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ABSTRACT

In combination with cell intrinsic properties, interactions in the tumor microenvironment
modulate therapeutic response. We leveraged high-plex single-cell spatial transcriptomics to
dissect the remodeling of multicellular neighborhoods and cell–cell interactions in human
pancreatic cancer associated with specific malignant subtypes and neoadjuvant
chemotherapy/radiotherapy. We developed Spatially Constrained Optimal Transport Interaction
Analysis (SCOTIA), an optimal transport model with a cost function that includes both spatial
distance and ligand–receptor gene expression. Our results uncovered a marked change in
ligand–receptor interactions between cancer-associated fibroblasts and malignant cells in
response to treatment, which was supported by orthogonal datasets, including an ex vivo
tumoroid co-culture system. Overall, this study demonstrates that characterization of the tumor
microenvironment using high-plex single-cell spatial transcriptomics allows for identification of
molecular interactions that may play a role in the emergence of chemoresistance and establishes
a translational spatial biology paradigm that can be broadly applied to other malignancies,
diseases, and treatments.

MAIN

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies with a
five-year overall survival of approximately 11%.1 Even among patients with locoregional
disease, standard of care neoadjuvant chemotherapy with or without radiotherapy followed by
surgical resection yields modest outcomes.2 Indeed, treatment failure is pervasive, thought to be
driven largely by genetic and phenotypic heterogeneity as well as a highly desmoplastic and
immunosuppressive microenvironment.3,4 Since most patients enrolling in clinical trials have
received and progressed through standard of care cytotoxic treatment, identification of novel
therapeutic targets in the remodeled tumor microenvironment (TME) would benefit from a
deeper understanding of cell–cell interactions among distinct cell types.
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Recent applications of single-cell and spatial transcriptomic technologies to PDAC have
deepened our understanding of intratumoral heterogeneity, cell state plasticity, therapeutic
sensitivities, and neighborhood composition based on co-localization of malignant subtypes with
specific stromal and immune subpopulations.5–12 However, prior studies were unable to provide
high-plex molecular information while preserving in situ spatial relationships at single-cell
resolution, limiting detailed analyses of cell–cell interactions.6,7,12–15 Cell–cell interactions
orchestrate the development and function of tissues in normal physiology and disease. Signaling
among diverse cell types is often mediated by ligand–receptor (LR) protein interactions
involving both soluble and membrane-bound factors. In conjunction with cell intrinsic
properties, cell–cell interactions influence many cellular decisions ranging from lineage
differentiation to programmed cell death.16,17 Cell–cell interactions are also known to play an
important, yet incompletely understood, role in the TME, and we hypothesize that changes due
to treatment will be partially reflected by changes in LR interactions.

Several methods have been developed to infer cell–cell interactions from single-cell
RNA-sequencing (scRNA-seq) data.17,18 However, most of these models ignore intercellular
proximity in situ because scRNA-seq data lacks the spatial information necessary for
determining the positions of both sending and receiving cells. Moreover, methods that use
scRNA-seq to interrogate physically-interacting cells are unable to capture proximal cells that
interact via soluble factors rather than direct physical contact.15 Recent advances in spatial
transcriptomics have enabled subcellular resolution while profiling up to ~1,000 transcripts,19,20

offering an unprecedented ability to understand both the micro-organization and cell–cell
interactions that underpin the pre- and post-treatment TME in their in situ context.

To harness the latest advances in spatial transcriptomic technologies, we developed a
translational spatial biology paradigm that integrates high-plex and single-cell resolution spatial
transcriptomics with specialized computational methods and preclinical models to explore the
remodeled TME in response to standard-of-care therapies. We performed a detailed dissection of
the cell–cell interactions in the TME associated with neoadjuvant cytotoxic therapy by
performing spatial molecular imaging (SMI19) on formalin-fixed paraffin-embedded (FFPE)
treated and untreated primary resected human PDAC. Leveraging the single-cell spatial
resolution of SMI, we developed Spatially Constrained Optimal Transport Interaction Analysis
(SCOTIA), an optimal transport model with a cost function that considers both spatial distance
and LR gene expression. Our analysis highlighted cell-cell interactions associated with specific
malignant cell states as well as striking differences in LR interactions between cancer-associated
fibroblasts (CAFs) and malignant cells in the treated and untreated settings. We derived
additional support for these findings through multiple complementary datasets, including
single-nucleus RNA-seq (snRNA-seq) and digital spatial profiling (DSP) of matched samples
and an ex vivo tumoroid co-culture system. Overall, this study demonstrated that characterization
of the TME using high-plex single-cell spatial transcriptomics enables identification of
molecular interactions that may play a role in the emergence of chemoresistance.
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RESULTS

Spatial molecular imaging captures pancreatic cancer transcriptomics at single-cell
resolution

We dissected the spatial transcriptomic landscape of primary resected human PDAC tumors with
(n = 6) or without (n = 7) neoadjuvant chemotherapy and radiotherapy (CRT) at single-cell
resolution using spatial molecular imaging (SMI) (Fig. S1A) and a 960-plex gene panel, with (n
= 6) and without (n = 9) 30 custom probes (Fig. 1A; Fig. S1B; Table S1; Methods). Two tumors
were profiled by both the base 960-plex and the augmented 990-plex panels on consecutive
sections. Custom probes were selected to improve annotation of malignant subtypes previously
identified in PDAC (Methods).6 Neoadjuvant-treated tumors received multi-cycle
FOLFIRINOX chemotherapy followed by multi-fraction radiotherapy with concurrent
fluorouracil/capecitabine, with (n = 1) or without losartan (n = 5). Of the 13 independent tumors
in this study, matched single-nucleus RNA-sequencing (snRNA-seq) and digital spatial profiling
(DSP; Nanostring GeoMx) data was available for 8 and 10 samples, respectively (Fig. 1A).6

We examined hematoxylin and eosin (H&E)-stained formalin-fixed paraffin-embedded (FFPE)
sections (Fig. 1B) to guide selection of fields of view (FOVs; 984.96 µm x 662.04 µm) for SMI
on consecutive tissue sections (Fig. 1C). We spatially localized proteins (antibodies against
pan-cytokeratin, CD3, CD45, CD298/B2M, and DAPI) (Fig. 1D) and messenger RNA
transcripts (Fig. 1E) across 320 FOVs. We applied a morphology-based cell segmentation
algorithm19 to define cell boundaries (Fig. 1E inset), and removed cells with fewer than 60 total
transcripts (Methods). This yielded 753,133 high confidence single-cell profiles.

To characterize the spatial organization of different cell types in PDAC, we first annotated cells
using the Insitutype supervised clustering method21 and snRNA-seq data from our previous study
as a reference6 (Fig. 2A; Methods). More than 95% of cells were successfully annotated to a
distinct cell type, and the diversity of cell types in PDAC was captured, including malignant,
cancer-associated fibroblasts (CAFs), endothelial, pericyte, vascular smooth muscle, endocrine,
Schwann/nerve, myeloid, and lymphoid cells (Fig. 2B-D; Fig. S2A-B). The median number of
cells in untreated and treated FOVs was 2,718 and 1,645, respectively, consistent with cell death
secondary to cytotoxic treatment. There were significantly more malignant cells in untreated
compared to treated tumors (median of untreated FOVs: 1,152, treated FOVs: 269; p < 10-16,
two-sided Mann-Whitney U; Fig. S2C), but there was no significant difference across treatment
groups for non-malignant cells (median of untreated FOVs: 1,476, treated FOVs: 1,245; p =
2.18x10-1; Fig. S2C). Within non-malignant cells, only CAFs had significantly lower cell
proportions in untreated tumors compared to treated tumors (median of untreated FOVs: 0.559,
treated FOVs: 0.652; p = 1.70x10-8, adjusted two-sided Mann-Whitney U; Fig. S2D), supporting
previous reports that cytotoxic therapies may induce CAF proliferation and remodeling as well
as augment the underlying desmoplastic reaction.6,12,22 After further sub-clustering of CAFs and
malignant cells, we identified five subsets: inflammatory CAFs (iCAF), myofibroblastic CAFs
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(myCAF), classical (CLS) malignant cells, basal-like (BSL) malignant cells, and the recently
characterized neural-like progenitor (NRP) malignant subtype that exhibits stem-like and
neurodevelopmental features (Fig. 2B, E-G).6,23–25 The aggregate basal-like subtype applied in
this analysis could not be confidently resolved into distinct basaloid, squamoid, and
mesenchymal states6 due to limitations in the panel size. Consistent with prior work,6 CLS and
BSL were the two most common malignant subtypes, with NRP cells only constituting 6.23% of
all malignant cells.

We next asked whether cell type composition is predictive of whether a FOV was from an
untreated or treated sample. Using the cell type annotations (Fig. 2C-D), we trained a k nearest
neighbor classifier that used the densities of 11 cell types or subtypes (Fig. 2H). Holding out all
FOVs from one of the fifteen samples during training, an accuracy of 0.79 was achieved. Closer
inspection of the distribution of cell types between the two conditions revealed that although
neutrophils represent only 0.56% of cells, 92.5% were found in untreated samples. Concordantly,
we observed significantly lower expression of chemokines associated with neutrophil chemotaxis
(CXCL1/2/3/5/6/8) in both malignant cells (log2FC = -1.79, p < 10-16, two-sided Mann-Whitney
U; Fig. 2E) and CAFs (log2FC = -0.54, p = 2.60x10-3; Fig. S2E) in treated samples, indicating
that the lower abundance of neutrophils in treated samples may be partially attributed to reduced
recruitment.26 Circulating neutrophil counts in the peripheral blood do not significantly differ (p
= 0.282, Mann-Whitney U) between treated (2977±1300 neutrophils/µL) and untreated
(4974±3338 neutrophils/µL) patients, further supporting the interpretation that the lower
neutrophil density in treated samples is due to reduced neutrophil recruitment into the TME
rather than systemic neutrophil depletion.

While cell density is a global metric capturing the overall heterogeneity among FOVs, it does not
take advantage of spatial positions. To leverage this spatial information, we developed a novel
feature extraction strategy based on topological data analysis (Methods).27 Briefly, this approach
characterizes the length scales separating each different cell type and uses persistence images28 to
convert this information into a metric space suitable for machine learning. For each cell type we
obtained a one-dimensional persistence image with five features, and the images were combined
for a k nearest neighbors classifier. Using the same training and testing scheme as before, this
classifier was able to distinguish FOVs based on treatment with an accuracy of 0.84. This result
demonstrates that it is not only the cell density, but also the spatial distribution of cells that
differs between the treated and untreated samples. Together, these results support the conclusion
that our annotation pipeline captures the complexity and heterogeneity of PDAC.

Neighborhood analyses reveal low glandular heterogeneity and specific multicellular
associations

The previous analysis indicated a quantitative difference in overall tissue architecture as a
function of treatment, so we further investigated the subtype composition of malignant glands.
To extract individual glands, we separately applied DBSCAN29,30 to the pan-cytokeratin antibody
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channel and the spatial locations of malignant cells to obtain two independent clustering
assignments. We acquired a consensus between the results by merging distinct clusters in one
assignment that have at least one cell in the same cluster by the other assignment method (Fig.
3A; Fig. S3A; Methods). As expected, there were significantly fewer glands in the treated
samples (p < 10-16, two-sided Mann-Whitney U) (Fig. 3B-C). We then compared the number of
malignant cells and the proportion of malignant subtypes across glands (Fig. 3B-C). Glands in
treated samples were composed of fewer cells than those in untreated samples (p = 3.47x10-5,
two-sample K-S), while treated samples had a significantly greater proportion of singular
malignant cells than untreated samples (p = 2.04x10-12, two-sample K-S), suggesting that
malignant cells are less inclined to aggregate into glandular structures after treatment (Fig. 3C).
Most glands were predominantly composed of a single malignant subtype (65.9% of glands),
while others were composed of a mixture of subtypes (Fig. 3B; Methods). CLS-predominant
glands were significantly larger than BSL-predominant glands (log2FC = 1.427; p < 10-16,
two-sample K-S) and NRP-predominant glands (log2FC = 1.435; p = 1.05x10-13, two-sample
K-S) (Fig. 3D; Methods). Since most glands were dominated by one subtype, the proportion of
CLS and BSL cells in each gland was significantly anti-correlated (Spearman r = -0.678, p <
10-16).

Interestingly, the composition of malignant glands was more homogeneous than expected by
chance (p < 10-16, two-sample K-S; p < 0.001, permutation test) (Fig. 3E), with glands from
untreated samples being more homogeneous than those from treated samples (p = 2.32x10-14,
two-sample K-S) (Methods). Moreover, heterogeneous glands were more likely to be found in
the same FOV as other heterogeneous glands, while homogeneous glands tended to co-localize
with homogeneous glands (Fig. 3E). In addition to quantifying heterogeneity, we measured
gland interspersion (Methods), which provides information about the degree of subtype mixing
within a gland. Malignant glands were less interspersed than expected by chance (p < 10-16,
two-sample K-S; p < 0.001, permutation test), and we similarly observed that highly interspersed
glands tended to co-localize with other highly interspersed glands, and vice versa. These findings
were consistent at both the FOV and specimen level (Fig. 3E). Moreover, the organization of
malignant subtypes within highly heterogeneous glands was significantly less interspersed than
expected (p < 10-16, two-sample K-S; p < 0.001, permutation test) (Fig. S3B).

Next, we developed a model based on an exponential to measure the pairwise proximity of
different cell types (Fig. 3F-G; Methods). We applied this model to investigate a prior
low-resolution spatial association between NRP malignant cells and CD8 T cells.6 To quantify
the spatial relationship between CD8 T cells with each malignant subtype at single-cell
resolution, we measured the summed exponential-transformed distances between CD8 T cells
and malignant cells (Fig. 3F; Methods). We compared the observed spatial distributions to a null
distribution obtained by shuffling the malignant annotations within each FOV. This analysis
revealed that CD8 T cells were closer to NRP malignant cells than expected by chance (log2FC =
0.371±0.0200; p < 10-16, two-sample K-S; p < 0.001, permutation test), while CD8 T cells were
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located further from CLS malignant cells than expected (log2FC = -0.146±0.00551; p =
1.93x10-7, two-sample K-S; p < 0.001, permutation test) (Fig. 3F; Fig. S3C), which was
concordant with our prior findings.6 These associations were robust to the selection of
parameters for the exponential function as well as to the choice of malignant- versus CD8 T
cell-centric models (Fig. S3D-G; Methods). Additionally, we found that myCAFs (log2FC =
0.0432±0.00669; p < 10-16, two-sample K-S; p < 0.001, permutation test) were more proximal to
malignant cells than iCAFs (log2FC = -0.158±0.0114; p < 10-16, two-sample K-S; p < 0.001,
permutation test), recapitulating a prior observation (Fig. 3G; Fig. S3H).24

Identification of spatially defined CAF–malignant interactions enriched in treated tumors

We hypothesized that it is not only the cellular architecture, but also the cellular interactions that
differ between treatment conditions. To understand how ligand–receptor (LR) interactions vary
among cell types and conditions, we developed a computational method that integrates the
expression levels of ligands and receptors with spatial distance by optimal transport (OT; Fig.
4A; Methods). We refer to the method as Spatially Constrained Optimal Transport Interaction
Analysis (SCOTIA), which is freely available (see “Data and Code Availability” section in
Methods). SCOTIA first extracts spatial clusters of cells by type, and then excludes cluster pairs
that are far apart and hence less likely to interact. The cell–cell interaction strength is inferred by
minimizing the total transport cost between the adjacent source and target cell clusters (Fig. 4A).
Since the original OT algorithm only considers spatial distance as transport cost, we modified the
cost matrix to incorporate distance in gene expression space as well (Methods). Although
analyses at the level of malignant and CAF subtypes would be interesting, similar
ligand-receptor expression among subtypes (Fig. S4A) and low prevalence of certain subtypes
(Fig. 2G) compromises statistical power. Hence, we focused on analyzing interactions among
major cell types. Systematic investigation of cataloged LR pairs between any two cell types (Fig.
S4B-C; Methods) revealed that the largest difference in interaction strength was between CAFs
and malignant cells when comparing treated residual tumors to untreated tumors (Fig. 4B-C).
The strongest effect was observed for CAF ligands signaling to malignant cell receptors, and this
result was robust to the choice of cost function (Fig. S4D). These results suggest a
treatment-associated role for CAFs in modulating malignant cells and the tumor
microenvironment.13,31,32

Cytotoxic treatment alters ligand–receptor interactions between CAFs and malignant cells
To explore whether neoadjuvant therapy was associated with significant differences in
interactions between CAF ligands and malignant receptors, we identified 22 LR pairs that were
significantly enriched and 54 LR pairs that were significantly depleted in treated tumors
(adjusted p < 0.05, two-sided Mann-Whitney U; Fig. 5A-B; Fig. S5A-B). Visual inspection
confirmed the inferred differences in spatial and gene expression distance between LR pairs as a
function of treatment status (Fig. 5C). Treatment-enriched LR interactions (Fig. 5B) were
associated with chemotaxis, cytokine signaling, stromal/extracellular matrix (ECM) remodeling,
and immune modulation (Fig. S5C). Interestingly, several ligands, including TGFB1 and
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CXCL12, and receptors, including CXCR3, CXCR4, and ACKR3, have been associated with
therapeutic resistance.33–37 We also identified a treatment-associated enrichment in IL6 family
signaling and JAK/STAT activation (e.g., CLCF1–CNTFR, LIF–IL6ST, CSF2–CSF3R), which
has been linked to epithelial-to-mesenchymal transition (EMT), invasion, metastasis, immune
modulation, and resistance to chemotherapy and radiotherapy in numerous malignancies.38–47

On the other hand, systematic analysis of the depleted LR pairs revealed that one of the most
prominently represented groups (31 out of 54 pairs) corresponded to integrin-mediated responses
in malignant cells stimulated by collagen, angiogenic factors, or hematopoietic growth factors
from CAFs (Fig. 5A-B; Fig. S5C). Another depleted group of interactions (6 out of 54) was
composed of WNT signaling factors (i.e., WNT3A–FZD5, WNT5A–FZD5, WNT2–FZD5,
WNT5A–RYK, WNT5A–FZD6, WNT5A–FZD8) (Fig. 5A-B). We also found that treated
malignant cells expressed significantly higher levels of WNT ligands compared to untreated
malignant cells (log2FC = 0.61, p = 1.08x10-5, two-sided Mann-Whitney U), treated CAFs
(log2FC = 1.43, p < 10-16), and untreated CAFs (log2FC = 1.14, p < 10-16) (Fig. 5D). Also, the
expression of WNT ligands was lower in treated CAFs compared to untreated CAFs (log2FC =
-0.30, p = 2.48x10-6; Fig. 5D). Several interferon signaling pairs (e.g., IFNA1–IFNAR2,
IFNB1–IFNAR2, IFNG–IFNGR1), and cytokine interactions (e.g., IL15–IL15RA, IL10–IL10RB,
IL24–IL22RA1, and IL20–IL20RA), were also attenuated after treatment. These results suggest
that CAF–malignant cell interactions in untreated tumors exhibit high levels of paracrine Wnt
signaling, ECM-integrin crosstalk, interferon signaling, and specific subsets of cytokine
signaling that may be disrupted after chemotherapy and radiotherapy. Taken together, we have
demonstrated that SCOTIA integrates single-cell spatial and gene expression information to
identify LR candidates altered in response to therapy.

Ligand–receptor interactions supported by complementary analyses and co-culture model

To further substantiate the predicted treatment-modulated interactions, we first examined the
expression levels of these LR pairs in a prior snRNA-seq dataset.6 Reassuringly, the fold change
in expression levels was significantly correlated (Spearman r = 0.29, p = 2.09x10-7; two-sided
Fisher exact test: p = 1.34x10-4; two-sided Mann-Whitney U: p = 7.06x10-4), and several of the
most differential interactions, including CLCF1–CNTFR and WNT5A–FZD5, showed consistent
profiles across these datasets (Fig. 5E). Next, we investigated the correlation between receptor
gene expression and the expression levels of their downstream targets as predicted by the
KEGG48 and TRRUST49 databases (Methods). We observed positive and negative correlations
for activated (Spearman r = 0.28, p = 3.10x10-5; two-sided Fisher exact test: p = 1.65x10-2;
two-sided Mann-Whitney U: p = 2.05x10-2) and repressed (Spearman r = -0.18, p = 8.50x10-3;
two-sided Fisher exact test: p = 1.64x10-1; two-sided Mann-Whitney U: p = 1.37x10-1) target
genes (Fig. 5F). Additionally, we carried out this downstream target gene analysis for five other
abundant cell type pairs and found similar levels of correlation (Fig. S5D), suggesting that
SCOTIA can reliably infer changes in LR interactions. Furthermore, we ran SCOTIA using two
other LR databases, CellPhoneDB50 and CellChatDB,17 to assess the impact of different inference
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sources on the identified LR interactions. As expected, the resultant interactions were not
entirely overlapping, but nevertheless there was concordance in the biological signaling
pathways enriched and depleted with treatment across LR databases (Table S2).51

Next, we sought to determine whether a subset of the treatment-associated LR pairs identified by
SCOTIA would be recapitulated using a murine-derived malignant–CAF co-culture tumoroid
system (Fig. 6A; Methods). We subjected tumoroids to ex vivo chemotherapy (5-FU) and
separately performed snRNA-seq on treatment-naive and 5-FU treated tumoroids (Fig. 6A;
Methods). We obtained a total of 26,692 high-quality single nucleus profiles (16,200 untreated
and 10,492 treated cells), which we clustered into distinct populations of malignant cells and
CAFs (Fig. 6B). Consistent with the human SMI data analyzed by SCOTIA, LR pairs
upregulated in treated co-cultures were enriched in chemotaxis and other cell migration-related
features, whereas LR pairs highly expressed in untreated CAFs and malignant cells were related
to ECM function and the PI3K pathway (Fig. S5C, S6A). Indeed, the fold change of LR
expression in treated versus untreated tumoroids was significantly higher for treatment-enriched
LR pairs found in the human SMI cohort (p = 3.17x10-2, two-sided Mann-Whitney U; p =
1.01x10-1, two-sided Fisher exact test; Fig. 6C). Closer inspection revealed that several of the top
treatment-enriched LR pairs from the SMI analysis were also upregulated by treatment in the
tumoroid snRNA-seq dataset, including CLCF1–CNTFR, CSF2–CSF3R, and CCL19–CCRL2.
We also confirmed in both datasets that collagen-integrin interactions, such as COL1A1–ITGB1,
COL1A1–ITGA5, and COL3A1–ITGB1, were dampened in treated samples compared to
untreated samples. Overall, these findings demonstrate that the treatment-associated LR pairs we
identified using SMI are robust across species and experimental context.

IL-6 family signaling is enriched between inflammatory CAFs and specific malignant
subtypes
Among the CAF-malignant interactions enriched in treated samples for both the SMI and
co-culture datasets, we observed several members of the IL6 family, including CLCF1–CNTFR
and LIF–IL6ST. Prior studies established a distinction between IL-6high CAFs (iCAFs) and IL-6low

CAFs (myCAFs).24 Although we observed that iCAFs were further away from malignant cells
compared to myCAFs overall (Fig. 3G; Fig. S3H), stratification by malignant subtype revealed
that NRP malignant cells exhibited the opposite pattern, colocalizing with iCAFs (log2FC =
0.431 ± 0.0277; p < 10-16, two-sample K-S; p < 0.001, permutation test) more than myCAFs (Fig.
7A; Fig. S7A). In addition to NRP malignant cells, we also observed that iCAFs were
preferentially localizing with BSL malignant cells, albeit to a lesser degree (log2FC =
0.0949±0.0102; p < 10-16, two-sample K-S; p < 0.001, permutation test) (Fig. 7A; Fig. S7A).
iCAFs were significantly enriched in treated compared to untreated samples in both the SMI
(log2FC = 1.10, p < 10-16, two-sided Mann-Whitney U) and snRNA-seq datasets (log2FC = 1.28,
p = 3.80x10-5, two-sided Mann-Whitney U) (Fig. S7B).6,12

Prior studies have identified an association between IL6-producing iCAFs24 and EMT,13,39,40

which is partially captured by the basal-like subtype.23,52 We examined our previously published
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whole-transcriptome digital spatial profiling (DSP) data on an overlapping cohort of primary
tumors, wherein we were able to leverage the whole-transcriptome coverage to sub-classify the
‘basal-like’ state into distinct basaloid, squamoid, and mesenchymal (MES) programs at the
tradeoff of multicellular spatial resolution.6 This DSP analysis revealed that MES (Spearman r =
0.615, p < 10-16) and NRP (Spearman r = 0.283, p = 7.66x10-5) malignant cells were more
spatially co-localized with iCAFs than other malignant subtypes (Fig. S7C). Concordant with
prior literature,24,53 iCAFs demonstrate higher expression of IL6 family ligands compared to
myCAFs (log2FC = 0.442; p < 10-16, two-sided Mann-Whitney U) (Fig. 7B; Fig. S7D), while
malignant cells with high expression of IL6 family receptors were enriched for the NRP program
(log2FC = 1.31; p = 7.71x10-5, two-sided Mann-Whitney U) (Fig. 7C). Combined with the
SCOTIA results that show a post-treatment enrichment in IL6 family signaling between CAFs
and cancer cells (Fig. 5A-C), these findings suggest that iCAFs may interact with NRP and
MES/BSL cancer cells through IL6 family ligand–receptor signaling pathways in a manner that
is enhanced in response to cytotoxic therapy.

Both subunits of the IL6 receptor complex, IL6Rα (IL6R) and the signal transducing subunit
gp130 (IL6ST), can occur in transmembrane and soluble forms. Classical signaling via IL6
binding to membrane-bound IL6Rα and trans-signaling via IL6 forming a complex with soluble
IL6Rα and binding to membrane-bound gp130 can have distinct biological effects; the ratio of
IL6ST to IL6R expression determines whether classical or trans-signaling is dominant.54 IL6
trans-signaling has faster kinetics and stronger transduction of downstream JAK/STAT pathways
than classical signaling,54 which is supported in our data by a significant positive correlation
between JAK/STAT pathway expression versus the expression ratio of IL6ST to the sum of
IL6ST and IL6R (Spearman r = 0.409, p = 3.96x10-14) (Fig. 7D; Fig. S7E). Compared to classical
signaling, IL6 trans-signaling also leads to greater induced expression of the transcription factor
GLIS3, which is thought to be a key regulator of the NRP malignant state.55,56 In concordance, we
observed a positive correlation between GLIS3 expression, which we included in the augmented
panel, and the ratio of IL6ST to the sum of IL6ST and IL6R expression in our SMI data
(Spearman r = 0.231, p = 3.76x10-3) (Fig. 7E). Furthermore, IL6ST was most highly expressed in
NRP cells, while IL6R was predominantly expressed by BSL cells (Fig. 7F-G; Fig. S7F).

DISCUSSION

In this study, we profiled a cohort of 13 independent neoadjuvant-treated and treatment-naive
human pancreatic tumors using high-plex single-cell spatial transcriptomics with a subset
featuring matched single-nucleus RNA-sequencing (snRNA-seq) and digital spatial profiling
(DSP) data. Combining this unique resource of matched SMI, snRNA-seq and DSP data with a
complementary co-culture tumoroid model enabled us to elucidate treatment-associated
remodeling of tissue organization and cell–cell interactions in pancreatic cancer. Specifically, we
uncovered spatial associations among distinct subtypes of malignant, CAF, and immune cells,
revealing differences in cellular architecture between the treated and untreated contexts (Fig. 2H,
3; Fig. S3). We observed a spectrum of intraglandular heterogeneity and interspersion with

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.28.546848doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546848
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

respect to malignant subtypes across patient tumors and individual glands. The predominance of
homogeneous glands is consistent with the notion that individual glands are clonal with
relatively stable transcriptional states (Fig. 3; Fig. S3).57,58 However, there was also a substantial
number of glands with high intraglandular heterogeneity and interspersion, suggesting that
epigenetic differences may exist within the same gland and even among adjacent malignant cells
(Fig. 3; Fig. S3). Cell type composition analysis uncovered lower abundance of neutrophils in
treated specimens (Fig. 2H). Lower levels of CXCL1-3,5,6,8 expression in treated CAFs and
malignant cells (Fig. S2E) without an associated difference in peripheral neutrophil abundance
suggest that chemoradiation therapy may reduce recruitment of neutrophilic immune cells to the
tumor.59

Existing methods utilizing optimal transport theory to evaluate cell–cell interactions consider
potential cell pairs even if they are spatially far apart60,61 or depend on a user-defined distance
constraint to capture the effect range of ligand diffusivity.62 To overcome this limitation, we
developed Spatially Constrained Optimal Transport Interaction Analysis (SCOTIA), which
extracts spatially adjacent source and target cell clusters, thereby excluding cells that are less
likely to communicate. Using SCOTIA, we assessed the strength of interactions across cell type
pairs in treated versus treatment-naive tumors and discovered that CAF–malignant interactions
were the most enriched in the treated group (Fig. 4; Fig. S4). As the most abundant stromal cells
in the PDAC TME, CAFs have been shown to promote resistance to chemotherapy and
radiotherapy and therefore represent promising therapeutic targets.31,32,63 However,
treatment-associated signaling between CAFs and malignant cells are not well understood.

Differential expression analysis revealed that more LR pairs were significantly enriched in
untreated specimens (n = 54) compared to treated specimens (n = 22), suggesting there is a
baseline level of CAF–malignant cell crosstalk that is disrupted with cytotoxic therapy (Fig. 5;
Fig. S5). This finding was supported by several lines of evidence as we observed correlated
expression of targets downstream of candidate receptors (Fig. 5F), and similar expression
changes in both human snRNA-seq (Fig. 5E) and murine tumoroid co-cultures (Fig. 6). A subset
of these candidate interactions likely contributes to therapeutic resistance; the underlying
mechanisms and translational potential of disrupting such pro-tumorigenic signaling warrants
further investigation.

A range of biological pathways were found to be diminished in the treated specimens, including
ECM-integrin crosstalk, WNT signaling, interferon signaling (type I and II), and specific
cytokine signaling pathways (Fig. S5C). Since collagen signaling regulates a diverse set of
cellular processes, including cell adhesion, migration, survival and proliferation,64 our results
suggest that these processes are likely important for the development and progression of
pancreatic tumors, and that their disruption is a consequence of cytotoxic treatment. In treated
samples, CAF expression of WNT ligands and WNT signaling from CAFs to malignant cells
was significantly lower while malignant cell expression of WNT ligands was significantly higher
(Fig. 5D), consistent with cancer cell acquisition of non-genetic WNT niche independence
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previously associated with PDAC progression.65 These results suggest that autocrine WNT
signaling in malignant cells may facilitate escape from cytotoxic therapy-induced cell death.66,67

Among the LR pairs enriched in the treated group, several ligands (e.g., FN1, CXCL12, and
TGFB1) and receptors (e.g., CXCR3, CXCR4, ACKR3) have been linked to chemoresistance
and cancer progression.33–35,37,68,69 Several predicted LR pairs that involve TNF, chemokine, and
integrin family receptors are non-canonical and not yet fully elucidated. Interestingly, several
CAF ligands such as VTN, FN1, and CSF2 were enriched in both untreated and treated
specimens but were paired with distinct receptors in these disparate contexts, suggesting that
ligands may switch signaling partners because of treatment (Fig. 5A-B). In the untreated
samples, the receptors paired with these shared ligands were integrins, suggesting a role in
cell-matrix and cell-cell adhesion. By contrast, the paired receptors in treated specimens were the
TNF family receptor TNFRSF11B (osteoprotegerin) and cytokine receptor CSF3R, which
potentially inhibit TRAIL-activated apoptosis and activate downstream JAK/STAT, NF-κB, and
WNT/β-catenin signaling linked to EMT, increased cancer cell survival and invasion, and
metastasis.70,71

In agreement with prior studies, we observed an increase in iCAF abundance at the expense of
myCAFs in treated samples (Fig. 2G; Fig. S7B).6,12 Inflammatory CAFs express higher levels of
IL6 family cytokines (Fig. 7B; Fig. S7D), which are associated with EMT, immune evasion,
chemo-resistance, and reduced survival.24,38 While myCAFs were in close proximity to cancer
cells overall (Fig. 3G), iCAFs co-localized with NRP and BSL/MES cancer cells specifically
and NRP cancer cells also co-localized with CD8 T cells (Fig. 3F, 7A; Fig. S7A, C). These
findings were consistent with our prior identification of a treatment-enriched spatial
neighborhood in PDAC including NRP and MES cancer cells, iCAFs, and CD8 T cells,6 which
was discovered using whole-transcriptome DSP. It is important to note that in this study, we
preferentially selected samples with poor response to neoadjuvant treatment to provide adequate
amounts of residual tumor to profile using SMI but this may also contribute to the lack of NRP
enrichment in treated samples (Fig. 2G).6

The most consistent treatment-enriched candidate LR interaction between CAFs and cancer cells
across the SMI, snRNA-seq, and tumoroid co-culture datasets was CLCF1–CNTFR, a member of
the IL6 cytokine family (Fig. 5-6). Moreover, the overall enrichment of chemokine signaling
between CAFs and malignant cells (Fig. 5; Fig. S5) suggests strengthened intercellular tropism
in the post-treatment context. While CAF-derived IL6 and downstream JAK/STAT and MAPK
activation has been linked to induction of a mesenchymal cancer cell phenotype in several
malignancies including pancreatic cancer13,39–41 as well as neuroendocrine differentiation in
prostate cancer,72 an association with the neural-like progenitor (NRP) malignant cell state has
not been previously established. Our SMI data revealed that malignant cells with high expression
of IL6 family receptors were enriched for the NRP state (Fig. 7C). Moreover, IL6 signaling
occurs in two forms: classical signaling describes IL6 binding to the membrane-bound receptor
complex consisting of IL6Rα (IL6R) and co-receptor gp130 (IL6ST), whereas trans-signaling
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entails IL6 forming a complex with soluble IL6R, which then binds to membranous gp130 to
induce stronger signaling through the JAK/STAT and MAPK pathways.73 We found that
JAK/STAT pathway activation was positively correlated with the expression ratio of IL6ST to the
sum of IL6ST and IL6R (Fig. 7D), which is consistent with prior studies demonstrating that the
ratio of gp130 (IL6ST) to IL6Rα (IL6R) expression governs the extent of trans- versus classical
signaling.54 Notably, we discovered a significant monotonic increase in the expression ratio of
IL6ST to the sum of IL6ST and IL6R from CLS to BSL to NRP malignant cells. Indeed, IL6
classical and trans-signaling induced a 20% and 65% increase, respectively, in expression of
GLIS3, a key transcription factor underlying the NRP cell state,56 in human airway smooth
muscle cells.55 Taken together, these results suggest that IL6 family signaling is an important
mechanism of interaction between iCAFs and treatment-resistant cancer cells. Heterogeneous
expression of IL6R and IL6ST on cancer cells may drive the balance of classical and
trans-signaling to modulate the strength of JAK/STAT and MAPK pathway activation and cancer
cell transition towards the BSL/MES or NRP states, which would have important therapeutic
ramifications.

This study has several limitations. First, the number of specimens in both the treated and
untreated cohorts are relatively small, which somewhat limits the power of the subsequent
analyses. Second, lack of pre- and post-treatment matching precluded us from directly inferring
the effects of treatment. Third, while the spatial molecular imaging target panel size was large
compared to similar contemporary methods, the lack of whole transcriptome coverage restricted
the fidelity of cell typing and cell state identification. Fourth, pairwise ligand–receptor
interactions likely capture much of but not all the influences a multicellular neighborhood has on
an individual cell state. A relatively large number of treatment-associated ligand–receptor pairs
were non-canonical, which warrants additional exploration. Future work on cell–cell interactions
should extend upon the SCOTIA method to include multicellular influences on an individual cell
of interest and model non-ligand–receptor interactions such as those of a mechanical, metabolic,
electrical, or junctional nature.

In this study, we integrated novel experimental and computational approaches to enable
high-resolution, spatially-guided discovery of treatment-associated remodeling in the pancreatic
cancer microenvironment. Further studies are warranted to dissect the specific roles of candidate
cell–cell interactions in promoting disease progression and resistance to cytotoxic therapy, and
ultimately guide novel therapeutic development. This work provides a broad translational
paradigm that leverages single-cell spatial transcriptomics to better understand baseline
multicellular neighborhoods/interactions and remodeling of these dynamic relationships under
perturbative selection pressure.

METHODS

Ethics
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All patients in this study were consented without compensation to excess tissue biobank protocol
2003P001289 (principal investigator: C.F.C.; co-investigator: W.L.H.) and used in this research
under secondary research protocol 2022P001264 (principal investigator: W.L.H.), which were
reviewed and approved by the Massachusetts General Hospital Institutional Review Board. This
study was compliant with all relevant ethical regulations.

Human tumor specimens

Patients selected for inclusion in this study had nonmetastatic pancreatic ductal adenocarcinoma
(PDAC) and underwent surgical resection of the primary tumor with or without prior
neoadjuvant chemotherapy and radiotherapy (CRT). Most treated patients received several cycles
of FOLFIRINOX chemotherapy followed by multi-fraction conformal radiotherapy with
concurrent capecitabine or fluorouracil. One patient received additional treatment with losartan
(angiotensin II receptor type 1 antagonist; CRTL). Radiotherapy regimens included 30 Gy in 10
fractions, 50.4 Gy in 28 fractions, and stereotactic body radiotherapy 36 Gy in 6 fractions.
Serially sectioned formalin-fixed, paraffin-embedded (FFPE) sections (5 µm) of patient-derived
primary PDAC tumors were prepared under RNase-free conditions. Sections were attached to the
non-charged side of Superfrost Plus Micro Slides (VWR).

Custom probe selection

We designed 30 custom probes to target malignant subtypes described in Hwang et al.6 For each
malignant subtype, we developed a backward stepwise regression model (leaps v3.1, R v4.1.0) to
determine gene sets with the highest predictive value and excluded genes with higher Pearson
correlation with off-target malignant subtypes. We leveraged a combination of the regression
model results, well-known transcription factors and canonical marker genes to select the 30
target genes.6,23,52,56

Sample preparation for spatial molecular imaging

To prepare the tissue samples for spatial molecular imaging on a pre-commercial SMI platform
(NanoString Technologies Inc, Seattle, WA), slides with PDAC sections were baked overnight at
60°C to ensure FFPE tissue adherence to the glass slides. Samples underwent deparaffinization,
proteinase K (3 μg ml–1; ThermoFisher) digestion, and heat-induced epitope retrieval (HEIR)
procedures to expose target RNAs and epitopes using the Leica Bond RX system. Proteinase K
incubation at 40°C for 30 min and HEIR at 100°C for 15 min in Leica buffer ER1 conditions
were used. The PDAC samples were rinsed with diethyl pyrocarbonate (DEPC)-treated water
(DEPC H2O) twice before incubating with 1:1000 diluted fiducials (Bangs Laboratory) in 2X
SSCT (2X saline sodium citrate, 0.001% Tween 20) solution for 5 min at room temperature.
Excess fiducials were removed by rinsing the samples with 1X phosphate buffered saline (PBS),
followed by fixation with 10% neutral buffered formalin (NBF) for 5 min at room temperature.
Fixed samples were rinsed with Tris-glycine buffer (0.1M glycine, 0.1M Tris-base in DEPC
H2O) and 1X PBS for 5 min each before being blocked using 100 mM N-succinimidyl acetate
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(NHS-acetate, ThermoFisher) in NHS-acetate buffer (0.1M NaP, 0.1% Tween pH 8 in DEPC
H2O) for 15 min at room temperature. Prepared samples were rinsed with 2X saline sodium
citrate (SSC) for 5 min and then a Adhesive SecureSeal Hybridization Chamber (Grace
Bio-Labs) was placed to cover the samples.

RNA ISH probes (960-plex for the base panel, 30 additional probes for the custom panel, and 19
negative control probes) were denatured at 95°C for 2 min and then placed on ice before
preparing the ISH probe mix (1 nM ISH probes, 1X Buffer R, 0.1 U μl–1 SUPERaseIn™ in
DEPC H2O). The ISH probe mix was pipetted into the hybridization chamber and the chamber
was sealed using adhesive tape. Hybridization was performed at 37°C overnight to prevent
evaporation. After the overnight hybridization, samples were washed twice with 50% formamide
(VWR) in 2X SSC at 37°C for 25 min, rinsed twice with 2X SSC for 2 min at room temperature,
and then blocked with 100 mM NHS-acetate for 15 min. After blocking, the samples were
washed twice using 2X SSC for 2 min at room temperature. Custom-made slide covers were
attached to the sample slide to form a flow cell.

Data acquisition for spatial molecular imaging

Target RNA readout on the SMI instrument was performed, following published protocols.19 In
brief, the assembled flow cell was loaded onto the SMI instrument and the tumor samples were
washed with a reporter wash buffer to rinse the samples and remove air bubbles. The reporter
wash buffer consisted of 1X SSPE, 0.5% Tween 20, 0.1 U μl–1 SUPERase•In RNase Inhibitor (20
U μl–1), 0.1% Proclin 950 and DEPC H2O. Once the flow cell was loaded onto the instrument,
the entire flow cell was scanned and 15-25 fields of view (FOVs) were placed on each slide for
RNA readout. The first RNA readout cycle was initiated by flowing 100 µl of reporter pool 1
into the flow cell and incubating for 15 min. After incubation, 1 ml of reporter wash buffer was
passed across the flow cell to wash out the unbound reporter probes, followed by replacing
reporter wash buffer with imaging buffer (80 mM glucose, 0.6 U ml–1 pyranose oxidase from
Coriolus sp., 18 U ml–1 catalase from bovine liver, 1:1,000 Proclin 950, 500 mM Tris-HCl buffer
pH 7.5, 150 mM sodium chloride and 0.1% Tween 20 in DEPC H2O) prior to imaging. Eight to
nine Z-stack images (0.8 um step size) of each FOV were acquired and then fluorophores on the
reporter probes were UV cleaved and washed off with strip wash buffer (0.0033× SSPE, 0.5%
Tween 20 and 1:1000 Proclin 950). This fluidic and imaging procedure was then repeated for the
remaining 15 reporter pools, and the 16 cycles of reporter hybridization-imaging were repeated 8
times to increase RNA detection sensitivity.

After 9 complete rounds of RNA readout, PDAC samples were incubated with a
fluorophore-conjugated antibody cocktail against CD298 (Abcam, EP1845Y), B2M (Abcam,
EP2978Y), PanCK (Novus, AE-1/AE-3), CD45 (Novus, 2B11 + PD7/26), and CD3 (Origene,
UMAB54) proteins and DAPI in the same instrument for 1 hr. Eight to nine Z-stack images for 5
channels (5 antibodies and DAPI) were captured after unbound antibodies and DAPI were
washed with reporter washing buffer and the flow cell was filled with imaging buffer.
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Image processing and cell segmentation

Raw image processing and feature extraction were performed using an in-house SMI data
processing pipeline19 which includes registration, feature detection, and localization. 3D rigid
image registration was made using fiducials embedded in the samples matched with the fixed
image reference established at the beginning of the SMI run to correct for any shifts. Secondly,
the RNA image analysis algorithm was used to identify reporter signature locations in the x, y,
and z axes along with the associated confidence. The reporter signature locations and features
were collated into a single list. Lastly, the xyz location information of individual target transcripts
was extracted and recorded in a table by a secondary analysis algorithm, as described in He et
al.19

The Z-stack images of nuclear (DAPI) and CD298/B2M (surface) staining were used for
drawing cell boundaries on the samples. A cell segmentation pipeline using a machine learning
algorithm74,75 was used to accurately assign transcripts to cell locations and subcellular
compartments. The transcript profile of individual cells was generated by combining target
transcript location and cell segmentation boundaries. Cells with fewer than 60 total transcripts
were omitted from downstream analysis. Expression profiles were normalized for each cell by
dividing its raw count vector by total counts and multiplied by the scale factor 10,000 before log
transformation.

Cell type annotations

Cell type identification was performed with a supervised clustering method, Insitutype.21

High-confidence malignant and non-malignant cells were first selected as anchors based on
protein (PanCK) and expression (KRT5, KRT7, KRT8, KRT18, KRT19, and KRT20) of
cytokeratin marker genes. Cells with high levels of cytokeratin protein and RNA expression were
defined as malignant anchors, whereas cells exhibiting low expression levels were selected as
non-malignant anchors. Anchor cells were further filtered by removing outliers not near cluster
centroids based on K-means clustering. The averaged gene profiles of anchor cells were used as
references for Insitutype to classify all cells into malignant and non-malignant categories. Batch
correction was performed on all non-malignant cells by treating each tissue slide as a batch using
ComBat.76 Subsequently, corrected non-malignant anchor cells were classified into cell types
using reference profiles derived from a whole transcriptome snRNA-seq dataset consisting of 43
primary human PDAC specimens.6 To obtain reference profiles for each cell type, we calculated
the average gene expression of cells classified as a given type in the snRNA-seq dataset. A
SMI-derived reference profile was established on those anchor cells by averaging gene
expression within each cell type that was subsequently used for assigning all non-malignant cells
into known cell types. Clustered cells were displayed using the runUMAP function in Giotto.77

To further subtype CAFs and malignant cells, representative genes for some subtypes6,24,25 were
selected for supervised sub-clustering (Fig. 2B). To leverage the 30 custom probes that were
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designed for annotating malignant subtypes, we first performed supervised clustering on the
subset of samples (n = 6) that were profiled with these additional custom probes (990-plex panel)
to generate modified reference profiles for the subtypes of interest, which we then applied to
cluster the remaining samples (n = 9; 960-plex panel), including two samples that were analyzed
by both panels.

Malignant gland extraction and classification

To extract malignant glands, we aggregated two independent clustering assignments that were
determined using Density-Based Spatial Clustering of Applications with Noise (DBSCAN)29,30

algorithm (from the sklearn package in Python) on the pan-cytokeratin (PanCK) protein antibody
channel and on the spatial locations of malignant cells.

When performing DBSCAN on the PanCK protein antibody channel (whose pixels were
downsampled by a factor of 19 for reduced computing time), we set the maximum distance
between neighboring PanCK-positive pixels to 60 pixels (10.8 µm) and the minimum number of
PanCK-positive pixels in a neighborhood to 2. We leveraged the immunofluorescence (IF)-based
clustering results to determine cluster assignments for each malignant cell by identifying the
nearest PanCK-positive pixel. If the nearest PanCK-positive pixel was within 180 µm, then we
labeled that cell with the same cluster as the positive pixel. Otherwise, the malignant cell was not
assigned to any malignant gland cluster. Four out of 257,767 malignant cells (0.00155%) were
not assigned to a gland using the IF-based approach.

When performing DBSCAN on the locations of malignant cells as defined by spatial
transcriptomics, we set the maximum distance between neighboring cells to 20 pixels (3.6 µm)
and the minimum number of cells in a neighborhood to 2. Some malignant cells were not
assigned to any glandular cluster. Seven out of 257,767 malignant cells (0.00272%) were not
assigned to a gland using the spatial location-based approach.

We then acquired a consensus between the two clustering assignments. If two distinct clusters in
one clustering method have at least one cell in the same cluster by the other method, then these
two clusters are merged. The parameters in the two individual approaches were chosen to
over-cluster the malignant cells, which was then compensated for using this consensus method.
Extracted malignant glands with less than 5 cells were disbanded, yielding a total of 9,017
malignant cells (3.50%) that were not assigned to a gland.

Only extracted malignant glands with less than 500 cells were included in downstream glandular
analyses. We classified a malignant gland as predominantly consisting of a certain malignant
subtype if one of the subtypes comprised at least 70% of the cells in the gland. To identify
malignant gland size differences among subtypes, we shuffled the subtype annotations across all
malignant cells within each FOV to generate a null distribution. We performed 1,000
permutation tests to obtain the significance. When comparing average gland sizes between
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malignant subtypes, we reported significance values determined by the two-sided
Kolmogorov-Smirnov test.

Glandular subtype heterogeneity and interspersion

The subtype heterogeneity Hg of a malignant gland g was computed as:

(1)𝐻
𝑔
= 1 − 𝑛

𝑛−1 *
𝑖=1

𝑛

∑ 𝑝
𝑔,𝑖
− 1

𝑛( )2

where pg,i is the proportion of each subtype i in gland g and n is the number of subtypes (n = 3 in
this study). We measured the interspersion Ig of subtypes within a malignant gland g to quantify
the difference between glands composed of a mostly alternating pattern of subtypes and glands
composed of larger clusters of the same subtype:

(2)𝐼
𝑔
= 𝑚𝑒𝑎𝑛(𝐻

𝑗
)

For each malignant cell in the gland, we first computed the subtype heterogeneity Hjof the cell of
interest and its neighborhood j, which we defined to be any malignant cell within 10 𝜇m in the
same gland. We then determined the interspersion Ig for each malignant gland g by computing
the mean subtype heterogeneity across cells that have at least one neighbor.

We performed 1,000 permutation tests to determine whether the observed heterogeneity and
interspersion values differed significantly from the null distribution. The null distribution was
established by shuffling malignant subtype annotations within each FOV and recomputing the
heterogeneity and interspersion of each gland. When comparing the observed and expected
distributions, we reported significance values determined by the two-sided Kolmogorov-Smirnov
test.

Glands were classified as having high heterogeneity and/or interspersion if their heterogeneity
and/or interspersion scores were in the top quartile of glands across all non-permuted samples.
Similarly, glands were classified as having low heterogeneity and/or interspersion if their scores
were in the bottom quartile.

Exponential model

We developed an exponential-based model to compare the pairwise proximity of different cell
types and subtypes. The exponential decay captured by this model follows the assumption that
the interaction between two cells rapidly declines as their pairwise distance increases. To
compute the proximity between cell types A and B, we first measured the distances between each
cell type pair within each FOV, and we then transformed the measured distances using the
following exponential function:
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(3)𝐺
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where da,b is the distance between cells a and b (of types A and B, respectively) and r is the decay
radius in 𝜇m. For most analyses, we presented results using a decay radius of r = 50 𝜇m, but our
findings were robust across varying r. For each cell a, we summed the exponential-transformed
distance measurements across all cells b in the same FOV. This yielded an observed distribution
of summed transformed values that we compared to the expected null distribution.

We performed 1,000 permutations to generate a null distribution, which was used to determine
whether the observed mean summed transformed values differed significantly from their
expectation. A permutation test was necessary to control for differences in pairwise proximities
that are a result of variations in cell density across malignant subtypes. The null distribution was
acquired by shuffling the cell type annotations within major cell type categories (e.g. malignant,
CAF, and immune) within each FOV. This allowed us to maintain the high level attributes of the
tumor architecture in this analysis. For example, when comparing the proximities between
malignant subtypes and CD8 T cells, we generated an expected distribution by shuffling the
malignant subtype annotations. Similarly, when comparing the proximities between CAF
subtypes and malignant cells, we generate an expected distribution by shuffling the CAF subtype
annotations. In addition to permutation tests, we also used the Kolmogorov-Smirnov (K-S) test
to measure the difference between the expected distribution Dexp and the observed distribution
Dobs of summed transformed values.

We computed a statistic t such that . For the majority of analyses, we presented𝑃(𝐷
𝑒𝑥𝑝

< 𝑡) = 𝑞

results using a quantile threshold of q = 0.95, but our findings were robust across varying q. We
then measured the proportion of summed transformed values that were greater than t. This
proportion was used to compute the log2 fold change between the expected and observed
distributions for each permutation. We performed two-sided Mann Whitney U tests to compare
the log2 fold changes between treated and untreated cohorts.

Of note, the quantity obtained from the exponential-based model is asymmetric. Above, we
describe a cell type A-centric model, in which we acquired an observed distribution by
measuring the pairwise distance between each cell a and all other cells b in the same FOV. In a
cell type B-centric model, we can obtain a distinct observed distribution by summing the
transformed distance measures between each cell b and all other cells a in the same FOV.

Cell density classifier

Cell density was calculated as the total number of cells of each subtype, plus a pseudocount of
one, divided by the area of each FOV. A k nearest neighbor classifier using the densities of NRP,
CLS, BSL, iCAF, myCAF, neutrophil, natural killer, macrophage, and endothelial cells was
trained while withholding all of the FOVs from one of the samples. The density vectors were
concatenated, log-transformed, and then the first P principal components were used as features.
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The reported accuracy is the fraction of correctly assigned FOVs in each withheld sample,
iterated and averaged across all sample combinations. To ensure robustness, we employed a
consensus strategy, wherein we considered P = 6 to 12 as well as k = 21 to 51 neighbors.

Topological data analysis and K-nearest neighbor classifier

For each cell type, we first normalized spatial cell positions such that x- and y-coordinates were
in the range [0, 1]. Second, we calculated the persistence diagram based on Euclidean distances.
Finally, the persistence images28 were calculated using a one-dimensional image with 5 pixels
and a standard deviation of 0.01. The pixel vectors were concatenated, log-transformed, and then
the first P principal components were used as features to train a k nearest neighbor classifier.
Training and testing splits were performed in the same way as for the cell density classifier. To
ensure robustness, we employed a consensus strategy and we considered P = 6 to 12 as well as k
= 21 to 51 neighbors.

Spatially Constrained Optimal Transport Interaction Analysis (SCOTIA)

Ligand–receptor (LR) interactions were modeled using an unbalanced optimal transport (OT)
algorithm.60,78 We included LR pairs from the FANTOM5 database,79 which has been widely
used to predict cell–cell interactions in scRNA-seq analysis,51 and only secreted ligands were
included based on the Human Protein Atlas.80 In total, 422 LR pairs were covered in our SMI
panels. To infer LR interaction strength between cell type pairs, we spatially constrained the
potential search space of communicating pairs by selecting spatially adjacent source and target
cell clusters using DBSCAN.29,30 Since cell densities varied across FOVs and samples, the
hyperparameter eps for maximum distance between neighboring cells within each cluster was
dynamically estimated for each cell type in each FOV by finding the maximum overlap of cluster
labels between DBSCAN (using Python package sklearn) and the Forest Fire clustering
algorithm.81 Briefly, the hyperparameter eps in the DBSCAN algorithm was tuned in the range of
15 to 150 with a step size of 5, while the hyperparameter temperature c in the Forest Fire
clustering algorithm was adjusted in the range of 1 to 60 with a step size of 1. The adjusted Rand
index scores82 between the two clustering methods with different hyperparameter values were
calculated using the adjusted_rand_score function from the Python package sklearn. The eps
that had the highest adjusted rand index score was selected as the most optimal eps. The
minimum number of cells per cluster was set at 10. Clusters were considered ‘adjacent’ when the
shortest distance between two cells in each cluster was less than 50 µm.

We then inferred LR interaction scores for cell pairs between spatially adjacent clusters by
minimizing the total cost for transporting ligand gene expression to receptor gene expression,
which was formulated as:

𝑚𝑖𝑛
γ
< γ, 𝑀 >

𝐹
+ 𝑟𝑒𝑔 · Ω(γ) + 𝑟𝑒𝑔

𝑚
· 𝐾𝐿(γ1, 𝑙) + 𝑟𝑒𝑔

𝑚
· 𝐾𝐿(γ𝑇1, 𝑟)

(4)
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Where <γ, M>F is the Frobenius inner product of γ and M. γ ( ) is the transport plan and is≥ 0
considered the interaction score; M is one of the three customized cost matrices (equations 5-7),
which integrate spatial distance with expression distance: Wi,j is the spatial distance between
source cell i and target cell j; Li and Rj are the normalized expression of the ligand gene in cell i
and the receptor gene in cell j. Ω is an entropy term penalizing one-to-one transport cases; reg is
the entropy regularization term, the default is 1; regm is the marginal relaxation term, the default
is 2; l and r are the distribution of ligand gene expression in source cells and the receptor gene
expression in target cells, respectively; 1 is a vector of ones; KL is the Kullback-Leibler
divergence and the two KL terms are used to relax the difference in total expression between
ligand and receptor genes.

After computing LR interaction scores, we performed permutation tests to identify robust LR
pairs between any given cell type pair. To maintain the original cell type composition in spatial
neighborhoods, the null distribution was established by shuffling gene expression and
randomizing cell locations within a small range (from -20 to 20 µm). The number of
permutations was 50. To identify differentially enriched LR interactions between the treated and
untreated conditions, we performed two-sided Mann-Whitney U tests and constructed a mixed
effects model with the sample ID as a random effect and treatment status as the fixed effect
covariate. The mixed effects model was implemented using the mixedlm function from the
Python package statsmodels. Multiple testing correction was performed using the
Benjamini-Hochberg approach.83

Ligand–receptor target gene and gene set enrichment analysis

The correlation between inferred LR interactions and the expression of downstream target genes
was investigated by integrative analyses with the KEGG48 and TRRUST v249 databases.
Ligand–receptor–transcription factor (TF) pathways were extracted from the KEGG database
with the Python package bioservices.84 Activated or repressed target genes of the TFs were
extracted from the TRRUST v2 database.49 To apply this approach to our SMI data, we estimated
the gene expression correlation (Spearman) between receptors and their target genes; the average
expression of the top 10 (for activated genes) and bottom 10 (for repressed genes)
highly-correlated targets was computed for each LR pair. Pathways enriched in association with
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up- or down-regulated ligands and receptors were obtained by Gene Ontology (GO) enrichment
analysis.85

Murine stromal tumoroid co-cultures

To establish 3D murine CAF-cancer cell co-cultures, 3000 dissociated ductal cells (KP;
KrasLSL-G12D/WT;Trp53FL/FL) that were infected with adenovirus bearing Cre recombinase
(Ad5-CMV-Cre) and genotyped at the Kras and Trp53 loci to ensure proper recombination86

were combined with 24,000 pancreatic stellate cells (PSCs; PSC4 line24) and seeded in 20 𝜇l
Matrigel domes in a 24 well plate and covered with 1 ml of DMEM+10% FBS. After 24 hours,
5-fluorouracil (5-FU; final concentration 3 𝜇M) or vehicle (DMSO) was added to all wells. On
days 4 and 6, half of the media was replaced with fresh media containing 5-FU or vehicle to
achieve the same final concentrations. On day 7, the co-culture tumoroids were digested in
TrypLE for 30 minutes at 37°C, then washed with PBS three times. The resulting pellet was
subjected to nuclei isolation as described for organoids in Hwang et al.6

Single-nucleus RNA-sequencing

The isolated nuclei of each sample (5-FU vs vehicle) were processed using the fixation protocol
provided by Parse Biosciences for their EvercodeTM single-cell technology with minor
modifications in centrifugation as follows: spins were done at 350 x g at 4°C for 10 minutes with
acceleration speed 9 and deceleration speed 5. Up to 4 million nuclei were transferred into a 15
mL conical pre-coated with 5% BSA and spun down. The pellet went through a series of washes
and filtering, as detailed in the manufacturer protocol, and was ultimately aliquoted and slowly
frozen in the -80°C freezer for storage.

The Evercode Whole Transcriptome Mini (Parse Biosciences) protocol was closely followed for
barcoding and library preparation. In brief, the nuclei were quickly thawed in a 37°C water bath
and counted on a hemocytometer. The loading schematic provided by Parse was modified in that
we increased the “Max Number Barcoded Cells” to 25K to account for losses. Single nuclei were
barcoded through iterative rounds of ligation and split/pooling using Round 1, Round 2, and
Round 3 Plates. The barcoded nuclei were counted on a hemocytometer and 10K cells were
loaded into PCR tubes for each sub-library, adding Dilution Buffer as needed to bring the final
volume to 25 𝜇l. After amplification of the barcoded cDNA, each sublibrary underwent
fragmentation, end repair, A-tailing, adaptor ligation, and index PCR in preparation for
sequencing, as detailed in the manufacturer protocol. Notably, we performed 5 cycles for the first
round of cycling and 8 cycles for the second round of cycling during cDNA amplification, and
13 cycles for index amplification based on the recommendations listed in the manufacturer
protocol. The library was sequenced using a NovaSeq SP flowcell with the following parameters:
read type = paired end, fragment size = 400, length of read 1 = 208, length of read 2 = 86, length
of index = 6, PhiX spike-in = 5%.
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Raw Illumina sequencing reads were converted into FASTQ files using the bcl2fastq conversion
software. The FASTQ files were preprocessed using the standard Parse pipeline and the
annotated reference genome of GRCm39 (release version 108). Default parameters in the
pipeline were used. A matrix containing the raw counts of gene expression across individual
nuclei exceeding the minimum transcript threshold (840 transcripts for treated cells; 835
transcripts for untreated cells) was obtained. The minimum transcript threshold was determined
as the steepest point in the barcode-rank plot, which orders the transcript counts per nucleus
along log transformed axes.

The dataset was transferred into Seurat for further analysis. Low quality cells were removed if
the cell expressed: (a) more than 6,000 genes, (b) more than 20,000 transcripts, or (c) more than
15% mitochondrial transcripts. The data was then normalized using the Seurat NormalizeData
function with default parameters. The top 50 principal components and the Seurat Integration
function (with default parameters) were used to correct for batch effects across treated and
untreated groups, cluster cells and compute UMAP reductions. Identified clusters were annotated
as malignant (EPCAM, KRT7, CDH1, KRT18, KRT19) or CAF (COL1A1, COL1A2, FGF7, FN1,
POSTN, VCAN) using a subset of canonical epithelial and fibroblast marker genes. Clusters were
additionally separated into treated and untreated conditions.

DATA AND CODE AVAILABILITY

The raw and processed SMI and co-culture snRNA-seq data are available at Mendeley Data
(https://doi.org/10.17632/kx6b69n3cb.1) and Zenodo (https://doi.org/10.5281/zenodo.7963531).
The snRNA-seq and GeoMx datasets6 are available from GEO: GSE202051 and GSE199102,
respectively. The SCOTIA package and our analysis code have been uploaded to Zenodo
(https://doi.org/10.5281/zenodo.7963527).

FIGURE LEGENDS

Fig. 1. Spatial molecular imaging captures pancreatic tumor architecture at subcellular
resolution. (A) Study design for human PDAC tumors (n = 13) using SMI, followed by
computational analyses and experimental investigation of candidate ligand–receptor pairs.
Tumors were divided into treatment-naive (n = 7) and neoadjuvant-treated (chemotherapy and
radiotherapy, n = 6) cohorts, with one treated sample additionally receiving losartan. Samples
were analyzed using a base 960-plex probe set, with (n = 6) and/or without (n = 9) 30 custom
probes. Two tumors, one treated and one untreated, were profiled using both the base 960-plex
and augmented 990-plex panels on consecutive sections. A subset of samples has matched
snRNA-seq and whole transcriptome DSP (NanoString GeoMx) data. U, untreated; T, treated.
(B-C) Representative hematoxylin and eosin (H&E)-stained FFPE section (5 µm thickness) (B)
and SMI slide image (C) of consecutive tissue sections, showing selected fields of view (FOVs,
yellow rectangles). The H&E-stained FFPE section was used as a guide for SMI FOV placement
to enrich for tumor areas. (D) Immunofluorescence image of a representative FOV with antibody
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targets shown in the color legend. (E) Spatial coordinates of RNA transcripts for canonical
epithelial (green), CAF (cyan) and immune (magenta) marker genes, overlaid on the
immunofluorescence image. Inset depicts a magnified view of a region within the FOV, with cell
segmentation boundaries (cyan) outlined.

Fig. 2. Spatial molecular imaging uncovers cell type diversity in pancreatic cancer. (A)
Schematic of supervised cell typing procedure (Methods). (B) Bubble heatmap showing
expression levels of select marker genes for annotated cell types and subtypes. Color indicates
normalized expression and dot size indicates the fraction of expressing cells. Treg, regulatory T
cell; cDC, conventional dendritic cells; aDC, activated dendritic cells; pDC, plasmacytoid
dendritic cells; CAF, cancer-associated fibroblast; NRP, neural-like progenitor; BSL, basal-like;
CLS, classical; myCAF, myofibroblastic CAF; iCAF, inflammatory CAF. (C) UMAP
visualization of malignant and non-malignant cells. (D) UMAP visualization of batch-corrected
non-malignant cells colored by sample ID (left) and cell type annotation (right). U, untreated; T,
treated; b, base 960-plex panel; a, augmented 990-plex panel. Sample ID color legend shared
with panels E and F. (E) UMAP showing malignant subsets colored by patient ID (left) and
subtype annotations (right). (F) UMAP showing CAF subsets colored by sample ID (left) and
subtype annotations (right). (G) Proportions of malignant (left) and CAF (right) subtypes across
untreated and treated tumors. (H) Heatmap showing Z score normalized cell type densities (color
bar, right) for each FOV across treatment status (color bar labeled “Treatment,” top) and
specimens (color bar labeled “Sample”, top).

Fig. 3. Spatial molecular imaging reveals glandular heterogeneity and multicellular
neighborhoods in pancreatic cancer. (A) (Left to right) Hematoxylin and eosin (H&E) stain,
SMI-identified malignant cells (colored by subtype), localized RNA transcripts for a subset of
malignant subtype marker genes, and DBSCAN-identified malignant glands (colored in shades
of red and gray) for a representative FOV. (B) Treatment condition (color bar, top), sample ID
(color bar, middle) and malignant subtype proportion (stacked proportion bar plot, bottom) for a
random subset of malignant glands (n=300, 10% of total glands). U, untreated; T, treated; b, base
960-plex panel; a, augmented 990-plex panel. (C) Number of glands per FOV (left), number of
cells per gland (middle), and the proportion of singular malignant cells (right), stratified by
treatment condition. Error bars denote the 95% confidence interval. ***p < 0.001; ****p <
0.0001, two-sample Mann-Whitney U test. (D) Cumulative density function for the number of
cells in malignant glands, separated malignant subtype. ****p < 0.0001, two-sample K-S test.
(E) Top: Schematic of the subtype composition of representative malignant glands, with
heterogeneity and interspersion measurements noted (Methods). Bottom: Observed (black) and
expected (gray) distributions of the heterogeneity (H, solid line)/interspersion (I, dotted line) of
malignant glands (left) or the median H/I of all other glands in the FOV (middle) and sample
(right) for glands in the top versus bottom quartile of H/I. Statistical test legend shared with
panels F and G. (F-G), Left: Three-dimensional topological depiction of the summed exponential
functions (z axis height and color bar, decay radius r = 50 𝜇m) that are generated from CD8 T (F)
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and malignant (G) cells for a representative FOV, with spatial locations of malignant (F) and
CAF (G) subtypes shown as colored dots. Right: Log2 fold change (y axis; error bars denote the
95% confidence interval) between the observed and expected summed exponential-transformed
distances between malignant subtypes and CD8 T cells (using a malignant-centric model) (F),
and between CAF subtypes and malignant cells (using a CAF-centric model) (G).

Fig. 4. Deciphering cell–cell interactions using Spatially Constrained Optimal Transport
Interaction Analysis (SCOTIA). (A) Overview of the workflow for inferring ligand–receptor
(LR) interactions from spatial molecular imaging data (Methods). Cells were clustered using
DBSCAN for each cell type and only spatially adjacent source and target cell clusters were
retained for downstream LR analysis (left). LR interaction scores were calculated using an
optimal transport (OT) model in which the cost matrix integrates spatial distance and LR
expression (middle). Statistical tests were performed to identify treatment-associated LR
candidates (right). (B) The inferred total interaction strength between annotated cell type pairs
for untreated (left) and treated (right) tumors. Interaction strength was measured as the summed
LR interaction scores for permutation test-significant LR pairs. Edge width is proportional to
interaction strength and edge color reflects source cell type. (C) The top five strongest
interacting cell type pairs from panel (B) are shown for each tumor. Dot size represents the
number of permutation test-significant LR pairs, colored based on the average LR interaction
score. Bar plot indicates the average interaction strengths of each cell type pair for the treated
and untreated groups. U, untreated; T, treated; b, base 960-plex panel; a, augmented 990-plex
panel.

Fig. 5. Treatment-associated ligand–receptor interactions between CAFs and malignant
cells. (A) Volcano plot showing log2 fold change of ligand–receptor (LR) interaction scores (x
axis) between treated and untreated samples versus –log2 Benjamini-Hochberg adjusted p values
calculated from two-sided Mann-Whitney U test (y axis). In this analysis, CAFs serve as sources
and malignant cells act as targets. LR interactions that are significantly up- or down-regulated in
treated samples are highlighted in red or purple, respectively. (B) (Left) Waterfall plot showing
the significant differentially-enriched LR pairs from panel (A). Significant results (adjusted p <
0.05) of Mann-Whitney U, permutation, and mixed effects model tests were indicated with
circle, square, and asterisk symbols, respectively. (Right) Heatmap showing the hierarchical
clustering of patients with z-score normalized LR interaction scores. U = untreated; T = treated;
b = base 960-plex panel; a = augmented 990-plex panel. (C) Spatial visualization of an example
treatment-enriched LR interaction in representative FOVs: CLCF1–CNTFR. Dots represent
ligand gene expression in CAF cells (orange) or receptor gene expression in malignant cells
(blue) with the size indicating normalized expression levels and the locations indicating spatial
coordinates of cell centroids. Cells expressing ligands or receptors but not participating in
CAF–malignant interactions are shown as semi-transparent dots. (D) Expression of WNT ligands
in treated/untreated CAFs and malignant cells. WNT ligands include
WNT2/2B/3/5A/5B/7A/7B/9A/10B/11. Two-sided Mann-Whitney U test (***p < 0.001). (E) (Left)
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Scatter plot showing the correlation between the log2 fold change of LR interaction scores from
SMI data (x axis) and the log2 fold change of LR gene expression in the published snRNA-seq
dataset6 (y axis). LR pairs were highlighted with the same color scheme as panel (A). LR gene
expression in the snRNA-seq data was calculated by averaging ligand expression in CAFs and
receptor expression in malignant cells. Spearman rho and p values were provided. (Right)
Boxplot summarizing the difference in snRNA-seq target gene expression6 between significantly
enriched and depleted LR pairs identified by applying SCOTIA to the SMI data. Two-sided
Mann-Whitney U test (*p < 0.05; ***p < 0.001; ns, not significant). (F) Scatter plots showing
the correlations between log2 fold change of LR interaction scores (x axis) and the log2 fold
change of downstream target gene expression in the SMI data. Top: activated targets; Bottom:
repressed targets. Spearman rho and p values were provided.

Fig. 6. Substantiation of ligand–receptor interactions in murine co-culture tumoroids. (A)
Experimental workflow for the malignant–CAF co-culture tumoroid system established from KP
(KrasG12D/wt;Trp53FL/FL) ductal cells and pancreatic stellate cells, both of which were isolated from
the mouse pancreas (Methods). Single-nucleus RNA-sequencing (snRNA-seq) was performed
on untreated and 5-FU-treated malignant-CAF tumoroids. (B) UMAP showing batch-corrected
snRNA-seq of CAFs and malignant cells dissociated from malignant-CAF tumoroids at
steady-state or after treatment with 5-FU. (C) (Left) Scatter plot showing the correlation between
the log2 fold change of LR interaction scores in the SMI data (x axis) and the log2 fold change of
LR gene expression in the co-culture dataset (y axis). LR interactions that were significantly
enriched/depleted in SMI-analyzed treated samples were highlighted in red and purple,
respectively. LR gene expression in the co-culture data was calculated by averaging ligand
expression in CAFs and receptor expression in malignant cells. Spearman rho and p values were
provided. (Middle) Boxplot summarizing the difference in LR gene expression (y axis;
co-culture) between the up- and down-regulated LR groups (x axis; SMI). Two-sided
Mann-Whitney U test (*p < 0.05). (Right) Heatmap showing a subset of candidate LR
interactions that overlap between the SMI and co-culture datasets. Color bar denotes the log2 fold
change in interaction strength between treated and untreated samples.

Fig. 7. IL-6 family signaling is enriched between inflammatory CAFs and specific
malignant subtypes. (A) Left: Three-dimensional topological depiction of the summed
exponential functions (z axis height and color bar, decay radius r = 50 𝜇m) generated from iCAFs
for a representative FOV, with spatial locations of malignant subtypes shown as colored dots.
Right: Log2 fold change (y axis; error bars denote the 95% confidence interval) between the
observed and expected summed exponential-transformed distances between malignant subtypes
and iCAFs. Significant results (adjusted p < 0.05) of permutation and K-S tests were indicated
with square and circle symbols, respectively. (B) Total number of transcripts of IL6 family
ligands (IL6, LIF, CLCF1) expressed in CAFs (y axis; error bars denote the 95% confidence
interval), stratified by CAF subtype. (C) Proportion of malignant subtypes in FOVs with
malignant IL6 family receptor expression in the top versus bottom quartile of FOVs. (D)
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Spearman correlation between JAK/STAT pathway expression and the expression ratio of IL6ST
to the sum of IL6ST and IL6R in malignant cells across all FOVs. Least squares regression line is
denoted as a red dotted line, and Spearman rho and p values are annotated. (E) Spearman
correlation between GLIS3 expression and the expression ratio of IL6ST to the sum of IL6ST and
IL6R for all malignant cells in an FOV, using the subset of FOVs (n=155) that were profiled with
the augmented panel. Colored dots denote the five FOVs with the greatest absolute number of
malignant cells for each subtype, and Spearman rho and p values were annotated. (F) The
expression ratio of IL6ST to the sum of IL6ST and IL6R in malignant cells (y axis; error bars
denote the 95% confidence interval), stratified by malignant subtype. ****p < 0.0001,
two-sample Mann-Whitney U test. (G) Spatial visualization of IL6–IL6ST (top) and IL6–IL6R
(bottom) LR interactions between iCAFs and NRP (left) or BSL (right) cells in representative
FOVs. Dots represent ligand gene expression in iCAFs (purple) or receptor gene expression in
NRP (green) or BSL (orange) cells. Dot size indicates normalized expression levels and the dot
location indicates spatial coordinates of cell centroids. Cells expressing ligands or receptors but
not participating in iCAF–NRP (left) or iCAF-BSL (right) interactions are shown as
semi-transparent dots.
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SUPPLEMENTARY FIGURES

Fig. S1. Spatial molecular imaging experimental workflow and probe set. (A) Schematic of
the spatial molecular imaging RNA assay workflow. RNA targets in the FFPE tissue slide that
are bound to in situ hybridization (ISH) probes are subject to cyclic readout of 16 sets of
reporters conjugated to four different fluorophores, which bind to the different reporter-landing
domains on the ISH probes. High-resolution images are acquired during each round of reporter
hybridization. Fluorophores are then UV cleaved and washed off the reporters before the slide is
incubated with the next set of reporters. (B) Gene overlap between the seven malignant lineage
programs,6 the base 960-plex probe set and the 30 custom probes (color legend).

Fig. S2. Cell type composition across untreated and treated pancreatic cancer samples. (A)
UMAP showing subsets of vascular, lymphoid, and myeloid cells. (B) Proportions of major cell
types (from Fig. 2C-D) across untreated and treated tumors with (left) or without (right)
malignant cells included. U, untreated; T, treated; b, base 960-plex panel; a, augmented 990-plex
panel. (C) Comparison of malignant/non-malignant cell numbers in treated and untreated FOVs.
Pairwise comparisons were performed using the two-sided Mann-Whitney U test (***p < 0.001;
ns, not significant). (D) Proportions of major non-malignant cell types in treated and untreated
FOVs (***p < 0.001; ns, not significant); p values were adjusted with Benjamini-Hochberg
correction. (E) Expression of chemokines with a role in neutrophil recruitment
(CXCL1/2/3/5/6/8) in treated/untreated CAFs and malignant cells (**p < 0.01; ***p < 0.001; ns,
not significant); p values were adjusted with Benjamini-Hochberg correction.
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Fig. S3. Glandular heterogeneity and multicellular neighborhoods in pancreatic cancer. (A)
Distribution of the number of cells across malignant glands. (B) Observed (black) and expected
(gray) distributions of the interspersion of malignant glands, subset to glands in the top quartile
of heterogeneity. Statistical test legend shared with panels D, G and H. (C) Three-dimensional
depiction of the summed exponential functions (z axis height and color bar, decay radius r = 50
𝜇m) that are generated from CD8 T cells for a representative FOV, with spatial locations of
shuffled malignant subtype annotations shown as colored dots, which serves as the null
distribution. (D) Log2 fold change (y axis; error bars denote the 95% confidence interval)
between the observed and expected summed exponential-transformed distances between
malignant subtypes and CD8 T cells (using a malignant-centric model), for varying quantile
thresholds (x axis). (E-F) Three-dimensional topological depiction of the summed exponential
functions that are generated from CD8 T cells for varying decay radii r (in 𝜇m) (E) and that are
generated from malignant subtypes, using decay radius r = 50 𝜇m (F). (G-H) Log2 fold change (y
axis; error bars denote the 95% confidence interval) between the observed and expected summed
exponential-transformed distances between malignant subtypes and CD8 T cells (using a
malignant-centric model on the left and a CD8 T cell-centric model on the right) (G) and
between CAF subtypes and malignant cells (using a CAF-centric model on the left and a
malignant-centric model on the right) (H) across varying decay radii (x axis).

Fig. S4. The permutation test strategy used in SCOTIA. (A) Pearson correlation of receptor
gene expression between malignant subtypes or ligand gene expression between CAF subtypes.
(B) Schematic of the permutation test model used for spatial molecular imaging data. The null
distribution was established by randomizing cell locations within a small range (from -20 to 20
µm) (top) while shuffling gene expression (bottom) in each FOV. (C) Neighborhood composition
for each cell type from one example FOV with the original (top), permuted (middle) and shuffled
negative control (bottom) data. The negative control was constructed by shuffling cell type labels
without any constraints. Neighborhood cells were defined as cells within a radius of 30 µm. (D)
The top five strongest interacting cell type pairs inferred by using cost function equation 6 (left)
and 7 (right) (Methods). Dot size represents the number of permutation test-significant LR pairs,
colored based on the average LR interaction score. Bar plot indicates the average interaction
strengths of each cell type pair for the treated and untreated groups. U, untreated; T, treated; b,
base 960-plex panel; a, augmented 990-plex panel.

Fig. S5. Pathway enrichment and target gene analysis for the SMI data. (A) Volcano plots
showing the log2 fold change of ligand–receptor (LR) interaction scores between treated and
untreated samples (x axis) versus –log2 adjusted p value (y axis) with CAFs as source and
malignant cells as target, related to Fig. 5A. The cost functions used were equation 6 (left) and 7
(right) (Methods). (B) Volcano plot showing the differentially enriched LR interactions inferred
with a mixed effects model (Methods). (C) Pathway enrichment analysis with ligand (left) or
receptor (right) gene sets from Fig. 5B. Top pathways enriched in untreated (purple) and treated
(red) tumors are shown. (D) Volcano plots showing the treatment-enriched/depleted LR
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interactions between five other abundant cell type pairs. Boxplots summarizing the difference in
target gene expression between significantly up- and down-regulated LR groups. Two-sided
Mann-Whitney U test (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant).

Fig. S6. Pathway enrichment analysis for the co-culture tumoroid data. (A) Pathway
enrichment analysis with the ligand gene set (from CAFs, left) or receptor gene set (from
malignant cells, right) that were significantly higher (red) or lower (purple) in the treated versus
treatment-naïve co-culture tumoroids, related to Fig. 6C.

Fig. S7. Association between IL-6 family signaling, inflammatory CAFs and specific
malignant subtypes. (A) Log2 fold change (y axis; error bars denote the 95% confidence
interval) between the observed and expected summed exponential-transformed distances
between malignant subtypes and iCAFs (using a malignant-centric model on the left and an
iCAF-centric model on the right) across varying decay radii (x axis). (B) Proportions of CAF
subtypes per FOV (n = 320) in SMI (left) and per sample (n = 43) in single-nucleus RNA-seq6

(right) datasets, stratified by treatment. (C) Proportion of iCAFs and malignant subtypes per
FOV in whole-transcriptome digital spatial profiling data (DSP; n = 21).6 Least squares
regression line was denoted as a red dotted line, and Spearman rho and p values were annotated.
(D) Number of transcripts of specific IL6 family ligands expressed in CAFs (y axis; error bars
denote the 95% confidence interval) in the SMI dataset, stratified by CAF subtype. (E) Spearman
correlation between JAK/STAT pathway expression and IL6R (left) and IL6ST (right) expression
in malignant cells. Least squares regression line was denoted as a red dotted line, and Spearman
rho and p values were annotated. (F) IL6R (left) and IL6ST (right) expression in malignant cells
(y axis; error bars denote the 95% confidence interval) in the SMI dataset, stratified by malignant
subtype. ****p < 0.0001, two-sample Mann-Whitney U test.

SUPPLEMENTARY TABLES

Table S1

Clinicopathological parameters and quality control metrics for each sample.

Table S2

Overlapping and unique ligand-receptor pairs inferred by using different databases.

Table S3

Ligand receptor pairs used for SCOTIA analysis.
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