

1 Non-coding mutations at enhancer clusters contribute to pancreatic ductal
2 adenocarcinoma

3

4 Minal B. Patel¹, Eleni Maniati¹, Santosh S. Atanur², Debosree Pal³, Ana Rio-Machin¹, James
5 Heward¹, Hemant M. Kocher⁴, Jude Fitzgibbon¹, Madapura M. Pradeepa³ & Jun Wang¹

6 1. Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute,
7 Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK,
8 EC1M 6BQ
9 2. Section of Genetics and Genomics, Department of Metabolism, Digestion and
10 Reproduction, Faculty of Medicine, Imperial College London, London, UK
11 3. Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and
12 Dentistry, Queen Mary University of London, London, UK
13 4. Centre for Tumour Biology, Barts Cancer Institute, Faculty of Medicine and Dentistry,
14 Queen Mary University of London, London, UK, EC1M 6BQ

15

16 *Corresponding authors

17 Jun Wang: j.a.wang@qmul.ac.uk

18 Madapura M Pradeepa: p.m.madapura@qmul.ac.uk

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 **Abstract**

36

37 Non-coding mutations (NCMs) that perturb the function of *cis*-regulatory elements (CRE,
38 enhancers) contribute to cancer. Due to the vast search space, mutation abundance and
39 indirect activity of non-coding sequences, it is challenging to identify which somatic NCMs
40 are contributing to tumour development and progression. Here, we focus our investigation
41 on the somatic NCMs that are enriched at enhancers from 659 pancreatic ductal
42 adenocarcinoma (PDAC) tumours. We identify *cis*-regulatory NCMs within PDAC-specific
43 enhancers derived from high and low-grade PDAC cell lines and patient derived organoids
44 using two independent computational approaches. Five such CREs enriched for PDAC
45 associated NCMs are also frequently mutated in other common solid tumours. Functional
46 validation using STARR-seq reporter assays enables the prioritisation of 43 NCMs (7.3%)
47 from a pool of 587 NCMs with 6,082 oligos, that significantly alter reporter enhancer activity
48 compared to wild-type sequences. CRISPRi perturbation of an enhancer cluster harbouring
49 NCMs over long non-coding RNA gene *MIR100HG*, which hosts a microRNA cluster (mir100-
50 let7a-2-125b-1), leads to the downregulation of *MIR100HG* accompanied by a significant
51 reduction in the TGF- β pathway (known to induce *MIR100HG*) and other PDAC critical
52 pathways, including KRAS, p53, MTOR and TNF α signalling. Collectively, we have reported
53 here *cis*-regulatory NCMs in PDAC proximal to many cancer-relevant genes, and our
54 integrated approach paves way to explore CRE-associated NCMs in other human cancer
55 genomes.

56

57

58

59

60

61

62

63

64

65

66

67 **Introduction**

68 Pancreatic cancer, ranking fourth in the cause of cancer death in developed countries, is an
69 aggressive malignancy with a devastating five-year survival rate below 9% after diagnosis¹.
70 Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer,
71 encompassing approximately 90% of all cases¹. Our understanding of the genomic landscape
72 of PDAC is still mainly restricted to the somatic mutations within the coding regions of genes
73 involved in PDAC²⁻⁶. Our knowledge of non-coding mutations (NCMs) and their functional
74 consequences in the development and progression of PDAC is still limited. The availability of
75 large-scale whole genome sequencing (WGS) projects, such as those by the International
76 Cancer Genome Consortium (ICGC)⁷, along with assays profiling chromatin modifications,
77 accessibility and conformation, has allowed for a systematic search for functional NCMs in
78 various cancer types⁸⁻¹⁴.

79 Recent large-scale sequencing efforts by the Pan-Cancer Analysis of Whole Genomes
80 (PCAWG) in over 2,600 primary tumours have identified several novel non-coding driver
81 candidates, including NCMs in the 5' region of *TP53* and 3'UTR of *NFKBIZ* and *TOB1* using a
82 statistically rigorous strategy for combining significance levels from multiple methods of
83 driver discovery¹⁴. More recently, Dietlein et al., implemented a genome-wide, sliding-
84 window approach to detect significantly recurrent mutated regions across the whole
85 genomes of 3,949 patients and 19 cancer types, considering chromatin features, tissue
86 specificity and background mutations. Using this approach, they identified NCMs in CREs
87 near canonical cancer genes and tissue-specific genes, such as regulatory regions proximal
88 to *HIST1H1B* and *TMEM151A* in PDAC genomes and pancreas tissue-specific genes *CPB1* and
89 *PNLIP*¹⁵. Previously, Feigin et al., performed the PDAC-specific promoter-centric analysis and
90 described Genomic Enrichment Computational Clustering Operation (GECCO) to uncover
91 recurrent regulatory mutations in the *cis*-regulatory regions of 308 patient genomes. This
92 method identified 16 genes with significant NCMs associated with promoter regions, and
93 these genes were enriched for canonical PDAC pathways such as cell adhesion, axon
94 guidance and Wnt signalling¹⁶. However, previous methods have not fully or effectively
95 utilised PDAC-specific epigenomic data in the discovery analysis, particularly active enhancer
96 regions, leaving a large number of putative gene regulatory NCMs unexplored and PDAC-
97 specific enhancer drivers unidentified. Such active enhancer-centric methods have
98 previously been implemented in T-cell acute lymphoblastic leukaemia using sequencing

99 reads derived from chromatin immunoprecipitation followed by sequencing (ChIP-seq) of
100 histone H3 lysine 27 (H3K27ac) acetylation to identify recurrent enhancer associated
101 variants¹⁷. Focusing on enhancer regions significantly reduces the non-coding genome
102 search space to regions where non-coding variants are most likely to have potential
103 functional activity at the gene control level^{12,17,18}.

104 To address these specific challenges, we integrated epigenomic datasets for histone
105 modifications associated with enhancers to identify PDAC-specific active enhancers and
106 promoter regions. Together with gene expression profiles (GEP) where available and simple
107 somatic mutation (SSM) data of 659 PDAC patients from ICGC, to investigate NCMs
108 associated with PDAC-specific *cis*-regulatory elements (CRE). We implemented a composite
109 of two independent approaches to detect putative CRE drivers enriched for significant
110 NCMs. We further tested the regulatory activity of NCMs within these CREs using the high-
111 throughput functional screening approach STARR-seq, followed by the analysis of one
112 enhancer cluster using CRISPR-interference (CRISPRi) of CREs with NCMs (Fig. 1a). Our study
113 combines a systematic computational analysis and experimental validation, identifying
114 important CRE drivers involving PDAC-relevant genes. It also demonstrates a versatile
115 workflow to investigate CRE-associated NCMs in other disease genomes.

116

117

118 **Results**

119 **The mutational burden within PDAC *cis*-regulatory regions**

120 To identify likely pathogenic NCMs in PDAC, we retrieved SSM data from the ICGC
121 Pancreatic Cancer Genome Project Australia (AU, n=391 patients) and the Canada (CA,
122 n=268 patients) cohort. 1,379,638 and 2,211,000 somatic mutations were identified in the
123 AU and CA cohort, respectively. After filtering out non-synonymous somatic mutations,
124 1,358,342 (98.5%) and 2,179,517 (98.6%) somatic NCMs were retained from the AU and CA
125 cohort, respectively, for further analysis. This corresponds to an average of 3,701 (AU) and
126 8,132 (CA) NCMs per patient.

127 We wanted to focus on the NCM burden within CREs, specifically those enriched
128 with H3K27ac, a chromatin feature associated with active enhancers¹⁹. We hypothesised
129 that NCMs within these CREs may contribute to altering their function and target gene
130 expression^{17,20}. Using ChIP-seq datasets from seven PDAC cell lines²¹ and two patient-

131 derived organoid samples²², we identified 404,415 enriched H3K27ac peaks across all
132 samples. To consolidate H3K27ac peaks across the nine samples into one representative
133 consensus region per loci, we stitched together quality peaks residing within 2,000bp of
134 another (inter-peak distance), resulting in a total of 65,168 H3K27ac consensus peaks for
135 further analysis (average peak length = 4,639 and SD = 7,949). This allowed us to narrow the
136 search space for potentially important NCMs to ~10% of the genome. Patient somatic NCMs
137 were then mapped to the consensus H3K27ac coordinates to obtain a list of NCMs in PDAC-
138 specific CREs. From the AU cohort of patients, 101,209 somatic mutations were observed
139 within 36,409 (55.9%) consensus peaks and 166,541 CA cohort mutations within 43,002
140 (66.0%) consensus peaks. Therefore, capturing 7.45% and 7.64% of all AU and CA NCMs,
141 respectively (Fig. 1b).

142

143 **Prioritisation of *cis*-regulatory regions enriched with putative functional NCMs**

144 We next aimed to interrogate somatic NCMs residing within consensus H3K27ac marked
145 regions. To ensure the study of a significant proportion of PDAC patients, we retained CREs
146 with a patient mutation incidence of 2% or above ($n \geq 8$), leaving 30,826 somatic mutations
147 (AU cohort) across 1,711 consensus peaks/CREs and 64,867 somatic mutations (CA cohort)
148 across 3,964 peaks (Fig. 1b). In total, 2.26% (AU) and 2.97% (CA) of the NCM burden
149 remained to interrogate, similarly to observation in a previous study focusing on H3K27ac
150 enriched elements¹⁸.

151 To prioritise the remaining CREs, we utilised two independent approaches: one
152 measuring the functional effect of each NCM within a CRE and ranking them based on the
153 median functional score of all NCMs; the other identifying CREs with significantly recurrent
154 NCMs accounting for local background mutation rate, and replication timing (Fig. 1a). We
155 carried out the first approach using the IW-scoring algorithm²³, an integrative weighted
156 scoring framework to score NCMs and prioritised elements with a median IW-score of two
157 or above (corresponding to a p -value ≤ 0.1). From the remaining 1,711 (AU) and 3,964 (CA)
158 peaks after filtering, we identified 14 CREs from the AU-cohort and 32 elements in the CA-
159 cohort using the median threshold (Extended Data Fig. 1 and S1). This method prioritised
160 CREs annotated to cancer-related genes such as the AP-1 transcription factor (TF) *JUNB*
161 expressed in low-grade PDAC cells^{21,24}, and *GATA2*, associated with high-grade PDAC²¹. Of
162 the 46 prioritised CREs, five regions were shared between the AU and CA cohorts (Fig. 1c).

163 These five CREs reside within the introns of the oncogenic long non-coding RNAs (lncRNA)
164 *MIR100HG*²⁵ and *HOTAIR*²⁶ from and including the *HOXC* cluster of homeobox genes²⁷, PDAC
165 associated TFs *FOXA1*²⁸ and *FOXP1*²⁹ and ferroptosis related TF, *NFE2L1*³⁰ (Fig. 1c).

166 To further validate the putative significance of the NCMs within these five CREs, we
167 compared the IW-score of NCMs residing within the H3K27ac positive regions to NCMs in
168 immediate flanking sequences negative for H3K27ac marks. We observed a statistically
169 significant higher IW-score of NCMs within H3K27ac enriched regions compared to those in
170 flanking H3K27ac negative sequences (Extended Data S2), indicating the putative enhancer-
171 associated NCMs have higher predicted functional consequences than mutations located
172 outside these CREs. We also verified these findings with an independent scoring algorithm
173 LINSIGHT, which scores variants on the likelihood of deleterious fitness consequences based
174 on patterns of polymorphism and divergence from closely related species³¹. The LINSIGHT
175 model demonstrated a significant increase in the selective constraint (i.e., more deleterious
176 on fitness) of H3K27ac-associated NCMs compared to NCMs in nearby H3K27ac negative
177 regions (Extended Data Fig. 2).

178 Using the second approach to identify significantly recurrently mutated CREs, we
179 implemented LARVA³². The LARVA model yielded 68 (AU cohort) and 71 (CA cohort)
180 candidate CREs which were significantly recurrently mutated in relation to nearby
181 background sequences (Benjamini-Hochberg (BH) adjusted $p \leq 0.01$). These significant
182 regions collectively harboured 1,842 and 2,258 NCMs in the AU and CA cohorts. Many NCMs
183 were located proximally to several well-known genes implicated in PDAC, for example, an
184 intergenic regulatory region in proximity to the miRNA: miR-21 and the Wnt/β-catenin
185 signalling protein gene *WNT7b* (Extended Data S3). Nine significantly mutated CREs were
186 shared between AU and CA cohorts. These recurrent CREs included regions proximal to the
187 TF genes *TBX3* and *BNC1*, previously reported in PDAC^{33,34}. NCMs were also located proximal
188 to the adhesion molecule *PXDN*³⁵ and transmembrane protein *TENM3*³⁶, the lncRNA gene
189 *TBX5-AS1*³⁷, and microRNA, miR-1305 (Fig. 1c).

190 Notably, the *MIR100HG* enhancer cluster was the only one prioritised in the two
191 approaches, but consisting of two separate CREs (Fig. 1c, Extended Data Fig. 3). Overall, our
192 computational strategy has revealed NCMs enriched within or proximal to PDAC or cancer-
193 related genes, including candidates identified from a previous non-coding study in PDAC¹⁶.

194

195 **Proximal genes to enhancer NCMs are associated with transcription and PDAC-linked
196 biological processes**

197 We next performed pathway enrichment analysis based on the annotated genes proximal to
198 CREs identified by the two *in-silico* approaches using the DAVID tool³⁸. Inputting 95
199 annotated genes associated with 41 CREs identified by the IW-scoring approach, we
200 observed significant enrichment in several gene families and regulatory processes, including
201 homeobox genes, pattern specification, embryogenesis and transcriptional regulation
202 pathways (Fig. 1d). Additional pathway analysis based on 212 genes annotated to the 130
203 recurrently mutated CREs identified significant enrichment in core molecular pathways
204 including cell adhesion, epithelium development, cell proliferation, transcription, apoptotic
205 processes and regulation of chemotaxis (Fig. 1d). The involvement of biological processes,
206 such as embryogenesis, apoptosis and cell adhesion, has been reported in a previous
207 genomic landscape study³⁹. Furthermore, our findings complement Feign *et al.* in identifying
208 NCMs significantly associated with homeobox genes and transcriptional regulation¹⁶. Our
209 results suggest a convergent mode for CRE-associated NCMs in relation to biologically
210 relevant coding genes in PDAC.

211

212 **Enhancer NCMs show altered transcriptional reporter activity**

213 To determine the effect of NCMs on the transcriptional regulatory activity, we performed
214 luciferase-based enhancer reporter assays for a subset of NCMs. We selected twelve NCMs
215 from two CREs identified from the first approach (IW score), comprising 11 single nucleotide
216 variants (SNV) and a single 4bp deletion. Five SNVs were selected from the third intron of
217 the *FOXP1* gene, and seven NCMs in the third intron of the lncRNA *MIR100HG* (Fig. 1e).
218 Interestingly, the 2kb region surrounding the seven NCMs at the *MIR100HG* locus lack
219 detectable H3K27ac and H3K4me1 marks in most of the cell lines, except those derived from
220 high-grade PDAC cells PANC-1 and PT45P1, suggesting this putative active enhancer is
221 specific to high-grade PDAC (Fig. 1e, Extended Data Fig. 3). Luciferase reporter assays were
222 carried out in the high-grade PDAC cell line PANC-1 and easily transfectable cell line
223 HEK293T. Within the *MIR100HG* CRE, NCMs (MUT 3, 6 and 7) and (MUT 1-3) showed
224 significant increases in reporter activity in HEK293T and PANC-1 cells, respectively (Fig. 1f).
225 Overall, all NCMs at this *MIR100HG* CRE showed an increase in luciferase activity compared
226 to WT sequences, suggesting NCMs within this CRE are potentially gain-of-function, i.e.,

227 increase regulatory activity. The ~2kb regulatory element surrounding five selected NCMs
228 within the third intron of *FOXP1* was positive for H3K27ac marks in six PDAC cell lines
229 (except for MIA-PaCa2 cells), and two patient-derived organoid samples (Extended Data Fig.
230 4). Among the five NCMs tested, two NCMs in HEK293T cells and three in PANC-1 cells
231 significantly altered luciferase expression. Most notably, mutation 3 (chr3:71104908:C>T,
232 |W-score = 5.20, $p = 0.006$, LINSIGHT score = 97.2%) significantly decreased reporter gene
233 expression in both cell lines (Fig. 1f). Interestingly, all five NCMs within the *FOXP1* putative
234 enhancer demonstrated concordance in the overall transcriptional regulatory activity in
235 both cell lines.

236

237 **STARR-seq assays prioritise a subset of 43 NCM candidates for further validation**

238 Next, we screened a larger set of NCMs within consensus CREs using the high-throughput
239 approach, Self-Transcribing Active Regulatory Region sequencing (STARR-seq)⁴⁰. To focus on
240 NCMs with the strongest evidence of predicted function, we retained 504 NCMs with a
241 variant allele frequency above 20% and strong TF binding strength as predicted by
242 motifbreakR⁴¹. Of the 504 NCMs, binding motifs of 258 TFs were strongly predicted to
243 occupy these mutation sites. Moreover, among the 73 NCMs identified by the first approach
244 (|W score), 47 (64%) NCMs were predicted to cause TF-motif gain and 26 (36%) loss-of-motif
245 (break). Among the 431 NCMs selected from the second approach (LARVA), 216 (50%)
246 NCMs caused predictive gain and 215 (50%) loss of motif changes. We included 83 single
247 base indels, resulting in 587 candidate NCMs in the final STARR-seq library (Fig. 2a).

248 We designed ten 230bp oligos per NCM, five for each NCM and five for the
249 corresponding wild type (WT). One oligo represented the NCM in the middle and four oligos
250 had a 10 bp sliding genomic window (SW) in either direction from the centre of the oligo
251 (Fig. 2a, see Methods). A further 210 positive (PDAC enhancers) and negative (no enhancer
252 features) control oligos were included in the library, resulting in a pool of 6,082 oligos.
253 Sequencing and quality analysis of the cloned STARR-seq plasmid library demonstrated good
254 complexity and accuracy (Extended data Fig. 5), with comparable outcomes to a previous
255 MPRA study using synthetically designed oligos^{42,43}. We performed two biological replicates
256 of STARR-seq by transfecting the PANC-1 cell line (see methods)⁴⁴. After filtering low-quality
257 reads across samples, we observed a good concordance between replicates (Fig. 2b). As

258 expected, positive control sequences showed significantly higher reporter activity compared
259 to negative controls (Fig. 2c).

260 We next tested the significance between mutant (MUT) and WT constructs on
261 reporter gene expression across replicates. A total of 217 plasmids (representing 155 NCMs)
262 showed significant differential enhancer activity (\log_2 fold change -1.54 to 3.53, Student's t-
263 test, $p < 0.05$). 95 (61.3%) NMCs showed significantly increased enhancer activity, while 60
264 (38.7%) mutations showed a significant reduction in enhancer activity in comparison to WT
265 sequences (Fig. 2c and 2d). Interestingly, 36 CREs harbouring indels showed significant fold
266 changes at similar activity to SNVs (mean \log_2 FC 1.07). Despite the differences in assays and
267 genomic context, we observed concurrent directional changes in enhancer activity at NCMs
268 assayed by luciferase reporter assays and sequencing-based high-throughput STARR-seq
269 (Extended data Fig. 6).

270 Focusing on the most significant alterations between MUT and WT alleles (t-test,
271 $p < 0.01$), we highlighted 43 mutations, 33 of which demonstrated an increase in reporter
272 activity and 10 with an observed reduction (Fig. 2e). Notably, the differential activity
273 changes between MUT and WT in 13 NCMs were significantly altered in three or more
274 independent STARRs-seq plasmids ($p < 0.05$). Similarly, 31 NCMs were significantly altered in
275 two independent SWs demonstrating concurrent directional activity changes. Eight of the
276 43 NCMs were located within an enhancer cluster (observed in low-grade and MiaPaCa2
277 cells) upstream of the *BNC1* gene (Extended data Fig. 7a). The NCMs proximal to *BNC1*
278 significantly increased reporter gene expression in PANC-1 cells in comparison to WT
279 sequences (Fig. 2d). Assessing the expression of genes within 1Mb of this consensus peak by
280 comparing MUT and WT patient GEPs, we did not observe a difference in the expression of
281 *BNC1*, previously reported to be methylated in early stage PDAC patients⁴⁵. However, we
282 observed a significant increase in the expression of nearby genes *BTBD1* ($p = 0.003$, ~234kb
283 from the middle of the consensus peak to BTBD1 TSS), important in cell survival, the
284 ubiquitin/proteosome degradation pathway and mesenchymal differentiation⁴⁶ and
285 *FAM103A1* ($p = 0.008$, ~316kb) which encodes an important subunit for the 7-
286 methylguanosine cap added to the 5' end of mRNA and an essential component for gene
287 expression⁴⁷. Patient GEP analysis also revealed a significant decrease in the
288 transmembrane protein *TM6SF1* (frequently hypermethylated^{48,49}, $p = 0.0003$, ~137kb)
289 between MUT and WT patients (AU cohort, Extended data Fig. 7b), overall suggesting these

290 NCMs may exert their regulatory potential in a more distal manner. Additional significant
291 increases in reporter gene expression were observed proximal to the PDAC-associated TF
292 *TBX*⁵⁰ (7 NCMs) and in the introns of lncRNA *MIR100HG*²⁵ (3 NCMS, Fig. 2d).

293 To assess the putative biological implications of these top-performing STARR-seq
294 NCMs, we took a closer look at the TF-motif binding predictions. From the 35 NCMs in the
295 top 43 STARR-seq performing mutations with TF-motif predictions, 21 were characterised as
296 TF binding motif-gain (creating *de novo* TF binding motifs), while 14 were TF binding motif-
297 loss. For example, one gain-of-function NCM proximal to *TBX3* (chr12:115067012:C>A) was
298 predicted to create a binding motif for the oncogenic TF JUN (Fig. 2d and Extended Data Fig.
299 7c). This NCM led to a mean log₂ fold-change of 3.69 in STARR-seq reporter gene expression
300 across all five SWs (Mann Whitney U test, *p*=0.016). As expected, JUN was highly expressed
301 in PDAC patients based on the patient GEP in the AU cohort (Fig. 2f)⁵¹. The most significant
302 loss-of-function was observed in a NCM located in the intron of *FOXP1* (chr3:71123616:G>T)
303 supported by three significant SWs (*p* <0.05, average log₂ fold change across SWs = -1.36).
304 At this site, the binding motif of an unfolded protein response (UPR) mediating TF, the
305 activating TF-3 (ATF3)⁵², was predicted to be disrupted (Extended Data Fig. 7d) and was
306 found to be moderately expressed in the PDAC patient GEP (AU cohort, Fig. 2f).
307 Furthermore, the top two NCMs located in the *MIR100HG* enhancer cluster also showed
308 strong effects on TF binding: the first mutation (chr11:122010557:C>T) demonstrated a gain
309 of TF motif, creating a *de novo* binding motif for *NR6A1*, a nuclear receptor family member;
310 while the second mutation (chr11:122025440:G>C) was predicted to disrupt the binding
311 motif for *SOX10* (Fig. 2g), a reported tumour suppressor through the suppression of the
312 Wnt/β-catenin pathway in digestive cancers⁵³. We observed that *NR6A1* and *SOX10* TFs
313 were expressed at moderate levels in PDAC patients (AU cohort, Fig. 2f). Overall, using the
314 STARR-seq assay enabled the prioritisation of CRE-associated NCMs for further
315 investigation.

316

317 **CRE cluster harbouring NCMs located at the *MIR100HG* locus regulates genes *in cis***

318 The two computational approaches used in this study identified the lncRNA *MIR100HG*
319 locus as a significant candidate for harbouring NCMs in separate CREs in each approach.
320 Notably, *MIR100HG* is host to the oncogenic miR-s pre-miR125b-1 and pre-miR-100,
321 previously implicated in PDAC^{25,54}, and they modulate (including *MIR100HG*) in a pro or anti-

322 tumourigenic manner depending on the cancer^{25,54-59}. It hosts the tumour suppressors pre-
323 miR-Let7a-2²⁵ and the pro-apoptotic protein *BLID*⁶⁰, located within intron three of
324 MIR100HG (Fig. 3a).

325 Next, we investigated the functionality of three CREs harbouring NCMs at the
326 *MIR100HG* enhancer cluster using a CRISPRi approach recruiting the dCAS9/KRAB repressor
327 to NCMs and CREs of interest⁶¹ (Fig. 3a and b). The first region located ~2kb away from the
328 hosted pre-miR-125b-1 in the third intron of *MIR100HG* harboured NCMs identified from
329 the first *in silico* approach. CRISPRi with a pool of four independent lentiviral guide RNAs (G
330 1-4) were selected close to NCMs that were shown to alter enhancer activity in either
331 luciferase or STARR-seq experiments (Fig. 1e, 3b). Two guides (G 5-6) were designed to
332 target region two harbouring five NCMs (CRE-two), including the most significant NCM
333 identified to drive reporter enhancer activity using STARR-seq (M20 in Fig. 2e and Fig. 3b).
334 An additional two guides (G 7-8) were designed to target the third region harbouring six
335 NCMs (CRE-three), including a gain-of-function NCM from the most significant STARR-seq
336 candidates (M37 in Fig. 2e).

337 CRISPRi, followed by RT-qPCR, showed a significant reduction in MIR100HG
338 expression in all three CREs in this enhancer cluster in comparison to dCAS9/KRAB negative
339 controls (Fig. 3b). This data suggests that these CREs function as active enhancers to
340 regulate the expression of *MIR100HG*. Analysis of looping interactions from the 4D
341 genome⁶² and integrated method for predicting enhancer targets (IM-PET)⁶³ data in PANC
342 cells indicated interactions between CRE-two and the promoter of *UBASH3B* located
343 upstream of *MIR100HG* (Extended Data Fig. 8a). *UBASH3B* has been reported to inhibit the
344 endocytosis of the epidermal growth factor (EGFR), an essential component in the
345 development of pancreatic precursor lesions⁶⁴⁻⁶⁶. RT-qPCR analysis demonstrated a
346 significant decrease in *UBASH3B* expression with the CRE-two CRISPRi compared to controls
347 (Fig. 3b). CRE-three shows interactions with the promoter of *ARHGEF12* (Extended Data Fig.
348 8b). *ARHGEF12*, a guanine nucleotide exchange factor (GEF), activates Rho A, a key regulator
349 of cytoskeleton organisation and ROCK1/2 induced extracellular matrix remodelling,
350 associated with poor outcomes in PDAC patients⁶⁷. CRE-three CRISPRi resulted in a
351 significant decrease in *ARHGEF12* levels compared to controls (Fig. 3b). These results
352 suggest that CRISPRi-based perturbation of CRE-two and three leads to downregulation of

353 genes located *in cis*, although to a less extent compared to the reduction in *MIR100HG*
354 expression.

355

356 **CRISPRi perturbation of MIR100HG CREs alters core PDAC signalling pathways and cell**
357 **motility.**

358 We performed RNA-seq to evaluate the global mRNA changes in CRISPRi-targeted CRE-two
359 and -three clones (Fig. 3b). Principle component and correlation analyses showed CRISPRi of
360 CRE-two and -three shared similar gene expression programmes (Fig. 3c and 3d). Differential
361 expression (DE) analysis identified 98 and 102 significant genes in the perturbation of CRE-
362 two and -three clones compared to the control, respectively (FDR<0.05 and absolute $\log_2 FC$
363 >1). Of them, 59 DE genes were shared between the two clones (Fig. 3e). We also observed
364 a significant reduction in *MIR100HG* RNA-seq expression in both targeted CREs, consistent
365 with the qPCR data (Fig. 3f).

366 Gene set enrichment analysis (GSEA)⁶⁸ against the MsigDB Hallmark⁶⁹ and oncogenic
367 signature gene sets were then performed between the two CRISPRi groups and the dCas9-
368 KRAB control (Fig. 4a). In both CRISPRi perturbations; we observed a comparable and
369 significant downregulation of important PDAC hallmark gene sets involved in KRAS
370 signalling⁷⁰, UPR, reactive oxygen species (ROS)⁷¹ and TNF α signalling⁷² (Fig. 4a and 4b).
371 Oncogenic signatures associated with critical drivers KRAS⁷³, P53, epithelial-to-mesenchymal
372 transition (EMT) inducing TGF- β and cell survival and proliferation-related MTOR⁷³ pathway
373 genes were significantly reduced in both inhibited *cis*-regions. In contrast, migration
374 inhibiting cAMP⁷⁴ and interestingly pro-EMT related LEF1⁷⁵ signatures were significantly
375 upregulated (Fig. 4a). Collectively, the CRISPRi perturbation of two CREs at MIR100HG led to
376 a significant reduction in key oncogenic molecular mechanisms observed in PDAC, resulting
377 in a more favourable phenotype.

378 TGF- β regulates *MIR100HG* transcription and thus the release of its hosted miRs,
379 inducing EMT, encouraging cell motility and metastasis²⁵. Here, we identified many TGF- β
380 related genes such as *FGF1*⁷⁶, *KDM6B*⁷⁷, *LIF*⁷⁸, *PIK3CD*⁷⁹, *PXDC1* and *TAGLN*⁸⁰ were
381 significantly downregulated in the two CRISPRi groups compared to the control (Extended
382 Data Fig. 9). Hence, we further aimed to validate the reduction in TGF- β signalling observed
383 with GSEA enrichment by using wound healing assays (Fig. 4c). Over 48-hours, the inhibition
384 of CRE-two (G 5-6) resulted in a significant reduction in cell motility in comparison to

385 controls, corroborating with a stronger gene enrichment reduction in TGF- β and EMT
386 signalling compared to CRE-three inhibition (Fig 4a). Similar but not significant changes in
387 cell motility were observed in PANC-1 cells inhibited at CRE-three (G 7-8) (Fig. 4d). These
388 results suggest a CRISPRi perturbation of CREs harbouring NCMs in the third intron of
389 *MIR100HG* can decrease the migration ability in PANC-1 cells.

390

391 **Mutation occurrence of functional CREs in other solid cancers**

392 Lastly, we explored the NCM burden of our top five prioritised regions (obtained from the
393 first approach) in other cancers. We analysed the mutational frequency of these CRE-
394 associated loci in seven other solid tumours using SSM data from the ICGC in oesophageal
395 (ESAD), liver (LIHC), breast (BRCA-UK), ovarian (OV), prostate (PRAD-CA, PRAD-UK),
396 colorectal (COAD) and gastric cancer (STAD) cohorts. The *HOTAIR/HOXC* CRE had the highest
397 mutation frequency of NCMs across oesophageal (16.6%), liver (13.2%), prostate (7.5%) and
398 ovarian (19.4%) cancers along with PDAC (5-12%, Extended data Fig. 10). However, a low
399 mutation frequency was observed in gastric, breast and colorectal cancers below 2%. The
400 *FOXA1* CRE was predominately mutated in prostate cancer at an incidence of ~16%,
401 followed by liver, ovarian and oesophageal cancers at a frequency of ~5%, higher than that
402 observed in PDAC (2%). Interestingly, this regulatory region and NCMs have been recently
403 reported in prostate cancer and are correlated with decreases in *FOXA1* expression and cell
404 growth⁸¹. For the *MIR100HG* CRE, oesophageal and prostate cancer (UK cohort) showed the
405 highest incidence at 14.2% and 5.7%, respectively, and liver and ovarian cancers showed a
406 similar mutational incidence to the PDAC cohorts (2-3%). Other cancer types, such as breast,
407 gastric and colorectal, had a very low to no mutational burden within this *MIR100HG* CRE
408 (Extended Data Fig. 10c). The *FOXP1* CRE had the highest mutation frequencies in the liver,
409 oesophageal and ovarian cancers (6-8%), but the *NFEL2* CRE generally had a much lower
410 mutation frequency across all cancers, with a mutation burden of 2-3% in liver and
411 oesophageal cancers, similar to that in PDAC. Our results suggest that several CREs
412 identified in this study were also frequently mutated in other cancers. NCMs within these
413 CREs may also play a functional role in contributing to these malignancies, as already
414 documented in prostate cancer⁸¹.

415

416

417 **Discussion**

418 Our study combines a computational discovery strategy and experimental follow-up to
419 assess the functional significance of NCMs associated with PDAC-specific CREs. We leverage
420 NCMs from PDAC SSM data derived from the ICGC⁷ and integrate with PDAC-specific CREs
421 marked by H3K27ac in seven PDAC cell lines and two patient-derived organoid samples.
422 Previous investigations have often relied on consensus regulatory regions defined by
423 ENCODE cell lines or the Ensembl Regulatory Build⁸², this is likely to miss many enhancers
424 which regulate genes in a highly cell and tissue specific manner⁸³. Our PDAC consensus
425 peaks have incorporated high- and low-grade cell lines and patient derived organoids
426 accounting for the tissue and stage specificity of regulatory elements associated with PDAC
427 biology²¹.

428 The non-coding genome comprises a diverse spectrum of elements, and the
429 mutational patterns and consequences are highly heterogeneous, rendering one approach
430 ineffective across all regions of the non-coding genome^{84,85}. Thus, our pipeline incorporates
431 an approach that directly estimates the functional consequence (i.e. deleteriousness) of
432 each NCM and another that detects recurrently mutated CREs taking into consideration
433 confounders such as replication timing and background mutation rates. Hence our
434 combined approach identified a comprehensive, robust set of CREs subject to PDAC-
435 relevant biological processes for *in vitro* validation.

436 High-throughput enhancer reporter assays are a powerful approach to screen the
437 regulatory activity of a large number of NCMs in parallel^{40,43,86,87}. Our STARR-seq data
438 highlighted 43 NCMs from PDAC patients showing significant gene reporter activity in the
439 PANC-1 cell line. Interestingly, we observed the largest number of NCMs upstream of the
440 *BNC1* promoter, resulting in a significant increase in STARR-seq reporter gene expression
441 (Fig. 2d). Assessing the GEP of patients with these NCMs compared to those without NCMs
442 demonstrated significant expression changes in more distal genes *BTBD1*⁴⁶, *FAM103A1*⁴⁷
443 and *TM6SF1*⁴⁸. These DE genes were also associated with poorer overall outcomes in PDAC
444 patients with higher expression (in *BTBD1* and *FAM103A1* genes) and lower expression for
445 *TM6SF1* expressing patients (data not shown). Additional interesting candidates, such as
446 NCMs proximal to cancer and PDAC-related TF *TBX3*³⁴ and NCMs in the intron of *FOXP1*⁸⁸,
447 would be interesting and relevant candidates for future studies.

448 We identified significant CREs harbouring NCMs at the *MIR100HG* introns using both
449 computational approaches, highlighting its importance for further functional validation.
450 Previously, the transcription of *MIR100HG* has been linked to TGF- β expression/induction
451 through SMAD2/3 binding sites in PDAC cell lines and *in vivo* studies leading to the release
452 of its hosted miRs, including the oncogenic miR-100 and miR-125b-1^{25,54}. The CRISPRi-based
453 perturbation of *cis*-regions harbouring the most significant NCMs in the third intron of
454 *MIR100HG* (identified using luciferase or high-throughput STARR-seq experiments) led to a
455 down-regulation of *MIR100HG* expression and, in turn, cell mobility (Fig. 4c). This was
456 correlated with a significant downregulation in critical PDAC related pathways included
457 KRAS, P53, TGF- β and TNF α signalling^{72,73}. Although not tested here, the direct targeting of
458 these *cis*-regions leading to a down-regulation of *MIR100HG* transcription may inhibit the
459 release of its hosted oncogenic miRs, as previously reported^{25,54}.

460 Applying 4D genome interaction data⁶², we observed looping of our targeted CRE-
461 two with the promoter of proximal *EGFR-related* gene, *UBASH3B*⁶⁶ and CRE-three with the
462 promoter of the RhoA regulating GEF protein *ARHGEF12*⁶⁷. Using RT-qPCR, we
463 demonstrated CRE-two had the ability to downregulate *UBASH3B* expression, and CRE-three
464 inhibition led to the significant reduction of *ARHGEF12*. These putative interactions may
465 contribute to the downregulation of core pathways revealed by the GSEA analysis, as seen
466 by the downregulation of EGFR signatures upon CRE-two inhibition⁶⁶ and MYC-target
467 downregulation with CRE-three inhibition⁸⁹. This is the first report to our knowledge of
468 NCMs in the introns of the lncRNA *MIR100HG* and the suggestion of *cis* genes other than
469 *MIR100HG* being altered in expression^{25,54}. Considering a large number of transcripts
470 *MIR100HG* has, further assessment of these CREs and NCMs on splicing would be important.

471 Genetic changes are critical for PDAC initiation, and up until recently, with the
472 clinically available KRAS^{G12C} inhibitor (AMG 510)⁹⁰ and the preclinical development of the
473 KRAS^{G12D} inhibitor MRTX1133⁹¹, core mutated genes are largely undruggable. The
474 reversibility of epigenetic changes allows the opportunity for therapeutic targeting.
475 Previously in prostate cancer cells, the silencing of *MIR100HG* has led to the sensitisation to
476 cytotoxic drugs⁵⁴. We have shown here that perturbation of *MIR100HG*-associated CREs has
477 collectively led to the downregulation of multiple core signalling pathways, including those
478 previously not implicated in *MIR100HG* disruption, such as KRAS and TNF α signalling^{25,54}. In

479 addition to the above considerations of this study, further investigation into the therapeutic
480 potential of targeting this enhancer cluster rich in CREs and NCMs would be the next step.

481 We have limited this study to active enhancers widely reported to be marked by
482 H3K27ac and H3K4me1¹⁹. However, we observed NCMs located outside of PDAC-associated
483 CREs to have high functional predictive scores, suggesting they may lead to a gain/loss in
484 functional activity at the gene level (Extended Data Fig. 2b). Moreover, use of H3K27ac
485 alone to predict active enhancers may be too simplistic as many enhancers are marked with
486 H4K16ac and H3K122ac but lack H3K27ac^{92,93}, suggesting many more CRE associated NCMs
487 may be missed here. We have demonstrated the enhancer function for the *MIR100HG* locus
488 harbouring PDAC-specific NCMs. However, further work is needed to demonstrate the
489 pathogenic role of other NCMs identified in PDAC. Overall, our work identified and validated
490 functional CREs and associated NCMs that may contribute to PDAC tumourigenesis and we
491 have demonstrated a systematic framework to study *cis*-regulatory mutations in other
492 human diseases.

493

494

495 **Methods**

496 **Data acquisition**

497 Data from the International Cancer Genome Consortium were downloaded from the ICGC
498 portal (<https://dcc.icgc.org/>) release 27⁷. This data included simple somatic mutation (SSM)
499 data for pancreatic ductal adenocarcinoma samples from the PACA-AU and PACA-CA
500 cohorts. Clinical data, array-based expression (EXP-A from the PACA-AU cohort) and
501 sequencing-based gene expression data (EXP-S from the PACA-CA cohort) were also
502 downloaded. Gene Expression Omnibus (GEO) acquired datasets GSE64560²¹ and
503 GSE99311²² were used to obtain ChIP-seq data to identify active enhancer-associated
504 regions of the genome (H3K27ac and H3K4me1) based on seven PDAC cell lines and two
505 patient-derived organoid samples. Additional marks were used to annotate further putative
506 promoters (H3K4me3) and repressive domains (H3K9me3, H3K27me3).

507

508 **ICGC data processing**

509 Downloaded SSMs were annotated and filtered using Annovar tools, retaining only those
510 residing in non-coding elements (i.e., intergenic, intronic, synonymous and UTR)⁹⁴. Annovar

511 'filter-based' annotation method with packages: hg19_avsnp147, hg19.snp138,
512 hg19_cytoBand, hg19_dbnsfp30a, hg19_ensGeneMrna was used. Available raw array-based
513 expression (EXP-A) data was retrieved for 269 out of 391 patients from the AU cohort and
514 normalised. Raw RNA-seq data for 234 out of 268 patients from the CA cohort were also
515 downloaded. Quality-checked sequencing reads were aligned to build hg38 of the human
516 genome using Hisat2 (version 2-2.1.0)⁹⁵ and annotated using Gencode release 27 hg38⁹⁶.
517 Read counts were estimated for each gene in all samples using HTSeq⁹⁷. Counts were
518 normalised and transformed to log₂-counts per million (log₂CPM) using Voom (Llimma
519 package by BioConductor)⁹⁸. Log₂CPM counts were then used as a measurement of gene
520 expression.

521

522 **ChIP-seq data processing and manipulation**

523 Raw sequencing reads in fastq files were extracted from GEO, and checked for quality using
524 FastQC (version 0.11.5)⁹⁹. Where adaptors were present, sequences were trimmed using
525 Trimmomatic tools¹⁰⁰. Subsequent reads were aligned to the human reference genome
526 (hg38) using Bowtie2 (verison 2/2.3.0) with default parameters¹⁰¹, and duplicate reads
527 were marked with Picard (MarkDuplicates)¹⁰² and removed using SAMtools 'rmdup'¹⁰³.
528 Uniquely aligned reads were downsampled between ChIP-seq samples and input control
529 pairs to avoid read yield bias. Genome-wide narrow peaks were called for H3K27ac and
530 transcription (TF) samples, and broad peaks for H3K4me1, H3K4me3 and H3K9me3 samples
531 against the input control using MACS2 (version 2.1.0) default settings where data was
532 available¹⁰⁴. Peaks were further filtered for quality, preserving peaks with a Q-value of E-10.
533 Subsequent BedGraph file outputs from MACS2 were converted to BigWig files using the
534 UCSC binary tool, BedGraphToBigWig. H3K27ac peaks located with an inter-peak distance of
535 2,000bp to other PDAC cell line H3K27ac regions, were merged using the 'merge' function
536 from Bedtools (version 2.26.0) to produce one consensus H3K27ac region across all samples.
537 H3K27ac peak co-ordinates were 'lifted' over to hg19 using the UCSC command line tool
538 'liftOver' to overlap with SSMs. H3K27ac regions harbouring non-coding mutations
539 affecting >2% of the patient cohort were retained for further analysis (≥ 8 NCMs in ≥ 8
540 patients).

541

542 **The identification of putative functional mutations using approach one (non-coding
543 annotation/IW-scoring and LINSIGHT algorithms).**

544 SSMs from filtered and merged H3K27ac peaks were subjected to functional testing and
545 filtering using the IW-scoring algorithm²³. The workflow for the identification of novel
546 variants was utilised, excluding the use of GWAVA scores (for known variants). The median
547 IW-functional score for all mutations within each H3K27ac consensus region was calculated.
548 H3K27ac regions with a median IW-score of two or above were retained for further analysis.
549 In addition, IW-scores of NCMs residing outside (H3K27ac negative) the top candidate
550 H3K27ac consensus regions (~1kb) were obtained and compared to those of H3K27ac
551 associated NCMs. The top candidate regions were also validated using the LINSIGHT
552 algorithm. LINSIGHT scores were extracted as previously described³¹. The scores based on
553 the likelihood of deleterious fitness consequences were extracted and used to compare
554 NCMs located inside our consensus peak regions and NCMs located nearby outside peak
555 regions (H3K27ac negative). An unpaired Wilcoxon signed rank test was used for all
556 statistical significance testing.

557

558 **The identification of putative functional mutations using approach two (LARVA algorithm).**

559 To identify recurrently mutated regions (within H3K27ac consensus peaks) more than
560 expected to nearby background regions, we used the algorithm LARVA³². This algorithm
561 considers sample-specific mutation rates, heterogeneity and replication timing, as
562 previously described³². NCMs that fell into blacklist regions were first removed, and the
563 remaining NCMs overlapped with our H3K27ac consensus regions. Three models were used
564 to calculate the mutation rate expected based on the stochastic background mutations. The *p*-value
565 was drawn from a β - distribution, taking the average mutation rate and the over-dispersion,
566 respectively into consideration. The third model considers the average replication timing
567 within each H3K27ac element, a confounding genomic feature that would affect the
568 background mutation rate⁸⁵. For this, replication timing data from seven different cell lines
569 were retrieved from ENCODE and the average timing per region calculated across all cell
570 lines (HepG2, MCF-7, GM12878, K562, BJ, IMR-90 and SK-N-SH GSE34399)¹⁰⁵. *P*-values were
572

573 adjusted with the Benjamini-Hochberg method across all three models. We prioritised those
574 significant H3K27ac regions with a *q* value of <0.01.

575

576 **Luciferase reporter assays**

577 Sequences surrounding NCMs of interest (~2kb total) were amplified using specific primers
578 (Extended Data Table S4). Mutations were introduced with site-directed mutagenesis
579 (QuikChange II Site-Directed Mutagenesis Agilent) as per the manufacturer's instructions
580 and checked using Sanger Sequencing and correct regions cloned into the pGL2 vector
581 upstream of the SV40 promoter. Thirty-five thousand cells (HEK293T and PANC-1) were
582 plated 24-hours before transfection in a 24-well plate with either 100ng WT or MUT pGL2
583 plasmids (Promega Cat E1631) and 5ng of Renilla luciferase control (Promega Cat E2231).
584 Luciferase activity was measured 48-hours post-transfection with the Dual-Luciferase
585 Reporter Assay System (Promega Cat E1910). Overall activity was calculated by taking a
586 ratio of the Firefly over the Renilla expression control vector. The background signal was
587 quantified using un-transfected cells and subtracted from readings. An unpaired *t*-test was
588 used to obtain statistical significance between wild-type (WT) and mutant (MUT) luciferase
589 activity.

590

591 **STARR-seq library design and cloning of candidate *cis*-regions into the STARR-seq plasmid**

592 The STARR-seq library consisted of 6,080 constructs representing 587 candidate mutations,
593 corresponding WT sequences and 210 controls. Constructs were represented in a 194bp
594 sequence context, flanked by a 15bp linker region for adaptor ligation and amplification
595 (Extended Data S4). One hundred and ten positive controls were selected from super-
596 enhancers previously reported in PDAC¹⁰⁶ and additional regions from the super-enhancer
597 database (SEdb)¹⁰⁷. Putative negative controls were selected from gene deserts lacking
598 H3K27ac and H3K4me1 marks in PDAC cell lines. A unique 6bp barcode was placed between
599 the 5' 15bp linker and the candidate sequence to allow the differentiation between WT,
600 MUT and control (CTRL) sequences, resulting in a final construct of 230bp. To understand
601 the activity of mutations in different genomic contexts and maximise the chance of
602 capturing regulatory activity, each mutation was represented in the library five times,
603 shifting the genomic context of the sequences 10bp and 20bp left and right from the middle
604 of the construct, thereby representing the mutation in left_20bp, left_10bp, centre,

605 right_10bp and right_20bp positions. The synthetic oligonucleotide library was amplified
606 and cloned as previously described^{44,108}. Briefly, 5ng of the STARR-seq library was amplified,
607 and vector homology arms were added to either side of the construct. The second
608 generation hSTARR-seq ORI plasmid (Addgene: #99296) was digested with Sall-HF and AgeI-
609 HF restriction enzymes, and the amplified library was cloned into the 3-UTR of the vector.
610 Ligations (X5 reactions) were transformed by electroporation into MegaX DH10B™ T1R
611 Electrocomp™ Cells (Invitrogen), and reactions pooled. The plasmid pool was extracted
612 using the ZymoPURE Giga prep kit according to the manufacturer's instructions. To check
613 the quality and overall representation of the library, sequence inserts were amplified from
614 the STARR-seq plasmid using Illumina-compatible index primers (Extended Data S4). STARR-
615 seq libraries were sequenced using 2 x 150bp chemistry on an Illumina Novaseq 6000 by
616 Novogene Ltd.

617 **STARR-seq oligo-pool quality check**

618 Paired end reads were merged into single amplicons using the USEARCH fastq_mergelpairs
619 command¹⁰⁹. Merged reads were aligned back to the expected oligo library using BWA MEM
620 with default parameters, penalising soft-clipping of alignment ends (-L80)¹¹⁰. GATK
621 DepthofCoverage (version 3) was used to determine the sequencing depth per nucleotide
622 and construct¹¹¹. Of the 6,082 constructs sequenced, 98.63% had a minimum coverage of
623 30X, with both WT and MUT sequences represented. To identify sequencing errors, the
624 Samtools 'mpileup' function was run on aligned reads and the oligo reference library to
625 obtain read counts for each nucleotide position¹⁰³. Subsequent mpile up files were run with
626 the VarScan2 package and 'mpileup2cns' parameters to identify sequencing errors^{103,112}.

627 **Transfection, RNA isolation and cDNA synthesis**

628 Two million PANC-1 cells were plated per 10cm dish (5 dishes per biological replicate) for 24
629 hours. Plasmid libraries (14μg per plate) were transfected using lipofectamine 3000 as per
630 manufacturer instructions. To monitor transfection efficiency, one 10cm dish was co-
631 transfected with 2.8μg of pmaxGFP plasmid (Lonza). Immediately post-transfection, the
632 interferon inhibitors C16 and BX-795 were added to each plate at a final concentration of
633 1μM (per inhibitor), as previously described^{113,114}. Cells were incubated at 37°C for 16 hours
634 before harvesting and counting. 1/10th of the cells were retained for plasmid DNA, and the

635 remaining cells were for RNA extraction. For RNA, cells were homogenised with the Qiagen
636 Qiashredder and total RNA was extracted using the Qiagen mini-RNA extraction kit as per
637 the manufacturer's instructions. Poly-(A)⁺ RNA were isolated using DynabeadsTM oligo(dT)25
638 followed by DNase treatment with TurboDNase (Invitrogen). Samples were purified with
639 RNA cleanupXP beads as previously described¹⁰⁸. cDNA synthesis was carried out using
640 SuperScript III and a gene-specific primer (Extended Data S4). cDNA was purified with 1.4X
641 AMPureXP beads (and for subsequent steps described below). A second-strand synthesis
642 reaction was followed by purification. Using a P7-specific primer (Extended Data Table S4)
643 UMI's were added to cDNA (in 5 reactions) with Kapa 2x HiFi HotStart ReadyMix (Kapa
644 Biosystems). Reactions were pooled and purified. Junction PCR was used to amplify
645 reporter-specific transcripts for 16 cycles and thereafter purified. For the final library
646 preparation, Illumina sequencing primers were used in cDNA samples for 8-14 cycles
647 followed by purification with 1.2X of AMPure SPRI beads (Extended Data S4).

648 To obtain the DNA input library, STARR-seq plasmids were isolated from PANC-1 cells
649 using the Monarch plasmid miniprep kit, as per the manufacturer's instructions. One
650 hundred nanograms of DNA were amplified using Illumina-compatible index primers as
651 described above. The DNA plasmid and RNA-derived libraries were sequenced using the
652 150-cycle paired-end V3 chemistry reagents and run on a Miseq.

653

654 **Processing and analysis of STARR-seq screen**

655 Paired-end reads were processed with CutAdapt to remove residual sequencing adaptors
656 and STARR-seq vector linkers¹¹⁵. Reads were split based on the 6 bp barcodes WT, MUT and
657 CTRL into separate files. Barcodes were removed, and sequences aligned to the human
658 reference genome (hg19) using BWA MEM with default parameters¹¹⁰. Aligned BAM files
659 were converted to BAMPE format using the bedtools function 'bamtobed', and properly
660 paired reads were extracted for further analysis¹¹⁶. The Bedtools 'intersect' function was
661 used to overlap reads with the expected design oligo library and obtain raw read counts.
662 Samples were deduplicated based on UMI's with a custom-made Perl script. A minimum of
663 three unique UMI's were required for a construct to be counted. Deduplicated counts were
664 normalised to the total number of reads in the sample and then multiplied by 1M to obtain
665 the number of transcripts per million. The relative abundance of each construct transcribed
666 was calculated by dividing the observed RNA output by the DNA input, indicating the

667 relative activity of each WT, MUT and CTRL construct. To compare the transcriptional
668 activity of single oligos between WT vs MUT and negative vs positive CTRLs, an unpaired t-
669 test was used. To compare the transcriptional activity at the mutation level across the five
670 sliding windows (WT vs MUT), a Mann-Whitney U statistical test was used.

671

672 **CRISPRi guide RNA design and cloning**

673 For CRISPRi, guide RNAs were selected from the UCSC genome browser 'CRISPR Tracks',
674 selecting guides as close to mutations as possible with a minimum of two guides per *cis*-
675 region (Extended Data Table S4). Potential off-target effects were assessed using the MIT
676 specificity score, selecting guides with a score above 70%¹¹⁷. Homology arm sequences were
677 added to each guide to clone into the pU6-sgRNA EF1Alpha-puro-T2A-BFP expression
678 plasmid at the BstXI-BpI3 β digested site. gRNA oligos were phosphorylated, annealed and
679 cloned into pU6-sgRNA EF1Alpha-puro-T2A-BFP expression plasmid (Addgene #60955) as
680 previously described¹¹⁸. Inserts were verified with Sanger sequencing.

681

682 **Lentivirus transduction**

683 Lentivirus was generated as previously described¹¹⁸. Briefly, 4M cells were plated in a 10cm
684 dish for 24-hours before transfecting HEK293T cells with 9ug of dCas9-mCherry-KRAB
685 (Addgene #60954), 4ug of packing plasmids psPAX.2 and 2ug of the envelope vector
686 pMD2.G diluted in OptiMEM medium and Trans-Ltl transfection reagent (Mirus). For the
687 generation of gRNA lentivirus, 9ug of each cloned guide were transfected, and the virus was
688 collected as described above. Twenty-four hours post-transfection, media was refreshed,
689 and viral supernatant was collected at 48- and 72-hours post-transfection. Viral
690 supernatants were centrifuged and filtered (45um). PANC-1 cells were transduced in a one-
691 to-one dilution of the virus and growth medium supplemented with polybrene (5ug/ml).
692 Three days post-transduction, mCherry positive cells were sorted by FACS, selecting the top
693 50% of positive cells based on the overall mCherry signal. PANC-1 dCas9/KRAB expressing
694 cells were plated in 24-well dishes for 24-hours before transducing cells with lentiviral
695 supernatant from multiple guides (as indicated in Fig. 3b). At 24-hours post-infection, the
696 medium was replaced, and cells were selected with 2ug/ml of puromycin for 72-hours. Cells
697 were harvested, and the effect on the expression of MIR100HG, UBASH3B and ARHGEF12
698 was assessed using qPCR and subsequent RNA-sequencing (Extended Data Table S4).

699

700 **qPCR**

701 RNA was extracted and DNase I treated using the Qiagen mini-RNA extraction kit according
702 to manufacturer instructions. cDNA was synthesised from 1ug of DNase treated RNA using
703 the LunaScript® RT SuperMix (NEB), according to the manufacturer's protocols. We
704 performed qPCR on a StepOneTM Real-Time PCR System with the Luna® Universal qPCR
705 Master Mix (NEB). Gene specific primers are outlined in Extended Data Table S4.

706

707 **RNA-seq data generation and analysis**

708 500 ng of total RNA was used to enrich mRNA using an oligo dT-based mRNA isolation
709 module (NEB Cat number E7490L). RNA sequencing libraries were prepared by
710 NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB catalogue number
711 E7760S). Libraries were sequenced as 150 bp paired-end reads using a Novaseq 6000. After
712 the quality check and trimming, reads were aligned to the reference genome hg38 using
713 STAR v2.7.9a¹¹⁹, followed by the gene count quantification using RSEM¹²⁰ based on the
714 Ensembl gene annotation GRCh38.p13 Release 105. Genes with low mapped read across all
715 samples were removed. The normalised RPKM (Reads per kilobase of transcript per Million
716 reads mapped) expression values for all filtered genes across samples were subsequently
717 derived and used for the differential expression (DE) analysis. The DE analysis was
718 performed using Limma¹²¹, comparing each CRISPRi perturbation group (G 5-6 and G 7-8) to
719 the dCa9/KRAB control group respectively. The significant DE genes were identified using a
720 threshold of FDR<0.05 and absolute log₂FC>1. GSEA⁶⁸ was then performed based on the
721 Limma output against gene sets curated in MSigDB hallmark⁶⁹ and oncogenic signature gene
722 sets, to identify dysregulated gene activities in the CRISPRi group relative to the control.

723

724 **Cell migration assays**

725 Approximately four thousand dCas9/KRAB expressing PANC-1 cells transduced with
726 lentiviral gRNA combinations were seeded into 96-well plates. Cells were scratch wounded
727 using a 20ul pipette tip. Cells were washed with PBS to remove cell debris, and phase-
728 contrast images were taken at 0-, 24- and 48-hours at three specific wound sites per well
729 using a Leica microscope with an X4 objective. The ability of the cells to migrate and close
730 the wound area was evaluated by comparing the pixels of the open wound region at each

731 time point using image J (MRI wound healing plugin)¹²². An unpaired t-test was used to
732 compare each treated time point to the negative control.

733

734 **Data availability**

735 The RNA-seq data for the CRISPRi perturbation of MIR100HG enhancer regions has been
736 deposited to the Gene Expression Omnibus under the accession number of GSE229499.
737 ChIP-seq data were available under GSE64560 and GSE99311. Mutation and expression data
738 of PDAC patients were downloaded from the ICGC data portal. The STARR-seq data and all
739 scripts to analyse the data can be requested and obtained by contacting the corresponding
740 authors.

741

742 **Acknowledgement**

743 The work was funded by the Medical Research Council Doctoral Training Partnership (DTP)
744 PhD programme to QMUL and University of Southampton, and by Academy of Medical
745 Sciences Springboard Award (SBF003\1025 to J.W.). The authors acknowledge support from
746 the Cancer Research UK City of London Major Centre core funding support to Barts Cancer
747 Institute (C16420/A18066), and the Accelerator Award Program funded by Cancer Research
748 UK (C355/A26819) and FC AECC and AIRC. Medical Research Council UKRI/MRC grant
749 (MR/T000783/1) (MMP, DP) Barts charity small grant (MGU0475) (MMP).

750

751 **Author contributions**

752 J.W. conceived the study. J.W., M.M.P., and M.B.P. designed the study and developed the
753 methodology. M.B.P., and J.W. performed the computational discovery analysis. M.B.P., A.
754 R.-M., J.H., J.F., and M.M.P. performed the Luciferase reporter assay experiments. M.B.P.,
755 D.P., and M.M.P. performed the STARR-seq experiments. M.B.P., S.S.A., and J.W. performed
756 the STARR-seq data analysis. M.B.P., E.M., and J.W. performed the RNA-seq analysis. M.B.P.,
757 H.K., and M.M.P. performed the in vitro functional assays. J.W., and M.M.P. supervised the
758 study and acquired the funding. M.B.P., J.W., and M.M.P. interpreted the data and wrote
759 the manuscript. All authors reviewed the manuscript and approved the final version of the
760 manuscript.

761

762 **Competing interests:** Authors declare that they have no competing interests.

763

764

765

766

767

768

769

770

771

772

773 **Figure legend**

774

775 **Fig. 1. Identification of functionally significant PDAC-CRE-associated NCMs and putative**
776 **CRE drivers in PDAC.** **a.** Overview of our investigative strategy to detect significant CRE-
777 associated NCMs and CRE drivers **b.** The variant filtering of somatic mutations using the
778 ICGC PDAC Australia (AU) cohort as an example. The number of H3K27ac peaks and
779 mutations (in red) is listed at each filtering step. **c.** Putative CRE drivers and the most
780 proximal labelled genes identified by the two independent in-silico approaches: one
781 implementing the IW-Scoring algorithm and LINSIGHT validation, the other using the LARVA
782 model to identify CRE-regions with recurrent NCMs. **d.** Two gene set enrichment pathway
783 analyses of CRE-associated nearby genes identified by the two in-silico approaches. **e.**
784 Genome browser tracks (hg19) showing the histone modifications, CRE-associated NCMs in
785 the third intron of *MIR100HG* and *FOXP1* selected for the Luciferase reporter assay
786 validation (grey shade). **f.** Boxplots depicting the luciferase reporter activity of selected
787 NCMs in the introns of *MIR100HG* and *FOXP1* tested in HEK293 and PANC-1 cell lines. The
788 top panels are for NCMs in the *MIR100HG* CRE, and the bottom panels are for NCMs in the
789 *FOXP1* CRE. Data is representative of 3 technical replicates from 3-4 independent
790 experiments. The statistics was performed using the unpaired t-test, with the significance p-
791 value shown as, * <0.05 , ** <0.01 , *** <0.001 , **** <0.0001 .

792

793 **Fig. 2. STARR-seq to validate the regulatory activity of candidate NCMs. a.** STARR-seq NCM
794 candidate selection strategy (left) and oligo design (right). **b.** A scatter plot showing the
795 correlation of the STARR-seq regulatory activity between the two biological replicates.
796 STARR-seq activity was measured as the \log_2 transformed transcript per million (TPM) of
797 RNA output over the DNA input. The correlation coefficient (R) and p -values are shown. **c.**
798 Violin plots depicting the mean \log_2 transformed STARR-seq activity (TPM) of the two
799 replicates comparing the negative and positive controls, $p^{***} \leq 0.001$ (t-test). **d.** Volcano
800 plot showing the mean \log_2 fold change vs. the \log_{10} p-value (t-test) between MUT and WT
801 oligos for all constructs. Pink dots demonstrate candidates with a p -value < 0.05 . Selected
802 candidate CREs with a p -value < 0.01 (t-test) are labelled with the closest proximal gene. **e.**
803 Oligos with the most significant changes compared to its WT counterpart ($p < 0.01$). MUT
804 oligos with a higher activity than their WT sequence (gain of function) are in red bars, while
805 MUT oligos with a lower activity than the WT control are in green. Predicted motifs
806 identified by MotifbreakR are shown beside bars for mutations where relevant. Oligo names
807 M1-48 are listed in Extended Data S5. **f.** Heatmap showing the gene expression profile (GEP)
808 from the ICGC PDAC cohort ($n=269$) of predicted TFs putatively perturbed or gained in the
809 top significant NCMs ($p < 0.01$). Normalised microarray expression values are shown in the
810 heatmap. **g.** Motif gain and loss (break) from two mutations in the *MIR100HG* enhancer
811 cluster. The TF binding motifs for TFs NR6A1 and SOX10 are shown, and the affected
812 nucleotide is marked in a dotted line.

813
814 **Fig. 3. CRISPRi for selected CREs with NCMs within the MIR100HG enhancer cluster. a.**
815 Genome browser tracks (hg19) showing the overview of the *cis*-regulatory landscape at the
816 MIR100HG enhancer cluster (11q24.1) and the selected CRE's for CRISPRi perturbation (grey
817 vertical bars). The first region (left) is within a significant CRE identified by the first *in-silico*
818 approach based on IW-Scoring, and two regions (centre right) within the significant CRE by
819 the second approach, based on LARVA. H3K27ac and H3K4me1/3, DNase I hypersensitive
820 sites (DHS), NCMs, guide RNA sites, microRNAs and the *BLID* gene are shown. **b.** Zoom-in of
821 the three targeted *MIR100HG* CRE regions. RTqPCR data showing fold change in MIR100HG,
822 *UBASH3B* (for region two G5-6) and *ARHGEF12* (for region two G7-8) levels normalised to
823 Actin- β upon CRISPRi compared to no guide RNA control (dCAS9/KRAB). **c.** Principal
824 component analysis (PCA) of the RNA-seq samples among the three groups, dCas9/KRAB

825 control, CRISPRi for region two (G 5-6) and region three (G 7-8). PC1 and PC2 were used for
826 the separation of samples. **d.** Scatter plot of the \log_2 fold changes between G 5-6 and G 7-8
827 groups in comparison to the dCas9/KRAB control group for all profiled genes in the RNA-seq
828 data. The correlation coefficient and *p*-value are shown. **e.** The overlap of significantly
829 differentially expressed (DE) genes between G 5-6 and G 7-8 groups in comparison to the
830 control. The significance cut-off is shown, and numbers of shared and unique DE genes are
831 listed. **f.** The level of gene expression of *MIR100HG* among the dCas9/KRAB, G 5-6 and G 7-8
832 groups were derived from the RNA-seq data (n=3 in each group). Log₂ RPKM values were
833 used to measure the RNA expression. A t-test was performed between the groups, with the
834 significance *p*-value shown as * <0.05 , ** <0.01 .

835

836 **Fig. 4. CRISPRi for *MIR100HG* CREs results in a downregulation of KRAS and TGF- β
837 pathways** **a.** Significantly dysregulated pathways (false discovery rate, FDR <0.05) in the
838 CRISPRi perturbation groups G 5-6 and G 7-8 compared to the dCas9/KRAB control group.
839 Gene set enrichment analysis (GSEA) against the hallmark and oncogenic signature gene
840 sets was performed ^{68,69}. The normalised enrichment scores (NES) were used to create the
841 heatmap, with the positive NESs (in red) indicating the upregulation and negative NESs (in
842 blue) indicating the downregulation of activities in the CRISPRi perturbation groups
843 compared to the dCas9/KRAB control. **b.** GSEA plots for the TGF- β and KRAS signalling gene
844 sets for the CRISPRi perturbation G 5-6 and G 7-8 groups compared to the dCas9/KRAB
845 control group. The NES and FDR values for each analysis are shown. **c.** Wound healing assay
846 with G 5-6 and G 7-8 CRISPRi clones compared to the dCas9/KRAB control samples. 0, 24
847 and 48-hour time points are shown. **d.** Measurement of the relative wound closure in the
848 three groups, dCas9/KRAB control, region two (G 5-6) and region three (G 7-8) (images are a
849 representation of n=3 biological replicates in each group). An unpaired t-test was used to
850 compare perturbation clones vs. control groups. *p*-values * ≤ 0.05 . ns, not significant.

851

852 **Extended Data Fig. 1. Prioritised CREs using the first *in silico* approach.** **(a)** Australia (AU)
853 and **(b)** Canada (CA) cohorts NCMs were submitted to the IW-scoring algorithm. Each dot
854 denotes a CRE, it's combined median IW-score, across all chromosomes. The horizontal
855 dotted line indicates the median IW-score threshold (*p*=0.1). The prioritised CREs with an
856 IW-median score ≥ 2 are labelled by the nearest proximal gene for each cohort.

857

858 **Extended Data Fig. 2. An independent validation of the top prioritised CREs using**
859 **LINSIGHT.**

860 **a.** Boxplots of LINSIGHT scores in H3K27ac-associated NCMs (inside peaks) in comparison to
861 NCMs in nearby H3K27ac negative regions (outside peak) for the top 5 CREs identified by
862 the first approach. **b.** LINSIGHT scores and location of NCMs inside (green) vs outside (black)
863 H3K27ac peaks.

864

865 **Extended Data Fig. 3. Identification of two putative CREs within the *MIR100HG* enhancer**
866 **cluster.** The MIR100HG enhancer cluster was the only shared element between the two in-
867 silico approaches. One CRE was identified by the first approach based on IW-scoring and
868 LINSIGHT validation, and the other was identified by the second approach based on the
869 LARVA algorithm. Genome browser tracks (hg19) of the H3K27ac peaks across the 7 PDAC
870 cell lines and 2 patient-derived organoids are shown. The MIR100HG-hosted microRNAs and
871 associated gene *BLID* are indicated.

872

873 **Extended Data Fig. 4. First *in silico* approach prioritises a significant CRE in the third intron**
874 **of the TF *FOXP1*.** Genome browser tracks (hg19) presenting the H3K27ac peaks across the 7
875 PDAC cell lines and 2 patient-derived organoids and the annotation of the merged
876 consensus peaks. The location of NCMs inside and outside H3K27ac consensus is indicated
877 for each cohort.

878

879 **Extended Data Fig. 5. Quality analysis of the cloned STARR-seq plasmid library.** **a.** Length
880 distribution of cloned oligo constructs. The percentage of each length is shown. The oligo
881 construct library had 49% of oligos with the expected correct length, followed by 1- (28%)
882 and 2-bp (10%) deletions. **b.** Depiction of the number of construct synthesis errors across
883 the sequenced oligos. The error occurrence is shown along the base pair positions.

884

885 **Extended Data Fig. 6. Comparison of regulatory activities derived between Luciferase**
886 **reporter assay and STARR-seq.** Boxplots comparing the Luciferase reporter assay activity
887 and STARR-seq, demonstrating concurrent directional changes in enhancer activity at NCMs
888 profiled by both techniques.

889

890 **Extended Data Fig. 7. BNC1 associated enhancer cluster and significant NCMs from the**
891 **STARR-seq screen.** **a.** Genome browser (hg19) of the H3K27ac peaks across the 7 PDAC cell
892 lines and 2 patient-derived organoids. The STARR-seq significant NCMs are indicated, with
893 the vast majority residing upstream of the *BNC1* gene promoter. **b.** Boxplots showing the
894 expression of genes within 1Mb of the *BNC1* CRE that have significant alterations (*BTBD1*,
895 *FAM103A1* and *TM6SF1*) and the nearest proximal gene (*BNC1*), comparing mutant (MUT)
896 and wildtype (WT) patient gene expression profiles (GEPs). The p-values were derived from
897 the Wilcoxon rank sum test. **c.** Motif gain example for a gain-of-function NCM proximal to
898 the *TBX3* gene (chr12:115067012:C>A). A binding motif for the TF JUN is created by this
899 mutation. All TF binding predictions were carried out using MotifBreakR. **d.** Motif break
900 example for one loss-of-function NCM located in the intron of *FOXP1* (chr3:71123616:G>T).
901 The binding motif for ATF3 was disrupted by this mutation.

902

903 **Extended Data Fig. 8. The interaction of MIR100HG CREs with distal genes revealed by the**
904 **4D genome.** **a.** Genome browser (hg19) showing the H3K27ac signal for PANC-1 cells and
905 the putative loop between CRE-2 and the promoter of *UBASH3B*. Putative loops were
906 predicted using the interactions from the integrated method for predicting enhancer targets
907 (IM-PET) and 4D Genome in PANC-1 cells. **b.** Genome browser (hg19) showing the H3K27ac
908 signal for PANC-1 cells and the putative loop between CRE-3 and the promoter of
909 *ARHGEF12*.

910

911 **Extended Data Fig. 9.** Boxplots comparing the gene expression profiles of TGF- β related
912 genes *FGF1*, *KDM6B*, *LIF*, *PIK3CD*, *PXDC1* and *TAGLN* between G 5-6 / G 7-8 CRISPRi
913 perturbations and the dCas9/KRAB control. The gene expression levels were measured by
914 RNA-seq data, in the unit of log2 RPKM values.

915

916 **Extended Data Fig. 10. The mutational burden in the top five significant CREs identified in**
917 **the first approach in other common solid tumours.** CREs overlaying genes *FOXA1*, *FOXP1*,
918 *HOTAIR/HOXC* genes, *MIR100HG* and *NFEL2* were assessed for their mutational burden. **a.**
919 Barplot showing the number of samples across the selected cancer cohorts. **b.** Barplot of

920 the total number of mutations within each cohort. **c.** Barplots showing the frequency of
921 NCMs identified within each CRE across each cancer cohort.

922

923

924 **Extended Data S1.** List of NCMs in significant CRE's prioritised using the first *in-silico*
925 approach in the AU and CA cohorts respectively.

926 **Extended Data S2.** Table showing the comparison of NCMs inside the top five significant
927 CREs to NCMs located outside flanking H3K27ac negative regions. An unpaired Wilcoxon
928 signed rank test was used to obtain p values.

929 **Extended Data S3.** List of all significant CREs prioritised by the LARVA algorithm and those
930 significant CREs found to be in common between the AU and CA cohorts.

931 **Extended Data S4.** List of primers and CRISPRi guides.

932 **Extended Data S5.** List of top significant oligos as shown in Fig. 2e.

933

934

935 **References:**

936

937 1 Klein, A. P. Pancreatic cancer epidemiology: understanding the role of lifestyle and
938 inherited risk factors. *Nature reviews. Gastroenterology & hepatology* **18** (2021).
<https://doi.org/10.1038/s41575-021-00457-x>

939 2 Waddell, N. *et al.* Whole genomes redefine the mutational landscape of pancreatic
940 cancer. *Nature* **518** (2015). <https://doi.org/10.1038/nature14169>

941 3 Bailey, P. *et al.* Genomic analyses identify molecular subtypes of pancreatic cancer.
942 *Nature* **531** (2016). <https://doi.org/10.1038/nature16965>

943 4 Collisson, E. A. *et al.* Subtypes of pancreatic ductal adenocarcinoma and their
944 differing responses to therapy. *Nature medicine* **17**
945 <https://doi.org/10.1038/nm.2344>

946 5 Moffitt, R. A. *et al.* Virtual microdissection identifies distinct tumor- and stroma-
947 specific subtypes of pancreatic ductal adenocarcinoma. *Nature genetics* **47** (2015).
<https://doi.org/10.1038/ng.3398>

948 6 Murphy, S. J. *et al.* Genetic alterations associated with progression from pancreatic
949 intraepithelial neoplasia to invasive pancreatic tumor. *Gastroenterology* **145** (2013).
<https://doi.org/10.1053/j.gastro.2013.07.049>

950 7 Zhang, J. *et al.* The International Cancer Genome Consortium Data Portal. *Nature
951 biotechnology* **37** (2019). <https://doi.org/10.1038/s41587-019-0055-9>

952 8 Fredriksson, N. J., Ny, L., Nilsson, J. A. & Larsson, E. Systematic analysis of noncoding
953 somatic mutations and gene expression alterations across 14 tumor types. *Nature
954 genetics* **46** (2014). <https://doi.org/10.1038/ng.3141>

958 9 Rachakonda, P. S. *et al.* TERT promoter mutations in bladder cancer affect patient
959 survival and disease recurrence through modification by a common polymorphism.
960 *Proceedings of the National Academy of Sciences of the United States of America* **110**
961 (2013). <https://doi.org/10.1073/pnas.1310522110>

962 10 Hosen, I. *et al.* TERT promoter mutations in clear cell renal cell carcinoma.
963 *International journal of cancer* **136** (2015). <https://doi.org/10.1002/ijc.29279>

964 11 Horn, S. *et al.* TERT promoter mutations in familial and sporadic melanoma. *Science*
965 (New York, N.Y.) **339** (2013). <https://doi.org/10.1126/science.1230062>

966 12 Rahman, S. *et al.* Activation of the LMO2 oncogene through a somatically acquired
967 neomorphic promoter in T-cell acute lymphoblastic leukemia. *Blood* **129** (2017).
968 <https://doi.org/10.1182/blood-2016-09-742148>

969 13 S., N.-Z. *et al.* Landscape of somatic mutations in 560 breast cancer whole-genome
970 sequences. *Nature* **534** (2016). <https://doi.org/10.1038/nature17676>

971 14 Rheinbay, E. *et al.* Analyses of non-coding somatic drivers in 2,658 cancer whole
972 genomes. *Nature* **578** (2020). <https://doi.org/10.1038/s41586-020-1965-x>

973 15 Dietlein, F. *et al.* Genome-wide analysis of somatic noncoding mutation patterns in
974 cancer. *Science* (New York, N.Y.) **376** (2022).
975 <https://doi.org/10.1126/science.abg5601>

976 16 Feigin, M. E. *et al.* Recurrent noncoding regulatory mutations in pancreatic ductal
977 adenocarcinoma. *Nature genetics* **49** (2017). <https://doi.org/10.1038/ng.3861>

978 17 Mansour, M. R. *et al.* Oncogene regulation. An oncogenic super-enhancer formed
979 through somatic mutation of a noncoding intergenic element. *Science* (New York,
980 N.Y.) **346** (2014). <https://doi.org/10.1126/science.1259037>

981 18 Abraham, B. J. *et al.* Small genomic insertions form enhancers that misregulate
982 oncogenes. *Nature communications* **8** (2017).
983 <https://doi.org/10.1038/ncomms14385>

984 19 Creyghton, M. P. *et al.* Histone H3K27ac separates active from poised enhancers and
985 predicts developmental state. *Proceedings of the National Academy of Sciences of
986 the United States of America* **107** (2010). <https://doi.org/10.1073/pnas.1016071107>

987 20 Corona, R. I. *et al.* Non-coding somatic mutations converge on the PAX8 pathway in
988 ovarian cancer. *Nature communications* **11** (2020). <https://doi.org/10.1038/s41467-020-15951-0>

989 21 Diaferia, G. R. *et al.* Dissection of transcriptional and cis-regulatory control of
990 differentiation in human pancreatic cancer. *The EMBO journal* **35** (2016).
991 <https://doi.org/10.15252/embj.201592404>

992 22 Boj, S. F. *et al.* Organoid models of human and mouse ductal pancreatic cancer. *Cell*
993 **160** (2015). <https://doi.org/10.1016/j.cell.2014.12.021>

994 23 Wang, J., Dayem Ullah, A. Z. & Chelala, C. IW-Scoring: an Integrative Weighted
995 Scoring framework for annotating and prioritizing genetic variations in the
996 noncoding genome. *Nucleic acids research* **46** (2018).
997 <https://doi.org/10.1093/nar/gky057>

998 24 Milan, M. *et al.* FOXA2 controls the cis-regulatory networks of pancreatic cancer cells
999 in a differentiation grade-specific manner. *The EMBO journal* **38** (2019).
1000 <https://doi.org/10.15252/embj.2019102161>

1001 25 Ottaviani, S. *et al.* TGF-β induces miR-100 and miR-125b but blocks let-7a through
1002 LIN28B controlling PDAC progression. *Nature communications* **9** (2018).
1003 <https://doi.org/10.1038/s41467-018-03962-x>

1004

1005 26 Li, C. H. *et al.* EZH2 coupled with HOTAIR to silence MicroRNA-34a by the induction
1006 of heterochromatin formation in human pancreatic ductal adenocarcinoma.
International journal of cancer **140** (2017). <https://doi.org/10.1002/ijc.30414>

1008 27 Shah, N. & Sukumar, S. The Hox genes and their roles in oncogenesis. *Nature reviews. Cancer* **10** (2010). <https://doi.org/10.1038/nrc2826>

1010 28 Roe, J. S. *et al.* Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis. *Cell* **170** (2017). <https://doi.org/10.1016/j.cell.2017.07.007>

1012 29 Rad, R. *et al.* A conditional piggyBac transposition system for genetic screening in
1013 mice identifies oncogenic networks in pancreatic cancer. *Nature genetics* **47** (2015).
<https://doi.org/10.1038/ng.3164>

1015 30 Forcina, G. C. *et al.* Ferroptosis regulation by the NGLY1/NFE2L1 pathway.
Proceedings of the National Academy of Sciences of the United States of America **119**
1016 (2022). <https://doi.org/10.1073/pnas.2118646119>

1018 31 Huang, Y. F., Gulko, B. & Siepel, A. Fast, scalable prediction of deleterious noncoding
1019 variants from functional and population genomic data. *Nature genetics* **49** (2017).
<https://doi.org/10.1038/ng.3810>

1021 32 Lochovsky, L., Zhang, J., Fu, Y., Khurana, E. & Gerstein. LARVA: an integrative
1022 framework for large-scale analysis of recurrent variants in noncoding annotations.
Nucleic acids research **43** (2015). <https://doi.org/10.1093/nar/gkv803>

1024 33 Eissa Maryam, A. L. *et al.* Promoter methylation of ADAMTS1 and BNC1 as potential
1025 biomarkers for early detection of pancreatic cancer in blood. *Clinical Epigenetics* **11**,
1026 1-10 (2019). <https://doi.org/doi:10.1186/s13148-019-0650-0>

1027 34 Perkhofer, L. *et al.* Tbx3 fosters pancreatic cancer growth by increased angiogenesis
1028 and activin/nodal-dependent induction of stemness. *Stem cell research* **17** (2016).
<https://doi.org/10.1016/j.scr.2016.08.007>

1030 35 Tauber, S. *et al.* Transcriptome analysis of human cancer reveals a functional role of
1031 heme oxygenase-1 in tumor cell adhesion. *Molecular cancer* **9** (2010).
<https://doi.org/10.1186/1476-4598-9-200>

1033 36 Peppino, G. *et al.* Teneurins: Role in Cancer and Potential Role as Diagnostic
1034 Biomarkers and Targets for Therapy. *International journal of molecular sciences* **22**
1035 (2021). <https://doi.org/10.3390/ijms22052321>

1036 37 Qu, Q. H., Jiang, S. Z. & Li, X. Y. LncRNA TBX5-AS1 Regulates the Tumor Progression
1037 Through the PI3K/AKT Pathway in Non-Small Cell Lung Cancer. *OncoTargets and
1038 therapy* **13** (2020). <https://doi.org/10.2147/OTT.S255195>

1039 38 Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of
1040 large gene lists using DAVID bioinformatics resources. *Nature protocols* **4** (2009).
<https://doi.org/10.1038/nprot.2008.211>

1042 39 Nikolskaya, T. *et al.* Core signaling pathways in human pancreatic cancers revealed
1043 by global genomic analyses. *Science (New York, N.Y.)* **321** (2008).
<https://doi.org/10.1126/science.1164368>

1045 40 Arnold, C. D. *et al.* Genome-wide quantitative enhancer activity maps identified by
1046 STARR-seq. *Science (New York, N.Y.)* **339** (2013).
<https://doi.org/10.1126/science.1232542>

1048 41 Coetzee, S. G., Coetzee, G. A. & Hazelett, D. J. motifbreakR: an R/Bioconductor
1049 package for predicting variant effects at transcription factor binding sites.
Bioinformatics (Oxford, England) **31** (2015).
<https://doi.org/10.1093/bioinformatics/btv470>

1052 42 Inoue, F. *et al.* A systematic comparison reveals substantial differences in
1053 chromosomal versus episomal encoding of enhancer activity. *Genome research* **27**
1054 (2017). <https://doi.org/10.1101/gr.212092.116>

1055 43 Ulirsch, J. C. *et al.* Systematic Functional Dissection of Common Genetic Variation
1056 Affecting Red Blood Cell Traits. *Cell* **165** (2016).
1057 <https://doi.org/10.1016/j.cell.2016.04.048>

1058 44 Neumayr, C., Pagani, M., Stark, A. & Arnold, C. D. STARR-seq and UMI-STARR-seq:
1059 Assessing Enhancer Activities for Genome-Wide-, High-, and Low-Complexity
1060 Candidate Libraries. *Curr Protoc Mol Biol* **128**, e105 (2019).
1061 <https://doi.org/10.1002/cpmb.105>

1062 45 Eissa, M. A. L. *et al.* Promoter methylation of ADAMTS1 and BNC1 as potential
1063 biomarkers for early detection of pancreatic cancer in blood. *Clinical epigenetics* **11**
1064 (2019). <https://doi.org/10.1186/s13148-019-0650-0>

1065 46 Pisani, D. F. *et al.* Involvement of BTBD1 in mesenchymal differentiation.
1066 *Experimental cell research* **313** (2007). <https://doi.org/10.1016/j.yexcr.2007.03.030>

1067 47 Gonatopoulos-Pournatzis, T., Dunn, S., Bounds, R. & Cowling, V. H. RAM/Fam103a1
1068 is required for mRNA cap methylation. *Molecular cell* **44** (2011).
1069 <https://doi.org/10.1016/j.molcel.2011.08.041>

1070 48 Xu, R. *et al.* Combined Analysis of the Aberrant Epigenetic Alteration of Pancreatic
1071 Ductal Adenocarcinoma. *BioMed research international* **2019** (2019).
1072 <https://doi.org/10.1155/2019/9379864>

1073 49 de Groot, J. S. *et al.* Validation of DNA promoter hypermethylation biomarkers in
1074 breast cancer--a short report. *Cellular oncology (Dordrecht)* **37** (2014).
1075 <https://doi.org/10.1007/s13402-014-0189-1>

1076 50 Perkhofer, L. *et al.* Tbx3 fosters pancreatic cancer growth by increased angiogenesis
1077 and activin/nodal-dependent induction of stemness. *Stem cell research* **17** (2016).
1078 <https://doi.org/10.1016/j.scr.2016.08.007>

1079 51 Tessari, G. *et al.* The expression of proto-oncogene c-jun in human pancreatic cancer.
1080 *Anticancer research* **19** (1999).

1081 52 Azizi, N. *et al.* Loss of activating transcription factor 3 prevents KRAS-mediated
1082 pancreatic cancer. *Oncogene* **40** (2021). <https://doi.org/10.1038/s41388-021-01771-z>

1083 53 Tong, X. *et al.* SOX10, a novel HMG-box-containing tumor suppressor, inhibits
1084 growth and metastasis of digestive cancers by suppressing the Wnt/β-catenin
1085 pathway. *Oncotarget* **5** (2014). <https://doi.org/10.18632/oncotarget.2512>

1086 54 Papoutsoglou, P. *et al.* The noncoding MIR100HG RNA enhances the autocrine
1087 function of transforming growth factor β signaling. *Oncogene* **40** (2021).
1088 <https://doi.org/10.1038/s41388-021-01803-8>

1089 55 Su, X. *et al.* ELK1-induced upregulation of long non-coding RNA MIR100HG predicts
1090 poor prognosis and promotes the progression of osteosarcoma by epigenetically
1091 silencing LATS1 and LATS2. *Biomedicine & pharmacotherapy = Biomedecine &*
1092 *pharmacotherapie* **109** (2019). <https://doi.org/10.1016/j.biopha.2018.10.029>

1093 56 Wang, S. *et al.* LncRNA MIR100HG promotes cell proliferation in triple-negative
1094 breast cancer through triplex formation with p27 loci. *Cell death & disease* **9** (2018).
1095 <https://doi.org/10.1038/s41419-018-0869-2>

1097 57 Emmrich, S. *et al.* LincRNAs MONC and MIR100HG act as oncogenes in acute
1098 megakaryoblastic leukemia. *Molecular cancer* **13** (2014).
<https://doi.org/10.1186/1476-4598-13-171>

1100 58 Li, W. *et al.* Elevated MIR100HG promotes colorectal cancer metastasis and is
1101 associated with poor prognosis. *Oncology letters* **18** (2019).
<https://doi.org/10.3892/ol.2019.11060>

1103 59 Li, J., Xu, Q., Wang, W. & Sun, S. MIR100HG: a credible prognostic biomarker and an
1104 oncogenic lncRNA in gastric cancer. *Bioscience reports* **39** (2019).
<https://doi.org/10.1042/BSR20190171>

1106 60 Broustas, C. G. *et al.* The proapoptotic molecule BLID interacts with Bcl-XL and its
1107 downregulation in breast cancer correlates with poor disease-free and overall
1108 survival. *Clinical cancer research : an official journal of the American Association for
1109 Cancer Research* **16** (2010). <https://doi.org/10.1158/1078-0432.CCR-09-2351>

1110 61 Gilbert, L. A. *et al.* Genome-Scale CRISPR-Mediated Control of Gene Repression and
1111 Activation. *Cell* **159** (2014). <https://doi.org/10.1016/j.cell.2014.09.029>

1112 62 Teng, L., He, B., Wang, J. & Tan, K. 4DGenome: a comprehensive database of
1113 chromatin interactions. *Bioinformatics (Oxford, England)* **32** (2016).
<https://doi.org/10.1093/bioinformatics/btw375>

1115 63 He, B., Chen, C., Teng, L. & Tan, K. Global view of enhancer-promoter interactome in
1116 human cells. *Proceedings of the National Academy of Sciences of the United States of
1117 America* **111** (2014). <https://doi.org/10.1073/pnas.1320308111>

1118 64 Meyers, N., Gérard, C., Lemaigre, F. P. & Jacquemin, P. Differential impact of the
1119 ERBB receptors EGFR and ERBB2 on the initiation of precursor lesions of pancreatic
1120 ductal adenocarcinoma. *Scientific reports* **10** (2020). <https://doi.org/10.1038/s41598-020-62106-8>

1122 65 Navas, C. *et al.* EGF receptor signaling is essential for k-ras oncogene-driven
1123 pancreatic ductal adenocarcinoma. *Cancer cell* **22** (2012).
<https://doi.org/10.1016/j.ccr.2012.08.001>

1125 66 Kowanetz, K. *et al.* Suppressors of T-cell receptor signaling Sts-1 and Sts-2 bind to Cbl
1126 and inhibit endocytosis of receptor tyrosine kinases. *The Journal of biological
1127 chemistry* **279** (2004). <https://doi.org/10.1074/jbc.M403759200>

1128 67 Rath, N. *et al.* ROCK signaling promotes collagen remodeling to facilitate invasive
1129 pancreatic ductal adenocarcinoma tumor cell growth. *EMBO molecular medicine* **9**
1130 (2017). <https://doi.org/10.15252/emmm.201606743>

1131 68 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach
1132 for interpreting genome-wide expression profiles. *Proceedings of the National
1133 Academy of Sciences of the United States of America* **102** (2005).
<https://doi.org/10.1073/pnas.0506580102>

1135 69 Liberzon, A. *et al.* The Molecular Signatures Database (MSigDB) hallmark gene set
1136 collection. *Cell systems* **1** (2015). <https://doi.org/10.1016/j.cels.2015.12.004>

1137 70 Morris, J. P., Wang, S. C. & Hebrok, M. KRAS, Hedgehog, Wnt and the twisted
1138 developmental biology of pancreatic ductal adenocarcinoma. *Nature reviews. Cancer*
1139 **10** (2010). <https://doi.org/10.1038/nrc2899>

1140 71 Sarkar Bhattacharya, S., Mandal, C., Albiez, R. S., Samanta, S. K. & Mandal, C.
1141 Mahanine drives pancreatic adenocarcinoma cells into endoplasmic reticular stress-
1142 mediated apoptosis through modulating sialylation process and Ca²⁺-signaling.
1143 *Scientific reports* **8** (2018). <https://doi.org/10.1038/s41598-018-22143-w>

1144 72 Adjuto-Saccone, M. *et al.* TNF- α induces endothelial-mesenchymal transition
1145 promoting stromal development of pancreatic adenocarcinoma. *Cell death & disease*
1146 **12** (2021). <https://doi.org/10.1038/s41419-021-03920-4>

1147 73 Benjamin, J. R. *et al.* Integrated Genomic Characterization of Pancreatic Ductal
1148 Adenocarcinoma. *Cancer cell* **32** (2017). <https://doi.org/10.1016/j.ccr.2017.07.007>

1149 74 Zimmerman, N. P. *et al.* Cyclic AMP regulates the migration and invasion potential of
1150 human pancreatic cancer cells. *Molecular carcinogenesis* **54** (2015).
<https://doi.org/10.1002/mc.22091>

1152 75 Santiago, L., Daniels, G., Wang, D., Deng, F. M. & Lee, P. Wnt signaling pathway
1153 protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment.
1154 *American journal of cancer research* **7** (2017).

1155 76 Carter, E. P. *et al.* Dissecting FGF Signalling to Target Cellular Crosstalk in Pancreatic
1156 Cancer. *Cells* **10** (2021). <https://doi.org/10.3390/cells10040847>

1157 77 Lee, S. H., Kim, O., Kim, H. J., Hwangbo, C. & Lee, J. H. Epigenetic regulation of TGF- β -
1158 induced EMT by JMJD3/KDM6B histone H3K27 demethylase. *Oncogenesis* **10** (2021).
<https://doi.org/10.1038/s41389-021-00307-0>

1160 78 Shi, Y. *et al.* Targeting LIF-mediated paracrine interaction for pancreatic cancer
1161 therapy and monitoring. *Nature* **569** (2019). [https://doi.org/10.1038/s41586-019-1130-6](https://doi.org/10.1038/s41586-019-
1162 1130-6)

1163 79 Agnetti, J. *et al.* PI3K δ activity controls plasticity and discriminates between EMT and
1164 stemness based on distinct TGF β signaling. *Communications Biology* **5**, 1-15 (2022).
<https://doi.org/doi:10.1038/s42003-022-03637-w>

1166 80 Chen, Z. *et al.* TGF- β -induced transgelin promotes bladder cancer metastasis by
1167 regulating epithelial-mesenchymal transition and invadopodia formation.
1168 *EBioMedicine* **47** (2019). <https://doi.org/10.1016/j.ebiom.2019.08.012>

1169 81 Zhou, S. *et al.* Noncoding mutations target cis-regulatory elements of the FOXA1
1170 plexus in prostate cancer. *Nature communications* **11** (2020).
<https://doi.org/10.1038/s41467-020-14318-9>

1172 82 Zerbino, D. R., Wilder, S. P., Johnson, N., Juettemann, T. & Flicek, P. R. The ensembl
1173 regulatory build. *Genome biology* **16** (2015). [https://doi.org/10.1186/s13059-015-0621-5](https://doi.org/10.1186/s13059-015-
1174 0621-5)

1175 83 Elliott, K. & Larsson, E. Non-coding driver mutations in human cancer. *Nature reviews.
Cancer* **21** (2021). <https://doi.org/10.1038/s41568-021-00371-z>

1177 84 Lawrence, M. S. *et al.* Mutational heterogeneity in cancer and the search for new
1178 cancer-associated genes. *Nature* **499** (2013). <https://doi.org/10.1038/nature12213>

1179 85 Stamatoyannopoulos, J. A. *et al.* Human mutation rate associated with DNA
1180 replication timing. *Nature genetics* **41** (2009). <https://doi.org/10.1038/ng.363>

1181 86 Zhang, P. *et al.* High-throughput screening of prostate cancer risk loci by single
1182 nucleotide polymorphisms sequencing. *Nature communications* **9** (2018).
<https://doi.org/10.1038/s41467-018-04451-x>

1184 87 Schöne, S. *et al.* Synthetic STARR-seq reveals how DNA shape and sequence
1185 modulate transcriptional output and noise. *PLoS genetics* **14** (2018).
<https://doi.org/10.1371/journal.pgen.1007793>

1187 88 Luo, X. *et al.* The clinicopathological significance of forkhead box P1 and forkhead
1188 box O3a in pancreatic ductal adenocarcinomas. *Tumour biology : the journal of the
1189 International Society for Oncodevelopmental Biology and Medicine* **39** (2017).
<https://doi.org/10.1177/1010428317699129>

1191 89 Sauzeau, V., Berenjeno, I. M., Citterio, C. & Bustelo, X. R. A transcriptional cross-talk
1192 between RhoA and c-Myc inhibits the RhoA/Rock-dependent cytoskeleton.
1193 *Oncogene* **29** (2010). <https://doi.org/10.1038/onc.2010.134>

1194 90 Canon, J. *et al.* The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour
1195 immunity. *Nature* **575** (2019). <https://doi.org/10.1038/s41586-019-1694-1>

1196 91 Kemp, S. B. *et al.* Efficacy of a Small-Molecule Inhibitor of KrasG12D in
1197 Immunocompetent Models of Pancreatic Cancer. *Cancer discovery* **13** (2023).
1198 <https://doi.org/10.1158/2159-8290.CD-22-1066>

1199 92 Pradeepa, M. M. *et al.* Histone H3 globular domain acetylation identifies a new class
1200 of enhancers. *Nature genetics* **48** (2016). <https://doi.org/10.1038/ng.3550>

1201 93 Pal, D. *et al.* H4K16ac activates the transcription of transposable elements and
1202 contributes to their cis-regulatory function. *Nature structural & molecular biology*
1203 (2023). <https://doi.org/10.1038/s41594-023-01016-5>

1204 94 Yang, H. & Wang, K. Genomic variant annotation and prioritization with ANNOVAR
1205 and wANNOVAR. *Nature protocols* **10** (2015).
1206 <https://doi.org/10.1038/nprot.2015.105>

1207 95 Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome
1208 alignment and genotyping with HISAT2 and HISAT-genotype. *Nature biotechnology*
1209 **37** (2019). <https://doi.org/10.1038/s41587-019-0201-4>

1210 96 Frankish, A. *et al.* GENCODE reference annotation for the human and mouse
1211 genomes. *Nucleic acids research* **47** (2019). <https://doi.org/10.1093/nar/gky955>

1212 97 Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-
1213 throughput sequencing data. *Bioinformatics (Oxford, England)* **31** (2015).
1214 <https://doi.org/10.1093/bioinformatics/btu638>

1215 98 Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear
1216 model analysis tools for RNA-seq read counts. *Genome biology* **15** (2014).
1217 <https://doi.org/10.1186/gb-2014-15-2-r29>

1218 99 *Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput
1219 Sequence Data*, <<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>>
1220 (2020).

1221 100 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
1222 sequence data. *Bioinformatics* **30**, 2114-2120 (2014).
1223 <https://doi.org/10.1093/bioinformatics/btu170>

1224 101 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat
1225 Methods* **9**, 357-359 <https://doi.org/10.1038/nmeth.1923>

1226 102 Ebbert, M. T. *et al.* Evaluating the necessity of PCR duplicate removal from next-
1227 generation sequencing data and a comparison of approaches. *BMC bioinformatics* **17**
1228 *Suppl 7* (2016). <https://doi.org/10.1186/s12859-016-1097-3>

1229 103 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics
(Oxford, England)* **25** (2009). <https://doi.org/10.1093/bioinformatics/btp352>

1230 104 Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**, R137
1231 (2008). <https://doi.org/10.1186/gb-2008-9-9-r137>

1232 105 Consortium., E. P. An integrated encyclopedia of DNA elements in the human
1233 genome. *Nature* **489** (2012). <https://doi.org/10.1038/nature11247>

1234 106 Ghosh, C. *et al.* Super-enhancers: novel target for pancreatic ductal adenocarcinoma.
1235 *Oncotarget* **10**, 1554-1571 (2019). <https://doi.org/10.18632/oncotarget.26704>

1237 107 Jiang, Y. *et al.* SEdb: a comprehensive human super-enhancer database. *Nucleic acids research* **47** (2019). <https://doi.org/10.1093/nar/gky1025>

1239 108 Muerdter, F. *et al.* Resolving systematic errors in widely used enhancer activity assays in human cells. *Nat Methods* **15**, 141-149 (2018). <https://doi.org/10.1038/nmeth.4534>

1242 109 Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. *Bioinformatics (Oxford, England)* **31** (2015). <https://doi.org/10.1093/bioinformatics/btv401>

1245 110 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv: Genomics* (2013).

1247 111 Van der Auwera, G. A. & O'Connor, B. D. *Genomics in the Cloud*. (@OReillyMedia, 2023).

1249 112 Koboldt, D. C. *et al.* VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. *Genome research* **22** (2012). <https://doi.org/10.1101/gr.129684.111>

1252 113 Muerdter, F. *et al.* Resolving systematic errors in widely used enhancer activity assays in human cells. *Nature methods* **15** (2018). <https://doi.org/10.1038/nmeth.4534>

1255 114 Neumayr, C., Pagani, M., Stark, A. & Arnold, C. D. STARR-seq and UMI-STARR-seq: Assessing Enhancer Activities for Genome-Wide-, High-, and Low-Complexity Candidate Libraries. *Current protocols in molecular biology* **128** (2019). <https://doi.org/10.1002/cpmb.105>

1259 115 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *17(1):3* (2011). <https://doi.org/https://journal.embnet.org/index.php/embnetjournal/article/view/200>

1263 116 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics (Oxford, England)* **26** (2010). <https://doi.org/10.1093/bioinformatics/btq033>

1266 117 Haeussler, M. *et al.* Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. *Genome biology* **17** (2016). <https://doi.org/10.1186/s13059-016-1012-2>

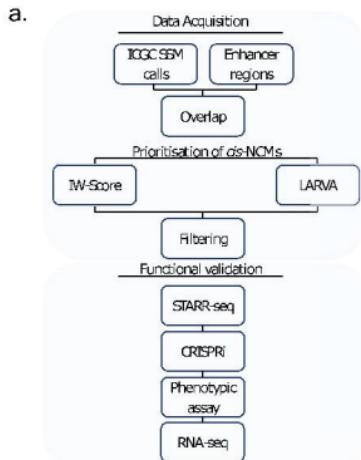
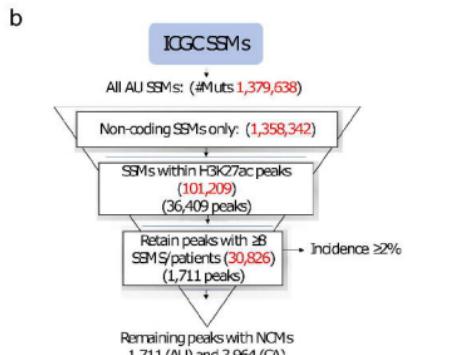
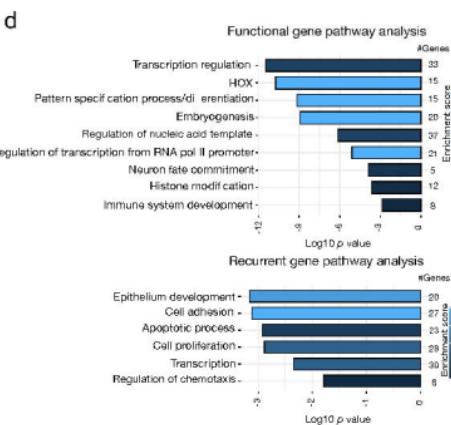
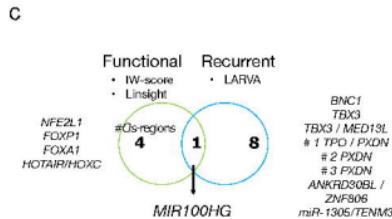
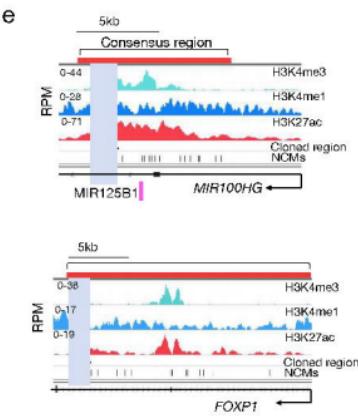
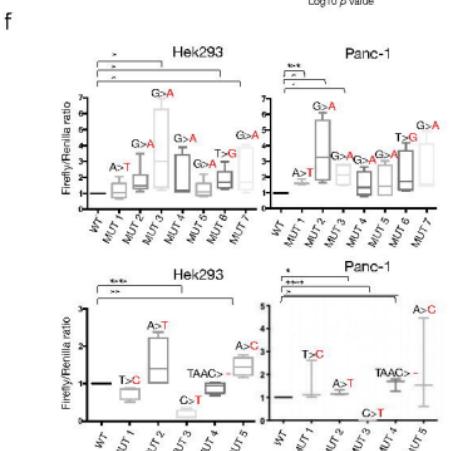
1269 118 Stojic, L. *et al.* Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis. *Nucleic acids research* **46** (2018). <https://doi.org/10.1093/nar/gky437>

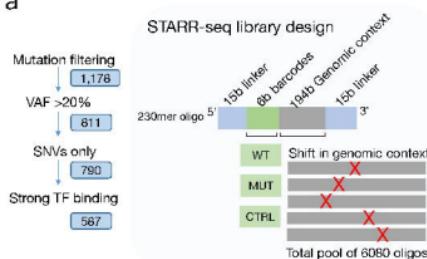
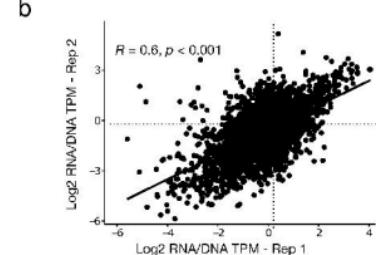
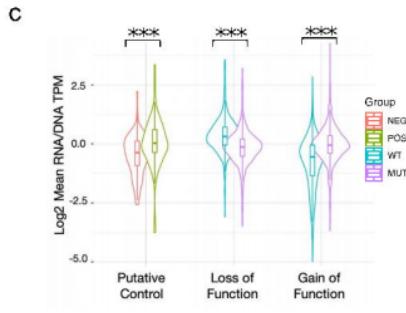
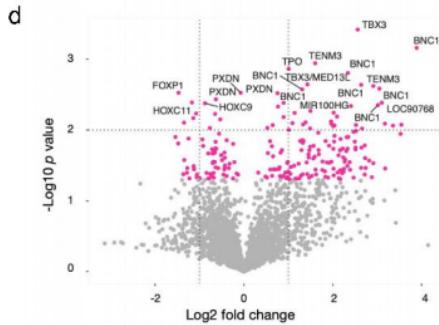
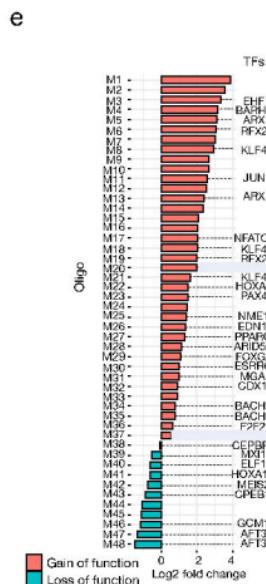
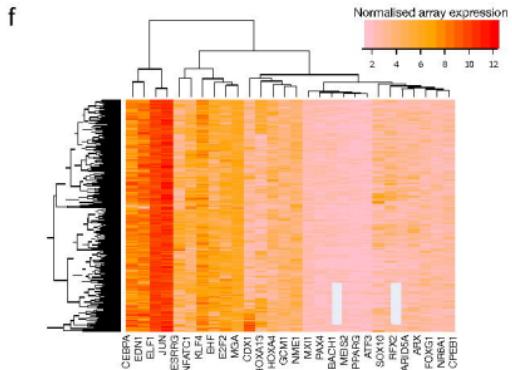
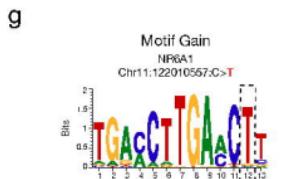
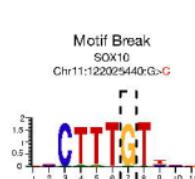
1272 119 Dobin, A. & Gingeras, T. R. Mapping RNA-seq Reads with STAR. *Current protocols in bioinformatics* **51** (2015). <https://doi.org/10.1002/0471250953.bi1114s51>

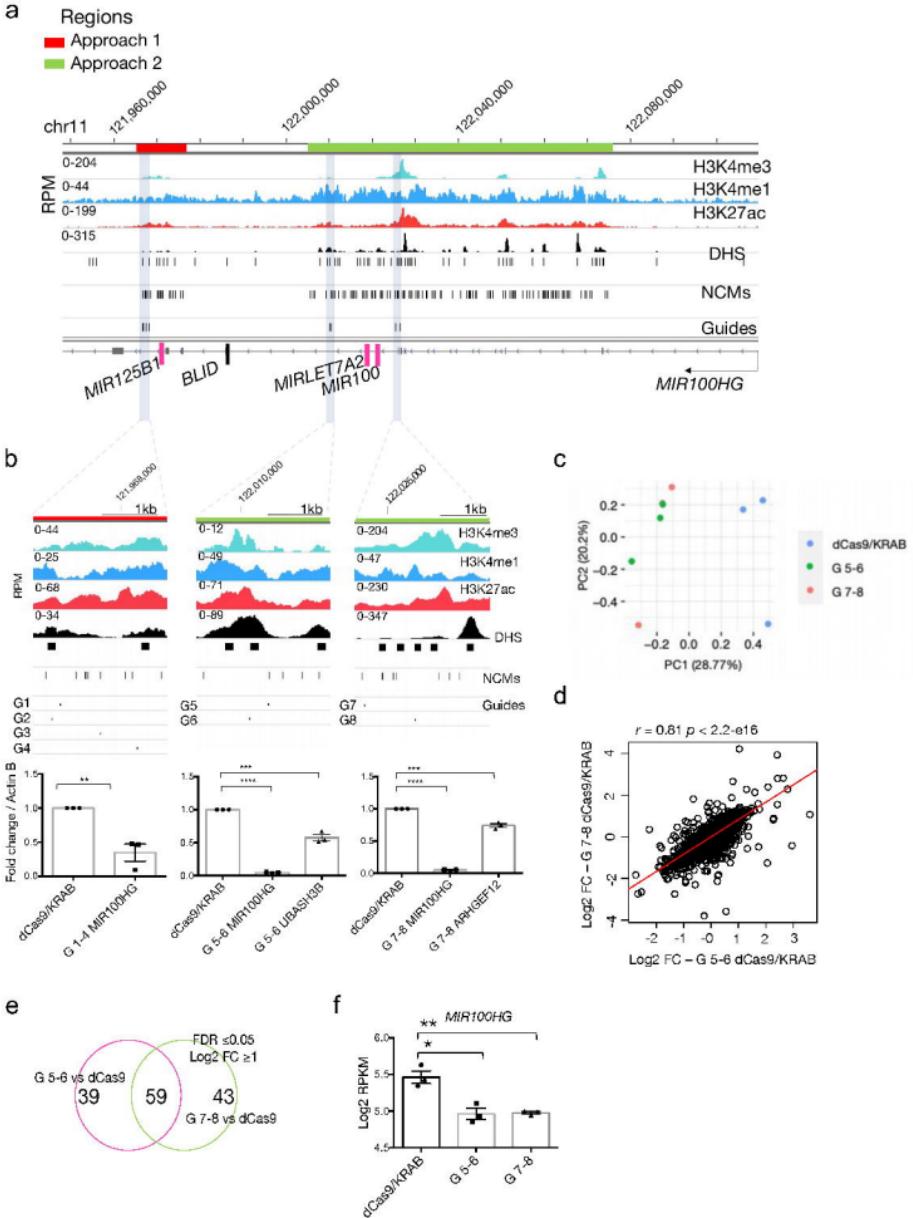
1274 120 Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC bioinformatics* **12** (2011). <https://doi.org/10.1186/1471-2105-12-323>

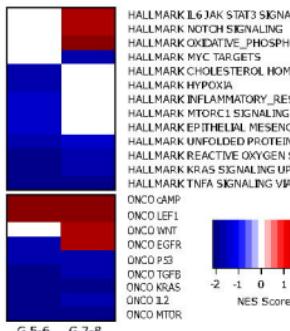
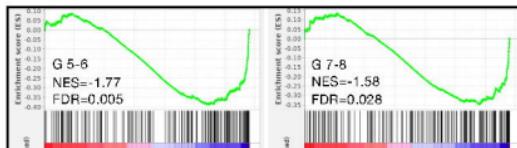
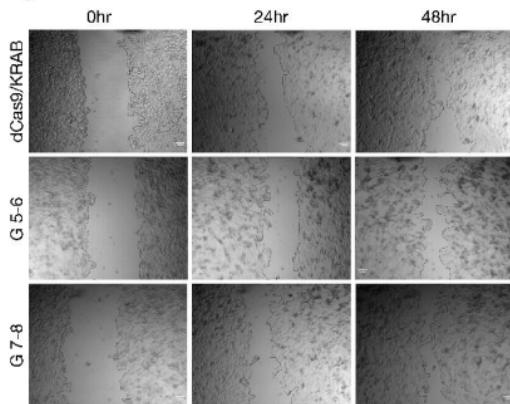
1277 121 Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic acids research* **43** (2015). <https://doi.org/10.1093/nar/gkv007>

1280 122 Suarez-Arnedo, A. *et al.* An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. *PloS one* **15** (2020). <https://doi.org/10.1371/journal.pone.0232565>







a**b****TGF- β** **KRAS****c****d**