

1 The draft genome of the microscopic *Nemertoderma westbladi* sheds light on the evolution of 2 Acoelomorpha genomes

3 Samuel Abalde^{1,*}, Christian Tellgren-Roth², Julia Heintz², Olga Vinnere Pettersson², Ulf Jondelius¹

4

5 ¹Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden

6 ² Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, Uppsala,
7 Sweden

8

9

10 * Corresponding author: saabalde@gmail.com

11

12

13 **Abstract**

14 **Background:** Xenacoelomorpha is a marine phylum of microscopic worms that is an important
15 model system for understanding the evolution of key bilaterian novelties, such as the nervous or
16 excretory systems. Nevertheless, Xenacoelomorpha genomics has been restricted to the few species
17 that either can be cultured in the lab or are centimetres long. Thus far, no genomes are available for
18 Nemertodermatida, one of the phylum's main clades and whose origin has been dated more than
19 400 million years ago. **Results:** We present the first nemertodermatid genome sequenced from a
20 single specimen of *Nemertoderma westbladi*. Although genome contiguity remains challenging
21 (N50: 48 kbps), it is very complete (BUSCO: 81.4%, Metazoa; 91.8%, Eukaryota) and the quality
22 of the annotation allows fine-detail analyses of genome evolution. Acoelomorph genomes seem to
23 be conserved in terms of the percentage of repeats, number of genes, number of exons per gene and
24 intron size. In addition, a high fraction of genes present in both protostomes and deuterostomes are
25 absent in Acoelomorpha. Interestingly, we show that all genes related to the excretory system are
26 present in Xenacoelomorpha but *Osr*, a key element in the development of these organs and whose
27 acquisition might explain the origin of the specialised excretory system. **Conclusions:** Overall,
28 these analyses highlight the potential of the Ultra-Low Input DNA protocol and HiFi to generate
29 high-quality genomes from single animals, even for relatively large genomes, making it a feasible
30 option for sequencing challenging taxa, which will be an exciting resource for comparative
31 genomics analyses.

32

33 **Keywords:** Ultra-Low Input DNA; Xenacoelomorpha; HiFi; Gene content; Excretory system

34

35 **1. Background**

36 Access to a growing number of high-quality genomes from non-model animal species has helped us
37 understand the origin of key evolutionary novelties [1–3]. However, small yields of extracted DNA
38 is a limiting factor in genome sequencing of small animals, also when using whole-body
39 extractions. In this regard, the recent development of the Ultra-Low Input DNA protocol has
40 significantly reduced the amount of input DNA, enabling the sequencing of high-quality genomes
41 from millimetric animals [4–6]. Yet, this approach is recommended for genomes smaller than 500
42 Mbps, and it is unclear how well it performs beyond that limit, which is not a minor detail. Despite
43 the general trend that miniaturised animals tend to have smaller genomes [7–9], there are several
44 phyla, such as Xenacoelomorpha, whose genome size is comparable to that of larger animals [10–
45 12].

46 Xenacoelomorpha is a phylum of marine, microscopic worms consisting of the clades
47 Acoela, Nemertodermatida, and their sister taxon *Xenoturbella*. Early molecular phylogenetic
48 studies placed Xenacoelomorpha as the sister group of all other Bilateria. This hypothesis received
49 support from the simple morphology of Xenacoelomorpha, which lack typical bilaterian structures
50 such as excretory organs, through-gut and circulatory system [13] and the name Nephrozoa was
51 introduced for its sister group under this hypothesis [14]. The Nephrozoa hypothesis was further
52 supported by analyses of gene content and phylogenomic inference [15,16]. However, an alternative
53 hypothesis based on analyses of nucleotide sequence data places Xenacoelomorpha as sister group
54 to Ambulacraria (echinoderms and hemichordates) within the deuterostomes [17,18]. In either case,
55 xenacoelomorphs offer a good opportunity for studying the origin of important animal novelties.
56 Due to their lack of specialised excretory organs, xenacoelomorphs make a good comparison
57 reference to better understand the evolution of this system. A recent study based on spatial
58 transcriptomics has shown the expression in Xenacoelomorpha of several genes involved in the
59 excretory process in other bilaterians, as well as several genes specifically related to the
60 ultrafiltration excretory system (*Nephrin*, *Kirrel*, and *ZO1*; [19]), although their expression was

61 observed throughout the body, unlike in other organisms with specialised excretory organs [20]. In
62 addition to analysing their expression, the comparison of high-quality genomes from
63 xenacoelomorphs, protostomes, and deuterostomes would offer a better understanding of the
64 evolution of these genes, thanks to a more accurate assessment of gene presence/absence, the
65 annotation of all gene copies in the genome, information about their distribution in the genomes, or
66 comparisons of gene architecture, among other analyses. However, the set of available
67 xenacoelomorph genomes is still limiting.

68 Several xenacoelomorph species have drawn interest as a model system to study the
69 evolution of body regeneration, the nervous system, and endosymbiosis [12,19,21], resulting in the
70 generation of genomes from *Xenoturbella* (*Xenoturbella bocki*; [22]) and Acoela (*Hofstenia miamia*
71 and the closely related acoel species *Praesagittifera naikaiensis* and *Symsagittifera roscoffensis*;
72 [10–12]). Thus, to fully capture the diversity of Xenacoelomorpha it is necessary to generate new
73 genomes from Nemertodermatida, the sister group of Acoela and from which diverged more than
74 400 MYBP [23]. This, however, is challenging due to their microscopic size. The four available
75 xenacoelomorph genomes were sequenced from species that can be either cultured in the lab and/or
76 are relatively big (*Xenoturbella* and *Hofstenia* can reach four and two cm body length,
77 respectively), but that is not the case for the vast majority of xenacoelomorphs, requiring more
78 sophisticated methods. Despite their small size, all acoel genomes sequenced so far range between
79 700 and 1000 Mbps, two to three times larger than any other genome sequenced with the Ultra-Low
80 Input protocol so far [4–6], and thus represent a good opportunity for testing its performance in a
81 challenging animal group. Here, we applied the PacBio Ultra-Low DNA Input protocol to sequence
82 the genome of *Nemertoderma westbladi* from a single, microscopic worm, the first
83 nemertodermatid and the longest genome sequenced with this protocol. We demonstrate the
84 potential of this approach to generate relatively good-quality genomes through comparisons with
85 other genomes from this phylum. In addition, we explore the evolution of acoelomorph genomes,

86 analyze the evolution of gene content in Bilateria and provide insights into the evolution of the
87 genes related to the excretory system.

88

89

90 **2. Results**

91 **2.1. The *Nemertoderma westbladi* genome**

92 The best extraction was produced from a sample stored in RNAlater using the QIAamp Micro kit,
93 obtaining a fragment size over 20 kbps and ca. 20 ng of total DNA, which would be up to 990 ng
94 after DNA shearing and whole genome amplification. About half of this DNA was selected for
95 sequencing. A total of 2,313,071 reads were produced during HiFi sequencing, later reduced to
96 2,297,478 after quality filtering with an average length of 6.6 kbps.

97 Flye produced the best assembly, which was 678.9 Mbps long and contained 26,880 contigs
98 (Fig. 1A). The longest contig was 2 Mbps long, with an N50 of 42.6 kbps and contained 86.6% of
99 the BUSCO Metazoa odb10. The assembly contained two repeats of 507 and 531 bps with 70,000
100 and 79,000 copies, respectively, corresponding to 11% of the assembled genome. BlobTools2
101 revealed the presence of many contaminants, with only 61% of the contigs identified as metazoan
102 (Supplementary Table S1). Thus, the decontaminated assembly was only 558.6 Mbps, split into
103 15,300 contigs with an N50 of 48.17 kbps (Fig. 1A, Table 1), but 81.4% of the Metazoa and 91.8%
104 of the Eukaryota BUSCO genes were still present (Supplementary Figure S1). The smudgeplot was
105 markedly different before and after the decontamination step, as the inferred ploidy went from
106 triploid to diploid after the decontamination (Supplementary Figure S2). The genome size estimated
107 by GenomeScope was 235.4 Mbps, with an average coverage of 24.3, and high heterozygosity
108 (6.45%), although these numbers must be taken cautiously given the poor fit of the model (33%;
109 Supplementary Figure S3).

110 The decontaminated Illumina genome was also relatively complete, with 76.8% of the
111 metazoan BUSCO genes present in the assembly, but much shorter (62.2 Mbps) and much more

112 fragmented (49,310 contigs; N50: 4 kbps) (Fig. 1A). Despite being sequenced from cultured,
113 starved and free of symbionts populations, BlobTools also identified some contaminants in the
114 published genomes of *P. naikaiensis* and *S. roscoffensis*. The former went from 656.1 Mbps and
115 12,525 contigs to 581.4 Mbps and 7104 contigs, whereas the latter went from 1103 Mbps and 3460
116 contigs to 1064.9 Mbps and 2730 contigs (Fig. 1A). The N50 of the two genomes raised from 127
117 to 130 kbps in *P. naikaiensis*, and from 1.04 to 1.08 Mbps in *S. roscoffensis*. Despite the observed
118 differences in genome size and contiguity, the four genomes show very similar completeness
119 results. More than 90% of the Eukaryota BUSCO genes were identified in the decontaminated
120 genomes of all species but *P. naikaiensis* (14.9% of missing genes) (Supplementary Figure S2A).
121 Differences were slightly higher with the Metazoa database, with almost a 10% difference between
122 the most (*S. roscoffensis*; 18.5% missing genes) and the least (*P. naikaiensis*; 27%) complete
123 genomes. In *N. westbladi*, the HiFi genome was almost as complete as *S. roscoffensis* (18.6%
124 missing genes), whereas the Illumina genome was in an intermediate position (23.1%)
125 (Supplementary Figure S2B).

126 The number of gene models in the four genomes ranged from 20,303 (*P. naikaiensis*) to
127 30,698 (*N. westbladi*, HiFi genome), although the differences were reduced when only functionally
128 annotated genes were considered: 12,849 (*N. westbladi*, HiFi), 13,708 (*P. naikaiensis*), 14,486 (*N.*
129 *westbladi*, Illumina), and 17,717 (*S. roscoffensis*) (Table 1). The organisation of these genes in the
130 genome somehow reflected the differences observed in genome contiguity. In the *N. westbladi*
131 genome sequenced with Illumina, the average number of genes per contig was just 0.876, with a
132 single gene in almost 90% of the contigs (Fig. 1B), and the contig with the highest number of genes
133 presented 33 gene models (Table 1). In the HiFi sequenced *N. westbladi* genome, up to 89 genes
134 were found in a single contig, with an average of 1.8 genes per contig. Similarly, an average of 2.9
135 genes per contig were annotated in the *P. naikaiensis* genome, but in this case, the maximum
136 number of genes in one contig was only 37. The *S. roscoffensis* genome stands out, with a
137 maximum of 280 genes in a single contig and more than 10 genes in almost 40% of the contigs (Fig.

138 1B; Table 1). This trend, however, was not observed in gene architecture. The gene models in *P.*
139 *naikaiensis*, *S. roscoffensis*, and the HiFi genome of *N. westbladi* were similar, ranging between an
140 average of 3 to 6.3 exons per gene, whereas almost all the genes presented a single exon in the
141 Illumina genome (average 1.5) (Fig. 1D). The intron size was very variable in all genomes, ranging
142 from 6 (*P. naikaiensis*) to 193,733 (*S. roscoffensis*) bps. The intron size distribution was similar
143 between *N. westbladi* and *P. naikaiensis*, but with generally longer introns in *S. roscoffensis* (Fig.
144 1C). Nevertheless, the intron size range was similar in the three genomes, but visibly smaller in the
145 *N. westbladi* Illumina genome.

146 According to RepeatMasker, the *N. westbladi* genome is very repetitive, masking up to
147 59.85% of the genome (Supplementary Table S2). The majority of these repeats are interspersed
148 throughout the genome (58.34%) and more than a fifth (21.27%) were not classified into any known
149 repeat family. Among the classified repeats, the most common ones are retroelements (33.36%),
150 particularly the long terminal repeats (LTR, 21.87%) and long interspersed nuclear elements
151 (LINEs, 11.15%). The Illumina genome presents a sharp contrast, with just 16.40% of the genome
152 masked as repetitive, although LINEs (4.28%) and LTR (3.43%) are still the most abundant repeat
153 elements (Supplementary Table S2).

154

155 2.2. Identification of the contaminant contigs

156 More than half of the taxonomic groups identified within the set of contaminant contigs were
157 bacteria, including several of the major taxonomic groups: Bacteroidetes, Tectomicrobia,
158 Proteobacteria (including Alpha-, Beta-, Delta/Epsilon-, and Gammaproteobacteria),
159 Planctomycetes, Actinobacteria, Cyanobacteria, and Firmicutes. None of the “Candidate Phyla
160 Radiation” phyla were identified. More specifically, there are nine genera that have been reported as
161 statistically more abundant in the microbiome of microscopic animals than in environmental
162 samples [24] and thus might be part of the *Nemertoderma* microbiome: *Algoriphagus*, *Alteromonas*,
163 *Francisella*, *Photobacterium*, *Roseobacter*, *Shewanella*, *Streptococcus*, *Tenacibaculum*, and *Vibrio*.

164 Other important sources of contamination besides Bacteria are algae (Chlorophyta, Rhodophyta,
165 and Streptophyta), land plants (Streptophyta: Bryopsida and Spermatophyta), and fungi
166 (Ascomycota, Basidiomycota, Chytridiomycota, Microsporidia, Mucoromycota, and
167 Zoopagomycota). These groups accumulate 87% of the taxonomic diversity within the
168 contaminants. In addition, we also found Archaea (Thaumarchaeota: *Nitrososphaera*), Protista
169 (Amoebozoa, Euglenozoa, Apicomplexa, Ciliophora, Perkinsozoa, Endomyxa, and Oomycota), and
170 Virus (Uroviricota and Nucleocytoviricota). A complete description of these results is provided in
171 Supplementary Table S3.

172

173 **2.3. Gene content evolution**

174 The comparison of 18 animal genomes, representing Acoelomorpha, Cnidaria, Deuterostomia, and
175 Protostomia revealed a high degree of specificity in gene content: 17.4% of all orthogroups present
176 in Cnidaria are exclusive to this phylum, 24.6% in Acoelomorpha, 45.4% in Deuterostomia, and
177 48.6% in Protostomia (Fig. 2A). Hence, only 35.9% of all orthogroups were annotated in at least
178 two of the four groups (12,071 out of 33,649). Among these, almost half (47.6%) were present in at
179 least one species of each clade, whereas only 3.4% were present in all bilaterian clades but
180 Cnidaria. A total of 8,394 genes were identified as shared across Metazoa (present in Cnidaria and
181 at least one Bilateria), and 2,328 for Bilateria (present in at least two bilaterian clades).
182 Acoelomorpha was present in 71.8% of the metazoan genes and 42.1% of the bilaterian ones,
183 contrasting with deuterostomes (91.4% and 82.9%) and protostomes (94.5% and 92.6%) (Fig. 2C).
184 The proportion of missing BUSCO genes was below 11% in all four groups (Fig. 2B), and so
185 genome completeness does not explain this pattern. Within Acoelomorpha, almost half (43.8%) of
186 the genes were shared between Acoela and Nemertodermatida (Fig. 2A).

187

188 **2.4. Ultrafiltration excretory system**

189 The nine genes investigated were annotated in both protostomes and deuterostomes. In
190 Acoelomorpha, all genes but *Osr* were annotated, whereas only three out of the nine genes were
191 found in the two cnidarian species (*ZO1*, *Six*, and *Lhx*; Fig. 3A). According to GenBank, three more
192 genes (*Nephrin*, *Eya*, and *POU3*) are also present in this phylum (Fig. 3A).

193 The gene architecture (in terms of protein length, number of exons per gene, and average
194 exon length) was compared for the nine genes among four clades: Cnidaria, Acoelomorpha,
195 Deuterostomia, and Protostomia. Almost half of the 27 comparisons returned statistically significant
196 differences among clades, most of them related to acoelomorphs (Fig. 3B). Despite the evident
197 variation in protein length, both within and among clades, only three out of the nine genes were
198 considered to be statistically significant: *Kirrel*, which is significantly longer in acoelomorphs; *ZO1*,
199 longer in deuterostomes; and *Lhx*, but in this case the differences were only significant between
200 acoelomorphs (longer) and protostomes (shorter). As for the number of exons per gene, *ZO1* and
201 *Eya* presented fewer exons in acoelomorphs than in both deuterostomes and protostomes. Finally,
202 the last gene with a significantly different number of exons is *POU3*. This is a relatively short
203 protein, on average shorter than 500 amino acids in all clades, and with very few exons: only one
204 exon in all deuterostomes but *Branchiostoma floridae* (three), between one and three in
205 protostomes, and between one and four in acoelomorphs. Only the differences between
206 deuterostomes and acoelomorphs were statistically significant. Two remarkable outliers were found
207 when comparing the number of exons per gene. Three chordate *ZO1* sequences were divided into
208 more than 80 exons (average 29.5) and one of the *POU3* sequences annotated in *P. naikaiensis*
209 presented 15 exons (average in Acoelomorpha: 2.6). Nonetheless, these proteins were roughly of
210 the same size as the others and their identity to the most similar protein was above 90%.

211 In an attempt to avoid the misleading effect of errors in the annotation (partial proteins will
212 be generally shorter and with fewer exons), the average exon length was also considered. In this
213 case, six out of the nine proteins were significantly different among clades. The average exon length
214 was significantly longer in acoelomorphs in three genes (*Kirrel*, *Eya*, and *Lhx*), and two in

215 deuterostomes (*Sall* and *Osr*, although the latter was only present in deuterostomes and
216 protostomes). The only instance with significantly shorter exon lengths is the protostome's *ZO1*
217 gene. Finally, among the nine comparisons including at least one cnidarian species (three genes,
218 three metrics) no significant differences were found but in the average exon length of *Lhx*, which is
219 significantly shorter than that of acoelomorphs, as also observed in deuterostomes and protostomes.

220

221

222 **3. Discussion**

223 **3.1. Performance of the Ultra-Low DNA Input protocol for sequencing large genomes**

224 The steady development of sequencing technologies is allowing the generation of genomes
225 spanning the diversity of life, which now includes minute organisms. Indeed, thanks to the latest
226 low and ultra-low DNA input protocols sequencing high-quality genomes from millimetric animals
227 is now possible [6,25,26]. In this study, we used the Pacbio Ultra-Low DNA Input protocol to
228 sequence the genome of *N. westbladi*, reporting the first nemertodermatid genome, sequenced from
229 a single microscopic worm. The estimated genome length is comparable to that of *P. naikaiensis*,
230 but considerably shorter than *S. roscoffensis* and *H. miamia* [12]. Although the *P. naikaiensis*
231 genome is slightly more contiguous than *N. westbladi*, all the metrics compared are similar between
232 the two genomes. In contrast, both *S. roscoffensis* and *H. miamia* were scaffolded using proximity
233 ligation data, and hence both show much higher contiguity. Beyond the differences in contiguity,
234 annotation metrics are comparable among *N. westbladi*, *P. naikaiensis*, and *S. roscoffensis*. In this
235 case, *N. westbladi* is more similar to *S. roscoffensis* than to *P. naikaiensis*, which shows the lowest
236 genome completeness and number of gene models. In particular, the analysis of gene architecture
237 shows that the number of exons per gene and intron size is also comparable, likely meaning that the
238 annotated proteins are complete or nearly complete, facilitating the study of gene properties, such as
239 intron-exon structure. Likewise, all genomes are similarly repetitive: *N. westbladi* 59.85%; *P.*
240 *naikaiensis* 69.8%; *S. roscoffensis* 61.14%; and *H. miamia* 53%, but this is where the difference

241 between the short- and long-read genomes of *N. westbladi* strikes the most. Although they have
242 similar completeness and number of gene models, the Illumina genome is only 62.2 Mbps long and
243 only 16.4% repeats, which is probably explained by the difficulty to assemble repetitive areas of the
244 genome [27].

245 It is obvious from the comparisons above that achieving a highly contiguous genome from
246 single-millimetre worms is still challenging. One potential explanation for this is the large size of
247 acoelomorph genomes, ranging between 500 and 1100 Mbps and above the maximum genome size
248 advised by Pacbio. The ultra-low DNA input protocol has insofar been tested in animals whose
249 genome size ranges between 200 and 300 Mbps, returning significantly more contiguous genomes
250 than that of *N. westbladi* [4–6]. Alternatively, the generally lower coverage of the nemertodermatid
251 genome, due to its larger size, could have also resulted in a more fragmented assembly. Yet
252 sequencing a second HiFi SMRT cell was not feasible due to the low DNA yield. One
253 straightforward solution to improve genome contiguity is complementing this approach with
254 ligation data, which has shown great results both in *S. roscoffensis* and *H. miamia* [11,12].
255 However, this approach would require pooling tens of individuals to obtain the required amount of
256 DNA, which is not feasible for all animals. *N. westbladi* cannot be cultured in the lab and collecting
257 worms in enough numbers is challenging. Interestingly, the *P. naikaiensis* genome (the most similar
258 to *N. westbladi*) was sequenced from a pool of individuals in 52 SMRT Cells [10], whereas the *N.*
259 *westbladi* genome comes from a single worm and one HiFi SMRT Cell. Altogether, these results
260 highlight the potential of combining this protocol and HiFi to generate good-quality genomes from
261 single, microscopic organisms, even for relatively large genomes.

262 The BlobTools analysis identified a high degree of contamination in the raw assembly of *N.*
263 *westbladi*, which is to be expected from a microscopic organism caught in the wild. Although *N.*
264 *westbladi* is known to not carry internal symbionts (based on hundreds of observations), a TEM
265 analysis revealed the presence of gram-negative bacteria throughout the epidermal cilia [28]. Thus
266 far, DNA extraction was performed from a whole specimen, thus sequencing the gut microbiome,

267 and other contaminants might have been transferred from the DNA suspended in the seawater. A
268 common practice to limit the presence of contaminants in the organism is to starve the animals
269 before DNA extraction. Besides, the acoel genomes were sequenced from juveniles, before they
270 incorporate the symbiotic algae, and rinsed with filtered seawater (e.g. [10,11]). However, as seen
271 here this is not enough to prevent the presence of contaminants. This was particularly problematic
272 in the case of *P. naikaiensis*, as almost 4% of the contigs (75 Mbps, over 10% of the genome) were
273 identified as bacterial contigs. It is important to notice that a big fraction of the genomes did not
274 have any hit against the Uniprot database (*N. westbladi* 13.2%; *P. naikaiensis* 8.4%; *S. roscoffensis*
275 1.9%; Supplementary Table S1), showing the importance of sequencing underrepresented groups to
276 improve the reference databases.

277

278 **3.2. Evolution of Acoelomorpha genomes**

279 The increasing availability of animal genomes has unveiled a remarkable diversity in genome sizes,
280 ranging from 15.3 Mbps in the orthonectid *Intoschia variabilis* to the 43 Gbps of the lungfish
281 genome [29,30]. It has been observed that miniaturised animals tend to have smaller genomes,
282 which has been noted both in vertebrates and invertebrates [7,9,31], but with notable exceptions to
283 this rule, as observed in nematodes and platyhelminths [32]. Genome length in the latter ranges
284 between 700 and 1200 Mbps, the same size range as birds, some gastropods, and many freshwater
285 fish, among others [33–35]. Similarly, acoelomorph genomes vary between 559 and 1059 Mbps but
286 contrast with the chromosome-level genome of *Xenoturbella bocki*, estimated at 110 Mbps [22].
287 Comparisons of eukaryotic genomes proposed that variations in genome sizes and proportion of
288 repeat elements are correlated [36,37], which might also apply within Xenacoelomorpha.
289 Acoelomorph genomes show a much higher than the small genome of *Xenoturbella* [22].

290 In turn, acoelomorph genomes seem to be characterised by an important reduction of gene
291 content. Indeed, almost 60% of the genes shared between protostomes and deuterostomes are
292 missing in acoelomorphs, which could be explained by the morphological simplicity of these worms

293 compared with other bilaterians, but the evolutionary interpretation depends on the phylogenetic
294 hypothesis. Under the Xenambulacraria hypothesis, their absence must be explained by massive
295 secondary losses. The Nephrozoa hypothesis, on the other hand, suggests that the evolution of the
296 genes exclusively shared by deuterostomes and protostomes occurred in the stem line of Nephrozoa
297 and no *ad hoc* hypotheses of gene loss are required.

298

299 **3.3. Evolution of the genes related to the ultrafiltration excretory system**

300 Despite the absence of a specialised excretory system in Xenacoelomorpha, Andrikou et al.
301 [19] described the presence of active excretion in this phylum through the digestive tissue and
302 annotated several genes known to participate in the excretory mechanisms of nephrozoan animals.
303 Here, we annotated in the genomes of Acoela and Nemertodermatida seven of the nine genes
304 involved in the development of the nephridia and one more (*Sall*) in Acoela. Regardless of their
305 phylogenetic position, whether as a sister to Ambulacraria or Nephrozoa, the presence of these
306 genes might be explained by their participation in other important functions. A spatial
307 transcriptomics analysis in the acoel *Isodiametra pulchra* and the nemertodermatid *Meara stichopi*
308 located the expression of *Nephrin* in the brain and the nerve cords [19], which resembles
309 observations in mammals and *Drosophila*, the latter through the *Nephrin* homolog *Sns* [38–40]. In
310 contrast, no homologs to the *Osrf* gene (named *Odd* in *Drosophila*) could be annotated in any of the
311 acoelomorph genomes. A BLAST search over the two *Xenoturbella* transcriptomes failed to
312 annotate this gene in these species, confirming its absence is a general trait of the phylum. This is
313 noteworthy, as *Osrf* is essential in the formation of the excretory organs: in vertebrates, it
314 participates in the formation of the pronephros, the first stage in kidney formation, and its knock-out
315 results in the absence of kidneys [41]; whereas in *Drosophila*, *Odd* participates in the
316 embryogenesis of the tubules of Malpighi [42]. Overall, it seems that the molecular machinery that
317 participates in the functioning of a complex ultrafiltration excretory system is present in

318 acoelomorphs, but they lack the one gene necessary to promote the formation of discrete excretory
319 organs.

320 This pattern fits well within the Nephrozoa hypothesis. In this scenario, the origin of the
321 excretory organs would be the result of gene co-option, a common phenomenon in the origin of key
322 innovations, such as the development of the radula and shell evolution in molluscs [43] or the
323 multiple origins of cnidarian eyes [44]. Interestingly, six of the nine genes investigated have been
324 annotated in different cnidarian species, strengthening the idea of the molecular machinery
325 predating the appearance of this specialised excretory system [20]. Thus far, *Osr* has not been
326 annotated in any phylum outside of Nephrozoa, supporting the origin of this gene in the ancestor of
327 this clade. Nevertheless, given the ongoing debate around the phylogenetic position of
328 xenacoelomorphs, the Xenambulacraria hypothesis also needs to be taken into consideration. If
329 Xenacoelomorpha is the sister group of Ambulacraria, additional *ad hoc* hypotheses have to be
330 invoked: either the *Osr* gene was independently gained in Protostomia, Ambulacraria, and Chordata
331 or it was lost in Xenacoelomorpha. The *Drosophila Odd* gene has been shown to activate the
332 formation of kidney tissue in vertebrates [42], which suggests a common origin of both genes in
333 protostomes and deuterostomes. Likewise, the function of this gene is not limited to the
334 development of the excretory organs, but it participates in the development of the foregut in
335 vertebrates [45] and it is known to be expressed in the digestive tract of spiralian and
336 hemichordates [20]. Although its general anatomy varies within the phylum, the presence of a sack-
337 like gut is considered a plesiomorphy within Xenacoelomorpha [46] and the involvement of *Osr* in
338 its development could be expected. In this light, the reduction of the excretory organs alone would
339 not explain the secondary loss of *Osr*, as it would need to be completely nonfunctionalized before
340 that.

341 We found statistically significant differences in the gene architecture of all genes but
342 *Nephrin* and *Six*, six of them related to the average exon length. Acoelomorpha is responsible for
343 two-thirds of the differences observed, which fits with the co-option of these genes into the

344 development of the excretory system in the ancestor of Nephrozoa. Changes in gene structure are a
345 strong generator of diversity, particularly after gene duplication, as part of the neofunctionalization
346 of proteins [47]. Alternatively, the differences observed might simply be explained by changes in
347 the selective pressures during the acquisition or the reduction of this system, something that might
348 be supported by the observations in Bryozoa. Within protostomes, Bryozoa, which also lack an
349 excretory system, is responsible for most of the variation observed. Notably, half of the gene
350 metrics that are visibly different in this phylum are shared with acoelomorphs: *ZO1* and *Lhx* length,
351 *ZO1* number of exons, and *Sall* average exon length. However, the variation does not always go in
352 the same direction (e.g., the number of exons in *ZO1* increases in Acoelomorpha, but decreases in
353 Bryozoa), likely because the absence of the excretory organs in the two phyla represents two
354 independent evolutionary events. Some authors have argued that the rapid evolutionary rates
355 observed in Acoelomorpha might be associated with other traits observed in this group, such as
356 chromosomal rearrangements or changes in gene content, misleading comparative analyses and
357 making *Xenoturbella* a better model for studying the evolution of Xenacoelomorpha [18,22].
358 Unfortunately, the genomic data of *X. bocki* is yet not available so we have inferred a gene tree for
359 each of the nine genes analysed and compared the differences in branch lengths among clades to
360 explore this possibility (Supplementary Figure S4). Although branch lengths are indeed
361 significantly longer in acoelomorphs than in any other clade (except in *Lhx* and *Six*), they are also
362 longer in deuterostomes compared to protostomes despite the similarities between the two clades. In
363 more detail, protostomes present the shortest branches in the gene trees, while Bryozoa is one of the
364 phyla with the most changes in gene architecture. Hence, the accelerated evolutionary rates of
365 Acoelomorpha do not seem to be the main factor underlying the differences observed in these
366 genes, although it would be interesting to confirm this once all the data from the *Xenoturbella*
367 genome is publicly available.

368

369

370 **4. Conclusions**

371 In this study, we have generated the first draft of a nemertodermatid genome, sequenced from a
372 single, microscopic individual using the Ultra-Low Input DNA protocol and HiFi. We show that
373 this approach is capable of producing genomes of relatively good quality even from small
374 organisms with long genomes. The main drawback is genome contiguity, which remains the main
375 challenge and one of the avenues in genome sequencing that need the most attention. Nevertheless,
376 genome quality is good enough to annotate full proteins, allowing detailed analysis of gene
377 architecture. We prove this by analysing the genes related to the ultrafiltration excretory system. We
378 observe that the molecular machinery related to this system predates its origin, as most of the genes
379 were present in Urbilateria or even in the cnidarian-bilaterian ancestor. Interestingly, all genes but
380 *Osrf*, the one gene triggering the formation of these organs, were annotated in Xenacoelomorpha.
381 Thus far, gene architecture is markedly different in Acoelomorpha, which cannot be explained
382 either by the accelerated evolution of this clade or the lack of the excretory system alone. All these
383 findings are more easily explained under the Nephrozoa hypothesis.

384

385

386 **5. Material and Methods**

387 **5.1. DNA extractions, library preparation, and sequencing**

388 High molecular weight DNA was extracted from single individuals of the nemertodermatid
389 *Nemertoderma westbladi* stored in either ethanol, RNAlater, or RNA Shield using two different
390 methods: the salting-out protocol and the QIAamp Micro DNA kit. The Qubit dsDNA HS kit, a 2%
391 agarose gel, and a Femto Pulse system were used to ensure the extraction met the minimum
392 requirements for DNA yield and fragment size (the majority of gDNA over 20 kbps).

393 Library preparation and sequencing followed the PacBio Ultra-Low DNA Input protocol
394 with small modifications. Briefly, DNA was sheared to 10 kbps using Megaruptor 3 instead of
395 Covaris g-TUBE. After removing single-strand overhangs and repairing the fragment ends, DNA

396 fragments were ligated to the amplification adapter and PCR amplified in two independent reactions
397 (Reaction Mix 5A and 5B) of 15 cycles each. Amplified DNA was purified using ProNex Beads,
398 pooled in a single sample, damage repaired for the second time, and ligated to the hairpin adapters.
399 Size selection of the prepared SMRTbell library was done using a 35% dilution of AMPure PB
400 beads, which removed all fragments shorter than 3kbps, instead of the BluePippin system. Finally,
401 the library was sequenced in one SMRT cell on the Sequel IIie platform.

402

403 **5.2. Data filtering, assembly, and decontamination**

404 The ‘Trim gDNA Amplification Adapters’ pipeline from SMRT Link v11 was used to remove
405 sequencing adapters. Three genome assembly strategies were attempted and compared: the IPA
406 HiFi Genome Assembler included in SMRT Link v11 (PacBio), Hifiasm v.0.7 [48], and Flye
407 v.2.8.3 [49]. Based on genome length, fragment size, and completeness (measured with BUSCO
408 and the metazoa odb10 database), the Flye assembly was selected for downstream analyses, which
409 included two additional scaffolding approaches. First, the two *N. westbladi* transcriptomes were
410 mapped to the genome using HISAT2 v.2.0.5 [50] and fed to P_RNA_SCAFFOLDER [51].
411 Second, the genome of *S. roscoffensis* was used as a reference to map the assembled genome with
412 RagTag v.2.0.1 [52]. Unfortunately, none of these attempts improved the genome contiguity any
413 further.

414 The raw assembly was decontaminated following the BlobTools2 pipeline [53]. Coverage
415 data was calculated by mapping the filtered HiFi reads to the assembled genome using Minimap2
416 [54], genome completeness inferred with BUSCO v.5.2.2 [55] and the Metazoa odb10 database, and
417 taxonomic information was identified through BLAST searches of the contigs versus the UniProt
418 database (Release 2022_05) using diamond v.0.9.26.127 [56]. Only the contigs identified as
419 “Metazoa” were kept at this stage. Additionally, a BLAST search was used to remove
420 mitochondrial contigs. Finally, Minimap2 was used to map the reads back to the decontaminated
421 genome to separate the nemertodermatid reads. The k-mer approaches GenomeScope v.2.0 and

422 SmudgePlot [57] were used to calculate the genome heterozygosity and ploidy before and after the
423 decontamination step with a kmer length of 21. To identify the contaminant contigs, the diamond
424 output was used to extract the *Taxid* information of the hits, which is associated with a unique
425 taxonomic category on the NCBI database.

426

427 **5.3. Genome annotation**

428 RepeatMasker v.4.1.2-p1 [58] was used to soft mask the repeats in the decontaminated genome with
429 the rmblast engine, for which a custom repeat database was generated with RepeatModeler v.2.0.1
430 [59] and the -LTRStruct option activated. Afterwards, the genome was annotated with BRAKER2
431 [60] using transcriptomic and proteomic evidence. The two available transcriptomes for *N.*
432 *westbladi* were downloaded and quality filtered in a two-step approach. Adapters removal and a
433 light trimming were performed with Trimmomatic v.0.36 (as implemented in Trinity v2.6.6, [61]),
434 followed by a more thorough cleaning with PRINSEQ v.0.20.3 [62]: trim all terminal bases with a
435 quality below 30 and filter out reads whose mean quality is below 25, low complexity sequences
436 (minimum entropy 50), and reads shorter than 75bp. Clean reads were mapped to the soft-masked
437 genome with STAR v.2.7.9 [63] and the options “--sjdbOverhang 100 --genomeSAindexNbases 13
438 --genomeChrBinNbits 15” and “--chimSegmentMin 40 --twoPassMode Basic”. For the proteomes,
439 the gene models from the acoel *P. naikaiensis* [10], the BUSCO Metazoa odb10 database, and a
440 custom set of single-copy orthogroups, inferred from published transcriptomes with OrthoFinder
441 v.2.4.1 [64], were concatenated and mapped to the *N. westbladi* genome using ProtHint v.2.6 [65].
442 The inferred gene models were functionally annotated by pfam_scan v.1.6 [66] and the PFAM 31.0
443 database.

444

445 **5.4. Quality control**

446 The quality of the decontaminated genome was assessed using QUAST v.5.2.0 [67] and the
447 completeness of the genome and the annotation with BUSCO v.5.2.2 using the Metazoa and

448 Eukaryota odb10 databases. Since all the metazoan contigs were kept during the decontamination
449 step, two approaches were followed to ensure they belong to the nemertodermatid genome. First, a
450 distance tree was inferred with FastMe v.2.1.5 [68] based on a distance matrix calculated with
451 Skmer [69], an alignment-free method designed to estimate genomic distances, over the *N.*
452 *westbladi* genome and 18 metazoan genomes downloaded from GenBank (Supplementary Table
453 S4). Second, a phylogenetic tree was inferred from these genomes except for three for which the
454 annotated proteome was not available. Briefly, orthogroups were inferred with OrthoFinder v.2.4.1
455 [64] and clean from paralogs with PhyloPyPruner v.1.2.3 [70] using the “Largest Subtree” method,
456 collapsing nodes with bootstrap support lower than 60, and pruning branches more than five times
457 longer than the standard deviation of all branch lengths in the tree. Then, orthogroups were aligned
458 with MAFFT v.7.475 using the L-INS-i algorithm [71], cleaned from poorly aligned sites with
459 BMGE v.1.12 [72], tested for stationarity and homogeneity (symmetry tests) with IQ-TREE2
460 v.2.1.3 [73], and concatenated with FASconCAT v.1.05 [74]. Finally, a phylogenetic tree was
461 inferred using coalescence (ASTRAL, [75]) and site-specific, concatenation-based methods
462 (assuming 20 amino acid categories, C20) with IQ-TREE v.1.6.12 [76].

463 All the genome metrics, including length, contiguity, number of genes, and completeness,
464 among others, were compared to the acoel genomes from *P. naikaiensis* [10] and *S. roscoffensis*
465 [11], which were also tested for contaminants using BlobTools2, following the same pipeline and
466 with the same filtering criteria. The genomes of *Hofstenia miamia* and *Xenoturbella bocki*
467 [12,22] were not considered because an annotation file with details of protein structure is not
468 available for any of them. Additionally, a second *N. westbladi* genome sequenced in an Illumina
469 HiSeq2500 platform was also included in the comparisons to estimate the improvement in genome
470 quality with HiFi data from a short-read approach. Briefly, DNA was extracted from a pool of 12
471 individuals, collected in the same location at the same time, the sequencing library was prepared
472 with a Rubicon kit, and the sequencing generated more than 385 million reads. The Illumina reads
473 were assembled with SPAdes v.3.14.1 [77], with four kmer lengths (21, 33, 55, 75) and error

474 correction activated. Finally, this genome was analysed with the same parameters as the HiFi
475 genome to eliminate contamination contigs, produce completeness stats, and annotate gene models.

476

477 **5.5. Analysis of gene content**

478 To analyse the evolution of gene content in Acoelomorpha, the annotated genomes of 18 animals
479 were compared, including *N. westbladi* (Nemertodermatida) and *P. naikaiensis* and *S.*
480 *symsagittifera* (Acoela) as representatives of Acoelomorpha, eight protostome genomes, four
481 deuterostomes, and three cnidarians as the outgroup to Bilateria (Supplementary Table S4).
482 Redundancies in the gene models of all genomes were removed with CD-HIT [78], clustering all
483 sequences more than 95% identical, and then functionally annotated with pfam_scan v.1.6 [66] and
484 the PFAM 31.0 database. The annotated proteins were clustered using OrthoFinder v.2.4.1 [64] and
485 used to calculate the number of genes specific to or shared among the four main clades of interest:
486 Cnidaria, Acoelomorpha, Deuterostomia, and Protostomia. The genes present in at least one
487 cnidarian and one bilaterian were considered to be shared across Metazoa, whereas the genes
488 present in at least two of Acoelomorpha, Deuterostomia, and Protostomia were considered to be
489 shared across Bilateria. Then, the proportion of “metazoan” and “bilaterian” genes absent from each
490 of the three bilaterian clades was calculated based on these two datasets.

491

492 **5.6. Annotation and comparison of the genes related to the ultrafiltration excretory system**

493 This analysis was based on the results of Gąsiorowski et al. [20], who used spatial transcriptomics
494 to identify the genes involved in the development of the ultrafiltration excretory system in several
495 protostomes and one hemichordate species. All the protein sequences annotated in this study were
496 downloaded from GenBank except *Hunchback*, as they found no evidence of this gene being
497 involved in nephridiogenesis, for a total of three structural proteins: *Nephrin*, *Kirrel*, and *ZO1*; and
498 six transcription factors: *Eya*, *Lhx1/5*, *Osr*, *POU3*, *Sall*, and *Six1*. These genes were annotated in the
499 same genomes used to analyse gene content evolution through BLAST searches with diamond

500 v0.9.26.127 [56]. The correct identification of these genes was later confirmed through
501 phylogenetic analyses with IQ-TREE v.1.6.12 [76] and manual BLAST searches on the NCBI
502 webserver. The identification of the *Lhx1/5* and *Six1* transcription factors was not always
503 straightforward, as they are thoroughly mixed in the phylogenetic tree with many other gene
504 variants and sometimes different isoform names were proposed in the BLAST searches for the same
505 sequence, and thus they represent a mixture of isoforms of the same gene. A custom R script was
506 written to locate the filtered genes in the GFF files and extract three metrics related to gene
507 architecture: protein length, number of exons per protein, and average exon length per gene.
508 Unfortunately, the GFF annotation file was not available for all these genomes, so not all of them
509 could be included in this analysis (Supplementary Table S4). To ameliorate the misleading effect of
510 highly fragmented genes we filtered out all proteins shorter than half of the average protein length
511 of the respective gene (a total of 10 proteins). To test if the observed differences in the three gene
512 metrics were statistically significant, the Shapiro-Wilk's method and the Barlett test were used to
513 check if they follow a normal distribution and the homogeneity of their variances, respectively. For
514 each gene, the differences among clades were tested with either an ANOVA or a Kruskal-Wallis
515 test, depending on the result of the normality and homoscedasticity tests. Finally, the Bonferroni
516 correction (ANOVA) and the Dunn test (Kruskal-Wallis) were selected to run pairwise comparisons
517 in all cases identified as statistically different.

518

519

520 **6. Data availability**

521 The raw sequencing data and the annotated genome assemblies are available through the NCBI
522 database under BioProject PRJNA981986. Raw and decontaminated assemblies, as well as
523 annotation files, predicted nucleotide and protein sequences, mapped reads, and supporting
524 information were deposited in the GigaScience database GigaDB. The code necessary to replicate

525 all the analyses has been uploaded to the GitHub repository

526 https://github.com/saabalde/2023_Nemertoderma_westbladi_genome

527

528

529 **7. Additional files**

530 **Supplementary Figure S1:** Summary of the completeness analyses performed after the
531 decontamination. The four genomes were analysed with BUSCO using the Eukaryota (A) and
532 Metazoa (B) odb10 databases.

533 **Supplementary Figure S2:** Ploidy result generated by SmudgePlot after the decontamination
534 (kmer = 21).

535 **Supplementary Figure S3:** Transformed plot generated by GenomeScope analysis after
536 decontamination (kmer = 21).

537 **Supplementary Figure S4:** Average branch length per clade and ultrafiltration gene. The error bars
538 represent the standard error.

539 **Supplementary Figure S5:** Summary of the analyses related to the evolution of the ultrafiltration
540 excretory system. (A) Phylogenetic tree inferred with IQ-TREE to confirm the correct annotation
541 and monophyly of the genes. Boxplot summarising the (B) protein length, (C) number of exons per
542 gene, and (D) average exon length per clade and gene. The results are presented as a facet to
543 separate the structural proteins and transcription factors in two panels. For the two panels, the same
544 scale in the Y-axis is used.

545 **Supplementary Table S1:** Summary of the contaminants identified in the *N. westbladi* genome by
546 BlobTools2.

547 **Supplementary Table S2:** Statistics of the repeat elements identified and masked by
548 RepeatMaster. The abundance of each repeat family is shown as a percentage of the genome length.

549 **Supplementary Table S3:** List including the taxonomic information, to the lowest category
550 possible, of all the contaminants identified in the assembly of the *N. westbladi* genome (HiFi).

551 **Supplementary Table S4:** Accession number and reference of the genomes downloaded from the
552 SRA and used in comparative analyses.

553

554

555 **8. Acknowledgements**

556 We are thankful to C. Laumer for his advice during the early stages of this project. Analyses and
557 data handling were enabled by resources in projects SNIC 2020/15-191 and SNIC 2021/22-562
558 provided by the National Academic Infrastructure for Supercomputing in Sweden (NAIIS) at
559 UPPMAX, funded by the Swedish Research Council through grant agreement no. 2018-05191.

560

561

562 **9. Funding**

563 This project was funded by the VR project 2018-05191, granted to UJ, and the '2021 Riksmusei
564 Vänner' and '2020 Helge Ax:son Johnsons stiftelse' stipends to SA.

565

566

567 **9. Competing interests**

568 The authors declare that they have no competing interests.

569

570

571 **10. Authors' contribution**

572 SA, OVP, and UJ conceived the project; SA performed DNA extractions; JH was responsible for
573 library preparations and sequencing; CTR carried out the post-sequencing analyses, from quality
574 filtering to genome assembly; SA decontaminated and annotated the genome and performed
575 comparative analyses; SA and UJ led the writing of the manuscript. All authors read and approved
576 the final manuscript for submission.

578 **References**

- 579 1. Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, Brenner S,
580 Ragsdale CW, Rokhsar DS. 2015 The octopus genome and the evolution of cephalopod
581 neural and morphological novelties. *Nature* **524**, 220–224. (doi:10.1038/nature14668)
- 582 2. Dunwell TL, Paps J, Holland PWH. 2017 Novel and divergent genes in the evolution of
583 placental mammals. *Proc. R. Soc. B Biol. Sci.* **284**. (doi:10.1098/rspb.2017.1357)
- 584 3. Rubin BER, Jones BM, Hunt BG, Kocher SD. 2019 Rate variation in the evolution of non-
585 coding DNA associated with social evolution in bees. *Philos. Trans. R. Soc. B Biol. Sci.* **374**.
586 (doi:10.1098/rstb.2018.0247)
- 587 4. Korlach, Jonas. 2020 A High-Quality PacBio Insect Genome from 5 ng of Input DNA.
- 588 5. Kingan SB, Heaton H, Cudini J, Lambert CC, Baybayan P, Galvin BD, Durbin R, Korlach J,
589 Lawniczak MKN. 2019 A high-quality de novo genome assembly from a single mosquito
590 using pacbio sequencing. *Genes (Basel)*. **10**. (doi:10.3390/genes10010062)
- 591 6. Schneider C, Woehle C, Greve C, D’Haese CA, Wolf M, Hiller M, Janke A, Bálint M,
592 Huettel B. 2021 Two high-quality de novo genomes from single ethanol-preserved specimens
593 of tiny metazoans (Collembola). *Gigascience* **10**, 1–12. (doi:10.1093/gigascience/giab035)
- 594 7. Xu H *et al.* 2021 Comparative Genomics Sheds Light on the Convergent Evolution of
595 Miniaturized Wasps. *Mol. Biol. Evol.* **38**, 5539–5554. (doi:10.1093/molbev/msab273)
- 596 8. Gross V, Treffkorn S, Reichelt J, Epple L, Lüter C, Mayer G. 2019 Miniaturization of
597 tardigrades (water bears): Morphological and genomic perspectives. *Arthropod Struct. Dev.*
598 **48**, 12–19. (doi:10.1016/j.asd.2018.11.006)
- 599 9. Liu S, Hui TH, Tan SL, Hong Y. 2012 Chromosome evolution and genome miniaturization in
600 minifish. *PLoS One* **7**, 1–7. (doi:10.1371/journal.pone.0037305)
- 601 10. Arimoto A *et al.* 2019 A draft nuclear-genome assembly of the acoel flatworm Praesagittifera
602 naikaiensis. *Gigascience* **8**, 1–8. (doi:10.1093/gigascience/giz023)
- 603 11. Martinez P, Ustyantsev K, Biryukov M, Mouton S, Glasenburg L, Sprecher SG, Bailly X,
604 Berezikov E. 2022 Genome assembly of the acoel flatworm Symsagittifera roscoffensis, a
605 model for research on body plan evolution and photosymbiosis. *G3 Genes|Genomes|Genetics*
- 606 12. Gehrke AR *et al.* 2019 Acoel genome reveals the regulatory landscape of whole-body
607 regeneration. *Science (80-.).* **363**. (doi:10.1126/science.aau6173)
- 608 13. Haszprunar G. 2016 Review of data for a morphological look on Xenacoelomorpha (Bilateria
609 incertae sedis). *Org. Divers. Evol.* **16**, 363–389. (doi:10.1007/s13127-015-0249-z)
- 610 14. Jondelius U, Ruiz-Trillo I, Baguñà J, Riutort M. 2002 The Nemertodermatida are basal
611 bilaterians and not members of the Platyhelminthes. *Zool. Scr.* **31**, 201–215.
612 (doi:10.1046/j.1463-6409.2002.00090.x)

613 15. Juravel K, Porras L, Höhna S, Pisani D, Wörheide G. 2023 Exploring genome gene content
614 and morphological analysis to test recalcitrant nodes in the animal phylogeny. *PLoS One* **18**,
615 e0282444. (doi:10.1371/journal.pone.0282444)

616 16. Cannon JT, Vellutini BC, Smith J, Ronquist F, Jondelius U, Hejnol A. 2016
617 Xenacoelomorpha is the sister group to Nephrozoa. *Nature* **530**, 89–93.
618 (doi:10.1038/nature16520)

619 17. Kapli P, Telford MJ. 2020 Topology-dependent asymmetry in systematic errors affects
620 phylogenetic placement of Ctenophora and Xenacoelomorpha. *Sci. Adv.* **6**, 1–12.
621 (doi:10.1126/sciadv.abc5162)

622 18. Philippe H *et al.* 2019 Mitigating Anticipated Effects of Systematic Errors Supports Sister-
623 Group Relationship between Xenacoelomorpha and Ambulacraria. *Curr. Biol.* **29**, 1818–
624 1826.e6. (doi:10.1016/j.cub.2019.04.009)

625 19. Andrikou C, Thiel D, Ruiz-Santiesteban JA, Hejnol A. 2019 Active mode of excretion across
626 digestive tissues predates the origin of excretory organs. *PLoS Biol.* **17**, 1–22.
627 (doi:10.1371/journal.pbio.3000408)

628 20. Gąsiorowski L, Andrikou C, Janssen R, Bump P, Budd GE, Lowe CJ, Hejnol A. 2021
629 Molecular evidence for a single origin of ultrafiltration-based excretory organs. *Curr. Biol.*
630 **31**, 3629–3638.e2. (doi:10.1016/j.cub.2021.05.057)

631 21. Martín-Durán JM, Pang K, Børve A, Lê HS, Furu A, Cannon JT, Jondelius U, Hejnol A. 2018
632 Convergent evolution of bilaterian nerve cords. *Nature* **553**, 45–50.
633 (doi:10.1038/nature25030)

634 22. Schiffer PH *et al.* 2022 The slow evolving genomes of the xenacoelomorph worm
635 *Xenoturbella bocki*. *bioRxiv*

636 23. Dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PCJ, Yang Z. 2015
637 Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular
638 Timescales. *Curr. Biol.* **25**, 2939–2950. (doi:10.1016/j.cub.2015.09.066)

639 24. Boscaro V *et al.* 2022 Microbiomes of microscopic marine invertebrates do not reveal
640 signatures of phylosymbiosis. *Nat. Microbiol.* **7**, 810–819. (doi:10.1038/s41564-022-01125-
641 9)

642 25. Yoshida Y, Konno S, Nishino R, Murai Y, Tomita M, Arakawa K. 2018 Ultralow input
643 genome sequencing library preparation from a single tardigrade specimen. *J. Vis. Exp.* **2018**,
644 1–8. (doi:10.3791/57615)

645 26. Lord A, Cunha TJ, de Medeiros BAS, Sato S, Khost DE, Sackton TB, Giribet G. 2023
646 Expanding on our knowledge of ecdysozoan genomes, a contiguous assembly of the
647 meiofaunal prapulan *Tubiluchus corallicola*. *Genome Biol. Evol.* **evad103**.

648 27. Tørresen OK *et al.* 2019 Tandem repeats lead to sequence assembly errors and impose multi-
649 level challenges for genome and protein databases. *Nucleic Acids Res.* **47**, 10994–11006.
650 (doi:10.1093/nar/gkz841)

651 28. Lundin K. 1998 Symbiotic bacteria on the epidermis of species of the Nemertodermatida
652 (Platyhelminthes, Acoelomorpha). *Acta Zool.* **79**, 187–191. (doi:10.1111/j.1463-
653 6395.1998.tb01157.x)

654 29. Meyer A *et al.* 2021 Giant lungfish genome elucidates the conquest of land by vertebrates.
655 *Nature* **590**. (doi:10.1038/s41586-021-03198-8)

656 30. Slyusarev GS *et al.* 2020 Extreme Genome and Nervous System Streamlining in the
657 Invertebrate Parasite *Intoschia variabili*. *Curr. Biol.* **30**, 1292–1298.e3.
658 (doi:10.1016/j.cub.2020.01.061)

659 31. Decena-Segarra LP, Bizjak-Mali L, Kladnik A, Sessions SK, Rovito SM. 2020
660 Miniaturization, genome size, and biological size in a diverse clade of salamanders. *Am. Nat.*
661 **196**, 634–648. (doi:10.5061/dryad.ht76hdrcg)

662 32. Consortium IHG. 2019 Comparative genomics of the major parasitic worms. *Nat. Genet.* **51**,
663 163–174. (doi:10.1371/journal.pone.0226485)

664 33. Zhang G *et al.* 2014 Comparative genomics reveals insights into avian genome evolution and
665 adaptation. *Science (80-.).* **346**, 1311–1320.

666 34. Nam BH *et al.* 2017 Genome sequence of pacific abalone (*Haliotis discus hannai*): the first
667 draft genome in family Haliotidae. *Gigascience* **6**, 1–8. (doi:10.1093/gigascience/gix014)

668 35. Yuan Z, Liu S, Zhou T, Tian C, Bao L, Dunham R, Liu Z. 2018 Comparative genome
669 analysis of 52 fish species suggests differential associations of repetitive elements with their
670 living aquatic environments. *BMC Genomics* **19**, 1–10. (doi:10.1186/s12864-018-4516-1)

671 36. Elliott TA, Gregory TR. 2015 What's in a genome? The C-value enigma and the evolution of
672 eukaryotic genome content. *Philos. Trans. R. Soc. B Biol. Sci.* **370**.
673 (doi:10.1098/rstb.2014.0331)

674 37. Shah A, Hoffman JI, Schielzeth H. 2020 Comparative analysis of genomic repeat content in
675 gomphocerine grasshoppers reveals expansion of satellite DNA and helitrons in species with
676 unusually large genomes. *Genome Biol. Evol.* **12**, 1180–1193. (doi:10.1093/GBE/EVAA119)

677 38. Putala H, Soininen R, Kilpeläinen P, Wartiovaara J, Tryggvason K. 2001 The murine
678 nephrin gene is specifically expressed in kidney, brain and pancreas: Inactivation of the gene
679 leads to massive proteinuria and neonatal death. *Hum. Mol. Genet.* **10**, 1–8.
680 (doi:10.1093/hmg/10.1.1)

681 39. Bali N, Lee HK, Zinn K. 2022 Sticks and Stones, a conserved cell surface ligand for the Type
682 IIa RPTP Lar, regulates neural circuit wiring in *Drosophila*. *eLife* **11**, 1–30.
683 (doi:10.7554/eLife.71469)

684 40. Putala H, Sainio K, Sariola H, Tryggvason K. 2000 Primary structure of mouse and rat
685 nephrin cDNA and structure and expression of the mouse gene. *J. Am. Soc. Nephrol.* **11**, 991–
686 1001. (doi:10.1681/asn.v116991)

687 41. James RG, Kamei CN, Wang Q, Jiang R, Schulthesis TM, Schultheiss TM. 2006 Odd-
688 skipped related 1 is required for development of the metanephric kidney and regulates

689 formation and differentiation of kidney precursor cells. *Dev. Dis.* **133**, 2995–3004.
690 (doi:10.1242/dev.02442)

691 42. Tena JJ, Neto A, de la Calle-Mustienes E, Bras-Pereira C, Casares F, Gómez-Skarmeta JL.
692 2007 Odd-skipped genes encode repressors that control kidney development. *Dev. Biol.* **301**,
693 518–531. (doi:10.1016/j.ydbio.2006.08.063)

694 43. Hilgers L, Hartmann S, Hofreiter M, von Rintelen T. 2018 Novel Genes, Ancient Genes, and
695 Gene Co-Option Contributed to the Genetic Basis of the Radula, a Molluscan Innovation.
696 *Mol. Biol. Evol.* **35**, 1638–1652. (doi:10.1093/molbev/msy052)

697 44. Picciani N, Kerlin JR, Sierra N, Swafford AJM, Ramirez MD, Roberts NG, Cannon JT, Daly
698 M, Oakley TH. 2018 Prolific Origination of Eyes in Cnidaria with Co-option of Non-visual
699 Opsins. *Curr. Biol.* **28**, 2413–2419.e4. (doi:10.1016/j.cub.2018.05.055)

700 45. Han L, Xu J, Grigg E, Slack M, Chaturvedi P, Jiang R, Zorn AM. 2017 Osr1 functions
701 downstream of Hedgehog pathway to regulate foregut development. *Dev. Biol.* **427**, 72–83.
702 (doi:10.1016/j.ydbio.2017.05.005)

703 46. Gavilán B, Sprecher SG, Hartenstein V, Martinez P. 2019 The digestive system of
704 xenacoelomorphs. *Cell Tissue Res.* **377**, 369–382. (doi:10.1007/s00441-019-03038-2)

705 47. Xu G, Guo C, Shan H, Kong H. 2012 Divergence of duplicate genes in exon-intron structure.
706 *Proc. Natl. Acad. Sci. U. S. A.* **109**, 1187–1192. (doi:10.1073/pnas.1109047109)

707 48. Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021 Haplotype-resolved de novo
708 assembly using phased assembly graphs with hifiasm. *Nat. Methods* **18**, 170–175.
709 (doi:10.1038/s41592-020-01056-5)

710 49. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019 Assembly of long, error-prone reads using
711 repeat graphs. *Nat. Biotechnol.* **37**, 540–546. (doi:10.1038/s41587-019-0072-8)

712 50. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019 Graph-based genome alignment and
713 genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* **37**, 907–915.
714 (doi:10.1038/s41587-019-0201-4)

715 51. Zhu BH, Xiao J, Xue W, Xu GC, Sun MY, Li JT. 2018 P_RNA_scaffolder: A fast and
716 accurate genome scaffolder using paired-end RNA-sequencing reads. *BMC Genomics* **19**, 1–
717 13. (doi:10.1186/s12864-018-4567-3)

718 52. Alonge M, Lebeigle L, Kirsche M, Aganezov S, Wang X, Lippman ZB, Schatz MC, Soyk S.
719 2021 Automated assembly scaffolding elevates a new tomato system for high-throughput
720 genome editing. *bioRxiv*

721 53. Challis R, Richards E, Rajan J, Cochrane G, Blaxter M. 2020 BlobToolKit - interactive
722 quality assessment of genome assemblies. *G3 Genes, Genomes, Genet.* **10**, 1361–1374.
723 (doi:10.1534/g3.119.400908)

724 54. Li H. 2021 New strategies to improve minimap2 alignment accuracy. *Bioinformatics* **37**,
725 4572–4574. (doi:10.1093/bioinformatics/btab705)

726 55. Seppey M, Manni M, Zdobnov EM. 2019 BUSCO: Assessing Genome Assembly and
727 Annotation Completeness. In *Gene Prediction. Methods in Molecular Biology* (ed K M.),
728 New York: Humana Press.

729 56. Buchfink B, Reuter K, Drost HG. 2021 Sensitive protein alignments at tree-of-life scale
730 using DIAMOND. *Nat. Methods* **18**, 366–368. (doi:10.1038/s41592-021-01101-x)

731 57. Ranallo-Benavidez TR, Jaron KS, Schatz MC. 2020 GenomeScope 2.0 and Smudgeplot for
732 reference-free profiling of polyploid genomes. *Nat. Commun.* **11**. (doi:10.1038/s41467-020-
733 14998-3)

734 58. Smit AFA, Hubley R, Green P. 2015 RepeatMasker Open-4.0.

735 59. Smit AFA, Hubley R. 2015 RepeatModeler Open-1.0.

736 60. Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. 2021 BRAKER2: Automatic
737 eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein
738 database. *NAR Genomics Bioinforma.* **3**, 1–11. (doi:10.1093/nargab/lqaa108)

739 61. Grabherr MG *et al.* 2011 Full-length transcriptome assembly from RNA-Seq data without a
740 reference genome. *Nat. Biotechnol.* **29**, 644–652. (doi:10.1038/nbt.1883)

741 62. Schmieder R, Edwards R. 2011 Quality control and preprocessing of metagenomic datasets.
742 *Bioinformatics* **27**, 863–864. (doi:10.1093/bioinformatics/btr026)

743 63. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,
744 Gingeras TR. 2013 STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21.
745 (doi:10.1093/bioinformatics/bts635)

746 64. Emms DM, Kelly S. 2019 OrthoFinder: phylogenetic orthology inference for comparative
747 genomics. *Genome Biol.* **20**, 238.

748 65. Brůna T, Lomsadze A, Borodovsky M. 2020 GeneMark-EP+: Eukaryotic gene prediction
749 with self-training in the space of genes and proteins. *NAR Genomics Bioinforma.* **2**, 1–14.
750 (doi:10.1093/nargab/lqaa026)

751 66. Mistry J, Bateman A, Finn RD. 2007 Predicting active site residue annotations in the Pfam
752 database. *BMC Bioinformatics* **8**, 1–14. (doi:10.1186/1471-2105-8-298)

753 67. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013 QUAST: Quality assessment tool for
754 genome assemblies. *Bioinformatics* **29**, 1072–1075. (doi:10.1093/bioinformatics/btt086)

755 68. Lefort V, Desper R, Gascuel O. 2015 FastME 2.0: A comprehensive, accurate, and fast
756 distance-based phylogeny inference program. *Mol. Biol. Evol.* **32**, 2798–2800.
757 (doi:10.1093/molbev/msv150)

758 69. Sarmashghi S, Bohmann K, Thomas P, Gilbert M, Bafna V, Mirarab S. 2017 Assembly-free
759 and alignment-free sample identification using genome skims. *Genome Biol.* **20**, 1–20.
760 (doi:10.1101/230409)

761 70. Thalén F, Kocot KM, Haddock S. 2021 PhyloPyPruner: Tree-based Orthology Inference for
762 Phylogenomics.

763 71. Katoh K, Standley DM. 2013 MAFFT multiple sequence alignment software version 7:
764 improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780.

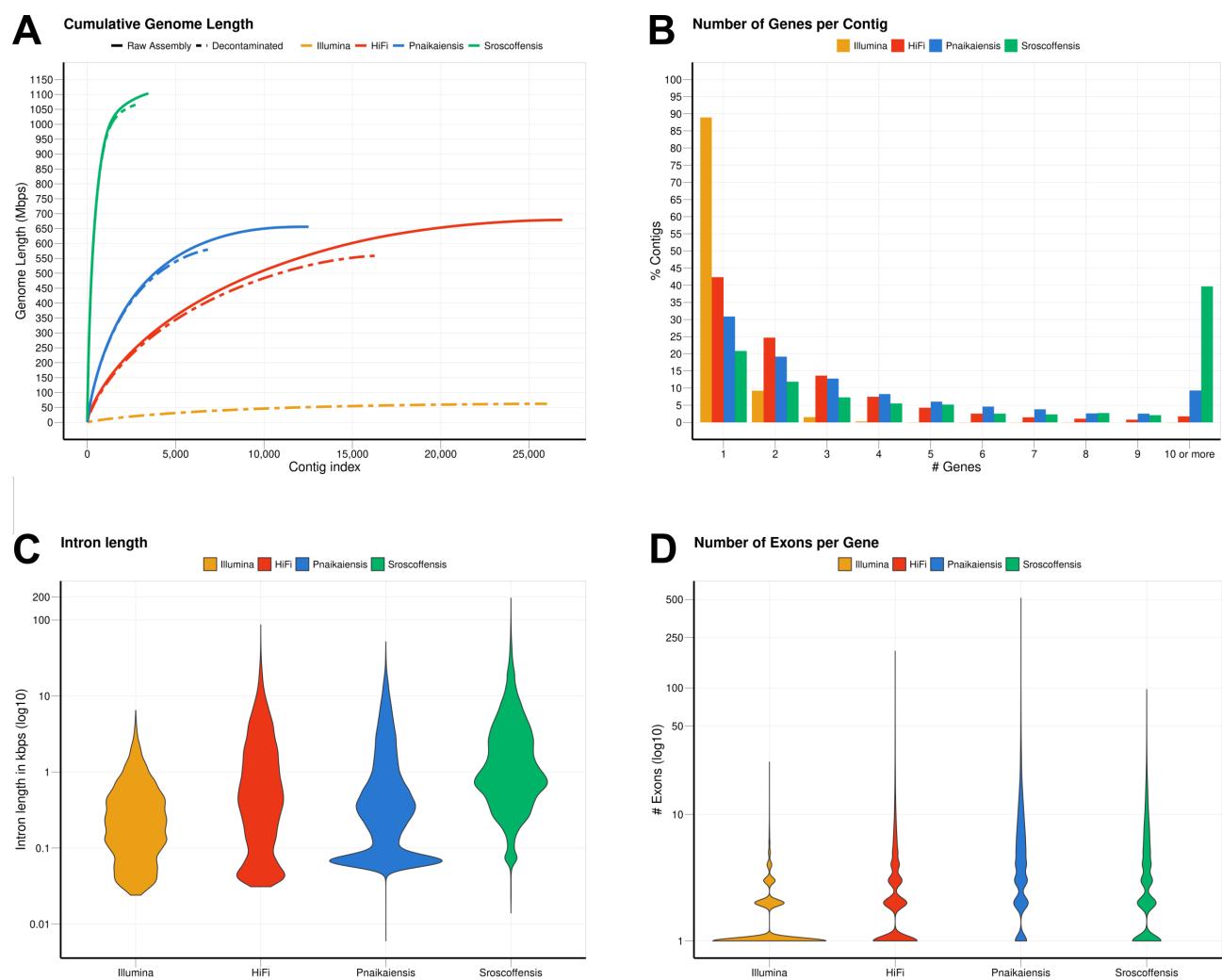
765 72. Criscuolo A, Gribaldo S. 2010 BMGE (Block Mapping and Gathering with Entropy): a new
766 software for selection of phylogenetic informative regions from multiple sequence
767 alignments. *BMC Evol. Biol.* **10**, 210.

768 73. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A,
769 Lanfear R, Teeling E. 2020 IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
770 Inference in the Genomic Era. *Mol. Biol. Evol.* **37**, 1530–1534.
771 (doi:10.1093/molbev/msaa015)

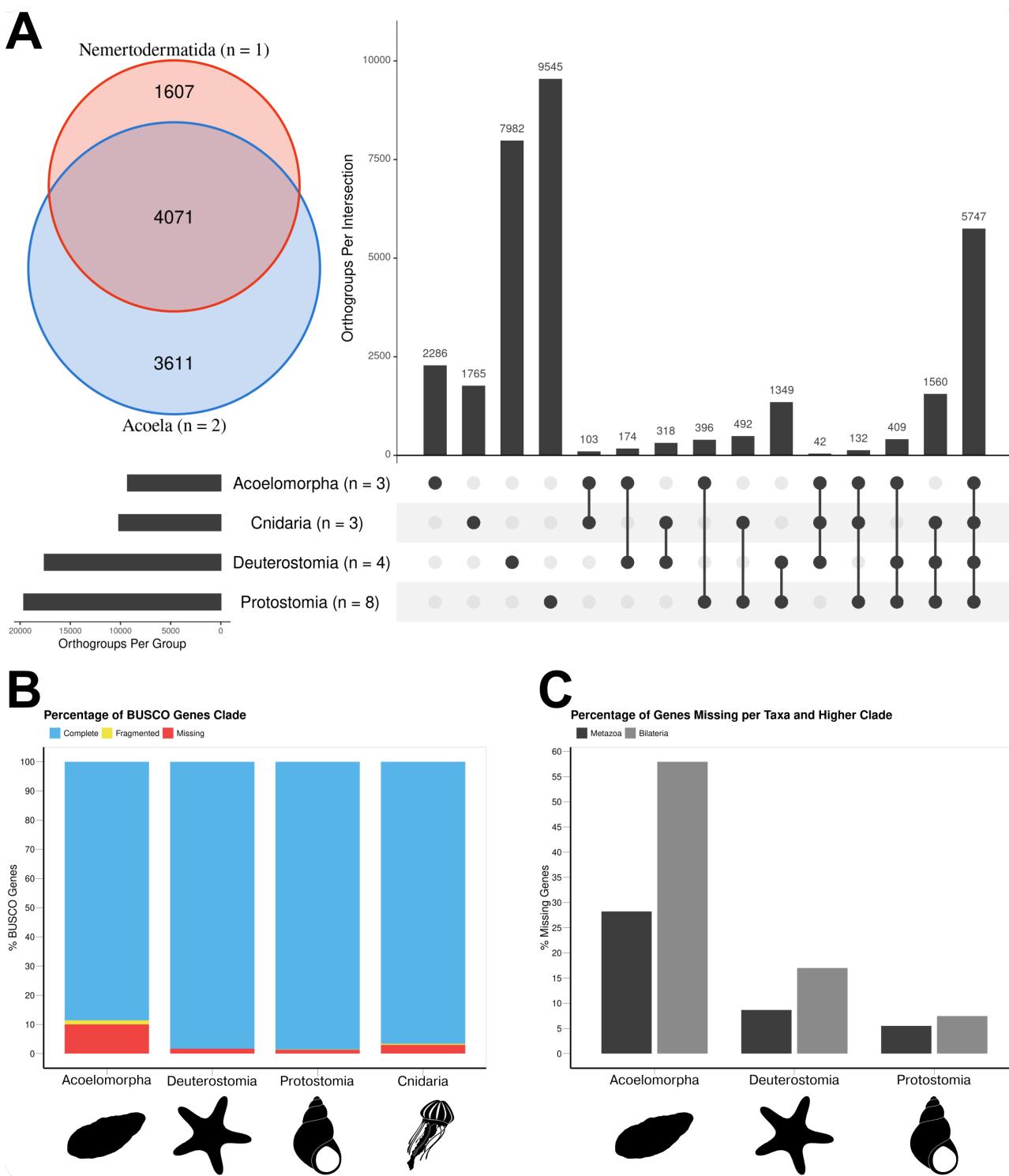
772 74. Kück P, Longo GC. 2014 FASconCAT-G: Extensive functions for multiple sequence
773 alignment preparations concerning phylogenetic studies. *Front. Zool.* **11**, 1–8.
774 (doi:10.1186/s12983-014-0081-x)

775 75. Zhang C, Sayyari E, Mirarab S. 2017 ASTRAL-III: Increased Scalability and Impacts of
776 Contracting Low Support Branches. In *Comparative Genomics. RECOMB-CG 2017. Lecture
777 Notes in Computer Science* (ed M J.), Springer, Cham.

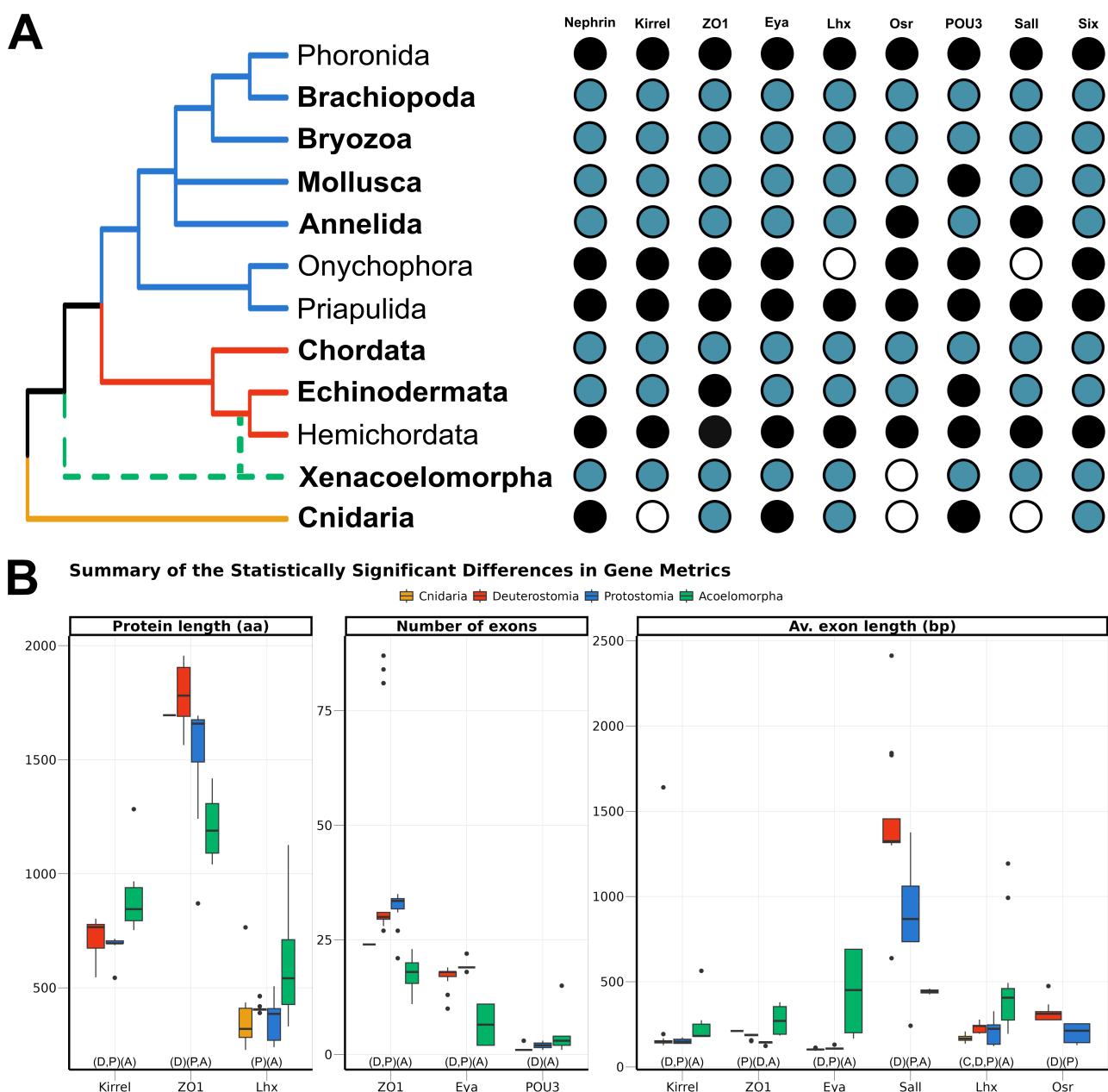
778 76. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015 IQ-TREE: a fast and effective
779 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* **32**,
780 268–274. (doi:10.1093/molbev/msu300)


781 77. Bankevich A *et al.* 2012 SPAdes: A new genome assembly algorithm and its applications to
782 single-cell sequencing. *J. Comput. Biol.* **19**, 455–477. (doi:10.1089/cmb.2012.0021)

783 78. Fu L, Niu B, Zhu Z, Wu S, Li W. 2012 CD-HIT: Accelerated for clustering the next-
784 generation sequencing data. *Bioinformatics* **28**, 3150–3152.
785 (doi:10.1093/bioinformatics/bts565)


786 79. Giribet G, Edgecombe GD. 2020 *The Invertebrate Tree of Life*. Princeton University Press.
787 (doi:10.2307/j.ctvscxrhm)

788


789 **Figures and tables**

790 **Figure 1:** Summary of the statistics calculated for the two *N. westbladi* genomes (sequenced with Illumina or
791 HiFi), *P. naikaiensis*, and *S. roscoffensis*. (A) Cumulative genome length, sorted from the longest to the
792 shortest contig, separating the raw assembly from the BlobTools decontamination. Due to the large number
793 of contigs in the raw assembly, only the decontaminated version of the *N. westbladi* genome sequenced with
794 Illumina is shown. (B) Summary of the number of genes per contig, (C) distribution of the intron length per
795 species, and (D) number of exons per gene.

796 **Figure 2:** The gene content of the three acoelomorph genomes was compared to 15 genomes from several phyla, including three
797 cnidarians, four deuterostomes (three chordates and one echinoderm), and eight protostomes. (A) Number of unique and shared genes
798 among acoelomorphs, cnidarians, deuterostomes, and protostomes. In the inset, the number of shared genes between the two acoel
799 genomes and *N. westbladi*. (B) BUSCO scores of each of the four main clades. (C) Percentage of missing genes observed in
800 acoelomorphs, deuterostomes, and protostomes. The set of “metazoan genes” was defined as all genes shared between at least one
801 cnidarian and one bilaterian species; whereas the “bilaterian genes” are those shared between at least two of the three bilaterian
802 clades. The silhouettes in (B) and (C) were downloaded from PhyloPic (Nemertodermatida, Andreas Hejnol; *Chrysaora*, Levi
803 Simons; Asteroidea, Fernando Carezzano; and *Tricolia*, Tauana Cunha).

804 **Figure 3: (A)** Presence of the nine genes related to the ultrafiltration excretory system annotated in this study
805 (blue), complemented with information from GenBank (black). The phyla investigated here are highlighted
806 in bold, whereas the others were studied in Gąsiorowski et al. [20]. The cladogram topology is based on [79],
807 including the two alternative positions of Xenacoelomorpha as a dashed line. (B) Boxplot comparing the
808 three metrics related to gene architecture, separating the four main clades analysed per colour. Only the
809 comparisons significantly different are shown, but the full result is included in Supplementary Figure S5. In
810 the X-axis, below the boxplots, the brackets summarise the pairwise comparisons, clustering the clades with
811 no significant differences within the same brackets.

812 **Table 1:** Statistics of the four genomes analysed in this study after the decontamination step. The *N.*
813 *westbladi* genomes are presented as “HiFi” and “Illumina” to differentiate the two sequencing
814 approaches.

Parameter	Illumina	HiFi	Pnaikaiensis	Sroscoffensis
Length after BlobTools (Mbps)	62.229	558.589	581.371	1064.926
N's (count)	49,310	15,300	7,367,142	1,589,933
N's (%)	0.079	0.003	1.267	0.149
Number of contigs	26,021	16,265	7104	2730
Longest contig (Kbps)	65.353	601.587	702.461	8003.794
Average contig length (Kbps)	2.391	34.343	81.837	390.083
N50 (Kbps)	3.996	48.170	129.752	1077.644
Number of gene models	23,120	30,698	20,303	28,513
Functionally annotated proteins	14,486	12,849	13,708	17,717
Max. number of genes per contig	33	89	37	280
Average number of genes per contig	0.876	1.816	2.858	12.281
Max. number of exons per gene	26	195	512	97
Average number of exons per gene	1.531	3.044	6.386	4.244

815