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35  Abstract

36

37 Non-coding mutations (NCMs) that perturb the function of cis-regulatory elements (CRE,
38 enhancers) contribute to cancer. Due to the vast search space, mutation abundance and
39 indirect activity of non-coding sequences, it is challenging to identify which somatic NCMs
40  are contributing to tumour development and progression. Here, we focus our investigation
41 on the somatic NCMs that are enriched at enhancers from 659 pancreatic ductal
42  adenocarcinoma (PDAC) tumours. We identify cis-regulatory NCMs within PDAC-specific
43  enhancers derived from high and low-grade PDAC cell lines and patient derived organoids
44  using two independent computational approaches. Five such CREs enriched for PDAC
45  associated NCMs are also frequently mutated in other common solid tumours. Functional
46  validation using STARR-seq reporter assays enables the prioritisation of 43 NCMs (7.3%)
47  from a pool of 587 NCMs with 6,082 oligos, that significantly alter reporter enhancer activity
48  compared to wild-type sequences. CRISPRi perturbation of an enhancer cluster harbouring
49  NCMs over long non-coding RNA gene MIR100HG, which hosts a microRNA cluster {mir100-
50 let7a-2-125b-1), leads to the downregulation of MIR100HG accompanied by a significant
51 reduction in the TGF-B pathway (known to induce MIR1I00HG) and other PDAC critical
52  pathways, including KRAS, p53, MTOR and TNFa signalling. Collectively, we have reported
53  here cis-regulatory NCMs in PDAC proximal to many cancer-relevant genes, and our
54  integrated approach paves way to explore CRE-associated NCMs in other human cancer
55  genomes.
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67 Introduction

68  Pancreatic cancer, ranking fourth in the cause of cancer death in developed countries, is an
69  aggressive malignancy with a devastating five-year survival rate below 9% after diagnosis®.
70  Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer,
71  encompassing approximately 90% of all cases®. Our understanding of the genomic landscape
72 of PDAC is still mainly restricted to the somatic mutations within the coding regions of genes
73 involved in PDAC*®. Our knowledge of non-coding mutations (NCMs) and their functional
74  consequences in the development and progression of PDAC is still limited. The availability of
75 large-scale whole genome sequencing {(WGS) projects, such as those by the International
76  Cancer Genome Consortium (ICGC)’, along with assays profiling chromatin modifications,
77  accessibility and conformation, has allowed for a systematic search for functional NCMs in
78  various cancer typess'“.

79 Recent large-scale sequencing efforts by the Pan-Cancer Analysis of Whole Genomes
80 (PCAWG) in over 2,600 primary tumours have identified several novel non-coding driver
81 candidates, including NCMs in the 5’ region of TP53 and 3'UTR of NFKBIZ and TOB1 using a
82  statistically rigorous strategy for combining significance levels from multiple methods of
83  driver discovery. More recently, Dietlein et al., implemented a genome-wide, sliding-
84  window approach to detect significantly recurrent mutated regions across the whole
85 genomes of 3,949 patients and 19 cancer types, considering chromatin features, tissue
86  specificity and background mutations. Using this approach, they identified NCMs in CREs
87  near canonical cancer genes and tissue-specific genes, such as regulatory regions proximal
88  to HIST1H1B and TMEM151A in PDAC genomes and pancreas tissue-specific genes CPB1 and
89  PNLIP”. Previously, Feigin et al., performed the PDAC-specific promoter-centric analysis and
90 described Genomic Enrichment Computational Clustering Operation (GECCO) to uncover
91 recurrent regulatory mutations in the cis-regulatory regions of 308 patient genomes. This
92  method identified 16 genes with significant NCMs associated with promoter regions, and
93 these genes were enriched for canonical PDAC pathways such as cell adhesion, axon
94  guidance and Wnt signalling™®. However, previous methods have not fully or effectively
95 utilised PDAC-specific epigenomic data in the discovery analysis, particularly active enhancer
96 regions, leaving a large number of putative gene regulatory NCMs unexplored and PDAC-
97  specific enhancer drivers unidentified. Such active enhancer-centric methods have

98  previously been implemented in T-cell acute lymphoblastic leukaemia using sequencing
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99 reads derived from chromatin immunoprecipitation followed by sequencing (ChIP-seq) of
100 histone H3 lysine 27 (H3K27ac) acetylation to identify recurrent enhancer associated
101  variants'’. Focusing on enhancer regions significantly reduces the non-coding genome
102  search space to regions where non-coding variants are most likely to have potential
103 functional activity at the gene control level"%,

104 To address these specific challenges, we integrated epigenomic datasets for histone
105 modifications associated with enhancers to identify PDAC-specific active enhancers and
106  promoter regions. Together with gene expression profiles (GEP) where available and simple
107 somatic mutation (SSM) data of 659 PDAC patients from ICGC, to investigate NCMs
108  associated with PDAC-specific cis-regulatory elements (CRE). We implemented a composite
109 of two independent approaches to detect putative CRE drivers enriched for significant
110 NCMs. We further tested the regulatory activity of NCMs within these CREs using the high-
111 throughput functional screening approach STARR-seq, followed by the analysis of one
112  enhancer cluster using CRISPR-interference (CRISPRi) of CREs with NCMs (Fig. 1a). Our study
113 combines a systematic computational analysis and experimental validation, identifying
114  important CRE drivers involving PDAC-relevant genes. It also demonstrates a versatile
115  workflow to investigate CRE-associated NCMs in other disease genomes.

116

117

118  Results

119  The mutational burden within PDAC cis-regulatory regions

120 To identify likely pathogenic NCMs in PDAC, we retrieved SSM data from the ICGC
121  Pancreatic Cancer Genome Project Australia (AU, n=391 patients) and the Canada (CA,
122  n=268 patients) cohort. 1,379,638 and 2,211,000 somatic mutations were identified in the
123 AU and CA cohort, respectively. After filtering out non-synonymous somatic mutations,
124 1,358,342 (98.5%) and 2,179,517 (98.6%) somatic NCMs were retained from the AU and CA
125  cohort, respectively, for further analysis. This corresponds to an average of 3,701 (AU) and
126 8,132 (CA) NCMs per patient.

127 We wanted to focus on the NCM burden within CREs, specifically those enriched
128  with H3K27ac, a chromatin feature associated with active enhancers™. We hypothesised
129  that NCMs within these CREs may contribute to altering their function and target gene

17,20

130  expression'””°. Using ChIP-seq datasets from seven PDAC cell lines’" and two patient-
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131  derived organoid samples®, we identified 404,415 enriched H3K27ac peaks across all
132 samples. To consolidate H3K27ac peaks across the nine samples into one representative
133  consensus region per loci, we stitched together quality peaks residing within 2,000bp of
134  another (inter-peak distance), resulting in a total of 65,168 H3K27ac consensus peaks for
135  further analysis (average peak length = 4,639 and SD = 7,949). This allowed us to narrow the
136  search space for potentially important NCMs to ~10% of the genome. Patient somatic NCMs
137  were then mapped to the consensus H3K27ac coordinates to obtain a list of NCMs in PDAC-
138  specific CREs. From the AU cohort of patients, 101,209 somatic mutations were observed
139  within 36,409 (55.9%) consensus peaks and 166,541 CA cohort mutations within 43,002
140 (66.0%) consensus peaks. Therefore, capturing 7.45% and 7.64% of all AU and CA NCMs,
141 respectively (Fig. 1b).

142

143  Prioritisation of cis-regulatory regions enriched with putative functional NCMs

144  We next aimed to interrogate somatic NCMs residing within consensus H3K27ac marked
145  regions. To ensure the study of a significant proportion of PDAC patients, we retained CREs
146  with a patient mutation incidence of 2% or above (n=8), leaving 30,826 somatic mutations
147 (AU cohort) across 1,711 consensus peaks/CREs and 64,867 somatic mutations (CA cohort)
148  across 3,964 peaks (Fig. 1b). In total, 2.26% (AU) and 2.97% (CA) of the NCM burden
149  remained to interrogate, similarly to observation in a previous study focusing on H3K27ac
150  enriched elements®.

151 To prioritise the remaining CREs, we utilised two independent approaches: one
152  measuring the functional effect of each NCM within a CRE and ranking them based on the
153  median functional score of all NCMs; the other identifying CREs with significantly recurrent
154  NCMs accounting for local background mutation rate, and replication timing (Fig. 1a). We
155  carried out the first approach using the IW-scoring algorithm?®®, an integrative weighted
156  scoring framework to score NCMs and prioritised elements with a median IW-score of two
157  or above (corresponding to a p-value < 0.1). From the remaining 1,711 (AU) and 3,964 (CA)
158  peaks after filtering, we identified 14 CREs from the AU-cohort and 32 elements in the CA-
159  cohort using the median threshold (Extended Data Fig. 1 and S1). This method prioritised
160  CREs annotated to cancer-related genes such as the AP-1 transcription factor (TF) JUNB
161  expressed in low-grade PDAC cells”***, and GATA2, associated with high-grade PDAC*". Of

162  the 46 prioritised CREs, five regions were shared between the AU and CA cohorts (Fig. 1c).
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163  These five CREs reside within the introns of the oncogenic long non-coding RNAs (InRNA)
164  MIRI00HG” and HOTAIR?® from and including the HOXC cluster of homeobox genes®’, PDAC
165  associated TFs FOXA1?® and FOXP1* and ferroptosis related TF, NFE2L1% (Fig. 1c).

166 To further validate the putative significance of the NCMs within these five CREs, we
167  compared the IW-score of NCMs residing within the H3K27ac positive regions to NCMs in
168 immediate flanking sequences negative for H3K27ac marks. We observed a statistically
169  significant higher IW-score of NCMs within H3K27ac enriched regions compared to those in
170  flanking H3K27ac negative sequences (Extended Data S2), indicating the putative enhancer-
171  associated NCMs have higher predicted functional consequences than mutations located
172  outside these CREs. We also verified these findings with an independent scoring algorithm
173  LINSIGHT, which scores variants on the likelihood of deleterious fitness consequences based
174  on patterns of polymorphism and divergence from closely related species®. The LINSIGHT
175 model demonstrated a significant increase in the selective constraint (i.e., more deleterious
176  on fitness) of H3K27ac-associated NCMs compared to NCMs in nearby H3K27ac negative
177  regions (Extended Data Fig. 2).

178 Using the second approach to identify significantly recurrently mutated CREs, we
179  implemented LARVA*. The LARVA model yielded 68 (AU cohort) and 71 (CA cohort)
180 candidate CREs which were significantly recurrently mutated in relation to nearby
181  background sequences (Benjamini-Hochberg (BH) adjusted p <0.01). These significant
182  regions collectively harboured 1,842 and 2,258 NCMs in the AU and CA cohorts. Many NCMs
183  were located proximally to several well-known genes implicated in PDAC, for example, an
184  intergenic regulatory region in proximity to the miRNA: miR-21 and the Wnt/B-catenin
185  signalling protein gene WNT7b (Extended Data S3). Nine significantly mutated CREs were
186  shared between AU and CA cohorts. These recurrent CREs included regions proximal to the
187  TF genes TBX3 and BNCI, previously reported in PDAC****. NCMs were also located proximal
188  to the adhesion molecule PXDN® and transmembrane protein TENM3%*, the IncRNA gene
189  TBX5-AS1%7, and microRNA, miR-1305 (Fig. 1c).

190 Notably, the MIR1I00HG enhancer cluster was the only one prioritised in the two
191  approaches, but consisting of two separate CREs (Fig. 1c, Extended Data Fig. 3). Overall, our
192  computational strategy has revealed NCMs enriched within or proximal to PDAC or cancer-
193  related genes, including candidates identified from a previous non-coding study in PDAC"®.

194
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195 Proximal genes to enhancer NCMs are associated with transcription and PDAC-linked
196  biological processes

197  We next performed pathway enrichment analysis based on the annotated genes proximal to
198  CREs identified by the two in-silico approaches using the DAVID tool®:. Inputting 95
199 annotated genes associated with 41 CREs identified by the IW-scoring approach, we
200 observed significant enrichment in several gene families and regulatory processes, including
201 homeobox genes, pattern specification, embryogenesis and transcriptional regulation
202  pathways (Fig. 1d). Additional pathway analysis based on 212 genes annotated to the 130
203  recurrently mutated CREs identified significant enrichment in core molecular pathways
204  including cell adhesion, epithelium development, cell proliferation, transcription, apoptotic
205  processes and regulation of chemotaxis (Fig. 1d). The involvement of biological processes,
206  such as embryogenesis, apoptosis and cell adhesion, has been reported in a previous
207  genomic landscape study®”. Furthermore, our findings complement Feign et al. in identifying
208 NCMs significantly associated with homeobox genes and transcriptional regulation®®. Our
209 results suggest a convergent mode for CRE-associated NCMs in relation to biologically
210 relevant coding genes in PDAC.

211

212  Enhancer NCMs show altered transcriptional reporter activity

213  To determine the effect of NCMs on the transcriptional regulatory activity, we performed
214  luciferase-based enhancer reporter assays for a subset of NCMs. We selected twelve NCMs
215  from two CREs identified from the first approach (IW score), comprising 11 single nucleotide
216  variants (SNV) and a single 4bp deletion. Five SNVs were selected from the third intron of
217  the FOXP1 gene, and seven NCMs in the third intron of the IncRNA MIR100HG (Fig. 1e).
218  Interestingly, the 2kb region surrounding the seven NCMs at the MIR1I00HG locus lack
219  detectable H3K27ac and H3K4mel marks in most of the cell lines, except those derived from
220  high-grade PDAC cells PANC-1 and PT45P1, suggesting this putative active enhancer is
221  specific to high-grade PDAC (Fig. 1e, Extended Data Fig. 3). Luciferase reporter assays were
222 carried out in the high-grade PDAC cell line PANC-1 and easily transfectable cell line
223 HEK293T. Within the MIR100HG CRE, NCMs (MUT 3, 6 and 7) and (MUT 1-3) showed
224 significant increases in reporter activity in HEK293T and PANC-1 cells, respectively (Fig. 1f).
225  Overall, all NCMs at this M/R100HG CRE showed an increase in luciferase activity compared

226  to WT sequences, suggesting NCMs within this CRE are potentially gain-of-function, i.e.,
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227  increase regulatory activity. The ~2kb regulatory element surrounding five selected NCMs
228  within the third intron of FOXP1 was positive for H3K27ac marks in six PDAC cell lines
229  (except for MIA-PaCa2 cells), and two patient-derived organoid samples (Extended Data Fig.
230  4). Among the five NCMs tested, two NCMs in HEK293T cells and three in PANC-1 cells
231  significantly altered luciferase expression. Most notably, mutation 3 (chr3:71104908:C>T,
232 IW-score = 5.20, p = 0.006, LINSIGHT score = 97.2%) significantly decreased reporter gene
233 expression in both cell lines (Fig. 1f). Interestingly, all five NCMs within the FOXP1 putative
234 enhancer demonstrated concordance in the overall transcriptional regulatory activity in
235  both cell lines.

236

237  STARR-seq assays prioritise a subset of 43 NCM candidates for further validation

238  Next, we screened a larger set of NCMs within consensus CREs using the high-throughput
239  approach, Self-Transcribing Active Regulatory Region sequencing (STARR-seq)*°. To focus on
240 NCMs with the strongest evidence of predicted function, we retained 504 NCMs with a
241  variant allele frequency above 20% and strong TF binding strength as predicted by
242  motifbreakR*'. Of the 504 NCMs, binding motifs of 258 TFs were strongly predicted to
243 occupy these mutation sites. Moreover, among the 73 NCMs identified by the first approach
244  (IW score), 47 (64%) NCMs were predicted to cause TF-motif gain and 26 (36%) loss-of-motif
245  (break). Among the 431 NCMs selected from the second approach (LARVA), 216 (50%)
246 NCMs caused predictive gain and 215 (50%) loss of motif changes. We included 83 single
247  base indels, resulting in 587 candidate NCMs in the final STARR-seq library (Fig. 2a).

248 We designed ten 230bp oligos per NCM, five for each NCM and five for the
249  corresponding wild type (WT). One oligo represented the NCM in the middle and four oligos
250 had a 10 bp sliding genomic window (SW) in either direction from the centre of the oligo
251  (Fig. 2a, see Methods). A further 210 positive (PDAC enhancers) and negative (no enhancer
252  features) control oligos were included in the library, resulting in a pool of 6,082 oligos.
253  Sequencing and quality analysis of the cloned STARR-seq plasmid library demonstrated good
254  complexity and accuracy (Extended data Fig. 5), with comparable outcomes to a previous

24 We performed two biological replicates

255  MPRA study using synthetically designed oligos
256  of STARR-seq by transfecting the PANC-1 cell line (see methods)*. After filtering low-quality

257  reads across samples, we observed a good concordance between replicates (Fig. 2b). As
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258  expected, positive control sequences showed significantly higher reporter activity compared
259  to negative controls (Fig. 2c).

260 We next tested the significance between mutant (MUT) and WT constructs on
261  reporter gene expression across replicates. A total of 217 plasmids (representing 155 NCMs)
262  showed significant differential enhancer activity (log, fold change -1.54 to 3.53, Student’s t-
263  test, p<0.05). 95 (61.3%) NMCs showed significantly increased enhancer activity, while 60
264  (38.7%) mutations showed a significant reduction in enhancer activity in comparison to WT
265  sequences (Fig. 2c and 2d). Interestingly, 36 CREs harbouring indels showed significant fold
266  changes at similar activity to SNVs (mean log, FC 1.07). Despite the differences in assays and
267  genomic context, we observed concurrent directional changes in enhancer activity at NCMs
268  assayed by luciferase reporter assays and sequencing-based high-throughput STARR-seq
269  (Extended data Fig. 6).

270 Focusing on the most significant alterations between MUT and WT alleles (t-test,
271  p<0.01), we highlighted 43 mutations, 33 of which demonstrated an increase in reporter
272  activity and 10 with an observed reduction (Fig. 2e). Notably, the differential activity
273  changes between MUT and WT in 13 NCMs were significantly altered in three or more
274  independent STARRs-seq plasmids (p<0.05). Similarly, 31 NCMs were significantly altered in
275 two independent SWs demonstrating concurrent directional activity changes. Eight of the
276 43 NCMs were located within an enhancer cluster (observed in low-grade and MiaPaCa2
277  cells) upstream of the BNC1 gene (Extended data Fig. 7a). The NCMs proximal to BNC1
278  significantly increased reporter gene expression in PANC-1 cells in comparison to WT
279  sequences (Fig. 2d). Assessing the expression of genes within 1Mb of this consensus peak by
280 comparing MUT and WT patient GEPs, we did not observe a difference in the expression of
281  BNC1, previously reported to be methylated in early stage PDAC patients®. However, we
282  observed a significant increase in the expression of nearby genes BTBD1 (p = 0.003, ~234kb
283  from the middle of the consensus peak to BTBD1 TSS), important in cell survival, the
284  ubiquitin/proteosome degradation pathway and mesenchymal differentiation*® and
285 FAMI103A1 (p = 0.008, ~316kb) which encodes an important subunit for the 7-
286  methylguanosine cap added to the 5' end of mMRNA and an essential component for gene
287  expression”’. Patient GEP analysis also revealed a significant decrease in the
288  transmembrane protein TM6SF1 (frequently hypermethylated®®*?, p = 0.0003, ~137kb)
289  between MUT and WT patients (AU cohort, Extended data Fig. 7b), overall suggesting these
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290 NCMs may exert their regulatory potential in a more distal manner. Additional significant
291  increases in reporter gene expression were observed proximal to the PDAC-associated TF
292 TBX (7 NCMs) and in the introns of IncRNA MIRI00HG *° (3 NCMS, Fig. 2d).

293 To assess the putative biological implications of these top-performing STARR-seq
294  NCMs, we took a closer look at the TF-motif binding predictions. From the 35 NCMs in the
295  top 43 STARR-seq performing mutations with TF-motif predictions, 21 were characterised as
296  TF binding motif-gain (creating de novo TF binding motifs), while 14 were TF binding motif-
297  loss. For example, one gain-of-function NCM proximal to TBX3 (chr12:115067012:C>A) was
298  predicted to create a binding motif for the oncogenic TF JUN (Fig. 2d and Extended Data Fig.
299  7c). This NCM led to a mean log, fold-change of 3.69 in STARR-seq reporter gene expression
300 across all five SWs (Mann Whitney U test, p=0.016). As expected, JUN was highly expressed
301 in PDAC patients based on the patient GEP in the AU cohort (Fig. 2f)*'. The most significant
302 loss-of-function was observed in a NCM located in the intron of FOXP1 (chr3:71123616:G>T)
303  supported by three significant SWs (p <0.05, average log2 fold change across SWs = -1.36).
304 At this site, the binding motif of an unfolded protein response (UPR) mediating TF, the
305  activating TF-3 (ATF3)*, was predicted to be disrupted (Extended Data Fig. 7d) and was
306 found to be moderately expressed in the PDAC patient GEP (AU cohort, Fig. 2f).
307  Furthermore, the top two NCMs located in the MIR1I00HG enhancer cluster also showed
308 strong effects on TF binding: the first mutation (chr11:122010557:C>T) demonstrated a gain
309 of TF motif, creating a de novo binding motif for NR6A1, a nuclear receptor family member;
310 while the second mutation (chr11:122025440:G>C) was predicted to disrupt the binding
311  motif for SOX10 (Fig. 2g), a reported tumour suppressor through the suppression of the
312  Wnt/B-catenin pathway in digestive cancers>. We observed that NR6A1 and SOX10 TFs
313  were expressed at moderate levels in PDAC patients (AU cohort, Fig. 2f). Overall, using the
314 STARR-seq assay enabled the prioritisation of CRE-associated NCMs for further
315  investigation.

316

317  CRE cluster harbouring NCMs located at the MIR100HG locus regulates genes in cis

318 The two computational approaches used in this study identified the IncRNA MIR100HG
319 locus as a significant candidate for harbouring NCMs in separate CREs in each approach.
320 Notably, M/IRI00HG is host to the oncogenic miR-s pre-miR125b-1 and pre-miR-100,

25,54

321  previously implicated in PDAC™", and they modulate (including MIR100HG) in a pro or anti-

10
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253459 1t hosts the tumour suppressors pre-

322  tumourigenic manner depending on the cancer
323  miR-Let7a-2*> and the pro-apoptotic protein BLID®’ located within intron three of
324  MIR100HG (Fig. 3a).

325 Next, we investigated the functionality of three CREs harbouring NCMs at the
326  MIRI00HG enhancer cluster using a CRISPRi approach recruiting the dCAS9/KRAB repressor
327  to NCMs and CREs of interest® (Fig. 3a and b). The first region located ~2kb away from the
328 hosted pre-miR-125b-1 in the third intron of MIR100HG harboured NCMs identified from
329  the first in silico approach. CRISPRi with a pool of four independent lentiviral guide RNAs (G
330 1-4) were selected close to NCMs that were shown to alter enhancer activity in either
331 luciferase or STARR-seq experiments (Fig. 1e, 3b). Two guides (G 5-6) were designed to
332  target region two harbouring five NCMs (CRE-two), including the most significant NCM
333 identified to drive reporter enhancer activity using STARR-seq (M20 in Fig. 2e and Fig. 3b).
334  An additional two guides (G 7-8) were designed to target the third region harbouring six
335 NCMs (CRE-three), including a gain-of-function NCM from the most significant STARR-seq
336 candidates (M37 in Fig. 2e).

337 CRISPRi, followed by RT-qPCR, showed a significant reduction in MIR100HG
338  expression in all three CREs in this enhancer cluster in comparison to dCAS9/KRAB negative
339  controls (Fig. 3b). This data suggests that these CREs function as active enhancers to
340 regulate the expression of MIRI00HG. Analysis of looping interactions from the 4D
341  genome® and integrated method for predicting enhancer targets (IM-PET)® data in PANC
342  cells indicated interactions between CRE-two and the promoter of UBASH3B located
343  upstream of MIR100HG (Extended Data Fig. 8a). UBASH3B has been reported to inhibit the
344  endocytosis of the epidermal growth factor (EGFR), an essential component in the

6466 RT-qPCR analysis demonstrated a

345 development of pancreatic precursor lesions
346  significant decrease in UBASH3B expression with the CRE-two CRISPRi compared to controls
347  (Fig. 3b). CRE-three shows interactions with the promoter of ARHGEF12 (Extended Data Fig.
348  8b). ARHGEF12, a guanine nucleotide exchange factor (GEF), activates Rho A, a key regulator
349  of cytoskeleton organisation and ROCK1/2 induced extracellular matrix remodelling,
350 associated with poor outcomes in PDAC patients®’. CRE-three CRISPRi resulted in a
351  significant decrease in ARHGEF12 levels compared to controls (Fig. 3b). These results

352  suggest that CRISPRi-based perturbation of CRE-two and three leads to downregulation of
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353 genes located in cis, although to a less extent compared to the reduction in M/IR1I00HG
354  expression.

355

356  CRISPRi perturbation of MIR100HG CREs alters core PDAC signalling pathways and cell
357  motility.

358 We performed RNA-seq to evaluate the global mRNA changes in CRISPRi-targeted CRE-two
359 and -three clones (Fig. 3b). Principle component and correlation analyses showed CRISPRi of
360 CRE-two and -three shared similar gene expression programmes (Fig. 3c and 3d). Differential
361  expression (DE) analysis identified 98 and 102 significant genes in the perturbation of CRE-
362 two and -three clones compared to the control, respectively (FDR<0.05 and absolute log, FC
363 >1). Of them, 59 DE genes were shared between the two clones (Fig. 3e). We also observed
364  a significant reduction in MIRI00HG RNA-seq expression in both targeted CREs, consistent
365  with the gPCR data (Fig. 3f).

366 Gene set enrichment analysis (GSEA)® against the MsigDB Hallmark®® and oncogenic
367  signature gene sets were then performed between the two CRISPRi groups and the dCas9-
368 KRAB control (Fig. 4a). In both CRISPRi perturbations; we observed a comparable and
369 significant downregulation of important PDAC hallmark gene sets involved in KRAS
370  signalling’®, UPR, reactive oxygen species (ROS)’" and TNFa signalling” (Fig. 4a and 4b).
371  Oncogenic signatures associated with critical drivers KRAS”, P53, epithelial-to-mesenchymal
372  transition (EMT) inducing TGF-B and cell survival and proliferation-related MTOR’® pathway
373 genes were significantly reduced in both inhibited cis-regions. In contrast, migration
374  inhibiting cAMP’* and interestingly pro-EMT related LEF1’> signatures were significantly
375  upregulated (Fig. 4a). Collectively, the CRISPRi perturbation of two CREs at MIR100HG led to
376  asignificant reduction in key oncogenic molecular mechanisms observed in PDAC, resulting
377  ina more favourable phenotype.

378 TGF-B regulates MIR100HG transcription and thus the release of its hosted miRs,
379  inducing EMT, encouraging cell motility and metastasis®. Here, we identified many TGF-B
380 related genes such as FGF1°, KDM6B”’, LIF®, PIK3CD”, PXDC1 and TAGLN®® were
381  significantly downregulated in the two CRISPRi groups compared to the control (Extended
382  Data Fig. 9). Hence, we further aimed to validate the reduction in TGF-3 signalling observed
383  with GSEA enrichment by using wound healing assays (Fig. 4c). Over 48-hours, the inhibition

384  of CRE-two (G 5-6) resulted in a significant reduction in cell motility in comparison to
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385  controls, corroborating with a stronger gene enrichment reduction in TGF-§ and EMT
386  signalling compared to CRE-three inhibition (Fig 4a). Similar but not significant changes in
387  cell motility were observed in PANC-1 cells inhibited at CRE-three (G 7-8) (Fig. 4d). These
388  results suggest a CRISPRi perturbation of CREs harbouring NCMs in the third intron of
389  MIR100HG can decrease the migration ability in PANC-1 cells.

390

391  Mutation occurrence of functional CREs in other solid cancers

392  Lastly, we explored the NCM burden of our top five prioritised regions (obtained from the
393 first approach) in other cancers. We analysed the mutational frequency of these CRE-
394  associated loci in seven other solid tumours using SSM data from the ICGC in oesophageal
395  (ESAD), liver (LIHC), breast (BRCA-UK), ovarian (OV), prostate (PRAD-CA, PRAD-UK),
396 colorectal (COAD) and gastric cancer (STAD) cohorts. The HOTAIR/HOXC CRE had the highest
397  mutation frequency of NCMs across oesophageal (16.6%), liver {13.2%), prostate {(7.5%) and
398 ovarian (19.4%) cancers along with PDAC (5-12%, Extended data Fig. 10). However, a low
399 mutation frequency was observed in gastric, breast and colorectal cancers below 2%. The
400 FOXA1 CRE was predominately mutated in prostate cancer at an incidence of ~16%,
401 followed by liver, ovarian and oesophageal cancers at a frequency of ~5%, higher than that
402  observed in PDAC (2%). Interestingly, this regulatory region and NCMs have been recently
403  reported in prostate cancer and are correlated with decreases in FOXA1 expression and cell
404  growth®. For the MIR1I00HG CRE, oesophageal and prostate cancer (UK cohort) showed the
405 highest incidence at 14.2% and 5.7%, respectively, and liver and ovarian cancers showed a
406  similar mutational incidence to the PDAC cohorts (2-3%). Other cancer types, such as breast,
407  gastric and colorectal, had a very low to no mutational burden within this M/IR100HG CRE
408 (Extended Data Fig. 10c). The FOXP1 CRE had the highest mutation frequencies in the liver,
409 oesophageal and ovarian cancers (6-8%), but the NFEL2 CRE generally had a much lower
410 mutation frequency across all cancers, with a mutation burden of 2-3% in liver and
411  oesophageal cancers, similar to that in PDAC. Our results suggest that several CREs
412  identified in this study were also frequently mutated in other cancers. NCMs within these
413  CREs may also play a functional role in contributing to these malignancies, as already
414  documented in prostate cancer®’.

415

416
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417  Discussion

418  Our study combines a computational discovery strategy and experimental follow-up to
419  assess the functional significance of NCMs associated with PDAC-specific CREs. We leverage
420 NCMs from PDAC SSM data derived from the ICGC’ and integrate with PDAC-specific CREs
421  marked by H3K27ac in seven PDAC cell lines and two patient-derived organocid samples.
422  Previous investigations have often relied on consensus regulatory regions defined by
423  ENCODE cell lines or the Ensembl Regulatory Build®, this is likely to miss many enhancers
424 which regulate genes in a highly cell and tissue specific manner®. Our PDAC consensus
425  peaks have incorporated high- and low-grade cell lines and patient derived organoids
426  accounting for the tissue and stage specificity of regulatory elements associated with PDAC
427  biology*.

428 The non-coding genome comprises a diverse spectrum of elements, and the
429  mutational patterns and consequences are highly heterogeneous, rendering one approach

430 ineffective across all regions of the non-coding genome®*®>

. Thus, our pipeline incorporates
431  an approach that directly estimates the functional consequence (i.e. deleteriousness) of
432  each NCM and another that detects recurrently mutated CREs taking into consideration
433  confounders such as replication timing and background mutation rates. Hence our
434  combined approach identified a comprehensive, robust set of CREs subject to PDAC-
435  relevant biological processes for in vitro validation.

436 High-throughput enhancer reporter assays are a powerful approach to screen the
437  regulatory activity of a large number of NCMs in parallel***®® Our STARR-seq data
438  highlighted 43 NCMs from PDAC patients showing significant gene reporter activity in the
439  PANC-1 cell line. Interestingly, we observed the largest number of NCMs upstream of the
440 BNC1 promoter, resulting in a significant increase in STARR-seq reporter gene expression
441  (Fig. 2d). Assessing the GEP of patients with these NCMs compared to those without NCMs
442  demonstrated significant expression changes in more distal genes BTBD1%, FAM103A1%’
443  and TM6SF1*. These DE genes were also associated with poorer overall outcomes in PDAC
444  patients with higher expression (in BTBD1 and FAM103A1 genes) and lower expression for
445  TMG6SF1 expressing patients (data not shown). Additional interesting candidates, such as
446 NCMs proximal to cancer and PDAC-related TF 7BX3** and NCMs in the intron of FOXP188,

447  would be interesting and relevant candidates for future studies.
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448 We identified significant CREs harbouring NCMs at the M/RI00HG introns using both
449  computational approaches, highlighting its importance for further functional validation.
450  Previously, the transcription of MIRI00HG has been linked to TGF-B expression/induction
451  through SMAD2/3 binding sites in PDAC cell lines and in vivo studies leading to the release
452  of its hosted miRs, including the oncogenic miR-100 and miR-125b-1>>**. The CRISPRi-based
453  perturbation of cis-regions harbouring the most significant NCMs in the third intron of
454  MIR100HG (identified using luciferase or high-throughput STARR-seq experiments) led to a
455  down-regulation of MIRIOOHG expression and, in turn, cell mobility (Fig. 4c). This was
456  correlated with a significant downregulation in critical PDAC related pathways included
457  KRAS, P53, TGF-B and TNFa signalling’>”®. Although not tested here, the direct targeting of
458  these cis-regions leading to a down-regulation of MIRI00HG transcription may inhibit the
459  release of its hosted oncogenic miRs, as previously reported”>*.

460 Applying 4D genome interaction data®, we observed looping of our targeted CRE-
461  two with the promoter of proximal EGFR-related gene, UBASH3B%® and CRE-three with the
462  promoter of the RhoA regulating GEF protein ARHGEF12%’. Using RT-gPCR, we
463  demonstrated CRE-two had the ability to downregulate UBASH3B expression, and CRE-three
464  inhibition led to the significant reduction of ARHGEF12. These putative interactions may
465  contribute to the downregulation of core pathways revealed by the GSEA analysis, as seen
466 by the downregulation of EGFR signatures upon CRE-two inhibition®® and MYC-target
467  downregulation with CRE-three inhibition®. This is the first report to our knowledge of
468 NCMs in the introns of the INcRNA MIR100HG and the suggestion of cis genes other than
469  MIRL100HG being altered in expression®>*. Considering a large number of transcripts
470  MIR100HG has, further assessment of these CREs and NCMs on splicing would be important.
471 Genetic changes are critical for PDAC initiation, and up until recently, with the
472  clinically available KRAS®™¢ inhibitor (AMG 510)* and the preclinical development of the
473 KRAS®' inhibitor MRTX1133°!, core mutated genes are largely undruggable. The
474  reversibility of epigenetic changes allows the opportunity for therapeutic targeting.
475  Previously in prostate cancer cells, the silencing of MIR100HG has led to the sensitisation to
476  cytotoxic drugs®. We have shown here that perturbation of MIR100HG-associated CREs has
477  collectively led to the downregulation of multiple core signalling pathways, including those

25,54

478  previously not implicated in MIR100HG disruption, such as KRAS and TNFa signalling In
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479  addition to the above considerations of this study, further investigation into the therapeutic
480 potential of targeting this enhancer cluster rich in CREs and NCMs would be the next step.
481 We have limited this study to active enhancers widely reported to be marked by
482  H3K27ac and H3K4me1®. However, we observed NCMs located outside of PDAC-associated
483  CREs to have high functional predictive scores, suggesting they may lead to a gain/loss in
484  functional activity at the gene level (Extended Data Fig. 2b). Moreover, use of H3K27ac
485  alone to predict active enhancers may be too simplistic as many enhancers are marked with
486  H4K16ac and H3K122ac but lack H3K27ac*®, suggesting many more CRE associated NCMs
487  may be missed here. We have demonstrated the enhancer function for the MIR100HG locus
488  harbouring PDAC-specific NCMs. However, further work is needed to demonstrate the
489  pathogenic role of other NCMs identified in PDAC. Overall, our work identified and validated
490 functional CREs and associated NCMs that may contribute to PDAC tumourigenesis and we
491  have demonstrated a systematic framework to study cis-regulatory mutations in other
492  human diseases.

493

494

495  Methods

496  Data acquisition

497  Data from the International Cancer Genome Consortium were downloaded from the ICGC

498  portal (https://dcc.icgc.org/) release 27’. This data included simple somatic mutation (SSM)

499  data for pancreatic ductal adenocarcinoma samples from the PACA-AU and PACA-CA
500 cohorts. Clinical data, array-based expression (EXP-A from the PACA-AU cohort) and
501 sequencing-based gene expression data (EXP-S from the PACA-CA cohort) were also
502 downloaded. Gene Expression Omnibus (GEO) acquired datasets GSE64560*' and
503 GSE99311* were used to obtain ChIP-seq data to identify active enhancer-associated
504  regions of the genome (H3K27ac and H3K4me1l) based on seven PDAC cell lines and two
505 patient-derived organoid samples. Additional marks were used to annotate further putative
506  promoters (H3K4me3) and repressive domains (H3K9me3, H3K27me3).

507

508 ICGC data processing

509 Downloaded SSMs were annotated and filtered using Annovar tools, retaining only those

510 residing in non-coding elements (i.e., intergenic, intronic, synonymous and UTR)**. Annovar
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511  ‘filter-based’ annotation method with packages: hgl9 avsnp147, hgl9 snp138,
512 hgl9 cytoBand, hgl19_dbnsfp30a, hgl9_ensGeneMrna was used. Available raw array-based
513  expression (EXP-A) data was retrieved for 269 out of 391 patients from the AU cohort and
514 normalised. Raw RNA-seq data for 234 out of 268 patients from the CA cohort were also
515 downloaded. Quality-checked sequencing reads were aligned to build hg38 of the human
516 genome using Hisat2 (version 2-2.1.0)*> and annotated using Gencode release 27 hg38°.
517 Read counts were estimated for each gene in all samples using HTSeq”. Counts were
518 normalised and transformed to log,-counts per million (log,CPM) using Voom (Limma
519  package by BioConductor)®®. Log,CPM counts were then used as a measurement of gene
520  expression.

521

522  ChIP-seq data processing and manipulation

523  Raw sequencing reads in fastq files were extracted from GEO, and checked for quality using
524  FastQC (version 0.11.5)*. Where adaptors were present, sequences were trimmed using

100

525  Trimmomatic tools ~ . Subsequent reads were aligned to the human reference genome

101

526  (hg38) using Bowtie2 (verison 2/2.3.0) with default parameters ~, and duplicate reads

527 were marked with Picard (MarkDuplicates)'® and removed using SAMtools ‘rmdup’*®.
528  Uniquely aligned reads were downsampled between ChIP-seq samples and input control
529  pairs to avoid read yield bias. Genome-wide narrow peaks were called for H3K27ac and
530 transcription (TF) samples, and broad peaks for H3K4me1, H3K4me3 and H3K9me3 samples
531 against the input control using MACS2 (version 2.1.0) default settings where data was
532  available™. Peaks were further filtered for quality, preserving peaks with a Q-value of E-10.
533  Subsequent BedGraph file outputs from MACS2 were converted to BigWig files using the
534  UCSC binary tool, BedGraphToBigWig. H3K27ac peaks located with an inter-peak distance of
535  2,000bp to other PDAC cell line H3K27ac regions, were merged using the ‘merge’ function
536 from Bedtools (version 2.26.0) to produce one consensus H3K27ac region across all samples.
537 H3K27ac peak co-ordinates were ‘lifted” over to hgl9 using the UCSC command line tool
538 ‘liftOver’ to overlap with SSMs. H3K27ac regions harbouring non-coding mutations
539  affecting >2% of the patient cohort were retained for further analysis (28 NCMs in =8
540  patients).

541
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542  The identification of putative functional mutations using approach one (non-coding
543  annotation/IW-scoring and LINSIGHT algorithms).

544  SSMs from filtered and merged H3K27ac peaks were subjected to functional testing and
545  filtering using the IW-scoring algorithm?>. The workflow for the identification of novel
546  variants was utilised, excluding the use of GWAVA scores (for known variants). The median
547  IW-functional score for all mutations within each H3K27ac consensus region was calculated.
548  H3K27ac regions with a median IW-score of two or above were retained for further analysis.
549  In addition, IW-scores of NCMs residing outside (H3K27ac negative) the top candidate
550 H3K27ac consensus regions (~1kb) were obtained and compared to those of H3K27ac
551  associated NCMs. The top candidate regions were also validated using the LINSIGHT
552  algorithm. LINSIGHT scores were extracted as previously described®'. The scores based on
553  the likelihood of deleterious fitness consequences were extracted and used to compare
554  NCMs located inside our consensus peak regions and NCMs located nearby outside peak
555  regions {H3K27ac negative). An unpaired Wilcoxon signed rank test was used for all
556  statistical significance testing.

557

558 The identification of putative functional mutations using approach two (LARVA algorithm).
559 To identify recurrently mutated regions (within H3K27ac consensus peaks) more than
560 expected to nearby background regions, we used the algorithm LARVA®. This algorithm
561 considers sample-specific mutation rates, heterogeneity and replication timing, as
562  previously described®. NCMs that fell into blacklist regions were first removed, and the
563  remaining NCMs overlapped with our H3K27ac consensus regions. Three models were used
564  to calculate the mutation rate expected based on the stochastic background mutations. The
565  first and second model calculates the number of local mutations within a given annotated
566  region and estimates the probability of observing a mutation in each position. The p-value
567  was drawn from a (- distribution, taking the average mutation rate and the over-dispersion,
568  respectively into consideration. The third model considers the average replication timing
569  within each H3K27ac element, a confounding genomic feature that would affect the
570  background mutation rate®. For this, replication timing data from seven different cell lines
571  were retrieved from ENCODE and the average timing per region calculated across all cell

572  lines (HepG2, MCF- 7, GM12878, K562, BJ, IMR-90 and SK-N-SH GSE34399)"'*”. P-values were
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573  adjusted with the Benjamini-Hochberg method across all three models. We prioritised those
574  significant H3K27ac regions with a g value of <0.01.

575

576  Luciferase reporter assays

577  Sequences surrounding NCMs of interest (~2kb total) were amplified using specific primers
578 (Extended Data Table S4). Mutations were introduced with site-directed mutagenesis
579  (QuikChange II Site-Directed Mutagenesis Agilent) as per the manufacturer’s instructions
580 and checked using Sanger Sequencing and correct regions cloned into the pGL2 vector
581  upstream of the SV40 promoter. Thirty-five thousand cells (HEK293T and PANC-1) were
582  plated 24-hours before transfection in a 24-well plate with either 100ng WT or MUT pGL2
583  plasmids (Promega Cat E1631) and 5ng of Renilla luciferase control (Promega Cat E2231).
584  Luciferase activity was measured 48-hours post-transfection with the Dual-Luciferase
585  Reporter Assay System (Promega Cat E1910). Overall activity was calculated by taking a
586 ratio of the Firefly over the Renilla expression control vector. The background signal was
587  quantified using un-transfected cells and subtracted from readings. An unpaired t-test was
588  used to obtain statistical significance between wild-type (WT) and mutant (MUT) luciferase
589  activity.

590

591  STARR-seq library design and cloning of candidate cis-regions into the STARR-seq plasmid
592  The STARR-seq library consisted of 6,080 constructs representing 587 candidate mutations,
593  corresponding WT sequences and 210 controls. Constructs were represented in a 194bp
594  sequence context, flanked by a 15bp linker region for adaptor ligation and amplification
595  (Extended Data S4). One hundred and ten positive controls were selected from super-

596  enhancers previously reported in PDAC %

and additional regions from the super-enhancer
597 database (SEdb)'”. Putative negative controls were selected from gene deserts lacking
598  H3K27ac and H3K4mel marks in PDAC cell lines. A unique 6bp barcode was placed between
599 the 5 15bp linker and the candidate sequence to allow the differentiation between WT,
600 MUT and control (CTRL) sequences, resulting in a final construct of 230bp. To understand
601 the activity of mutations in different genomic contexts and maximise the chance of
602  capturing regulatory activity, each mutation was represented in the library five times,

603  shifting the genomic context of the sequences 10bp and 20bp left and right from the middle

604  of the construct, thereby representing the mutation in left_20bp, left 10bp, centre,
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605 right_10bp and right 20bp positions. The synthetic oligonucleotide library was amplified

606 and cloned as previously described**'*®

. Briefly, 5ng of the STARR-seq library was amplified,
607 and vector homology arms were added to either side of the construct. The second
608 generation hSTARR-seq ORI plasmid (Addgene: #99296) was digested with Sall-HF and Agel-
609  HF restriction enzymes, and the amplified library was cloned into the 3-UTR of the vector.
610 Ligations (X5 reactions) were transformed by electroporation into MegaX DH10B™ Ti1R
611  Electrocomp™ Cells (Invitrogen), and reactions pooled. The plasmid pool was extracted
612  using the ZymoPURE Giga prep kit according to the manufacturer’s instructions. To check
613  the quality and overall representation of the library, sequence inserts were amplified from
614  the STARR-seq plasmid using lllumina-compatible index primers (Extended Data S4). STARR-

615 seq libraries were sequenced using 2 x 150bp chemistry on an Illumina Novaseq 6000 by

616  Novogene Itd.
617 STARR-seq oligo-pool quality check

618  Paired end reads were merged into single amplicons using the USEARCH fastq_mergepairs

619 command'®

. Merged reads were aligned back to the expected oligo library using BWA MEM
620 with default parameters, penalising soft-clipping of alignment ends (-L80)'°. GATK
621  DepthofCoverage (version 3) was used to determine the sequencing depth per nucleotide

11 0Of the 6,082 constructs sequenced, 98.63% had a minimum coverage of

622  and construct
623 30X, with both WT and MUT sequences represented. To identify sequencing errors, the
624  Samtools ‘mpileup’ function was run on aligned reads and the oligo reference library to
625  obtain read counts for each nucleotide position'®. Subsequent mpile up files were run with

626  the VarScan2 package and ‘mpileup2cns’ parameters to identify sequencing errors'®>**2

627  Transfection, RNA isolation and cDNA synthesis

628  Two million PANC-1 cells were plated per 10cm dish (5 dishes per biological replicate) for 24
629  hours. Plasmid libraries (14ug per plate) were transfected using lipofectamine 3000 as per
630 manufacturer instructions. To monitor transfection efficiency, one 10cm dish was co-
631 transfected with 2.8ug of pmaxGFP plasmid (Lonza). Immediately post-transfection, the
632 interferon inhibitors C16 and BX-795 were added to each plate at a final concentration of
633 1pM (per inhibitor), as previously described™*'**. Cells were incubated at 37°c for 16 hours

634  before harvesting and counting. 1/10"™ of the cells were retained for plasmid DNA, and the
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635 remaining cells were for RNA extraction. For RNA, cells were homogenised with the Qiagen
636  Qiashredder and total RNA was extracted using the Qiagen mini-RNA extraction kit as per
637  the manufacturer’s instructions. Poly-(A)* RNA were isolated using Dynabeads™ oligo(dT)25
638 followed by DNase treatment with TurboDNase (Invitrogen). Samples were purified with

639  RNA cleanupXP beads as previously described'®®

. cDNA synthesis was carried out using
640  SuperScript lll and a gene-specific primer (Extended Data S4). cDNA was purified with 1.4X
641  AMpureXP beads (and for subsequent steps described below). A second-strand synthesis
642  reaction was followed by purification. Using a P7-specific primer (Extended Data Table S4)
643  UMI’s were added to cDNA (in 5 reactions) with Kapa 2x HiFi HotStart ReadyMix (Kapa
644  Biosystems). Reactions were pooled and purified. Junction PCR was used to amplify
645  reporter-specific transcripts for 16 cycles and thereafter purified. For the final library
646  preparation, lllumina sequencing primers were used in cDNA samples for 8-14 cycles
647  followed by purification with 1.2X of AMPure SPRI beads (Extended Data S4).

648 To obtain the DNA input library, STARR-seq plasmids were isolated from PANC-1 cells
649  using the Monarch plasmid miniprep kit, as per the manufacturer’s instructions. One
650 hundred nanograms of DNA were amplified using Illumina-compatible index primers as
651  described above. The DNA plasmid and RNA-derived libraries were sequenced using the
652  150-cycle paired-end V3 chemistry reagents and run on a Miseq.

653

654  Processing and analysis of STARR-seq screen

655  Paired-end reads were processed with CutAdapt to remove residual sequencing adaptors
656  and STARR-seq vector linkers'™. Reads were split based on the 6 bp barcodes WT, MUT and
657 CTRL into separate files. Barcodes were removed, and sequences aligned to the human
658 reference genome (hg19) using BWA MEM with default parameters'™®. Aligned BAM files
659  were converted to BAMPE format using the bedtools function ‘bamtobed’, and properly

Y6 The Bedtools ‘intersect’ function was

660 paired reads were extracted for further analysis
661 used to overlap reads with the expected design oligo library and obtain raw read counts.
662  Samples were deduplicated based on UMI’s with a custom-made Perl script. A minimum of
663  three unique UMI’s were required for a construct to be counted. Deduplicated counts were
664  normalised to the total number of reads in the sample and then multiplied by 1M to obtain

665  the number of transcripts per million. The relative abundance of each construct transcribed

666  was calculated by dividing the observed RNA output by the DNA input, indicating the
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667 relative activity of each WT, MUT and CTRL construct. To compare the transcriptional
668  activity of single oligos between WT vs MUT and negative vs positive CTRLs, an unpaired t-
669  test was used. To compare the transcriptional activity at the mutation level across the five
670  sliding windows (WT vs MUT), a Mann-Whitney U statistical test was used.

671

672  CRISPRi guide RNA design and cloning

673  For CRISPRI, guide RNAs were selected from the UCSC genome browser ‘CRISPR Tracks’,
674  selecting guides as close to mutations as possible with a minimum of two guides per cis-
675 region (Extended Data Table S4). Potential off-target effects were assessed using the MIT
676  specificity score, selecting guides with a score above 70%'". Homology arm sequences were
677 added to each guide to clone into the pU6-sgRNA EF1Alpha-puro-T2A-BFP expression
678  plasmid at the BstXI-Blpl3[ digested site. gRNA oligos were phosphorylated, annealed and
679 cloned into pU6-sgRNA EF1Alpha-puro-T2A-BFP expression plasmid (Addgene #60955) as
680  previously described M. Inserts were verified with Sanger sequencing.

681

682  Lentivirus transduction

683  Lentivirus was generated as previously described'®

. Briefly, 4M cells were plated in a 10cm
684  dish for 24-hours before transfecting HEK293T cells with 9ug of dCas9-mCherry-KRAB
685  (Addgene #60954), 4ug of packing plasmids psPAX.2 and 2ug of the envelope vector
686 pMD2.G diluted in OptiMEM medium and Trans-Ltl transfection reagent (Mirus). For the
687  generation of gRNA lentivirus, 9ug of each cloned guide were transfected, and the virus was
688  collected as described above. Twenty-four hours post-transfection, media was refreshed,
689 and viral supernatant was collected at 48- and 72-hours post-transfection. Viral
690 supernatants were centrifuged and filtered (45um). PANC-1 cells were transduced in a one-
691  to-one dilution of the virus and growth medium supplemented with polybrene (Sug/ml).
692  Three days post-transduction, mCherry positive cells were sorted by FACs, selecting the top
693  50% of positive cells based on the overall mCherry signal. PANC-1 dCa9/KRAB expressing
694  cells were plated in 24-well dishes for 24-hours before transducing cells with lentiviral
695  supernatant from multiple guides (as indicated in Fig. 3b). At 24-hours post-infection, the
696  medium was replaced, and cells were selected with 2ug/ml of puromycin for 72-hours. Cells
697  were harvested, and the effect on the expression of MIR100HG, UBASH3B and ARHGEF12

698  was assessed using gPCR and subsequent RNA-sequencing (Extended Data Table S4).
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699

700 qPCR

701  RNA was extracted and DNase | treated using the Qiagen mini-RNA extraction kit according
702  to manufacturer instructions. cDNA was synthesised from 1ug of DNase treated RNA using
703  the LunaScript® RT SuperMix (NEB), according to the manufacturer’s protocols. We
704  performed gPCR on a StepOneTM Real-Time PCR System with the Luna® Universal gPCR
705  Master Mix (NEB). Gene specific primers are outlined in Extended Data Table S4.

706

707  RNA-seq data generation and analysis

708 500 ng of total RNA was used to enrich mRNA using an oligo dT-based mRNA isolation
709  module (NEB Cat number E7490L). RNA sequencing libraries were prepared by
710 NEBNext Ultra Il Directional RNA Library Prep Kit for lllumina (NEB catalogue number
711  E7760S). Libraries were sequenced as 150 bp paired-end reads using a Novaseq 6000. After
712 the quality check and trimming, reads were aligned to the reference genome hg38 using
713 STAR v2.7.9a'", followed by the gene count quantification using RSEM'*° based on the
714  Ensembl gene annotation GRCh38.p13 Release 105. Genes with low mapped read across all
715  samples were removed. The normalised RPKM (Reads per kilobase of transcript per Million
716  reads mapped) expression values for all filtered genes across samples were subsequently
717  derived and used for the differential expression {DE) analysis. The DE analysis was
718  performed using Limma*®, comparing each CRISPRi perturbation group (G 5-6 and G 7-8) to
719  the dCa9/KRAB control group respectively. The significant DE genes were identified using a
720  threshold of FDR<0.05 and absolute log,FC>1. GSEA®® was then performed based on the
721  Limma output against gene sets curated in MSigDB hallmark®® and oncogenic signature gene
722 sets, to identify dysregulated gene activities in the CRISPRi group relative to the control.

723

724  Cell migration assays

725  Approximately four thousand dCas9/KRAB expressing PANC-1 cells transduced with
726  lentiviral gRNA combinations were seeded into 96-well plates. Cells were scratch wounded
727  using a 20ul pipette tip. Cells were washed with PBS to remove cell debris, and phase-
728  contrast images were taken at 0-, 24- and 48-hours at three specific wound sites per well
729  using a Leica microscope with an X4 objective. The ability of the cells to migrate and close

730 the wound area was evaluated by comparing the pixels of the open wound region at each
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731  time point using image J (MRI wound healing plugin)*®2. An unpaired t-test was used to
732  compare each treated time point to the negative control.

733

734  Data availability

735  The RNA-seq data for the CRISPRi perturbation of MIR100HG enhancer regions has been
736  deposited to the Gene Expression Omnibus under the accession number of GSE229499.
737  ChIP-seq data were available under GSE64560 and GSE99311. Mutation and expression data
738  of PDAC patients were downloaded from the ICGC data portal. The STARR-seq data and all
739  scripts to analyse the data can be requested and obtained by contacting the corresponding
740  authors.
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773  Figure legend

774

775  Fig. 1. Identification of functionally significant PDAC-CRE-associated NCMs and putative
776  CRE drivers in PDAC. a. Overview of our investigative strategy to detect significant CRE-
777  associated NCMs and CRE drivers b. The variant filtering of somatic mutations using the
778 ICGC PDAC Australia (AU) cohort as an example. The number of H3K27ac peaks and
779  mutations (in red) is listed at each filtering step. ¢. Putative CRE drivers and the most
780 proximal labelled genes identified by the two independent in-silico approaches: one
781  implementing the IW-Scoring algorithm and LINSIGHT validation, the other using the LARVA
782  model to identify CRE-regions with recurrent NCMs. d. Two gene set enrichment pathway
783  analyses of CRE-associated nearby genes identified by the two in-silico approaches. e.
784  Genome browser tracks (hg19) showing the histone modifications, CRE-associated NCMs in
785  the third intron of MIR1I00HG and FOXP1 selected for the Luciferase reporter assay
786  validation (grey shade). f. Boxplots depicting the luciferase reporter activity of selected
787  NCMs in the introns of M/R1I00HG and FOXP1 tested in HEK293 and PANC-1 cell lines. The
788  top panels are for NCMs in the M/IR1I00HG CRE, and the bottom panels are for NCMs in the
789 FOXP1 CRE. Data is representative of 3 technical replicates from 3-4 independent
790 experiments. The statistics was performed using the unpaired t-test, with the significance p-
791  value shown as, *<0.05, **<0.01, ***<0.001, ****<0.0001.

792
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793  Fig. 2. STARR-seq to validate the regulatory activity of candidate NCMs. a. STARR-seq NCM
794  candidate selection strategy (left) and oligo design (right). b. A scatter plot showing the
795  correlation of the STARR-seq regulatory activity between the two biological replicates.
796  STARR-seq activity was measured as the log, transformed transcript per million (TPM) of
797  RNA output over the DNA input. The correlation coefficient (R) and p-values are shown. c.
798  Violin plots depicting the mean log; transformed STARR-seq activity (TPM) of the two
799  replicates comparing the negative and positive controls, p***<0.001 (t-test). d. Volcano
800 plot showing the mean log, fold change vs. the log10 p-value (t-test) between MUT and WT
801 oligos for all constructs. Pink dots demonstrate candidates with a p-value <0.05. Selected
802 candidate CREs with a p-value <0.01 (t-test) are labelled with the closest proximal gene. e.
803 Oligos with the most significant changes compared to its WT counterpart (p<0.01). MUT
804  oligos with a higher activity than their WT sequence (gain of function) are in red bars, while
805 MUT oligos with a lower activity than the WT control are in green. Predicted motifs
806 identified by MotifbreakR are shown beside bars for mutations where relevant. Oligo names
807 M1-48 are listed in Extended Data S5. f. Heatmap showing the gene expression profile (GEP)
808 from the ICGC PDAC cohort (n=269) of predicted TFs putatively perturbed or gained in the
809  top significant NCMs {p <0.01). Normalised microarray expression values are shown in the
810 heatmap. g. Motif gain and loss (break) from two mutations in the MIRI00HR enhancer
811 cluster. The TF binding motifs for TFs NR6A1 and SOX10 are shown, and the affected
812  nucleotide is marked in a dotted line.

813

814  Fig. 3. CRISPRi for selected CREs with NCMs within the MIR100HG enhancer cluster. a.
815  Genome browser tracks (hg19) showing the overview of the cis-regulatory landscape at the
816  MIR100HG enhancer cluster {11g24.1) and the selected CRE’s for CRISPRi perturbation (grey
817  vertical bars). The first region (left) is within a significant CRE identified by the first in-silico
818 approach based on IW-Scoring, and two regions (centre right) within the significant CRE by
819 the second approach, based on LARVA. H3K27ac and H3K4me1/3, DNase | hypersensitive
820 sites (DHS), NCMs, guide RNA sites, microRNAs and the BLID gene are shown. b, Zoom-in of
821  the three targeted MIR100HG CRE regions. RTqPCR data showing fold change in MIR100HG,
822  UBASH3B (for region two G5-6) and ARHGEF12 (for region two G7-8) levels normalised to
823  Actin-B upon CRISPRi compared to no guide RNA control (dCAS9/KRAB). c. Principal

824  component analysis (PCA) of the RNA-seq samples among the three groups, dCas9/KRAB
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825  control, CRISPRi for region two (G 5-6) and region three (G 7-8). PC1 and PC2 were used for
826  the separation of samples. d. Scatter plot of the log, fold changes between G 5-6 and G 7-8
827  groups in comparison to the dCas9/KRAB control group for all profiled genes in the RNA-seq
828 data. The correlation coefficient and p-value are shown. e. The overlap of significantly
829  differentially expressed (DE) genes between G 5-6 and G 7-8 groups in comparison to the
830  control. The significance cut-off is shown, and numbers of shared and unique DE genes are
831 listed. f. The level of gene expression of MIR1I00HG among the dCas9/KRAB, G 5-6 and G 7-8
832  groups were derived from the RNA-seq data (n=3 in each group). Log, RPKM values were
833  used to measure the RNA expression. A t-test was performed between the groups, with the
834  significance p-value shown as *<0.05, **<0.01.

835

836  Fig. 4. CRISPRi for MIRI00HG CREs results in a downregulation of KRAS and TGF-B
837 pathways a. Significantly dysregulated pathways (false discovery rate, FDR<0.05) in the
838  CRISPRI perturbation groups G 5-6 and G 7-8 compared to the dCas9/KRAB control group.
839  Gene set enrichment analysis (GSEA) against the hallmark and oncogenic signature gene

%859 The normalised enrichment scores (NES) were used to create the

840  sets was performed
841  heatmap, with the positive NESs (in red) indicating the upregulation and negative NESs (in
842  blue) indicating the downregulation of activities in the CRISPRi perturbation groups
843  compared to the dCas9/KRAB control. b. GSEA plots for the TGF-B and KRAS signalling gene
844  sets for the CRISPRi perturbation G 5-6 and G 7-8 groups compared to the dCas9/KRAB
845  control group. The NES and FDR values for each analysis are shown. ¢. Wound healing assay
846  with G 5-6 and G 7-8 CRISPRi clones compared to the dCas9/KRAB control samples. 0, 24
847  and 48-hour time points are shown. d. Measurement of the relative wound closure in the
848  three groups, dCas9/KRAB control, region two (G 5-6) and region three (G 7-8) (images are a
849  representation of n=3 biological replicates in each group). An unpaired t-test was used to
850 compare perturbation clones vs. control groups. p-values *<0.05. ns, not significant.

851

852 Extended Data Fig. 1. Prioritised CREs using the first in silico approach. (a) Australia (AU)
853 and (b) Canada (CA) cohorts NCMs were submitted to the IW-scoring algorithm. Each dot
854  denotes a CRE, it's combined median IW-score, across all chromosomes. The horizontal

855  dotted line indicates the median IW-score threshold (p=0.1). The prioritised CREs with an

856  IW-median score =2 are labelled by the nearest proximal gene for each cohort.
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857

858 Extended Data Fig. 2. An independent validation of the top prioritised CREs using
859  LINSIGHT.

860  a. Boxplots of LINSIGHT scores in H3K27ac-associated NCMs (inside peaks) in comparison to
861 NCMs in nearby H3K27ac negative regions (outside peak) for the top 5 CREs identified by
862  the first approach. b. LINSIGHT scores and location of NCMs inside (green) vs outside (black)
863  H3K27ac peaks.

864

865 Extended Data Fig. 3. Identification of two putative CREs within the MIR1I00HG enhancer
866  cluster. The MIR100OHG enhancer cluster was the only shared element between the two in-
867  silico approaches. One CRE was identified by the first approach based on IW-scoring and
868  LINSIGHT validation, and the other was identified by the second approach based on the
869  LARVA algorithm. Genome browser tracks (hg19) of the H3K27ac peaks across the 7 PDAC
870 cell lines and 2 patient-derived organoids are shown. The MIR100HG-hosted microRNAs and
871  associated gene BLID are indicated.

872

873  Extended Data Fig. 4. First in silico approach prioritises a significant CRE in the third intron
874  of the TF FOXP1. Genome browser tracks (hg19) presenting the H3K27ac peaks across the 7
875 PDAC cell lines and 2 patient-derived organoids and the annotation of the merged
876  consensus peaks. The location of NCMs inside and outside H3K27ac consensus is indicated
877  foreach cohort.

878

879 Extended Data Fig. 5. Quality analysis of the cloned STARR-seq plasmid library. a. Length
880  distribution of cloned oligo constructs. The percentage of each length is shown. The oligo
881  construct library had 49% of oligos with the expected correct length, followed by 1- (28%)
882 and 2-bp (10%) deletions. b. Depiction of the number of construct synthesis errors across
883  the sequenced oligos. The error occurrence is shown along the base pair positions.

884

885 Extended Data Fig. 6. Comparison of regulatory activities derived between Luciferase
886  reporter assay and STARR-seq. Boxplots comparing the Luciferase reporter assay activity
887  and STARR-seq, demonstrating concurrent directional changes in enhancer activity at NCMs

888  profiled by both techniques.
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889

890 Extended Data Fig. 7. BNC1 associated enhancer cluster and significant NCMs from the
891 STARR-seq screen. a. Genome browser (hg19) of the H3K27ac peaks across the 7 PDAC cell
892 lines and 2 patient-derived organoids. The STARR-seq significant NCMs are indicated, with
893  the vast majority residing upstream of the BNC1 gene promoter. b. Boxplots showing the
894  expression of genes within 1Mb of the BNC1 CRE that have significant alterations (BTBD1,
895 FAMI103A1 and TM6SF1) and the nearest proximal gene (BNC1), comparing mutant (MUT)
896  and wildtype (WT) patient gene expression profiles (GEPs). The p-values were derived from
897  the Wilcoxon rank sum test. c. Motif gain example for a gain-of-function NCM proximal to
898 the TBX3 gene (chrl12:115067012:C>A). A binding motif for the TF JUN is created by this
899  mutation. All TF binding predictions were carried out using MotifBreakR. d. Motif break
900 example for one loss-of-function NCM located in the intron of FOXP1 (chr3:71123616:G>T).
901 The binding motif for ATF3 was disrupted by this mutation.

902

903 Extended Data Fig. 8. The interaction of MIR100HG CREs with distal genes revealed by the
904 4D genome. a. Genome browser (hg19) showing the H3K27ac signal for PANC-1 cells and
905 the putative loop between CRE-2 and the promoter of UBASH3B. Putative loops were
906  predicted using the interactions from the integrated method for predicting enhancer targets
907 (IM-PET) and 4D Genome in PANC-1 cells. b. Genome browser (hg19) showing the H3K27ac
908 signal for PANC-1 cells and the putative loop between CRE-3 and the promoter of
909 ARHGEF12.

910

911 Extended Data Fig. 9. Boxplots comparing the gene expression profiles of TGF-p related
912 genes FGF1, KDM6B, LIF, PIK3CD, PXDC1 and TAGLN between G 5-6 / G 7-8 CRISPRi
913  perturbations and the dCas9/KRAB control. The gene expression levels were measured by
914  RNA-seq data, in the unit of log2 RPKM values.

915

916 Extended Data Fig. 10. The mutational burden in the top five significant CREs identified in
917 the first approach in other common solid tumours. CREs overlaying genes FOXA1, FOXP1,
918  HOTAIR/HOXC genes, MIR1I00HG and NFEL2 were assessed for their mutational burden. a.

919  Barplot showing the number of samples across the selected cancer cohorts. b. Barplot of
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920 the total number of mutations within each cohort. c. Barplots showing the frequency of
921  NCMs identified within each CRE across each cancer cohort.

922

923

924  Extended Data S1. List of NCMs in significant CRE’s prioritised using the first in-silico
925  approach in the AU and CA cohorts respectively.

926 Extended Data S2. Table showing the comparison of NCMs inside the top five significant
927  CREs to NCMs located outside flanking H3K27ac negative regions. An unpaired Wilcoxon
928  signed rank test was used to obtain p values.

929 Extended Data S3. List of all significant CREs prioritised by the LARVA algorithm and those
930 significant CREs found to be in common between the AU and CA cohorts.

931 Extended Data S4. List of primers and CRISPRi guides.

932 Extended Data S5. List of top significant oligos as shown in Fig. 2e.

933
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