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Abstract 27 

 28 

Objectives: Clinical cone-beam computed tomography (CBCT) devices are limited to imaging features of half 29 

a millimeter in size. Hence, they do not allow clinical quantification of bone microstructure, which plays an 30 

important role in osteoarthritis, osteoporosis and fracture risk. For maxillofacial imaging, changes in small 31 

mineralized structures are important for dental, periodontal and ossicular chain diagnostics as well as treatment 32 

planning. Deep learning (DL)-based super-resolution (SR) models could allow for better evaluation of these 33 

microstructural details. In this study, we demonstrate a widely applicable method for increasing the spatial 34 

resolution of clinical CT images using DL, which only requires training on a limited set of data that are easy 35 

to acquire in a laboratory setting from e.g. cadaver knees. Our models are assessed rigorously for technical 36 

image quality, ability to predict bone microstructure, as well as clinical image quality of the knee, wrist, ankle 37 

and dentomaxillofacial region. 38 

Materials and methods: Knee tissue blocks from five cadavers and six total knee replacement patients as 39 

well as 14 extracted teeth from eight patients were scanned using micro-computed tomography. The images 40 

were used as training data for the developed DL-based SR technique, inspired by previous studies on single-41 

image SR. The technique was benchmarked with an ex vivo test set, consisting of 52 small osteochondral 42 

samples imaged with clinical and laboratory CT scanners, to quantify bone morphometric parameters. A 43 

commercially available quality assurance phantom was imaged with a clinical CT device, and the technical 44 

image quality was quantified with a modulation transfer function. To visually assess the clinical image quality, 45 

CBCT studies from wrist, knee, ankle, and maxillofacial region were enhanced with SR and contrasted to 46 

interpolated images. A dental radiologist and dental surgeon reviewed maxillofacial CBCT studies of nine 47 

patients and corresponding SR predictions. 48 

Results: The SR models yielded a higher Pearson correlation to bone morphological parameters on the ex vivo 49 

test set compared to the use of a conventional image processing pipeline. The phantom analysis confirmed a 50 

higher spatial resolution on the images enhanced by the SR approach. A statistically significant increase of 51 

spatial resolution was seen in the third, fourth, and fifth line pair patterns. However, the predicted grayscale 52 

values of line pair patterns exceeded those of uniform areas. Musculoskeletal CBCT images showed more 53 
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details on SR predictions compared to interpolation. Averaging predictions on orthogonal planes improved 54 

visual quality on perpendicular planes but could smear the details for morphometric analysis. SR in dental 55 

imaging allowed to visualize smaller mineralized structures in the maxillofacial region, however, some 56 

artifacts were observed near the crown of the teeth. The readers assessed mediocre overall scores in all 57 

categories for both CBCT and SR. Although not statistically significant, the dental radiologist slightly 58 

preferred the original CBCT images. The dental surgeon scored one of the SR models slightly higher compared 59 

to CBCT. The interrater variability κ was mostly low to fair. The source code 60 

(https://doi.org/10.5281/zenodo.8041943) and pretrained SR networks 61 

(https://doi.org/10.17632/4xvx4p9tzv.1) are publicly available. 62 

Conclusions: Utilizing experimental laboratory imaging modalities in model training could allow pushing the 63 

spatial resolution limit beyond state-of-the-art clinical musculoskeletal and dental CBCT imaging. 64 

Implications of SR include higher patient throughput, more precise diagnostics, and disease interventions at 65 

an earlier state. However, the grayscale distribution of the images is modified, and the predictions are limited 66 

to depicting the mineralized structures rather than estimating density or tissue composition. Finally, while the 67 

musculoskeletal images showed promising results, a larger maxillofacial dataset would be recommended for 68 

training SR models in dental applications. 69 

Keywords: super-resolution, deep learning, computed tomography, cone-beam computed tomography, 70 

musculoskeletal radiology, dental radiology  71 
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INTRODUCTION 72 

Image quality plays a pivotal role in assessing musculoskeletal and dental pathologies. The most common 73 

modalities in the field include magnetic resonance imaging (MRI), radiography, ultrasound, and computed 74 

tomography (CT)1–3. While MRI provides excellent soft tissue contrast and radiography is widely available, 75 

CT imaging is the superior method for imaging changes in bone2,4,5. Clinical cone-beam computed tomography 76 

(CBCT) imaging devices can achieve a voxel size of up to 100-200µm3 and are useful for detecting both 77 

orthopedic6 and dental pathologies7, joint trauma imaging8, and radiotherapy planning9,10. For example, CBCT 78 

has been recognized as the recommended modality for assessing wrist fractures8,11. despite the mentioned 79 

resolution, from the Nyquist’s theorem, the perceived spatial resolution is at least twice lower, and thus the 80 

visible clinical features in CBCT can only be of 500µm in size12. This, however, is not enough to observe bone 81 

microstructural changes. 82 

 83 

Phantoms, that is, tissue-simulating test objects are scanned to calculate a modulation transfer function (MTF) 84 

and quantify the CT spatial resolution in a clinical setting13,14. In practice, a series of line pair patterns13 or a 85 

high-contrast edge15,16 can be used to estimate the MTF. The image quality of clinical devices is limited by 86 

multiple factors. The ones for X-ray imaging are radiation dose, motion, acquisition geometry, receptor size 87 

and the focal spot size of the beam. The resolution limit of clinical CT is roughly seven line pairs per 88 

centimeter17. 89 

 90 

The bone microstructure is conventionally seen only with laboratory micro-computed tomography (µCT) 91 

devices. For measurement in a clinical setting, CBCT is the most promising modality18. As an example, bone 92 

microstructural changes are known to be associated with osteoarthritis severity19, and could be useful in the 93 

assessment of osteoporosis, bone strength and fracture risk20,21. Detection of early osteoarthritis could facilitate 94 

earlier intervention, significantly reducing the socio-economic impact of the disease22. Karhula et al. have 95 

previously shown that bone subresolution features can be estimated with CBCT using texture analysis23. 96 

Individual quantitative parameters cannot be directly connected to local tissue changes but could be visible 97 

from high-quality images. Finally, dentomaxillofacial CBCT imaging requires high image quality for multiple 98 
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indications. The trabecular bone microstructure is one of the key factors for dental implant planning24. Dental 99 

and periodontal diagnostics12, as well as assessment of ossicular chain and inner ear pathologies25, are all 100 

focused on assessing changes in tiny, mineralized structures. 101 

 102 

One approach to increase image resolution, is to improve upon the reconstruction technique. Recent 103 

advancements include iterative-26,27, model-based-28, and learned29,30 reconstruction. However, these methods 104 

naturally require access to the raw CT projection images, access to which is typically restricted by the scanner’s 105 

manufacturer. Another method for upscaling, could simply rely on image interpolation combined with 106 

antialiasing. However, such techniques have difficulties in removing artefacts and blur from the approximated 107 

high-resolution images31. 108 

 109 

Due to recent advancements in deep learning (DL), super-resolution (SR) methods can be used to predict 110 

impressive details from low-resolution images32. They are based on convolutional neural networks (CNN), 111 

that either modify the original input image or generate entirely new images from latent space. High- and low-112 

resolution images are used in the training process with different approaches: unpaired training aims to match 113 

two datasets with different image quality without exact matches for each image33,34. It is also possible to obtain 114 

only the high-resolution dataset and artificially distort the data to create matching low-resolution images32. 115 

Finally, the dataset could be collected using both low- and high-resolution imaging modalities and a subsequent 116 

co-registration. However, accurate co-registration is likely challenging in the case of highly distorted images. 117 

 118 

Previously, SR has been used to increase MRI quality for the knee by Chaudhari et al35,36. The authors 119 

thoroughly evaluate the performance of the SR method for visualizing cartilage morphometry and osteophytes. 120 

Brain MRI SR has also been assessed for clinical image quality37. The first SR studies for inner-ear CBCT 121 

have been introduced using generative adversarial networks38. Finally, µCT imaging and SR has been used to 122 

assess bone microstructure in a preclinical setting39. The DL methods are mainly criticized for their “black-123 

box” nature and lack of interpretability. However, some deep learning SR algorithms are already on the market 124 
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for CT29,40 and MRI37. Thus, guidelines and recommendations for thorough clinical validation of such 125 

algorithms are needed. Before clinical use of SR, it would be crucial to ensure that the CNN predictions only 126 

increase the image quality and do not add new or remove existing pathological features from the images41. 127 

 128 

In this study, we demonstrate how to develop widely applicable methods for increasing the spatial resolution 129 

of clinical CT images using DL, and how to properly validate the methods in several clinical domains. Our 130 

contributions are the following: (1) We assess the performance of SR methods for predicting 3D bone 131 

microstructure on independent data, quantifying the bone parameters. The technical image quality of the 132 

algorithm is assessed using phantom imaging and MTF analysis; (2) To show the versatility of the method, we 133 

enhance clinical CBCT images of knee, wrist, ankle and teeth, using models trained solely on a limited amount 134 

of preclinical data. The dental image quality is quantified in a reader study; (3) We release the pretrained SR 135 

networks and the source code, facilitating further development of the musculoskeletal and dental imaging field.  136 
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MATERIALS AND METHODS 137 

Training data 138 

The training data consists of twelve knee tissue block samples extracted from five healthy cadavers and six 139 

total knee arthroplasty (TKA) patients (Table 1). An overview of the image data acquisition is in Figure 1. The 140 

sample harvesting was approved by the Ethical committee of Northern Ostrobothnia’s Hospital District 141 

(PPSHP 78/2013) and the Research Ethics Committee of the Northern Savo Hospital District (PSSHP 58/2013 142 

& 134/2015). The tissue blocks are stored in phosphate-buffered saline after surgery, and subsequently imaged 143 

with a preclinical µCT scanner (Bruker Skyscan 1176; 80kV, 125µA, 26.7 µm voxel size). The images were 144 

reconstructed using the manufacturer’s software (NRecon, beam hardening and ring artefact corrections 145 

applied). 146 

Furthermore, a total of fifteen human teeth were collected from nine patients with a tooth removal operation 147 

(Table 1, PPSHP 123/2021). The teeth were scanned using a laboratory desktop µCT scanner (Skyscan 1272, 148 

Bruker Inc., Kontich, Belgium; parameters: 100kV, 100µA 19.8µm voxel size, Cu 0.11mm filter). The 149 

reconstruction was conducted using the Nrecon software with beam hardening and ring artefact corrections 150 

applied. The reconstructions of fourteen extracted teeth from eight patients were used to provide further 151 

training data for the SR model in the case of dental CBCT. A tooth scan of one of the patients was excluded 152 

due to corrupted data in the µCT scan. 153 

 154 

Ex vivo test set 155 

To provide the ground truth reference for bone microstructure prediction, we utilized a previously collected 156 

dataset23 consisting of 53 osteochondral samples from nine TKA patients and two deceased cadavers without 157 

an OA diagnosis (Table 1; ethical approval PPSHP 78/2013, PSSHP 58/2013 & 134/2015). The samples were 158 

imaged using two devices: a clinical extremity CBCT (Planmed Verity, Planmed Inc., Helsinki, Finland; 159 

parameters: 80kV, 12mA, 200µm voxel size, 20ms exposure time) and a laboratory desktop µCT scanner 160 

(Skyscan 1272, Bruker Inc., Kontich, Belgium; parameters: 50kV, 200µA 2.75µm voxel size, 2200ms 161 

exposure time, 0.5mm Al filter). The projection images were reconstructed with the corresponding 162 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2023. ; https://doi.org/10.1101/2023.06.28.544314doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.544314
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

manufacturer’s reconstruction software with a “standard” reconstruction filter applied for CBCT, and beam-163 

hardening and ring artefact corrections were applied for µCT (Nrecon, v.1.6.10.4, Bruker microCT). The 164 

reconstructed volumes were coregistered to the same coordinate system using rigid transformations on the 165 

Bruker Dataviewer-software (version 1.5.4, Bruker microCT). 166 

 167 

Clinical images 168 

The proposed method was further tested on clinical data acquired using the same Planmed Verity CBCT device 169 

(Table 1). The clinical dataset consists of one knee scan (50-year-old female; 96kV, 8mA, 200µm voxel size, 170 

10s exposure time, “flat” reconstruction filter), one wrist scan (56-year-old female; 90kV, 6mA, 200µm voxel 171 

size, 6s exposure time, flat filter), and one ankle scan (34-year-old male; 96kV, 8mA, 400µm voxel size, 6s 172 

exposure time, flat filter). In the case of the knee and ankle, the imaging was done in the weight-bearing 173 

position. The participants are healthy volunteers, and the CBCT scans were acquired from the Oulu University 174 

Hospital digital research database. Finally, preoperative CBCT scans (Planmeca Promax; parameters: 120kV, 175 

5-6mA, 200µm voxel size, 8s exposure time) were collected from the nine patients with tooth removal (ethical 176 

permission PPSHP 123/2021).  177 

To validate the technical image quality, a commercially available CT quality assurance phantom (GE 178 

Healthcare, model no. 5128754) was imaged using a diagnostic CT device (GE Revolution Frontier; 179 

parameters: 120kV, 335mA, 730ms exposure time, 625µm pixel size, 5mm slice thickness, head filter). 180 

  181 
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Table 1. Dataset descriptions. Samples from both total knee arthroplasty patients and asymptomatic 

cadavers were used in the preclinical training and test sets. Different patients were included for training 

and testing. The test set characteristics are described in further detail by Karhula et al 23. Clinical studies 

were used to validate the method on realistic use cases. 

Preclinical datasets # images # samples (n) # patients (N) 

Knee tissue blocks 220 544 12 11 

Extracted teeth 45 540 14 8 

Ex vivo test set 1 700 53 11 

Clinical studies    

Wrist CBCT 313 

1 

1 

Ankle CBCT 219 1 

Knee CBCT 471 1 

Dental CBCT 3 352 9 

CT Quality assurance phantom 6 N/A 

 182 

  183 
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Figure 1. Training data and ex vivo test set acquisition. The full tissue blocks were scanned using a 

preclinical micro-computed tomography (µCT) scanner (Skyscan 1176). Extracted teeth were imaged using 

a desktop µCT (Skyscan 1272). Small 4mm osteochondral plugs were extracted and imaged both with the 

desktop µCT (Skyscan 1172) and a clinical extremity cone-beam CT (CBCT) system (Planmed Verity) to 

provide realistic low- and high-resolution references. 

 184 

Super-resolution model 185 

The training data was created from the preclinical tissue blocks using interpolation. The three specific imaging 186 

resolutions used and the corresponding 4x magnifications were matched (200µm→50µm, 400µm→100µm, 187 

488µm→122µm). To account for aliasing artefacts and simulate the lower imaging quality, Gaussian blurring 188 

(kernel size = 4, σ = 1) and median filtering (kernel size = 3) were applied after downscaling. The reconstructed 189 

image stacks were automatically divided into smaller 32x32x32 (input resolution) and 128x128x128 (target 190 

resolution) voxel patches suitable for training the SR models, resulting in thousands of training images (Table 191 

1). The training data was augmented spatially using random rotations, translations and flips. Furthermore, 192 

brightness and contrast were randomly adjusted, and random blurring was added to augment the grayscale 193 
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values. Finally, the input and target volumes were randomly cropped and padded to match the network input 194 

and output size (16x16→64x64 for 2D, 16x16x16→64x64x64 for 3D models). The augmentations were based 195 

on our previously published SOLT library (https://github.com/Oulu-IMEDS/solt) and modified to account for 196 

the varying input and target image size. 197 

The model architecture was inspired by Johnson et al42, including four residual blocks (Figure 2, top). The 198 

transposed convolution layer was replaced by resize-convolution43. The model was designed to yield a 199 

magnification factor of four. To conduct the training process, we used an in-house developed Collagen 200 

framework (https://github.com/MIPT-Oulu/Collagen). We used three combinations of loss functions in the 201 

experiments: 1) The baseline model utilized mean squared error (MSE) and total variation (TV) as traditional 202 

pixel-wise losses, with respective weights of 0.8 and 0.2. 2) The structure model optimized the complement 203 

of the structure similarity index (SSIM), aiming to capture the bone microstructure. 3) The visual model 204 

combined mean absolute error (MAE), TV and perceptual loss (PL), aiming to provide the best perceptual 205 

quality, using weights of 0.1, 1.0 and 1.0, respectively. Features from a pretrained VGG16 model were used 206 

as the PL (Figure 2, bottom). The weights of the loss functions were chosen manually during the initial 207 

experiments of the study. 208 

The models were trained using the Adam optimizer (parameters: α=0.0001, β=0.0001) for 50 epochs. The 209 

training was conducted under four-fold cross-validation, accounting for the patient ID during splits. During 210 

inference, the predictions were combined using a sliding window (16x16-pixel window with 8x8-pixel steps). 211 

A Gaussian kernel was applied to only focus the model predictions on the center of the tile, reducing the edge 212 

artefacts. To assess the performance of training, pixel-wise metrics (MSE, PSNR, SSIM) were calculated for 213 

the validation folds.  214 
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Figure 2. Top: The SR architecture used in the study. The architecture of Johnson et al. was modified by 

including resize-convolution layers instead of transposed convolutions. Bottom: The perceptual loss 

network was used in the visual model. Examples of perceptual loss network activations are shown for a 

trabecular bone reconstruction. 

 215 

Bone microstructure analysis 216 

Morphological 3D parameters were quantified from the CBCT-imaged ex vivo test set, using conventional 217 

image processing, and SR. The true microstructure was analyzed using high-resolution µCT imaging. The 218 

volumes were binarized using the Otsu threshold 44. An ad-hoc Python script was used to calculate the 219 

recommended morphological parameters; bone volume fraction (BV/TV), trabecular thickness (Tb.Th), 220 

trabecular separation (Tb.Sp), and trabecular number (Tb.N)45. In the case of the 2D models, the parameters 221 
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were assessed for the axial 2D predictions as well as an average of the predictions of the three orthogonal 222 

planes. To provide benchmark comparisons, tricubic interpolation, an image processing-based  pipeline, and 223 

deep learning-based segmentations were used. The image processing pipeline included multiple subsequent 224 

filters prior to the binary thresholding (anisotropic diffusion, contrast stretching, median filter). The deep 225 

learning segmentation models consist of a ResNet-50 encoder with UNet and FPN decoders. Finally, the results 226 

were compared using Pearson correlation. The 95% confidence intervals were estimated for the models that 227 

are trained on multiple random seeds. 228 

 229 

Clinical validation images 230 

To assess the technical image quality, the spatial resolution was quantified from the reconstructed phantom 231 

images and SR predictions. This was achieved by estimating the MTF using the six line pair patterns. The 232 

standard deviation was determined from a rectangular region-of-interest including each of the line pairs to 233 

provide a practical assessment of the function13. The frequency of 0.5 MTF (MTF50%) and 0.1 MTF (MTF10%), 234 

corresponding to a half-value and the limit of spatial resolution, are estimated from the graph. 235 

To demonstrate the validity of the method in the clinical domain, we tested the models on multiple clinical 236 

imaging targets: ankle, knee, wrist and dental CBCT. The predictions and interpolated CBCT images were 237 

compared visually. The reconstructions were normalized and converted from 16-bit to 8-bit images. To save 238 

memory and computational time, small volumes of interest were selected from the wrist and the ankle (wrist 239 

= 6.3 x 6 x 3.7 cm, ankle = 6.6 x 6.3 x 4.8 cm). For the knee scan, the full joint was processed (10 x 10 x 10 240 

cm, output size = 1884 x 1932 x 1988 voxels) on the Puhti supercomputer (https://research.csc.fi/csc-s-241 

servers). For the ankle, a lower resolution is used, and another set of models is trained (400µm→100µm). In 242 

the case of knee, wrist and dental imaging, high-resolution models are used (200µm→50µm).  243 

The predictions and interpolations from the preoperative dental CBCT scans were assessed in a blinded reader 244 

study by an experienced dental radiologist (Reader 1) and dental surgeon (Reader 2) to grade the level of 245 

diagnostic quality. The Likert scale was used to score the signal-to-noise ratio, anatomical conspicuity 246 

(periodontal ligament space), image quality, artifacts and diagnostic confidence of the images. The mean and 247 
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standard deviation for the grades are reported and the inter-rater agreement is assessed using linearly-weighed 248 

Cohen’s Kappa (κ). Finally, two µCT scans of the extracted teeth are coregistered with the clinical scans to 249 

allow a further visual comparison (Dataviewer, v. 1.5.6.2).  250 
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RESULTS 251 

The conventional pixel-based performance metrics of training the 2D and 3D SR models on a 200µm→50µm 252 

resolution scale are summarized in Table 2. The 2D baseline model (trained with MSE+TV loss) yields the 253 

highest performance (MSE=0.0072±0.0002, PSNR=26.64±0.07, SSIM=0.812±0.003). The 2D structure and 254 

visual models as well as the 3D baseline model yield slightly higher errors. The lowest performance was with 255 

the 3D structure model (MSE=0.3±0.5, PSNR=15±15, SSIM=0.4±0.5). 256 

Table 2. Results on the out-of-fold validation for the 200µm→50µm resolution models. Experiments with 

different combinations of loss functions are listed with a two-dimensional (2D) or volumetric (3D) model. 

The value for the standard error of mean is reported after the mean value. 

Models 
Out-of-fold evaluation 

MSE PSNR SSIM 

Baseline 2D 0.0072 ± 0.00003 26.64 ± 0.014 0.812 ± 0.0005 

Structure 2D 0.0084 ± 0.0001 25.5 ± 0.05 0.776 ± 0.006 

Visual 2D 0.015 ± 0.007 25 ± 1.3 0.7 ± 0.06 

Baseline 3D 0.0068 ± 0.0001 24.8 ± 0.05 0.691 ± 0.002 

Structure 3D 0.3 ± 0.11 15 ± 3.5 0.4 ± 0.1 

Visual 3D 0.02 ± 0.005 19 ± 1 0.4 ± 0.04 

MSE=mean squared error, PSNR=peak signal-to-noise ratio, SSIM=structure similarity index 

 257 

Ex vivo test set: prediction of bone microstructure 258 

The trained models were applied to the ex vivo test set to assess the performance of predicting the bone 259 

microstructure on unseen data (Table 3, Figure 3). The 2D structure model yields the highest results (rBVTV = 260 

0.817±0.005) and outperforms the interpolation (rBVTV = 0.64) and conventional segmentation pipeline (rBVTV 261 

= 0.67). The deep learning segmentation models did not converge on the dataset and all images were classified 262 

as background. 263 
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Table 3. Quantification of the bone parameters. Predictions from each model were binarized and the bone 

parameters were compared to the micro-computed tomography (µCT) ground truth. The values indicate 

Pearson correlations and the respective 95% confidence intervals. The highest correlation on each parameter 

is bolded. The deep learning models (ResNet-34 with UNet and ResNet-34 with FPN) did not generalize to 

the ex vivo test set. 

Models  Bone parameters 

 Averaging BV/TV Tb.Th Tb.Sp Tb.N 

Interpolation  0.64 0.34 0.59 -0.4 

Conventional 

segmentation 
 0.67 0.42 0.50 -0.63 

Baseline 2D 
No 0.736±0.006 0.404±0.008 0.694±0.004 -0.514±0.007 

Yes 0.665±0.003 0.336±0.003 0.608±0.006 -0.458±0.0001 

Structure 2D 
No 0.817±0.005 0.53±0.02 0.756±0.009 -0.489±0.007 

Yes 0.731±0.007 0.436±0.006 0.613±0.010 -0.41±0.02 

Visual 2D 
No 0.758±0.012 0.453±0.011 0.70±0.02 -0.57±0.02 

Yes 0.674±0.004 0.340±0.009 0.609±0.011 -0.5±0.02 

Baseline 3D  0.654±0.010 0.33±0.03 0.63±0.011 -0.34±0.03 

Structure 3D  0±1.3 0±0.6 0±1.1 -0.5±0.4 

Visual 3D  0.69±0.04 0.39±0.05 0.6±0.07 -0.34±0.09 

BV/TV=bone volume fraction, Tb.Th=trabecular thickness, Tb.Sp=trabecular separation, Tb.N=trabecular 

number 
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Figure 3. Comparison of conventional image quality improvement and super-resolution (SR) predictions 

on the osteochondral samples. The clearest structural definition is seen on the 2D models without averaging 

the three orthogonal planes. Deep learning segmentation was also tested, but all the samples were fully 

predicted as background (models did not generalize to the highly different test set). 

 266 

Technical image quality 267 

The technical image quality was determined by comparing interpolated and predicted clinical CT images from 268 

a quality assurance phantom. The fifth line pair pattern at 8.3 line pair per cm frequency can be visually 269 

resolved from the SR predictions but not from the interpolated image (Figure 4a). Furthermore, the MTFs 270 

suggest a higher image quality in the predictions at the 4-8 line pairs per cm frequency range. An increase of 271 

0.2 is seen between 5-6 line pairs per cm (Figure 4b). Based on the estimated MTF curves, the interpolated CT 272 

images reach MTF50% and MTF10% at roughly 3.5 and 7.0 line pairs per cm, respectively. The MTF curves 273 

from the SR models reach the MTF50% and MTF10% values later, at 5.0 and 8.0 line pairs per cm. 274 

Standardization based on plexiglass and water grayscale values was not feasible for the SR models 275 

(Supplementary Figure 1). 276 
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a) 

 

b) 

 

Figure 4. A clinical CT scan of a commercially available quality assurance phantom, with the 

corresponding interpolations and super-resolution (SR) predictions (a). Using the SR models, 

another set of line pairs can be distinguished from the CT slices. However, the perpendicular plane 

resolution is less improved. This can be seen as the number of diagonal lines on the edge of the 

phantom (that are averaged from multiple different depths) is not decreasing. The modulation 

transfer functions (MTF, b) show that all the SR models provide an increase in spatial resolution. 

The 95% confidence intervals are shown for each MTF measurement. Rough trendlines of the 

MTFs are shown with a third-order polynomial fit. 
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Clinical image quality on musculoskeletal application 277 

 

Figure 5. Overview of the proposed super-resolution (SR) method. Tissue blocks are scanned with micro-

computed tomography (µCT) and used to train the model (left). The trained model can be utilized for clinical 

cone-beam CT (CBCT) images using a patch-by-patch sliding window, the size of one patch is depicted 

with a green rectangle. In this case, predictions from all orthogonal planes were averaged. 

An overview of the proposed SR method and an example of wrist SR are presented in Figure 5. A volume-of-278 

interest in the wrist joint was passed through the model to reduce the computational time. The computation on 279 

all three planes took roughly one hour on two graphical processing units (Nvidia GeForce GTX 1080 Ti). More 280 

structural details are visible in the prediction, but the cortical bone is visually too porous when compared to 281 

the original CBCT image. We also tested whether the inclusion of teeth images in training data changed the 282 

appearance, but only small differences were observed (Supplementary Figure 2) compared to the original 283 

training setup. In the case of knee CBCT, a large volume was processed on the Puhti supercomputer. The 2D 284 

models were compared to the interpolation and conventional image processing pipeline (Figure 6). The 285 

structural details were visually highlighted the best on the results from the baseline and structure models. The 286 

visual model created a flickering artefact in noisy and unclear regions of the tissue (Supplementary Video 1).  287 
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Figure 6. Comparison of conventional image quality improvement and super-resolution (SR) predictions 

on clinical scans of the knee joint. Predictions were conducted for the full joint; magnifications are shown 

to allow for a better visual comparison. 

 288 

The ankle CBCT images were visually compared to interpolation, conventional image processing pipeline, as 289 

well as 2D and 3D predictions (Figure 7). The 2D models show reduced noise and slightly more details 290 

compared to the conventional methods. The most clearly visible structures were yielded by the structure model. 291 

None of the 3D models converged to a solution with sufficient image quality. This led to noisy prediction 292 

images, highlighting only the edges of the bones. 293 
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Figure 7. Comparison of conventional image quality improvement and super-resolution (SR) predictions 

on clinical scans of the ankle joint. The 3D adaptation of the SR models did not converge and provided 

noisy results. 

 294 
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Clinical image quality on dental application 296 

 

Figure 8. Examples maxillofacial cone-beam CT images (left) and corresponding super-resolution 

predictions (right). Predictions are shown from the structure model, without averaging the orthogonal planes. 

 

An example of SR prediction on maxillofacial CBCT is shown in Figure 8. In this case, the teeth of the patient 297 

were not used in training the SR model. A comparison of CBCT, SR and µCT of extracted teeth from two 298 

other patients is illustrated in Supplementary Video 2. Small structures are better highlighted on the SR images 299 

compared to the original CBCT, and a previously unseen gap can be seen in the lamina dura next to the tooth 300 

that was removed from patient one (indicated with a red arrow). We noted artefacts from the SR algorithms 301 

especially within the enamel. The results of the reader study are described in Table 4. When accounting for 302 

Bonferroni correction, no significant differences were observed for scores of Reader 1, although a slight trend 303 

of higher scores towards the interpolated images was observed. Reader 2 scored higher signal-to-noise ratio, 304 

anatomical conspicuity, image quality and diagnostic confidence for the baseline model compared to 305 

interpolation. The inter-rater agreement was slight (0.0-0.2) or fair (0.2-0.4), yet a substantial agreement was 306 

found for signal-to-noise ratio (0.64, visual model) and artifacts (0.80, baseline model). 307 
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Table 4. Blinded reader qualitative assessments. The mean and standard deviation of the scores are given 

for each category. The inter-reader agreement was assessed using Cohen’s Kappa (κ) with 95% confidence 

intervals. Statistical significance for differences between interpolation and super-resolution (SR) was 

assessed using the Wilcoxon Signed Rank test (Bonferroni corrected for three comparisons) and is indicated 

with an asterisk (*). 

 Score (Mean+SD) 

Model Signal-to-noise ratio Anatomical conspicuity Image quality Artifacts Diagnostic confidence Overall average 

Reader 1       

Interpolation 2.4±0.7 2.9±0.6 2.8±0.4 2.7±0.5 2.8±0.4 2.7±0.5 

Baseline model 2.2±0.4 2.7±0.5 2.6±0.5 2.7±0.5 2.7±0.5 2.6±0.5 

Structure model 1.9±0.8 2.4±0.5 2.4±0.5 2.2±0.4 2.4±0.5 2.3±0.6 

Visual model 2.1±0.3 2.4±0.5 2.3±0.5 2.3±0.5 2.7±0.5 2.4±0.5 

Reader 2       

Interpolation 1.4±0.7 2.1±0.8 1.8±0.7 2.2±1.1 1.8±1.0 1.9±0.9 

Baseline model 2.4±0.5* 2.8±0.7* 2.8±0.7* 2.8±0.7 2.9±0.6* 2.7±0.6 

Structure model 1.4±0.5 2.0±0.5 1.8±0.7 2.1±1.1 1.9±0.8 1.8±0.7 

Visual model 2.0±0.5 2.2±0.4 2.0±0.5 2.1±0.6 2.1±0.6 2.1±0.5 

Agreement (κ)       

Interpolation 0.147 0.241 0.047 0.077 0.039  

Baseline model 0.526 0.400 0.250 0.800 0.143  

Structure model 0.400 0.217 0.156 0.087 0.031  

Visual model 0.640 0.053 0.308 0.143 0.211  

95% CI       

Interpolation (0.108-0.186) (0.224-0.258) (0.018-0.076) (0.048-0.106) (0.006-0.071)  

Baseline model (0.518-0.534) (0.389-0.411) (0.238-0.262) (0.793-0.807) (0.132-0.153)  

Structure model (0.379-0.421) (0.202-0.233) (0.135-0.178) (0.060-0.114) (0.010-0.051)  

Visual model (0.636-0.644) (0.043-0.062) (0.298-0.317) (0.132-0.153) (0.196-0.225)  

CI=confidence interval, * p < 0.05 
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DISCUSSION 309 

In this study, we presented a deep learning-based super-resolution method to increase medical CBCT image 310 

quality in musculoskeletal and dental imaging domains. The predictions were assessed using conventional 311 

image metrics, bone microstructure assessment, as well as through multiple experiments for clinical data. The 312 

technical increase in spatial resolution was quantified using a quality assurance phantom. Finally, the method 313 

was tested on clinical CBCT images of the wrist, knee, ankle and maxillofacial region. The validation 314 

experiments are completely independent of the training process. This simulates deploying a method developed 315 

on laboratory data in the clinical environment, which we consider one of the key strengths in this study. The 316 

source code of the project is published on GitHub (https://doi.org/10.5281/zenodo.8041943) and the pretrained 317 

models used for dental SR predictions are available on Mendeley Data 318 

(https://doi.org/10.17632/4xvx4p9tzv.1). 319 

The out-of-fold validation results (Table 2) suggest that the 2D baseline model performs best and that the 3D 320 

models yield the lowest performance. The analysis is based on traditional pixel-wise comparisons to high-321 

resolution images. However, the analysis of osteochondral ex vivo samples shows that the 2D structure model 322 

is the best for predicting microstructural bone details (rBVTV = 0.817±0.005). Furthermore, averaging the 323 

prediction on three orthogonal planes did not improve the result. Likely, averaging the 2D predictions that do 324 

not account for adjacent slices causes smearing of the details, resulting in a lower correlation at least in the 325 

studied small four-millimeter samples. Finally, we would like to note that we also trained UNet and FPN 326 

segmentation models to predict the bone microstructure, but the models did not generalize from the training 327 

on the tissue blocks to the ex vivo test set. Thus, we hypothesize that the SR method is more resistant to domain 328 

shift. This is further supported by the multiple of applications presented using the same training data. 329 

The results of the quality assurance phantom analysis suggested that the SR models increase CT spatial 330 

resolution, both visually and quantitatively. Importantly, we also noticed that the models heavily modified the 331 

grayscale distribution of the scan, and the values on the line pair pattern were exceeding those in the uniform 332 

areas of the phantom. This eventually led us to scale the MTF curves, based on the maximum intensity of the 333 

scan (Supplementary Figure 1). Importantly, the quantitative Hounsfield unit values are lost after processing, 334 

and the resulting prediction only describes the bone structure, not density or material composition. This is a 335 
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potential limitation of patch-based super-resolution but could be alleviated in the future using wider dynamic 336 

range of training images or more complex SR models. 337 

The experiments on the wrist, knee, ankle and maxillofacial region reveal that the models generalize very well 338 

on different anatomical regions, although some regions of cortical bone there is sudden increase in porosity, 339 

especially in the wrist images. This is likely a result of having a high amount of trabecular bone in the training 340 

data. However, this was not confirmed in Supplementary Figure 2, as there were no major differences in the 341 

images. In the maxillofacial region, our initial experiments included multiple artefacts near teeth, when using 342 

only the knee tissue blocks in training. Averaging the predictions in three orthogonal planes preserves the 343 

structure better in the perpendicular plane but might smear the details in case of morphological analysis. This 344 

is also supported by the Supplementary Video 1, where a flickering artefact is seen on the sagittal plane.  345 

The reader study resulted in quite modest scores for both interpolated images and SR predictions. A slight 346 

preference for interpolated images was observed for the scores of Reader 1, and Reader 2 scored the Baseline 347 

model slightly higher compared to other models or interpolation. The low overall scores are likely due to the 348 

fact that the high dynamic range of the original 12-bit CBCT images is lost. This could be potentially alleviated 349 

in the future by training the models on a higher dynamic range rather than the conventional eight bits which 350 

would also better allow studying HU values of model output. Also, the volume of extracted teeth is very small, 351 

and the current dataset is not optimal for training SR models for dental images.  352 

While promising maxillofacial images show that the small, mineralized structures are better seen on the SR 353 

predictions, and even previously unseen pathologies might be revealed (Supplementary Video 2). However, 354 

we also noted definite artefacts within the enamel which could be confused for caries lesions. A more 355 

specialized training dataset would be crucial to alleviate such issues. Indeed, we hypothesize that the best 356 

results would be obtained using a dataset with preclinical scans of entire cadaveric jawlines and soft tissues. 357 

Even more readily available animal models, such as pig maxillofacial tissue, could be considered to provide 358 

the SR models examples closer to the target distribution. 359 

In medical diagnotics, it is imperative that the SR models do not induce biases from the training set and remove 360 

or add new diagnostic features to the predicted high-resolution images41. Upscaling the images poses a serious 361 
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theoretical problem: multiple visually distinct high-resolution images can downscale to the same low-362 

resolution image46. This serious limitation warrants thorough validation experiments before SR can be utilized 363 

in the clinical environment. This would be an excellent area for future studies, where predictions of healthy 364 

tissue and small fractures or other pathological conditions could be analyzed in more detail. We would 365 

hypothesize that models that generate entirely new images from a latent space, such as generative adversarial 366 

networks, could have a higher risk of “hallucinating” nonexistent pathological features, whereas a traditional 367 

CNN is more limited to modifying the original image, even though it is upscaled from low-resolution. 368 

This study has several limitations. First, the best-performing 2D models did not account for changes in the 369 

perpendicular plane. An interesting future methodological improvement could include using a three-channel 370 

input image, including the adjacent slices. Second, most of the clinical comparisons presented in this study are 371 

restricted to qualitative or semiquantitative analysis. There are many studies where multiple radiologist readers 372 

assess the diagnostic image quality blindly from the SR and comparison images to show the increase in 373 

performance36,37,47,48. We would argue that the ratings provided by the radiologists are also somewhat 374 

subjective, and the true ground-truth information cannot be obtained in clinical studies without a subsequent 375 

tissue sample extraction. Third, the weights of the individual loss functions were chosen manually during the 376 

early experiments of this study. These should be ideally chosen using an ablation study or hyperparameter 377 

optimization. Finally, the SR prediction was conducted as post-processing rather than by directly 378 

reconstructing the projection images using deep learning. Indeed, the first CT vendors have already released 379 

reconstruction methods based on deep learning29,40. As the projection data is often unavailable to the end user, 380 

nonlinear CNN-based methods that work in the reconstruction domain could be more easily added, as an 381 

additional component to any CT scanner. 382 

The deep-learning-enhanced medical images could have a high impact on the medical domain. The 383 

implications for the technology include higher patient throughput, more precise diagnostics, and disease 384 

interventions at an earlier state. The proposed SR can be directly applied to the existing clinical scans in the 385 

reconstruction domain and could thus have quality enhancement potential for routine hospital pipelines. 386 

Integration of SR methods in the hospital environment could facilitate a higher throughput, reducing the time 387 

radiologist needs to reach a diagnosis on difficult cases as well as mitigating uncertainty in the diagnostic 388 
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process. Radiologists could use the SR as an advanced “zoom” feature, analogous to pathologist changing the 389 

objective on a microscope. Training the models on laboratory data allows for pushing the spatial resolution 390 

limit further than what the clinical radiation doses or even the current CT technology would otherwise allow. 391 

Alternatively, the current image quality could be maintained with a lower dose which could increase the 392 

accessibility of CBCT and allow earlier diagnostic intervention. 393 
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SUPPLEMENTARY DATA 538 

 539 

 

Supplementary Figure 1. The modulation transfer functions (MTF) are scaled based on the average of 

plexiglass and water in a region of interest. The super-resolution model’s predictions highlight the structures 

in the line pair patterns, and the grayscale values exceed the ones in smooth areas of plexiglass. This results 

in MTF values that exceed one. However, the results also show the effect of highlighting small structures 

better than the scaling used for Figure 4b.  

 

Supplementary Figure 2. Comparison of using knee tissue blocks and extracted teeth in training data. 

Structure model predictions are shown above. Only very small differences are seen between the images, 
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suggesting that adding dental images did not improve the prediction accuracy of musculoskeletal cone-

beam CT. 

 

 540 

Supplementary Video 1. Sagittal view of the knee. As the predictions are only created from the transaxial 

plane, a flickering artefact can be seen on the sagittal view. 

Supplementary Video 2. Maxillofacial cone-beam CT images of two patients, corresponding structure and 

baseline model predictions as well as micro-computed tomography (µCT) scans of the extracted teeth. 

Details are better preserved on the super-resolution prediction. A possible small gap is seen on the lamina 

dura of patient one, indicated with a red arrow. The tooth next to the tissue is later extracted and the 

corresponding µCT reconstruction is shown. 

 541 
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