning in 3D nuclear space between our work
430 and previous studies, especially those of Robaszkiewicz *et al.* (2016), could be also caused by
431 the difference of chromosome configuration (Rabl and non-Rabl) in the studied species.
432 Further investigation has to be done to find out if chromosome configuration affects the
433 organization and mutual position of CTs during the interphase of the cell cycle.
434 As we already mentioned, the shape and number of nucleoli represent another factor, which
435 can affect the CTs positioning. Derenzini *et al.* (1998) showed, that cancer dividing cells
436 produced elevated amounts of rRNA and often possessed large nucleoli whereas down-
437 regulation of rRNA gene transcription led to reduction in nucleolar size. More recently, Tiku
438 *et al.* (2018) showed, that size of the nucleolus positively correlates with rRNA synthesis.
439 Analysis of purified nucleoli of *A. thaliana* showed that active rRNA genes are present within
440 nucleoli whereas silent copies are excluded (Pontviané *et al.*, 2013). Correlation between
441 rRNA activity and arrangement of chromosome territories was indicated also in our study.
442 Homologs of chromosome 9 were organized into separated territories (in 93 % of all events)

443 in G1 nuclei of root meristem, where the rRNA genes are being highly expressed (Tulpová *et*
444 *al.*, 2022). On the other hand, chromosome 9 was more associated (59 % associated, 41 %
445 separated) in leaf tissue, in which smaller volume of nucleolus and only 1-2 clusters of 45s
446 rDNA were observed.

447 Our study showed high rate of variability in mutual chromosome positioning in the 3D space
448 of G1 nuclei isolated from both plant tissues. This variability in the association/separation of
449 homologous CTs may reflect the interphase chromatin dynamics. Movement of chromatin
450 was described in *Arabidopsis* interphase nuclei by visualization of tagged loci in live
451 seedlings (Kato and Lam, 2003), and in yeast (e.g. Heun, 2001; Bystricky *et al.*, 2004; Hajjoul
452 *et al.*, 2013), animal and human cells (e.g. Chubb *et al.*, 2002; Levi *et al.*, 2005, Germier *et*
453 *al.*, 2017; Nozaki *et al.*, 2023).

454 The observed heterogeneity in chromosome positioning and variability in chromatin
455 condensation within different tissues explain the discrepancy between contact frequencies and
456 distance distributions obtained by Hi-C and 3D-FISH (Fudenberg *et al.*, 2017). In plants, most
457 Hi-C studies, which can be also used to create putative models of chromatin condensation and
458 chromosome positioning, were done on pooled tissues (Wang *et al.*, 2015; Dong *et al.*, 2017;
459 Concia *et al.*, 2020). Therefore, 3D modeling was performed based on averages of large
460 numbers of cells, and the information on potential variability in 3D structure among different
461 cells or cell types was lost. This can be overcome by single-cell Hi-C (scHi-C) experiments
462 (Nagano *et al.*, 2013; Ramani *et al.*, 2017; Tan *et al.*, 2018). In plant research, scHi-C
463 experiments are not numerous. For instance, in rice, this technique was used to study
464 variability in chromatin organization in eggs, sperm cells, unicellular zygotes, and shoot
465 mesophyll cells. Even though the analysis was performed only on four cells representing each
466 tissue type, theoretical models of chromosome folding and their mutual organization indicated
467 variability in the positioning of chromosome territories among the analyzed nuclei (Zhou *et*
468 *al.*, 2019).

469 To conclude our study, we showed that advanced microscopy combined with recent
470 cytogenetics techniques is a powerful tool for analysis and comparison of mutual
471 chromosomes positions in the nuclei during the interphase of the cell cycle. Our experiments
472 support the hypothesis, that chromatin organization is not determined by the shape of the
473 nucleus. On the other hand, it appears that the size of the nucleolus and its position in the
474 nucleus plays a role in chromosome positioning during interphase. The analysis of large
475 number of nuclei confirms variability in chromosome organization into nuclear territories and
476 their mutual positioning within and also between nuclei isolated from different tissue types.

477 Furthermore, the use of super-resolution STED microscopy corroborates striking differences
478 in chromatin folding and organization in the interphase nuclei isolated from the two studied
479 plant tissues.

480

481

482 **Acknowledgments**

483 We would like to cordially thank Jitka Weiserová and Dr. Petr Cápal for flow sorting, Zdeňka
484 Dubská for excellent technical assistance, and Lucie Kobrlová for enabling the sample
485 preparation on cryomicrotome and for the technical support. We would like to thank Dr. Jana
486 Čížková for her valuable comments. The computing was supported by the project "e-
487 Infrastruktura CZ" (e-INFRA CZ LM2018140) supported by the Ministry of Education,
488 Youth and Sports of the Czech Republic, and by the ELIXIR-CZ project (LM2018131), part
489 of the international ELIXIR infrastructure. This research was funded by the ERDF project
490 "Plants as a tool for sustainable global development" (No.
491 CZ.02.1.01/0.0/0.0/16_019/0000827).

492

493

494 **Author Contributions**

495 E.H., and A.D. conceived the project. E.H. and D.B. designed and prepared painting probes,
496 A.D., D.B., and V.K. conducted cytogenetic part of the work. A.D. and E.H., wrote the
497 original draft, D.B. and V.K., reviewed and edited the manuscript. All authors have read and
498 approved the final manuscript.

499

500

501 **Conflicts of Interest**

502 The authors declare no conflicts of interest.

503

504

505 **Literature**

506 Albiez H, Creme, M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Küpper K, Joffe B,
507 Thormeyer T, von Hase J, Yang S, Rohr K, Leonhardt H, Solovei I, Cremer C, Fakan S,
508 Cremer T. 2006. Chromatin domains and the interchromatin compartment form structurally
509 defined and functionally interacting nuclear networks. *Chromosome Res* 14, 707–733.

510 <https://doi.org/10.1007/s10577-006-1086-x>

511 Armstrong SJ, Franklin FCH, Jones GH. 2001. Nucleolus-associated telomere clustering and
512 pairing precede meiotic chromosome synapsis in *Arabidopsis thaliana*. *Journal of Cell
513 Science* 114(23), 4207-4217. <https://doi.org/10.1242/jcs.114.23.4207>

514 Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ. 1997. Telomeres cluster de novo
515 before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions
516 before and during meiotic prophase. *The Journal of cell biology* 137(1), 5-18.
517 <https://doi.org/10.1083/jcb.137.1.5>

518 Bass HW, Wear EE, Lee TJ, Hoffman GG, Gumber HK, Allen GC, Thompson WF, Hanley-
519 Bowdoin L. 2014. A maize root tip system to study DNA replication programmes in somatic
520 and endocycling nuclei during plant development. *Journal of experimental botany* 65, 2747-
521 2756. <https://doi.org/10.1093/jxb/ert470>

522 Belmont AS. 2014. Large-scale chromatin organization: the good, the surprising, and the still
523 perplexing. *Current opinion in cell biology* 26, 69-78.
524 <https://doi.org/10.1016/j.ceb.2013.10.002>

525 Belmont AS and Bruce K. 1994. Visualization of G1 chromosomes: a folded, twisted,
526 supercoiled chromonema model of interphase chromatid structure. *The Journal of cell
527 biology* 127(2), 287-302. <https://doi.org/10.1083/jcb.127.2.287>

528 Berr A and Schubert I. 2007. Interphase chromosome arrangement in *Arabidopsis thaliana* is
529 similar in differentiated and meristematic tissues and shows a transient mirror symmetry after
530 nuclear division. *Genetics* 176, 853-863. <https://doi.org/10.1534/genetics.107.073270>

531 Bordas J, Perez-Grau L, Koch MHJ, Vega MC, Nave C. 1986. The superstructure of
532 chromatin and its condensation mechanism: II. Theoretical analysis of the x-ray scattering
533 patterns and model calculations. *European Biophysics Journal* 13, 175-185.
534 <https://doi.org/10.1007/BF00542561>

535 Bystricky K, Heun P, Gehlen L, Langowski J, Gasser SM. 2004. Long range compaction and
536 flexibility of interphase chromatin in budding yeast analysed by high-resolution imaging
537 techniques. *Proceedings of the National Academy of Sciences* 101: 16495-16500.
538 <https://doi.org/10.1073/pnas.0402766101>

539 Chubb JR, Boyle S, Perry P, Bickmore WA. 2002. Chromatin motion is constrained by
540 association with nuclear compartments in human cells. *Current Biology* 12(6), 439-445.
541 [https://doi.org/10.1016/S0960-9822\(02\)00695-4](https://doi.org/10.1016/S0960-9822(02)00695-4)

542 Concia L, Veluchamy A, Ramirez-Prado JS, Martin-Ramirez A, Huang Y, Perez M,
543 Domenichini S, Rodriguez Granados NY, Kim S, Blein T, Duncan S, Pichot C, Manza-
544 Mianza D, Juery C, Paux E, Moore G, Hirt H, Bergounioux C, Crespi M, Mahfouz MM,
545 Bendahmane A, Liu C, Hall A, Raynaud C, Latrasse D, Benhamed M.. 2020. Wheat
546 chromatin architecture is organized in genome territories and transcription factories. *Genome*
547 *Biology* 21, 1-20. <https://doi.org/10.1186/s13059-020-01998-1>

548 Cremer M and Cremer T. 2019. Nuclear compartmentalization, dynamics, and function of
549 regulatory DNA sequences. *Genes, Chromosomes and Cancer* 58(7), 427-436.
550 <https://doi.org/10.1002/gcc.22714>

551 Cremer M, Schmid VJ, Kraus F, Markaki Y, Hellmann I, Maiser A, Leonhardt H, John S,
552 Stamatoyannopoulos J, Cremer T. 2017. Initial high-resolution microscopic mapping of active
553 and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain
554 clusters. *Epigenetics & chromatin* 10, 1-17. <https://doi.org/10.1186/s13072-017-0146-0>

555 Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C,
556 Cremer T. 2001 Non-random radial higher-order chromatin arrangements in nuclei of diploid
557 human cells. *Chromosome Research* 9, 541–567. <https://doi.org/10.1023/A:1012495201697>

558 Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S. 2006. Chromosome territories—
559 a functional nuclear landscape. *Current Opinion in Cell Biology* 18(3), 307-316.
560 <https://doi.org/10.1016/j.ceb.2006.04.007>

561 Cseresnyes Z, Schwarz U, Green CM. 2009 Analysis of replication factories in human cells
562 by super-resolution light microscopy. *BMC Cell Biology* 10, 88. <https://doi.org/10.1186/1471-2121-10-88>

564 de Almeida Engler J, De Groot R, Van Montagu M, Engler G. 2001. *In situ* hybridization to
565 mRNA of *Arabidopsis* tissue sections. *Methods* 23(4), 325-334.
566 <https://doi.org/10.1006/meth.2000.1144>.

567 de Graaf CA and van Steensel B. 2013. Chromatin organization: form to function. *Current*
568 *Opinion in Genetics & Development* 23(2), 185-190.
569 <https://doi.org/10.1016/j.gde.2012.11.011>

570 Dehghani H, Dellaire G, Bazett-Jones DP. 2005. Organization of chromatin in the interphase
571 mammalian cell. *Micron* 36(2), 95-108. <https://doi.org/10.1016/j.micron.2004.10.003>

572 Dekker J, Rippe K, Dekker M, Kleckner N. 2002. Capturing chromosome

573 conformation. *Science* 295(5558), 1306-1311. <https://doi.org/10.1126/science.1067799>

574 Derenzini M, Trere D, Pession A, Montanaro L, Sirri V, Ochs RL. 1998. Nucleolar function
575 and size in cancer cells. *The American Journal of Pathology* 152(5), 1291.

576 Doležel J, Binarová P, Lucretti S. 1989. Analysis of nuclear DNA content in plant cells by
577 flow cytometry. *Biologia Plantarum* 31, 113–120.

578 Doležel J, Sgorbati S, Lucretti S. 1992. Comparison of three DNA fluorochromes for flow
579 cytometric estimation of nuclear DNA content in plants. *Physiologia Plantarum* 85, 625-631.

580 Dong P, Tu X, Chu PY, Lü P, Zhu N, Grierson D, Du B, Li P, Zhong S. 2017. 3D chromatin
581 architecture of large plant genomes determined by local A/B compartments. *Molecular Plant*
582 10(12), 1497-1509. <https://doi.org/10.1016/j.molp.2017.11.005>

583 Dong Q, Li N, Li X, Yuan Z, Xie D, Wang X, Li J, Yu Y, Wang J, Ding B, Zhang Z, Li C,
584 Bian Y, Zhang A, Wu Y, Liu B, Gong L. 2018. Genome-wide Hi-C analysis reveals extensive
585 hierarchical chromatin interactions in rice. *The Plant Journal* 94(6), 1141-1156.
586 <https://doi.org/10.1111/tpj.13925>

587 Dumur T, Duncan S, Graumann K, Dasset S, Randall RS, Scheid OM, Prodanov D, Tatout C,
588 Baroux C. 2019. Probing the 3D architecture of the plant nucleus with microscopy
589 approaches: challenges and solutions. *Nucleus* 10(1), 181-212.
590 <https://doi.org/10.1080/19491034.2019.1644592>

591 Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE. 2014. Genome-wide Hi-C
592 analyses in wild-type and mutants reveal high-resolution chromatin interactions in
593 *Arabidopsis*. *Molecular Cell* 55(5), 694-707. <https://doi.org/10.1016/j.molcel.2014.07.008>

594 Finch JT and Klug A. 1976. Solenoidal model for superstructure in chromatin. *Proceedings of
595 the National Academy of Sciences* 73(6), 1897-1901. <https://doi.org/10.1073/pnas.73.6.1897>

596 Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I. 2002. Interphase chromosomes
597 in *Arabidopsis* are organized as well defined chromocenters from which euchromatin loops
598 emanate. *Proceedings of the National Academy of Sciences* 99(22), 14584-14589.
599 <https://doi.org/10.1073/pnas.212325299>

600 Frolikova M, Blazikova M, Capek M, Chmelova H, Valecka J, Kolackova V, Valaskova E,
601 Komrskova K, Horvath O, Novotny I. 2023. A sample preparation procedure enables
602 acquisition of 2-channel super-resolution 3D STED image of an entire oocyte. bioRxiv, 2023-
603 03. <https://doi.org/10.1101/2023.03.07.531472>

604 Fudenberg G and Imakaev M. 2017. FISH-ing for captured contacts: towards reconciling
605 FISH and 3C. *Nature Methods* 14(7), 673-678. [10.1038/nmeth.4329](https://doi.org/10.1038/nmeth.4329)

606 Fujimoto S, Ito M, Matsunaga S, Fukui K. 2005. An upper limit of the ratio of DNA volume
607 to nuclear volume exists in plants. *Genes & Genetic System* 80, 345–350.
608 <https://doi.org/10.1266/ggs.80.345>

609 Germier T, Kocanova S, Walther N, Bancaud A, Shaban HA, Sellou H, Politi AZ, Ellenberg
610 J, Gallardo F, Bystricky K. 2017. Real-time imaging of a single gene reveals transcription-
611 initiated local confinement. *Biophysical Journal* 113(7), 1383-1394.
612 <https://doi.org/10.1016/j.bpj.2017.08.014>

613 Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Dekker J.
614 2018. A pathway for mitotic chromosome formation. *Science* 359(6376), eaao6135.
615 <https://doi.org/10.1126/science.aao6135>

616 Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E. 2014.
617 Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and
618 transcription. *Cell* 157.4 (2014): 950-963. <https://doi.org/10.1016/j.cell.2014.03.025>

619 Golicz AA, Bhalla PL, Edwards D, Singh MB. 2020. Rice 3D chromatin structure correlates
620 with sequence variation and meiotic recombination rate. *Communications Biology* 3(1), 235.
621 <https://doi.org/10.1038/s42003-020-0932-2>

622 Hajjoul H, Mathon J, Ranchon H, Goiffon I, Mozziconaci J, Albert B, Carrivain P, Victor J-
623 M, Gadal O, Bystricky K, Bancaud A. 2013. High-throughput chromatin motion tracking in
624 living yeast reveals the flexibility of the fiber throughout the genome. *Genome Research* 23(11), 1829-1838. <https://doi.org/10.1101/gr.157008.113>

626 Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J. 2015. Chromosome-specific painting
627 in *Cucumis* species using bulked oligonucleotides. *Genetics* 200, 771–779. doi:
628 [10.1534/genetics.115.177642](https://doi.org/10.1534/genetics.115.177642). <https://doi.org/10.1534/genetics.115.177642>

629 Hansen JC, Connolly M, McDonald CJ, Pan A, Pryamkova A, Ray K, Seidel E, Tamura E,
630 Rogge R, Maeshima K. 2018. The 10-nm chromatin fiber and its relationship to interphase
631 chromosome organization. *Biochemical Society Transactions* 46(1), 67-76.
632 <https://doi.org/10.1042/BST20170101>

633 Heun P, Laroche T, Shimada K, Furrer P, Gasser S. 2001. Chromosome dynamics in the yeast
634 interphase nucleus. *Science* 294: 2181. <https://doi.org/10.1126/science.1065366>

635 Hou L, Xu M, Zhang T, Xu Z, Wang W, Zhang J, Yu M, Ji W, Zhu C, Gong Z, Gu M, Jiang
636 J, Yu H. 2018. Chromosome painting and its applications in cultivated and wild rice. *BMC*
637 *Plant Biology* 18(1), 1-10. <https://doi.org/10.1186/s12870-018-1325-2>

638 Howe ES, Murphy SP, Bass HW. 2013. Three-dimensional acrylamide fluorescence *in situ*
639 hybridization for plant cells. In *Plant meiosis*. Humana Press, Totowa, NJ, 53-66.
640 https://doi.org/10.1007/978-1-62703-333-6_6

641 Hübner B, Lomiento M, Mammoli F, Illner D, Markaki Y, Ferrari S, Cremer M, Cremer T.
642 2015. Remodeling of nuclear landscapes during human myelopoietic cell differentiation
643 maintains co-aligned active and inactive nuclear compartments. *Epigenetics & Chromatin* 8,
644 1-21. <https://doi.org/10.1186/s13072-015-0038-0>

645 Idziak D, Robaszkiewicz E, Hasterok R. 2015. Spatial distribution of centromeres and
646 telomeres at interphase varies among *Brachypodium* species. *Journal of Experimental*
647 *Botany* 66(21), 6623-6634. <https://doi.org/10.1093/jxb/erv369>

648 Jackson DA, Pombo A. 1998. Replicon clusters are stable units of chromosome structure:
649 evidence that nuclear organization contributes to the efficient activation and propagation of S
650 phase in human cells. *Jornal of Cell Biology* 140:1285–1295.
651 <https://doi.org/10.1083/jcb.140.6.1285>

652 Kato N and Lam E. 2003. Chromatin of endoreduplicated pavement cells has greater range of
653 movement than that of diploid guard cells in *Arabidopsis thaliana*. *Journal of Cell*
654 *Science* 116(11), 2195-2201. <https://doi.org/10.1242/jcs.00437>

655 Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S,
656 Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo
657 L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T. 2013.
658 Improvement of the *Oryza sativa* Nipponbare reference genome using next generation
659 sequence and optical map data. *Rice* 6, 1-10. <https://doi.org/10.1186/1939-8433-6-4>

660 Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS. 2004. Visualization of early
661 chromosome condensation: a hierarchical folding, axial glue model of chromosome
662 structure. *Journal of Cell Biology* 166:775–785. <https://doi.org/10.1083/jcb.200406049>

663 Koláčková V, Perničková K, Vrána J, Duchoslav M, Jenkins G, Phillips D, Turkosi E,
664 Šamajová O, Sedlářová M, Šamaj J, Doležel J, Kopecký D. 2019. Nuclear disposition of alien
665 chromosome introgressions into wheat and rye using 3D-FISH. *International Journal of*

666 *Molecular Sciences* 20(17), 4143. <https://doi.org/10.3390/ijms20174143>

667 Kubalová I, Câmara AS, Cápal P, Beseda T, Rouillard JM, Krause GM, Holušová K,
668 Toegelová H, Himmelbach A, Stein N, Houben A, Doležel J, Mascher M, Šimková H,
669 Schubert V. 2023. Helical coiling of metaphase chromatids. *Nucleic Acids Research* 51(6),
670 2641-2654. <https://doi.org/10.1093/nar/gkad028>

671 Levi V, Ruan Q, Plutz M, Belmont AS, Gratton E. 2005. Chromatin dynamics in interphase
672 cells revealed by tracking in a two-photon excitation microscope. *Biophysical Journal* 89(6),
673 4275-4285. <https://doi.org/10.1529/biophysj.105.066670>

674 Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I,
675 Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M,
676 Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. 2009. Comprehensive
677 mapping of long-range interactions reveals folding principles of the human genome. *Science*
678 326, 289–293. <https://doi.org/10.1126/science.1181369>

679 Liu C, Cheng YJ, Wang JW, Weigel D. 2017. Prominent topologically associated domains
680 differentiate global chromatin packing in rice from *Arabidopsis*. *Nature Plants* 3(9), 742-748.
681 <https://doi.org/10.1038/s41477-017-0005-9>

682 Liu X, Sun S, Wu Y, Zhou Y, Gu S, Yu H, Yi C, Gu M, Jiang J, Liu B, Zhang T, Gong Z.
683 2020. Dual-color oligo-FISH can reveal chromosomal variations and evolution in *Oryza*
684 species. *Plant Journal* 101(1), 112-121. <https://doi.org/10.1111/tpj.14522>

685 Lysák MA, Fransz PF, Ali HB, Schubert I. 2001. Chromosome painting in *Arabidopsis*
686 *thaliana*. *Plant Journal* 28(6):689–97. <https://doi.org/10.1046/j.1365-313x.2001.01194.x>

687 Maeshima K, Ide S, Babokhov M. 2019. Dynamic chromatin organization without the 30-nm
688 fiber. *Current Opinion in Cell Biology* 58, 95-104. <https://doi.org/10.1016/j.ceb.2019.02.003>

689 Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, Cremer M. 2012. The
690 potential of 3D-FISH and super-resolution structured illumination microscopy for studies of
691 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal
692 structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear
693 architecture. *BioEssays: news and reviews in molecular, cellular and developmental*
694 *biology*. 34:412–426. <https://doi.org/10.1002/bies.201100176>

695 Matsuda A, Shao L, Boulanger J, Kervrann C, Carlton PM, Kner P, Agard D, Sedat JW. 2010.
696 Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP-

697 histones. *PloS One* 5(9), e12768. <https://doi.org/10.1371/journal.pone.0012768>

698 Misteli T. 2020. The self-organizing genome: principles of genome architecture and
699 function. *Cell* 183(1), 28-45. <https://doi.org/10.1016/j.cell.2020.09.014>

700 Moors TE, Maat CA, Niedieker D, Mona D, Petersen D, Timmermans-Huisman E, Kole J, El-
701 Mashtoly SF, Spycher L, Zago W, Barbour R, Mundigl O, Kaluza K, Huber S, Hug MN,
702 Kremer T, Ritter M, Dziadek S, Geurts JJG, Gerwert K, Britschgi M, van de Berg WDJ.
703 2021. The subcellular arrangement of alpha-synuclein proteoforms in the Parkinson's disease
704 brain as revealed by multicolor STED microscopy. *Acta Neuropathologica* 142, 423-448.
705 <https://doi.org/10.1007/s00401-021-02329-9>

706 Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue E, Tanay A,
707 Fraser P. 2013. Single-cell Hi-C reveals cell-to-cell variability in chromosome
708 structure. *Nature* 502(7469), 59-64. <https://doi.org/10.1038/nature12593>

709 Němečková A, Koláčková V, Vrána J, Doležel J, Hřibová E. 2020. DNA replication and
710 chromosome positioning throughout the interphase in three-dimensional space of plant
711 nuclei. *Journal of Experimental Botany* 71(20), 6262-6272.
712 <https://doi.org/10.1093/jxb/eraa370>

713 Nozaki T, Imai R, Tanbo M, Nagashima R, Tamura S, Tani T, Joti Y, Tomita M, Hibino K,
714 Kanemaki MT, Wendt KS, Okada Y, Nagai T, Maeshima K. 2017. Dynamic organization of
715 chromatin domains revealed by super-resolution live-cell imaging. *Molecular Cell* 67(2),
716 282-293. <https://doi.org/10.1016/j.molcel.2017.06.018>

717 Nozaki T, Shinkai S, Ide S, Higashi K, Tamura S, Shimazoe MA, Nakagawa M, Suzuki Y,
718 Okada Y, Sasai M, Onami S, Kurokawa K, Iida S, Maeshima K. 2023. Condensed but liquid-
719 like domain organization of active chromatin regions in living human cells. *Science Advances* 9(14), eadf1488. <https://doi.org/10.1126/sciadv.adf1488>

721 Ohmido N and Fukui K. 1995. Cytological studies of African cultivated rice, *Oryza*
722 *glaberrima*. *Theoretical and Applied Genetics* 91(2), 212-217.
723 <https://doi.org/10.1007/BF00220880>

724 Pečinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysák MA, Fuchs J, Schubert I. 2004.
725 Chromosome territory arrangement and homologous pairing in nuclei of *Arabidopsis thaliana*
726 are predominantly random except for NOR-bearing chromosomes. *Chromosoma* 113, 258–
727 269. <https://doi.org/10.1007/s00412-004-0316-2>

728 Perničková K, Koláčková V, Lukaszewski AJ, Fan C, Vrána J, Duchoslav M, Jenkins G,
729 Phillips D, Šamajová O, Sedlářová M, Šamaj J, Doležel J, Kopecký D. 2019. Instability of
730 alien chromosome introgressions in wheat associated with improper positioning in the
731 nucleus. *International Journal of Molecular Sciences* 20(6), 1448.
732 <https://doi.org/10.3390/ijms20061448>

733 Pontvianne F, Blevins T, Chandrasekhara C, Mozgová I, Hassel C, Pontes OM, Tucker S,
734 Mokros P, Muchová V, Fajkus J, Pikaard CS. 2013. Subnuclear partitioning of rRNA genes
735 between the nucleolus and nucleoplasm reflects alternative epiallelic states. *Genes &*
736 *Development* 27(14), 1545-1550. <https://doi.org/10.1101/gad.221648.113>

737 Prieto EI and Maeshima K. 2019. Dynamic chromatin organization in the cell. *Essays in*
738 *Biochemistry* 63(1), 133-145. <https://doi.org/10.1042/EBC20180054>

739 Prieto P, Shaw P, Moore G. 2004. Homologue recognition during meiosis is associated with a
740 change in chromatin conformation. *Nature Cell Biology* 6, 906. <https://doi.org/10.1038/ncb1168>

741

742 Rabl C. 1885. Über Zelltheilung. *Morphologisches Jahrbuch* 10, 214–330.

743 Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM, Noble WS, Duan Z,
744 Shendure J. 2017. Massively multiplex single-cell Hi-C. *Nature Methods*, 14(3), 263-266.
745 <https://doi.org/10.1038/nmeth.4155>

746 Ramírez F, Bhardwaj V, Arrigoni L, Lam KC, Grünig BA, Villaveces J, Habermann B,
747 Akhtar A, Manke T. 2018. High-resolution TADs reveal DNA sequences underlying genome
748 organization in flies. *Nature Communications* 9(1), 189. <https://doi.org/10.1038/s41467-017-02525-w>

749

750 Robaszkiewicz E, Idziak-Helmcke D, Tkacz MA, Chrominski K, Hasterok R. 2016. The
751 arrangement of *Brachypodium distachyon* chromosomes in interphase nuclei. *Journal of*
752 *Experimental Botany* 67(18), 5571-5583. <https://doi.org/10.1093/jxb/erw325>

753 Santos AP and Shaw P. 2004. Interphase chromosomes and the Rabl configuration: does
754 genome size matter?. *Journal of Microscopy* 214, 201-206. <https://doi.org/10.1111/j.0022-2720.2004.01324.x>

755

756 Sexton T and Cavalli G. 2015. The role of chromosome domains in shaping the functional
757 genome. *Cell* 160(6), 1049-1059. <https://doi.org/10.3390/ijms21103488>

758 Shan W, Kubová M, Mandáková T, Lysak MA. 2021. Nuclear organization in crucifer

759 genomes: nucleolus-associated telomere clustering is not a universal interphase configuration
760 in Brassicaceae. *Plant Journal* 108(2), 528-540. <https://doi.org/10.1111/tpj.15459>

761 Szabo Q, Jost D, Chang JM, Cattoni DI, Papadopoulos GL, Bonev B, Sexton T, Gurgo J,
762 Jacquier C, Nollmann M, Bantignies F, Cavalli G. 2018. TADs are 3D structural units of
763 higher-order chromosome organization in *Drosophila*. *Science Advances* 4: eaar8082.
764 <https://doi.org/10.1126/sciadv.aar8082>

765 Tan L Xing D Chang CH, Li H, Xie XS. 2018. Three-dimensional genome structures of single
766 diploid human cells. *Science* 361(6405), 924-928. <https://doi.org/10.1126/science.aat5641>

767 Tiku V and Antebi A. 2018. Nucleolar function in lifespan regulation. *Trends in Cell
768 Biology* 28(8), 662-672. <https://doi.org/10.1016/j.tcb.2018.03.007>

769 Tulpová Z, Kovařík A, Toegelová H, Navrátilová P, Kapustová V, Hřibová E, Vrána J, Macas
770 J, Doležel J, Šimková H. 2022. Fine structure and transcription dynamics of bread wheat
771 ribosomal DNA loci deciphered by a multi-omics approach. *Plant Genome* 15(1), e20191.
772 <https://doi.org/10.1002/tpg2.20191>

773 Valli J, Garcia-Burgos A, Rooney LM, e Oliveira BVDM, Duncan RR, Rickman C. 2021.
774 Seeing beyond the limit: a guide to choosing the right super-resolution microscopy
775 technique. *Journal of Biological Chemistry* 297(1).<https://doi.org/10.1016/j.jbc.2021.100791>

776 Wang C, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz Ch, Weigel D. 2015.
777 Genome-wide analysis of local chromatin packing in *Arabidopsis thaliana*. *Genome
778 Research* 25(2), 246-256. <https://doi.org/10.1101/gr.170332.113>

779 Woodcock CL, Frado LL, Rattner JB. 1984. The higher-order structure of chromatin:
780 evidence for a helical ribbon arrangement. *Journal of Cell Biology* 99(1),
781 42-52.<https://doi.org/10.1083/jcb.99.1.42>

782 Zhang T, Liu G, Zhao H, Braz GT, Jiang J. 2021. Chorus2: design of genome-scale
783 oligonucleotide-based probes for fluorescence *in situ* hybridization. *Plant Biotechnology
784 Journal* 19(10), 1967-1978. <https://doi.org/doi: 10.1111/pbi.13610>

785 Zhou S, Jiang W, Zhao Y, Zhou DX. 2019. Single-cell three-dimensional genome structures
786 of rice gametes and unicellular zygotes. *Nature Plants* 5(8), 795-800. <https://doi.org/10.1038/s41477-019-0471-3>

788

789 **Legends to figures**

790 **Table 1**

791 Analysis of all tested G1 nuclei specific for both analyzed tissues revealing variation in shape
792 and volume of nucleus and nucleolus.

793

794 **Table 2**

795 Characteristics of analyzed G1 nuclei and CTs.

796

797 **Table 3**

798 **Analysis of G1 nuclei and 45s rDNA.**

799

800 **Figure 1**

801 Chromatin condensation in G1 nuclei of young leaves and root meristem. DNA was stained
802 by spirochrome (white). Differences in DNA structure are clearly visible in zoomed pictures
803 and heat maps (A). (B) Graph of chromatin fiber width measurement. Bar 2 μ m.

804

805 **Figure 2**

806 Representative figures of oligo-painting FISH and immunolabeling. (A) Differences in shape
807 of analyzed nuclei (nuclear DNA stained by DAPI, blue). Nucleolus was visualized using
808 fibrillarin immunolabeling (red). (B) Correlation between shape of the nucleus and CTs
809 association. (C) Visualization of centromere (yellow), short arm of chromosome 2 (2S) (pink),
810 and long arm (2L) (green) on metaphase chromosomes. (D) Visualization of chromosome 2
811 (pink) and chromosome 9 (green) by oligo-painting FISH on prometaphase chromosomes.
812 Chromosomes were counterstained with DAPI (blue). (E) Maximal intensity projection of G1
813 nuclei. Two separate chromosome territories correspond to two homologues chromosomes.
814 Long arm (2L) of chromosome in pink, short arm of chromosome (2S) in yellow. DNA was
815 counterstained with DAPI (blue). Bar 3 μ m.

816

817 **Figure 3**

818 Maximal intensity projection of G1 nuclei of rice with immuno-FISH localization of different
819 specific probes on flow sorted G1 nuclei of root meristem (A, C, D) and leaf tissue (B). DNA
820 was counterstained with DAPI (blue). Bar 2 μ m.

821

822 **Figure 4**

823 Comparison between root and leaf chromosome arrangement. (A) Models of individual
824 arrangements created with BioRender.com. based on raw data observation. (B) Graph of both
825 chromosome association comparison. Association and separation in displayed in root and leaf
826 tissue.

827

828 **Figure 5**

829 3D models of CTs positioning in root and leave G1 nuclei. (A) Spatial positioning of CTs
830 specific to chromosome 2 (yellow) and 9 (green) and nucleoli (red). (B) Model showing
831 spatial arrangement of the CTs and nucleoli with respect to the center and periphery of the
832 nucleus.

833 Shells of equal area depict regions of the nuclei, where signals of DAPI (white) and
834 chromosome 2 (yellow) and chromosome 9 (green) were localized.

835

836 **Figure 6**

837 Oligo-painting FISH on root ultra-thin sections prepared by cryomicrotome. Centromeric
838 probe (red), telomeric probe (green) and specific probe for chromosome 2 (yellow) were
839 applied. Pictures displayed evidence of Rabl configuration in xylem (A) and in cortex (B)
840 cells.

841

842

843 **Supplemental data**

844

845 **Supplementary Figure 1**

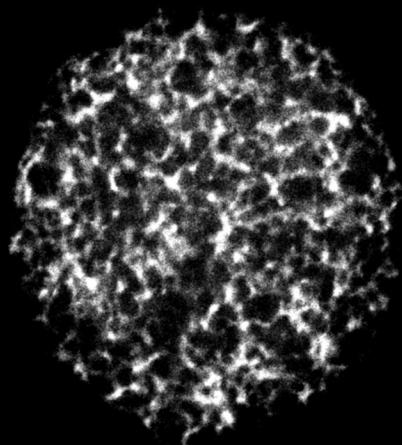
846 Differences in chromosome 9 arrangement (green) and 45s rDNA (yellow) activity in root and
847 leaf. Models of individual arrangements were created based on raw data observation using
848 BioRender.com.

849

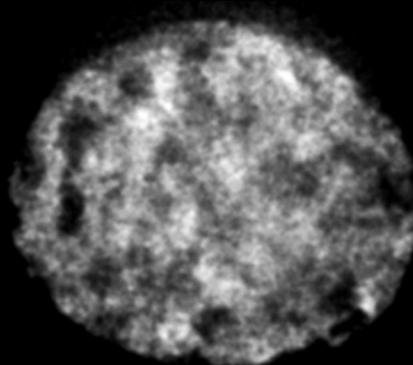
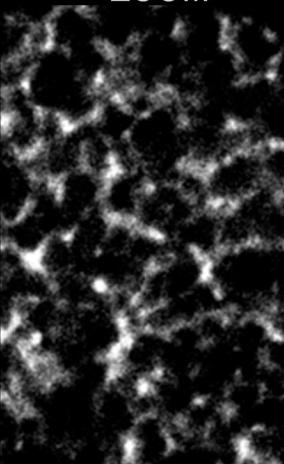
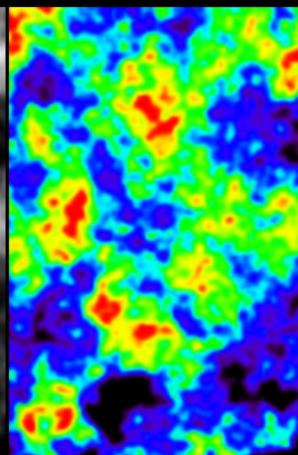
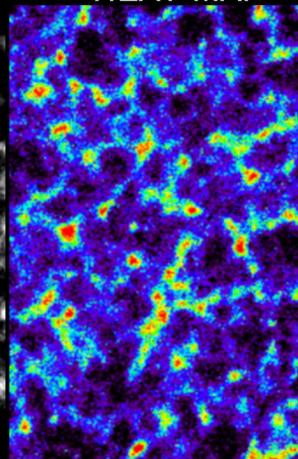
850 **Supplementary Video 1**

851 Rice root nucleus in G1 phase. Chromosome 2 (yellow) and chromosome 9 (green) were
852 visualized using oligo-painting FISH. Nucleolus was stained by immunolabeling with
853 fibrillarin (red). Nuclear DNA was counterstained with DAPI (blue)

854


855 **Supplementary Video 2**

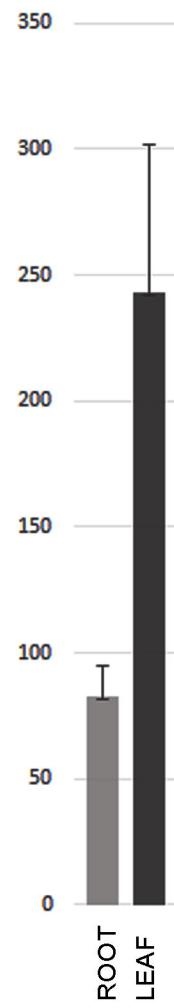
856 Rice leaf nucleus in G1 phase. Chromosome 2 (yellow) and chromosome 9 (green) were

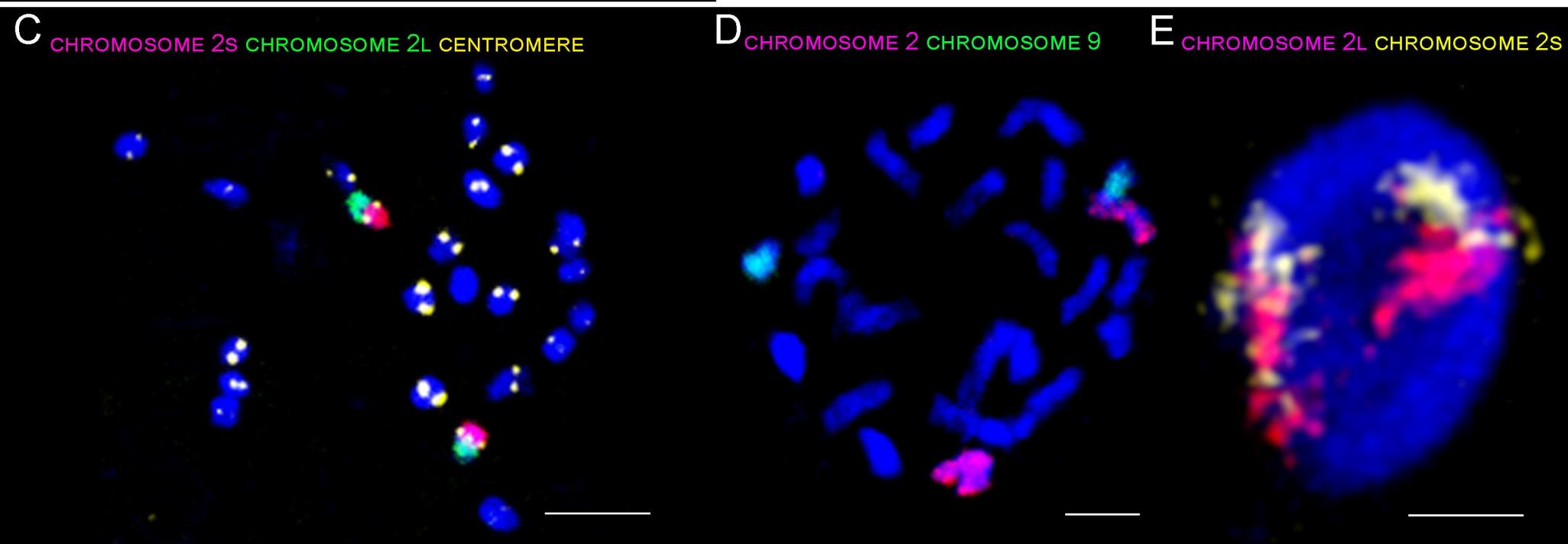
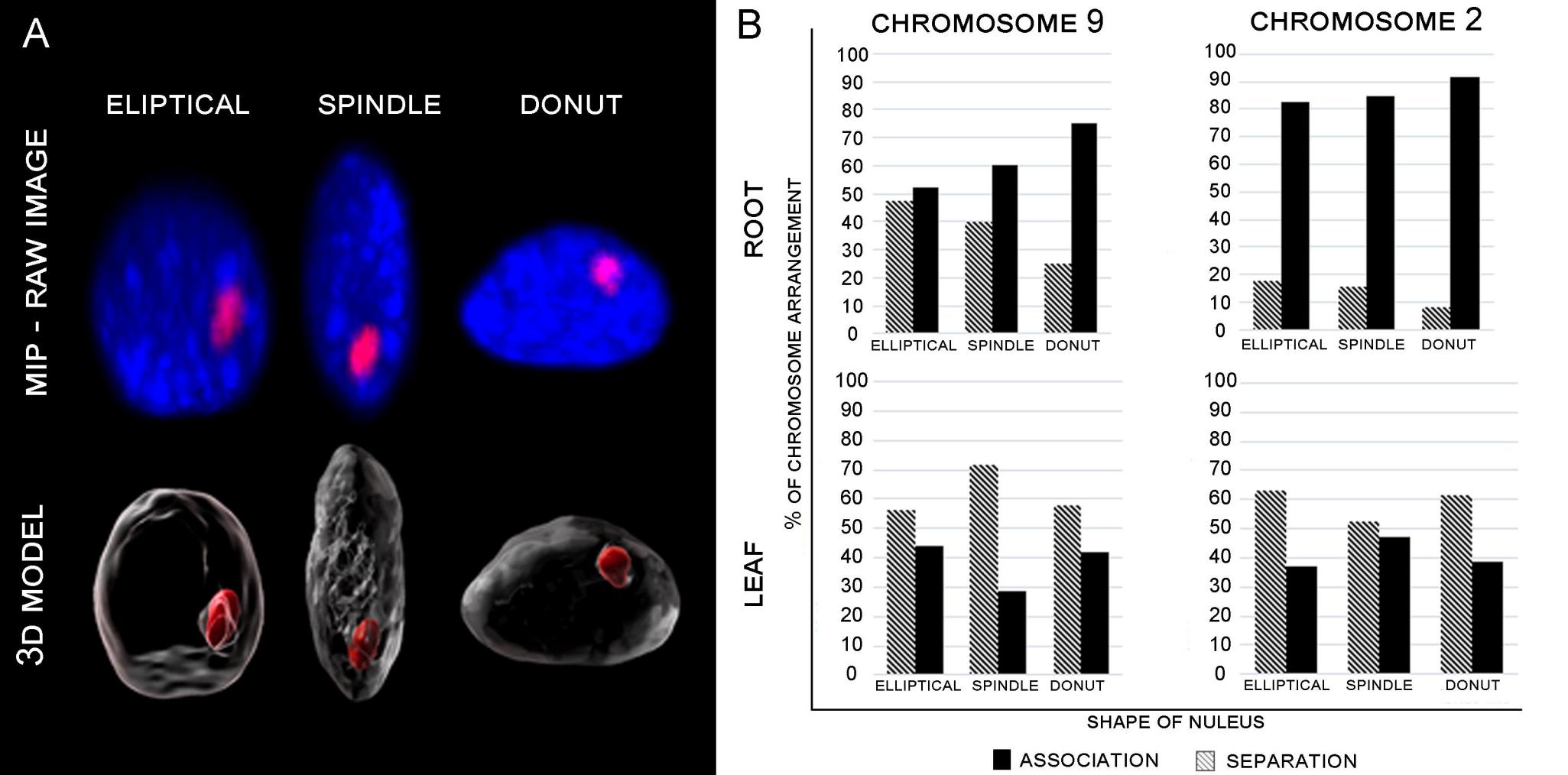




857 visualized using oligo-painting FISH. Nucleolus was stained by immunolabeling fibrillarin
858 (red). Nuclear DNA was counterstained with DAPI (blue)

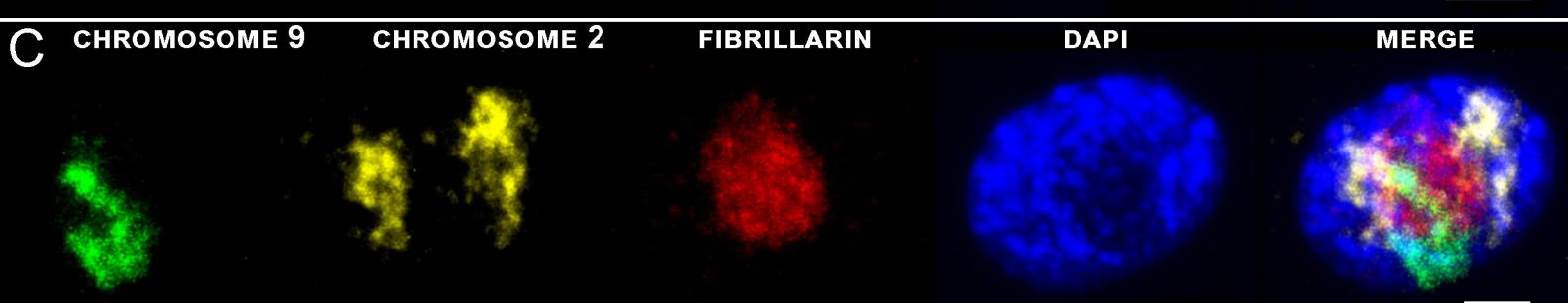
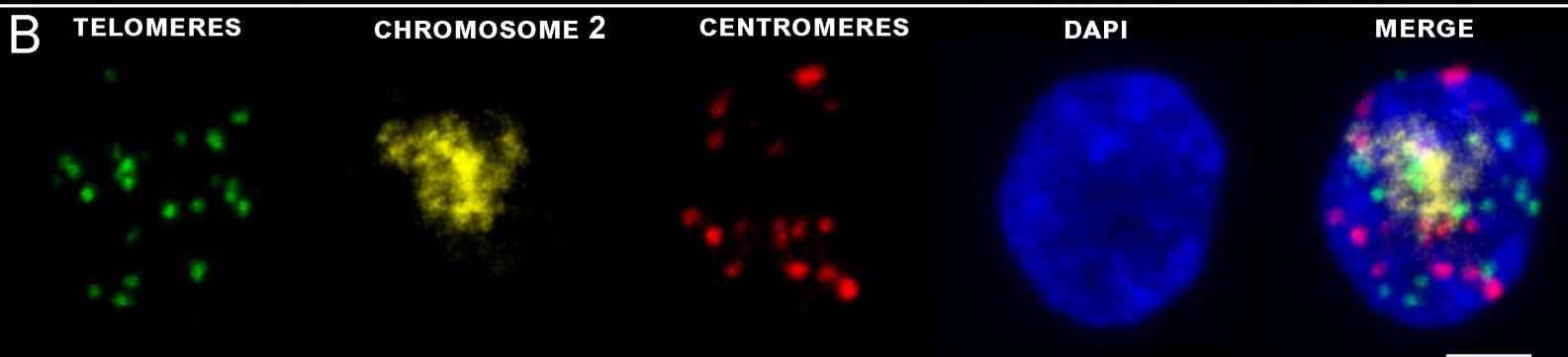
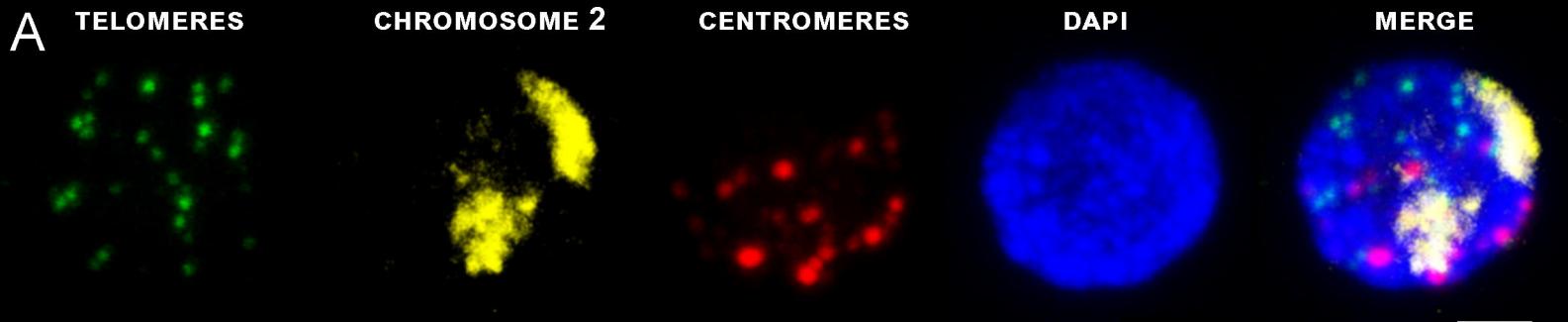
A

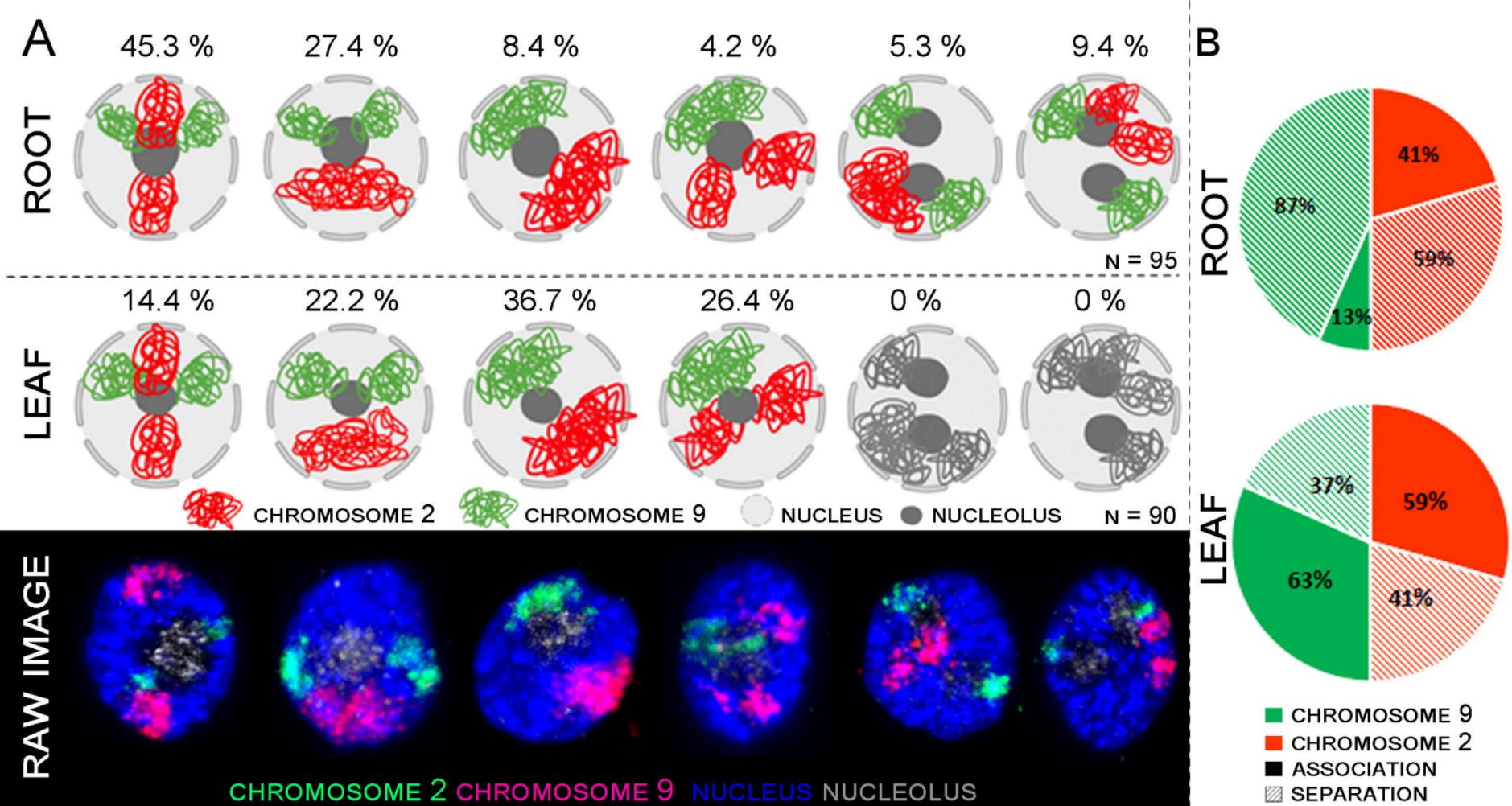
Root

LEAF

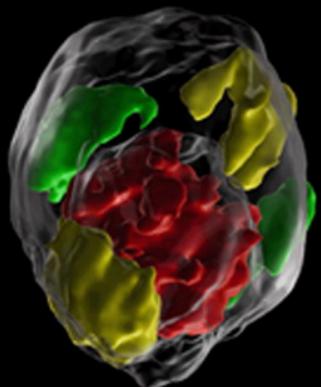

ZOOM**HEAT MAP**

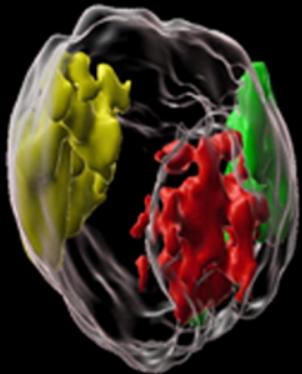


SPIROCHROME INTENSITY
CHROMATIN COMACTION




INTERCHROMATIN COMPARTMENT
COMPACT CORE OF CHROMATIN


B

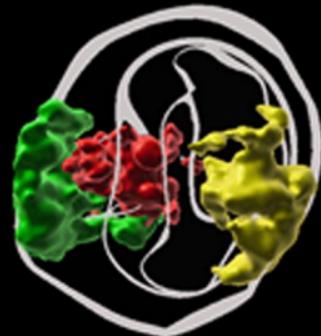
WIDTH OF CHROMATIN FIBER [NM]



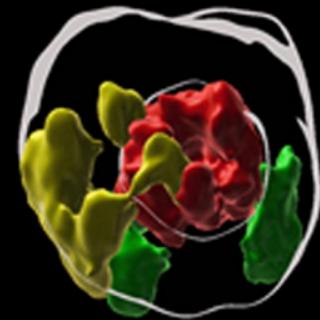


CHROMOSOME 2 CHROMSOOME 9 NUCLEOLUS

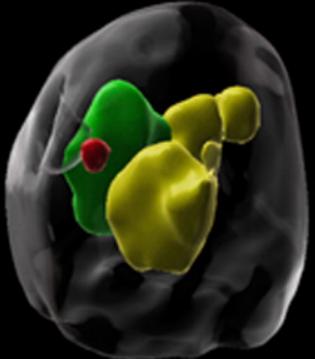
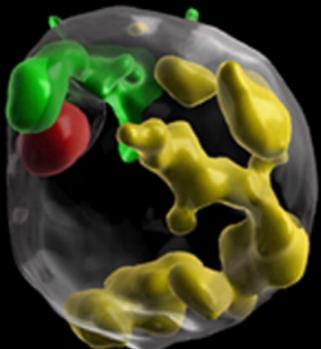
A

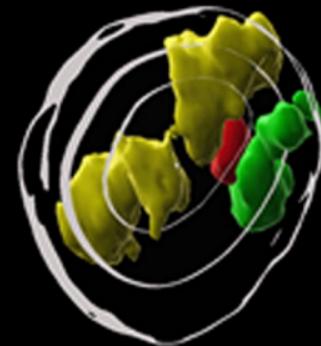


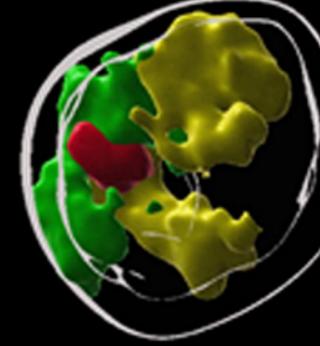
ROOT



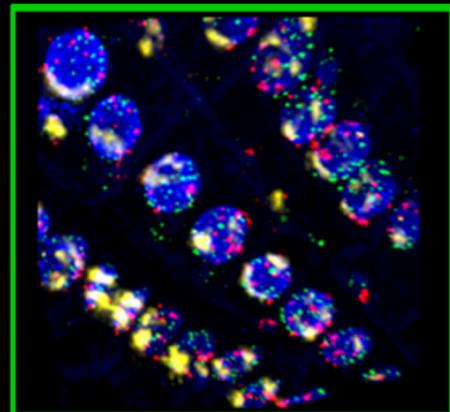
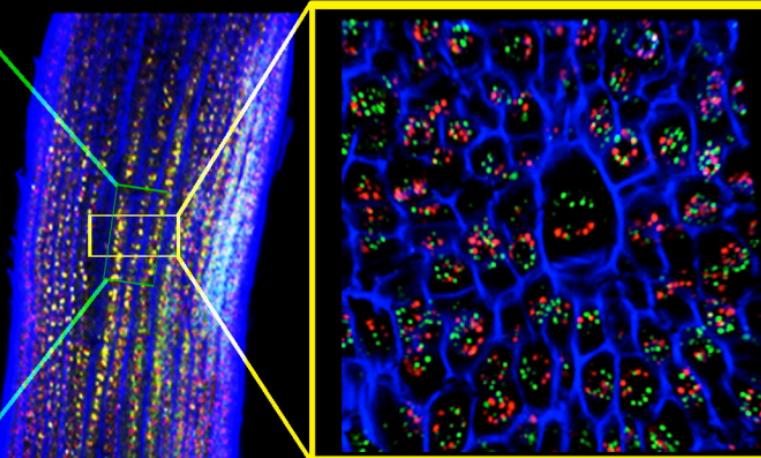
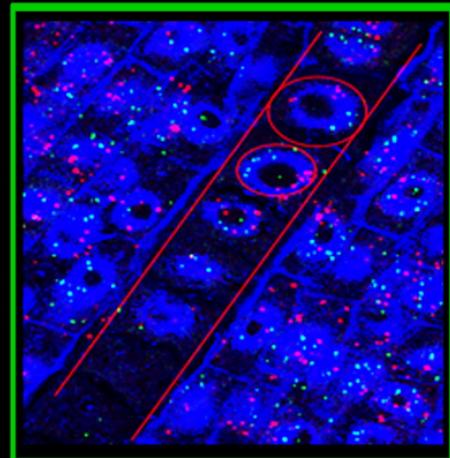
B



PERIPHERAL

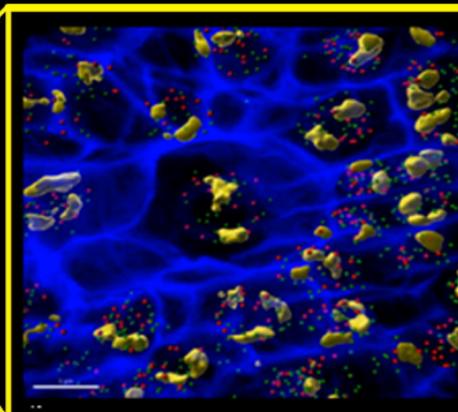
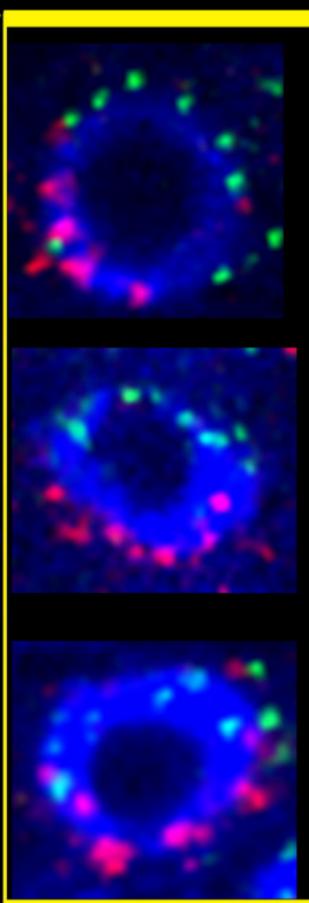
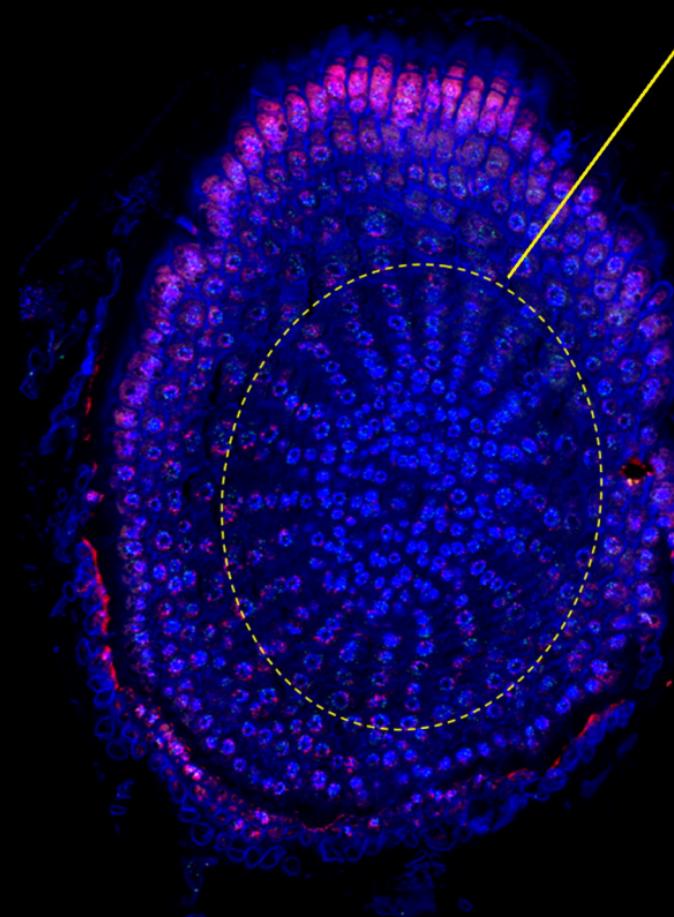

PERIPHERAL


LEAF

PERIPHERAL
INTERIOR

PERIPHERAL
INTERIOR

A**FISH****IMARIS MODEL**

CENT - TEL

CENT - TEL - CHR 2

B**ROOT CROSS SECTION****ZOOM**