bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Enabling Al in Synthetic Biology through Construction File Specification

Nassim Ataii?, Sanjyot Bakshi?, Yisheng Chen?, Michael Fernandez?, Zihang Shao?,
Zachary Scheftel?, Connor Tou?, Mia Vega?, Yuting Wang?, Hanxiao Zhang?, Zexuan
Zhao?, and J. Christopher Andersonab<*

a Department of Bioengineering, University of California, Berkeley, CA 94720, USA

b QB3: California Institute for Quantitative Biological Research, University of
California, Berkeley, CA 94720, USA

¢ Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
94720, USA

*Email: jcanderson@berkeley.edu
Abstract

The Construction File (CF) specification establishes a standardized interface for
molecular biology operations, laying a foundation for automation and enhanced
efficiency in experiment design. It is implemented across three distinct software
projects: PyDNA_CF_Simulator, a Python project featuring a ChatGPT plugin for
interactive parsing and simulating experiments; ConstructionFileSimulator, a field-
tested Java project that showcases 'Experiment' objects expressed as flat files; and
C6-Tools, a JavaScript project integrated with Google Sheets via Apps Script,
providing a user-friendly interface for authoring and simulation of CF. The CF
specification not only standardizes and modularizes molecular biology operations
but also promotes collaboration, automation, and reuse, significantly reducing
potential errors. The potential integration of CF with artificial intelligence,
particularly GPT-4, suggests innovative automation strategies for synthetic biology.
While challenges such as token limits, data storage, and biosecurity remain,
proposed solutions promise a way forward in harnessing Al for experiment design.
This shift from human-driven design to Al-assisted workflows, steered by high-level
objectives, charts a potential future path in synthetic biology, envisioning an
environment where complexities are managed more effectively.

Introduction

Construction File (CF) is a domain-specific representation that encapsulates
a genetic engineering experiment in terms of molecular biology operations and the
genetic materials involved. Rather than being a language, it serves as an abstraction
that defines the minimal information content necessary to describe the DNA
modification chemistry involved in fabricating a DNA or genetic library. Despite the
existence of multiple ways to express an experiment as a CF, we have explored its
standardization to enhance communication among humans, software tools, and
intelligent systems within a collaborative workspace. We propose specifications for
two representations of CF: a shorthand format for convenience and a JSON version
for cross-software communication. Furthermore, we provide parsers and simulators

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

in Python, Java, and JavaScript. We explore human user interfaces for working with
CF objects as well as Al interfaces and their ability to reason about CF objects.

Over the past years, numerous tools have been developed to assist with the
design of DNA cloning schemes, such as J51, Benchling?, A Plasmid Editor (ApE)3,
SnapGene#, SBOL?, Biopython®, Geneious’, pydna®, GenoCAD?, and poly??. These
tools have varying abilities to plan recombinant DNA experiments including the
design of oligonucleotides and prediction of the resulting products. CF can serve as a
standardized representation of the outcome of these design processes. It explicitly
captures the experimental steps and their associated parameters in a minimal form
independent of a specific software tool or environment.

The CF Shorthand Specification is much like a recipe for constructing DNA in
the lab. A list of reaction steps is written in the order they should be performed,
each defined by an operation keyword and parameters, separated by spaces. For
instance, a Polymerase Chain Reaction could be specified as "PCR ForwardPrimer
ReversePrimer Template ProductName", with parameters representing names of
DNA sequences or other relevant details. These sequences can be expressed in the
CF as a name and sequence pair, like "T7_Universal TAATACGACTCACTATAGGG", or
they can reference DNAs from an external source such as a database. Although a CF
does not specify implementation details such as the executor of the process (human
or robot), reagent volumes, or manufacturer choices, it is still capable of defining the
product sequences that would result from any successful implementation.

We first publicly introduced a format for CF in 2007 as part of a cloning
tutorial on OpenWetWarell, with the intention of it being a human-readable
representation of the experiment to aid in training and documentation. Over time, it
became a practical necessity to develop software that could verify CF and catch
design errors in these documents to avoid wasted lab resources and time. This need
prompted multiple iterations of refining the ontology and syntax of CF, culminating
in the current specification. Herein we provide multiple examples of CF shorthand
that have been verified in the wetlab. We also present software tools that can read
and simulate CF to ensure its completeness, syntactic correctness, and the feasibility
of the proposed chemistry.

A CF can also function as an input or specification for an experiment,
executable by an individual researcher, a core facility, or robotic systems. Although
this paper does not present software for converting a CF into more detailed plans, it
demonstrates that artificial intelligence can expand such a plan for human
implementation. However, the current Al falls short of translating a CF into an
Autoprotocol?, a JSON-based language that describes experimental procedures in
terms of robotic operations, such as liquid transfers, plate sealing and unsealing,
among others. Despite these limitations, there is potential for developing software
that can perform this translation. Therefore, a CF can serve as a pivotal intermediate
representation in the design process, with the remaining details inherently
predetermined, provided a rubric that defines the resources available in the lab

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

where it will be executed. This underscores the role of the CF as a critical
intermediary in enabling intelligent systems, including Al, to effectively participate
in the genetic engineering process.

Results

The Construction File (CF) provides a structured framework for encoding
genetic engineering experiments. This framework is articulated through two distinct
specifications: a JSON object format (cf_JSDoc_specification.md) for precise machine-
readable communication, and a shorthand format (cf_shorthand_specification.md)
for human-readable documentation and quick notation. These specifications enable
the encoding and decoding of experiment design information and lay the
groundwork for the integration of artificial intelligence in experiment planning and
simulation.

The JSON object format is a detailed representation. It consists of two main
elements: 'steps' and 'sequences’. The 'steps' element is an array of objects
representing construction steps, including the associated operation, input
sequences, and output product. The 'sequences’ element is an object with key-value
pairs, where each key represents a unique identifier for a DNA sequence, and the
corresponding value represents the sequence, strandedness, and end chemistry of
the DNA.

The shorthand format, on the other hand, is a more abstract and flexible
representation. It is defined as a list of Steps, where each Step represents a specific
operation in a molecular biology experiment. Steps are written on separate lines,
with parameters separated by whitespace (preferably TSV). A Step includes the
names of input DNA sequence(s), non-sequence parameters, and concludes with the
name of the product DNA sequence. The input sequences can refer to products from
previous steps. The shorthand format also allows integration of comments and
sequences using 'name sequence' lines. This flexibility enables CF Shorthand to
represent various DNA operations beyond those explicitly defined in the
specification. However, parsers and simulator algorithms typically require a defined
scope of operations and parameters to apply domain logic. To address this, level 1 of
the specification specifically defines PCR, GoldenGate, Gibson, Digest, Ligate, and
Transform operations.

As shown in Figure 1, the CF Shorthand provides a structured, machine-
readable alternative to traditional illustrations of cloning strategies. Each step in the
Construction File Shorthand begins with an operation, followed by operation-
specific inputs, often sequence names. The final token in each step denotes the
product, encapsulating the outcome of the operation. The full text of this CF is also
available as Examples/Construction_pSB1A2-Bca9128.txt.

Although the CF Shorthand format and the JSON format have different syntax,
the only functional difference between the two formats is the level of detail
regarding strandedness and other characteristics of the DNAs. In most real-world

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

scenarios, cloning experiment inputs are either double-stranded DNAs longer than
100 bp or single-stranded linear oligonucleotides shorter than 100 bp.
Consequently, the additional fields needed to express a DNA's full structure can
usually be inferred. One advantage of the shorthand format is its bidirectional
compatibility with spreadsheets. Excel and Google Sheets can handle TSV data,
allowing for easy manipulation and maintaining the TSV syntax when transferred
between a text field and spreadsheet cells.

Considerations for the specification

The CF specification was designed with a balance between detail and
simplicity in mind. One approach could have been to describe steps in terms of lists
of reagents, aligning with wetlab automation ontologies. However, this would have
led to an unnecessary over-specification and would have been more difficult to
simulate due to the need for a mechanistic simulation of each enzymatic step. On the
other hand, a more abstract approach, aligning with standard assembly schemes like
BioBricks and MoClo are simple to simulate, but this approach lacked the required
detail for comprehensive representation of the diversity of experiments that are
frequently performed. We also considered abstractly defining PCR to include
mechanistically similar methods like Polymerase Chain Assembly and SOEing.
However, this resulted in a heterogenous input parameter schema, leading us to
define the operations more narrowly. A similar thing happened with Assembly. We
explored an 'assemble' operation, and Gibson was an option for the enzyme. This
abstraction didn't add anything, and having assembly methods explicitly stated as
operations was more direct. Thus, we selected commonly-used, method-level
abstractions, encompassing the operations PCR, Digest, GoldenGate, Ligate, Gibson,
and Transform. Each of these operations, in turn, have their unique requirements
and parameters.

Beyond the naming of these operations, some require specific non-DNA
parameters. For instance, the PCR operation includes an optional product size
parameter, which is important when using the CF as an input specification.
However, it is defined as optional since the PCR product size is unknowable if the
PCR hasn't already been simulated. Similarly, the Digest operation includes a
'fragSelect' index parameter. This specifies the fragment desired after digestion,
with numbering starting from the first cut of the first enzyme. This approach offers
flexibility and simplicity, as in most cases, the desired fragment is number 1. Finally,
the Transform operation has an optional incubation temperature field that should
only be included when it is a relevant detail. To further enhance flexibility and
portability, sequences in the CF are treated in a specific way.

In the CF, sequences are referenced by their names, not as objects. This loose
coupling allows a CF to be syntactically valid before the sequences associated with
the names have been defined, thus allowing a CF to also serve as a specification for
the design of the sequences. It also allows a CF to have alternate input sequences
injected during simulation such that a similar sequence of cloning steps can be

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

applied to different input DNAs. Additionally, it improves portability since memory-
intensive sequence data does not need to be transferred.

In developing the sequence representation for the CF, we considered several
formats including TSV, FASTA, Dseqrecord®, and a custom class, Polynucleotide. The
simplest option, name and sequence of the 'watson' strand, was adopted for the
shorthand format. For the JSON representation, we opted for a more detailed
Polynucleotide object, capturing sticky ends, 5' modifications, strandedness, and
circularity. This representation, as illustrated in Figure 2, reflects the DNA's state as
it undergoes operation-specific transformations to yield expected products. This
format accommodates atypical DNA forms and aligns with how molecular biologists
often describe sticky ends. We also considered a Dseqrecord-like format wherein
both strands of the DNA are expressed as strings along with an overhang integer.
This offers chemical precision but requires additional processing and complex
operations for Al reasoning. Moreover, the pydna implementation of Dseqrecord,
while comprehensive, carries unnecessary complexity for our purposes and does
not express 5' modification chemistry. It also includes many fields inherited from
Biopython's SeqRecord about semantics and annotations which are not needed to
specify the chemistry. A middle-ground representation, specifying whether the DNA
is a plasmid, a dsDNA, or an oligo, was also included in shorthand. This covers most
real-world scenarios and can be readily compiled to the Polynucleotide form.

Assessment of Al in Interpreting, Designing, and Simulating CF

We conducted a series of experiments to assess the capabilities of Al,
specifically GPT-4 via ChatGPT!3, in interpreting, converting, and simulating CF.
These experiments serve as an initial exploration of how Al can be integrated into
the process of designing genetic engineering experiments. In each experiment, the
shorthand specification text was provided at the start of the chat. The full
transcripts of these chats are available as supplemental information under 'Chats’,
or via URL.

ChatGPT demonstrated a remarkable ability to interpret complex scientific
text and convert it into CF shorthand. For example, when presented with a
published description of a cloning experiment involving the preparation of two
ribosome binding site libraries!4, ChatGPT accurately interpreted the steps and
converted them into CF shorthand, despite the complexity of the experiment and the
need to infer unstated steps from the text (invasin_parse_test.html). This result
suggests that a literature mining effort to extract the history of published
recombinant experiments is within reach of current technology, although it is
beyond the scope of this study.

We also explored if ChatGPT could perform zero-shot design of a CF. After
providing the shorthand specification, we tasked it with performing a 'prefix
insertion' on two BioBrick plasmids (design_biobrick.html). ChatGPT returned a
syntactically correct CF, correctly inferring the need for two digestion reactions and

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

one ligation reaction. However, it initially chose incorrect enzymes for the digests.
After providing additional information from an external website, ChatGPT corrected
the enzymes and structure in the CF. The only remaining error was the ambiguity of
the fragmentSelection indices, which was resolved with further prompting about the
orientation of the input sequences. This experiment demonstrated that, with
corrective prompting, GPT can be guided to author accurate construction files.

Interconversion between different forms of CF is another area where
ChatGPT showed proficiency (syntax_conversions.html). Given the specifications for
shorthand and JSON formats, it was able to convert a CF from shorthand to JSON,
correctly inferring the strandedness and circularity details for the DNAs involved
(Examples/Construction_pSB1A2-Bca9128.json). We also asked it to generate an
XML version (Examples/Construction_pSB1A2-Bca9128.xml), demonstrating the
flexibility of CF and the ability of GPT to handle different formats.

The generation of human-readable work plans and Autoprotocols from CFs is
a more complex task, and here ChatGPT showed both its capabilities and limitations.
When asked to reduce a CF to a work plan that could be passed to a technician
(technician_instructions.html), ChatGPT produced mostly correct instructions.
However, it hallucinated locations for preexisting samples and omitted some steps
that are typically included in such instructions, such as full calculation of the reagent
volumes and consideration of DNA concentrations. When asked to generate an
Autoprotocol, a JSON-based language for robotic liquid handlers, ChatGPT struggled
(autoprotocol_instructions.html). Despite being familiar with Autoprotocol, it was
unable to produce valid JSON, indicating that the leap from CF to Autoprotocol is
currently beyond GPT's capabilities.

Simulating CFs directly in ChatGPT also presented challenges. When given
the entire text of a CF, the token limit was exceeded due to the long length of
plasmid sequences. Shortening the sequences in the CF allowed ChatGPT to accept
the prompt, but it failed to simulate the result due to the task's complexity
(invasin_simulation.html). Thus, while GPT shows promise in understanding and
interconverting CF, it struggles to accurately design, simulate, or compile them into
wetlab instructions. Given the paramount importance of accuracy for BioCAD tools,
these findings underscore the need for a more precise approach, such as could be
achieved with a GPT plugin.

PyDNA_CF_Simulator: a Python-Based ChatGPT Plugin for CF Simulation Using PyDNA

To explore the possibility of GPT directly invoking python scripts for
simulation tasks, we attempted to have GPT generate a pydna script representing
the pSB1A2-Bca9128 example CF (cf_to_pydna.html). The pydna library shares a
similar ontology with CF and includes simulators for PCR, digestion, ligation, and
Gibson assembly methods. However, the resulting script from GPT required us to
make several manual adjustments, including moving the pip statement, adding the
DNA sequences, and removing the API requests to GenBank. Despite these

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

corrections, GPT incorrectly used an 'Assembly’ function to simulate ligations rather
than the '+' operand on the sequence objects, rendering the script unrunnable. This
experiment led us to conclude that GPT's current capabilities are insufficient for
writing this executable representation of CF.

While Python scripts are useful, they present several challenges when used
as documentation for construction files in an Al interface. Firstly, they are written in
free-form Python, there are potential security issues with an interface that executes
these scripts. Secondly, they assume a specific software implementation, limiting
extensibility and interoperability in a multi-tool environment. Lastly, Python scripts
do not readily enable inspection, a crucial feature for using CF as a specification.

To address these limitations, we developed a Python plugin wrapper,
PyDNA_CF_Simulator?>, capable of parsing CF and executing the appropriate pydna
syntax for simulation. We created Python classes for ConstructionFile and
Polynucleotide according to the jsDoc spec, and developed functions for parsing
Strings of CF shorthand or JSON into these classes. Functions were also created to
interconvert between Polynucleotide and Dseqrecord representations. We then
developed a function that simulates a ConstructionFile instance, executing the
appropriate operations and returning the resulting product sequences. Finally, we
created an APl wrapper to host the simulator as a REST endpoint, along with a
YAML and manifest containing the shorthand specification for communication with
ChatGPT.

Testing of the Python plugin wrapper revealed several limitations. While the
plugin successfully handles simple cases like PCR on short templates
(pydna_plugin_test.html and pydna_plugin_test.mov), its token limit in the low
thousands significantly curtails its utility with larger DNA sequences. This limit is far
from sufficient to encode complex structures like plasmid sequences, let alone the
millions+ tokens required to express a genome sequence. Due to its limited utility,
we have not submitted PyDNA_CF_Simulator for inclusion as an official ChatGPT
plugin. However, the code is available on Github under the open-source MIT license.

Further limitations were found within the pydna library itself. Pydna's
inability to simulate Golden Gate reactions, a cornerstone of modern synthetic
biology, greatly restricts its utility for a wide range of experiments. Although the
source code includes a script for it, it is not fully implemented. While Golden Gate
could be described as sequential digestion and ligation steps, which are
implemented, this is not equivalent to the simultaneous cutting and ligation that
occurs in the actual process which requires additional logic. Additionally, pydna
allows non-DNA letters, even permitting the entire alphabet as syntax.

While the Python plugin wrapper effectively delegates the simulation task to
reliable, well-tested code, it has notable limitations. A significant challenge with this
type of interface is the absence of visualization and persistence for both the
resulting sequences and the Construction File itself. Ideally, an additional interface

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

would be integrated into the workflow to provide users with a clearer
understanding of the process and its outcomes. These findings highlight the
necessity for further development and enhancements to the Al interface,
particularly in the areas of user interface design and strategies to circumvent token
limits.

ConstructionFileSimulator: a Java-Based Tool for Validation and Simulation of CF

There are two distinct types of software that could be developed for
simulating Construction Files (CFs): one that validates the CF, and another that
calculates the product. While these objectives may seem similar, they lead to
different design decisions and implementations. For instance, consider a Golden
Gate assembly of three fragments, where one fragment has compatible ends on both
sides and thus will re-ligate. A tool focused on calculating the product would
correctly simulate this scenario and return the single-fragment product. However, a
tool focused on validating a CF would instead identify this scenario as a problem,
alerting the user to the potential issue rather than simply returning the result. This
focus on error detection and prevention is crucial for ensuring the validity and
success of genetic engineering experiments.

With this validation objective in mind, we developed the first iteration of
ConstructionFileSimulator (CFS) in Javal®. We employed a programming style
reminiscent of Functional Programming with mostly-pure functions and immutable
classes. It interprets CF shorthand text into a ConstructionFile object, subsequently
simulating the expected reaction product step by step. If an error arises during
simulation, it triggers an error response which terminates the operation and
delivers a detailed message to guide corrective action.

The relationship between CF operations and simulator functions in CFS is
largely one-to-one, but the concurrent development of the CF syntax, CFS, and
wetlab usage has led to the need for backward compatibility with past versions of
CF. As aresult, CFS can handle a broader array of syntax than the specified
shorthand, and the codebase contains more complexity than strictly necessary. It
also supports PCA (Polymerase Chain Assembly), SOE (Splicing by Overlap
Extension), and Klenow (Klenow extension) operations which are not in the
specification. From a system architecture perspective, it's worth noting that a strict
one-to-one correspondence between operations and functions is not always the
most efficient or effective design. For example, lower-level functions such as reverse
complementation (RevComp.java) are used across multiple algorithms and are
therefore implemented as standalone functions rather than being associated with
specific operations. Furthermore, to accommodate a variety of PCR-like scenarios,
we generalized these techniques in the simulation. While this abstraction was
challenging to express in shorthand, it provides a compact solution at the functional
level. The CFS codebase also includes several exploratory and vestigial features that
we have omitted from this discussion for the sake of focus.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Within this architecture, the project houses two PCR simulators, each
designed to address specific experimental scenarios. The simpler one, encoded in
the method perfect18Simulation, is only activated when a singular template and two
oligos are present, with both oligos perfectly matching the template over 18 bp at
their 3' ends. This condition is usually met for standard cloning experiments.
However, for non-standard scenarios, such as site-directed mutagenesis involving
20-mer oligonucleotides with a central mismatch, a more mechanistic simulation is
needed. This includes simulating PCA, SOEing, or Klenow Extension, where template
varieties from single-stranded to double-stranded, and their quantities from 0 to n,
must be considered. To accommodate these scenarios, the PCRSimulator employs a
backup algorithm, which mimics pairwise DNA annealing and extension. It checks
for alignments where the 3' six bases of the oligo exactly match the template, then
uses JAligner and Tm calculations for further detection of annealing sites. However,
this more complex function, while generally reliable, occasionally struggled with
scenarios that a simpler algorithm could handle correctly. Additionally, it was
computationally demanding, causing failures for longer templates and occasional
inability to detect obvious annealing sites. To mitigate this, the simpler version is
used as a first attempt before falling back to the more mechanistic simulation when
necessary. The simulator can now handle more scenarios than outlined in the
specification documents, including unique cases like mixtures of single-stranded
and double-stranded templates. Both algorithms have been rigorously tested and
confirmed to work on linear and circular templates, including inverse PCRs, and
they handle 5' modifications, 5' extensions, and common issues such as multiple
annealing sites and orientation errors.

The Digest operation uses a REBASE database-derived file for restriction
enzyme information, making it capable of handling more enzymes than mentioned
in the specification. It correctly handles degenerate cutters, both 5' and 3'
extensions, and appropriately assigns phosphates to the 5' modifications of freshly
cut DNAs. Though there is a method in the code (cutOnce) that simulates a single
cutting event, the Digest operation is assumed to mean 'cut to completion' and thus
does not support partial digests.

In the simulation of ligation, the presence of a 5' phosphate and matching
sticky ends are checked, and two matching ends of two input Polynucleotides are
concatenated into one. This process is repeated until only one fragment remains. If
its ends are compatible, it is denoted as a circular DNA, and the sticky ends are
integrated into the sequence field of the resulting Polynucleotide.

The simulation of GoldenGate primarily involves cutting with the type IIS
enzyme and ligating the fragments, with additional checks for orientation, number
of sites in the molecule, and the appropriateness of the generated sticky ends.
Gibson simulation finds exact 20 bp matches between homologous ends and
connects the DNAs pairwise.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

The simulation of transformation, while implemented, is currently limited to
checking that the product is circular. This is because transformation of a bacterium
with a DNA requires it to be circular. However, it's worth noting that CFS fully
enables the generation of in vitro linear DNAs, which can be useful in certain
scenarios, such as library fabrication.

CFS includes rigorous checks for possible design errors and provide
comprehensive error messages when triggered. Over the course of three years, our
use of the CFS for validating wetlab designs, along with its extensive application by
over 100 students, has enabled us to identify and rectify numerous bugs. This
iterative process led to the creation of a multitude of unit tests for various edge case
scenarios, enhancing the reliability and robustness of our simulator. The
development history is documented as issues in the ConstructionFileSimulator
repository on Github.

CFS's most straightforward interface is its SimulatorView Swing GUI,
launched by executing the jar file without arguments. This interface accepts a
construction file's shorthand text and outputs the final step's product. As illustrated
in Figure 4, we fed the GUI with steps parsed by ChatGPT from the native invasin
text, along with the sequences of the three input plasmid sequences (Chats/
invasin_cf.txt). The resulting sequence of pBACr-Aralnvasin matches the expected
map and aligns with sequenced isolates, validating the simulator's accuracy and
utility. We have provided an array of real-world examples (found in the
supplemental Examples folder), showcasing the successful application of CFS. These
examples feature experiments that involve degenerate bases, the creation of
libraries, SOEing, PCA, and Klenow extension, all of which the simulator correctly
handles.

Mitigating Clerical Mistakes with 'Experiment’ Objects in ConstructionFileSimulator

While simulating a CF is an effective way to detect technical errors in
experimental design, such as oligo design issues, it doesn't account for clerical
errors that often occur in larger experiments involving multiple CFs or during
collaborations among research teams. These errors, such as maintaining different
versions of input sequences, are surprisingly common and can severely impact the
success of an experiment. To address these issues, we've introduced the concept of
an 'Experiment’ object into CFS.

The creation of an 'Experiment' object begins by passing a hard drive path to
a folder containing all relevant files to a parser. This includes sequence files in TSV
or GenBank format (.gb, .seq, .str, and .ape), CFs expressed as plain text files, and
additional sequence files, primarily for oligos, in a TSV format that also allows
additional columns. This format is particularly useful as it aligns with the IDT oligo
form, reducing the risk of error when copying and pasting between what is
simulated and what is ordered. The parser then outputs an 'Experiment’ object that

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

encapsulates all the provided information. Once the 'Experiment’ is created, it can
be simulated to ensure the accuracy of the documentation.

Executing a list of CFs requires additional analysis to determine the correct
order of execution. This is crucial to ensure that the products of earlier files can be
used as inputs for later files. For example, in the pTP2_reporter example, a series of
unrelated experiments was used to construct a reporter plasmid. To correctly
simulate this, the software must identify the order of execution for each CF. We also
had to consider the potential for name reuse, such as "pcrpdt" to refer to products of
intermediate steps. To address this, the CFS implementation of ConstructionFile
includes an explicit singular output from the entire file, which is set as the product
of the last step during parsing. This addition, while not explicitly part of the
specification, is necessary to resolve potential conflicts and implies that a
ConstructionFile describes not only an ordered list of steps but also a specific
product outcome.

The need for this higher-order 'Experiment’ object is heavily dependent on
the user interface. Our current approach treats files as contents of a folder, but other
systems might use a database, potentially reducing the impact of clerical errors if
the design and simulation functions were integrated. Furthermore, the exact content
and format of an 'Experiment’ are yet to be defined. Within the CFS, it encompasses
sequences and CFs, but a more comprehensive specification could include
measurement data, analysis, and more. Therefore, while this 'Experiment’
functionality is part of the CFS project, we currently propose no standards for it and
present it as an exploratory feature.

An 'Experiment' folder can be parsed and simulated using the
SimulateExperimentDirectory function. This function is executed when the user
runs the jar from the command line and passes in the path to the folder as a
parameter. SimulatorView will also execute this function when such a folder is
dragged-and-dropped on the GUI Upon execution, the simulator generates a
GenBank file for each product sequence and creates two log files: C5seqgs.txt, which
contains all sequences (inputs, intermediates, and products), and C5log.txt, which
provides a detailed account of all events that occurred during execution. These log
statements are also outputted to the command line when the jar is run from there.
This information is helpful for identifying and correcting errors in the experiment's
design or documentation.

There are two supplemental examples of 'Experiment’ folders that can be run
with CFS. The Lycopene2 example demonstrates a scenario where several
construction files are performed in parallel using a shared set of oligos in different
combinations. The pTP2_reporter example illustrates a chain of sequential CFs
where the product of one becomes an input to another. A demonstration of running
CFS on this example is available at cfs_experiment.mov.

C6-Tools: Simplifying CF Simulations and Oligo Design in Google Sheets

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

The Java implementation of CFS is well-tested, reliable, and effective for
validating correct CF. However, students have found it somewhat challenging to
identify errors in the CF. The log file details all events, which, while helpful in
pinpointing errors, can result in a complex interaction akin to code debugging.
Typically, we run simulations through the IDE and leverage its debugging tools. A
significant part of this challenge stems from the lack of visual representation during
simulation. Although this issue could be addressed by creating more graphical user
interfaces, this also presents another learning hurdle.

Driven by these usability concerns, we ventured into developing a variant of
CFS, named C6-Tools!?, using Google Apps Script (JavaScript) within a Google Sheet.
In addition to simulation functions, we also integrated algorithms for oligo design.
Displaying individual design and simulation events in a 2D spreadsheet grid
significantly simplifies the visualization of ongoing operations and error
identification. Additionally, this interface is highly familiar and requires little
explanation for new users and can be easily accessed via url. While C6-Tools offers a
lower entry barrier compared to CFS, it is a newer tool and has not been as
extensively tested.

Initially, our aim in developing C6-Tools was to leverage GPT-4 to
automatically translate the Java code into Apps Script. However, the majority of the
functions proved this task to be not as straightforward. One notable complication
was the Sheets' inability to accept objects as cell values, necessitating their
additional management as JSON. Despite these hurdles, ChatGPT was instrumental
in facilitating this process with extensive prompting and revision.

Given the prevalence and versatility of Gibson Assembly and Golden Gate
cloning in modern genetic engineering, traditional methods like digestion and
ligation have become less relevant. Therefore, we decided not to include support for
these older 'cut and paste' methods in C6-Tools. Additionally, this led to significant
simplification of the code. Though Polynucleotide and its tracking of end chemistry
is needed to simulate separate digestion and ligation steps, it is not needed to
accurately simulate PCR, Golden Gate, and Gibson methods which can be well
handled by simple sequence strings. Nevertheless, we include a class definition for
Polynucleotide as an option for future development in JS.

Nonetheless, constraints such as the lack of a testing environment, the
inability to import libraries, and the non-portability of the code hamper further
development of C6-Tools in its current form. In the case of Apps Script, the scripts
must be either within the Sheet file, requiring duplication, or transcluded from a
library with a complete wrapper. This quality of Apps Script limits the ability to
maintain and extend the library. However, for users who may wish to customize
their own version of C6-Tools, the independence offered by the current
implementation may be preferable over a development team's oversight.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Discussion

The CF specification, as it currently stands, covers a wide range of common
molecular biology operations, including PCR, Digest, GoldenGate, Ligate, Gibson, and
Transform. However, there are several common methods that are not explicitly
represented in the CF specification. These include USER cloning, Ligase Chain
Assembly (LCA), QuikChange mutagenesis, site-specific recombination systems like
CRE/Lox and Gateway, homologous recombination methods like Datsenko-Wanner,
and transposon-based methods. In addition, the CF specification does not currently
support simple annealing of oligos to form a duplex DNA, CRISPR-mediated DNA
cutting, or TOPO-TA cloning.

Each of these methods has unique requirements and parameters that would
need to be incorporated into the CF specification to enable simulation. For example,
QuikChange mutagenesis involves a PCR-like process, but the product is not the
same as a typical PCR product. The CF PCR algorithm, while generalized, does not
currently infer homology and reclosure of ends that QuikChange would require.
Similarly, site-specific recombination systems like CRE/Lox and Gateway involve
specific recognition sequences, which would need to be identified during the
simulation process.

In addition to these specific methods, there are also broader categories of
techniques that are not currently covered by the CF specification. For example, the
CF specification does not currently support the representation of mixed pools of
entirely different sequences, which are often used in library construction. Nor does
it support the representation of more complex DNA structures, such as DNA bubbles
or mixed RNA/DNA structures.

However, the question remains: do we need to include all these methods in
the CF specification? The answer largely depends on the specific goals and use cases
of the CF specification. If the goal were to create a comprehensive database of all
cloning experiments, then a comprehensive representation of all possible methods
would be necessary. On the other hand, if the goal is to provide a simple and
intuitive interface for designing common molecular biology experiments, then a
more limited set of operations may be sufficient. In any case, the decision to include
or exclude specific methods from the CF specification should be made with careful
consideration of the trade-offs between comprehensiveness, simplicity, and
practical utility. Particularly for interacting with intelligent systems, where token
limits are important constraints, having to include endpoints or API info about all
these different operations gets heavy. If the user isn't going to do all these things,
then why are they in the tool?

Broadening the Scope of the Transform Operation for Greater Experimental Accuracy
The Transform operation, a pivotal step in many molecular biology

experiments, signifies a phase where the DNA is subject to further chemical
modifications. For example, DNA nicks can undergo resealing, and the host's dam

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

and dcm systems can introduce novel methylation patterns. Nonetheless, the
existing Transform operation neither accounts for these modifications nor verifies
the presence of a selectable marker or a suitable origin of replication. Moreover, it
does not confirm whether the replicon will replicate in the designated host, or if
other plasmids originating from the same incompatibility group already exist in the
strain. To fully validate a transformation, the Transform operation would need to
incorporate these checks. Furthermore, the current ontology, with its E. coli-centric
focus, presumes the use of antibiotics that may not be suitable for yeast work or
transfection in plant or animal cells.

Beyond these fundamental verifications, the Transform operation could be
enhanced to encompass a more exhaustive simulation of the biological processes
initiated upon the entry of DNA into the cell. Such a simulator could scrutinize the
introduced DNA for proper gene structure and assess the overall cellular system for
biochemical accuracy, a first pass at which we presented in our previous work!8,
This would entail simulating the intracellular biochemical reactions and forecasting
the cellular response to the introduced DNA. For example, the simulator could check
if a sufficient grouping of genes was introduced to complete a pathway to a desired
metabolite. It could infer promoter behavior and determine what regions of the DNA
would be transcribed and translated. By juxtaposing this inferred pathway data with
a functional specification, the simulator could ascertain whether the designed
system would operate as intended, or if it could potentially be toxic to the cell or
contain elements that might cross-react. Incorporating a transform simulator would
provide an additional layer of validation, ensuring the precision of experimental
designs and thereby enhancing the overall dependability and trust in the CF.

Appraising User Interface Considerations for Effective CF Deployment

During the development of CF, we explored a range of interfaces, each
presenting unique advantages and challenges. These interfaces include the Python
scripting interface, the SimulatorView shorthand editor interface, the Experiment
folder-based interface with CFS, the spreadsheet interface via C6-tools, the API
interface with PyDNA_CF_Simulator, and the ChatGPT conversational interface.

The Python scripting interface provides a robust and flexible platform for
designing and simulating experiments, a feature that programmers will find
familiar. However, its accessibility is limited to those with coding experience.
Conversely, the SimulatorView shorthand-script based interface is perfectly suited
for crafting bespoke, detailed experiments. Yet, it may be cumbersome when
handling many files due to its manual nature.

The spreadsheet interface, facilitated by C6-tools, offers the advantages of
visual arrangement, lookup properties, and easy portability. It also enables the use
of all the other spreadsheet functions, including the ability to drag the contents of a
field across a range. This makes it particularly useful for describing sets of
constructs, such as an ortholog or promoter scan.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

The Experiment folder-based interface offers portability and compatibility
with filesystem contexts like Github or Google Drive. It can be zipped and sent via
email, making it a convenient option for sharing and collaborating on experiments.
The API interface with PyDNA_CF_Simulator allows for programmatic interaction
with the CF tools, providing another layer of flexibility.

It's pertinent to highlight that the most common approach to authoring CF
likely does not involve direct typing. Instead, a collection of design functions could
generate the CF or Experiment object. Consider, for instance, an ortholog scan
function. This function would take as input the initial prototype plasmid, specify the
ORF to be scanned, and the organisms from which an ortholog is desired. The
function would then execute a BLAST search of the ORF sequence to be replaced
against the specified organisms, select an appropriate cloning strategy, design all
necessary oligos, and output an Experiment object ready for simulation or
execution. Preliminary versions of such algorithms are presented for oligo design in
C6-tools, but we reserve the development of such functions for future work.
Ultimately, a comprehensive library of such design functions could be established to
cater to a wide array of scenarios.

The ChatGPT conversational interface facilitates a more intuitive interaction
by leveraging natural language processing. However, it is currently limited by token
limits, which restricts the complexity and length of the interactions. Ideally, the Al
could be aware of all the other interfaces such that it could, for example, build a
spreadsheet that invoked the functions, or translated a spreadsheet to the
experiment folder format. This would allow the Al to leverage the benefits of each
interface, while mitigating their individual limitations.

Challenges and Opportunities in Integrating Al for Experimental Design

Synthetic biology stands on the cusp of a new era as we explore the complex
but promising task of integrating it with artificial intelligence (AI). This fusion has
the potential to revolutionize experiment design through automation and
streamlined efficiency, thereby reducing manual labor and cognitive load. Our study
demonstrates that GPT-4 exhibits impressive proficiency in working with CFs.
However, the road to effective integration is filled with significant challenges.

The development of reliable Al interfaces stands as the first hurdle. These
interfaces must understand CFs in their entirety and demonstrate proficiency in
various tasks such as designing CFs, compiling them into robot commands or
human-readable instructions, and even locating CFs using intricate queries. The
interfaces should also be capable of querying the sequences tied to the experiments
and maintain an inventory awareness. They need to understand and invoke a
myriad of API functions related to CFs. This requires an in-depth understanding of
the CF specification and the biological processes it encapsulates, coupled with the

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

capacity to handle complex data structures and large sequence files, which
constitute substantial computational challenges.

To address the issue of token limits, we propose a decoupling strategy. By
assigning unique names to well-defined objects, we can create loosely-coupled
references, significantly reducing token usage. This not only simplifies data
manipulation across various levels of abstraction but also allows the Al to focus on
task-specific requirements within the scope of relevant information.

In light of synthetic biology's extensive functional scope, we recommend
adopting a dynamic plugin system. This would enable the Al to access a wide-
ranging function library dynamically, choosing the right function along with its API
information for precise execution. This strategy circumvents the need for an Al to be
pre-trained on extensive API data and allows for the addition of further functions
without necessitating comprehensive Al rewrites.

While it's crucial to ensure that CFs, the associated sequences, and compiled
instructions are stored persistently and readily accessible, the inherently error-
prone and fleeting nature of Al memory requires this storage to take place on the
plugin side of the interface. The Al should reference these stored objects by their
unique names. However, this approach does present challenges, including ensuring
that the Al is aware of the objects stored within the plugin and defining how new
objects are added and persisted.

In the integration of Al with CFs, biosecurity remains a paramount concern. It
is critical to have human oversight to prevent any direct execution of code,
particularly when it involves robotic genetic engineering processes. The Al needs to
be semantically aware of its tasks and carry out continuous checks against known
biohazards such as toxins, virulence factors, and gene drives. As we strive to
overcome computational and biosecurity challenges in the integration of Al with
CFs, we recognize that the interplay of Al capabilities and synthetic biology, despite
its hurdles, holds the key to a future where efficiency, precision, and safety
transform the landscape of biological experimentation and discovery.

Conflict of interest statement: None declared.

Supporting Information

Files provided in CF_Supplement.zip:

cf_JSDoc_specification.md: Specification document for JSON representation of CF.
cf_shorthand_specification.md: Specification document for CF Shorthand

Examples Folder:

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Construction_pSB1A2-Bca9128.txt. CF Shorthand. Example from figure 1 and from
OpenWetWare tutorial. Uses PCR, cut and ligate to make a BioBrick. Runs with both
PyDNA_CF_Simulator and ConstructionFileSimulator. Will not run with C6-Tools.

Construction_pSB1A2-Bca9128.json. CF JSON. Same experiment as above.
Construction_pSB1A2-Bca9128.xml. CF XML. Same experiment as above.

Construction_pTargl.txt. CF Shorthand. Replacing the antibiotic marker in pTargetF
with ampicillin resistance using two-part PCR-based Golden Gate assembly. Will not
work on PyDNA_CF_Simulator, but works with ConstructionFileSimulator.

Construction_TPjoin.txt: CF Shorthand. Plasmid-based Golden Gate of two plasmids
with BseRI. Will not work on PyDNA_CF_Simulator, but works with
ConstructionFileSimulator.

Construction_pTarg2.txt: CF Shorthand. Replacing the antibiotic marker in pTargetF
with a two-part PCR-based Gibson assembly. This also demonstrates usage of
optional PCR product size parameters as well as the usage of 'oligo’ and 'plasmid'
keywords for sequences. Runs with both PyDNA_CF_Simulator and
ConstructionFileSimulator.

Construction_pTarget-tyrB1.txt: CF Shorthand. Replacing the protospacer in
pTargetF with a new sequence using Spel-based EIPCR (cut and ligation of a single
PCR product). Runs with both PyDNA_CF_Simulator and ConstructionFileSimulator.

Construction_pBcal100-Bcal111.txt: CF Shorthand. Derived from OpenWetWare
tutorial. This demonstrates two capabilities of ConstructionFileSimulator but not
implemented in PyDNA_CF_Simulator: SOEing as well as PCR with oligos containing
a mismatch in the annealing region.

Construction_pAC-tRNA_N8_Library.txt: CF Shorthand. Annealing and extension
(Klenow Extension) of degenerate oligonucleotides, followed by cut and paste.
Includes a 3' enzyme, Pstl. Will not work on PyDNA_CF_Simulator, but works with
ConstructionFileSimulator.

Construction_PCA.txt: CF Shorthand. A synthetic example of Polymerase Chain
Assembly (not tested in the wetlab). Will not work on PyDNA_CF_Simulator, but
works with ConstructionFileSimulator.

Lycopene2: Experiment Folder. Insertion of the AtIPI gene into a lycopene
production plasmid with 6 different truncations of adjacent sequences. Runs with
ConstructionFileSimulator from the command line.

pTP2_reporter: Experiment Folder. A chain of three sequentially executed
Construction Files. Runs with ConstructionFileSimulator from the command line.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Movies Folder:

pydna_plugin_test.mov: Demonstration of simulating a PCR reaction via the
PyDNA_CF_Simulator ChatGPT plugin.

cfs_experiment.mov: Demonstration of using ConstructionFileSimulator to simulate
the pTP2_reporter example.

Chats Folder:

syntax_conversions.html: ChatGPT conversion of CF shorthand to JSON and XML
formats. Shared chat: https://chat.openai.com/share/2df31c09-5d2a-4f2b-a264-
2b268ce951f6.

cf_to_pydna.html: ChatGPT attempts to convert a CF to a pydna script. Shared chat:
https://chat.openai.com/share/cce4f72e-518d-4485-879a-ff98a9ec16b4. Testing
of the resulting script:
https://colab.research.google.com/drive/1RLDmqEBVIOSNf41DuGh9x3c22E04V4r2

design_biobrick.html: ChatGPT attempts to design a BioBrick prefix insertion CF.
Shared chat: https://chat.openai.com/share/b618df5f-c319-4a0f-80be-
96485a2f33c4.

technician_instructions.html: ChatGPT generates technician protocols from a CF.
Shared chat: https://chat.openai.com/share/694a76be-c604-46fc-8872-
2c40125d2e00.

autoprotocol_instructions.html: ChatGPT attempts to write an Autoprotocol from a
CF. Shared chat: https://chat.openai.com/share/7379b4a3-6c01-489b-a67b-
5ae01028f58e.

invasin_native_text.txt: Text from ref. 14 used as a ChatGPT parsing test.

invasin_parse_test.html: ChatGPT parses a CF from scientific journal text. Shared
chat: https://chat.openai.com/share/dd951f5b-00e9-42d8-85d2-8fd811flab1b.

invasin_cf.txt: CF Shorthand. CF parsed by ChatGPT with sequences added.
invasin_simulation.html: ChatGPT attempts to simulate the invasin CF with no

plugin. Shared chat: https://chat.openai.com/share/f1289f66-d4c5-483b-b07c-
26071af36a4a.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

pydna_plugin_test.html: ChatGPT simulates a PCR reaction using the
PyDNA_CF_Simulator plugin. Same as movie. Shared chat:
https://chat.openai.com/share/2af29a1f-590c-484f-b48d-7d5ac57fd786.

Acknowledgements

Evan Cory, Kristen Delgado, Cole Ingamells, Madhumita Kannan, Lauren Mathis, Sisi
Morris-Gavrieli, Mona Zheng, students of iGEM at Berkeley and BioE 140L
contributed to testing ConstructionFileSimulator and C6-Tools. Though
ConstructionFileSimulator predates ChatGPT, all other aspects of this study were
done with aid from the AL

References

1. Hillson, N.].; Rosengarten, R. D.; Keasling,]. D. j5 DNA assembly design
automation software. ACS Synth. Biol. 2012, 1 (1), 14-21.
https://doi.org/10.1021/sb2000116.

2. Benchling. https://www.benchling.com/.

3. Davis, M. W.; Jorgensen, E. M. ApE, A Plasmid Editor: A Freely Available DNA
Manipulation and Visualization Program. Front. Bioinform. 2022, 2, 818619.
https://doi.org/10.3389/fbinf.2022.818619.

4. SnapGene. https://www.snapgene.com/.

5. Gorelenkov, V.; Antipov, A.; Lejnine, S.; Daraselia, N.; Yuryev, A. Set of novel tools
for PCR primer design. Biotechniques. 2001, 31 (6), 1326-1330.
https://doi.org/10.2144/01316bc04.

6. Cock, P.].; Antao, T.; Chang,]. T.; Chapman, B. A;; Cox, C.].; Dalke, A.; Friedberg, L;
Hamelryck, T.; Kauff, F.; Wilczynski, B.; de Hoon, M. |. Biopython: freely available
Python tools for computational molecular biology and bioinformatics.
Bioinformatics. 2009, 25 (11), 1422-1423.

https://doi.org/10.1093 /bioinformatics/btp163.

7. Geneious. https://www.geneious.com/.

8. Czar, M.].; Cai, Y.; Peccoud,]. Writing DNA with GenoCAD. Nucleic Acids Res. 2009,
37 (Web Server issue), W40-W47. https://doi.org/10.1093 /nar/gkp361.

9. Pereira, F.; Azevedo, F.; Carvalho, A.; Ribeiro, G. F.; Budde, M. W.; Johansson, B.
Pydna: a simulation and documentation tool for DNA assembly strategies using
python. BMC Bioinformatics. 2015, 16 (1), 142. https://doi.org/10.1186/s12859-
015-0544-x.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

10. Poly. https://github.com/TimothyStiles/poly.

11. Anderson, J. C. Introduction To Oligo Design.
https://openwetware.org/wiki/Arking:JCAOligoTutoriall.

12. Transcriptic. Autoprotocol. https://autoprotocol.org/
13. OpenAl. ChatGPT-4. https://www.openai.com/chatgpt/

14. Anderson, |. C; Clarke, E.].; Arkin, A. P.; Voigt, C. A. Environmentally controlled
invasion of cancer cells by engineered bacteria. J. Mol. Biol. 2006, 355 (4), 619-627.
https://doi.org/10.1016/j.jmb.2005.10.076.

15. Anderson, . C. PyDNA_CF_Simulator; GitHub: 2023. https://github.com /UCB-
BioE-Anderson-Lab/PyDNA_CF_Simulator.

16. Ataii, A.; Bakshi, S.; Chen, Y.; Fernandez, M.; Scheftel, Z.; Shao, Z.; Tou, C.; Vega, M,;
Wang, Y.; Zhang, H.; Zhao, Z.; and Anderson,]. C. ConstructionFileSimulator; GitHub:
2023. https://github.com/UCB-BioE-Genetic-Design-
Automation/ConstructionFileSimulator.

17. Anderson, J. C. C6-Tools, Version 1.0; Google Sheets: 2023.
https://docs.google.com/spreadsheets/d/18GhA2s-
x9kX1ar5YRMghXjcOHNW63eaZiDOfTT4xC60/edit#gid=452338215.

18. Hsiau, T. H.-C.; Anderson, J. C. Engineered DNA Sequence Syntax Inspector. ACS
Synth. Biol. 2014, 3 (2), 91-96. DOI: 10.1021/sb400176e.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figures

A)

KanR
EcoRlI
/ Spe'h PCR E?oRI KanR i Srel
EcoRl
SB1AK3-b0015 lDigest
P) ColE1 origin EcoRlI/Spel -
KanR
Ligate | PSB1A2-Bca0128
dblTerm _ —=
EcoRlI Spel
mRFP1 ColE1 origin
pSB1A2-113521 | Digest,
EcoRI/Spel
Spel ColE1 origin

ColE1 origin

B)
Input Sequences
calO067F ccagtGAATTCgtccTCTAGAgagctgatccttcaactce
calO0O67R gcagtACTAGTtccgtcaagtcagcgtaatg

Cloning Steps
PCR cal067F cal067R pSBlAK3-b0015 pcrpdt

Digest pcrpdt EcoRI, Spel 1 pcrdig

Digest pSB1A2-I13521 EcoRI, Spel 1 vectdig
Ligate pcrdig vectdig lig

Transform lig DH10B Amp pPSB1A2-Bca9128

Figure 1. Shorthand Representations of a Cloning Strategy. (A) Conventional
illustration of a cloning strategy, visually detailing PCR, Digestion, and Ligation
steps. (B) Equivalent strategy represented in Construction File Shorthand. Each step
begins with an operation (blue), followed by operation-specific inputs, often
sequence names (magenta). The final token in each step (orange) denotes the
product, encapsulating the outcome of the operation. This shorthand format
provides a structured, machine-readable alternative to traditional illustrations.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

polyA:
5'-pCCGGCTgaattcAG -3
3'- GActtaagTCCTAG-5"'

"sequence": CTGAATTCAG,
"ext5": "CCGG",

"ext3": "GATC",

"is double stranded": true,
"is circular": false,

"mod ext5": "phosphate",
"mod ext3": "hydroxyl"

Digest polyA EcoRI 0 polyB

fragment[0]:

5'-pCCGGCTg -3
3'- GActtaap-5"'
+
fragment[1l]:
5'-paattcAG -3
3'- gTCCTAG-5"
polyB:
{
"sequence": CTG,
"ext5": "CCGG",
"ext3": "AATT",
"is double stranded": true,
"is circular": false,
"mod ext5": "phosphate",
"mod ext3": "phosphate"

}

Figure 2. Polynucleotide Object Representation for Simulating Molecular Biology
Operations. The hypothetical DNA 'polyA' is a linear, double-stranded DNA
previously cut with BamHI, dephosphorylated, and subsequently cut with Xmal. In
the Polynucleotide object representation, the fully duplexed DNA portion is
captured as the "sequence". Single-stranded overhangs are represented by the
coding strand sequence as ext5 and ext3, denoting the overhangs on the left and
right of the diagram, respectively. Modifications at the ends are indicated by
enumerated types as mod_ext5 and mod_ext3. The simulation of an EcoRI digestion
of this DNA would yield two fragments, indexed as 0 and 1. The 'fragmentSelection'
field of the shorthand statement is set to 0, resulting in 'polyB' being returned as
depicted. In the simulation software, Polynucleotides serve as dynamic
representations of DNAs, reflecting their states as they undergo operation-specific
transformations to yield expected products. Simulation software currently supports
PCR, Digest, Ligate, GoldenGate, Gibson, and Transform operations.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Interpret the following as CF. Assume all the input materials are oligonucleotides or plasmid
DNAs. Include any steps that are implied but unstated, but stay within the scope of the facts
provided.

Invasin was PCR-amplified from pAC-Tetlnv with oligonucleotides ca877F (5'-
GAGTTGGATCCNNNGGAGNNNNNNRTGNTGGTTTTCCAGCCAATCAGTG-3') and caBO6R
(5'-GTCGACGGCGCTATTCAGATCCTC-3), digested with BamHI and EcoRl, and inserted in
similar sites of pBACr-Fdh and pBACr-Ara affording ribosome binding site libraries.

Sure, based on the information provided, here's an interpretation of this process into the

Construction File (CF) format. Please note that the exact interpretation might vary

depending on additional context and detailed procedures, which are not provided here.

C] copycode

PCR ca877F ca606R pAC-TetInv InvasinPCR

Digest InvasinPCR BamHI,EcoRI 1 InvasinFragment

Digest pBACr-Fdh BamHI,EcoRI 1 pBACr-FdhFragment

Digest pBACr-Ara BamHI,EcoRI 1 pBACr-AraFragment

Ligate InvasinFragment pBACr-FdhFragment pBACr-FdhInvasin

Ligate InvasinFragment pBACr-AraFragment pBACr-Aralnvasin

Figure 3. Zero-shot Natural Language Processing Interpretation of Construction
Files by ChatGPT. After being prompted with the shorthand specification document,
ChatGPT (GPT-4) demonstrates its ability to interpret plasmid construction text
from a scientific paper into a construction file with high accuracy. This
demonstration underscores the potential of A.l. to automatically extract
construction files from scientific literature, opening new possibilities for large-scale,
automated analysis of genetic engineering experiments from unstructured archival
text.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546630; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ece
Steps S
PCR caB77F caf06R pAC-TetInv InvasinPCR L\

Digest InvasinPCR BamHI,EcoRI 1 InvasinFragment

Digest pBACr-Fdh BamHI,EcoRI 1 pBACr-FdhFragment

Digest pBACr-Ara BamHI,EcoRI 1 pBACr-AraFragment

Ligate InvasinFragment pBACr-FdhFragment pBACr-FdhInvasin
Ligate InvasinFragment pBACr-AraFragment pBACr-Aralnvasin

#Sequence information v
1&_/" Ty
| copy result | | clear | | run |

ACCCTATTCAAACTCACTTAATCGOCAAATTTCATCAACCTARACTCCCCACCGAT 4
CCACACCTCATCCTCCCACT COCCATT CAAACTOTTCCTCATCACTATCATCTCAT =
ACTTATTCACACCOCGCCTAACCTCGCTATCCCCACCATTAATCTCGTATCTALTG
CTCATCTCCTGATTCTTCCCACCCCTGCTCACTTGTTTCACTACACCTCCGCACTG

A ST T T T S S AT AT S ST T S S T S A T ST T ST A R TR R T T T A T ST T AR R T T T A

¥

Figure 4. Simulation of Invasin Construction File in a script editor. SimulatorView, a
simple GUI included with ConstructionFileSimulator, accepts the text of a
construction file and outputs the product of the final step. In this instance, the GUI is
provided with the steps parsed by ChatGPT, along with the sequences of the three
input plasmid sequences. The complete document can be found in the
supplementary file 'invasin_cf.txt'. Upon clicking 'run’, the construction file is
simulated step-by-step. The resulting sequence of pBACr-Aralnvasin aligns with the
expected map and is consistent with sequenced isolates, demonstrating the
accuracy and utility of the simulation.

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

