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Abstract 35 

 36 

Non-coding mutations (NCMs) that perturb the function of cis-regulatory elements (CRE, 37 

enhancers) contribute to cancer. Due to the vast search space, mutation abundance and 38 

indirect activity of non-coding sequences, it is challenging to identify which somatic NCMs 39 

are contributing to tumour development and progression. Here, we focus our investigation 40 

on the somatic NCMs that are enriched at enhancers from 659 pancreatic ductal 41 

adenocarcinoma (PDAC) tumours. We identify cis-regulatory NCMs within PDAC-specific 42 

enhancers derived from high and low-grade PDAC cell lines and patient derived organoids 43 

using two independent computational approaches. Five such CREs enriched for PDAC 44 

associated NCMs are also frequently mutated in other common solid tumours.  Functional 45 

validation using STARR-seq reporter assays enables the prioritisation of 43 NCMs (7.3%) 46 

from a pool of 587 NCMs with 6,082 oligos, that significantly alter reporter enhancer activity 47 

compared to wild-type sequences. CRISPRi perturbation of an enhancer cluster harbouring 48 

NCMs over long non-coding RNA gene MIR100HG, which hosts a microRNA cluster (mir100-49 

let7a-2-125b-1), leads to the downregulation of MIR100HG accompanied by a significant 50 

reduction in the TGF-β pathway (known to induce MIR100HG) and other PDAC critical 51 

pathways, including KRAS, p53, MTOR and TNFα signalling. Collectively, we have reported 52 

here cis-regulatory NCMs in PDAC proximal to many cancer-relevant genes, and our 53 

integrated approach paves way to explore CRE-associated NCMs in other human cancer 54 

genomes. 55 

 56 
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Introduction 67 

Pancreatic cancer, ranking fourth in the cause of cancer death in developed countries, is an 68 

aggressive malignancy with a devastating five-year survival rate below 9% after diagnosis
1
. 69 

Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer, 70 

encompassing approximately 90% of all cases
1
. Our understanding of the genomic landscape 71 

of PDAC is still mainly restricted to the somatic mutations within the coding regions of genes 72 

involved in PDAC
2-6

. Our knowledge of non-coding mutations (NCMs) and their functional 73 

consequences in the development and progression of PDAC is still limited. The availability of 74 

large-scale whole genome sequencing (WGS) projects, such as those by the International 75 

Cancer Genome Consortium (ICGC)
7
, along with assays profiling chromatin modifications, 76 

accessibility and conformation, has allowed for a systematic search for functional NCMs in 77 

various cancer types
8-14

.  78 

Recent large-scale sequencing efforts by the Pan-Cancer Analysis of Whole Genomes 79 

(PCAWG) in over 2,600 primary tumours have identified several novel non-coding driver 80 

candidates, including NCMs in the 5’ region of TP53 and 3’UTR of NFKBIZ and TOB1 using a 81 

statistically rigorous strategy for combining significance levels from multiple methods of 82 

driver discovery
14

. More recently, Dietlein et al., implemented a genome-wide, sliding-83 

window approach to detect significantly recurrent mutated regions across the whole 84 

genomes of 3,949 patients and 19 cancer types, considering chromatin features, tissue 85 

specificity and background mutations. Using this approach, they identified NCMs in CREs 86 

near canonical cancer genes and tissue-specific genes, such as regulatory regions proximal 87 

to HIST1H1B and TMEM151A in PDAC genomes and pancreas tissue-specific genes CPB1 and 88 

PNLIP
15

. Previously, Feigin et al., performed the PDAC-specific promoter-centric analysis and 89 

described Genomic Enrichment Computational Clustering Operation (GECCO) to uncover 90 

recurrent regulatory mutations in the cis-regulatory regions of 308 patient genomes. This 91 

method identified 16 genes with significant NCMs associated with promoter regions, and 92 

these genes were enriched for canonical PDAC pathways such as cell adhesion, axon 93 

guidance and Wnt signalling
16

. However, previous methods have not fully or effectively 94 

utilised PDAC-specific epigenomic data in the discovery analysis, particularly active enhancer 95 

regions, leaving a large number of putative gene regulatory NCMs unexplored and PDAC-96 

specific enhancer drivers unidentified. Such active enhancer-centric methods have 97 

previously been implemented in T-cell acute lymphoblastic leukaemia using sequencing 98 
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reads derived from chromatin immunoprecipitation followed by sequencing (ChIP-seq) of 99 

histone H3 lysine 27 (H3K27ac) acetylation to identify recurrent enhancer associated 100 

variants
17

. Focusing on enhancer regions significantly reduces the non-coding genome 101 

search space to regions where non-coding variants are most likely to have potential 102 

functional activity at the gene control level
12,17,18

.  103 

 To address these specific challenges, we integrated epigenomic datasets for histone 104 

modifications associated with enhancers to identify PDAC-specific active enhancers and 105 

promoter regions. Together with gene expression profiles (GEP) where available and simple 106 

somatic mutation (SSM) data of 659 PDAC patients from ICGC, to investigate NCMs 107 

associated with PDAC-specific cis-regulatory elements (CRE). We implemented a composite 108 

of two independent approaches to detect putative CRE drivers enriched for significant 109 

NCMs. We further tested the regulatory activity of NCMs within these CREs using the high-110 

throughput functional screening approach STARR-seq, followed by the analysis of one 111 

enhancer cluster using CRISPR-interference (CRISPRi) of CREs with NCMs (Fig. 1a). Our study 112 

combines a systematic computational analysis and experimental validation, identifying 113 

important CRE drivers involving PDAC-relevant genes. It also demonstrates a versatile 114 

workflow to investigate CRE-associated NCMs in other disease genomes. 115 

 116 

 117 

Results 118 

The mutational burden within PDAC cis-regulatory regions  119 

To identify likely pathogenic NCMs in PDAC, we retrieved SSM data from the ICGC 120 

Pancreatic Cancer Genome Project Australia (AU, n=391 patients) and the Canada (CA, 121 

n=268 patients) cohort. 1,379,638 and 2,211,000 somatic mutations were identified in the 122 

AU and CA cohort, respectively. After filtering out non-synonymous somatic mutations, 123 

1,358,342 (98.5%) and 2,179,517 (98.6%) somatic NCMs were retained from the AU and CA 124 

cohort, respectively, for further analysis. This corresponds to an average of 3,701 (AU) and 125 

8,132 (CA) NCMs per patient.  126 

We wanted to focus on the NCM burden within CREs, specifically those enriched 127 

with H3K27ac, a chromatin feature associated with active enhancers
19

. We hypothesised 128 

that NCMs within these CREs may contribute to altering their function and target gene 129 

expression
17,20

. Using ChIP-seq datasets from seven PDAC cell lines
21

 and two patient-130 
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derived organoid samples
22

, we identified 404,415 enriched H3K27ac peaks across all 131 

samples. To consolidate H3K27ac peaks across the nine samples into one representative 132 

consensus region per loci, we stitched together quality peaks residing within 2,000bp of 133 

another (inter-peak distance), resulting in a total of 65,168 H3K27ac consensus peaks for 134 

further analysis (average peak length = 4,639 and SD = 7,949). This allowed us to narrow the 135 

search space for potentially important NCMs to ~10% of the genome. Patient somatic NCMs 136 

were then mapped to the consensus H3K27ac coordinates to obtain a list of NCMs in PDAC-137 

specific CREs. From the AU cohort of patients, 101,209 somatic mutations were observed 138 

within 36,409 (55.9%) consensus peaks and 166,541 CA cohort mutations within 43,002 139 

(66.0%) consensus peaks. Therefore, capturing 7.45% and 7.64% of all AU and CA NCMs, 140 

respectively (Fig. 1b). 141 

 142 

Prioritisation of cis-regulatory regions enriched with putative functional NCMs 143 

We next aimed to interrogate somatic NCMs residing within consensus H3K27ac marked 144 

regions. To ensure the study of a significant proportion of PDAC patients, we retained CREs 145 

with a patient mutation incidence of 2% or above (n≥8), leaving 30,826 somatic mutations 146 

(AU cohort) across 1,711 consensus peaks/CREs and 64,867 somatic mutations (CA cohort) 147 

across 3,964 peaks (Fig. 1b). In total, 2.26% (AU) and 2.97% (CA) of the NCM burden 148 

remained to interrogate, similarly to observation in a previous study focusing on H3K27ac 149 

enriched elements
18

.  150 

To prioritise the remaining CREs, we utilised two independent approaches: one 151 

measuring the functional effect of each NCM within a CRE and ranking them based on the 152 

median functional score of all NCMs; the other identifying CREs with significantly recurrent 153 

NCMs accounting for local background mutation rate, and replication timing (Fig. 1a). We 154 

carried out the first approach using the IW-scoring algorithm
23

, an integrative weighted 155 

scoring framework to score NCMs and prioritised elements with a median IW-score of two 156 

or above (corresponding to a p-value ≤ 0.1). From the remaining 1,711 (AU) and 3,964 (CA) 157 

peaks after filtering, we identified 14 CREs from the AU-cohort and 32 elements in the CA-158 

cohort using the median threshold (Extended Data Fig. 1 and S1). This method prioritised 159 

CREs annotated to cancer-related genes such as the AP-1 transcription factor (TF) JUNB 160 

expressed in low-grade PDAC cells
21,24

, and GATA2, associated with high-grade PDAC
21

.  Of 161 

the 46 prioritised CREs, five regions were shared between the AU and CA cohorts (Fig. 1c). 162 
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These five CREs reside within the introns of the oncogenic long non-coding RNAs (lnRNA) 163 

MIR100HG
25

 and HOTAIR
26

 from and including the HOXC cluster of homeobox genes
27

, PDAC 164 

associated TFs FOXA1
28

 and FOXP1
29

 and ferroptosis related TF, NFE2L1
30

 (Fig. 1c).  165 

To further validate the putative significance of the NCMs within these five CREs, we 166 

compared the IW-score of NCMs residing within the H3K27ac positive regions to NCMs in 167 

immediate flanking sequences negative for H3K27ac marks. We observed a statistically 168 

significant higher IW-score of NCMs within H3K27ac enriched regions compared to those in 169 

flanking H3K27ac negative sequences (Extended Data S2), indicating the putative enhancer-170 

associated NCMs have higher predicted functional consequences than mutations located 171 

outside these CREs. We also verified these findings with an independent scoring algorithm 172 

LINSIGHT, which scores variants on the likelihood of deleterious fitness consequences based 173 

on patterns of polymorphism and divergence from closely related species
31

. The LINSIGHT 174 

model demonstrated a significant increase in the selective constraint (i.e., more deleterious 175 

on fitness) of H3K27ac-associated NCMs compared to NCMs in nearby H3K27ac negative 176 

regions (Extended Data Fig. 2). 177 

Using the second approach to identify significantly recurrently mutated CREs, we 178 

implemented LARVA
32

. The LARVA model yielded 68 (AU cohort) and 71 (CA cohort) 179 

candidate CREs which were significantly recurrently mutated in relation to nearby 180 

background sequences (Benjamini-Hochberg (BH) adjusted p ≤0.01). These significant 181 

regions collectively harboured 1,842 and 2,258 NCMs in the AU and CA cohorts. Many NCMs 182 

were located proximally to several well-known genes implicated in PDAC, for example, an 183 

intergenic regulatory region in proximity to the miRNA: miR-21 and the Wnt/β-catenin 184 

signalling protein gene WNT7b (Extended Data S3). Nine significantly mutated CREs were 185 

shared between AU and CA cohorts. These recurrent CREs included regions proximal to the 186 

TF genes TBX3 and BNC1, previously reported in PDAC
33,34

. NCMs were also located proximal 187 

to the adhesion molecule PXDN
35

 and transmembrane protein TENM3
36

, the lncRNA gene 188 

TBX5-AS1
37

, and microRNA, miR-1305 (Fig. 1c).  189 

Notably, the MIR100HG enhancer cluster was the only one prioritised in the two 190 

approaches, but consisting of two separate CREs (Fig. 1c, Extended Data Fig. 3).  Overall, our 191 

computational strategy has revealed NCMs enriched within or proximal to PDAC or cancer-192 

related genes, including candidates identified from a previous non-coding study in PDAC
16

.   193 

 194 
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Proximal genes to enhancer NCMs are associated with transcription and PDAC-linked 195 

biological processes 196 

We next performed pathway enrichment analysis based on the annotated genes proximal to 197 

CREs identified by the two in-silico approaches using the DAVID tool
38

. Inputting 95 198 

annotated genes associated with 41 CREs identified by the IW-scoring approach, we 199 

observed significant enrichment in several gene families and regulatory processes, including 200 

homeobox genes, pattern specification, embryogenesis and transcriptional regulation 201 

pathways (Fig. 1d). Additional pathway analysis based on 212 genes annotated to the 130 202 

recurrently mutated CREs identified significant enrichment in core molecular pathways 203 

including cell adhesion, epithelium development, cell proliferation, transcription, apoptotic 204 

processes and regulation of chemotaxis (Fig. 1d). The involvement of biological processes, 205 

such as embryogenesis, apoptosis and cell adhesion, has been reported in a previous 206 

genomic landscape study
39

. Furthermore, our findings complement Feign et al. in identifying 207 

NCMs significantly associated with homeobox genes and transcriptional regulation
16

. Our 208 

results suggest a convergent mode for CRE-associated NCMs in relation to biologically 209 

relevant coding genes in PDAC.  210 

 211 

Enhancer NCMs show altered transcriptional reporter activity 212 

To determine the effect of NCMs on the transcriptional regulatory activity, we performed 213 

luciferase-based enhancer reporter assays for a subset of NCMs. We selected twelve NCMs 214 

from two CREs identified from the first approach (IW score), comprising 11 single nucleotide 215 

variants (SNV) and a single 4bp deletion.  Five SNVs were selected from the third intron of 216 

the FOXP1 gene, and seven NCMs in the third intron of the lncRNA MIR100HG (Fig. 1e). 217 

Interestingly, the 2kb region surrounding the seven NCMs at the MIR100HG locus lack 218 

detectable H3K27ac and H3K4me1 marks in most of the cell lines, except those derived from 219 

high-grade PDAC cells PANC-1 and PT45P1, suggesting this putative active enhancer is 220 

specific to high-grade PDAC (Fig. 1e, Extended Data Fig. 3). Luciferase reporter assays were 221 

carried out in the high-grade PDAC cell line PANC-1 and easily transfectable cell line 222 

HEK293T. Within the MIR100HG CRE, NCMs (MUT 3, 6 and 7) and (MUT 1-3) showed 223 

significant increases in reporter activity in HEK293T and PANC-1 cells, respectively (Fig. 1f). 224 

Overall, all NCMs at this MIR100HG CRE showed an increase in luciferase activity compared 225 

to WT sequences, suggesting NCMs within this CRE are potentially gain-of-function, i.e., 226 
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increase regulatory activity. The ~2kb regulatory element surrounding five selected NCMs 227 

within the third intron of FOXP1 was positive for H3K27ac marks in six PDAC cell lines 228 

(except for MIA-PaCa2 cells), and two patient-derived organoid samples (Extended Data Fig. 229 

4). Among the five NCMs tested, two NCMs in HEK293T cells and three in PANC-1 cells 230 

significantly altered luciferase expression. Most notably, mutation 3 (chr3:71104908:C>T, 231 

IW-score = 5.20, p = 0.006, LINSIGHT score = 97.2%) significantly decreased reporter gene 232 

expression in both cell lines (Fig. 1f). Interestingly, all five NCMs within the FOXP1 putative 233 

enhancer demonstrated concordance in the overall transcriptional regulatory activity in 234 

both cell lines.  235 

 236 

STARR-seq assays prioritise a subset of 43 NCM candidates for further validation 237 

Next, we screened a larger set of NCMs within consensus CREs using the high-throughput 238 

approach, Self-Transcribing Active Regulatory Region sequencing (STARR-seq)
40

. To focus on 239 

NCMs with the strongest evidence of predicted function, we retained 504 NCMs with a 240 

variant allele frequency above 20% and strong TF binding strength as predicted by 241 

motifbreakR
41

. Of the 504 NCMs, binding motifs of 258 TFs were strongly predicted to 242 

occupy these mutation sites. Moreover, among the 73 NCMs identified by the first approach 243 

(IW score), 47 (64%) NCMs were predicted to cause TF-motif gain and 26 (36%) loss-of-motif 244 

(break). Among the 431 NCMs selected from the second approach (LARVA), 216 (50%) 245 

NCMs caused predictive gain and 215 (50%) loss of motif changes. We included 83 single 246 

base indels, resulting in 587 candidate NCMs in the final STARR-seq library (Fig. 2a).  247 

We designed ten 230bp oligos per NCM, five for each NCM and five for the 248 

corresponding wild type (WT). One oligo represented the NCM in the middle and four oligos 249 

had a 10 bp sliding genomic window (SW) in either direction from the centre of the oligo 250 

(Fig. 2a, see Methods). A further 210 positive (PDAC enhancers) and negative (no enhancer 251 

features) control oligos were included in the library, resulting in a pool of 6,082 oligos. 252 

Sequencing and quality analysis of the cloned STARR-seq plasmid library demonstrated good 253 

complexity and accuracy (Extended data Fig. 5), with comparable outcomes to a previous 254 

MPRA study using synthetically designed oligos
42,43

. We performed two biological replicates 255 

of STARR-seq by transfecting the PANC-1 cell line (see methods)
44

. After filtering low-quality 256 

reads across samples, we observed a good concordance between replicates (Fig. 2b). As 257 
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expected, positive control sequences showed significantly higher reporter activity compared 258 

to negative controls (Fig. 2c).  259 

We next tested the significance between mutant (MUT) and WT constructs on 260 

reporter gene expression across replicates. A total of 217 plasmids (representing 155 NCMs) 261 

showed significant differential enhancer activity (log2 fold change -1.54 to 3.53, Student’s t-262 

test, p<0.05). 95 (61.3%) NMCs showed significantly increased enhancer activity, while 60 263 

(38.7%) mutations showed a significant reduction in enhancer activity in comparison to WT 264 

sequences (Fig. 2c and 2d). Interestingly, 36 CREs harbouring indels showed significant fold 265 

changes at similar activity to SNVs (mean log2 FC 1.07). Despite the differences in assays and 266 

genomic context, we observed concurrent directional changes in enhancer activity at NCMs 267 

assayed by luciferase reporter assays and sequencing-based high-throughput STARR-seq 268 

(Extended data Fig. 6). 269 

Focusing on the most significant alterations between MUT and WT alleles (t-test, 270 

p<0.01), we highlighted 43 mutations, 33 of which demonstrated an increase in reporter 271 

activity and 10 with an observed reduction (Fig. 2e). Notably, the differential activity 272 

changes between MUT and WT in 13 NCMs were significantly altered in three or more 273 

independent STARRs-seq plasmids (p<0.05). Similarly, 31 NCMs were significantly altered in 274 

two independent SWs demonstrating concurrent directional activity changes. Eight of the 275 

43 NCMs were located within an enhancer cluster (observed in low-grade and MiaPaCa2 276 

cells) upstream of the BNC1 gene (Extended data Fig. 7a). The NCMs proximal to BNC1 277 

significantly increased reporter gene expression in PANC-1 cells in comparison to WT 278 

sequences (Fig. 2d). Assessing the expression of genes within 1Mb of this consensus peak by 279 

comparing MUT and WT patient GEPs, we did not observe a difference in the expression of 280 

BNC1, previously reported to be methylated in early stage PDAC patients
45

. However, we 281 

observed a significant increase in the expression of nearby genes BTBD1 (p = 0.003, ~234kb 282 

from the middle of the consensus peak to BTBD1 TSS), important in cell survival, the 283 

ubiquitin/proteosome degradation pathway and mesenchymal differentiation
46

 and 284 

FAM103A1 (p = 0.008, ~316kb) which encodes an important subunit for the 7-285 

methylguanosine cap added to the 5' end of mRNA and an essential component for gene 286 

expression
47

. Patient GEP analysis also revealed a significant decrease in the 287 

transmembrane protein TM6SF1 (frequently hypermethylated
48,49

, p = 0.0003, ~137kb) 288 

between MUT and WT patients (AU cohort, Extended data Fig. 7b), overall suggesting these 289 
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NCMs may exert their regulatory potential in a more distal manner. Additional significant 290 

increases in reporter gene expression were observed proximal to the PDAC-associated TF 291 

TBX
50

 (7 NCMs) and in the introns of lncRNA MIR100HG 
25

 (3 NCMS, Fig. 2d).  292 

To assess the putative biological implications of these top-performing STARR-seq 293 

NCMs, we took a closer look at the TF-motif binding predictions. From the 35 NCMs in the 294 

top 43 STARR-seq performing mutations with TF-motif predictions, 21 were characterised as 295 

TF binding motif-gain (creating de novo TF binding motifs), while 14 were TF binding motif-296 

loss. For example, one gain-of-function NCM proximal to TBX3 (chr12:115067012:C>A) was 297 

predicted to create a binding motif for the oncogenic TF JUN (Fig. 2d and Extended Data Fig. 298 

7c). This NCM led to a mean log2 fold-change of 3.69 in STARR-seq reporter gene expression 299 

across all five SWs (Mann Whitney U test, p=0.016). As expected, JUN was highly expressed 300 

in PDAC patients based on the patient GEP in the AU cohort (Fig. 2f)
51

. The most significant 301 

loss-of-function was observed in a NCM located in the intron of FOXP1 (chr3:71123616:G>T) 302 

supported by three significant SWs (p <0.05, average log2 fold change across SWs = -1.36). 303 

At this site, the binding motif of an unfolded protein response (UPR) mediating TF, the 304 

activating TF-3 (ATF3)
52

, was predicted to be disrupted (Extended Data Fig. 7d) and was 305 

found to be moderately expressed in the PDAC patient GEP (AU cohort, Fig. 2f). 306 

Furthermore, the top two NCMs located in the MIR100HG enhancer cluster also showed 307 

strong effects on TF binding: the first mutation (chr11:122010557:C>T) demonstrated a gain 308 

of TF motif, creating a de novo binding motif for NR6A1, a nuclear receptor family member; 309 

while the second mutation (chr11:122025440:G>C) was predicted to disrupt the binding 310 

motif for SOX10 (Fig. 2g), a reported tumour suppressor through the suppression of the 311 

Wnt/β-catenin pathway in digestive cancers
53

. We observed that NR6A1 and SOX10 TFs 312 

were expressed at moderate levels in PDAC patients (AU cohort, Fig. 2f). Overall, using the 313 

STARR-seq assay enabled the prioritisation of CRE-associated NCMs for further 314 

investigation. 315 

 316 

CRE cluster harbouring NCMs located at the MIR100HG locus regulates genes in cis 317 

The two computational approaches used in this study identified the lncRNA MIR100HG 318 

locus as a significant candidate for harbouring NCMs in separate CREs in each approach. 319 

Notably, MIR100HG is host to the oncogenic miR-s pre-miR125b-1 and pre-miR-100, 320 

previously implicated in PDAC
25,54

, and they modulate (including MIR100HG) in a pro or anti-321 
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tumourigenic manner depending on the cancer
25,54-59

. It hosts the tumour suppressors pre-322 

miR-Let7a-2
25

 and the pro-apoptotic protein BLID
60

, located within intron three of 323 

MIR100HG (Fig. 3a). 324 

Next, we investigated the functionality of three CREs harbouring NCMs at the 325 

MIR100HG enhancer cluster using a CRISPRi approach recruiting the dCAS9/KRAB repressor 326 

to NCMs and CREs of interest
61

 (Fig. 3a and b). The first region located ~2kb away from the 327 

hosted pre-miR-125b-1 in the third intron of MIR100HG harboured NCMs identified from 328 

the first in silico approach. CRISPRi with a pool of four independent lentiviral guide RNAs (G 329 

1-4) were selected close to NCMs that were shown to alter enhancer activity in either 330 

luciferase or STARR-seq experiments (Fig. 1e, 3b).  Two guides (G 5-6) were designed to 331 

target region two harbouring five NCMs (CRE-two), including the most significant NCM 332 

identified to drive reporter enhancer activity using STARR-seq (M20 in Fig. 2e and Fig. 3b). 333 

An additional two guides (G 7-8) were designed to target the third region harbouring six 334 

NCMs (CRE-three), including a gain-of-function NCM from the most significant STARR-seq 335 

candidates (M37 in Fig. 2e).  336 

CRISPRi, followed by RT-qPCR, showed a significant reduction in MIR100HG 337 

expression in all three CREs in this enhancer cluster in comparison to dCAS9/KRAB negative 338 

controls (Fig. 3b). This data suggests that these CREs function as active enhancers to 339 

regulate the expression of MIR100HG. Analysis of looping interactions from the 4D 340 

genome
62

 and integrated method for predicting enhancer targets (IM-PET)
63

 data in PANC 341 

cells indicated interactions between CRE-two and the promoter of UBASH3B located 342 

upstream of MIR100HG (Extended Data Fig. 8a). UBASH3B has been reported to inhibit the 343 

endocytosis of the epidermal growth factor (EGFR), an essential component in the 344 

development of pancreatic precursor lesions
64-66

. RT-qPCR analysis demonstrated a 345 

significant decrease in UBASH3B expression with the CRE-two CRISPRi compared to controls 346 

(Fig. 3b). CRE-three shows interactions with the promoter of ARHGEF12 (Extended Data Fig. 347 

8b). ARHGEF12, a guanine nucleotide exchange factor (GEF), activates Rho A, a key regulator 348 

of cytoskeleton organisation and ROCK1/2 induced extracellular matrix remodelling, 349 

associated with poor outcomes in PDAC patients
67

. CRE-three CRISPRi resulted in a 350 

significant decrease in ARHGEF12 levels compared to controls (Fig. 3b). These results 351 

suggest that CRISPRi-based perturbation of CRE-two and three leads to downregulation of 352 
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genes located in cis, although to a less extent compared to the reduction in MIR100HG 353 

expression.   354 

 355 

CRISPRi perturbation of MIR100HG CREs alters core PDAC signalling pathways and cell 356 

motility. 357 

We performed RNA-seq to evaluate the global mRNA changes in CRISPRi-targeted CRE-two 358 

and -three clones (Fig. 3b). Principle component and correlation analyses showed CRISPRi of 359 

CRE-two and -three shared similar gene expression programmes (Fig. 3c and 3d). Differential 360 

expression (DE) analysis identified 98 and 102 significant genes in the perturbation of CRE-361 

two and -three clones compared to the control, respectively (FDR<0.05 and absolute log2 FC 362 

>1). Of them, 59 DE genes were shared between the two clones (Fig. 3e). We also observed 363 

a significant reduction in MIR100HG RNA-seq expression in both targeted CREs, consistent 364 

with the qPCR data (Fig. 3f). 365 

Gene set enrichment analysis (GSEA)
68

 against the MsigDB Hallmark
69

 and oncogenic 366 

signature gene sets were then performed between the two CRISPRi groups and the dCas9-367 

KRAB control (Fig. 4a). In both CRISPRi perturbations; we observed a comparable and 368 

significant downregulation of important PDAC hallmark gene sets involved in KRAS 369 

signalling
70

, UPR, reactive oxygen species (ROS)
71

 and TNFα signalling
72

 (Fig. 4a and 4b). 370 

Oncogenic signatures associated with critical drivers KRAS
73

, P53, epithelial-to-mesenchymal 371 

transition (EMT) inducing TGF-β and cell survival and proliferation-related MTOR
73

 pathway 372 

genes were significantly reduced in both inhibited cis-regions. In contrast, migration 373 

inhibiting cAMP
74

 and interestingly pro-EMT related LEF1
75

 signatures were significantly 374 

upregulated (Fig. 4a). Collectively, the CRISPRi perturbation of two CREs at MIR100HG led to 375 

a significant reduction in key oncogenic molecular mechanisms observed in PDAC, resulting 376 

in a more favourable phenotype.  377 

TGF-β regulates MIR100HG transcription and thus the release of its hosted miRs, 378 

inducing EMT, encouraging cell motility and metastasis
25

. Here, we identified many TGF-β 379 

related genes such as FGF1
76

, KDM6B
77

, LIF
78

, PIK3CD
79

, PXDC1 and TAGLN
80

 were 380 

significantly downregulated in the two CRISPRi groups compared to the control (Extended 381 

Data Fig. 9). Hence, we further aimed to validate the reduction in TGF-β signalling observed 382 

with GSEA enrichment by using wound healing assays (Fig. 4c). Over 48-hours, the inhibition 383 

of CRE-two (G 5-6) resulted in a significant reduction in cell motility in comparison to 384 
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controls, corroborating with a stronger gene enrichment reduction in TGF-β and EMT 385 

signalling compared to CRE-three inhibition (Fig 4a). Similar but not significant changes in 386 

cell motility were observed in PANC-1 cells inhibited at CRE-three (G 7-8) (Fig. 4d). These 387 

results suggest a CRISPRi perturbation of CREs harbouring NCMs in the third intron of 388 

MIR100HG can decrease the migration ability in PANC-1 cells. 389 

 390 

Mutation occurrence of functional CREs in other solid cancers 391 

Lastly, we explored the NCM burden of our top five prioritised regions (obtained from the 392 

first approach) in other cancers. We analysed the mutational frequency of these CRE-393 

associated loci in seven other solid tumours using SSM data from the ICGC in oesophageal 394 

(ESAD), liver (LIHC), breast (BRCA-UK), ovarian (OV), prostate (PRAD-CA, PRAD-UK), 395 

colorectal (COAD) and gastric cancer (STAD) cohorts. The HOTAIR/HOXC CRE had the highest 396 

mutation frequency of NCMs across oesophageal (16.6%), liver (13.2%), prostate (7.5%) and 397 

ovarian (19.4%) cancers along with PDAC (5-12%, Extended data Fig. 10). However, a low 398 

mutation frequency was observed in gastric, breast and colorectal cancers below 2%. The 399 

FOXA1 CRE was predominately mutated in prostate cancer at an incidence of ~16%, 400 

followed by liver, ovarian and oesophageal cancers at a frequency of ~5%, higher than that 401 

observed in PDAC (2%). Interestingly, this regulatory region and NCMs have been recently 402 

reported in prostate cancer and are correlated with decreases in FOXA1 expression and cell 403 

growth
81

. For the MIR100HG CRE, oesophageal and prostate cancer (UK cohort) showed the 404 

highest incidence at 14.2% and 5.7%, respectively, and liver and ovarian cancers showed a 405 

similar mutational incidence to the PDAC cohorts (2-3%). Other cancer types, such as breast, 406 

gastric and colorectal, had a very low to no mutational burden within this MIR100HG CRE 407 

(Extended Data Fig. 10c). The FOXP1 CRE had the highest mutation frequencies in the liver, 408 

oesophageal and ovarian cancers (6-8%), but the NFEL2 CRE generally had a much lower 409 

mutation frequency across all cancers, with a mutation burden of 2-3% in liver and 410 

oesophageal cancers, similar to that in PDAC. Our results suggest that several CREs 411 

identified in this study were also frequently mutated in other cancers. NCMs within these 412 

CREs may also play a functional role in contributing to these malignancies, as already 413 

documented in prostate cancer
81

. 414 

 415 

 416 
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Discussion 417 

Our study combines a computational discovery strategy and experimental follow-up to 418 

assess the functional significance of NCMs associated with PDAC-specific CREs. We leverage 419 

NCMs from PDAC SSM data derived from the ICGC
7
 and integrate with PDAC-specific CREs 420 

marked by H3K27ac in seven PDAC cell lines and two patient-derived organoid samples. 421 

Previous investigations have often relied on consensus regulatory regions defined by 422 

ENCODE cell lines or the Ensembl Regulatory Build
82

, this is likely to miss many enhancers 423 

which regulate genes in a highly cell and tissue specific manner
83

. Our PDAC consensus 424 

peaks have incorporated high- and low-grade cell lines and patient derived organoids 425 

accounting for the tissue and stage specificity of regulatory elements associated with PDAC 426 

biology
21

.  427 

The non-coding genome comprises a diverse spectrum of elements, and the 428 

mutational patterns and consequences are highly heterogeneous, rendering one approach 429 

ineffective across all regions of the non-coding genome
84,85

. Thus, our pipeline incorporates 430 

an approach that directly estimates the functional consequence (i.e. deleteriousness) of 431 

each NCM and another that detects recurrently mutated CREs taking into consideration 432 

confounders such as replication timing and background mutation rates. Hence our 433 

combined approach identified a comprehensive, robust set of CREs subject to PDAC-434 

relevant biological processes for in vitro validation. 435 

 High-throughput enhancer reporter assays are a powerful approach to screen the 436 

regulatory activity of a large number of NCMs in parallel
40,43,86,87

. Our STARR-seq data 437 

highlighted 43 NCMs from PDAC patients showing significant gene reporter activity in the 438 

PANC-1 cell line. Interestingly, we observed the largest number of NCMs upstream of the 439 

BNC1 promoter, resulting in a significant increase in STARR-seq reporter gene expression 440 

(Fig. 2d). Assessing the GEP of patients with these NCMs compared to those without NCMs 441 

demonstrated significant expression changes in more distal genes BTBD1
46

, FAM103A1
47

 442 

and TM6SF1
48

. These DE genes were also associated with poorer overall outcomes in PDAC 443 

patients with higher expression (in BTBD1 and FAM103A1 genes) and lower expression for 444 

TM6SF1 expressing patients (data not shown). Additional interesting candidates, such as 445 

NCMs proximal to cancer and PDAC-related TF TBX3
34

 and NCMs in the intron of FOXP1
88

, 446 

would be interesting and relevant candidates for future studies. 447 
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We identified significant CREs harbouring NCMs at the MIR100HG introns using both 448 

computational approaches, highlighting its importance for further functional validation. 449 

Previously, the transcription of MIR100HG has been linked to TGF-β expression/induction 450 

through SMAD2/3 binding sites in PDAC cell lines and in vivo studies leading to the release 451 

of its hosted miRs, including the oncogenic miR-100 and miR-125b-1
25,54

. The CRISPRi-based 452 

perturbation of cis-regions harbouring the most significant NCMs in the third intron of 453 

MIR100HG (identified using luciferase or high-throughput STARR-seq experiments) led to a 454 

down-regulation of MIR100HG expression and, in turn, cell mobility (Fig. 4c). This was 455 

correlated with a significant downregulation in critical PDAC related pathways included 456 

KRAS, P53, TGF-β and TNFα signalling
72,73

. Although not tested here, the direct targeting of 457 

these cis-regions leading to a down-regulation of MIR100HG transcription may inhibit the 458 

release of its hosted oncogenic miRs, as previously reported
25,54

.     459 

 Applying 4D genome interaction data
62

, we observed looping of our targeted CRE-460 

two with the promoter of proximal EGFR-related gene, UBASH3B
66

 and CRE-three with the 461 

promoter of the RhoA regulating GEF protein ARHGEF12
67

. Using RT-qPCR, we 462 

demonstrated CRE-two had the ability to downregulate UBASH3B expression, and CRE-three 463 

inhibition led to the significant reduction of ARHGEF12. These putative interactions may 464 

contribute to the downregulation of core pathways revealed by the GSEA analysis, as seen 465 

by the downregulation of EGFR signatures upon CRE-two inhibition
66

 and MYC-target 466 

downregulation with CRE-three inhibition
89

. This is the first report to our knowledge of 467 

NCMs in the introns of the lncRNA MIR100HG and the suggestion of cis genes other than 468 

MIR100HG being altered in expression
25,54

. Considering a large number of transcripts 469 

MIR100HG has, further assessment of these CREs and NCMs on splicing would be important. 470 

Genetic changes are critical for PDAC initiation, and up until recently, with the 471 

clinically available KRAS
G12C

 inhibitor (AMG 510)
90

 and the preclinical development of the 472 

KRAS
G12D 

inhibitor MRTX1133
91

, core mutated genes are largely undruggable. The 473 

reversibility of epigenetic changes allows the opportunity for therapeutic targeting. 474 

Previously in prostate cancer cells, the silencing of MIR100HG has led to the sensitisation to 475 

cytotoxic drugs
54

. We have shown here that perturbation of MIR100HG-associated CREs has 476 

collectively led to the downregulation of multiple core signalling pathways, including those 477 

previously not implicated in MIR100HG disruption, such as KRAS and TNFa signalling
25,54

. In 478 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.28.546873doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546873
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

addition to the above considerations of this study, further investigation into the therapeutic 479 

potential of targeting this enhancer cluster rich in CREs and NCMs would be the next step.  480 

 We have limited this study to active enhancers widely reported to be marked by 481 

H3K27ac and H3K4me1
19

. However, we observed NCMs located outside of PDAC-associated 482 

CREs to have high functional predictive scores, suggesting they may lead to a gain/loss in 483 

functional activity at the gene level (Extended Data Fig. 2b).  Moreover, use of H3K27ac 484 

alone to predict active enhancers may be too simplistic as many enhancers are marked with 485 

H4K16ac and H3K122ac but lack H3K27ac
92,93

, suggesting many more CRE associated NCMs 486 

may be missed here. We have demonstrated the enhancer function for the MIR100HG locus 487 

harbouring PDAC-specific NCMs. However, further work is needed to demonstrate the 488 

pathogenic role of other NCMs identified in PDAC. Overall, our work identified and validated 489 

functional CREs and associated NCMs that may contribute to PDAC tumourigenesis and we 490 

have demonstrated a systematic framework to study cis-regulatory mutations in other 491 

human diseases.  492 

 493 

 494 

Methods 495 

Data acquisition  496 

Data from the International Cancer Genome Consortium were downloaded from the ICGC 497 

portal (https://dcc.icgc.org/) release 27
7
. This data included simple somatic mutation (SSM) 498 

data for pancreatic ductal adenocarcinoma samples from the PACA-AU and PACA-CA 499 

cohorts. Clinical data, array-based expression (EXP-A from the PACA-AU cohort) and 500 

sequencing-based gene expression data (EXP-S from the PACA-CA cohort) were also 501 

downloaded. Gene Expression Omnibus (GEO) acquired datasets GSE64560
21

 and 502 

GSE99311
22

 were used to obtain ChIP-seq data to identify active enhancer-associated 503 

regions of the genome (H3K27ac and H3K4me1) based on seven PDAC cell lines and two 504 

patient-derived organoid samples. Additional marks were used to annotate further putative 505 

promoters (H3K4me3) and repressive domains (H3K9me3, H3K27me3). 506 

 507 

ICGC data processing  508 

Downloaded SSMs were annotated and filtered using Annovar tools, retaining only those 509 

residing in non-coding elements (i.e., intergenic, intronic, synonymous and UTR)
94

. Annovar 510 
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‘filter-based’ annotation method with packages: hg19_avsnp147, hg19_snp138, 511 

hg19_cytoBand, hg19_dbnsfp30a, hg19_ensGeneMrna was used. Available raw array-based 512 

expression (EXP-A) data was retrieved for 269 out of 391 patients from the AU cohort and 513 

normalised. Raw RNA-seq data for 234 out of 268 patients from the CA cohort were also 514 

downloaded. Quality-checked sequencing reads were aligned to build hg38 of the human 515 

genome using Hisat2 (version 2-2.1.0)
95

 and annotated using Gencode release 27 hg38
96

. 516 

Read counts were estimated for each gene in all samples using HTSeq
97

. Counts were 517 

normalised and transformed to log2-counts per million (log2CPM) using Voom (Limma 518 

package by BioConductor)
98

. Log2CPM counts were then used as a measurement of gene 519 

expression.  520 

 521 

ChIP-seq data processing and manipulation 522 

Raw sequencing reads in fastq files were extracted from GEO, and checked for quality using 523 

FastQC (version 0.11.5)
99

. Where adaptors were present, sequences were trimmed using 524 

Trimmomatic tools 
100

. Subsequent reads were aligned to the human reference genome 525 

(hg38) using Bowtie2 (verison 2/2.3.0) with default parameters 
101

, and duplicate reads 526 

were marked with Picard (MarkDuplicates)
102

 and removed using SAMtools ‘rmdup’
103

. 527 

Uniquely aligned reads were downsampled between ChIP-seq samples and input control 528 

pairs to avoid read yield bias. Genome-wide narrow peaks were called for H3K27ac and 529 

transcription (TF) samples, and broad peaks for H3K4me1, H3K4me3 and H3K9me3 samples 530 

against the input control using MACS2 (version 2.1.0) default settings where data was 531 

available
104

. Peaks were further filtered for quality, preserving peaks with a Q-value of E-10. 532 

Subsequent BedGraph file outputs from MACS2 were converted to BigWig files using the 533 

UCSC binary tool, BedGraphToBigWig. H3K27ac peaks located with an inter-peak distance of 534 

2,000bp to other PDAC cell line H3K27ac regions, were merged using the ‘merge’ function 535 

from Bedtools (version 2.26.0) to produce one consensus H3K27ac region across all samples. 536 

H3K27ac peak co-ordinates were ‘lifted’ over to hg19 using the UCSC command line tool 537 

‘liftOver’ to overlap with SSMs. H3K27ac regions harbouring non-coding mutations 538 

affecting >2% of the patient cohort were retained for further analysis (≥8 NCMs in ≥8 539 

patients).   540 

 541 
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The identification of putative functional mutations using approach one (non-coding 542 

annotation/IW-scoring and LINSIGHT algorithms).  543 

SSMs from filtered and merged H3K27ac peaks were subjected to functional testing and 544 

filtering using the IW-scoring algorithm
23

. The workflow for the identification of novel 545 

variants was utilised, excluding the use of GWAVA scores (for known variants). The median 546 

IW-functional score for all mutations within each H3K27ac consensus region was calculated. 547 

H3K27ac regions with a median IW-score of two or above were retained for further analysis. 548 

In addition, IW-scores of NCMs residing outside (H3K27ac negative) the top candidate 549 

H3K27ac consensus regions (~1kb) were obtained and compared to those of H3K27ac 550 

associated NCMs. The top candidate regions were also validated using the LINSIGHT 551 

algorithm.  LINSIGHT scores were extracted as previously described
31

. The scores based on 552 

the likelihood of deleterious fitness consequences were extracted and used to compare 553 

NCMs located inside our consensus peak regions and NCMs located nearby outside peak 554 

regions (H3K27ac negative). An unpaired Wilcoxon signed rank test was used for all 555 

statistical significance testing.  556 

  557 

The identification of putative functional mutations using approach two (LARVA algorithm). 558 

To identify recurrently mutated regions (within H3K27ac consensus peaks) more than 559 

expected to nearby background regions, we used the algorithm LARVA
32

. This algorithm 560 

considers sample-specific mutation rates, heterogeneity and replication timing, as 561 

previously described
32

. NCMs that fell into blacklist regions were first removed, and the 562 

remaining NCMs overlapped with our H3K27ac consensus regions. Three models were used 563 

to calculate the mutation rate expected based on the stochastic background mutations. The 564 

first and second model calculates the number of local mutations within a given annotated 565 

region and estimates the probability of observing a mutation in each position. The p-value 566 

was drawn from a β- distribution, taking the average mutation rate and the over-dispersion, 567 

respectively into consideration. The third model considers the average replication timing 568 

within each H3K27ac element, a confounding genomic feature that would affect the 569 

background mutation rate
85

. For this, replication timing data from seven different cell lines 570 

were retrieved from ENCODE and the average timing per region calculated across all cell 571 

lines (HepG2, MCF- 7, GM12878, K562, BJ, IMR-90 and SK-N-SH GSE34399)
105

. P-values were 572 
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adjusted with the Benjamini-Hochberg method across all three models. We prioritised those 573 

significant H3K27ac regions with a q value of <0.01. 574 

 575 

Luciferase reporter assays 576 

Sequences surrounding NCMs of interest (~2kb total) were amplified using specific primers 577 

(Extended Data Table S4). Mutations were introduced with site-directed mutagenesis 578 

(QuikChange II Site-Directed Mutagenesis Agilent) as per the manufacturer’s instructions 579 

and checked using Sanger Sequencing and correct regions cloned into the pGL2 vector 580 

upstream of the SV40 promoter. Thirty-five thousand cells (HEK293T and PANC-1) were 581 

plated 24-hours before transfection in a 24-well plate with either 100ng WT or MUT pGL2 582 

plasmids (Promega Cat E1631) and 5ng of Renilla luciferase control (Promega Cat E2231). 583 

Luciferase activity was measured 48-hours post-transfection with the Dual-Luciferase 584 

Reporter Assay System (Promega Cat E1910). Overall activity was calculated by taking a 585 

ratio of the Firefly over the Renilla expression control vector. The background signal was 586 

quantified using un-transfected cells and subtracted from readings. An unpaired t-test was 587 

used to obtain statistical significance between wild-type (WT) and mutant (MUT) luciferase 588 

activity. 589 

 590 

STARR-seq library design and cloning of candidate cis-regions into the STARR-seq plasmid 591 

The STARR-seq library consisted of 6,080 constructs representing 587 candidate mutations, 592 

corresponding WT sequences and 210 controls. Constructs were represented in a 194bp 593 

sequence context, flanked by a 15bp linker region for adaptor ligation and amplification 594 

(Extended Data S4). One hundred and ten positive controls were selected from super-595 

enhancers previously reported in PDAC 
106

 and additional regions from the super-enhancer 596 

database (SEdb)
107

. Putative negative controls were selected from gene deserts lacking 597 

H3K27ac and H3K4me1 marks in PDAC cell lines. A unique 6bp barcode was placed between 598 

the 5’ 15bp linker and the candidate sequence to allow the differentiation between WT, 599 

MUT and control (CTRL) sequences, resulting in a final construct of 230bp. To understand 600 

the activity of mutations in different genomic contexts and maximise the chance of 601 

capturing regulatory activity, each mutation was represented in the library five times, 602 

shifting the genomic context of the sequences 10bp and 20bp left and right from the middle 603 

of the construct, thereby representing the mutation in left_20bp, left_10bp, centre, 604 
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right_10bp and right_20bp positions. The synthetic oligonucleotide library was amplified 605 

and cloned as previously described
44,108

. Briefly, 5ng of the STARR-seq library was amplified, 606 

and vector homology arms were added to either side of the construct. The second 607 

generation hSTARR-seq ORI plasmid (Addgene: #99296) was digested with Sall-HF and Agel-608 

HF restriction enzymes, and the amplified library was cloned into the 3-UTR of the vector. 609 

Ligations (X5 reactions) were transformed by electroporation into MegaX DH10B™ T1R 610 

Electrocomp™ Cells (Invitrogen), and reactions pooled. The plasmid pool was extracted 611 

using the ZymoPURE Giga prep kit according to the manufacturer’s instructions. To check 612 

the quality and overall representation of the library, sequence inserts were amplified from 613 

the STARR-seq plasmid using Illumina-compatible index primers (Extended Data S4). STARR-614 

seq libraries were sequenced using 2 x 150bp chemistry on an Illumina Novaseq 6000 by 615 

Novogene ltd.   616 

STARR-seq oligo-pool quality check  617 

Paired end reads were merged into single amplicons using the USEARCH fastq_mergepairs 618 

command
109

. Merged reads were aligned back to the expected oligo library using BWA MEM 619 

with default parameters, penalising soft-clipping of alignment ends (-L80)
110

. GATK 620 

DepthofCoverage (version 3) was used to determine the sequencing depth per nucleotide 621 

and construct
111

. Of the 6,082 constructs sequenced, 98.63% had a minimum coverage of 622 

30X, with both WT and MUT sequences represented. To identify sequencing errors, the 623 

Samtools ‘mpileup’ function was run on aligned reads and the oligo reference library to 624 

obtain read counts for each nucleotide position
103

. Subsequent mpile up files were run with 625 

the VarScan2 package and ‘mpileup2cns’ parameters to identify sequencing errors
103,112

.  626 

Transfection, RNA isolation and cDNA synthesis  627 

Two million PANC-1 cells were plated per 10cm dish (5 dishes per biological replicate) for 24 628 

hours. Plasmid libraries (14μg per plate) were transfected using lipofectamine 3000 as per 629 

manufacturer instructions. To monitor transfection efficiency, one 10cm dish was co-630 

transfected with 2.8μg of pmaxGFP plasmid (Lonza). Immediately post-transfection, the 631 

interferon inhibitors C16 and BX-795 were added to each plate at a final concentration of 632 

1μM (per inhibitor), as previously described
113,114

. Cells were incubated at 37°c for 16 hours 633 

before harvesting and counting. 1/10
th

 of the cells were retained for plasmid DNA, and the 634 
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remaining cells were for RNA extraction. For RNA, cells were homogenised with the Qiagen 635 

Qiashredder and total RNA was extracted using the Qiagen mini-RNA extraction kit as per 636 

the manufacturer’s instructions. Poly-(A)
+
 RNA were isolated using Dynabeads

TM
 oligo(dT)25 637 

followed by DNase treatment with TurboDNase (Invitrogen). Samples were purified with 638 

RNA cleanupXP beads as previously described
108

. cDNA synthesis was carried out using 639 

SuperScript III and a gene-specific primer (Extended Data S4). cDNA was purified with 1.4X 640 

AMpureXP beads (and for subsequent steps described below). A second-strand synthesis 641 

reaction was followed by purification. Using a P7-specific primer (Extended Data Table S4) 642 

UMI’s were added to cDNA (in 5 reactions) with Kapa 2x HiFi HotStart ReadyMix (Kapa 643 

Biosystems). Reactions were pooled and purified. Junction PCR was used to amplify 644 

reporter-specific transcripts for 16 cycles and thereafter purified. For the final library 645 

preparation, Illumina sequencing primers were used in cDNA samples for 8-14 cycles 646 

followed by purification with 1.2X of AMPure SPRI beads (Extended Data S4).  647 

To obtain the DNA input library, STARR-seq plasmids were isolated from PANC-1 cells 648 

using the Monarch plasmid miniprep kit, as per the manufacturer’s instructions. One 649 

hundred nanograms of DNA were amplified using Illumina-compatible index primers as 650 

described above. The DNA plasmid and RNA-derived libraries were sequenced using the 651 

150-cycle paired-end V3 chemistry reagents and run on a Miseq.  652 

 653 

Processing and analysis of STARR-seq screen 654 

Paired-end reads were processed with CutAdapt to remove residual sequencing adaptors 655 

and STARR-seq vector linkers
115

. Reads were split based on the 6 bp barcodes WT, MUT and 656 

CTRL into separate files. Barcodes were removed, and sequences aligned to the human 657 

reference genome (hg19) using BWA MEM with default parameters
110

. Aligned BAM files 658 

were converted to BAMPE format using the bedtools function ‘bamtobed’, and properly 659 

paired reads were extracted for further analysis
116

. The Bedtools ‘intersect’ function was 660 

used to overlap reads with the expected design oligo library and obtain raw read counts. 661 

Samples were deduplicated based on UMI’s with a custom-made Perl script. A minimum of 662 

three unique UMI’s were required for a construct to be counted. Deduplicated counts were 663 

normalised to the total number of reads in the sample and then multiplied by 1M to obtain 664 

the number of transcripts per million. The relative abundance of each construct transcribed 665 

was calculated by dividing the observed RNA output by the DNA input, indicating the 666 
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relative activity of each WT, MUT and CTRL construct. To compare the transcriptional 667 

activity of single oligos between WT vs MUT and negative vs positive CTRLs, an unpaired t-668 

test was used. To compare the transcriptional activity at the mutation level across the five 669 

sliding windows (WT vs MUT), a Mann-Whitney U statistical test was used.    670 

 671 

CRISPRi guide RNA design and cloning 672 

For CRISPRi, guide RNAs were selected from the UCSC genome browser ‘CRISPR Tracks’, 673 

selecting guides as close to mutations as possible with a minimum of two guides per cis-674 

region (Extended Data Table S4). Potential off-target effects were assessed using the MIT 675 

specificity score, selecting guides with a score above 70%
117

. Homology arm sequences were 676 

added to each guide to clone into the pU6-sgRNA EF1Alpha-puro-T2A-BFP expression 677 

plasmid at the BstXI-BlpI3Z digested site. gRNA oligos were phosphorylated, annealed and 678 

cloned into pU6-sgRNA EF1Alpha-puro-T2A-BFP expression plasmid (Addgene #60955) as 679 

previously described 
118

. Inserts were verified with Sanger sequencing.  680 

 681 

Lentivirus transduction  682 

Lentivirus was generated as previously described
118

. Briefly, 4M cells were plated in a 10cm 683 

dish for 24-hours before transfecting HEK293T cells with 9ug of dCas9-mCherry-KRAB 684 

(Addgene #60954), 4ug of packing plasmids psPAX.2 and 2ug of the envelope vector 685 

pMD2.G diluted in OptiMEM medium and Trans-Ltl transfection reagent (Mirus). For the 686 

generation of gRNA lentivirus, 9ug of each cloned guide were transfected, and the virus was 687 

collected as described above. Twenty-four hours post-transfection, media was refreshed, 688 

and viral supernatant was collected at 48- and 72-hours post-transfection. Viral 689 

supernatants were centrifuged and filtered (45um). PANC-1 cells were transduced in a one-690 

to-one dilution of the virus and growth medium supplemented with polybrene (5ug/ml). 691 

Three days post-transduction, mCherry positive cells were sorted by FACs, selecting the top 692 

50% of positive cells based on the overall mCherry signal. PANC-1 dCa9/KRAB expressing 693 

cells were plated in 24-well dishes for 24-hours before transducing cells with lentiviral 694 

supernatant from multiple guides (as indicated in Fig. 3b). At 24-hours post-infection, the 695 

medium was replaced, and cells were selected with 2ug/ml of puromycin for 72-hours. Cells 696 

were harvested, and the effect on the expression of MIR100HG, UBASH3B and ARHGEF12 697 

was assessed using qPCR and subsequent RNA-sequencing (Extended Data Table S4).    698 
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 699 

 qPCR  700 

RNA was extracted and DNase I treated using the Qiagen mini-RNA extraction kit according 701 

to manufacturer instructions. cDNA was synthesised from 1ug of DNase treated RNA using 702 

the LunaScript® RT SuperMix (NEB), according to the manufacturer’s protocols. We 703 

performed qPCR on a StepOneTM Real-Time PCR System with the Luna® Universal qPCR 704 

Master Mix (NEB). Gene specific primers are outlined in Extended Data Table S4. 705 

 706 

RNA-seq data generation and analysis 707 

500 ng of total RNA was used to enrich mRNA using an oligo dT-based mRNA isolation 708 

module (NEB Cat number E7490L). RNA sequencing libraries were prepared by 709 

NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB catalogue number 710 

E7760S). Libraries were sequenced as 150 bp paired-end reads using a Novaseq 6000. After 711 

the quality check and trimming, reads were aligned to the reference genome hg38 using 712 

STAR v2.7.9a
119

, followed by the gene count quantification using RSEM
120

 based on the 713 

Ensembl gene annotation GRCh38.p13 Release 105. Genes with low mapped read across all 714 

samples were removed. The normalised RPKM (Reads per kilobase of transcript per Million 715 

reads mapped) expression values for all filtered genes across samples were subsequently 716 

derived and used for the differential expression (DE) analysis. The DE analysis was 717 

performed using Limma
121

, comparing each CRISPRi perturbation group (G 5-6 and G 7-8) to 718 

the dCa9/KRAB control group respectively. The significant DE genes were identified using a 719 

threshold of FDR<0.05 and absolute log2FC>1. GSEA
68

 was then performed based on the 720 

Limma output against gene sets curated in MSigDB hallmark
69

 and oncogenic signature gene 721 

sets, to identify dysregulated gene activities in the CRISPRi group relative to the control.  722 

  723 

Cell migration assays  724 

Approximately four thousand dCas9/KRAB expressing PANC-1 cells transduced with 725 

lentiviral gRNA combinations were seeded into 96-well plates. Cells were scratch wounded 726 

using a 20ul pipette tip. Cells were washed with PBS to remove cell debris, and phase-727 

contrast images were taken at 0-, 24- and 48-hours at three specific wound sites per well 728 

using a Leica microscope with an X4 objective. The ability of the cells to migrate and close 729 

the wound area was evaluated by comparing the pixels of the open wound region at each 730 
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time point using image J (MRI wound healing plugin)
122

. An unpaired t-test was used to 731 

compare each treated time point to the negative control.  732 

 733 

Data availability 734 

The RNA-seq data for the CRISPRi perturbation of MIR100HG enhancer regions has been 735 

deposited to the Gene Expression Omnibus under the accession number of GSE229499. 736 

ChIP-seq data were available under GSE64560 and GSE99311. Mutation and expression data 737 

of PDAC patients were downloaded from the ICGC data portal. The STARR-seq data and all 738 

scripts to analyse the data can be requested and obtained by contacting the corresponding 739 

authors. 740 
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 772 

Figure legend 773 

 774 

Fig. 1. Identification of functionally significant PDAC-CRE-associated NCMs and putative 775 

CRE drivers in PDAC. a. Overview of our investigative strategy to detect significant CRE-776 

associated NCMs and CRE drivers b. The variant filtering of somatic mutations using the 777 

ICGC PDAC Australia (AU) cohort as an example. The number of H3K27ac peaks and 778 

mutations (in red) is listed at each filtering step. c. Putative CRE drivers and the most 779 

proximal labelled genes identified by the two independent in-silico approaches: one 780 

implementing the IW-Scoring algorithm and LINSIGHT validation, the other using the LARVA 781 

model to identify CRE-regions with recurrent NCMs. d. Two gene set enrichment pathway 782 

analyses of CRE-associated nearby genes identified by the two in-silico approaches. e. 783 

Genome browser tracks (hg19) showing the histone modifications, CRE-associated NCMs in 784 

the third intron of MIR100HG and FOXP1 selected for the Luciferase reporter assay 785 

validation (grey shade). f. Boxplots depicting the luciferase reporter activity of selected 786 

NCMs in the introns of MIR100HG and FOXP1 tested in HEK293 and PANC-1 cell lines. The 787 

top panels are for NCMs in the MIR100HG CRE, and the bottom panels are for NCMs in the 788 

FOXP1 CRE. Data is representative of 3 technical replicates from 3-4 independent 789 

experiments. The statistics was performed using the unpaired t-test, with the significance p-790 

value shown as, *<0.05, **<0.01, ***<0.001, ****<0.0001. 791 

 792 
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Fig. 2. STARR-seq to validate the regulatory activity of candidate NCMs. a. STARR-seq NCM 793 

candidate selection strategy (left) and oligo design (right). b. A scatter plot showing the 794 

correlation of the STARR-seq regulatory activity between the two biological replicates. 795 

STARR-seq activity was measured as the log2 transformed transcript per million (TPM) of 796 

RNA output over the DNA input. The correlation coefficient (R) and p-values are shown. c. 797 

Violin plots depicting the mean log2 transformed STARR-seq activity (TPM) of the two 798 

replicates comparing the negative and positive controls, p***≤0.001 (t-test).  d. Volcano 799 

plot showing the mean log2 fold change vs. the log10 p-value (t-test) between MUT and WT 800 

oligos for all constructs. Pink dots demonstrate candidates with a p-value <0.05. Selected 801 

candidate CREs with a p-value <0.01 (t-test) are labelled with the closest proximal gene. e. 802 

Oligos with the most significant changes compared to its WT counterpart (p<0.01). MUT 803 

oligos with a higher activity than their WT sequence (gain of function) are in red bars, while 804 

MUT oligos with a lower activity than the WT control are in green. Predicted motifs 805 

identified by MotifbreakR are shown beside bars for mutations where relevant. Oligo names 806 

M1-48 are listed in Extended Data S5. f. Heatmap showing the gene expression profile (GEP) 807 

from the ICGC PDAC cohort (n=269) of predicted TFs putatively perturbed or gained in the 808 

top significant NCMs (p <0.01). Normalised microarray expression values are shown in the 809 

heatmap. g. Motif gain and loss (break) from two mutations in the MIR100HR enhancer 810 

cluster. The TF binding motifs for TFs NR6A1 and SOX10 are shown, and the affected 811 

nucleotide is marked in a dotted line. 812 

 813 

Fig. 3. CRISPRi for selected CREs with NCMs within the MIR100HG enhancer cluster. a. 814 

Genome browser tracks (hg19) showing the overview of the cis-regulatory landscape at the 815 

MIR100HG enhancer cluster (11q24.1) and the selected CRE’s for CRISPRi perturbation (grey 816 

vertical bars). The first region (left) is within a significant CRE identified by the first in-silico 817 

approach based on IW-Scoring, and two regions (centre right) within the significant CRE by 818 

the second approach, based on LARVA. H3K27ac and H3K4me1/3, DNase I hypersensitive 819 

sites (DHS), NCMs, guide RNA sites, microRNAs and the BLID gene are shown. b. Zoom-in of 820 

the three targeted MIR100HG CRE regions. RTqPCR data showing fold change in MIR100HG, 821 

UBASH3B (for region two G5-6) and ARHGEF12 (for region two G7-8) levels normalised to 822 

Actin-β upon CRISPRi compared to no guide RNA control (dCAS9/KRAB). c. Principal 823 

component analysis (PCA) of the RNA-seq samples among the three groups, dCas9/KRAB 824 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.28.546873doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546873
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27

control, CRISPRi for region two (G 5-6) and region three (G 7-8). PC1 and PC2 were used for 825 

the separation of samples. d. Scatter plot of the log2 fold changes between G 5-6 and G 7-8 826 

groups in comparison to the dCas9/KRAB control group for all profiled genes in the RNA-seq 827 

data. The correlation coefficient and p-value are shown. e. The overlap of significantly 828 

differentially expressed (DE) genes between G 5-6 and G 7-8 groups in comparison to the 829 

control. The significance cut-off is shown, and numbers of shared and unique DE genes are 830 

listed. f. The level of gene expression of MIR100HG among the dCas9/KRAB, G 5-6 and G 7-8 831 

groups were derived from the RNA-seq data (n=3 in each group). Log2 RPKM values were 832 

used to measure the RNA expression. A t-test was performed between the groups, with the 833 

significance p-value shown as *<0.05, **<0.01. 834 

 835 

Fig. 4.  CRISPRi for MIR100HG CREs results in a downregulation of KRAS and TGF-β 836 

pathways a. Significantly dysregulated pathways (false discovery rate, FDR<0.05) in the 837 

CRISPRi perturbation groups G 5-6 and G 7-8 compared to the dCas9/KRAB control group. 838 

Gene set enrichment analysis (GSEA) against the hallmark and oncogenic signature gene 839 

sets was performed 
68,69

. The normalised enrichment scores (NES) were used to create the 840 

heatmap, with the positive NESs (in red) indicating the upregulation and negative NESs (in 841 

blue) indicating the downregulation of activities in the CRISPRi perturbation groups 842 

compared to the dCas9/KRAB control. b. GSEA plots for the TGF-β and KRAS signalling gene 843 

sets for the CRISPRi perturbation G 5-6 and G 7-8 groups compared to the dCas9/KRAB 844 

control group. The NES and FDR values for each analysis are shown. c. Wound healing assay 845 

with G 5-6 and G 7-8 CRISPRi clones compared to the dCas9/KRAB control samples. 0, 24 846 

and 48-hour time points are shown. d. Measurement of the relative wound closure in the 847 

three groups, dCas9/KRAB control, region two (G 5-6) and region three (G 7-8) (images are a 848 

representation of n=3 biological replicates in each group). An unpaired t-test was used to 849 

compare perturbation clones vs. control groups. p-values *≤0.05. ns, not significant. 850 

 851 

Extended Data Fig. 1. Prioritised CREs using the first in silico approach. (a) Australia (AU) 852 

and (b) Canada (CA) cohorts NCMs were submitted to the IW-scoring algorithm. Each dot 853 

denotes a CRE, it’s combined median IW-score, across all chromosomes. The horizontal 854 

dotted line indicates the median IW-score threshold (p=0.1). The prioritised CREs with an 855 

IW-median score ≥2 are labelled by the nearest proximal gene for each cohort.  856 
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 857 

Extended Data Fig. 2. An independent validation of the top prioritised CREs using 858 

LINSIGHT.  859 

a. Boxplots of LINSIGHT scores in H3K27ac-associated NCMs (inside peaks) in comparison to 860 

NCMs in nearby H3K27ac negative regions (outside peak) for the top 5 CREs identified by 861 

the first approach. b. LINSIGHT scores and location of NCMs inside (green) vs outside (black) 862 

H3K27ac peaks. 863 

 864 

Extended Data Fig. 3. Identification of two putative CREs within the MIR100HG enhancer 865 

cluster. The MIR100HG enhancer cluster was the only shared element between the two in-866 

silico approaches. One CRE was identified by the first approach based on IW-scoring and 867 

LINSIGHT validation, and the other was identified by the second approach based on the 868 

LARVA algorithm. Genome browser tracks (hg19) of the H3K27ac peaks across the 7 PDAC 869 

cell lines and 2 patient-derived organoids are shown. The MIR100HG-hosted microRNAs and 870 

associated gene BLID are indicated.  871 

 872 

Extended Data Fig. 4. First in silico approach prioritises a significant CRE in the third intron 873 

of the TF FOXP1. Genome browser tracks (hg19) presenting the H3K27ac peaks across the 7 874 

PDAC cell lines and 2 patient-derived organoids and the annotation of the merged 875 

consensus peaks. The location of NCMs inside and outside H3K27ac consensus is indicated 876 

for each cohort.  877 

 878 

Extended Data Fig. 5. Quality analysis of the cloned STARR-seq plasmid library. a. Length 879 

distribution of cloned oligo constructs. The percentage of each length is shown. The oligo 880 

construct library had 49% of oligos with the expected correct length, followed by 1- (28%) 881 

and 2-bp (10%) deletions. b. Depiction of the number of construct synthesis errors across 882 

the sequenced oligos. The error occurrence is shown along the base pair positions.  883 

 884 

Extended Data Fig. 6. Comparison of regulatory activities derived between Luciferase 885 

reporter assay and STARR-seq. Boxplots comparing the Luciferase reporter assay activity 886 

and STARR-seq, demonstrating concurrent directional changes in enhancer activity at NCMs 887 

profiled by both techniques.  888 
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 889 

Extended Data Fig. 7. BNC1 associated enhancer cluster and significant NCMs from the 890 

STARR-seq screen.  a. Genome browser (hg19) of the H3K27ac peaks across the 7 PDAC cell 891 

lines and 2 patient-derived organoids. The STARR-seq significant NCMs are indicated, with 892 

the vast majority residing upstream of the BNC1 gene promoter. b. Boxplots showing the 893 

expression of genes within 1Mb of the BNC1 CRE that have significant alterations (BTBD1, 894 

FAM103A1 and TM6SF1) and the nearest proximal gene (BNC1), comparing mutant (MUT) 895 

and wildtype (WT) patient gene expression profiles (GEPs). The p-values were derived from 896 

the Wilcoxon rank sum test. c. Motif gain example for a gain-of-function NCM proximal to 897 

the TBX3 gene (chr12:115067012:C>A). A binding motif for the TF JUN is created by this 898 

mutation. All TF binding predictions were carried out using MotifBreakR. d. Motif break 899 

example for one loss-of-function NCM located in the intron of FOXP1 (chr3:71123616:G>T). 900 

The binding motif for ATF3 was disrupted by this mutation. 901 

 902 

Extended Data Fig. 8.  The interaction of MIR100HG CREs with distal genes revealed by the 903 

4D genome. a. Genome browser (hg19) showing the H3K27ac signal for PANC-1 cells and 904 

the putative loop between CRE-2 and the promoter of UBASH3B. Putative loops were 905 

predicted using the interactions from the integrated method for predicting enhancer targets 906 

(IM-PET) and 4D Genome in PANC-1 cells. b. Genome browser (hg19) showing the H3K27ac 907 

signal for PANC-1 cells and the putative loop between CRE-3 and the promoter of 908 

ARHGEF12.  909 

 910 

Extended Data Fig. 9.  Boxplots comparing the gene expression profiles of TGF-β related 911 

genes FGF1, KDM6B, LIF, PIK3CD, PXDC1 and TAGLN between G 5-6 / G 7-8 CRISPRi 912 

perturbations and the dCas9/KRAB control. The gene expression levels were measured by 913 

RNA-seq data, in the unit of log2 RPKM values. 914 

 915 

Extended Data Fig. 10.  The mutational burden in the top five significant CREs identified in 916 

the first approach in other common solid tumours. CREs overlaying genes FOXA1, FOXP1, 917 

HOTAIR/HOXC genes, MIR100HG and NFEL2 were assessed for their mutational burden. a. 918 

Barplot showing the number of samples across the selected cancer cohorts. b. Barplot of 919 
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the total number of mutations within each cohort. c. Barplots showing the frequency of 920 

NCMs identified within each CRE across each cancer cohort. 921 

 922 

 923 

Extended Data S1. List of NCMs in significant CRE’s prioritised using the first in-silico 924 

approach in the AU and CA cohorts respectively.  925 

Extended Data S2. Table showing the comparison of NCMs inside the top five significant 926 

CREs to NCMs located outside flanking H3K27ac negative regions. An unpaired Wilcoxon 927 

signed rank test was used to obtain p values.  928 

Extended Data S3. List of all significant CREs prioritised by the LARVA algorithm and those 929 

significant CREs found to be in common between the AU and CA cohorts.  930 

Extended Data S4. List of primers and CRISPRi guides.  931 

Extended Data S5. List of top significant oligos as shown in Fig. 2e. 932 

 933 
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