
Enabling	AI	in	Synthetic	Biology	through	Construction	File	Specification	
	
Nassim	Ataiia,	Sanjyot	Bakshia,	Yisheng	Chena,	Michael	Fernandeza,	Zihang	Shaoa,	
Zachary	Scheftela,	Connor	Toua,	Mia	Vegaa,	Yuting	Wanga,	Hanxiao	Zhanga,	Zexuan	
Zhaoa,	and	J.	Christopher	Andersona,b,c*	
	

a	Department	of	Bioengineering,	University	of	California,	Berkeley,	CA	94720,	USA	
b	QB3:	California	Institute	for	Quantitative	Biological	Research,	University	of	
California,	Berkeley,	CA	94720,	USA	
c	Physical	Biosciences	Division,	Lawrence	Berkeley	National	Laboratory,	Berkeley,	CA	
94720,	USA	
	
*	Email:		jcanderson@berkeley.edu	
	
Abstract	
	
The	Construction	File	(CF)	specification	establishes	a	standardized	interface	for	
molecular	biology	operations,	laying	a	foundation	for	automation	and	enhanced	
efficiency	in	experiment	design.	It	is	implemented	across	three	distinct	software	
projects:	PyDNA_CF_Simulator,	a	Python	project	featuring	a	ChatGPT	plugin	for	
interactive	parsing	and	simulating	experiments;	ConstructionFileSimulator,	a	field-
tested	Java	project	that	showcases	'Experiment'	objects	expressed	as	flat	files;	and	
C6-Tools,	a	JavaScript	project	integrated	with	Google	Sheets	via	Apps	Script,	
providing	a	user-friendly	interface	for	authoring	and	simulation	of	CF.	The	CF	
specification	not	only	standardizes	and	modularizes	molecular	biology	operations	
but	also	promotes	collaboration,	automation,	and	reuse,	significantly	reducing	
potential	errors.	The	potential	integration	of	CF	with	artificial	intelligence,	
particularly	GPT-4,	suggests	innovative	automation	strategies	for	synthetic	biology.	
While	challenges	such	as	token	limits,	data	storage,	and	biosecurity	remain,	
proposed	solutions	promise	a	way	forward	in	harnessing	AI	for	experiment	design.	
This	shift	from	human-driven	design	to	AI-assisted	workflows,	steered	by	high-level	
objectives,	charts	a	potential	future	path	in	synthetic	biology,	envisioning	an	
environment	where	complexities	are	managed	more	effectively.	
	
Introduction	
	
	 Construction	File	(CF)	is	a	domain-specific	representation	that	encapsulates	
a	genetic	engineering	experiment	in	terms	of	molecular	biology	operations	and	the	
genetic	materials	involved.	Rather	than	being	a	language,	it	serves	as	an	abstraction	
that	defines	the	minimal	information	content	necessary	to	describe	the	DNA	
modification	chemistry	involved	in	fabricating	a	DNA	or	genetic	library.	Despite	the	
existence	of	multiple	ways	to	express	an	experiment	as	a	CF,	we	have	explored	its	
standardization	to	enhance	communication	among	humans,	software	tools,	and	
intelligent	systems	within	a	collaborative	workspace.	We	propose	specifications	for	
two	representations	of	CF:	a	shorthand	format	for	convenience	and	a	JSON	version	
for	cross-software	communication.	Furthermore,	we	provide	parsers	and	simulators	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


in	Python,	Java,	and	JavaScript.		We	explore	human	user	interfaces	for	working	with	
CF	objects	as	well	as	AI	interfaces	and	their	ability	to	reason	about	CF	objects.	
	

Over	the	past	years,	numerous	tools	have	been	developed	to	assist	with	the	
design	of	DNA	cloning	schemes,	such	as	J51,	Benchling2,	A	Plasmid	Editor	(ApE)3,	
SnapGene4,	SBOL5,	Biopython6,	Geneious7,	pydna8,	GenoCAD9,	and	poly10.	These	
tools	have	varying	abilities	to	plan	recombinant	DNA	experiments	including	the	
design	of	oligonucleotides	and	prediction	of	the	resulting	products.	CF	can	serve	as	a	
standardized	representation	of	the	outcome	of	these	design	processes.	It	explicitly	
captures	the	experimental	steps	and	their	associated	parameters	in	a	minimal	form	
independent	of	a	specific	software	tool	or	environment.	
	

The	CF	Shorthand	Specification	is	much	like	a	recipe	for	constructing	DNA	in	
the	lab.	A	list	of	reaction	steps	is	written	in	the	order	they	should	be	performed,	
each	defined	by	an	operation	keyword	and	parameters,	separated	by	spaces.	For	
instance,	a	Polymerase	Chain	Reaction	could	be	specified	as	"PCR	ForwardPrimer	
ReversePrimer	Template	ProductName",	with	parameters	representing	names	of	
DNA	sequences	or	other	relevant	details.	These	sequences	can	be	expressed	in	the	
CF	as	a	name	and	sequence	pair,	like	"T7_Universal	TAATACGACTCACTATAGGG",	or	
they	can	reference	DNAs	from	an	external	source	such	as	a	database.	Although	a	CF	
does	not	specify	implementation	details	such	as	the	executor	of	the	process	(human	
or	robot),	reagent	volumes,	or	manufacturer	choices,	it	is	still	capable	of	defining	the	
product	sequences	that	would	result	from	any	successful	implementation.	
	

We	first	publicly	introduced	a	format	for	CF	in	2007	as	part	of	a	cloning	
tutorial	on	OpenWetWare11,	with	the	intention	of	it	being	a	human-readable	
representation	of	the	experiment	to	aid	in	training	and	documentation.	Over	time,	it	
became	a	practical	necessity	to	develop	software	that	could	verify	CF	and	catch	
design	errors	in	these	documents	to	avoid	wasted	lab	resources	and	time.	This	need	
prompted	multiple	iterations	of	refining	the	ontology	and	syntax	of	CF,	culminating	
in	the	current	specification.	Herein	we	provide	multiple	examples	of	CF	shorthand	
that	have	been	verified	in	the	wetlab.	We	also	present	software	tools	that	can	read	
and	simulate	CF	to	ensure	its	completeness,	syntactic	correctness,	and	the	feasibility	
of	the	proposed	chemistry.	
	

A	CF	can	also	function	as	an	input	or	specification	for	an	experiment,	
executable	by	an	individual	researcher,	a	core	facility,	or	robotic	systems.	Although	
this	paper	does	not	present	software	for	converting	a	CF	into	more	detailed	plans,	it	
demonstrates	that	artificial	intelligence	can	expand	such	a	plan	for	human	
implementation.	However,	the	current	AI	falls	short	of	translating	a	CF	into	an	
Autoprotocol12,	a	JSON-based	language	that	describes	experimental	procedures	in	
terms	of	robotic	operations,	such	as	liquid	transfers,	plate	sealing	and	unsealing,	
among	others.	Despite	these	limitations,	there	is	potential	for	developing	software	
that	can	perform	this	translation.	Therefore,	a	CF	can	serve	as	a	pivotal	intermediate	
representation	in	the	design	process,	with	the	remaining	details	inherently	
predetermined,	provided	a	rubric	that	defines	the	resources	available	in	the	lab	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


where	it	will	be	executed.	This	underscores	the	role	of	the	CF	as	a	critical	
intermediary	in	enabling	intelligent	systems,	including	AI,	to	effectively	participate	
in	the	genetic	engineering	process.	
	
Results	

The	Construction	File	(CF)	provides	a	structured	framework	for	encoding	
genetic	engineering	experiments.	This	framework	is	articulated	through	two	distinct	
specifications:	a	JSON	object	format	(cf_JSDoc_specification.md)	for	precise	machine-
readable	communication,	and	a	shorthand	format	(cf_shorthand_specification.md)	
for	human-readable	documentation	and	quick	notation.	These	specifications	enable	
the	encoding	and	decoding	of	experiment	design	information	and	lay	the	
groundwork	for	the	integration	of	artificial	intelligence	in	experiment	planning	and	
simulation.	

	
The	JSON	object	format	is	a	detailed	representation.	It	consists	of	two	main	

elements:	'steps'	and	'sequences'.	The	'steps'	element	is	an	array	of	objects	
representing	construction	steps,	including	the	associated	operation,	input	
sequences,	and	output	product.	The	'sequences'	element	is	an	object	with	key-value	
pairs,	where	each	key	represents	a	unique	identifier	for	a	DNA	sequence,	and	the	
corresponding	value	represents	the	sequence,	strandedness,	and	end	chemistry	of	
the	DNA.	

	
The	shorthand	format,	on	the	other	hand,	is	a	more	abstract	and	flexible	

representation.	It	is	defined	as	a	list	of	Steps,	where	each	Step	represents	a	specific	
operation	in	a	molecular	biology	experiment.	Steps	are	written	on	separate	lines,	
with	parameters	separated	by	whitespace	(preferably	TSV).	A	Step	includes	the	
names	of	input	DNA	sequence(s),	non-sequence	parameters,	and	concludes	with	the	
name	of	the	product	DNA	sequence.	The	input	sequences	can	refer	to	products	from	
previous	steps.	The	shorthand	format	also	allows	integration	of	comments	and	
sequences	using	'name	sequence'	lines.	This	flexibility	enables	CF	Shorthand	to	
represent	various	DNA	operations	beyond	those	explicitly	defined	in	the	
specification.	However,	parsers	and	simulator	algorithms	typically	require	a	defined	
scope	of	operations	and	parameters	to	apply	domain	logic.	To	address	this,	level	1	of	
the	specification	specifically	defines	PCR,	GoldenGate,	Gibson,	Digest,	Ligate,	and	
Transform	operations.	

	
As	shown	in	Figure	1,	the	CF	Shorthand	provides	a	structured,	machine-

readable	alternative	to	traditional	illustrations	of	cloning	strategies.	Each	step	in	the	
Construction	File	Shorthand	begins	with	an	operation,	followed	by	operation-
specific	inputs,	often	sequence	names.	The	final	token	in	each	step	denotes	the	
product,	encapsulating	the	outcome	of	the	operation.	The	full	text	of	this	CF	is	also	
available	as	Examples/Construction_pSB1A2-Bca9128.txt.	

	
Although	the	CF	Shorthand	format	and	the	JSON	format	have	different	syntax,	

the	only	functional	difference	between	the	two	formats	is	the	level	of	detail	
regarding	strandedness	and	other	characteristics	of	the	DNAs.	In	most	real-world	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


scenarios,	cloning	experiment	inputs	are	either	double-stranded	DNAs	longer	than	
100	bp	or	single-stranded	linear	oligonucleotides	shorter	than	100	bp.	
Consequently,	the	additional	fields	needed	to	express	a	DNA's	full	structure	can	
usually	be	inferred.	One	advantage	of	the	shorthand	format	is	its	bidirectional	
compatibility	with	spreadsheets.	Excel	and	Google	Sheets	can	handle	TSV	data,	
allowing	for	easy	manipulation	and	maintaining	the	TSV	syntax	when	transferred	
between	a	text	field	and	spreadsheet	cells.	

	
Considerations	for	the	specification	
	

The	CF	specification	was	designed	with	a	balance	between	detail	and	
simplicity	in	mind.	One	approach	could	have	been	to	describe	steps	in	terms	of	lists	
of	reagents,	aligning	with	wetlab	automation	ontologies.	However,	this	would	have	
led	to	an	unnecessary	over-specification	and	would	have	been	more	difficult	to	
simulate	due	to	the	need	for	a	mechanistic	simulation	of	each	enzymatic	step.	On	the	
other	hand,	a	more	abstract	approach,	aligning	with	standard	assembly	schemes	like	
BioBricks	and	MoClo	are	simple	to	simulate,	but	this	approach	lacked	the	required	
detail	for	comprehensive	representation	of	the	diversity	of	experiments	that	are	
frequently	performed.	We	also	considered	abstractly	defining	PCR	to	include	
mechanistically	similar	methods	like	Polymerase	Chain	Assembly	and	SOEing.	
However,	this	resulted	in	a	heterogenous	input	parameter	schema,	leading	us	to	
define	the	operations	more	narrowly.	A	similar	thing	happened	with	Assembly.	We	
explored	an	'assemble'	operation,	and	Gibson	was	an	option	for	the	enzyme.	This	
abstraction	didn't	add	anything,	and	having	assembly	methods	explicitly	stated	as	
operations	was	more	direct.	Thus,	we	selected	commonly-used,	method-level	
abstractions,	encompassing	the	operations	PCR,	Digest,	GoldenGate,	Ligate,	Gibson,	
and	Transform.	Each	of	these	operations,	in	turn,	have	their	unique	requirements	
and	parameters.	

	
Beyond	the	naming	of	these	operations,	some	require	specific	non-DNA	

parameters.	For	instance,	the	PCR	operation	includes	an	optional	product	size	
parameter,	which	is	important	when	using	the	CF	as	an	input	specification.	
However,	it	is	defined	as	optional	since	the	PCR	product	size	is	unknowable	if	the	
PCR	hasn't	already	been	simulated.	Similarly,	the	Digest	operation	includes	a	
'fragSelect'	index	parameter.	This	specifies	the	fragment	desired	after	digestion,	
with	numbering	starting	from	the	first	cut	of	the	first	enzyme.	This	approach	offers	
flexibility	and	simplicity,	as	in	most	cases,	the	desired	fragment	is	number	1.	Finally,	
the	Transform	operation	has	an	optional	incubation	temperature	field	that	should	
only	be	included	when	it	is	a	relevant	detail.	To	further	enhance	flexibility	and	
portability,	sequences	in	the	CF	are	treated	in	a	specific	way.	

	
In	the	CF,	sequences	are	referenced	by	their	names,	not	as	objects.	This	loose	

coupling	allows	a	CF	to	be	syntactically	valid	before	the	sequences	associated	with	
the	names	have	been	defined,	thus	allowing	a	CF	to	also	serve	as	a	specification	for	
the	design	of	the	sequences.	It	also	allows	a	CF	to	have	alternate	input	sequences	
injected	during	simulation	such	that	a	similar	sequence	of	cloning	steps	can	be	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


applied	to	different	input	DNAs.	Additionally,	it	improves	portability	since	memory-
intensive	sequence	data	does	not	need	to	be	transferred.	

	
In	developing	the	sequence	representation	for	the	CF,	we	considered	several	

formats	including	TSV,	FASTA,	Dseqrecord9,	and	a	custom	class,	Polynucleotide.	The	
simplest	option,	name	and	sequence	of	the	'watson'	strand,	was	adopted	for	the	
shorthand	format.	For	the	JSON	representation,	we	opted	for	a	more	detailed	
Polynucleotide	object,	capturing	sticky	ends,	5'	modifications,	strandedness,	and	
circularity.	This	representation,	as	illustrated	in	Figure	2,	reflects	the	DNA's	state	as	
it	undergoes	operation-specific	transformations	to	yield	expected	products.	This	
format	accommodates	atypical	DNA	forms	and	aligns	with	how	molecular	biologists	
often	describe	sticky	ends.	We	also	considered	a	Dseqrecord-like	format	wherein	
both	strands	of	the	DNA	are	expressed	as	strings	along	with	an	overhang	integer.		
This	offers	chemical	precision	but	requires	additional	processing	and	complex	
operations	for	AI	reasoning.	Moreover,	the	pydna	implementation	of	Dseqrecord,	
while	comprehensive,	carries	unnecessary	complexity	for	our	purposes	and	does	
not	express	5'	modification	chemistry.	It	also	includes	many	fields	inherited	from	
Biopython's	SeqRecord	about	semantics	and	annotations	which	are	not	needed	to	
specify	the	chemistry.	A	middle-ground	representation,	specifying	whether	the	DNA	
is	a	plasmid,	a	dsDNA,	or	an	oligo,	was	also	included	in	shorthand.	This	covers	most	
real-world	scenarios	and	can	be	readily	compiled	to	the	Polynucleotide	form.	

	
Assessment	of	AI	in	Interpreting,	Designing,	and	Simulating	CF	

	
We	conducted	a	series	of	experiments	to	assess	the	capabilities	of	AI,	

specifically	GPT-4	via	ChatGPT13,	in	interpreting,	converting,	and	simulating	CF.	
These	experiments	serve	as	an	initial	exploration	of	how	AI	can	be	integrated	into	
the	process	of	designing	genetic	engineering	experiments.	In	each	experiment,	the	
shorthand	specification	text	was	provided	at	the	start	of	the	chat.	The	full	
transcripts	of	these	chats	are	available	as	supplemental	information	under	'Chats',	
or	via	URL.	

	
ChatGPT	demonstrated	a	remarkable	ability	to	interpret	complex	scientific	

text	and	convert	it	into	CF	shorthand.	For	example,	when	presented	with	a	
published	description	of	a	cloning	experiment	involving	the	preparation	of	two	
ribosome	binding	site	libraries14,	ChatGPT	accurately	interpreted	the	steps	and	
converted	them	into	CF	shorthand,	despite	the	complexity	of	the	experiment	and	the	
need	to	infer	unstated	steps	from	the	text	(invasin_parse_test.html).	This	result	
suggests	that	a	literature	mining	effort	to	extract	the	history	of	published	
recombinant	experiments	is	within	reach	of	current	technology,	although	it	is	
beyond	the	scope	of	this	study.	

	
We	also	explored	if	ChatGPT	could	perform	zero-shot	design	of	a	CF.	After	

providing	the	shorthand	specification,	we	tasked	it	with	performing	a	'prefix	
insertion'	on	two	BioBrick	plasmids	(design_biobrick.html).	ChatGPT	returned	a	
syntactically	correct	CF,	correctly	inferring	the	need	for	two	digestion	reactions	and	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


one	ligation	reaction.	However,	it	initially	chose	incorrect	enzymes	for	the	digests.	
After	providing	additional	information	from	an	external	website,	ChatGPT	corrected	
the	enzymes	and	structure	in	the	CF.	The	only	remaining	error	was	the	ambiguity	of	
the	fragmentSelection	indices,	which	was	resolved	with	further	prompting	about	the	
orientation	of	the	input	sequences.	This	experiment	demonstrated	that,	with	
corrective	prompting,	GPT	can	be	guided	to	author	accurate	construction	files.	

	
Interconversion	between	different	forms	of	CF	is	another	area	where	

ChatGPT	showed	proficiency	(syntax_conversions.html).	Given	the	specifications	for	
shorthand	and	JSON	formats,	it	was	able	to	convert	a	CF	from	shorthand	to	JSON,	
correctly	inferring	the	strandedness	and	circularity	details	for	the	DNAs	involved	
(Examples/Construction_pSB1A2-Bca9128.json).	We	also	asked	it	to	generate	an	
XML	version	(Examples/Construction_pSB1A2-Bca9128.xml),	demonstrating	the	
flexibility	of	CF	and	the	ability	of	GPT	to	handle	different	formats.	

	
The	generation	of	human-readable	work	plans	and	Autoprotocols	from	CFs	is	

a	more	complex	task,	and	here	ChatGPT	showed	both	its	capabilities	and	limitations.	
When	asked	to	reduce	a	CF	to	a	work	plan	that	could	be	passed	to	a	technician	
(technician_instructions.html),	ChatGPT	produced	mostly	correct	instructions.	
However,	it	hallucinated	locations	for	preexisting	samples	and	omitted	some	steps	
that	are	typically	included	in	such	instructions,	such	as	full	calculation	of	the	reagent	
volumes	and	consideration	of	DNA	concentrations.	When	asked	to	generate	an	
Autoprotocol,	a	JSON-based	language	for	robotic	liquid	handlers,	ChatGPT	struggled	
(autoprotocol_instructions.html).	Despite	being	familiar	with	Autoprotocol,	it	was	
unable	to	produce	valid	JSON,	indicating	that	the	leap	from	CF	to	Autoprotocol	is	
currently	beyond	GPT's	capabilities.	

	
Simulating	CFs	directly	in	ChatGPT	also	presented	challenges.	When	given	

the	entire	text	of	a	CF,	the	token	limit	was	exceeded	due	to	the	long	length	of	
plasmid	sequences.	Shortening	the	sequences	in	the	CF	allowed	ChatGPT	to	accept	
the	prompt,	but	it	failed	to	simulate	the	result	due	to	the	task's	complexity	
(invasin_simulation.html).	Thus,	while	GPT	shows	promise	in	understanding	and	
interconverting	CF,	it	struggles	to	accurately	design,	simulate,	or	compile	them	into	
wetlab	instructions.	Given	the	paramount	importance	of	accuracy	for	BioCAD	tools,	
these	findings	underscore	the	need	for	a	more	precise	approach,	such	as	could	be	
achieved	with	a	GPT	plugin.	

	
PyDNA_CF_Simulator:	a	Python-Based	ChatGPT	Plugin	for	CF	Simulation	Using	PyDNA	
	

To	explore	the	possibility	of	GPT	directly	invoking	python	scripts	for	
simulation	tasks,	we	attempted	to	have	GPT	generate	a	pydna	script	representing	
the	pSB1A2-Bca9128	example	CF	(cf_to_pydna.html).	The	pydna	library	shares	a	
similar	ontology	with	CF	and	includes	simulators	for	PCR,	digestion,	ligation,	and	
Gibson	assembly	methods.	However,	the	resulting	script	from	GPT	required	us	to	
make	several	manual	adjustments,	including	moving	the	pip	statement,	adding	the	
DNA	sequences,	and	removing	the	API	requests	to	GenBank.	Despite	these	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


corrections,	GPT	incorrectly	used	an	'Assembly'	function	to	simulate	ligations	rather	
than	the	'+'	operand	on	the	sequence	objects,	rendering	the	script	unrunnable.	This	
experiment	led	us	to	conclude	that	GPT's	current	capabilities	are	insufficient	for	
writing	this	executable	representation	of	CF.	

	
While	Python	scripts	are	useful,	they	present	several	challenges	when	used	

as	documentation	for	construction	files	in	an	AI	interface.	Firstly,	they	are	written	in	
free-form	Python,	there	are	potential	security	issues	with	an	interface	that	executes	
these	scripts.	Secondly,	they	assume	a	specific	software	implementation,	limiting	
extensibility	and	interoperability	in	a	multi-tool	environment.	Lastly,	Python	scripts	
do	not	readily	enable	inspection,	a	crucial	feature	for	using	CF	as	a	specification.	

	
To	address	these	limitations,	we	developed	a	Python	plugin	wrapper,	

PyDNA_CF_Simulator15,	capable	of	parsing	CF	and	executing	the	appropriate	pydna	
syntax	for	simulation.	We	created	Python	classes	for	ConstructionFile	and	
Polynucleotide	according	to	the	jsDoc	spec,	and	developed	functions	for	parsing	
Strings	of	CF	shorthand	or	JSON	into	these	classes.	Functions	were	also	created	to	
interconvert	between	Polynucleotide	and	Dseqrecord	representations.	We	then	
developed	a	function	that	simulates	a	ConstructionFile	instance,	executing	the	
appropriate	operations	and	returning	the	resulting	product	sequences.	Finally,	we	
created	an	API	wrapper	to	host	the	simulator	as	a	REST	endpoint,	along	with	a	
YAML	and	manifest	containing	the	shorthand	specification	for	communication	with	
ChatGPT.	

	
Testing	of	the	Python	plugin	wrapper	revealed	several	limitations.	While	the	

plugin	successfully	handles	simple	cases	like	PCR	on	short	templates	
(pydna_plugin_test.html	and	pydna_plugin_test.mov),	its	token	limit	in	the	low	
thousands	significantly	curtails	its	utility	with	larger	DNA	sequences.	This	limit	is	far	
from	sufficient	to	encode	complex	structures	like	plasmid	sequences,	let	alone	the	
millions+	tokens	required	to	express	a	genome	sequence.	Due	to	its	limited	utility,	
we	have	not	submitted	PyDNA_CF_Simulator	for	inclusion	as	an	official	ChatGPT	
plugin.		However,	the	code	is	available	on	Github	under	the	open-source	MIT	license.	

	
Further	limitations	were	found	within	the	pydna	library	itself.	Pydna's	

inability	to	simulate	Golden	Gate	reactions,	a	cornerstone	of	modern	synthetic	
biology,	greatly	restricts	its	utility	for	a	wide	range	of	experiments.	Although	the	
source	code	includes	a	script	for	it,	it	is	not	fully	implemented.	While	Golden	Gate	
could	be	described	as	sequential	digestion	and	ligation	steps,	which	are	
implemented,	this	is	not	equivalent	to	the	simultaneous	cutting	and	ligation	that	
occurs	in	the	actual	process	which	requires	additional	logic.	Additionally,	pydna	
allows	non-DNA	letters,	even	permitting	the	entire	alphabet	as	syntax.	

	
While	the	Python	plugin	wrapper	effectively	delegates	the	simulation	task	to	

reliable,	well-tested	code,	it	has	notable	limitations.	A	significant	challenge	with	this	
type	of	interface	is	the	absence	of	visualization	and	persistence	for	both	the	
resulting	sequences	and	the	Construction	File	itself.	Ideally,	an	additional	interface	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


would	be	integrated	into	the	workflow	to	provide	users	with	a	clearer	
understanding	of	the	process	and	its	outcomes.	These	findings	highlight	the	
necessity	for	further	development	and	enhancements	to	the	AI	interface,	
particularly	in	the	areas	of	user	interface	design	and	strategies	to	circumvent	token	
limits.	

	
ConstructionFileSimulator:	a	Java-Based	Tool	for	Validation	and	Simulation	of	CF	

	
There	are	two	distinct	types	of	software	that	could	be	developed	for	

simulating	Construction	Files	(CFs):	one	that	validates	the	CF,	and	another	that	
calculates	the	product.	While	these	objectives	may	seem	similar,	they	lead	to	
different	design	decisions	and	implementations.	For	instance,	consider	a	Golden	
Gate	assembly	of	three	fragments,	where	one	fragment	has	compatible	ends	on	both	
sides	and	thus	will	re-ligate.	A	tool	focused	on	calculating	the	product	would	
correctly	simulate	this	scenario	and	return	the	single-fragment	product.	However,	a	
tool	focused	on	validating	a	CF	would	instead	identify	this	scenario	as	a	problem,	
alerting	the	user	to	the	potential	issue	rather	than	simply	returning	the	result.	This	
focus	on	error	detection	and	prevention	is	crucial	for	ensuring	the	validity	and	
success	of	genetic	engineering	experiments.	

	
With	this	validation	objective	in	mind,	we	developed	the	first	iteration	of	

ConstructionFileSimulator	(CFS)	in	Java16.	We	employed	a	programming	style	
reminiscent	of	Functional	Programming	with	mostly-pure	functions	and	immutable	
classes.	It	interprets	CF	shorthand	text	into	a	ConstructionFile	object,	subsequently	
simulating	the	expected	reaction	product	step	by	step.	If	an	error	arises	during	
simulation,	it	triggers	an	error	response	which	terminates	the	operation	and	
delivers	a	detailed	message	to	guide	corrective	action.	

	
The	relationship	between	CF	operations	and	simulator	functions	in	CFS	is	

largely	one-to-one,	but	the	concurrent	development	of	the	CF	syntax,	CFS,	and	
wetlab	usage	has	led	to	the	need	for	backward	compatibility	with	past	versions	of	
CF.	As	a	result,	CFS	can	handle	a	broader	array	of	syntax	than	the	specified	
shorthand,	and	the	codebase	contains	more	complexity	than	strictly	necessary.	It	
also	supports	PCA	(Polymerase	Chain	Assembly),	SOE	(Splicing	by	Overlap	
Extension),	and	Klenow	(Klenow	extension)	operations	which	are	not	in	the	
specification.	From	a	system	architecture	perspective,	it's	worth	noting	that	a	strict	
one-to-one	correspondence	between	operations	and	functions	is	not	always	the	
most	efficient	or	effective	design.	For	example,	lower-level	functions	such	as	reverse	
complementation	(RevComp.java)	are	used	across	multiple	algorithms	and	are	
therefore	implemented	as	standalone	functions	rather	than	being	associated	with	
specific	operations.	Furthermore,	to	accommodate	a	variety	of	PCR-like	scenarios,	
we	generalized	these	techniques	in	the	simulation.	While	this	abstraction	was	
challenging	to	express	in	shorthand,	it	provides	a	compact	solution	at	the	functional	
level.	The	CFS	codebase	also	includes	several	exploratory	and	vestigial	features	that	
we	have	omitted	from	this	discussion	for	the	sake	of	focus.	

	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


Within	this	architecture,	the	project	houses	two	PCR	simulators,	each	
designed	to	address	specific	experimental	scenarios.	The	simpler	one,	encoded	in	
the	method	perfect18Simulation,	is	only	activated	when	a	singular	template	and	two	
oligos	are	present,	with	both	oligos	perfectly	matching	the	template	over	18	bp	at	
their	3'	ends.	This	condition	is	usually	met	for	standard	cloning	experiments.	
However,	for	non-standard	scenarios,	such	as	site-directed	mutagenesis	involving	
20-mer	oligonucleotides	with	a	central	mismatch,	a	more	mechanistic	simulation	is	
needed.	This	includes	simulating	PCA,	SOEing,	or	Klenow	Extension,	where	template	
varieties	from	single-stranded	to	double-stranded,	and	their	quantities	from	0	to	n,	
must	be	considered.	To	accommodate	these	scenarios,	the	PCRSimulator	employs	a	
backup	algorithm,	which	mimics	pairwise	DNA	annealing	and	extension.	It	checks	
for	alignments	where	the	3'	six	bases	of	the	oligo	exactly	match	the	template,	then	
uses	JAligner	and	Tm	calculations	for	further	detection	of	annealing	sites.	However,	
this	more	complex	function,	while	generally	reliable,	occasionally	struggled	with	
scenarios	that	a	simpler	algorithm	could	handle	correctly.		Additionally,	it	was	
computationally	demanding,	causing	failures	for	longer	templates	and	occasional	
inability	to	detect	obvious	annealing	sites.	To	mitigate	this,	the	simpler	version	is	
used	as	a	first	attempt	before	falling	back	to	the	more	mechanistic	simulation	when	
necessary.	The	simulator	can	now	handle	more	scenarios	than	outlined	in	the	
specification	documents,	including	unique	cases	like	mixtures	of	single-stranded	
and	double-stranded	templates.	Both	algorithms	have	been	rigorously	tested	and	
confirmed	to	work	on	linear	and	circular	templates,	including	inverse	PCRs,	and	
they	handle	5'	modifications,	5'	extensions,	and	common	issues	such	as	multiple	
annealing	sites	and	orientation	errors.	

	
The	Digest	operation	uses	a	REBASE	database-derived	file	for	restriction	

enzyme	information,	making	it	capable	of	handling	more	enzymes	than	mentioned	
in	the	specification.	It	correctly	handles	degenerate	cutters,	both	5'	and	3'	
extensions,	and	appropriately	assigns	phosphates	to	the	5'	modifications	of	freshly	
cut	DNAs.	Though	there	is	a	method	in	the	code	(cutOnce)	that	simulates	a	single	
cutting	event,	the	Digest	operation	is	assumed	to	mean	'cut	to	completion'	and	thus	
does	not	support	partial	digests.	

	
In	the	simulation	of	ligation,	the	presence	of	a	5'	phosphate	and	matching	

sticky	ends	are	checked,	and	two	matching	ends	of	two	input	Polynucleotides	are	
concatenated	into	one.	This	process	is	repeated	until	only	one	fragment	remains.	If	
its	ends	are	compatible,	it	is	denoted	as	a	circular	DNA,	and	the	sticky	ends	are	
integrated	into	the	sequence	field	of	the	resulting	Polynucleotide.	

	
The	simulation	of	GoldenGate	primarily	involves	cutting	with	the	type	IIS	

enzyme	and	ligating	the	fragments,	with	additional	checks	for	orientation,	number	
of	sites	in	the	molecule,	and	the	appropriateness	of	the	generated	sticky	ends.	
Gibson	simulation	finds	exact	20	bp	matches	between	homologous	ends	and	
connects	the	DNAs	pairwise.	

	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


The	simulation	of	transformation,	while	implemented,	is	currently	limited	to	
checking	that	the	product	is	circular.	This	is	because	transformation	of	a	bacterium	
with	a	DNA	requires	it	to	be	circular.	However,	it's	worth	noting	that	CFS	fully	
enables	the	generation	of	in	vitro	linear	DNAs,	which	can	be	useful	in	certain	
scenarios,	such	as	library	fabrication.	

	
CFS	includes	rigorous	checks	for	possible	design	errors	and	provide	

comprehensive	error	messages	when	triggered.	Over	the	course	of	three	years,	our	
use	of	the	CFS	for	validating	wetlab	designs,	along	with	its	extensive	application	by	
over	100	students,	has	enabled	us	to	identify	and	rectify	numerous	bugs.	This	
iterative	process	led	to	the	creation	of	a	multitude	of	unit	tests	for	various	edge	case	
scenarios,	enhancing	the	reliability	and	robustness	of	our	simulator.	The	
development	history	is	documented	as	issues	in	the	ConstructionFileSimulator	
repository	on	Github.	

	
CFS's	most	straightforward	interface	is	its	SimulatorView	Swing	GUI,	

launched	by	executing	the	jar	file	without	arguments.	This	interface	accepts	a	
construction	file's	shorthand	text	and	outputs	the	final	step's	product.	As	illustrated	
in	Figure	4,	we	fed	the	GUI	with	steps	parsed	by	ChatGPT	from	the	native	invasin	
text,	along	with	the	sequences	of	the	three	input	plasmid	sequences	(Chats/	
invasin_cf.txt).	The	resulting	sequence	of	pBACr-AraInvasin	matches	the	expected	
map	and	aligns	with	sequenced	isolates,	validating	the	simulator's	accuracy	and	
utility.	We	have	provided	an	array	of	real-world	examples	(found	in	the	
supplemental	Examples	folder),	showcasing	the	successful	application	of	CFS.	These	
examples	feature	experiments	that	involve	degenerate	bases,	the	creation	of	
libraries,	SOEing,	PCA,	and	Klenow	extension,	all	of	which	the	simulator	correctly	
handles.	

	
Mitigating	Clerical	Mistakes	with	'Experiment'	Objects	in	ConstructionFileSimulator	

	
While	simulating	a	CF	is	an	effective	way	to	detect	technical	errors	in	

experimental	design,	such	as	oligo	design	issues,	it	doesn't	account	for	clerical	
errors	that	often	occur	in	larger	experiments	involving	multiple	CFs	or	during	
collaborations	among	research	teams.	These	errors,	such	as	maintaining	different	
versions	of	input	sequences,	are	surprisingly	common	and	can	severely	impact	the	
success	of	an	experiment.	To	address	these	issues,	we've	introduced	the	concept	of	
an	'Experiment'	object	into	CFS.	

	
The	creation	of	an	'Experiment'	object	begins	by	passing	a	hard	drive	path	to	

a	folder	containing	all	relevant	files	to	a	parser.	This	includes	sequence	files	in	TSV	
or	GenBank	format	(.gb,	.seq,	.str,	and	.ape),	CFs	expressed	as	plain	text	files,	and	
additional	sequence	files,	primarily	for	oligos,	in	a	TSV	format	that	also	allows	
additional	columns.	This	format	is	particularly	useful	as	it	aligns	with	the	IDT	oligo	
form,	reducing	the	risk	of	error	when	copying	and	pasting	between	what	is	
simulated	and	what	is	ordered.	The	parser	then	outputs	an	'Experiment'	object	that	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


encapsulates	all	the	provided	information.	Once	the	'Experiment'	is	created,	it	can	
be	simulated	to	ensure	the	accuracy	of	the	documentation.	

	
Executing	a	list	of	CFs	requires	additional	analysis	to	determine	the	correct	

order	of	execution.	This	is	crucial	to	ensure	that	the	products	of	earlier	files	can	be	
used	as	inputs	for	later	files.	For	example,	in	the	pTP2_reporter	example,	a	series	of	
unrelated	experiments	was	used	to	construct	a	reporter	plasmid.	To	correctly	
simulate	this,	the	software	must	identify	the	order	of	execution	for	each	CF.	We	also	
had	to	consider	the	potential	for	name	reuse,	such	as	"pcrpdt"	to	refer	to	products	of	
intermediate	steps.	To	address	this,	the	CFS	implementation	of	ConstructionFile	
includes	an	explicit	singular	output	from	the	entire	file,	which	is	set	as	the	product	
of	the	last	step	during	parsing.	This	addition,	while	not	explicitly	part	of	the	
specification,	is	necessary	to	resolve	potential	conflicts	and	implies	that	a	
ConstructionFile	describes	not	only	an	ordered	list	of	steps	but	also	a	specific	
product	outcome.	

	
The	need	for	this	higher-order	'Experiment'	object	is	heavily	dependent	on	

the	user	interface.	Our	current	approach	treats	files	as	contents	of	a	folder,	but	other	
systems	might	use	a	database,	potentially	reducing	the	impact	of	clerical	errors	if	
the	design	and	simulation	functions	were	integrated.	Furthermore,	the	exact	content	
and	format	of	an	'Experiment'	are	yet	to	be	defined.	Within	the	CFS,	it	encompasses	
sequences	and	CFs,	but	a	more	comprehensive	specification	could	include	
measurement	data,	analysis,	and	more.	Therefore,	while	this	'Experiment'	
functionality	is	part	of	the	CFS	project,	we	currently	propose	no	standards	for	it	and	
present	it	as	an	exploratory	feature.	

	
An	'Experiment'	folder	can	be	parsed	and	simulated	using	the	

SimulateExperimentDirectory	function.	This	function	is	executed	when	the	user	
runs	the	jar	from	the	command	line	and	passes	in	the	path	to	the	folder	as	a	
parameter.	SimulatorView	will	also	execute	this	function	when	such	a	folder	is	
dragged-and-dropped	on	the	GUI.	Upon	execution,	the	simulator	generates	a	
GenBank	file	for	each	product	sequence	and	creates	two	log	files:	C5seqs.txt,	which	
contains	all	sequences	(inputs,	intermediates,	and	products),	and	C5log.txt,	which	
provides	a	detailed	account	of	all	events	that	occurred	during	execution.	These	log	
statements	are	also	outputted	to	the	command	line	when	the	jar	is	run	from	there.	
This	information	is	helpful	for	identifying	and	correcting	errors	in	the	experiment's	
design	or	documentation.	

	
There	are	two	supplemental	examples	of	'Experiment'	folders	that	can	be	run	

with	CFS.	The	Lycopene2	example	demonstrates	a	scenario	where	several	
construction	files	are	performed	in	parallel	using	a	shared	set	of	oligos	in	different	
combinations.	The	pTP2_reporter	example	illustrates	a	chain	of	sequential	CFs	
where	the	product	of	one	becomes	an	input	to	another.	A	demonstration	of	running	
CFS	on	this	example	is	available	at	cfs_experiment.mov.	

	
C6-Tools:	Simplifying	CF	Simulations	and	Oligo	Design	in	Google	Sheets	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


	
The	Java	implementation	of	CFS	is	well-tested,	reliable,	and	effective	for	

validating	correct	CF.		However,	students	have	found	it	somewhat	challenging	to	
identify	errors	in	the	CF.	The	log	file	details	all	events,	which,	while	helpful	in	
pinpointing	errors,	can	result	in	a	complex	interaction	akin	to	code	debugging.	
Typically,	we	run	simulations	through	the	IDE	and	leverage	its	debugging	tools.	A	
significant	part	of	this	challenge	stems	from	the	lack	of	visual	representation	during	
simulation.	Although	this	issue	could	be	addressed	by	creating	more	graphical	user	
interfaces,	this	also	presents	another	learning	hurdle.	

	
Driven	by	these	usability	concerns,	we	ventured	into	developing	a	variant	of	

CFS,	named	C6-Tools17,	using	Google	Apps	Script	(JavaScript)	within	a	Google	Sheet.	
In	addition	to	simulation	functions,	we	also	integrated	algorithms	for	oligo	design.	
Displaying	individual	design	and	simulation	events	in	a	2D	spreadsheet	grid	
significantly	simplifies	the	visualization	of	ongoing	operations	and	error	
identification.	Additionally,	this	interface	is	highly	familiar	and	requires	little	
explanation	for	new	users	and	can	be	easily	accessed	via	url.	While	C6-Tools	offers	a	
lower	entry	barrier	compared	to	CFS,	it	is	a	newer	tool	and	has	not	been	as	
extensively	tested.	

	
Initially,	our	aim	in	developing	C6-Tools	was	to	leverage	GPT-4	to	

automatically	translate	the	Java	code	into	Apps	Script.	However,	the	majority	of	the	
functions	proved	this	task	to	be	not	as	straightforward.	One	notable	complication	
was	the	Sheets'	inability	to	accept	objects	as	cell	values,	necessitating	their	
additional	management	as	JSON.	Despite	these	hurdles,	ChatGPT	was	instrumental	
in	facilitating	this	process	with	extensive	prompting	and	revision.	

	
Given	the	prevalence	and	versatility	of	Gibson	Assembly	and	Golden	Gate	

cloning	in	modern	genetic	engineering,	traditional	methods	like	digestion	and	
ligation	have	become	less	relevant.	Therefore,	we	decided	not	to	include	support	for	
these	older	'cut	and	paste'	methods	in	C6-Tools.	Additionally,	this	led	to	significant	
simplification	of	the	code.		Though	Polynucleotide	and	its	tracking	of	end	chemistry	
is	needed	to	simulate	separate	digestion	and	ligation	steps,	it	is	not	needed	to	
accurately	simulate	PCR,	Golden	Gate,	and	Gibson	methods	which	can	be	well	
handled	by	simple	sequence	strings.	Nevertheless,	we	include	a	class	definition	for	
Polynucleotide	as	an	option	for	future	development	in	JS.	

	
Nonetheless,	constraints	such	as	the	lack	of	a	testing	environment,	the	

inability	to	import	libraries,	and	the	non-portability	of	the	code	hamper	further	
development	of	C6-Tools	in	its	current	form.	In	the	case	of	Apps	Script,	the	scripts	
must	be	either	within	the	Sheet	file,	requiring	duplication,	or	transcluded	from	a	
library	with	a	complete	wrapper.	This	quality	of	Apps	Script	limits	the	ability	to	
maintain	and	extend	the	library.		However,	for	users	who	may	wish	to	customize	
their	own	version	of	C6-Tools,	the	independence	offered	by	the	current	
implementation	may	be	preferable	over	a	development	team's	oversight.	

	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


Discussion	
The	CF	specification,	as	it	currently	stands,	covers	a	wide	range	of	common	

molecular	biology	operations,	including	PCR,	Digest,	GoldenGate,	Ligate,	Gibson,	and	
Transform.	However,	there	are	several	common	methods	that	are	not	explicitly	
represented	in	the	CF	specification.	These	include	USER	cloning,	Ligase	Chain	
Assembly	(LCA),	QuikChange	mutagenesis,	site-specific	recombination	systems	like	
CRE/Lox	and	Gateway,	homologous	recombination	methods	like	Datsenko-Wanner,	
and	transposon-based	methods.	In	addition,	the	CF	specification	does	not	currently	
support	simple	annealing	of	oligos	to	form	a	duplex	DNA,	CRISPR-mediated	DNA	
cutting,	or	TOPO-TA	cloning.	

	
Each	of	these	methods	has	unique	requirements	and	parameters	that	would	

need	to	be	incorporated	into	the	CF	specification	to	enable	simulation.	For	example,	
QuikChange	mutagenesis	involves	a	PCR-like	process,	but	the	product	is	not	the	
same	as	a	typical	PCR	product.	The	CF	PCR	algorithm,	while	generalized,	does	not	
currently	infer	homology	and	reclosure	of	ends	that	QuikChange	would	require.	
Similarly,	site-specific	recombination	systems	like	CRE/Lox	and	Gateway	involve	
specific	recognition	sequences,	which	would	need	to	be	identified	during	the	
simulation	process.	

	
In	addition	to	these	specific	methods,	there	are	also	broader	categories	of	

techniques	that	are	not	currently	covered	by	the	CF	specification.	For	example,	the	
CF	specification	does	not	currently	support	the	representation	of	mixed	pools	of	
entirely	different	sequences,	which	are	often	used	in	library	construction.	Nor	does	
it	support	the	representation	of	more	complex	DNA	structures,	such	as	DNA	bubbles	
or	mixed	RNA/DNA	structures.	

	
However,	the	question	remains:	do	we	need	to	include	all	these	methods	in	

the	CF	specification?	The	answer	largely	depends	on	the	specific	goals	and	use	cases	
of	the	CF	specification.	If	the	goal	were	to	create	a	comprehensive	database	of	all	
cloning	experiments,	then	a	comprehensive	representation	of	all	possible	methods	
would	be	necessary.	On	the	other	hand,	if	the	goal	is	to	provide	a	simple	and	
intuitive	interface	for	designing	common	molecular	biology	experiments,	then	a	
more	limited	set	of	operations	may	be	sufficient.	In	any	case,	the	decision	to	include	
or	exclude	specific	methods	from	the	CF	specification	should	be	made	with	careful	
consideration	of	the	trade-offs	between	comprehensiveness,	simplicity,	and	
practical	utility.	Particularly	for	interacting	with	intelligent	systems,	where	token	
limits	are	important	constraints,	having	to	include	endpoints	or	API	info	about	all	
these	different	operations	gets	heavy.	If	the	user	isn't	going	to	do	all	these	things,	
then	why	are	they	in	the	tool?	

	
Broadening	the	Scope	of	the	Transform	Operation	for	Greater	Experimental	Accuracy	

	
The	Transform	operation,	a	pivotal	step	in	many	molecular	biology	

experiments,	signifies	a	phase	where	the	DNA	is	subject	to	further	chemical	
modifications.	For	example,	DNA	nicks	can	undergo	resealing,	and	the	host's	dam	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


and	dcm	systems	can	introduce	novel	methylation	patterns.	Nonetheless,	the	
existing	Transform	operation	neither	accounts	for	these	modifications	nor	verifies	
the	presence	of	a	selectable	marker	or	a	suitable	origin	of	replication.	Moreover,	it	
does	not	confirm	whether	the	replicon	will	replicate	in	the	designated	host,	or	if	
other	plasmids	originating	from	the	same	incompatibility	group	already	exist	in	the	
strain.	To	fully	validate	a	transformation,	the	Transform	operation	would	need	to	
incorporate	these	checks.	Furthermore,	the	current	ontology,	with	its	E.	coli-centric	
focus,	presumes	the	use	of	antibiotics	that	may	not	be	suitable	for	yeast	work	or	
transfection	in	plant	or	animal	cells.	
	

Beyond	these	fundamental	verifications,	the	Transform	operation	could	be	
enhanced	to	encompass	a	more	exhaustive	simulation	of	the	biological	processes	
initiated	upon	the	entry	of	DNA	into	the	cell.	Such	a	simulator	could	scrutinize	the	
introduced	DNA	for	proper	gene	structure	and	assess	the	overall	cellular	system	for	
biochemical	accuracy,	a	first	pass	at	which	we	presented	in	our	previous	work18.	
This	would	entail	simulating	the	intracellular	biochemical	reactions	and	forecasting	
the	cellular	response	to	the	introduced	DNA.	For	example,	the	simulator	could	check	
if	a	sufficient	grouping	of	genes	was	introduced	to	complete	a	pathway	to	a	desired	
metabolite.	It	could	infer	promoter	behavior	and	determine	what	regions	of	the	DNA	
would	be	transcribed	and	translated.	By	juxtaposing	this	inferred	pathway	data	with	
a	functional	specification,	the	simulator	could	ascertain	whether	the	designed	
system	would	operate	as	intended,	or	if	it	could	potentially	be	toxic	to	the	cell	or	
contain	elements	that	might	cross-react.	Incorporating	a	transform	simulator	would	
provide	an	additional	layer	of	validation,	ensuring	the	precision	of	experimental	
designs	and	thereby	enhancing	the	overall	dependability	and	trust	in	the	CF.	
	
Appraising	User	Interface	Considerations	for	Effective	CF	Deployment	
	

During	the	development	of	CF,	we	explored	a	range	of	interfaces,	each	
presenting	unique	advantages	and	challenges.	These	interfaces	include	the	Python	
scripting	interface,	the	SimulatorView	shorthand	editor	interface,	the	Experiment	
folder-based	interface	with	CFS,	the	spreadsheet	interface	via	C6-tools,	the	API	
interface	with	PyDNA_CF_Simulator,	and	the	ChatGPT	conversational	interface.	
	

The	Python	scripting	interface	provides	a	robust	and	flexible	platform	for	
designing	and	simulating	experiments,	a	feature	that	programmers	will	find	
familiar.	However,	its	accessibility	is	limited	to	those	with	coding	experience.	
Conversely,	the	SimulatorView	shorthand-script	based	interface	is	perfectly	suited	
for	crafting	bespoke,	detailed	experiments.	Yet,	it	may	be	cumbersome	when	
handling	many	files	due	to	its	manual	nature.	
	

The	spreadsheet	interface,	facilitated	by	C6-tools,	offers	the	advantages	of	
visual	arrangement,	lookup	properties,	and	easy	portability.	It	also	enables	the	use	
of	all	the	other	spreadsheet	functions,	including	the	ability	to	drag	the	contents	of	a	
field	across	a	range.	This	makes	it	particularly	useful	for	describing	sets	of	
constructs,	such	as	an	ortholog	or	promoter	scan.	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


	
The	Experiment	folder-based	interface	offers	portability	and	compatibility	

with	filesystem	contexts	like	Github	or	Google	Drive.	It	can	be	zipped	and	sent	via	
email,	making	it	a	convenient	option	for	sharing	and	collaborating	on	experiments.	
The	API	interface	with	PyDNA_CF_Simulator	allows	for	programmatic	interaction	
with	the	CF	tools,	providing	another	layer	of	flexibility.	
	

It's	pertinent	to	highlight	that	the	most	common	approach	to	authoring	CF	
likely	does	not	involve	direct	typing.	Instead,	a	collection	of	design	functions	could	
generate	the	CF	or	Experiment	object.	Consider,	for	instance,	an	ortholog	scan	
function.	This	function	would	take	as	input	the	initial	prototype	plasmid,	specify	the	
ORF	to	be	scanned,	and	the	organisms	from	which	an	ortholog	is	desired.	The	
function	would	then	execute	a	BLAST	search	of	the	ORF	sequence	to	be	replaced	
against	the	specified	organisms,	select	an	appropriate	cloning	strategy,	design	all	
necessary	oligos,	and	output	an	Experiment	object	ready	for	simulation	or	
execution.	Preliminary	versions	of	such	algorithms	are	presented	for	oligo	design	in	
C6-tools,	but	we	reserve	the	development	of	such	functions	for	future	work.	
Ultimately,	a	comprehensive	library	of	such	design	functions	could	be	established	to	
cater	to	a	wide	array	of	scenarios.	
	

The	ChatGPT	conversational	interface	facilitates	a	more	intuitive	interaction	
by	leveraging	natural	language	processing.	However,	it	is	currently	limited	by	token	
limits,	which	restricts	the	complexity	and	length	of	the	interactions.	Ideally,	the	AI	
could	be	aware	of	all	the	other	interfaces	such	that	it	could,	for	example,	build	a	
spreadsheet	that	invoked	the	functions,	or	translated	a	spreadsheet	to	the	
experiment	folder	format.	This	would	allow	the	AI	to	leverage	the	benefits	of	each	
interface,	while	mitigating	their	individual	limitations.	
	
Challenges	and	Opportunities	in	Integrating	AI	for	Experimental	Design	
	

Synthetic	biology	stands	on	the	cusp	of	a	new	era	as	we	explore	the	complex	
but	promising	task	of	integrating	it	with	artificial	intelligence	(AI).	This	fusion	has	
the	potential	to	revolutionize	experiment	design	through	automation	and	
streamlined	efficiency,	thereby	reducing	manual	labor	and	cognitive	load.	Our	study	
demonstrates	that	GPT-4	exhibits	impressive	proficiency	in	working	with	CFs.	
However,	the	road	to	effective	integration	is	filled	with	significant	challenges.	
	

The	development	of	reliable	AI	interfaces	stands	as	the	first	hurdle.	These	
interfaces	must	understand	CFs	in	their	entirety	and	demonstrate	proficiency	in	
various	tasks	such	as	designing	CFs,	compiling	them	into	robot	commands	or	
human-readable	instructions,	and	even	locating	CFs	using	intricate	queries.	The	
interfaces	should	also	be	capable	of	querying	the	sequences	tied	to	the	experiments	
and	maintain	an	inventory	awareness.	They	need	to	understand	and	invoke	a	
myriad	of	API	functions	related	to	CFs.	This	requires	an	in-depth	understanding	of	
the	CF	specification	and	the	biological	processes	it	encapsulates,	coupled	with	the	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


capacity	to	handle	complex	data	structures	and	large	sequence	files,	which	
constitute	substantial	computational	challenges.	
	

To	address	the	issue	of	token	limits,	we	propose	a	decoupling	strategy.	By	
assigning	unique	names	to	well-defined	objects,	we	can	create	loosely-coupled	
references,	significantly	reducing	token	usage.	This	not	only	simplifies	data	
manipulation	across	various	levels	of	abstraction	but	also	allows	the	AI	to	focus	on	
task-specific	requirements	within	the	scope	of	relevant	information.	
	

In	light	of	synthetic	biology's	extensive	functional	scope,	we	recommend	
adopting	a	dynamic	plugin	system.	This	would	enable	the	AI	to	access	a	wide-
ranging	function	library	dynamically,	choosing	the	right	function	along	with	its	API	
information	for	precise	execution.	This	strategy	circumvents	the	need	for	an	AI	to	be	
pre-trained	on	extensive	API	data	and	allows	for	the	addition	of	further	functions	
without	necessitating	comprehensive	AI	rewrites.	
	

While	it's	crucial	to	ensure	that	CFs,	the	associated	sequences,	and	compiled	
instructions	are	stored	persistently	and	readily	accessible,	the	inherently	error-
prone	and	fleeting	nature	of	AI	memory	requires	this	storage	to	take	place	on	the	
plugin	side	of	the	interface.	The	AI	should	reference	these	stored	objects	by	their	
unique	names.	However,	this	approach	does	present	challenges,	including	ensuring	
that	the	AI	is	aware	of	the	objects	stored	within	the	plugin	and	defining	how	new	
objects	are	added	and	persisted.	
	

In	the	integration	of	AI	with	CFs,	biosecurity	remains	a	paramount	concern.	It	
is	critical	to	have	human	oversight	to	prevent	any	direct	execution	of	code,	
particularly	when	it	involves	robotic	genetic	engineering	processes.	The	AI	needs	to	
be	semantically	aware	of	its	tasks	and	carry	out	continuous	checks	against	known	
biohazards	such	as	toxins,	virulence	factors,	and	gene	drives.	As	we	strive	to	
overcome	computational	and	biosecurity	challenges	in	the	integration	of	AI	with	
CFs,	we	recognize	that	the	interplay	of	AI	capabilities	and	synthetic	biology,	despite	
its	hurdles,	holds	the	key	to	a	future	where	efficiency,	precision,	and	safety	
transform	the	landscape	of	biological	experimentation	and	discovery.	
	
Conflict	of	interest	statement:	None	declared.	
	
Supporting	Information	
	
Files	provided	in	CF_Supplement.zip:	
	
cf_JSDoc_specification.md:		Specification	document	for	JSON	representation	of	CF.	
	
cf_shorthand_specification.md:		Specification	document	for	CF	Shorthand	
	
Examples	Folder:	
	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


Construction_pSB1A2-Bca9128.txt.	CF	Shorthand.	Example	from	figure	1	and	from	
OpenWetWare	tutorial.		Uses	PCR,	cut	and	ligate	to	make	a	BioBrick.	Runs	with	both	
PyDNA_CF_Simulator	and	ConstructionFileSimulator.	Will	not	run	with	C6-Tools.	
	
Construction_pSB1A2-Bca9128.json.		CF	JSON.	Same	experiment	as	above.	
	
Construction_pSB1A2-Bca9128.xml.		CF	XML.	Same	experiment	as	above.	
	
Construction_pTarg1.txt.	CF	Shorthand.		Replacing	the	antibiotic	marker	in	pTargetF	
with	ampicillin	resistance	using	two-part	PCR-based	Golden	Gate	assembly.	Will	not	
work	on	PyDNA_CF_Simulator,	but	works	with	ConstructionFileSimulator.	
	
Construction_TPjoin.txt:		CF	Shorthand.	Plasmid-based	Golden	Gate	of	two	plasmids	
with	BseRI.	Will	not	work	on	PyDNA_CF_Simulator,	but	works	with	
ConstructionFileSimulator.	
	
Construction_pTarg2.txt:	CF	Shorthand.	Replacing	the	antibiotic	marker	in	pTargetF	
with	a	two-part	PCR-based	Gibson	assembly.	This	also	demonstrates	usage	of	
optional	PCR	product	size	parameters	as	well	as	the	usage	of	'oligo'	and	'plasmid'	
keywords	for	sequences.	Runs	with	both	PyDNA_CF_Simulator	and	
ConstructionFileSimulator.	
	
Construction_pTarget-tyrB1.txt:	CF	Shorthand.	Replacing	the	protospacer	in	
pTargetF	with	a	new	sequence	using	SpeI-based	EIPCR	(cut	and	ligation	of	a	single	
PCR	product).	Runs	with	both	PyDNA_CF_Simulator	and	ConstructionFileSimulator.	
	
Construction_pBca1100-Bca1111.txt:	CF	Shorthand.		Derived	from	OpenWetWare	
tutorial.	This	demonstrates	two	capabilities	of	ConstructionFileSimulator	but	not	
implemented	in	PyDNA_CF_Simulator:		SOEing	as	well	as	PCR	with	oligos	containing	
a	mismatch	in	the	annealing	region.	
	
Construction_pAC-tRNA_N8_Library.txt:	CF	Shorthand.	Annealing	and	extension	
(Klenow	Extension)	of	degenerate	oligonucleotides,	followed	by	cut	and	paste.		
Includes	a	3'	enzyme,	PstI.	Will	not	work	on	PyDNA_CF_Simulator,	but	works	with	
ConstructionFileSimulator.	
	
Construction_PCA.txt:		CF	Shorthand.		A	synthetic	example	of	Polymerase	Chain	
Assembly	(not	tested	in	the	wetlab).	Will	not	work	on	PyDNA_CF_Simulator,	but	
works	with	ConstructionFileSimulator.		
	
Lycopene2:		Experiment	Folder.		Insertion	of	the	AtIPI	gene	into	a	lycopene	
production	plasmid	with	6	different	truncations	of	adjacent	sequences.	Runs	with	
ConstructionFileSimulator	from	the	command	line.	
	
pTP2_reporter:		Experiment	Folder.		A	chain	of	three	sequentially	executed	
Construction	Files.	Runs	with	ConstructionFileSimulator	from	the	command	line.	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


	
Movies	Folder:	
	
pydna_plugin_test.mov:	Demonstration	of	simulating	a	PCR	reaction	via	the	
PyDNA_CF_Simulator	ChatGPT	plugin.	
	
cfs_experiment.mov:		Demonstration	of	using	ConstructionFileSimulator	to	simulate	
the	pTP2_reporter	example.	
	
Chats	Folder:	
	
syntax_conversions.html:		ChatGPT	conversion	of	CF	shorthand	to	JSON	and	XML	
formats.	Shared	chat:	https://chat.openai.com/share/2df31c09-5d2a-4f2b-a264-
2b268ce951f6.	
	
cf_to_pydna.html:		ChatGPT	attempts	to	convert	a	CF	to	a	pydna	script.	Shared	chat:		
https://chat.openai.com/share/cce4f72e-518d-4485-879a-ff98a9ec16b4.	Testing	
of	the	resulting	script:	
https://colab.research.google.com/drive/1RLDmqEBVl0SNf4lDuGh9x3c22E04V4r2
.	
	
design_biobrick.html:		ChatGPT	attempts	to	design	a	BioBrick	prefix	insertion	CF.	
Shared	chat:		https://chat.openai.com/share/b618df5f-c319-4a0f-80be-
96485a2f33c4.	
	
technician_instructions.html:		ChatGPT	generates	technician	protocols	from	a	CF.	
Shared	chat:	https://chat.openai.com/share/694a76be-c604-46fc-8872-
2c40125d2e00.	
	
autoprotocol_instructions.html:		ChatGPT	attempts	to	write	an	Autoprotocol	from	a	
CF.	Shared	chat:		https://chat.openai.com/share/7379b4a3-6c01-489b-a67b-
5ae01028f58e.	
	
invasin_native_text.txt:		Text	from	ref.	14	used	as	a	ChatGPT	parsing	test.	
	
invasin_parse_test.html:		ChatGPT	parses	a	CF	from	scientific	journal	text.	Shared	
chat:	https://chat.openai.com/share/dd951f5b-00e9-42d8-85d2-8fd811f1ab1b.	
	
invasin_cf.txt:		CF	Shorthand.		CF	parsed	by	ChatGPT	with	sequences	added.	
	
invasin_simulation.html:		ChatGPT	attempts	to	simulate	the	invasin	CF	with	no	
plugin.	Shared	chat:		https://chat.openai.com/share/f1289f66-d4c5-483b-b07c-
26071af36a4a.	
	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


pydna_plugin_test.html:		ChatGPT	simulates	a	PCR	reaction	using	the	
PyDNA_CF_Simulator	plugin.	Same	as	movie.	Shared	chat:		
https://chat.openai.com/share/2af29a1f-590c-484f-b48d-7d5ac57fd786.	
	
Acknowledgements	
	
Evan	Cory,	Kristen	Delgado,	Cole	Ingamells,	Madhumita	Kannan,	Lauren	Mathis,	Sisi	
Morris-Gavrieli,	Mona	Zheng,	students	of	iGEM	at	Berkeley	and	BioE	140L	
contributed	to	testing	ConstructionFileSimulator	and	C6-Tools.	Though	
ConstructionFileSimulator	predates	ChatGPT,	all	other	aspects	of	this	study	were	
done	with	aid	from	the	AI.	
	
References	
	
1.	Hillson,	N.	J.;	Rosengarten,	R.	D.;	Keasling,	J.	D.	j5	DNA	assembly	design	
automation	software.	ACS	Synth.	Biol.	2012,	1	(1),	14–21.	
https://doi.org/10.1021/sb2000116.	
	
2.	Benchling.	https://www.benchling.com/.	
	
3.	Davis,	M.	W.;	Jorgensen,	E.	M.	ApE,	A	Plasmid	Editor:	A	Freely	Available	DNA	
Manipulation	and	Visualization	Program.	Front.	Bioinform.	2022,	2,	818619.	
https://doi.org/10.3389/fbinf.2022.818619.	
	
4.	SnapGene.	https://www.snapgene.com/.	
	
5.	Gorelenkov,	V.;	Antipov,	A.;	Lejnine,	S.;	Daraselia,	N.;	Yuryev,	A.	Set	of	novel	tools	
for	PCR	primer	design.	Biotechniques.	2001,	31	(6),	1326–1330.	
https://doi.org/10.2144/01316bc04.	
	
6.	Cock,	P.	J.;	Antao,	T.;	Chang,	J.	T.;	Chapman,	B.	A.;	Cox,	C.	J.;	Dalke,	A.;	Friedberg,	I.;	
Hamelryck,	T.;	Kauff,	F.;	Wilczynski,	B.;	de	Hoon,	M.	J.	Biopython:	freely	available	
Python	tools	for	computational	molecular	biology	and	bioinformatics.	
Bioinformatics.	2009,	25	(11),	1422–1423.	
https://doi.org/10.1093/bioinformatics/btp163.	
	
7.	Geneious.	https://www.geneious.com/.	
	
8.	Czar,	M.	J.;	Cai,	Y.;	Peccoud,	J.	Writing	DNA	with	GenoCAD.	Nucleic	Acids	Res.	2009,	
37	(Web	Server	issue),	W40–W47.	https://doi.org/10.1093/nar/gkp361.	
	
9.	Pereira,	F.;	Azevedo,	F.;	Carvalho,	Â.;	Ribeiro,	G.	F.;	Budde,	M.	W.;	Johansson,	B.	
Pydna:	a	simulation	and	documentation	tool	for	DNA	assembly	strategies	using	
python.	BMC	Bioinformatics.	2015,	16	(1),	142.	https://doi.org/10.1186/s12859-
015-0544-x.	
	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


10.	Poly.	https://github.com/TimothyStiles/poly.	
	
11.	Anderson,	J.	C.	Introduction	To	Oligo	Design.	
https://openwetware.org/wiki/Arking:JCAOligoTutorial1.	
	
12.	Transcriptic.	Autoprotocol.	https://autoprotocol.org/	
	
13.	OpenAI.	ChatGPT-4.	https://www.openai.com/chatgpt/	
	
14.	Anderson,	J.	C.;	Clarke,	E.	J.;	Arkin,	A.	P.;	Voigt,	C.	A.	Environmentally	controlled	
invasion	of	cancer	cells	by	engineered	bacteria.	J.	Mol.	Biol.	2006,	355	(4),	619–627.	
https://doi.org/10.1016/j.jmb.2005.10.076.	
	
15.	Anderson,	J.	C.	PyDNA_CF_Simulator;	GitHub:	2023.	https://github.com/UCB-
BioE-Anderson-Lab/PyDNA_CF_Simulator.	
	
16.	Ataii,	A.;	Bakshi,	S.;	Chen,	Y.;	Fernandez,	M.;	Scheftel,	Z.;	Shao,	Z.;	Tou,	C.;	Vega,	M.;	
Wang,	Y.;	Zhang,	H.;	Zhao,	Z.;	and	Anderson,	J.	C.	ConstructionFileSimulator;	GitHub:	
2023.	https://github.com/UCB-BioE-Genetic-Design-
Automation/ConstructionFileSimulator.	
	
17.	Anderson,	J.	C.	C6-Tools,	Version	1.0;	Google	Sheets:	2023.	
https://docs.google.com/spreadsheets/d/18GhA2s-
x9kX1ar5YRMghXjcOHNW63eaZiD0fTT4xC60/edit#gid=452338215.	
	
18.	Hsiau,	T.	H.-C.;	Anderson,	J.	C.	Engineered	DNA	Sequence	Syntax	Inspector.	ACS	
Synth.	Biol.	2014,	3	(2),	91–96.	DOI:	10.1021/sb400176e.	
	
	 	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


Figures	
	

	
Figure	1.	Shorthand	Representations	of	a	Cloning	Strategy.		(A)	Conventional	
illustration	of	a	cloning	strategy,	visually	detailing	PCR,	Digestion,	and	Ligation	
steps.	(B)	Equivalent	strategy	represented	in	Construction	File	Shorthand.	Each	step	
begins	with	an	operation	(blue),	followed	by	operation-specific	inputs,	often	
sequence	names	(magenta).	The	final	token	in	each	step	(orange)	denotes	the	
product,	encapsulating	the	outcome	of	the	operation.	This	shorthand	format	
provides	a	structured,	machine-readable	alternative	to	traditional	illustrations.	
	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


	
Figure	2.	Polynucleotide	Object	Representation	for	Simulating	Molecular	Biology	
Operations.		The	hypothetical	DNA	'polyA'	is	a	linear,	double-stranded	DNA	
previously	cut	with	BamHI,	dephosphorylated,	and	subsequently	cut	with	XmaI.	In	
the	Polynucleotide	object	representation,	the	fully	duplexed	DNA	portion	is	
captured	as	the	"sequence".	Single-stranded	overhangs	are	represented	by	the	
coding	strand	sequence	as	ext5	and	ext3,	denoting	the	overhangs	on	the	left	and	
right	of	the	diagram,	respectively.	Modifications	at	the	ends	are	indicated	by	
enumerated	types	as	mod_ext5	and	mod_ext3.	The	simulation	of	an	EcoRI	digestion	
of	this	DNA	would	yield	two	fragments,	indexed	as	0	and	1.	The	'fragmentSelection'	
field	of	the	shorthand	statement	is	set	to	0,	resulting	in	'polyB'	being	returned	as	
depicted.	In	the	simulation	software,	Polynucleotides	serve	as	dynamic	
representations	of	DNAs,	reflecting	their	states	as	they	undergo	operation-specific	
transformations	to	yield	expected	products.	Simulation	software	currently	supports	
PCR,	Digest,	Ligate,	GoldenGate,	Gibson,	and	Transform	operations.	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


	
	
Figure	3.	Zero-shot	Natural	Language	Processing	Interpretation	of	Construction	
Files	by	ChatGPT.		After	being	prompted	with	the	shorthand	specification	document,	
ChatGPT	(GPT-4)	demonstrates	its	ability	to	interpret	plasmid	construction	text	
from	a	scientific	paper	into	a	construction	file	with	high	accuracy.	This	
demonstration	underscores	the	potential	of	A.I.	to	automatically	extract	
construction	files	from	scientific	literature,	opening	new	possibilities	for	large-scale,	
automated	analysis	of	genetic	engineering	experiments	from	unstructured	archival	
text.	
	
	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/


	
	
Figure	4.	Simulation	of	Invasin	Construction	File	in	a	script	editor.		SimulatorView,	a	
simple	GUI	included	with	ConstructionFileSimulator,	accepts	the	text	of	a	
construction	file	and	outputs	the	product	of	the	final	step.	In	this	instance,	the	GUI	is	
provided	with	the	steps	parsed	by	ChatGPT,	along	with	the	sequences	of	the	three	
input	plasmid	sequences.	The	complete	document	can	be	found	in	the	
supplementary	file	'invasin_cf.txt'.	Upon	clicking	'run',	the	construction	file	is	
simulated	step-by-step.	The	resulting	sequence	of	pBACr-AraInvasin	aligns	with	the	
expected	map	and	is	consistent	with	sequenced	isolates,	demonstrating	the	
accuracy	and	utility	of	the	simulation.	
	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.546630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546630
http://creativecommons.org/licenses/by/4.0/

