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Abstract

Objectives: Clinical cone-beam computed tomography (CBCT) devices are limited to imaging features of half
a millimeter in size. Hence, they do not allow clinical quantification of bone microstructure, which plays an
important role in osteoarthritis, osteoporosis and fracture risk. For maxillofacial imaging, changes in small
mineralized structures are important for dental, periodontal and ossicular chain diagnostics as well as treatment
planning. Deep learning (DL)-based super-resolution (SR) models could allow for better evaluation of these
microstructural details. In this study, we demonstrate a widely applicable method for increasing the spatial
resolution of clinical CT images using DL, which only requires training on a limited set of data that are easy
to acquire in a laboratory setting from e.g. cadaver knees. Our models are assessed rigorously for technical
image quality, ability to predict bone microstructure, as well as clinical image quality of the knee, wrist, ankle

and dentomaxillofacial region.

Materials and methods: Knee tissue blocks from five cadavers and six total knee replacement patients as
well as 14 extracted teeth from eight patients were scanned using micro-computed tomography. The images
were used as training data for the developed DL-based SR technique, inspired by previous studies on single-
image SR. The technique was benchmarked with an ex vivo test set, consisting of 52 small osteochondral
samples imaged with clinical and laboratory CT scanners, to quantify bone morphometric parameters. A
commercially available quality assurance phantom was imaged with a clinical CT device, and the technical
image quality was quantified with a modulation transfer function. To visually assess the clinical image quality,
CBCT studies from wrist, knee, ankle, and maxillofacial region were enhanced with SR and contrasted to
interpolated images. A dental radiologist and dental surgeon reviewed maxillofacial CBCT studies of nine

patients and corresponding SR predictions.

Results: The SR models yielded a higher Pearson correlation to bone morphological parameters on the ex vivo
test set compared to the use of a conventional image processing pipeline. The phantom analysis confirmed a
higher spatial resolution on the images enhanced by the SR approach. A statistically significant increase of
spatial resolution was seen in the third, fourth, and fifth line pair patterns. However, the predicted grayscale

values of line pair patterns exceeded those of uniform areas. Musculoskeletal CBCT images showed more
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details on SR predictions compared to interpolation. Averaging predictions on orthogonal planes improved
visual quality on perpendicular planes but could smear the details for morphometric analysis. SR in dental
imaging allowed to visualize smaller mineralized structures in the maxillofacial region, however, some
artifacts were observed near the crown of the teeth. The readers assessed mediocre overall scores in all
categories for both CBCT and SR. Although not statistically significant, the dental radiologist slightly
preferred the original CBCT images. The dental surgeon scored one of the SR models slightly higher compared
to CBCT. The interrater variability « was mostly low to fair. The source code

(https://doi.org/10.5281/zen0d0.8041943) and pretrained SR networks

(https://doi.org/10.17632/4xvx4p9tzv.1) are publicly available.

Conclusions: Utilizing experimental laboratory imaging modalities in model training could allow pushing the
spatial resolution limit beyond state-of-the-art clinical musculoskeletal and dental CBCT imaging.
Implications of SR include higher patient throughput, more precise diagnostics, and disease interventions at
an earlier state. However, the grayscale distribution of the images is modified, and the predictions are limited
to depicting the mineralized structures rather than estimating density or tissue composition. Finally, while the
musculoskeletal images showed promising results, a larger maxillofacial dataset would be recommended for

training SR models in dental applications.

Keywords: super-resolution, deep learning, computed tomography, cone-beam computed tomography,

musculoskeletal radiology, dental radiology
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INTRODUCTION

Image quality plays a pivotal role in assessing musculoskeletal and dental pathologies. The most common
modalities in the field include magnetic resonance imaging (MRI), radiography, ultrasound, and computed
tomography (CT)*. While MRI provides excellent soft tissue contrast and radiography is widely available,
CT imaging is the superior method for imaging changes in bone***. Clinical cone-beam computed tomography
(CBCT) imaging devices can achieve a voxel size of up to 100-200um?® and are useful for detecting both
orthopedic® and dental pathologies’, joint trauma imaging®, and radiotherapy planning®°. For example, CBCT
has been recognized as the recommended modality for assessing wrist fractures®'!. despite the mentioned
resolution, from the Nyquist’s theorem, the perceived spatial resolution is at least twice lower, and thus the
visible clinical features in CBCT can only be of 500um in size'?. This, however, is not enough to observe bone

microstructural changes.

Phantoms, that is, tissue-simulating test objects are scanned to calculate a modulation transfer function (MTF)
and quantify the CT spatial resolution in a clinical setting™***. In practice, a series of line pair patterns* or a

high-contrast edge!®*®

can be used to estimate the MTF. The image quality of clinical devices is limited by
multiple factors. The ones for X-ray imaging are radiation dose, motion, acquisition geometry, receptor size
and the focal spot size of the beam. The resolution limit of clinical CT is roughly seven line pairs per

centimeter'’.

The bone microstructure is conventionally seen only with laboratory micro-computed tomography (UCT)
devices. For measurement in a clinical setting, CBCT is the most promising modality*®. As an example, bone
microstructural changes are known to be associated with osteoarthritis severity'®, and could be useful in the
assessment of osteoporosis, bone strength and fracture risk?®2. Detection of early osteoarthritis could facilitate
earlier intervention, significantly reducing the socio-economic impact of the disease?”. Karhula et al. have
previously shown that bone subresolution features can be estimated with CBCT using texture analysis®.
Individual guantitative parameters cannot be directly connected to local tissue changes but could be visible

from high-quality images. Finally, dentomaxillofacial CBCT imaging requires high image quality for multiple
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indications. The trabecular bone microstructure is one of the key factors for dental implant planning?’. Dental
and periodontal diagnostics', as well as assessment of ossicular chain and inner ear pathologies®, are all

focused on assessing changes in tiny, mineralized structures.

One approach to increase image resolution, is to improve upon the reconstruction technique. Recent

2627 'model-based-2, and learned?®=° reconstruction. However, these methods

advancements include iterative-
naturally require access to the raw CT projection images, access to which is typically restricted by the scanner’s
manufacturer. Another method for upscaling, could simply rely on image interpolation combined with

antialiasing. However, such techniques have difficulties in removing artefacts and blur from the approximated

high-resolution images®.

Due to recent advancements in deep learning (DL), super-resolution (SR) methods can be used to predict
impressive details from low-resolution images®. They are based on convolutional neural networks (CNN),
that either modify the original input image or generate entirely new images from latent space. High- and low-
resolution images are used in the training process with different approaches: unpaired training aims to match
two datasets with different image quality without exact matches for each image®*. It is also possible to obtain
only the high-resolution dataset and artificially distort the data to create matching low-resolution images®.
Finally, the dataset could be collected using both low- and high-resolution imaging modalities and a subsequent

co-registration. However, accurate co-registration is likely challenging in the case of highly distorted images.

Previously, SR has been used to increase MRI quality for the knee by Chaudhari et al***. The authors
thoroughly evaluate the performance of the SR method for visualizing cartilage morphometry and osteophytes.
Brain MRI SR has also been assessed for clinical image quality®”. The first SR studies for inner-ear CBCT
have been introduced using generative adversarial networks®®. Finally, uCT imaging and SR has been used to
assess bone microstructure in a preclinical setting®. The DL methods are mainly criticized for their “black-

box” nature and lack of interpretability. However, some deep learning SR algorithms are already on the market
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for CT?** and MRI*. Thus, guidelines and recommendations for thorough clinical validation of such
algorithms are needed. Before clinical use of SR, it would be crucial to ensure that the CNN predictions only

increase the image quality and do not add new or remove existing pathological features from the images*.

In this study, we demonstrate how to develop widely applicable methods for increasing the spatial resolution
of clinical CT images using DL, and how to properly validate the methods in several clinical domains. Our
contributions are the following: (1) We assess the performance of SR methods for predicting 3D bone
microstructure on independent data, quantifying the bone parameters. The technical image quality of the
algorithm is assessed using phantom imaging and MTF analysis; (2) To show the versatility of the method, we
enhance clinical CBCT images of knee, wrist, ankle and teeth, using models trained solely on a limited amount
of preclinical data. The dental image quality is quantified in a reader study; (3) We release the pretrained SR

networks and the source code, facilitating further development of the musculoskeletal and dental imaging field.
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MATERIALS AND METHODS

Training data

The training data consists of twelve knee tissue block samples extracted from five healthy cadavers and six
total knee arthroplasty (TKA) patients (Table 1). An overview of the image data acquisition is in Figure 1. The
sample harvesting was approved by the Ethical committee of Northern Ostrobothnia’s Hospital District
(PPSHP 78/2013) and the Research Ethics Committee of the Northern Savo Hospital District (PSSHP 58/2013
& 134/2015). The tissue blocks are stored in phosphate-buffered saline after surgery, and subsequently imaged
with a preclinical pCT scanner (Bruker Skyscan 1176; 80kV, 125pA, 26.7 um voxel size). The images were
reconstructed using the manufacturer’s software (NRecon, beam hardening and ring artefact corrections

applied).

Furthermore, a total of fifteen human teeth were collected from nine patients with a tooth removal operation
(Table 1, PPSHP 123/2021). The teeth were scanned using a laboratory desktop uCT scanner (Skyscan 1272,
Bruker Inc., Kontich, Belgium; parameters: 100kV, 100uA 19.8um voxel size, Cu 0.11mm filter). The
reconstruction was conducted using the Nrecon software with beam hardening and ring artefact corrections
applied. The reconstructions of fourteen extracted teeth from eight patients were used to provide further
training data for the SR model in the case of dental CBCT. A tooth scan of one of the patients was excluded

due to corrupted data in the uCT scan.

Ex vivo test set

To provide the ground truth reference for bone microstructure prediction, we utilized a previously collected
dataset? consisting of 53 osteochondral samples from nine TKA patients and two deceased cadavers without
an OA diagnosis (Table 1; ethical approval PPSHP 78/2013, PSSHP 58/2013 & 134/2015). The samples were
imaged using two devices: a clinical extremity CBCT (Planmed Verity, Planmed Inc., Helsinki, Finland;
parameters: 80kV, 12mA, 200um voxel size, 20ms exposure time) and a laboratory desktop uCT scanner
(Skyscan 1272, Bruker Inc., Kontich, Belgium; parameters: 50kV, 200pA 2.75um voxel size, 2200ms

exposure time, 0.5mm Al filter). The projection images were reconstructed with the corresponding
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manufacturer’s reconstruction software with a “standard” reconstruction filter applied for CBCT, and beam-
hardening and ring artefact corrections were applied for uCT (Nrecon, v.1.6.10.4, Bruker microCT). The
reconstructed volumes were coregistered to the same coordinate system using rigid transformations on the

Bruker Dataviewer-software (version 1.5.4, Bruker microCT).

Clinical images

The proposed method was further tested on clinical data acquired using the same Planmed Verity CBCT device
(Table 1). The clinical dataset consists of one knee scan (50-year-old female; 96kV, 8mA, 200um voxel size,
10s exposure time, “flat” reconstruction filter), one wrist scan (56-year-old female; 90kV, 6mA, 200um voxel
size, 6s exposure time, flat filter), and one ankle scan (34-year-old male; 96kV, 8mA, 400um voxel size, 6s
exposure time, flat filter). In the case of the knee and ankle, the imaging was done in the weight-bearing
position. The participants are healthy volunteers, and the CBCT scans were acquired from the Oulu University
Hospital digital research database. Finally, preoperative CBCT scans (Planmeca Promax; parameters: 120kV,
5-6mA, 200um voxel size, 8s exposure time) were collected from the nine patients with tooth removal (ethical

permission PPSHP 123/2021).

To validate the technical image quality, a commercially available CT quality assurance phantom (GE
Healthcare, model no. 5128754) was imaged using a diagnostic CT device (GE Revolution Frontier;

parameters: 120kV, 335mA, 730ms exposure time, 625um pixel size, 5mm slice thickness, head filter).
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Table 1. Dataset descriptions. Samples from both total knee arthroplasty patients and asymptomatic
cadavers were used in the preclinical training and test sets. Different patients were included for training
and testing. The test set characteristics are described in further detail by Karhula et al 2. Clinical studies

were used to validate the method on realistic use cases.

Preclinical datasets # images # samples (n) # patients (N)
Knee tissue blocks 220 544 12 11
Extracted teeth 45 540 14 8
EXx vivo test set 1700 53 11

Clinical studies

Wrist CBCT 313 1
Ankle CBCT 219 1
Knee CBCT 471 1 1
Dental CBCT 3352 9
CT Quality assurance phantom 6 N/A
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Preclinical training data Ex vivo test set

Donor/patient tissue block Extracted teeth Donor/patient tissue block CBCT imaging @ 200pm

WY

Planmed Verity (clinical)

uCT imaging @ 26-35pm pCT imaging @ 19.8um Core extraction (4mm) / pCT imaging @ 2.75um

Skyscan | 176 (preclinical) Skyscan 1172 (lab) Skyscan 1172 (lab)

Figure 1. Training data and ex vivo test set acquisition. The full tissue blocks were scanned using a
preclinical micro-computed tomography (UCT) scanner (Skyscan 1176). Extracted teeth were imaged using
a desktop UCT (Skyscan 1272). Small 4mm osteochondral plugs were extracted and imaged both with the
desktop UCT (Skyscan 1172) and a clinical extremity cone-beam CT (CBCT) system (Planmed Verity) to

provide realistic low- and high-resolution references.

Super-resolution model

The training data was created from the preclinical tissue blocks using interpolation. The three specific imaging
resolutions used and the corresponding 4x magnifications were matched (200um—>50um, 400um—2100um,
488um—122um). To account for aliasing artefacts and simulate the lower imaging quality, Gaussian blurring
(kernel size =4, 6 = 1) and median filtering (kernel size = 3) were applied after downscaling. The reconstructed
image stacks were automatically divided into smaller 32x32x32 (input resolution) and 128x128x128 (target
resolution) voxel patches suitable for training the SR models, resulting in thousands of training images (Table
1). The training data was augmented spatially using random rotations, translations and flips. Furthermore,

brightness and contrast were randomly adjusted, and random blurring was added to augment the grayscale

10
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values. Finally, the input and target volumes were randomly cropped and padded to match the network input
and output size (16x16—64x64 for 2D, 16x16x16—64x64x64 for 3D models). The augmentations were based

on our previously published SOLT library (https://github.com/Oulu-IMEDS/solt) and modified to account for

the varying input and target image size.

The model architecture was inspired by Johnson et al*?, including four residual blocks (Figure 2, top). The
transposed convolution layer was replaced by resize-convolution®. The model was designed to yield a
magnification factor of four. To conduct the training process, we used an in-house developed Collagen

framework (https://github.com/MIPT-Oulu/Collagen). We used three combinations of loss functions in the

experiments: 1) The baseline model utilized mean squared error (MSE) and total variation (TV) as traditional
pixel-wise losses, with respective weights of 0.8 and 0.2. 2) The structure model optimized the complement
of the structure similarity index (SSIM), aiming to capture the bone microstructure. 3) The visual model
combined mean absolute error (MAE), TV and perceptual loss (PL), aiming to provide the best perceptual
quality, using weights of 0.1, 1.0 and 1.0, respectively. Features from a pretrained VGG16 model were used
as the PL (Figure 2, bottom). The weights of the loss functions were chosen manually during the initial

experiments of the study.

The models were trained using the Adam optimizer (parameters: a=0.0001, f=0.0001) for 50 epochs. The
training was conducted under four-fold cross-validation, accounting for the patient ID during splits. During
inference, the predictions were combined using a sliding window (16x16-pixel window with 8x8-pixel steps).
A Gaussian kernel was applied to only focus the model predictions on the center of the tile, reducing the edge
artefacts. To assess the performance of training, pixel-wise metrics (MSE, PSNR, SSIM) were calculated for

the validation folds.

11
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Image transformation network

Residual Resize-
convolution

Loss networlk

a

Figure 2. Top: The SR architecture used in the study. The architecture of Johnson et al. was modified by

including resize-convolution layers instead of transposed convolutions. Bottom: The perceptual loss
network was used in the visual model. Examples of perceptual loss network activations are shown for a

trabecular bone reconstruction.
215
216  Bone microstructure analysis

217  Morphological 3D parameters were quantified from the CBCT-imaged ex vivo test set, using conventional
218  image processing, and SR. The true microstructure was analyzed using high-resolution uCT imaging. The
219  volumes were binarized using the Otsu threshold *. An ad-hoc Python script was used to calculate the
220  recommended morphological parameters; bone volume fraction (BV/TV), trabecular thickness (Th.Th),

221  trabecular separation (Tb.Sp), and trabecular number (Th.N)*. In the case of the 2D models, the parameters

12
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were assessed for the axial 2D predictions as well as an average of the predictions of the three orthogonal
planes. To provide benchmark comparisons, tricubic interpolation, an image processing-based pipeline, and
deep learning-based segmentations were used. The image processing pipeline included multiple subsequent
filters prior to the binary thresholding (anisotropic diffusion, contrast stretching, median filter). The deep
learning segmentation models consist of a ResNet-50 encoder with UNet and FPN decoders. Finally, the results
were compared using Pearson correlation. The 95% confidence intervals were estimated for the models that

are trained on multiple random seeds.

Clinical validation images

To assess the technical image quality, the spatial resolution was quantified from the reconstructed phantom
images and SR predictions. This was achieved by estimating the MTF using the six line pair patterns. The
standard deviation was determined from a rectangular region-of-interest including each of the line pairs to
provide a practical assessment of the function®®. The frequency of 0.5 MTF (MTFsgs) and 0.1 MTF (MTFis),

corresponding to a half-value and the limit of spatial resolution, are estimated from the graph.

To demonstrate the validity of the method in the clinical domain, we tested the models on multiple clinical
imaging targets: ankle, knee, wrist and dental CBCT. The predictions and interpolated CBCT images were
compared visually. The reconstructions were normalized and converted from 16-bit to 8-bit images. To save
memory and computational time, small volumes of interest were selected from the wrist and the ankle (wrist
=6.3x 6 x3.7cm, ankle = 6.6 x 6.3 X 4.8 cm). For the knee scan, the full joint was processed (10 x 10 x 10

cm, output size = 1884 x 1932 x 1988 voxels) on the Puhti supercomputer (https://research.csc.fi/csc-s-

servers). For the ankle, a lower resolution is used, and another set of models is trained (400um—2100um). In

the case of knee, wrist and dental imaging, high-resolution models are used (200pum—50um).

The predictions and interpolations from the preoperative dental CBCT scans were assessed in a blinded reader
study by an experienced dental radiologist (Reader 1) and dental surgeon (Reader 2) to grade the level of
diagnostic quality. The Likert scale was used to score the signal-to-noise ratio, anatomical conspicuity

(periodontal ligament space), image quality, artifacts and diagnostic confidence of the images. The mean and

13
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248  standard deviation for the grades are reported and the inter-rater agreement is assessed using linearly-weighed

249  Cohen’s Kappa (k). Finally, two pCT scans of the extracted teeth are coregistered with the clinical scans to

250  allow a further visual comparison (Dataviewer, v. 1.5.6.2).
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RESULTS

The conventional pixel-based performance metrics of training the 2D and 3D SR models on a 200pm—50um
resolution scale are summarized in Table 2. The 2D baseline model (trained with MSE+TV loss) yields the
highest performance (MSE=0.0072+0.0002, PSNR=26.64+0.07, SSIM=0.812+0.003). The 2D structure and
visual models as well as the 3D baseline model yield slightly higher errors. The lowest performance was with

the 3D structure model (MSE=0.3+0.5, PSNR=15£15, SSIM=0.4+0.5).

Table 2. Results on the out-of-fold validation for the 200um—50um resolution models. Experiments with
different combinations of loss functions are listed with a two-dimensional (2D) or volumetric (3D) model.

The value for the standard error of mean is reported after the mean value.

Out-of-fold evaluation

Models
MSE PSNR SSIM

Baseline 2D 0.0072 + 0.00003 26.64 £ 0.014 0.812 + 0.0005
Structure 2D 0.0084 + 0.0001 25.5+0.05 0.776 + 0.006
Visual 2D 0.015 + 0.007 25+1.3 0.7 £0.06
Baseline 3D 0.0068 + 0.0001 24.8 £0.05 0.691 + 0.002
Structure 3D 0.3+0.11 15+£35 04+0.1
Visual 3D 0.02 £ 0.005 19+1 0.4+0.04

MSE=mean squared error, PSNR=peak signal-to-noise ratio, SSIM=structure similarity index

Ex vivo test set: prediction of bone microstructure

The trained models were applied to the ex vivo test set to assess the performance of predicting the bone
microstructure on unseen data (Table 3, Figure 3). The 2D structure model yields the highest results (revrv =
0.817+0.005) and outperforms the interpolation (rsvtv= 0.64) and conventional segmentation pipeline (revrv
= 0.67). The deep learning segmentation models did not converge on the dataset and all images were classified

as background.
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Table 3. Quantification of the bone parameters. Predictions from each model were binarized and the bone
parameters were compared to the micro-computed tomography (UCT) ground truth. The values indicate
Pearson correlations and the respective 95% confidence intervals. The highest correlation on each parameter
is bolded. The deep learning models (ResNet-34 with UNet and ResNet-34 with FPN) did not generalize to

the ex vivo test set.

265

Models Bone parameters
Averaging BVITV Th.Th Th.Sp Th.N

Interpolation 0.64 0.34 0.59 -0.4
Conventional
segmentation 0.67 0.42 0.50 -0.63

No 0.736+0.006 0.404+0.008 0.694+0.004 -0.514+0.007
Baseline 2D

Yes 0.665+0.003 0.336+0.003 0.608+0.006 -0.458+0.0001

No 0.817+0.005 0.53+0.02 0.756+0.009 -0.489+0.007
Structure 2D

Yes 0.731+0.007 0.436+0.006 0.613+0.010 -0.41+0.02

No 0.758+0.012 0.453£0.011 0.70+0.02 -0.57+0.02
Visual 2D

Yes 0.674+0.004 0.340+0.009 0.609+0.011 -0.5+0.02
Baseline 3D 0.654+0.010 0.33+0.03 0.63+0.011 -0.34+0.03
Structure 3D 0+1.3 0+0.6 0£1.1 -0.5+0.4
Visual 3D 0.69+0.04 0.39+0.05 0.6+0.07 -0.34+0.09

BV/TV=bone volume fraction, Th.Th=trabecular thickness, Th.Sp=trabecular separation, Th.N=trabecular

number

16


https://doi.org/10.1101/2023.06.28.544314
http://creativecommons.org/licenses/by-nc-nd/4.0/

266

267

268

269

270

271

272

273

274

275

276

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.544314; this version posted June 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Conventional
methods

«r
-lnterpol:xy

Model 2D model Averaged 2D 3D model

Baseline
model

{ihd i

Structure
model

Visual
model

Figure 3. Comparison of conventional image quality improvement and super-resolution (SR) predictions
on the osteochondral samples. The clearest structural definition is seen on the 2D models without averaging
the three orthogonal planes. Deep learning segmentation was also tested, but all the samples were fully

predicted as background (models did not generalize to the highly different test set).

Technical image quality

The technical image quality was determined by comparing interpolated and predicted clinical CT images from
a quality assurance phantom. The fifth line pair pattern at 8.3 line pair per cm frequency can be visually
resolved from the SR predictions but not from the interpolated image (Figure 4a). Furthermore, the MTFs
suggest a higher image quality in the predictions at the 4-8 line pairs per cm frequency range. An increase of
0.2 is seen between 5-6 line pairs per cm (Figure 4b). Based on the estimated MTF curves, the interpolated CT
images reach MTFsoy% and MTFiq at roughly 3.5 and 7.0 line pairs per cm, respectively. The MTF curves
from the SR models reach the MTFso, and MTFig values later, at 5.0 and 8.0 line pairs per cm.
Standardization based on plexiglass and water grayscale values was not feasible for the SR models

(Supplementary Figure 1).
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Figure 4. A clinical CT scan of a commercially available quality assurance phantom, with the
corresponding interpolations and super-resolution (SR) predictions (a). Using the SR models,
another set of line pairs can be distinguished from the CT slices. However, the perpendicular plane
resolution is less improved. This can be seen as the number of diagonal lines on the edge of the
phantom (that are averaged from multiple different depths) is not decreasing. The modulation
transfer functions (MTF, b) show that all the SR models provide an increase in spatial resolution.
The 95% confidence intervals are shown for each MTF measurement. Rough trendlines of the

MTFs are shown with a third-order polynomial fit.
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277  Clinical image quality on musculoskeletal application

Laboratory uCT

Model
training and validation

Input (200um) Qutput (50pm)
Target (50um)

Clinical CBCT

Volume-of-interest (200um)

E—-—l;‘-

Figure 5. Overview of the proposed super-resolution (SR) method. Tissue blocks are scanned with micro-

computed tomography (UCT) and used to train the model (left). The trained model can be utilized for clinical

cone-beam CT (CBCT) images using a patch-by-patch sliding window, the size of one patch is depicted

with a green rectangle. In this case, predictions from all orthogonal planes were averaged.

278  Anoverview of the proposed SR method and an example of wrist SR are presented in Figure 5. A volume-of-

279  interest in the wrist joint was passed through the model to reduce the computational time. The computation on

280 all three planes took roughly one hour on two graphical processing units (Nvidia GeForce GTX 1080 Ti). More

281  structural details are visible in the prediction, but the cortical bone is visually too porous when compared to

282  the original CBCT image. We also tested whether the inclusion of teeth images in training data changed the

283  appearance, but only small differences were observed (Supplementary Figure 2) compared to the original

284  training setup. In the case of knee CBCT, a large volume was processed on the Puhti supercomputer. The 2D

285  models were compared to the interpolation and conventional image processing pipeline (Figure 6). The

286  structural details were visually highlighted the best on the results from the baseline and structure models. The

287  visual model created a flickering artefact in noisy and unclear regions of the tissue (Supplementary Video 1).
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Conventional methods Super-resolution

Baseline model

Interpolation y Structure model

Conventional Visual model

Figure 6. Comparison of conventional image quality improvement and super-resolution (SR) predictions
on clinical scans of the knee joint. Predictions were conducted for the full joint; magnifications are shown

to allow for a better visual comparison.

The ankle CBCT images were visually compared to interpolation, conventional image processing pipeline, as
well as 2D and 3D predictions (Figure 7). The 2D models show reduced noise and slightly more details
compared to the conventional methods. The most clearly visible structures were yielded by the structure model.
None of the 3D models converged to a solution with sufficient image quality. This led to noisy prediction

images, highlighting only the edges of the bones.
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Conventional methods Model 2D super-resolution 3D super-resolution

Baseline model

Structure model

Visual model

Figure 7. Comparison of conventional image quality improvement and super-resolution (SR) predictions
on clinical scans of the ankle joint. The 3D adaptation of the SR models did not converge and provided

noisy results.
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Clinical image quality on dental application

Figure 8. Examples maxillofacial cone-beam CT images (left) and corresponding super-resolution

predictions (right). Predictions are shown from the structure model, without averaging the orthogonal planes.

An example of SR prediction on maxillofacial CBCT is shown in Figure 8. In this case, the teeth of the patient
were not used in training the SR model. A comparison of CBCT, SR and UCT of extracted teeth from two
other patients is illustrated in Supplementary Video 2. Small structures are better highlighted on the SR images
compared to the original CBCT, and a previously unseen gap can be seen in the lamina dura next to the tooth
that was removed from patient one (indicated with a red arrow). We noted artefacts from the SR algorithms
especially within the enamel. The results of the reader study are described in Table 4. When accounting for
Bonferroni correction, no significant differences were observed for scores of Reader 1, although a slight trend
of higher scores towards the interpolated images was observed. Reader 2 scored higher signal-to-noise ratio,
anatomical conspicuity, image quality and diagnostic confidence for the baseline model compared to
interpolation. The inter-rater agreement was slight (0.0-0.2) or fair (0.2-0.4), yet a substantial agreement was

found for signal-to-noise ratio (0.64, visual model) and artifacts (0.80, baseline model).

22


https://doi.org/10.1101/2023.06.28.544314
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.544314; this version posted June 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Table 4. Blinded reader qualitative assessments. The mean and standard deviation of the scores are given
for each category. The inter-reader agreement was assessed using Cohen’s Kappa (k) with 95% confidence
intervals. Statistical significance for differences between interpolation and super-resolution (SR) was
assessed using the Wilcoxon Signed Rank test (Bonferroni corrected for three comparisons) and is indicated

with an asterisk (*).

Score (Mean+SD)

Model Signal-to-noise ratio Anatomical conspicuity Image quality  Artifacts  Diagnostic confidence Overall average
Reader 1
Interpolation 2.440.7 2.910.6 2.810.4 2.7£0.5 2.840.4 2.7£0.5
Baseline model 2.240.4 2.7£0.5 2.61£0.5 2.7£0.5 2.7£0.5 2.6£0.5
Structure model 1.940.8 2.440.5 2.4+0.5 2.2+0.4 2.4+0.5 2.3+0.6
Visual model 2.140.3 2.440.5 2.310.5 2.310.5 2.7£0.5 24405
Reader 2
Interpolation 1.440.7 2.140.8 1.8+0.7 2.241.1 1.8+1.0 1.9+0.9
Baseline model 2.440.5* 2.840.7* 2.840.7* 2.840.7 2.940.6* 2.740.6
Structure model 1.4+0.5 2.0+£0.5 1.8+0.7 2.1+1.1 1.9+0.8 1.8+0.7
Visual model 2.0£0.5 2.240.4 2.0£0.5 2.140.6 2.140.6 2.1+0.5
Agreement (k)
Interpolation 0.147 0.241 0.047 0.077 0.039
Baseline model 0.526 0.400 0.250 0.800 0.143
Structure model 0.400 0.217 0.156 0.087 0.031
Visual model 0.640 0.053 0.308 0.143 0.211
95% CI

308

23

Interpolation
Baseline model
Structure model
Visual model

(0.108-0.186)
(0.518-0.534)
(0.379-0.421)
(0.636-0.644)

Cl=confidence interval, * p < 0.05

(0.224-0.258)
(0.389-0.411)
(0.202-0.233)
(0.043-0.062)

(0.018-0.076) (0.048-0.106)
(0.238-0.262) (0.793-0.807)
(0.135-0.178) (0.060-0.114)
(0.298-0.317) (0.132-0.153)

(0.006-0.071)
(0.132-0.153)
(0.010-0.051)
(0.196-0.225)
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DISCUSSION

In this study, we presented a deep learning-based super-resolution method to increase medical CBCT image
guality in musculoskeletal and dental imaging domains. The predictions were assessed using conventional
image metrics, bone microstructure assessment, as well as through multiple experiments for clinical data. The
technical increase in spatial resolution was quantified using a quality assurance phantom. Finally, the method
was tested on clinical CBCT images of the wrist, knee, ankle and maxillofacial region. The validation
experiments are completely independent of the training process. This simulates deploying a method developed
on laboratory data in the clinical environment, which we consider one of the key strengths in this study. The

source code of the project is published on GitHub (https://doi.org/10.5281/zenod0.8041943) and the pretrained

models used  for  dental SR predictions  are  available  on Mendeley Data

(https://doi.org/10.17632/4xvx4p9tzv.1).

The out-of-fold validation results (Table 2) suggest that the 2D baseline model performs best and that the 3D
models yield the lowest performance. The analysis is based on traditional pixel-wise comparisons to high-
resolution images. However, the analysis of osteochondral ex vivo samples shows that the 2D structure model
is the best for predicting microstructural bone details (revrv = 0.817+0.005). Furthermore, averaging the
prediction on three orthogonal planes did not improve the result. Likely, averaging the 2D predictions that do
not account for adjacent slices causes smearing of the details, resulting in a lower correlation at least in the
studied small four-millimeter samples. Finally, we would like to note that we also trained UNet and FPN
segmentation models to predict the bone microstructure, but the models did not generalize from the training
on the tissue blocks to the ex vivo test set. Thus, we hypothesize that the SR method is more resistant to domain

shift. This is further supported by the multiple of applications presented using the same training data.

The results of the quality assurance phantom analysis suggested that the SR models increase CT spatial
resolution, both visually and quantitatively. Importantly, we also noticed that the models heavily modified the
grayscale distribution of the scan, and the values on the line pair pattern were exceeding those in the uniform
areas of the phantom. This eventually led us to scale the MTF curves, based on the maximum intensity of the
scan (Supplementary Figure 1). Importantly, the quantitative Hounsfield unit values are lost after processing,

and the resulting prediction only describes the bone structure, not density or material composition. This is a
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potential limitation of patch-based super-resolution but could be alleviated in the future using wider dynamic

range of training images or more complex SR models.

The experiments on the wrist, knee, ankle and maxillofacial region reveal that the models generalize very well
on different anatomical regions, although some regions of cortical bone there is sudden increase in porosity,
especially in the wrist images. This is likely a result of having a high amount of trabecular bone in the training
data. However, this was not confirmed in Supplementary Figure 2, as there were no major differences in the
images. In the maxillofacial region, our initial experiments included multiple artefacts near teeth, when using
only the knee tissue blocks in training. Averaging the predictions in three orthogonal planes preserves the
structure better in the perpendicular plane but might smear the details in case of morphological analysis. This

is also supported by the Supplementary Video 1, where a flickering artefact is seen on the sagittal plane.

The reader study resulted in quite modest scores for both interpolated images and SR predictions. A slight
preference for interpolated images was observed for the scores of Reader 1, and Reader 2 scored the Baseline
model slightly higher compared to other models or interpolation. The low overall scores are likely due to the
fact that the high dynamic range of the original 12-bit CBCT images is lost. This could be potentially alleviated
in the future by training the models on a higher dynamic range rather than the conventional eight bits which
would also better allow studying HU values of model output. Also, the volume of extracted teeth is very small,

and the current dataset is not optimal for training SR models for dental images.

While promising maxillofacial images show that the small, mineralized structures are better seen on the SR
predictions, and even previously unseen pathologies might be revealed (Supplementary Video 2). However,
we also noted definite artefacts within the enamel which could be confused for caries lesions. A more
specialized training dataset would be crucial to alleviate such issues. Indeed, we hypothesize that the best
results would be obtained using a dataset with preclinical scans of entire cadaveric jawlines and soft tissues.
Even more readily available animal models, such as pig maxillofacial tissue, could be considered to provide

the SR models examples closer to the target distribution.

In medical diagnotics, it is imperative that the SR models do not induce biases from the training set and remove

or add new diagnostic features to the predicted high-resolution images*. Upscaling the images poses a serious
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theoretical problem: multiple visually distinct high-resolution images can downscale to the same low-
resolution image“®. This serious limitation warrants thorough validation experiments before SR can be utilized
in the clinical environment. This would be an excellent area for future studies, where predictions of healthy
tissue and small fractures or other pathological conditions could be analyzed in more detail. We would
hypothesize that models that generate entirely new images from a latent space, such as generative adversarial
networks, could have a higher risk of “hallucinating” nonexistent pathological features, whereas a traditional

CNN is more limited to modifying the original image, even though it is upscaled from low-resolution.

This study has several limitations. First, the best-performing 2D models did not account for changes in the
perpendicular plane. An interesting future methodological improvement could include using a three-channel
input image, including the adjacent slices. Second, most of the clinical comparisons presented in this study are
restricted to qualitative or semiquantitative analysis. There are many studies where multiple radiologist readers
assess the diagnostic image quality blindly from the SR and comparison images to show the increase in
performance®*®"4748 We would argue that the ratings provided by the radiologists are also somewnhat
subjective, and the true ground-truth information cannot be obtained in clinical studies without a subsequent
tissue sample extraction. Third, the weights of the individual loss functions were chosen manually during the
early experiments of this study. These should be ideally chosen using an ablation study or hyperparameter
optimization. Finally, the SR prediction was conducted as post-processing rather than by directly
reconstructing the projection images using deep learning. Indeed, the first CT vendors have already released
reconstruction methods based on deep learning®*“°. As the projection data is often unavailable to the end user,
nonlinear CNN-based methods that work in the reconstruction domain could be more easily added, as an

additional component to any CT scanner.

The deep-learning-enhanced medical images could have a high impact on the medical domain. The
implications for the technology include higher patient throughput, more precise diagnostics, and disease
interventions at an earlier state. The proposed SR can be directly applied to the existing clinical scans in the
reconstruction domain and could thus have quality enhancement potential for routine hospital pipelines.
Integration of SR methods in the hospital environment could facilitate a higher throughput, reducing the time

radiologist needs to reach a diagnosis on difficult cases as well as mitigating uncertainty in the diagnostic
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process. Radiologists could use the SR as an advanced “zoom” feature, analogous to pathologist changing the
objective on a microscope. Training the models on laboratory data allows for pushing the spatial resolution
limit further than what the clinical radiation doses or even the current CT technology would otherwise allow.
Alternatively, the current image quality could be maintained with a lower dose which could increase the

accessibility of CBCT and allow earlier diagnostic intervention.
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Supplementary Figure 1. The modulation transfer functions (MTF) are scaled based on the average of
plexiglass and water in a region of interest. The super-resolution model’s predictions highlight the structures
in the line pair patterns, and the grayscale values exceed the ones in smooth areas of plexiglass. This results
in MTF values that exceed one. However, the results also show the effect of highlighting small structures

better than the scaling used for Figure 4b.
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Supplementary Figure 2. Comparison of using knee tissue blocks and extracted teeth in training data.

Structure model predictions are shown above. Only very small differences are seen between the images,
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suggesting that adding dental images did not improve the prediction accuracy of musculoskeletal cone-

beam CT.

540

Supplementary Video 1. Sagittal view of the knee. As the predictions are only created from the transaxial

plane, a flickering artefact can be seen on the sagittal view.

Supplementary Video 2. Maxillofacial cone-beam CT images of two patients, corresponding structure and
baseline model predictions as well as micro-computed tomography (UCT) scans of the extracted teeth.
Details are better preserved on the super-resolution prediction. A possible small gap is seen on the lamina
dura of patient one, indicated with a red arrow. The tooth next to the tissue is later extracted and the

corresponding HCT reconstruction is shown.
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